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Abstract 

In this thesis, the Molecular Dynamics (MD) method was applied to perform 

atomic scale simulations of bulk single crystal gold (Au), free planar crystalline 

surfaces of single crystal Au, and 33 Au nanoparticles (NPs) to investigate whether 

atomic scale bonding in NPs exhibits lattice compression for sufficiently small NPs. A 

pre-existing embedded atom method (EAM) potential for Au was used in all our 

simulations. The atomic scale pair distribution function G(r) was calculated for Au 

bulk and all NPs simulated to evaluate changes in atomic bonding environment for 

nanoparticles compared to a bulk crystal. 

Planar surface calculations indicate that at equilibrium state, the values of stress 

of surfaces in different orientations were all in the range of 1.3~2.0 𝐽/𝑚2and surface 

stress manifested only in those atoms within 7 to 8 Å of the free surface. G(r) analysis 

on the NPs showed that the position of the first peak in G(r) shifted to smaller r for 

smaller NPs. This indicated that a compressive stress was acting to compress nearest 

neighbor bond lengths, but the corresponding estimation of surface stress was nearly 

four times the values obtained from planar surface calculations. 

The definition of core atoms was given based on the calculation result of surface 

stress contribution, and the entire analysis was applied to the core atoms of each NP. 

The features of G(r) of core atoms were quite similar to what is computed for all 

atoms in the NP, but the shift of first peak in G(r) was less when core atoms alone 

were considered. This indicated that lattice compression, as determined from core 
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atom analysis, was less. As a result, the surface stress prediction based on core atom 

lattice compression was very close to values given by the planar free surface 

simulations. This showed that the surface stress was some linear combination of 

surface stress values of different low index surfaces. 
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Chapter 1. Introduction 

1.1 Nanoparticles 

The development of nanoscience and nanotechnology has been exponentially 

increasing in the last twenty years. It is safe to claim that it has improved the lives of 

human-beings in a great amount of ways. For example, carbon nanotubes (CNT) have 

been widely used in gene delivery and magnetic nanoparticles are functional in 

targeted drug delivery [1]. R. Singh et al. reported in 2005 that three types of f-CNTs, 

ammonium-functionalized single-walled and multiwalled carbon nanotubes 

(SWNT-NH3+; MWNT-NH3+), and lysine-functionalized single-walled carbon 

nanotubes (SWNTLys-NH3+) are able to condense DNA to varying degrees, 

indicating that both nanotube surface area and charge density are critical parameters 

that determine the interaction and electrostatic complex formation between f-CNTs 

with DNA [2]. In 2008 B. Chertok explored the possibility of utilizing iron oxide 

nanoparticles as a drug delivery vehicle for minimally invasive magnetic targeting of 

brain tumors and proved that accumulation of iron oxide nanoparticles in 

gliosarcomas can be significantly enhanced by magnetic targeting; thus, these 

nanoparticles appear to be a promising vehicle for glioma-targeted drug delivery [3]. 

In summary, nanotechnology involves a broad field of study of the properties of 

matter on the nanometer length scale, and tries to understand, control, and manipulate 

it [4].  

In the realm of nanotechnology, a significant position is occupied by nanoparticles, 
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as they are considered the fundamental building blocks of the field. The term 

‗nanoparticle‘ refers to a particle with size in the range of 1-100 nm [1] [4]. The most 

significant consequence of this nanoscale is the tremendous surface area per unit 

volume of the object, implying that many atoms in a nanoparticle reside at or near a 

free surface. This high surface-area-to-volume ratio can lead to a highly significant 

influence of the atoms on a particle surface in determining the overall NP‘s properties. 

It can be shown that both fraction of surface atoms and specific surface area increase 

with decreasing size of particle in Figure 1.1 (the characteristic size of nanopariticle is 

in nanometer in x-axis, for instance, for spheres, the characteristic size is the radius). 

Correspondingly, there is also a similar increase in specific surface area with 

decreasing particle size. Herein, the surface thickness was considered as the thickness 

of only one atomic layer, which is different from what we define in this thesis.  
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Figure 1.1 Calculated fraction of molecules at the surface as a function of nanoparticle 

size for particles of various shapes. [1] (Without permission) 

The large surface area to volume ratio of nanoparticles can bring about unique 

properties, e.g. if nanoparticles have dimensions below the wavelength of incident 

light, quantum effects will be exhibited. As a result, transparency can be attained since 

specific absorption wavelengths are determined by particle size.[1][5] An overarching 

theme is that nanoparticles possess dramatically different physical and chemical 

properties from those of bulk materials and those expected from the simple 

extrapolation of bulk properties. This explains why scientists and researchers have 

paid tremendous attention to the field of nanoparticles.  
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1.2 Gold Nanoparticles 

1.2.1 Brief Overview of Metallic Nanoparticles 

Metallic nanoparticles have unique optical and electrical properties so they have 

earned great interest in science [4]. It is believed that these unique properties originate 

from their finite size. The size of metal nanoparticles is only a few or tens of 

nanometers by definition, so the movement of their electrons is confined in space and 

consequently discrete electron energy levels emerge that are dependent on particle 

size and shape. Thus they show quantum size effects that are predicted by Quantum 

Mechanics theory. [6] A quantum size effect means particles behave electronically as 

zero-dimensional quantum dots. As a result, the de Broglie wavelength of the valence 

electrons is of the same order as the size of the particle itself. The de Broglie 

wavelength of one particle is inversely proportional to its momentum, which is given 

by 

                             λ =
h

p
                               (1.1) 

where h is Planck‘s constant and p the momentum. In this case, the electron has a very 

low momentum compared to macroscopic objects. In this case, the de Broglie 

wavelength may be large enough that the particle's wave-like nature gives observable 

effects. For instance, free mobile electrons confined to a nanometer scale structure show 

a characteristic collective oscillation frequency of the plasmon resonance, i.e. the 

excitation of surface electrons by light, giving rise to the so-called plasmon resonance 

band (PRB). [5] As shown in Figure 1.2, the color metal nanoparticles display when 
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scattering visible light depends on their chemistry, size, and shape, which is attributed 

to a phenomenon known as Surface Plasmon Resonance (SPR).  

 

Figure 1.2 Rayleigh light-scattering of gold (Au) and silver (Ag) nanoparticles 

displaying various colors depending on the material, shape, and size. [7](Without 

permission) 

Surface Plasmon Resonance (SPR) is a phenomenon where electrons on the 

surface of metal nanoparticles oscillate due to the interaction between light and 

confined electrons of the nanoparticles, which is illustrated in Figure 1.3.   

                 

 

Figure 1.3 Illustration of Surface Plasmon Resonance 

When it happens, light of a specific wavelength is absorbed by a metallic 

nanoparticle, which matches the frequency of the oscillation, and the nanoparticle 

displays a color. Since the frequency can be determined by the material, size, and 

shape of nanoparticles, as well as the environment, metal nanoparticles of different 

properties display different colors. [5] [7] Because molecular adsorption on NPs 
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changes the PRB, this property has been exploited in biosensor applications, DNA 

sensing for example. [5] [8]  

1.2.2 Gold Nanoparticle 

Among nanoparticles, gold nanoparticles (Au NPs) have been extensively studied; 

this is partly because gold is the subject of one of the most ancient themes of 

investigation in science. Au NPs are among the most stable metal nanoparticles [5] 

since Au is relatively chemically inert. They present fascinating aspects such as 

low-symmetry structures at some geometric magic numbers [9] and size-related 

electronic, magnetic [5, 7] and optical properties (due to quantum size effect). 

Moreover, their applications to catalysis, owing to the high surface-to-volume ratio, 

and biology are also significant. For example, conjugates of Au NPs-oligonucleotides 

are of great interest owing to the potential use of the programmability of DNA 

base-pairing to organize nanocrystals in space. This gives multiple ways of providing 

a signature for the detection of precise DNA sequences to develop biosensors, disease 

diagnosis, and gene expression, etc [5]. Besides, research is expanding on Au NP 

catalytic effects associated with CO oxidation, NO reduction, and the water-gas shift 

reaction, i.e. the chemical reaction in which carbon monoxide reacts with water vapor 

to form carbon dioxide and hydrogen; new Au NP based catalytic systems are now 

being explored. [4][5]  

Applications exploiting the optical properties of Au NPs utilize functionalization 

of NPs with chromophores. Chromophore means the part of a molecule responsible 
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for its color. These have diverse applications due to a range of options for the 

chromophore. In 2003, K. Thomas et al. reported that gold nanoparticles associated 

with fluorophores were utilized in photocurrent generation and fluorescent display 

devices [10]. Furthermore, they also showed that gold nanoparticles can bind and 

release amino acids when linked with appropriate chromophores. All in all, it appears 

safe to assume that Au NPs will be a key building block for nano-science and 

-technology in the 21st century. 

Given the many applications of Au NPs, as well as the extensive literature on 

them, this thesis will focus on Au NPs as a canonical metal NP system. 

 

1.2.3 Brief overview of Structure of Gold Nanoparticle 

The structure of gold nanoparticles has been perhaps the most investigated aspect 

about them.[4] It has been found, theoretically and experimentally that gold 

nanoparticles have crystallographic structures different from the bulk material.[4,11] 

In general, gold nanoparticles have icosahedral or decahedral motifs depending on 

their size while bulk gold has face-centered cubic (fcc) crystal structure [4]. These 

crystallographic structures are shown in Figure 1.4-1.6. 
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Figure 1.4 Face-centered-cubic (fcc) clusters: (a) octahedron; (b) truncated octahedron; 

(c) cuboctahedron. [4] (Without permission) 

 

 

Figure 1.5 Icosahedral clusters [4] (Without permission) 
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Figure 1.6 Decahedral clusters: (a) regular decahedra; (b) inotrucated decahedra; (c) 

Marks truncated decahedra. [4] (Without permission) 

The most energetically stable structures are shown as quasispherical shapes and 

obtained by optimizing the surface/volume ratio as well as surface energy. For Au 

NPs, the icosahedral structure is considered to be the most stable structure for 

particles smaller than 1 nm and the truncated-decahedral structure is considered to be 

the optimal one for clusters of size between 1 nm and 2 nm. For Au NPs larger than 2 

nm, the truncated-octahedral structure (fcc) is the dominant shape [4, 12]. It should be 

noted here that the size ranges are not defined very strictly. Furthermore, it is 

predicted that relatively small difference in energy exists between different 

morphologies.  

1.3 Production of Gold Nanoparticle 

There is a long history of the production of Gold nanoparticles. In 1857, M. 

Faraday reported a method for formation of colloidal gold by electrochemical 
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reduction of aqueous solution of chloroaurate,𝐴𝑢𝐶𝑙4
−. [1] [5] Nearly one century later, 

Turkevich introduced a method using citrate reduction in water of tetrachloroauric 

acid, 𝐻𝐴𝑢𝐶𝑙4, to produce spherical gold nanoparticles. In his preparation, 95 ml of 

chlorauric acid solution, containing 5 mg Au, were heated to the boiling point, and 

then were added by 5 ml 1% sodium citrate solution with stirring. A faint pink or blue 

color appeared after a minute and then darkened quickly for around 5 minutes, ending 

up with deep wine red.  Colloidal particles are highly reproducible and form 

spherical shapes (Figure 1.7) with a mean diameter of about 200 ± 15 �̇� and a 

root-mean-square deviation of 12.5% (Figure 1.8). [13] This method has been the 

most popular among conventional methods of Au NP synthesis by reduction of gold 

derivatives [5]; it is considered relatively simple and it results in a relatively 

monodisperse distribution of particle sizes [1]. A further effort by Frens in 1973 

introduced greater control over average particle size by varying the trisodium 

citrate-to-gold ratio [1, 5].  

 

Figure 1.7 Electron micrograph of a gold solution reduced with sodium citrate [13] 

(Without permission) 
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Figure 1.8 Size distribution of Au NPs formed from a standard citrate solution [13] 

(Without permission, the size of nanopariticle is in Å in x-axis) 

In recent decades, numerous applications of gold nanoparticle have led to the 

development of other approaches for making gold nanoparticles. For instance, the 

Brust-Schiffrin method for Au NP synthesis introduced in 1994 had considerable 

impact on the overall field; it offered, for the first time, the facile synthesis of 

thermally stable and air-stable Au NPs with reduced size dispersity and controlled 

average size (ranging in diameter between 1.5 and 5.2 nm) [5]. There are also other 

more recent approaches which have been developed. The utilization of 

microemulsions, copolymer micelles, reversed micelles, surfactants, and membranes 

has advanced two-phase systems for Au NP synthesis; these methods provide control 

over the growth and stabilization of the Au NPs. The procedure of seeding growth has 

also been improved in recent studies. Given that advance, it is possible to choose an 

average diameter of Au NP in the range of 5-40 nm, and control the size distribution 

to within 10-15% of that range. This step-by-step technique (i.e. graft to some matrix 

first, e.g. copolymer micelles, then Au NP extracted from metal salt) which has been 
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used for nearly a century is more effective than one-step method (i.e. Au NP extracted 

from metal salt directly) as far as avoiding secondary nucleation. [5] Despite the 

existence of a large number of Au NP synthesis methods, most methods depend on in 

situ reduction of gold (III) salt or acid via chemical means [1].  

 

1.4 Studies of Gold Nanoparticles 

1.4.1 Experimental studies 

In general, Au NPs have been studied in two main ways, experimentally and 

numerically. Via Au ion implantation experiments and both ion and electron 

irradiation, H. G. Silva-Pereyra et al. (2010) report that elongation occurs in Au NPs; 

the elongation depends on a Au NP‘s diameter, and it only brings about geometrical 

change, without any interchange of material among Au NPs. This result supported the 

thermal spike model developed by D‘Orle´ans et al. in 2003 which could explain the 

deformation of NPs. Most important, the structure of both as-prepared and 

Si-irradiated Au NPs show high stability and fcc bulk structure, which means that 

there is no lattice stress from what the authors concluded. This can be extensively 

helpful for the analysis and understanding of the nonlinear optical properties of 

nanocomposite according to the authors. [14] H. Yao et al (2007) has experimentally 

produced Au NPs at an air/solution interface under highly acidic conditions and 

protected by N-acetylglutathione (NAG). By applying Field Emission Scanning 

Electron Microscopy observation, it was found that Au NPs‘ superlattices exhibit 

fivefold symmetric structure, such as decahedron and icosahedrons. These are 
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probably developed by twinning, and their formation is dominated by the kinetics of 

growth. This may develop some new interesting phenomena in fivefold twinned 

structure of Au NP in nanoscience.[15] In 2010 N.P. Young et al. investigated 

structural transformations of Au NPs using variable temperature high-resolution 

transmission electron microscopy. They demonstrated that the decahedron structure is 

stable at room temperature, and a decahedral to icosahedral transition was confirmed 

as a route to lower energy at low temperature. Meanwhile, a co-existence of 

solid/liquid phase at high temperature just below melt point is observed. These results 

are important in a more precise understanding of the structure and action of catalytic 

gold nanoparticles and in the experimental verification of theoretical calculations. [16] 

X.N. Xie et al. (2009) have also looked into electronic behavior of passivated Au NP 

experimentally. They investigated the electric characteristics of the slow ionization 

and relaxation in ionizable alkanethiol molecules by applying experimental method 

and using two alkanthio, 11-mercaptoundecanoic acid (MUA,SH − (CH2)10 − COOH) 

and 11-mercaptoundecanol (MUO,SH − (CH2)10 − CH2 − OH). The electric behavior 

of MUA-passivated Au NPs was considered to be dominated by the ionic motion. By 

this approach they observed the formation of hysteresis loops in IV curves. These 

results represent a novel charge conduction mechanism governed by ligands in the 

NP/molecule binary system and may find new applications in molecular electronics 

and NP-based memory and sensor devices. [17] The structure of Au nanoparticles 

supported on silica was analyzed using structural models fit to X-ray powder 

diffraction(XRD) and X-ray adsorption spectroscopy data (A. Longo et al., 2008). It is 
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found that gold nanoclusters supported on silica exhibit significant twin stacking 

faults; from this, the authors concluded that, in nanocrystalline gold, faulted compact 

packing of atomic layers constitutes a possible atomic arrangement. By comparison, 

good XRD fitting was obtained by linear combination of lognormal size-distributed 

f.c.c. cuboctahedral, decahedral and icosahedral contributions. Furthermore, the 

complementary analysis of X-ray absorption data did not confirm the presence of a 

noteworthy fraction of noncrystalline particles. [18] 

 

1.4.2   Numerical Studies 

Researchers studying the properties of Au NPs have also utilized numerical 

methods. M. McGuigan et al. (2009) applied density functional theory to 

computationally simulate gold nanoclusters and to describe the energy landscape in 

terms of the size and shape of a Au NP for well known structures such as 

icosahedrons, and cuboctahedrons. By tabulating the bond length and binding energy 

and introducing a shape parameter θ  to find intermediate shapes between 

cuboctohedron and icosahedron, it is demonstrated that the potential energy can be 

calculated as a function of bond length and shape. As examples, it is illustrated that 

the cuboctahedral shape was lower energy than the icosahedral shape for 13 atoms 

and the opposite was the case for 55 and 147 atoms. At the end, the effect of the 

presence of Au NP on the binding energy of O2 is computed as well showing that it 

leads to weaker binding which may have implications for the use of nanogold for 
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catalysis. [19] A.S. Barnard et al (2005) used computational calculations to check a 

proposed multiscale thermodynamic model based on the Gibbs free energy of an 

arbitrary nanoparitcle as a function of size and shape. This showed that the 

equilibrium shape of Au NP is truncated octahedron as it optimizes the surface 

energy/stress and surface-to-volume ratio. Meanwhile, it is also indicated that 

temperature rather than size should be a decisive factor on Au NP‘s morphology. 

Since temperature is such a decisive factor, the author even concluded that it is 

appropriate to make a feedback loop including the temperature in the optimization. 

Their work also pointed out that melting is preceded by a shape transition from a 

truncated octahedron into a more cuboctahedral-like NP. [20]  

Molecular Dynamics (MD) is an extremely suitable method to investigate the 

properties of NPs since its accessible time and length scales coincide with those of NP 

size and dynamics. MD refers to a computer simulation method to study atomic 

physical movements. D.-H. Seo et al. (2009) has reported that by applying MD 

simulation, there are two crucial factors for the diffusion behavior of Carbon 

Nanotube (CNT)-support Au and Pt nanoclusters: the interface, i.e. the geometry of 

the bottom layer of nanocluster, and the matching between diffusion pathway and the 

lattice of the bottom layer. As a result, Au nanoclusters diffuse in the translational 

direction (i.e. along a CNT‘s axis) and conversely Pt NPs revolve around the CNT 

axis and moves along the circumferential direction. Moreover, the chirality and 

curvature of CNT controls the diffusion pathway and diffusion rate, respectively by 

controlling the distribution of the low-energy pathways. A strategy such as vacancy 
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formation or CNT doping is proposed in order to prevent undesirable aggregation of 

CNT-supported clusters and improve their durability. [21] G. Grochola (2007) used 

MD growth simulations in conjunction with thermodynamic integration to calculate 

and compare the relative free energy for different structures of Au NPs. 

Thermodynamic integration is the process of transforming between Au EAM potential 

to Einstein solid. The utilization of this integration is able to compute the difference of 

free energy between some reference state, where the Gibbs free energy can be 

rigorously defined, and the state of interest. The difference is usually integrated in a 

designed thermodynamic cycle along some relevant paths. The internal and free 

energy of ideal/pristine NPs and surface disordered ones were analyzed and compared. 

It was concluded that the dominance of icosahedral shape growth kinetics is attributed 

to firstly a preference for closed, ideal hexagonal-like surfaces, secondly a 

thermodynamic preference for this morphology, and lastly the kinetic effect where 

nanoparticles grown in kinetic growth environment are constrained to surface disorder. 

[22]  

Monte Carlo (MC) simulation is another powerful approach to investigate 

nanoparticles. This method can be used to calculate equilibrium results from repeated 

random sampling among appropriate configurations within the thermodynamic 

ensemble of interest. K. P. McKenna et al (2007) used the MC method to simulate 

thermodynamic equilibrium of Au nanocrystallites (NCs) at room temperature. Both 

free and MgO(100)-supported Au NCs, whose atom on the surface can diffuse and 

may transiently occupy low-coordinated positions on the surface, are calculated by 
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introducing an on-lattice model. The result demonstrates that the atoms on both 

unsupported and supported NCs will occupy different positions on NC surface than 

those predicted by a zero temperature static model. Transient configurations of 

surfaces at finite temperature can be very important since they may influence the 

optical, electronic, and chemical properties of NCs [23].  

 

1.5 Surface Stress 

Because NPs in general - and Au NPs specifically - possess significant surface 

area to volume ratio, their surface thermodynamic properties can be very important in 

determining a NP‘s properties. An important surface thermodynamic quantity is the 

surface stress. Surface stress, f, is a thermodynamic quantity that describes the amount 

of energy or reversible work per unit area required to elastically deform a solid 

surface. It differs from another fundamental thermodynamic parameter, i.e. surface 

free energy γ, which represents the energy needed to form a new surface by a process 

like cleavage.[24] In liquid, these two values are identical, as the configuration of 

fluid surface remains constant owing to bulk atoms or molecules moving exteriorly to 

the surface when a fluid surface is stretched. Put differently, a liquid cannot support a 

shear stress so the only way to create/eliminate new surface is by adding/removing 

atoms from the surface, rather than elastically deforming existing atoms at the surface. 

In contrast, when a solid surface is put in tension (within an elastic limit), the total 

number of surface atoms is conserved; therefore, the number of atoms per unit area 

changes and consequently, f ≠ γ. 
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The mathematical definition of surface stress, or the relationship between surface 

stress and surface free energy, is shown as following [24]. In order to create new area 

dA, the needed amount of reversible work dw can be expressed as: 

                  dw = γdA                  (1.2) 

The total work performed to create a planar surface A, in other words, the total 

excess free energy of that surface should be γA. When a solid surface is stretched, the 

elastic deformation can be written in terms of a surface strain tensor, εij, where i, 

j=1,2. Now consider a reversible perturbation that causes a small variation in the area 

through an infinitesimal elastic strain dεij . The surface stress tensor fij  can be 

defined as the work associated with the variation in γA. Thus, the variation of total 

excess free energy of the whole surface caused by the strain dεij is equal to                           

                               d(γA) = Afijdεij                     (1.3) 

where i, j =1,2 are dummy indices by the definition of tensor analysis. 

Since 

                         d(γA) = γdA + Adγ, dA = Aδijdεij            (1.4) 

where δij is the Kronecker delta, the surface stress tensor fij can be expressed as 

                                fij = γδij +
∂γ

∂εij
                      (1.5) 

For a general surface, the surface stress tensor can be referred to a set of principal 

axes so that all off-diagonal components are zeros. In the case of a threefold or higher 

rotational axis symmetry, the diagonal components are the same, so the surface stress 

can be written as a ―scalar‖: 

                                  f = γ +
∂γ

∂ε
                        (1.6) 
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1.6 Motivation of the study 

When a solid object of finite size is elastically deformed, work is performed 

against both volume and surface forces. [5, 24] For macroscopic solid mechanics 

situations, it is no doubt that the volume term is the dominant one over the surface 

term. However, for a small enough solid, the surface term may become dominant and 

induce a bulk stress of order f/t, where f is surface stress and t is the characteristic 

length, say the diameter of a nanoparticle. Recall, for instance, a liquid where 𝑓 = 𝛾. 

It can be shown that the pressure difference between the fluid inside and outside a 

liquid drop or bubble is ∆𝑝 =
2𝛾

𝑅
, where R is the radius of the drop. An analogous-but 

less straight forward-situation exists for solid particles. It is expected that this surface 

induced bulk stress will consequently change the lattice spacing. [24] As mentioned 

before, gold nanopartilces possess an extremely large surface area-to-volume ratio, so 

it is fair to assume that the effect of surface stress would be significant. 

On the other hand, most research on gold nanoparticles by applying MD 

simulation focused on the influence of structures on thermodynamic properties, such 

as structure stability. Examples include keeping fcc bulk morphology under 

irradiation [14] and being stable at room temperature as decahedron [16]. Structure 

transformation has also been investigated. For instance, the sequence of high stability 

morphologies with increasing number of atoms is modified from (decahedral - 

icosahedral - Marks-decahedral - truncated octahedral) in vacuum to (octahedral - 

Marks-decahedral - truncated octahedral) under gas pressure [25]. However, there 

have been fewer works that focus on the role of surface stress in determining peculiar 
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properties of gold nanoparticle, such as internal strain and pressure, atom number 

density, and bond lengths different from equilibrium bulk values. Thus, the effect of 

surface stress on the internal pressure and bonding environment for gold nanoparticles 

is the focus of the current study. The impact of surface stress is essential for many 

physical phenomena.  

For example, inhomogeneous surface stresses can give rise to a self-organization 

of mesoscopic structures on surfaces.[26] For submonolayer coverage of Pb on Cu 

surfaces, R. Plass et al pointed out that elastic interactions due to a surface-stress 

difference between different surface structures contribute to the stabilization of 

domain patterns.[27] W. Lu et al (2002) reported that anisotropy of surface stress 

plays an important role in surface reconstruction, and is responsible for the domain 

patterns on reconstructed silicon (100) surface. [28]For applications, the 

thermodynamics of surface stress has been utilized to develop theorems on thin films 

and nucleation during solidification.[29] The effect of surface stress on nanoparticles 

continues to fascinate the attention of researchers in science and engineering. [26]  

Since Au NPs display a fairly important role among all metal nanoparticles in 

nanoscience, this project will study the effect of surface stress on the internal pressure, 

lattice constant, atom number density and specific bonding environments of atoms for 

Au NPs in the size range D = 1 to 5 nm. Specifically, this work will show the size 

dependence of the effect of surface stress to better elucidate factors contributing to 

observed behaviors. The method utilized throughout the study is classical molecular 

dynamics (MD) simulation. The code utilized (LAMMPS) is publicly available, 
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massively parallel, and open source. The interaction between simulated Au atoms is a 

semi-empirical potential energy function that accurately describes the surface 

properties of Au. Home grown (Matlab) codes were applied to analyze the data from 

MD simulations. More details of the computational procedure will be presented in a 

following section. 

In Chapter 2, background knowledge of Molecular Dynamics will be introduced; 

in addition, specific procedures of MD simulations and data analysis used herein are 

presented. In Chapter 3, the results of data analysis are provided, along with 

discussion of results. The conclusion and interpretation of the current work is 

presented in Chapter 4, along with an outline of future potential work. 
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Chapter 2 Numerical Methods 

2.1 Fundamentals of Molecular Dynamics 

Computer simulation methods have been applied to solve many-body problems in 

physics, physical chemistry and biophysics; these methods are essentially experiments 

in statistical mechanics. [30] The systems which statistical mechanics addresses are 

composed of a large (i.e. statistical) number of particles; this branch of science allows 

one to relate the collective properties of interesting atoms and molecules to the 

macroscopic bulk (i.e. thermodynamic) properties of materials. In many cases, it is 

impossible to study specific aspects of how atomic interactions manifest continuum 

properties unless via computer simulation. Among simulation techniques, it is natural 

to classify them according to the length scale at which the model is resolved. For 

atomic scale models, there are two main families of simulation technique, Molecular 

Dynamics (MD) method and Monte Carlo (MC) method [31, 32].  

Molecular Dynamics simulation is a computational tool used to describe how 

positions, velocities, and orientations of interacting particles change over time.  

Particles may represent atoms, groups of atoms, or even larger entities; herein, focus 

is on the use of MD as an atomic scale simulation technique. A set of models (i.e. 

mathematic functions) that describe atomic scale interaction are foundations of any 

MD simulation.  Dynamics are governed by the system‘s Hamiltonian, and 

Hamilton‘s equations of motion 

H=T+U, �̇�𝑖 = −
∂H

∂qi
 ,�̇�𝑖 = −

∂H

∂Pi
                 (2.1)   
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where H is the Hamiltonian, T is the kinetic energy which is a function of momenta, 

T =
p2

2m
, and U is the potential energy which is a function of position in the atomic 

ensemble, U=U(q). The simulation model for atomic interactions is defined by an 

interatomic potential energy function, or potential for brevity. [33] The potential can 

be represented as 𝑈 = 𝑈(𝑟𝑁), where 𝑟𝑁 is the set of location vectors of an ensemble 

of N atoms. For simplicity, in many simulations only pair interactions among atoms 

are taken into account, so the potential energy of a system of N atoms is 

                          𝑈 =
1

2
*∑ ∑ 𝑢(𝑟𝑖𝑗)𝑖≠𝑗

𝑁
𝑖=1 +                    (2.2) 

where 𝑢(𝑟𝑖𝑗) is a pair potential function having a known form, and 𝑟𝑖𝑗  is the 

absolute value of distance between atom i and j. Since the interatomic forces are 

derived from potential, they are all conservative, and can be related to the potential as 

the gradient of U, or 

                             �⃗�𝑖 = −
𝜕𝑈

𝜕𝑟𝑖
                            (2.3) 

In Molecular Dynamics, positions of atoms are attained by seeking the solution of 

Newton‘s equation of motion: 

                             �⃗�𝑖 = 𝑚𝑟𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗̈
                           (2.4) 

where 𝐹𝑖
⃗⃗⃗ is the force induced by the interactions between atom i and the other N-1 

atoms, and the double dots mean second order time derivative while m is the mass of 

each atom. Substitution of (2.3) into (2.4) relates the force to the potential function, 

which is a known input to a given MD simulation. Integration once yields the 

momenta of atoms, and the atomic position can be found by integrating an additional 

time.  
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Repeating the integration procedure many times will reveal the trajectories of 

atoms, based on which time average of some desired thermodynamic value, <A>, can 

be computed  

 < 𝐴 >= lim𝑡→∞
1

𝑡
∫ 𝐴(𝜏)𝑑𝜏

𝑡0+𝑡

𝑡0
                     (2.5) 

When a state of equilibrium is reached, the average will be independent from the 

initial time 𝑡0. Because there are many times of integration involved to achieve 

equilibrium, it is of great importance that an appropriate integration scheme and a 

time steps to the algorithm are selected. Poor integration schemes or too large a time 

step will introduce systematic errors in the thermodynamic ensemble and therefore in 

the computed value of <A>. 

MD simulation can be used to realize different sorts of thermodynamic ensembles, 

which dictate the state thermodynamic quantities that will remain constant throughout 

the simulation. Once the ensemble is established, time averages may be obtained, say, 

for the thermodynamic state variables that are not held constant. For example, a 

commonly employed MD ensemble is the microcanonical, [30] where number of 

atoms N, volume V, and total energy E (sum of kinetic and potential energy) are held 

constant (i.e. NVE ensemble); in such an ensemble, one may seek, for instance, time 

averages of the system pressure P or temperature T. Other often employed ensembles 

include the canonical, i.e. constant-NVT, ensemble, and the isothermal/isobaric, i.e. 

constant-NPT, ensemble. In order to implement a given ensemble in a MD simulation, 

certain thermodynamic quantities must be held constant (either absolutely or in a time 

averaged sense). Various numerical algorithms have been formulated to fix the 
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corresponding properties to a desired value. More theoretically detailed information 

on ensembles can be found in [32] [33] and texts of statistical mechanics. The key 

point is that properly implemental MD algorithms maintain thermodynamic 

ensembles, form which methods of statistical mechanics reveal desired 

thermodynamic quantities (i.e. material properties). 

In short, the mechanism of the MD simulation process can be summarized as 

following 

1. Select the potential energy function that will be used to describe the 

interatomic interactions  

2. Set the initial position and velocity of each atom in a system and the 

dimensions of the simulation space 

3. Calculate all the forces on total N atoms via the governing interaction model 

4. Find accelerations of each atom 

5. Obtain each atom‘s velocity and position after a given timestep through 

numerical integration by a chosen algorithm 

6. Update all atomic positions  

7. Repeat steps 3 - 6 

8. Post process, or analyze, generated thermodynamic and atomic trajectory data 

MD simulation was first introduced by B. Alder and T. Wainright in 1957 to study 

the phase transition of hard spheres system, where particle propagation is determined 

by each successive binary collision, rather than an integration of the equations of 

motion. In 1964 a model system of liquid Argon was simulated by A. Rahman. In this 
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simulation not only the collision events between two particles but also interactions 

modeled by Lennard-Jones potential were taken into account. This was the first time 

that MD simulation was applied to atoms interacting through a continuous potential. 

During 1970s, MD method continued to mature. Rahman and Stillinger (1971) 

performed a simulation of 216 water molecules using an effective pair potential and 

Ewald summation to calculate long-ranged forces triggered by electrostatic (i.e. 

Coulomb) interactions. Several years later, the first protein simulation was carried out 

by McCammon for bovine pancreatic tyrpsin inhibitor. [33] After that, MD 

simulations began to be operated under different conditions and ensembles and 

became more sophisticated. For instance, using MD to study non equilibrium 

processes was first advanced in 1983 by Gillan and Dixon to calculate the 

autocorrelation function of the microscopic heat current and hence the thermal 

conductivity of a liquid. The Nose-Hoover thermostat algorithm, which is used to 

obtain isothermal ensembles, was developed in 1984. The Car-Parrinello method to 

carry out ab initio quantum mechanical MD (in which quantum mechanical effects for 

the electronic degrees of freedom are taken into account) was developed in 1985. The 

progress of available computer facilities is a major factor driving the development of 

MD simulations. [31,32] Today MD methods are applied to a huge class of subjects, 

e.g. surface properties, molecular clusters, biomolecules, and properties of liquids and 

solids, and many different simulation codes have been developed. 

Another well-developed simulation methodology is Monte Carlo (MC) method. 

MC simulation is a computer simulation method that explores the phase space of a 
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system in a time-independent and stochastic manner. It uses a sequence of random 

numbers to render and sample the phase space, from which diverse physical 

properties of the system can be extracted. The main advantage of Monte Carlo 

simulation over many analytical techniques is that it is a simple and straightforward 

method that can provide an approximate solution to the problems encountered in 

complex systems. Specifically, MC is able to reveal long time equilibrium properties. 

The main advantage of MD method, with respect to MC method, is that MD 

probes equilibrium configurations as well as dynamical properties of the system; this 

makes MD well suited to compute time correlation functions and associated transport 

coefficients. MD is therefore more efficient to evaluate some thermodynamic 

properties like heat capacity, compressibility, and interfacial transport properties. 

There are also computational advantages of MD method, particularly as compared to 

ab initio methods. For example, the dynamic behavior of the atomic system is 

described empirically without having to solve Schrodinger‘s equation at each time 

step. Furthermore, it has been extensively discussed that many MD models are 

inherently able to be executed in parallel. On the other hand, parallel implementations 

of MC or ab initio based MD are highly non-trivial to realize. In this thesis, we use 

the open source code LAMMPS, which can be run in massively parallel environments 

and provide efficient simulation on metal atomic scale systems. [35] 

Computing every force on each atom is a demanding part of a MD simulation. In 

order to limit the number of force calculations, the smallest possible system – in terms 

of number of atoms – should be simulated. The minimum system size necessary to 
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compute a given desired property is not always obvious and a common practice is to 

analyze how increasing system size influences obtained results. A number of 

algorithmic approaches exist that help minimize system size such as applying periodic 

boundary conditions; these will be discussed in greater detail in the following section.  

In addition to how large a system must be, one must determine how long a simulation 

must be run to obtain reliable answers (i.e. with sufficient accuracy and precision).  

Related to this is that the MD simulation time step should be small compared to the 

period associated with the highest frequency atomic event. A typical time step for MD 

simulations of metals is of order 1 fs (i.e. 1 E-15 s); this is roughly 1/1000 of the 

period for an atomic oscillation. The very small time step is the main drawback of 

MD method compared to other commonly used numerical simulations. Processes with 

time scale of order microseconds and larger are outside the reasonable realm for even 

highly parallel, efficient MD codes. Conversely, MC techniques cannot probe 

dynamics but they can probe long time equilibrium properties. 
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Figure 2.1 Schematic comparison of time- and length-scales, accessible to different 

types of simulation techniques (quantum simulations (QM), molecular dynamics 

(MD), Brownian Dynamics (BD) and hydrodynamics/fluid dynamics (HD)) 

 

Accessible length- and time- scales of microscopic simulation should be 

considered. Figure 2.1 shows a schematic representation for different types of 

simulations in a length-time-diagram. It is clear that the more detailed a simulation 

technique addresses, the smaller is the accessibility of times and length scales. Hence, 

quantum simulations (QS), where fast motion of electrons are considered, are located 

in the lower left corner of the diagram and typical length time scales are of order of Å 

(Å) and ps. MD method puts fixed partial charges on interaction sites or adds a 

dynamics model for polarization effects to simulate electronic distribution. [31] 

Hence, the time scale of the system is determined by the time of collision between 

atoms and atomic vibration frequencies. Consequently, the accessible time scale is of 
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order ns and corresponding accessible length scale becomes of order 10-10000 Å. 

Note Figure 2.1 was originally presented in 2002; accessible length scales for MD 

have increased dramatically. Brownian Dynamics (BD) can be applied to deal with 

particles in a solvent medium, where one is not interested in a detailed description of 

the solvent. In BD the effect of the solvent is hidden in average quantities. If one is 

not interested in a molecular picture but in macroscopic quantities, the concepts of 

hydrodynamics (HD) may be applied, where the system properties are hidden in 

effective numbers, like density and sound velocity. These example methods, or levels 

of theory, are geared towards liquids but analogous examples exist for solids. 

 

2.2 The MD Algorithm 

2.2.1 Verlet’s Algorithm and Velocity Verlet’s Algorithm 

The governing equations of motions are all ordinary differential equations and a 

standard method for the solutions is the finite difference method. Of a large number of 

finite-difference approaches devised, the most commonly used one is the Runge-Kutta 

(RK) method. [33,34] The beauty of the RK method is that the order of a finite 

difference method can often be increased by using positions and velocities from 

several points in time instead of only the current time. However, if a fourth-order RK 

method is applied to MD simulation, four interatomic force evaluations per atom 

would be required per step, which will make the simulation too slow. Thus, reduction 

of order is desired; especially, the time expense of calculating intermolecular force 
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more than once per atom per step should be also avoided. However, the algorithm 

must be stable.  

The most widely used method of integrating the equations of motions in molecular 

dynamics is Verlet‘s method or algorithm. It uses positions and velocities from 

previously evaluated steps to provide a direct solution of equation (2.4). In this study, 

the simulation code LAMMPS is used and its default algorithm is the velocity Verlet. 

[35] Hence, the basic idea of Verlet‘s algorithm, and specifically the velocity Verlet, 

will be presented here. Information on other integration schemes can be found in texts 

on atomic scale simulation. [32] 

This standard, or basic, Verlet algorithm is a combination of two Taylor‘s 

expansions as following. The Taylor series for position from time t forward to 𝑡 + ∆𝑡 

is 

    𝑥(𝑡 + ∆𝑡) = 𝑥(𝑡) +
𝑑𝑥(𝑡)

𝑑𝑡
∆𝑡 +

1

2

𝑑2𝑥(𝑡)

𝑑𝑡2 ∆𝑡2 +
1

3!

𝑑3𝑥(𝑡)

𝑑𝑡3 ∆𝑡3 + 𝑂(∆𝑡4)     (2.6) 

And the series form t backward to 𝑡 − ∆𝑡 is 

    𝑥(𝑡 − ∆𝑡) = 𝑥(𝑡) −
𝑑𝑥(𝑡)

𝑑𝑡
∆𝑡 +

1

2

𝑑2𝑥(𝑡)

𝑑𝑡2 ∆𝑡2 −
1

3!

𝑑3𝑥(𝑡)

𝑑𝑡3 ∆𝑡3 + 𝑂(∆𝑡4)      (2.7) 

Adding equations (2.6) and (2.7) with some simplifying produces 

         𝑥(𝑡 + ∆𝑡) = 2𝑥(𝑡) − 𝑥(𝑡 − ∆𝑡) +
𝑑2𝑥(𝑡)

𝑑𝑡2 ∆𝑡2 + 𝑂(∆𝑡4)           (2.8) 

This provides Verlet‘s algorithm for positions. The truncation error of the algorithm 

when evolving the system by is of the order of . The acceleration needed in 

equation (2.8) is obtained from the intermolecular forces and Newton‘s second law. 

Velocities are not explicitly solved in equation (2.8), and they are calculated from 

first-order central difference  
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                        𝑣(𝑡) =
𝑥(𝑡+∆𝑡)−𝑥(𝑡−∆𝑡)

2∆𝑡
                       (2.9)                                               

The error associated to this expression is of order rather than . This is a 

two-step method for it estimates position on next step 𝑥(𝑡 + ∆𝑡)  from current 

position 𝑥(𝑡) and previous position 𝑥(𝑡 − ∆𝑡). Verlet‘s algorithm offers important 

features of exact time reversibility, good simplicity and stability for moderately large 

time steps. 

A more commonly used, related algorithm is the velocity Verlet algorithm. The 

approach is similar with the standard one but starts with position and velocity 

expansions explicitly 

             𝑥(𝑡 + ∆𝑡) = 𝑥(𝑡) + 𝑣(𝑡)∆𝑡 +
1

2
𝑎(𝑡)∆𝑡2 + ⋯            (2.10)    

             𝑣(𝑡 + ∆𝑡) = 𝑣(𝑡) +
1

2
∆𝑡(𝑎(𝑡) + 𝑎(𝑡 + ∆𝑡)) + ⋯         (2.11) 

The implement scheme of this algorithm is following: 

1. Calculate velocities at mid-step,  

               𝑣 .𝑡 +
∆𝑡

2
/ = 𝑣(𝑡) +

1

2
𝑎(𝑡)∆𝑡                  (2.12)                                                 

Calculate the positions at next step 𝑡 + ∆𝑡 

  𝑥(𝑡 + ∆𝑡) = 𝑥(𝑡) + 𝑣 .𝑡 +
∆𝑡

2
/ ∆𝑡 +

1

2
𝑎(𝑡)∆𝑡2 + ⋯     (2.13) 

which is the same value as equation (2.10). 

2. Calculate the accelerations at 𝑡 + ∆𝑡, 𝑎(𝑡 + ∆𝑡) from the interaction 

potential using 𝑥(𝑡 + ∆𝑡). 

3. Calculate the velocities at 𝑡 + ∆𝑡 

                  𝑣(𝑡 + ∆𝑡) = 𝑣 .𝑡 +
∆𝑡

2
/ +

1

2
𝑎(𝑡 + ∆𝑡)∆𝑡             (2.14) 

The advantage of this algorithm compared to the standard one is that we never 
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need to simultaneously store the values at two different times for any of these 

quantities. The velocity Verlet algorithm gives good feature of time reversibility, 

simplicity and stability for even larger time steps compared to standard algorithm. 

 

2.2.2 Periodic Boundary Conditions 

In order to avoid large time consumption, the simulation must use small samples. 

For small sample size, surface effects are definitely nontrivial on the measured 

properties. For example, in a cube, if there are 1000 atoms in the system, almost half 

of those will be at outer faces of the cube; even if the number increases up to106, 

which is a fairly large number for MD simulation; the percentage of surface atoms is 

still around 6% in total. Thus, periodic boundary conditions should be applied to 

avoid surface effects. As shown in Figure 2.2, the cubic box is conceptually 

duplicated throughout space to model an infinite system. During the simulation, the 

periodic image of each atom moves in exactly the same way when each atom moves 

in the central box, i.e. original box. Hence, if one atom leaves its box, one of its 

images will move into the box through the opposite ―face‖. With this methodology, 

the topology of the system is correctly represented while the simulation can use small 

samples. 
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Figure 2.2 2D representation of Periodic boundary conditions 

 

2.3 Embedded Atom Method 

 

It is safe to claim that the hub of a MD simulation is the potential energy function, 

which describes the interactions between the atoms or molecules of the system; 

everything obtained from the study depends on the potential energy function. 

Therefore, the choice of an accurate potential energy function is crucial in 

computational MD studies. In this study, the embedded atom method (EAM) is 

chosen. 
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EAM is a semi-empirical many-body potential describing the energy of a 

collection atoms; it was first advanced by M. Daw in 1983 to model metallic and 

inter-metallic interactions. The word ―semi-empirical‖ refers to that this method can 

be derived from electronic density functional theory, a more exact theory in which 

electronic charge density is considered as the basic variable to describe the properties 

of a quantum many-body system. In the scheme of the Embedded Atom Method 

(EAM), the total energy of a metallic system is described as a sum of pair repulsions 

along with the energy needed to embed the system into the electron ―sea‖, or density, 

caused by surrounding atoms. The first term is used to model repulsion and the 

second term models binding in a metal system. In this thesis we apply this method, 

rather than strictly empirical potentials, because the latter fails to describe metals 

properly. [36]   

In a simulation, the EAM potential of atom i is written as: 

                  𝐸𝑖 = 𝐹𝛽(∑ 𝜌𝛼(𝑟𝑖𝑗)𝑗≠𝑖 ) +
1

2
∑ ∅𝛼𝛽𝑗≠𝑖 (𝑟𝑖𝑗)            (2.15) 

where 𝑟𝑖𝑗 is the distance between atoms iand j, ∅𝛼𝛽 is a pair-wise potential function, 

𝜌𝛼 is the contribution to the electron charge density from atom j of type 𝛼 at the 

location of atom i, and F is an embedding function that represents the energy required 

to place atom i of type 𝛽 into the electron charge density. In principle, 𝛼 and 𝛽 can 

be the same or different; for single element models, they are obviously the same. 

In studies herein, we used the EAM potential for gold (Au) created by XW Zhou 

et al. which has been shown to describe accurately basic material properties such as 

lattice constants, elastic constants, bulk moduli, vacancy formation energies, and 
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sublimation energies. [37] The potential was used in all our simulations with the help 

of multiprocessor software LAMMPS created by Plimpton [35].  

2.4 Simulation Procedure 

Although LAMMPS represents a properly implemented MD simulation tool, it is 

still necessary to construct one‘s desired system in a simulation space so that it can be 

run.  Herein, the procedure for carrying out Au NP simulations is presented; sample 

input decks to LAMMPS for each step of the simulation have been made available as 

supplementary information to the thesis. 

The first step in these simulations was to create an equilibrium bulk Au sample 

from which Au NPs could be extracted. To accomplish this, a FCC (face centered 

cubic) gold crystal with the [1 0 0], [0 1 0] and [0 0 1] crystallographic directions 

along the x-, y- and z-axes, respectively was created first using lattice generation tools 

in LAMMPS. The T = 0 lattice constant is known for the EAM model of Au used here 

and it agrees with predictions from ab initio level theory and experiment (indeed, the 

zero T lattice parameter was one of the properties to which the interatomic potential 

was fit). However, the lattice constant at room temperature, i.e. T=300K, was not 

known so it was found by running a series of 100 ps simulations in an 

isobaric/isothermal (NPT) ensemble. To mimic an infinite bulk Au sample, periodic 

boundary conditions were employed in all three directions. By computing running 

averages of the system volume V, it was possible to determine when the system 

reached equilibrium. The lattice parameter so determined was further checked in an 
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additional 100 ps run in an NVT ensemble; because the time average pressure P in 

this simulation was very close to zero, it was concluded the lattice parameter was a 

truly equilibrium value.  

Then spherical gold nanoparticles were created out of the equilibrated bulk Au 

sample. The center of mass of the bulk system was determined and NPs were 

extracted in one of two ways. For some NPs, all atoms within a specified radial 

distance of the center of mass were kept and, from these atomic coordinates, a new 

starting condition for a simulation was created. For other NPs, a pre-set number of 

atoms X was chosen; the X atoms closest to the bulk system center of mass were then 

retained to create the starting state for a AuX NP. Each NP so created was first run at 

T=300K for 100ps. Technically, the simulations were run in NVT ensemble; however, 

this is misleading because each NP was surrounded by empty space and was 

contained in a simulation space with effectively no periodic boundary conditions. In 

other words, the simulations are isothermal but NP volume relaxation is unconstrained. 

To study the effect of particle size on the internal pressure, the particles have varying 

radii RNP = 10 - 50 Å (i.e. RNP = 1 – 5 nm); equivalently, the range of NP size 

examined was AuX with X = 300 - 1800.  

After the initial runs at T = 300 K, each Au NP was heated to T = 500 K; this was 

accomplished by creating a new distribution of atomic velocities corresponding to T = 

500 K as the starting state for a simulation. Then, each NP was run for 20 ns in an 

isothermal ensemble. Following this, each NP was cooled to T=300K over the 

duration of a 2 ns simulation (LAMMPS has capability to apply a thermostat 
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algorithm with varying T throughout the simulation). After cooling to T = 300 K, all 

data for analysis were gathered during a subsequent isothermal T = 300 K simulation 

for 100 ps. For all simulations, velocity distributions specified at the start of the 

simulation were selected to ensure that both linear and angular momenta of each 

particle were initially set to zero. The figure below is the simulated gold nanoparticle 

whose formation cut-off radius is 50 Å. 

 

Figure 2.3 R=50 Å Au Nanoparticle 

One of the goals of this study was to determine the role of surface stress in 

generating lattice contraction of Au NPs. To support this, it was first necessary to 

compute the planar surface stress for this model of Au and for the relevant low index 

crystal surfaces. To do this, we created another two bulk FCC gold crystals with the 

[-1 1 0], [0 0 1], [1 1 0], and [1 0 -1], [-1 2 -1], [1 1 1] orientations along the x-, y- and 

z-axes, respectively. Along with our first bulk system (from which NPs were 

extracted), this provided three systems with different crystal orientations along z:  

[001], [110], and [111]. The two new systems were initially constructed using the T = 

300 K lattice constant previously determined and then thermally equilibrated in NVT 
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ensemble at T=300 K for 100 ps. It was next necessary to form free planar surface 

systems from the three bulk Au systems. To do this, a MATLAB code (in 

Supplementary File, i.e. Appendix B) was utilized to find the density profile along the 

z direction for all three bulks. Since periodic boundary conditions were applied to 

these systems, one layer of atoms in each system is split across the periodic bound in 

z. This means that, in the generated density profile, the upper and bottom layers of 

atoms in z only contain about half the number of atoms that are in all other layers. 

Using the density profile generated by the code, we shifted atoms through the periodic 

bound in z to effectively move the upper ―half-layer‖ down to the bottom (i.e. we 

subtracted from the z coordinates of the atoms on that upper plane the length of 

simulation box in z-direction). From this point forward, periodic boundary conditions 

were removed in z in order to create free surfaces in the z-direction for each of the [0 

0 1], [1 1 0], [1 1 1] (now surface) systems. Note for each system, this creates two free 

surfaces in z: one each at the top and bottom of the lattice. 

 To permit isothermal surface relaxation, the new planar surface models were 

submitted to NVT simulations at T = 300K for 200 ps. Following this, surface stress 

data were obtained in an additional 100 ps isothermal simulation (again, because free 

surfaces exist in z, this is not strictly NVT). The total number of atoms in the three 

planar surface Au models are N = 62500 for the <0 0 1> surface system, N = 64800 

for <1 1 0>, and N = 60480 for <1 1 1>. Figure 3.2 is an example of gold crystal with 

a <1 1 0> free surface in z.  
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Figure 2.4 Au Bulk (Periodic Boundary Condition) 
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Chapter 3 Results and Discussion 

3.1 General Analyses  

In order to demonstrate the structural features of simulated Au nanoparticles (NP), 

the pair distribution functions (PDF), G(r), are calculated. The function provides the 

probability of finding a pair of atoms apart from each other at a distance r, relative to 

the probability expected for a completely random distribution at the same density. The 

pair distribution function of atomic pair distance r is given by 

                       𝐺(𝑟) = 4𝜋𝑟(𝜌(𝑟) − 𝜌0)                      (3.1)                                                                                         

where 𝜌(𝑟) =
1

4𝜋𝑟2𝑁𝑑𝑟
∑ ∑ 𝛿(𝑟 − 𝑟𝑖𝑗)𝑗≠𝑖

𝑁
𝑖=1  is the density at distance r, 𝜌0  the 

average number density, N the number of atoms in system and δ(x) the Dirac delta 

function, dr is the thickness of volume sphere shell. Note in numerical simulations, 

the data of atoms‘ radial position with respect to the center of mass are calculated into 

histograms which represent sphere shells of identical thickness, dr, i.e. the data are 

discretized. Hence, to obtain the density, the summation of delta functions should be 

normalized by the sphere shell volume, 4πr2 ∙ dr, rather than sphere shell area only, 

4πr2. This is why the thickness dr is introduced. Since gold is fcc crystal, there are 

four atoms in one lattice unit cell; from the MD simulations, the lattice constant at 

T=300K is found as 4.101 Å. These lead to the value of 𝜌0   

               𝜌0 =
𝑛

𝑎3 =
4

4.1013 = 0.058(𝐴𝑛𝑔𝑠𝑡𝑜𝑟𝑚−3)                 (3.2) 
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Figure 3.1 Pair Distribution Function G(r) of Au Bulk 

Figure 3.1 shows the G(r) of gold bulk, which is created in a 3-D periodic 

simulation region with the length of 100 Å. From the picture it can be seen that the 

peaks of the function are easily distinguished, which means that the probability of 

finding pairs of atoms at some specific distances is extremely higher than the chance 

for other distances. This indicates that the structure of Au bulk is of high level of 

symmetry, which means the global structure remains when atoms alter position in 

some defined ways (e.g. four fold rotation). In this case, when there is a high 

probability of finding atom pairs separated by a set of well defined distances, which is 

illustrated by well defined peaks in G(r), it implies atoms are distributed with a 

relatively high degree of symmetry around a given central atom. The G(r) of liquid, 

which is shown in Figure 3.2 [32], is relatively much smoother compared with the 

plot above; this means the level of structural symmetry of a liquid is rather low. Note 

in Figure 3.2 interatomic distance (r) has been scaled by the pre-defined length scale 

in a Lennard-Jones. Thus, the G(r) can be used as a tool to analyze the structures of 

different objects.   
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Figure 3.2 Pair Distribution Function of Lennard-Jones liquid [32] 

At the atomic scale, a bulk crystal sample is essentially infinite in dimension; 

however, the size of nanoparticles is finite, i.e. the contribution to 𝜌(𝑟) of all atomic 

pair {i j} within a nanoparticle is limited to the range 0 < 𝑟𝑖𝑗 < 2𝑅𝑁𝑃, where RNP is 

the NP‘s radius. This means that the subtraction of 𝜌0 in Equation 3.1 introduces a 

sloping baseline to a NP‘s G(r) data. In fact, it is obvious that, for r > R, 𝜌(𝑟) goes to 

zero such that subtraction of 𝜌0 is suspect. Thus, a rigorous approach to redefine the 

pair distribution function of a single nanoparticle with respect to its size is crucial for 

this analysis. In this thesis, as was done in Ref. [38], an envelope function is utilized 

to mathematically account for the limited spatial extent of a nanoparticle, relative to a 

bulk crystal. The envelope function and the corresponding pair distribution function 

G(r,d) are given by  

                𝑓𝑒(𝑟, 𝑑) = [1 −
3

2

𝑟

𝑑
+

1

2
.

𝑟

𝑑
/

3

] Θ(𝑑 − 𝑟)                 (3.2) 

                 𝐺(𝑟, 𝑑) = 4𝜋𝑟,𝜌(𝑟) − 𝑓𝑒(𝑟, 𝑑)𝜌0-                    (3.3) 

where d=2RNP is the nanoparticle diameter and Θ(𝑥) = 0(1) for negative (positive) 
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x is the Heaviside step function. [38][39] 

Inspection of the equation (3.2) and (3.3) indicates that calculation of 

nanoparticle diameter d is necessary. As described above, most of the nanoparticles 

are cut from a bulk of gold crystal at some specific value of radius. These cut-out radii, 

however, are inappropriate to calculate the PDFs because at the time the NPs are 

created, their energy state is relatively high. This means surface relaxation occurs, 

typically in the form of faceting; this, in turn, means the NP radii are not stable. 

During the simulations, the radii of nanoparticles change in order to achieve stable 

configurations of atoms among the NPs. Thus, it is of great significance to define the 

diameter of the NPs d after they have adopted a relaxed, relatively low energy state.  

We define d in equations (3.2) and (3.3) as follows. From the data generated from 

the MD simulations, the center of mass of each nanoparticle is calculated. Based on 

that value, the number density profile of a given NP can be generated with respect to 

the radial distance R away from the NP‘s center of mass (𝜌(𝑅)). Note this is different 

from 𝜌(𝑟) in Equations 3.1 and 3.3; the former (𝜌(𝑅)) denotes number density as a 

function of radial distance from a given NP’s center of mass whereas the latter (𝜌(𝑟)) 

denotes pair density as a function of radial distance away from a specific atomic 

position. In this sense, 𝜌(𝑅) can be considered a structural characterization of the 

entire NP whereas G(r) characterizes local atomic bonding within a given NP. The NP 

radial density profile 𝜌(𝑅) is normalized by the volume of corresponding spherical 

shell, 𝑑𝑉 = 4𝜋𝑅 × 𝑑𝑅, where R is the radius of the shell position and dR is the 

increment, or thickness of each shell in the calculation. By this normalization, we are 
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able to compare the radial density of the NPs with the known density of the Au bulk.  

Figure 3.3 shows the radial density profile for the Au nanoparticle whose initial 

(cut) radius was 50 Å; note, this was the largest NP simulated. From this figure, it can 

be seen that significant noise exists in the data for small R; for instance, significant 

peaks in 𝜌(𝑅) exist at small R. This is partly an artifact of the analysis performed: 

rigorously defining density in a classical atomic scale model requires a certain 

minimum volume. Consider that atoms in classical MD simulations are assumed to 

occupy point positions; this means an arbitrarily small volume element can be 

constructed around any atom, resulting in arbitrarily high density. As the radius of the 

spherical shell volume element gets larger, the density decreases accordingly. A 

similar situation exists here in that spherical shell volume elements, for small radius, 

have small total volume, skewing densities artificially high. This is further evidenced 

by Fig. 3.3 because, for R > 15 Å, fluctuations in density are significantly reduced, 

with a running average very near the bulk value (𝜌0 = 0.058 Å
-3

). Indeed, for 25 Å < 

R < 47 Å, density data for the NP are very similar to what is obtained for bulk 

behavior. For large enough R, density data go to zero, reflecting the spatial extent of 

the NP; this guides calculation of NP radius. We define the radius of a nanoparticle as 

the distance where the density profile – as it decreases to zero for the final time - 

crosses half the average density of the bulk; d for the NP is two times this value. For 

the NP shown in Fig. 3.3, d = 98.4 Å. While the difference between this and the 

nominal value obtained from the cut-out diameter is small (1.6%), it becomes more 

significant for smaller NPs. 
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With a rigorous definition of d in hand, it was possible to perform G(r) analysis, 

employing the proper envelope function as described above. Figure 3.4 illustrates G(r) 

for the largest NP simulated (d=49.2 Å).  

 
Figure 3.3 Radial Density Profile of RNP =49.2 Å Au Nanoparticle 

 

 

Figure 3.4 Pair Distribution Function of RNP =49.2 Å Au Nanoparticle 
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Figure 3.5 Radial Density Profile of RNP =19.7 Å Au Nanoparticle 

 

 

Figure 3.6 Pair Distribution Function of RNP =19.7 Å Au Nanoparticle 
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Figure 3.7 Radial Density Profile of N=600 (RNP =13.3 Å) Au Nanoparticle 

 

 

Figure 3.8 Pair Distribution Function of N=600 (RNP =13.3 Å) Au Nanoparticle 
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Figure 3.9 Radial Density Profile of RNP =11.1 Å Au Nanoparticle 

 

 

Figure 3.10 Pair Distribution Function of RNP =11.1 Å Au Nanoparticle 
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Figure 3.11 Radial Density Profile of RNP =9.3 Å Au Nanoparticle 

 

 

Figure 3.12 Pair Distribution Function of RNP =9.3 Å Au Nanoparticle 
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Figure 3.13 Pair Distribution Function of Au bulk within the same range as NPs‘ 

 

In addition, Figures 3.5 to Figure 3.12 provides four additional sets of radial 

density profiles and pair distribution functions for four nanoparticles with radii 

decreasing as 19.7, 13.3, 11.1, and 9.3 Å, respectively. The truncated peaks in Figure 

3.3 and Figure 3.5 have magnitudes of ~1.1 Å−3 and ~0.7 Å−3, respectively. In total 

we have simulated 33 Au nanoparticles with different sizes and all 𝜌(𝑅) and G(r) 

data for other NPs which are not illustrated here are put in Appendix A. The examples 

contained here were chosen because they represent well relevant features observed in 

all obtained NP data. For the purpose of comparison, the G(r) of bulk is extracted 

within the same ranges of coordinates in Figure 3.13. 

It is observed that as the size of nanoparticles decreases, the number density 

profiles lose any resemblance to the relatively smooth profiles seen for large NPs and 

the bulk (Fig. 3.3). Above, for the RNP=49.2 Å NP, it was discussed that there exists 

large noise in ρ(R) for R<15 Å, therefore it is expected that noisy behavior would 

dominate ρ(R) for small NPs. Indeed, the smallest NPs simulated show peaks 
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throughout their ρ(R) profile. There are two main factors that may cause this 

phenomenon. First, the number of atoms decreases cubically compared with the NP 

radius. There are 30427 atoms in d=100 Å nanoparticle but only 236 in d=20 Å NP. 

During the calculation for those small particles (N<500, or RNP<12.7 Å) the limited 

number of sample is anticipated to introduce large statistical variations, which causes 

the profiles of small NPs to manifest distinct peaks. Second, while the statistics of 

sampling small volumes should be taken into account, the peaks in number density 

profiles actually indicate the existence of atoms layering with respect to the center of 

mass. For small nanoparticles, this layering may persist through the whole particles. It 

is also found that the first peak in ρ(R) figures becomes smaller as RNP decreases, 

which demonstrates that the number of atoms in the first layer gets fewer. It provides 

evidence that the small NPs are less structurally ordered than the relatively big ones. 

Meanwhile, in all 33 plots, the first peak positions in ρ(R) are all 2 Å away from 

center of mass. In other words, for all NPs simulated, there is no atom sitting directly 

at the center of mass. This lends strong evidence that atomic layering with no atom at 

the center of mass is the stable structure of small NPs at equilibrium. 

While analysis of 𝜌(𝑅) provides some characterization of the NP as a whole, 

data are too noisy to conclude whether lattice compression can be observed for small 

NPs. In fact, as discussed above, density peaks at small R decrease in magnitude for 

smaller NPs; however, this is misleading because it is a reflection of atomic ordering, 

rather than actual particle density. To detect lattice compression, we instead analyze 

atomic bond distances: a compressed lattice will exhibit nearest neighbor atomic 
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spacings smaller than the equilibrium, or bulk crystal, value. Thus, more detailed 

considerations and analysis need to be applied on the atomic structural property of 

those nanoparticles, which can be found from the pair distribution function G(r). With 

a rigorous definition of d in hand, it was possible to perform G(r) analysis, employing 

the envelope function as described above. Figure 3.4 illustrates G(r) for the largest NP 

simulated (d=49.2 Å) and results for smaller NPs are shown in Figs. 3.6, 3.8, 3.10, 

and 3.12. 

As mentioned above, G(r) yields information on the local structure, i.e. the 

mutual arrangement of the atoms at short distances. In this thesis, the positions of first 

peak of G(r) of nanoparticles with varying size are analyzed. G(r) is the probability to 

find a pair of atoms apart away for r, so the position of first peak of G(r) actually 

gives the value of the nearest interatomic length within the corresponding 

nanoparticle. According to the structural configuration of fcc crystal, this length is the 

effective lattice constant multiplied by 
√2

2
. Thus, in this way, the compression of the 

nanoparticle from being created to equilibrium state can be found. Prior to 

considering lattice contraction, however, some general observations of NP G(r) are 

made here. 

From the above figures of G(r) for different NPs, it can be seen that peaks in G(r) 

become broader as the size of NPs decrease. As mentioned above, G(r) gives the 

statistical probability to find a pair of atoms apart away for r and therefore reflects the 

degree of symmetry around a given central atom. Thus, the sharper the peaks are, the 

more well-defined are the separation distances of pairs of atoms; consequently, this 
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indicates a higher level of structural symmetry the local structure is. Hence, this 

inspection can be considered as evidence that Au NPs exhibit less symmetry as the 

radii decreases. Besides, in the range 8 Å < R < 10 Å, there are clear peaks in the G(r) 

figures of gold bulk and large NPs (d=100, 40 Å), while peaks in that range in d=27 Å 

NP become difficult to distinguish. If the size of NP gets even smaller, those peaks 

almost vanish. This phenomenon also indicates that the degree of symmetry of NP‘s 

structure tends to be lower as the radius becomes small. At last, the position of the 

first peak of G(r) shifts to small values for small NPs. This will be discussed in detail 

below. 

 

3.2 The Effect of Surface Stress and Pair Distribution Function Analysis 

 

The focus of the thesis is to use atomic scale simulations to examine if the 

isostatic pressure due to surface stress can be detected as lattice compression via G(r) 

analysis. It is well known that for a liquid drop, surface induced pressure is 

P =  2γ/RD , where γ is surface energy and RD  is drop radius. An analogous 

situation is expected for solids but with γ replaced by surface stress f. For an 

isotropic surface, such as for a liquid drop, f has one value; however, for crystal 

surfaces, f is anisotropic within a surface (i.e. it is represented as a 2x2 tensor).  

Furthermore, f varies from one crystallographic surface to another. As mentioned 

previously, the NPs simulated herein undergo surface relaxation during their 
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equilibration stage. This relaxation is in the form of faceting; specifically, as best as a 

given NP is able to do so, it forms surface facets of either [001], [010], or [111] 

orientation. These are the lowest energy surface terminations for face centered cubic 

(fcc) Au. Note that faceting is not always complete (i.e. structurally frustrated regions 

exist where some facets meet).  Nonetheless, the majority of the surface area for all 

NPs simulated here was comprised of the three low index crystal surfaces above.  As 

such, it was necessary to compute the surface stress for those three crystallographic 

surface orientations. 

 

3.2.1 Surface Stress Calculation 

In this section, the calculation of surface stress will be shown in two aspects, 

calculation for the whole system of gold surface and computation on each atom. The 

former will provide the thermodynamic surface stress for different orientations, i.e. <0 

0 1>, <1 1 0>, and <1 1 1>; the latter approach will permit analysis of the effect of 

surface stress on atoms that are successively farther from the planar crystal free 

surface. 

 As mentioned in Chapter 2.4, the planar surface stress calculations were done 

using systems of gold crystal lattices with periodic boundary conditions in x and y but 

not in z, so as to form free surfaces in z. There were three surface simulation systems 

formed in this fashion, one each for the three orientations, i.e. <0 0 1>, <1 1 0>, <1 1 

1> to be studied. In LAMMPS, a symmetric pressure tensor, stored as a 6-element 
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vector, is calculated by the following equation: 

                      Pij =
∑ mkvkivkj

N
k

V
+

∑ rkifkj
N
k

V
                    (3.4) 

where i, j denote x, y, and z, V is the volume. The numerators of the first and second 

terms are components of the kinetic energy tensor and components of the virial tensor, 

respectively. [35] For a bulk (3D periodic) system at equilibrium, all < Pij > 

components are zero. Upon removing periodic boundary conditions in z and forming 

free surfaces, the in-plane Pij  terms (Pxx and Pyy) become finite, indicating the 

presence of surface stress. Equation 3.4 shows division by the system volume. 

However, we only wanted to normalize by the cross section area to obtain the stress. 

Thus, the output results were multiplied by the respective simulation box dimension 

in z. Lastly, since there are two free surfaces in each simulation system, we also need 

to yield the stress value by diving the result by 2. The calculation result of shear 

component of pressure tensor 𝑃𝑥𝑦 is relatively small compared with normal stresses 

𝑃𝑥𝑥 and 𝑃𝑦𝑦, 𝑃𝑥𝑦~10−3𝑃𝑥𝑥 𝑜𝑟 𝑃𝑦𝑦, and Pxx and Pyy are in the magnitude of 103 

bars. In other words, it is safe to assume that 𝑃𝑥𝑦  is statistically zero in these 

simulations and this is a result of high symmetry in the low index fcc surfaces. 

Therefore, we only consider the normal components of surface stress in this thesis. 

The pressures tensor is calculated via LAMMPS directly in each output 

simulation time step. The average value of Pxx and Pyy are generated by MATLAB 

codes then converted into stress values by the method described above. The result of 

the surface stress values are shown in Table 3.1, under two different dimensions, 

𝐽/𝑚2 and 𝑒𝑉/ Å
2
. 
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Stress 𝑓𝑥𝑥 𝑓𝑦𝑦 

Dimension 𝐽/𝑚2 𝑒𝑉/ Å
2
 𝐽/𝑚2 𝑒𝑉/ Å

2
 

Surface <0 0 1> 1.80 0.112 1.81 0.113 

Surface <1 1 0> 1.91 0.119 1.35 0.084 

Surface <1 1 1> 2.05 0.128 2.05 0.128 

Table 3.1 Surface Stress Normal Components Calculation through the whole bulk 

 

From the table above, it can be seen that all the values are positive, which yields 

the stress is tensile in nature. [35] This means the surface would relax to smaller plane 

area if unconstrained by the crystal structure below it. We can also observe that the 

values of surface stress in x- and y-direction are statistically identical except for <1 1 

0> free surface. This indicates that surface deformation in the x- and y-directions for 

<0 0 1> and <1 1 1> are energetically equivalent. This situation, however, is not the 

case for the <1 1 0> surface, so the values of stress components in different directions 

differ from each other. Put differently, equivalent deformations in the x and y 

directions on the <1 1 0> surface have different energy changes associated with them. 

This anisotropy is a result of atomic structure on the <1 1 0> surface. On the <1 1 0> 

surface, the configurations of atoms along the line of x-axis ([-1 1 0]) and y-axis ([0 0 

1]) are different so if the deformations along these two directions are equivalent, the 

corresponding changes of stress, or energy are not identical. The situation does not 

happen on either <0 0 1> or <1 1 1> surfaces, as the arrangements of atoms along the 

x-axis ([1 0 0]) and y-axis ([0 1 0]) of <0 0 1> surface are exactly same while the 

atomic configurations along the x-axis ([1 0 -1]) and y-axis ([-1 2 -1]) of <1 1 1> 
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surface are also identical. 

By the command ―compute stress/atom‖ in LAMMPS, stress components of each 

atom can be calculated and written into dump files at user-specified intervals; this 

information can be output along with each atom‘s position. As such, it is possible to 

identify how atomic scale stress varies as a function of distance from a free planar 

crystal surface. With the atomic coordinates, it is possible for us to assign each atom 

to a crystallographic layer in the free surface systems. Subsequently, the average value 

of stress in each layer was found. Consequently, the effect of surface stress can be 

seen by observing the configuration of stress versus z, i.e. the depth perpendicular to 

the free surface. Figure 3.14 to 3.16 show the surface stress configuration on <0 0 1>, 

<1 1 0>, and <1 1 1> free-surface gold bulk, respectively. We can observe that the 

stress values are in energy units because in LAMMPS the value of stress on a per 

atom basis is output without being divided by any volume term. As such, the y-axis 

label on Figures 3.14-3.16 should be stress multiplied by volume. In fact the value can 

be normalized by the bulk equilibrium value of atomic volume to make those values 

have the proper dimension of stress but this is not necessarily the correct volume 

value for surface atoms. Nonetheless, since we simply focus on how far the surface 

stress effect goes to zero from the surface, it is not necessary to take the specific 

magnitude of stress into account in this analysis.  
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Figure 3.14 Surface Stress Configuration of <0 0 1> free-surface gold bulk 

 

Figure 3.15 Surface Stress Configuration of <1 1 0> free-surface gold bulk 
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Figure 3.16 Surface Stress Configuration of <1 1 1> free-surface gold bulk 

 

From those figures it can be seen that only several outer layers have non-zero 

stress and the depth into the crystal of effective stress region is only about 7-8 Å. This 

depth of surface stress effect is of significance to evaluate the surface effect on Au 

nanoparticles.  

 

3.2.2 Pair Distribution Function G(r) Analyses of Gold Nanoparticles 

 As mentioned above, the first peaks in G(r) give the nearest neighbor distance of 

atoms, which is further related to the effective lattice constant of NPs. Figure 3.17 

shows three sets of the first peak of G(r), including the bulk‘s, the largest NP‘s 

(RNP=49.2 Å), and the smallest NP‘s (RNP=9.3 Å). It can be easily seen that the first 

peak position shifts to smaller value for smaller NPs. Note that it is difficult to 

distinguish the first peak curves of bulk and RNP=49.2 Å NP, for the value of peak 

position of that NP is only subtly smaller than bulk‘s.  
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Figure 3.17 First Peaks of G(r) of Gold Bulk, RNP=9.3, 49.2 Å NPs 

 

 

Figure 3.18 G(r) First Peak Position of Au nanoparticles 

 

In Figure 3.18, we plot the first peak position in G(r) for each of the nanoparticles 

simulated versus 1/RNP. Since the fcc lattice constant is directly related to the nearest 

neighbor atomic spacing, Figure 3.18 shows that the effective lattice constant 

decreases as the size of NP becomes smaller. We fitted the data with a line, which is 

expressed as 𝑦 = −0.753 .
1

𝑅𝑁𝑃
/ + 2.89, where y is the position of G(r) first peak, 
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and the dimension of y and RNP is Å. It should be noticed that there exists significant 

scatter in Figure 3.18. This is mainly due to the limited number of sample atoms in 

each NP system which leads to unfavorable statistics, and the way we determine the 

first peak position. As described above, the number of atoms in system drops 

dramatically as the size of NP decreases. By comparing the G(r) curves in Figure 3.17, 

we can see clearly that there are much more significant variations in RNP =9.3 curve 

than the one of RNP =49.2, which is caused by the small number of atoms. G(r) curve 

was calculated as a histogram in MATLAB. We determine the first peak position as 

the position occupied by the highest column of G(r) histogram. For bulk and large 

NPs, the first peak position found in this way is in great agreement with the ideal one. 

However, the data variation gives rise to larger deviations in the calculated position. 

As a result, the first peaks of small NPs are less rigorously defined in a statistical 

sense. With y intercept fixed, the slope needed to have 90% of the data points below a 

line is -0.60 Å2; furthermore, -0.99 Å2 is the one needed to make 90% of the data 

points above it. These two values provide the error bounds of this line fitting. 

Using lattice constants obtained from the initial fit decided above, several bulk 

Au simulation samples were created and run in MD under 3-D periodic boundary 

conditions and subjected to NVT ensemble at T=300K; from these simulations, the 

dependence of pressure on lattice constant was obtained. This, in turn, allows us to 

connect the first peak position in G(r) for each NP to a corresponding bulk pressure. 

Results are shown in Figure 3.19, including a linear fit of the data points 𝑃 = 1.59 ×

106(
1

𝑅𝑁𝑃
) − 1.75 × 103. All the dimension is the default of LAMMPS, i.e. pressure in 
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bar and 1/RNP in Å
−1

. 

 

Figure 3.19 Effective Pressure of Au nanoparticles 

 

We assume that pressure difference inside Au NPs is given by ∆𝑝 =
2𝑓

RNP
, where f 

is an average surface stress. Comparison between this equation and the formula of the 

fitting line indicates that the slope of the fitting line provides the value of two times 

the surface stress, which yields that 𝑓 =
1.59×106

2
𝑏𝑎𝑟 ⋅ Å = 7.94𝐽/𝑚2; this value is 

much higher than the values in Table 3.1. Note from the error estimate given 

previously for the first G(r) peak position as a function of 1/RNP, we can compute a 

range of predicted surface stress as 6.3-10.6𝐽/𝑚2. This result seems to demonstrate 

that surface stress is relatively much larger in NPs than in bulk material, even for the 

minimum estimate value. However, we investigate this further below. 

 

3.2.3 Surface Effect Discussion 

Figure 3.14 to 3.16 illustrate that the surface stress influences atoms to a depth of 
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about 7 to 8 Å below a planar crystal surface. Hence, it is reasonable to distinguish 

those atoms among each nanoparticle that are located within a sphere whose radius is 

(RNP-7 Å); these are core atoms. Correspondingly, atoms in a NP but outside this inner 

(core) sphere can be thought of as surface atoms. If the influence of surface stress is 

typically constrained to atoms within ~7 Å of the free surface, then it is reasonable to 

conclude that atoms in the surface region collectively exert pressure on atoms in the 

core region. The mechanical analog is that of an elastic skin which is under tension 

and an elastic core in compression. With this concept, we can repeat the entire 

analysis above but only using core atoms in the analysis (i.e. G(r) calculation, first 

peak position analysis, and fitting for stress value). By comparing the result of core 

atoms only and of all atoms, the surface pressure effect can be shown more clearly.  

Figure 3.20 and 3.21 are examples of comparisons between the first peaks in G(r) 

computed for core atoms only and G(r) computed using all atoms in the nanoparticle 

(the examples shown are for RNP=19.7 Å NP and N=450 NP (RNP=11.8 Å)). It can be 

seen for the larger NP that the first peak for G(r) of the core atoms is fairly similar to 

G(r) computed for all atoms in the NP. For the smaller NP, the difference between the 

first G(r) peak computed using only core atoms versus all atoms is greater. More 

specifically, the shift to smaller distance for the peak position is less when only core 

atoms are considered. This is also true for the larger NP data in Fig. 3.20, but to a 

lesser degree. This means that, on average surface atoms adopt shorter bond lengths 

than core atoms do. This is because compared with core atoms, surface atoms have 

fewer bonding neighbor atoms so they shift to positions closer to their remaining 
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neighbors. As RNP decreases, the surface-to-volume ratio becomes larger, since it is 

proportional to 1/ RNP. Note however that this does not account for the assumption 

make herein that the surface region has finite (and non-trivial) thickness. Thus, the 

percentage of surface atoms among the whole atoms of NP increases. Hence, the first 

peak position of G(r) shifts to smaller value for smaller NPs; however some part of 

the overall observed shift is caused by surface bond contraction, which is more 

significant on average than core bond compression. 

 

Figure 3.20 First Peaks of G(r) of RNP=19.7 Au nanoparticles 

 

Figure 3.21 First Peaks of G(r) of N=450 (RNP= 11.8 Å) Au nanoparticles 
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Figure 3.22 G(r) First Peak Position Data for Core Atoms and Whole NPs 

 

The first peak position analysis was performed for G(r) obtained from core atoms 

only. From Figure 3.22 it can be seen that the first peak position for G(r) computed 

from only core atoms depends much less significantly on RNP. The fitting of the core 

data yields 𝑦 = −0.255 .
1

𝑅𝑁𝑃
/ + 2.89, where y is the position of G(r) first peak. This 

gives a relationship between the effective lattice constant of core atoms and RNP. Note 

there is significant noise in the first peak positions of G(r) as computed for core atoms 

only. Statistical variation is more significant for smaller NPs; the same was true for 

the first G(r) peak position computed for all atoms. This is caused by the small sample 

statistics of small NPs and the way we determine the first peak position as mentioned 

above. Herein, the error bounds (i.e. the slope needed to have 90% of the data points 

below and above a line with y intercept fixed) are given as -0.01 and -0.52 Å2. Given 

the initial fit, the pressure calculation based on the effective lattice constant can be 

found as 𝑃 = 4.44 × 105 .
1

𝑅𝑁𝑃
/ + 7.59 × 103 , which gives that the stress 𝑓 =

4.44×106

2
𝑏𝑎𝑟 ⋅ Å = 2.22𝐽/𝑚2. The error bounds provide the minimum and maximum 
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predictions of the stress value as 0.2 𝐽/𝑚2 and 4.4 𝐽/𝑚2, respectively. While this is a 

wide range of predicted surface stress, it forms bounds around the values listed in 

Table 3.1 for the planar free surfaces. Recall this was not the case for the surface 

stress range predicted using all atoms in the NPs. This gives evidence that, even for 

small NPs, the surface stress is some roughly linear combination of surface stress 

values of different low index surfaces, corresponding to different facets on the NP 

surface. However, the very significant error makes it impossible for us to identify 

whether the thermodynamic surface stress values change for small enough NPs. 

 

Figure 3.23 Effective Pressure Core Atoms of Au nanoparticles 

 

Further discussion to illustrate statistical challenges to our analysis comes from 

considering the number of core atoms versus RNP. Figure 3.24 and 3.25 show the 

number of core atoms versus the number of atoms in the entire nanoparticle. As 

expected from geometries consideration, when the total number is larger than 1000, 

the relationship between these two numbers is basically linear; however, for N<1000 

atoms, the relationship becomes quasi-stepped which is shown in Figure 3.25. This 
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analysis shows that, for sufficiently small NPs (i.e. N<250), it is no longer reasonable 

to define a core – that is, every atom in the NP is a surface atom, indicating its 

bonding environment is distinctly altered from what is expected from bulk behavior. 

This may indicate a size regime where, for instance, catalytic properties of Au NPs 

may shift as atomic bonding throughout the NP becomes highly strained.  

  
Figure 3.24 Number of Core Atoms versus Total Number of All Atoms in 

Nanoparticles 

 

 

Figure 3.25 Number of Core Atoms versus Total Number of All Atoms in 

Nanoparticles (N<1000) 
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Chapter 4 Summary, Conclusion and Future Work 

4.1 Summary and Conclusion 

In this thesis, the Molecular Dynamics (MD) method was applied to perform 

atomic scale simulations of bulk (i.e. ideal) single crystal gold (Au), free planar 

crystalline surfaces of single crystal Au, as well as 33 Au nanoparticles (NPs). The 

goal of the study was to determine if atomic scale bonding in NPs exhibits lattice 

compression for sufficiently small NPs. It is expected that surface stress acting on 

NPs with very high surface area to volume ratio may elastically distort the inner 

lattice of the NP. For instance, for fluid droplets, it is well accepted that the pressure 

difference between the inside and outside of the drop is ∆P =
2γ

R
, where γ is the 

interfacial energy between the fluids and R is the radius of the drop. Thus, very small 

drops have very large pressure differences. For a solid, an analogous situation is 

expected, however, γ is replaced by f, the surface stress, which for solids is distinct 

from the surface energy. Surface stress measures the energy change associated with 

elastically deforming the solid surface (i.e. no addition/subtraction of atoms at the 

surface) while surface energy measures the energy change associated with the 

creation/annihilation of undeformed free surface (i.e. by adding/subtracting atoms at 

the surface). Despite this difference, an analogous situation is anticipated where a 

pressure difference exists between the inside and outside of a solid spherical particle. 

The goal of this study was to see if atomic bonding, as revealed by MD simulation, 

correlates properly with a pressure change as predicted by P = 2 f / RNP. 
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When modeling at the atomic scale, it is of great importance to choose an 

appropriate description of the system potential energy, that is, an appropriate model of 

the interaction energy between atoms of the system. Since studies here focused on a 

single metal, i.e. gold, the embedded atom method (EAM) style of interaction was 

adopted. The EAM is widely used to describe the interaction between metallic atoms 

and we used a pre-existing EAM potential for Au in all our simulations. 

From the planar crystalline surface simulations, the surface stress of three low 

index crystal surfaces was determined for the model of Au utilized. Surface stresses 

were analyzed in two ways: by computing the thermodynamic quantity using all 

atoms in the simulation and by considering contributions from individual atoms as a 

function of the atom‘s distance from the free surface. Using results from the bulk 

crystalline simulation, we calculated the atomic scale pair distribution function G(r) 

for an ideal Au lattice. To evaluate changes in atomic bonding environment for 

nanoparticles compared to a bulk crystal, G(r) was also computed for all NPs 

simulated.  

In the surface calculations, we derive an important conclusion that at equilibrium 

state, the values of surface stress for three different orientations are all in the range of 

1.3~2.0 𝐽/𝑚2. Moreover, analysis of stress contributions on a per atom basis showed 

that surface stress manifests only in those atoms within 7 to 8 Å of the free surface. 

G(r) analysis on the NPs showed that the position of the first peak in G(r) shifted to 

smaller r for smaller NPs. This was taken as evidence that a compressive stress was 

acting to compress nearest neighbor bond lengths. This bond compression was 
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interpreted as lattice compression and separate simulations of bulk Au at varying 

lattice constant revealed the corresponding internal pressure. However, when this 

computation of internal pressure was plotted versus 1/RNP, the resulting prediction of 

surface stress f was nearly four times the values obtained from planar surface 

calculations. 

 With the notion that the surface stress influences atoms to a depth of about 7 to 8 

Å below a planar crystal surface, we could define the atoms located within a sphere 

whose radius is (RNP-7 Å) as the core atoms of a NP. In order to show surface effect 

more clearly, the entire analysis procedure was applied to only the core atoms of each 

NP, including G(r) calculation, first peak position analysis, and fitting for stress value. 

The features of G(r) of core atoms were quite similar to what was computed for all 

atoms in the NP, including the first peak shift. However, it was found that the 

magnitude of the first G(r) peak shift was less when core atoms alone were considered. 

This phenomenon was attributed to the fact that surface atoms have less bonding 

neighbors than core atoms; as a result, they contract their nearest neighbor bond 

lengths. It is known that the proportion of surface atoms increases as RNP gets smaller, 

so the first peak position of G(r) tends to smaller value as the size of NP decreases 

partly due to surface atom bond contraction and partly due to core atom bond 

compression. Furthermore, the prediction of surface stress using only core atoms in 

the analysis yielded a result very close to the values given by the planar free surface 

simulation. This gives evidence that the surface stress was some linear combination of 

surface stress values of different low index surfaces. Nonetheless, statistical variations 
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were large enough to prevent us from concluding whether or not the thermodynamic 

surface stress values change for small enough NPs. Lastly, we also considered the 

number of core atoms versus RNP, which showed that for sufficiently small NPs, the 

definition of core atoms is questionable. 

 

4.2 Future Work 

 

Since there are many options in the MD simulation setting, other promising ways 

to simulate the system can be chosen for this project. For instance, it‘s possible to 

alter the thermal equilibration stage as it can be interesting to see whether the results 

are sensitive to the initial condition of the system or not. We have operated additional 

simulations in which there is no initial 100ps NVT simulation for several small 

nanoparticles. It is found in most cases that the radial density profile and the G(r) 

remain the same. However, more work should be done to clarify the relationship. 

Meanwhile, some further efforts should be made to establish a more rigorous 

approach to determine the first peak position to avoid or diminish the significant 

scatter of those line fitting data, i.e. reduce statistical variation. Besides, NPs formed 

by some other metal materials like copper (Cu) and platinum (Pt) may be analyzed by 

the methods developed in this thesis to investigate their structural properties. This is 

also true for NPs composed of some non-metal material like silicon.  

Moreover, some other property associated with surface effect can be computed 

and analyzed. Vibrational density of states (VDOS) is an appropriate option for this 
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purpose. Inside nanoparticle, VDOS can be considered as that of the corresponding 

bulk compressed by capillary pressure. R. Meyer et al. (2003) have found that the 

VDOS shows a significant enhancement at low energies on the surface of 

nanoparticles and even exhibits a similar structure to that of bulk surface. [40] It is 

also derived that the VDOS of nanoparticles is controlled by the high percentage of 

surface atom and the existence of homogeneous capillary pressure. By this simulation 

and analysis, the effect of surface stress might be able to be understood and 

demonstrated more deeply. 
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Appendix A 

The following are the radial density profiles and the plots of pair distribution 

function G(r) for all the nanoparticles which are not illustrated in Chapter 3 

There are 28 sets of figures illustrated here, which correspond to 28 gold 

nanoparticles.  
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Figure AA.1 Radial Density Profile of RNP=39.6 Å Au Nanoparticle 

 

Figure AA.2 Pair Distribution Function of RNP=39.6 Å Au Nanoparticle 
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Figure AA.3 Radial Density Profile of RNP=29.6 Å Au Nanoparticle 

 

Figure AA.4 Pair Distribution Function of RNP=29.6 Å Au Nanoparticle 
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Figure AA.5 Radial Density Profile of RNP=21.6 Å Au Nanoparticle 

 

Figure AA.6 Pair Distribution Function of RNP=21.6 Å Au Nanoparticle 

 

 

 



80 
 

 

Figure AA.7 Radial Density Profile of N=1800 (RNP=19.1 Å) Au Nanoparticle 

 

Figure AA.8 Pair Distribution Function of N=1800 (RNP=19.1 Å) Au Nanoparticle 
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Figure AA.9 Radial Density Profile of N=1500 (RNP=17.9 Å) Au Nanoparticle 

 

Figure AA.10 Pair Distribution Function of N=1500 (RNP=17.9 Å) Au Nanoparticle 
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Figure AA.11 Radial Density Profile of N=1200 (RNP=16.6 Å) Au Nanoparticle 

 

Figure AA.12 Pair Distribution Function of N=1200 (RNP=16.6 Å) Au Nanoparticle 
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Figure AA.13 Radial Density Profile of N=900 (RNP=14.8 Å) Au Nanoparticle 

 

Figure AA.14 Pair Distribution Function of N=900 (RNP=14.8 Å) Au Nanoparticle 
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Figure AA.15 Radial Density Profile of N=850 (RNP=14.7 Å) Au Nanoparticle 

 

Figure AA.16 Pair Distribution Function of N=850 (RNP=14.7 Å) Au Nanoparticle 
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Figure AA.17 Radial Density Profile of N=800 (RNP=14.5 Å) Au Nanoparticle 

 

Figure AA.18 Pair Distribution Function of N=800 (RNP=14.5 Å) Au Nanoparticle 
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Figure AA.19 Radial Density Profile of N=750 (RNP=14.4 Å) Au Nanoparticle 

 

Figure AA.20 Pair Distribution Function of N=750 (RNP=14.4 Å) Au Nanoparticle 
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Figure AA.21 Radial Density Profile of N=700 (RNP=13.7 Å) Au Nanoparticle 

 

Figure AA.22 Pair Distribution Function of N=700 (RNP=13.7 Å) Au Nanoparticle 
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Figure AA.23 Radial Density Profile of N=650 (RNP=13.6 Å) Au Nanoparticle 

 

Figure AA.24 Pair Distribution Function of N=650 (RNP=13.6 Å) Au Nanoparticle 
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Figure AA.25 Radial Density Profile of N=550 (RNP=12.8 Å) Au Nanoparticle 

 

Figure AA.26 Pair Distribution Function of N=550 (RNP=12.8 Å) Au Nanoparticle 
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Figure AA.27 Radial Density Profile of N=500 (RNP=12.5 Å) Au Nanoparticle 

 

Figure AA.28 Pair Distribution Function of N=500 (RNP=12.5 Å) Au Nanoparticle 
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Figure AA.29 Radial Density Profile of N=450 (RNP=11.8 Å) Au Nanoparticle 

 

Figure AA.30 Pair Distribution Function of N=450 (RNP=11.8 Å) Au Nanoparticle 
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Figure AA.31 Radial Density Profile of N=400 (RNP=11.7 Å) Au Nanoparticle 

 

Figure AA.32 Pair Distribution Function of N=400 (RNP=11.7 Å) Au Nanoparticle 

 

 

 



93 
 

 

Figure AA.33 Radial Density Profile of N=392 (RNP=11.4 Å) Au Nanoparticle 

 

Figure AA.34 Pair Distribution Function of N=392 (RNP=11.4 Å) Au Nanoparticle 
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Figure AA.35 Radial Density Profile of N=367 (RNP=11.0 Å) Au Nanoparticle 

 

Figure AA.36 Pair Distribution Function of N=367 (RNP=11.0 Å) Au Nanoparticle 
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Figure AA.37 Radial Density Profile of RNP=11.0 Å Au Nanoparticle 

 

Figure AA.38 Pair Distribution Function of RNP=11.0 Å Au Nanoparticle 
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Figure AA.39 Radial Density Profile of N=350 (RNP=11.0 Å) Au Nanoparticle 

 

Figure AA.40 Pair Distribution Function of N=350 (RNP=11.0 Å) Au Nanoparticle 
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Figure AA.41 Radial Density Profile of N=331 (RNP=10.8 Å)Au Nanoparticle 

 

Figure AA.42 Pair Distribution Function of N=331 (RNP=10.8 Å)Au Nanoparticle 
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Figure AA.43 Radial Density Profile of N=321 (RNP=10.7 Å) Au Nanoparticle 

 

Figure AA.44 Pair Distribution Function of N=321(RNP=10.7 Å) Au Nanoparticle 
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Figure AA.45 Radial Density Profile of RNP=10.7 Å Au Nanoparticle 

 

Figure AA.46 Pair Distribution Function of RNP=10.7 Å Au Nanoparticle 
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Figure AA.47 Radial Density Profile of N=305 (RNP=10.6 Å) Au Nanoparticle 

 

Figure AA.48 Pair Distribution Function of N=305 (RNP=10.6 Å) Au Nanoparticle 
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Figure AA.49 Radial Density Profile of N=300 (RNP=10.4 Å) Au Nanoparticle 

 

Figure AA.50 Pair Distribution Function of N=300 (RNP=10.4 Å) Au Nanoparticle 
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Figure AA.51 Radial Density Profile of RNP=10.3 Å Au Nanoparticle 

 

Figure AA.52 Pair Distribution Function of RNP=10.3 Å Au Nanoparticle 
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Figure AA.53 Radial Density Profile of RNP=9.9 Å Au Nanoparticle 

 

Figure AA.54 Pair Distribution Function of RNP=9.9 Å Au Nanoparticle 
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Figure AA.55 Radial Density Profile of RNP=9.4 Å Au Nanoparticle 

 

Figure AA.56 Pair Distribution Function of RNP=9.4 Å Au Nanoparticle 
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