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ABSTRACT 

Mechanical Behavior of Alloy 230 at Temperatures Relevant to NGNP Program 

by 

Sudin Chatterjee 

Dr. Brendan O’Toole, Examination Committee Chair 
Associate Professor of Mechanical Engineering 

University of Nevada, Las Vegas 
 

Dr. Ajit K. Roy, Examination Committee Co-Chair 
Professor of Mechanical Engineering 

University of Nevada, Las Vegas 
 

Identification and selection of suitable structural materials for heat exchanger 

application within the purview of the next generation nuclear plant (NGNP) program 

constitute a major challenge.  This challenge stems from the lack of many desired 

metallurgical and mechanical properties of conventional metallic materials and alloys for 

applications at temperatures approaching 950 oC. Nickel (Ni)-base Alloy 230 has been 

highly recommended as a suitable structural material for such application due to its   

excellent resistance to high-temperature plastic deformation and superior corrosion 

resistance in many hostile environments.  

Systematic studies on tensile, fracture toughness, creep, stress-rupture and creep-

fatigue behavior of this alloy have been performed in this investigation.  A gradual 

reduction in yield and ultimate tensile strength has been observed with increasing 

temperature, as expected. The room-temperature fracture toughness of this alloy was 

relatively lower compared to that of other Ni-base alloys. The results of creep testing   

indicate that Alloy 230 may be resistant to plastic deformation at 750, 850 and 950 οC at 

applied stresses not exceeding 10% of its yield strength (YS) at these temperatures. At   
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0.25YS, this alloy exhibited an enhanced creep deformation at 850 and 950 οC. The 

results of stress-rupture testing, performed at 750, 800 and 850 οC under applied stress 

levels of 20, 25 and 30 ksi, respectively, have also been presented using different 

parametric extrapolation techniques. The Larson-Miller (LM) parameter was found to be 

very useful in predicting the rupture time. However, another approach based on the 

Minimum Commitment Method (MCM) was also applied that proved to be quite efficient 

in predicting the creep-rupture behavior of this alloy. Further, the effect of combined 

creep-fatigue loading on its cracking susceptibility has been studied by imposing 

different hold times on a triangular waveform associated with cyclic loading under a 

constant stress-intensity-factor range. These results indicate that the crack-growth-rate of 

Alloy 230 may be significantly enhanced at higher temperatures even after holding for 

very short durations. As to the fracture morphology, its mode of failure was changed 

from transgranular to predominantly intergranular due to the introduction of longer hold 

times and/or increasing temperature. 
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CHAPTER 1 

INTRODUCTION 

The demand for energy has been rising continuously for the past two decades, and is 

expected to follow a similar trend due to ongoing global industrial expansion and 

development of many future projects. Therefore, the cost of conventional fossil fuel-

derived energy, such as oil and gas, has been increasing steadily. The National Energy 

Policy proposed in recent years by the United States Department of Energy (USDOE) has 

been focused on more efficient utilization of nuclear power to generate electricity, and 

develop alternate sources of energy including hydrogen for many industrial applications 

[1-3]. Electricity generation using heat from Very-High-Temperature-Reactor (VHTR) 

has recently been emphasized by the USDOE within the purview of the Next Generation 

Nuclear Plant (NGNP) program. The NGNP program has been designed to develop 

hydrogen using 10% of the heat generated from VHTR, while 90% of the heat would be 

utilized to generate electricity [2].   

Figure 1 illustrates a schematic view of the NGNP concept, which will have an 

operating temperature in the vicinity of 950 oC. This temperature would be roughly three 

times higher than that of light water reactors, which are cooled by water and have been 

extensively used in the United States and around the world for quite some time. In 

contrast, the high heat generated from VHTR will be transmitted by an inert gas such as 

helium (He) through a heat exchanger, providing a greater safety during its operation.  A 

very small amount of the generated heat, also known as the process heat, will be 

transferred to the hydrogen generation plant through two heat exchangers, as shown in 

Figure 1.1.   
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Figure 1.1 NGNP Concept [2] 

 

The NGNP program constitutes a part of Generation IV Nuclear Energy Systems 

Initiative of USDOE. The current projects under the NGNP program are focused on many 

areas including the validation of reactor physics and core design analyses tools, 

development and validation of reactor thermal-hydraulic and mechanical design analysis 

tools, materials research, power-conversion unit assessments, and safety and risk 

analysis. The scope of these projects consists of project design, system design and 

analysis methodology, and fuel development and qualification. Nevertheless, the 

development of next generation nuclear systems requires extensive research and 

development efforts to identify, qualify and codify structural materials capable of 

withstanding extreme operating conditions including unusually high reactor temperature, 

high neutron flux, highly corrosive environments, yet providing long lifetime expectancy 

[4].  
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Nickel (Ni)-base Alloy 230 and Alloy 617 are two reference candidate structural 

materials for components such as intermediate heat exchangers in high-temperature gas-

cooled reactor system. The materials for the primary circuit must exhibit good thermal 

stability for long operating time, good creep strength, and should be easily formable and 

weldable. Extensive research work has already been performed at the Materials 

Performance Laboratory (MPL) of UNLV for the past three years involving Alloy 617 to 

evaluate its high-temperature tensile properties, crack-growth-rate (CGR), fracture 

toughness, and creep deformation at elevated temperatures [5, 6]. However, very limited 

data exist in the open literature for Alloy 230.  

There are indications [7, 8] that Alloy 617 possesses superior creep resistance 

compared to that of Alloy 230 but has relatively poor fatigue properties at elevated 

temperatures. Further, Alloy 617 is known to exhibit comparatively poor corrosion 

resistance due to its less-protective oxide films leading to internal oxidation and 

decarburization. Also, the presence of high cobalt (Co) content in this Alloy may give 

rise to potential radioactive contamination [4]. Alloy 230 was developed in 1980s 

primarily to sustain many hostile industrial environments, and is believed to possess 

considerably good creep resistance at elevated temperatures.  In view of this rationale, 

Alloy 230 was considered for evaluation of its creep deformation behavior at 

temperatures relevant to the NGNP program using the existing load frames at MPL.  

Simultaneously, efforts have been made to evaluate the tensile properties, fracture 

toughness and synergistic creep and fatigue interactions (creep-fatigue) of Alloy 230 for 

prospective application in the NGNP program.  
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Creep is a phenomenon of temperature-induced progressive deformation of a 

structural material at a constant load or stress [9, 10]. It is well known that the strength of 

metals and alloys can decrease with increasing temperature due to enhanced plasticity 

under tensile loading by virtue of faster dislocation motion through their grain 

boundaries. Other deformation mechanisms such as changes in slip systems and grain 

boundary diffusion, etc. can also come into play. At elevated temperatures, the strength 

of metals and alloys can also become very much dependent on the strain rate under 

sustained loading.  

The temperature-dependency of creep strength may vary depending on the types of 

material. A temperature that could be high for one material may not be so for another. 

Thus, to differentiate the temperature effect on materials’ properties, a term known as a 

homologous temperature, i.e., the ratio of the testing temperature to the melting 

temperature on an absolute scale is often used. Generally, time-dependent plastic 

deformation (creep) of metals and alloys may become significantly important at 

homologous temperatures of greater than or equal to 0.5 [9, 10]. The melting point of 

Alloy 230 is known to be approximately 1600 K. A decision was made in this 

investigation to evaluate the creep deformation behavior of Alloy 230 at temperatures of 

750, 850 and 950 oC that represent intermediate, intermediately-high, and high operating 

temperatures, respectively for the proposed NGNP system. Thus, these testing 

temperatures fell within a range of 1023-1223 K. Corresponding to these temperatures, 

the homologous temperature for Alloy 230 ranged between 0.63 and 0.76, which are well 

above 0.5.  
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This investigation is primarily aimed at developing a basic understanding on creep 

deformation of Alloy 230 under sustained loading at temperatures of 750, 850 and 950 

oC. There are indications in the literature [11-25] that metallurgical microstructures can 

significantly influence the creep strength of structural materials. Parameters such as grain 

size, stacking fault energy, sub-grain size, distribution of dislocations at the sub-

boundaries and in the interior of the sub-grains, etc. can play significant role on the extent 

of deformation due to creep [11-25]. The presence of tungsten (W) in this Alloy is very 

effective in lowering the stacking fault energy of Ni. Low stacking fault energy is 

expected to increase the activation energy required for thermally-activated cross-slip of 

screw dislocations during creep deformation [11].  

Other important microstructural characteristics influencing the creep strength of 

Alloy 230 are the presence of grain boundary and intragranular precipitates [24, 25]. 

Literature [25] indicates that there are two types of carbide precipitations in Alloy 230. 

The first one is M6C carbide of type Ni3W3C, which could result from precipitation 

during thermomechanical processing and is expected to resist the grain boundary 

migration and sliding at elevated temperatures, particularly when present at the triple 

points. The second type of precipitate is the M23C6 carbides, which is chromium-rich and 

can also result from thermomechanical processing. However, the morphology of this type 

of precipitate depends on the cooling rate following rolling and annealing operations. 

Intragranular and continuous grain boundary precipitates of M23C6 carbides are beneficial 

for creep strength rather than discontinuous precipitates [24]. Therefore, a   

characterization of microstructural aspects by analytical tools such as transmission 
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electron microscopy (TEM) was performed in this investigation to develop a creep 

deformation mechanism of Alloy 230.  

Apart from the microstructural effects, the creep strength of a material can depend on 

the applied stress and the duration of sustained loading. The ASTM Designation E 139-

06 [26] recommends that creep testing be performed at stresses that would result in 1% 

strain following 100,000 hours (approximately, 11.5 years) of loading. However, testing 

for such a long period is impractical since results are needed within a reasonable 

timeframe.  Therefore, it is widely accepted in the scientific and engineering communities 

to assume a material to be creep resistant if its total strain does not exceed 1% following 

1000 hours of loading at a desired temperature [27].   

Another approach to the prediction of long-term creep properties is the performance 

of stress rupture testing that needs much shorter duration. Stress rupture testing is very 

similar to creep testing with a difference that, during the stress-rupture testing, the 

specimens are normally loaded at higher stresses and testing is continued until the sample 

fails. Usually, stress levels applied in this type of testing are selected so as to have a 

rupture time ranging between 30 and 300 hours [26]. The resultant rupture usually occurs 

by intergranular or intragranular cracking due to nucleation, growth, and link-up of grain-

boundary voids [28-30].  

As indicated earlier, carbide precipitates of specific types have significant effect in 

influencing the creep properties of Ni-base alloys. Unlike creep, the stress rupture 

properties are enhanced by discontinuous carbide precipitation, thus providing an easy 

fracture path [31, 32]. The primary goal of stress rupture testing was to evaluate the long-

term creep deformation behavior of Alloy 230 by using different empirical models based 
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on Larson-Miller (LM) analysis [33], Orr-Sherby-Dorn (OSD) analysis [34] and Manson-

Hafred (MH) methodology [35]. Apart from the empirical techniques, efforts were made 

to predict the creep-rupture properties of Alloy 230 using a generalized time-temperature-

stress regression model based on the Minimum Commitment Method (MCM) [36]. 

Although, it is difficult to precisely determine the long-term creep properties of this alloy 

beyond the ranges of the tested parameters using such methods, it may be closely 

approximated using a reasonable factor of safety, thus leading to the development of 

master plots for long-term predictions.   

In addition to time and temperature-dependent deformation, Alloy 230 would also be 

subjected to thermal stresses generated from fluctuating temperatures associated with   

alternate heating and cooling of the heat exchanger during transfer of nuclear heat into 

the power generation plants. Thus, another requirement for Alloy 230 for NGNP   

application is to ensure its adequate resistance to failure under cyclic loading (thermal 

fatigue).  Simultaneously, it is necessary to determine the fracture toughness of this alloy 

in the presence of sub-critical flaws or cracks that may exist in the as-received condition. 

In view of this rationale, the fracture toughness of Alloy 230 was also determined at 

ambient temperature using the elastic-plastic-fracture-mechanics (EPFM) concept [37-

40]. Additionally, the combined effect of hold time and cyclic loading (creep-fatigue) on 

the crack-growth behavior of Alloy 230 was evaluated by imposing different hold times 

on a triangular waveform associated with cyclic loading under a constant stress-intensity-

factor range. The creep-fatigue behavior study of this alloy was performed within a 

temperature range of 600-800 oC. Finally, efforts were made to evaluate the 
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microstructural aspects of creep-fatigue interaction of Alloy 230 using optical and 

scanning electron microscopy (SEM).  

The test matrix for this investigation was developed based on the recommendations 

from the materials consortium within the NGNP program that consisted of participants 

from both the National Laboratories and Universities of the United States of America. 

The complete test matrix and scope of work defined by the materials consortium are 

given in Appendix A. Table 1.1 shows the test matrix that was carried out within the 

scope of the current investigation. 

 

Table 1.1 Test Matrix for Alloy 230 

Type of Testing Environment Temperature 
(oC) 

Loading Conditions 

Tensile  Air Ambient, 150, 
300, 500, 750, 

850, 950 

Strain rate = 10-3 sec-1 

Creep  Air  750, 850, 950 10 and 25% of yield strength 
corresponding to a specific 

test temperature 
Stress-Rupture  Air  750, 800, 850 138, 172, 207 MPa 

Fracture Toughness Air  Ambient* variable 

Creep-Fatigue Air  600, 700, 800 Constant stress-intensity- 
factor range, ΔK = 25 

mMPa  
 

* Testing could not be performed at elevated temperatures due to both equipment and funding constraint. 
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CHAPTER 2 

EXPERIMENTAL: TEST MATERIAL AND SPECIMENS 

2.1. Test Material  

Alloy 230 is a nickel-chromium-tungsten-molybdenum (Ni-Cr-W-Mo) alloy that 

combines excellent high-temperature tensile strength, outstanding resistance to 

deformation in oxidizing environments at temperatures up to 1149 °C, excellent 

corrosion resistance in nitriding environments, and superior long-term thermal stability 

[41]. It can be readily fabricated and formed, and is castable. Other desirable properties 

of this alloy include lower thermal expansion compared to most high-temperature alloys, 

and a significant resistance to grain coarsening during prolonged exposure at elevated 

temperatures. Alloy 230 has excellent weldability. It may also be forged or otherwise hot-

worked, provided it is held at 1177 °C for sufficient time to heat the entire piece 

uniformly. This alloy can also be readily formed by cold-working due to its moderate 

ductility. Hot- or cold-worked Alloy 230 can be annealed and rapidly cooled to restore its 

desired properties.  

Wrought Alloy 230 is usually furnished in a solution annealed condition. The typical   

annealing temperature ranges from 1177 to 1246 °C. Subsequently, it can be rapidly 

cooled or water-quenched to develop the desired metallurgical and mechanical properties. 

Alloy 230 used in this investigation was procured from the Haynes International Inc. 

Initially, two heats (Heat Numbers 830557766 and 830557896) were used to prepare the 

creep and stress rupture specimens. Later, a third heat (Heat Number 830587843) was 

procured to fabricate compact-tension (CT) specimens for evaluation of fracture 

toughness and creep-fatigue behavior of this alloy. All three heats were received from the 
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vendor in a heat-treated condition. The chemical composition and the room temperature 

tensile properties of the test materials are given in Tables 2.1 and 2.2, respectively. 

 

Table 2.1 Chemical Composition of Alloy 230 (wt %) 

Heat 
Number 

C Mn Fe Si Cr Ni Al Co Mo W 

830557766 0.10 0.57 2.51 0.41 21.76 58.56 0.23 0.15 1.37 14.3
830557896 0.11 0.53 1.34 0.37 22.43 59.46 0.29 0.21 1.34 13.9
830587843 0.11 0.50 0.42 0.39 22.01 60.76 0.40 0.10 1.25 14.0

 

Table 2.2 Ambient-Temperature Tensile Properties of Alloy 230 

Heat Number YS, ksi 
(MPa) 

UTS, ksi 
(MPa) 

%El %RA Hardness 
(RB) 

830557766 54 (372) 127 (876) 49 55 91 
830557896 52 (361) 119 (820) 46 43 92 
830587843 50 (348) 115 (793) 47 44 90 

 

2.2 Test Specimens 

Tensile testing was performed using a 4-inch long smooth cylindrical specimen 

having a gage length of 1-inch, and a gage diameter of 0.25-inch. The specimen used in 

tensile testing is shown in Figure 2.1. Creep testing was performed using a 4-inch long 

smooth cylindrical specimen having a gage length of 1.48-inch, as shown in Figure 2.2. 

These specimens had grooves at both ends so as to attach an extensometer for 

measurement of strain. Stress rupture testing was conducted using a smooth cylindrical 

specimen having a 3.6-inch length and two notches machined within a gage length of 1.1-

inch, as shown in Figure 2.3. These two notches were placed at a distance of 0.5 inch 

from the center of the gage section. The notch diameter and root radius were 0.266-inch 

and 0.0073-inch, respectively. The fracture toughness (JIC) of this alloy was determined 
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using 1-inch thick CT specimens, based on the elastic-plastic-fracture-mechanics (EPFM) 

concept [42], which is shown in Figure 2.4. Finally, the crack-growth-rate (CGR) of this 

alloy under creep-fatigue conditions was determined by using 0.25-inch thick CT 

specimens (Figure 2.5) that were machined according to the ASTM Designation E 647-

2000 [43].  

 

 

(a) Specimen dimensions (Inch) 

 

 

 

(b) Pictorial View 

Figure 2.1 Tensile Specimen
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(a) Specimen Dimensions (Inch) 

 

 

(b) Pictorial View 

Figure 2.2 Specimen used in Creep Testing 

 

 

 

Figure 2.3 Specimen used in Stress Rupture Testing 

  
Dimensions in inch 
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(a) Specimen Dimensions (Inch) 

 

(b) Pictorial View 

Figure 2.4 Specimen used in JIC Measurement 
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(a) Specimen Dimensions (Inch) 

                                       

 

(b) Pictorial View 

Figure 2.5 Specimen used in Creep-Fatigue Testing 
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CHAPTER 3 

EXPERIMENTAL PROCEDURES 

As indicated earlier, this investigation is focused on the evaluation of mechanical 

properties of Alloy 230 at temperatures relevant to the intermediate heat exchanger for 

the NGNP program. Since the anticipated design life of components for NGNP 

application is relatively high, evaluation of time-dependent deformation, and rupture life 

determination are necessary. Therefore, creep and stress rupture testing were performed 

in this study. Further, an effort was made to generate baseline tensile data at ambient and 

elevated temperatures. These tensile data were needed to select the magnitude of stresses 

to be applied in creep testing at specific temperatures. Certain percentages of the YS 

values at the selected testing temperatures were considered. Plane strain fracture 

toughness (JIC) of Alloy 230 was also determined at ambient temperature using pre-

cracked CT specimens. However, JIC testing could not be performed at elevated 

temperatures due to a limitation of testing equipment. CT specimens of different 

dimensions were used to evaluate the crack-growth behavior of this alloy under creep-

fatigue conditions using an in-situ crack monitoring device (DCPD) at different 

temperatures. 

Optical microscopy was used to characterize the metallurgical microstructures of 

Alloy 230 including the grain size, volume fraction and size of precipitates. The extent 

and morphology of failure of all tested specimens were determined by using SEM. 

Finally, TEM was used to develop a basic understanding of different types of 

deformations as functions of metallurgical and mechanical variables. Experimental 
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procedures used in the evaluation of tensile, J1C, creep, stress rupture, creep-fatigue, 

microstructures and fractography of Alloy 230 are described in the following subsections. 

3.1 Tensile Testing 

The tensile properties including the yield strength (YS), ultimate tensile strength 

(UTS), and the ductility in terms of percent elongation (%El) and percent reduction in 

area (%RA) were evaluated using an Instron testing equipment (Model 8862). Smooth 

cylindrical specimens were loaded in tension at a strain rate of 1   10-3 sec-1 according to 

the ASTM Designation E 8-2004 [44]. Duplicate specimens were tested under each 

experimental condition, and the average values of the measured parameters were 

recorded. The experimental data including the load, engineering stress (s) and 

engineering strain (e) were recorded in the data file. The engineering stress versus strain 

(s-e) diagram was automatically generated using Bluehill 2 software program [45]. The 

magnitudes of YS, UTS, and %El (based on Linear Variable Displacement Transducers) 

at each temperature were also determined using this software. Upon completion of 

testing, the magnitudes of %El and %RA were calculated using Equations 3.1 through 

3.4. 
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where  A0 = Initial cross sectional area (inch2) 

 Af = Cross sectional area at failure (inch2) 

 Lo= Initial overall length (inch.) 

 Lf = Final overall length (inch.) 

 Do= Initial gage diameter (inch.) 

 Df = Final gage diameter (inch.) 

3.1.1 Instron Testing Machine 

The Instron testing machine, shown in Figure 3.1, had an axial load transducer 

capacity of 22.5 kip (100 kN). It had a single screw electromechanical top actuator that 

was developed for static and quasi-dynamic cyclic testing at slow speed. This equipment 

consisted of a large heavy-duty load frame with an adjustable crosshead attached to the 

top grip, and a movable actuator with another grip at the bottom to enable loading and 

unloading of the test specimen. The axial motion was controlled by force, displacement, 

or an external signal from the strain gage. The specimen was mounted between the two 

grips and pulled by the movable actuator. The load cell measured the applied force on the 

tensile specimen. The movement of the upper crosshead relative to the lower one 

measured the strain within the specimen and consequently, the applied load. The key 

specifications of this equipment are given in Table 3-1. 

  

Table 3-1 Specifications of Instron Model 8862 System 

Load Capacity 
Total Actuator 

Stroke 
Maximum 
Ramp Rate 

Actuator 
Attachment 

Threads 

Load Cell 
Attachment 

Threads 
100 kN 100 mm 350 mm/min M30   2 M30   2 
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Figure 3.1 Instron Testing Machine 

 

A split furnace (Model 3320) was attached to the testing system for evaluating the 

tensile properties at elevated temperatures in air. This furnace was capable of sustaining a 

maximum temperature of 1540 οC and had two layers of micro-pores and ceramic fibers 

over them. Six U-shaped molybdenum disilicide heating elements were used for attaining 

the desired testing temperature. The specimen temperature during straining was 

monitored by three B-type thermocouples contained inside this furnace. A separate 

control panel (model  CU666F) was used to perform the overall monitoring of 

temperature during tensile loading. A maximum heating rate of 8 οC per minute could be 

achieved by this control panel. However, a slow heating rate of 4 οC per minute was used 

during testing to prevent any thermal shock of the pull rods and the fixtures inside the 

furnace. Since the grip material could undergo phase transformation and plastic 
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deformation at elevated temperatures during straining of the specimen, a pair of custom-

made grips of high strength and temperature resistant MarM 246 alloy was used to hold 

the tensile specimen in an aligned position.  

3.2 Fracture Toughness Evaluation 

 Fracture toughness of metals and alloys can be determined by application of two 

concepts, namely linear elastic fracture mechanics (LEFM) and elastic plastic fracture 

mechanics (EPFM). The LEFM concept involves the use of CT specimens with larger 

thickness to comply with limited plasticity at the crack-tip (Plane-strain condition) as 

prescribed by the ASTM Designation E 399-1999[46]. However, the use of thicker 

specimens may be unrealistic from a practical point of view. So, the principle of EPFM is 

often applied to evaluate the fracture toughness of structural materials in terms of plane 

stress fracture toughness (J1C). 

 J1C testing involving Alloy 230 was performed in this investigation according to the 

ASTM Designation E 813-1989, using 1-inch thick CT specimens [42]. Two types of J1C 

testing method exist, namely single-specimen technique and multiple-specimen 

technique. The multiple-specimen technique requires at least five specimens to be tested 

at a specific temperature to determine the J1C value. Thus, it involves higher cost and 

longer test duration. Therefore, to minimize cost and time, the single-specimen technique 

was employed in this investigation to determine J1C at ambient temperature using an 

Instron testing machine. Testing could not be performed at elevated temperatures due to 

both equipment and funding constraint. A “J1C fracture toughness software” [47], 

provided by the Instron corp., was used to calculate and validate the measured J1C value. 
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For J1C determination, the CT specimens were pre-cracked in the Instron equipment 

up to an approximate length of 2 mm using a load ratio (R) value of 0.1 and a frequency 

of 1 Hz. The maximum load during pre-cracking was maintained at 20 kN. Later the 

specimens were subjected to several loading and unloading sequences (15 to 30). Due to 

these loading/unloading sequences, the load-line-displacement (LLD) or, the crack-

opening displacement (COD) i.e. the gap between the two arms of CT specimens was 

increased. The magnitude of LLD was measured by a knife-edge extensometer, which 

was attached to the specimen arms at the start of the J1C testing. A maximum travel 

distance of this extensometer was maintained at +/- 2 mm. A pictorial view of the J1C test 

setup, showing the extensometer arrangement, is illustrated in Figure 3.2.  

A typical load versus LLD plot is shown in Figure 3.3. The shaded area, shown in 

Figure 3.4, represents loading/unloading energy (J-Integral/J) required for increment of 

crack. 

 

 

Figure 3.2 J1C Test set-up 
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Figure 3.3 Loads versus LLD Plot 

 

 

Figure 3.4 Areas representing J-Integral 

 

The J-Integral value for each area will be calculated by using Equation 3.5 [42]. 

                                          J = Jelastic + Jplastic    Equation 3.5  

where  2
2

elastic ν1
E

K
J   
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      K = Stress-intensity-factor ( mMPa ) = 
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       vpl = Plastic displacement (mm) (LLD/COD), and 

        Apl = Area corresponding to each loading/ unloading sequence (mm2) 

Each calculated J value, was then plotted against the corresponding crack extension 

(a), as shown in Figure 3.8. The crack extension (ai) for each sequence will be measured 

using the unloading compliance principle, based on Equation 3.6 [48-49]. 
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ai/W= 1.000196 – 4.06319uLL + 11.242uLL
2 – 106.043uLL

3 + 464.335uLL
4 – 650.677uLL

5  

Equation 3.6 

where  0.5

1
u  = LL

B EC  + 1e i
 

        Be = Effective thickness of the CT specimen (mm) = [B – (B – BN)2/B] = B   

(since B = BN), in current study 

        Ci = Specimen load line elastic compliance on an unloading/reloading sequence  

   (Δv/ΔP) (mm/N) 

        Δv = Increment in LLD/COD (mm) 

        ΔP = Change in load (N) 

The data obtained from the J-Integral vs. Crack-Extension plots were fitted to a power 

law curve and four parallel lines were drawn, as shown in Figure 3.5. These lines were 

identified as blunting line, 0.15-mm exclusion line, 1.5-mm exclusion line and 0.2-mm 

exclusion line, respectively.  

The resultant data was considered valid if at least one J-Δa point lies between the 

0.15-mm extension line and a line parallel to the blunting line at an offset of 0.5-mm 

from the blunting line. The point of intersection of the power law curve and the 0.2-mm 

exclusion line (as shown in Figure 3.5) was taken as JQ, or a conditional J1C value. JQ was 

considered as the J1C value of the material if it met the following two criteria 

1. Thickness (B) of the specimen > [25 JQ / σY], where σY = effective yield strength 

of the material = average of the yield and ultimate tensile strength of the material 

= [σYS + σUTS ] / 2 

2. Initial uncracked ligament (b0) > [25 JQ / σY] 
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Figure 3.5 Determination of JQ using J-Integral versus Δa Plot 

 

K1C can be computed [42, 50] from the J1C value of a material using Equation 3.7, as 

shown below. 

                     2
1C 1C  K  = J × E × 1 - ν     Equation 3.7              

J1C can also be related to the crack-tip-opening-displacement (CTOD) according to 

Equation 3.8, given below  

YS

2
1K

δ = 
mEσ

      Equation 3.8   

where δ = CTOD (mm) 

    K1 = K1C value of the material (MPa√m) 

     m = A constant = 2 for plane-strain condition 
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    σYS = Yield strength of the material (MPa) 

3.3 Creep Testing 

Creep is a time-dependent deformation phenomenon of structural materials that 

occurs under a sustained loading condition at elevated temperatures. Creep testing was 

performed in this study in accordance with the ASTM Designation E 139-06 [26] using 

ATS loading frames (Series 3210), shown in Figure 3.6, having an arm ratio of 20:1. 

Smooth cylindrical specimens having two circular grooves were used in these tests. The 

elongation at the gage section was measured by using two extensometers, as shown in 

Figure 3.7. The average elongation measured by the left and right extensometers was 

taken into consideration for estimating the resultant deformation of the tested specimen at 

a constant load. 

The testing equipment consisted of four K-type thermocouples to monitor the 

specimen temperature. Four connecting ports were attached to the load frame, where one 

end of thermocouple was connected. Three thermocouples were firmly wrapped up at 

three locations of the specimen (top, middle and bottom) to monitor its temperature 

during testing. Windows Computer Creep System (WINCCS) software was used for 

automatic data acquisition. Fourth slot of the thermocouple port was used to measure the 

room temperature for reference.  

The split tube furnace (model 3210) had three zones. This furnace had a heating 

capability of heating specimens up to 1100 οC. Kanthal A1 was used as a heating element 

in this furnace. Creep tests were conducted at temperatures of 750, 850 and 950 oC, each 

at applied stresses corresponding to 10 and 25% of the YS values of Alloy 230 at these 

temperatures. Testing temperatures were maintained precisely within +/- 0.3 oC. Each test 
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was performed for 1000 hours, except for the testing at 950 οC and 25% of the YS values 

where the creep rate was very high and the testing was stopped beyond 470 hours.  

 

 

Figure 3.6 Creep Test Setup 

 

 

Figure 3.7 Extensometer Setup 

 Load cell 

Pre load  

 Load Train 

Pan load  
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In general, a three-stage curve is generated in creep testing that can be compared for 

different testing temperatures. These three regions are known as primary creep, 

secondary creep and tertiary creep. A schematic representation of a conventional creep 

curve, showing all three regions, is illustrated [9] in Figure 3.8.  The slope of the 

secondary or steady-state region (dε/dt, or εs
o) is known as the creep rate of the tested 

material. Initially, there is a rapid elongation of the specimen (ε0), followed by a reduced 

rate in the primary stage until a steady-state region is reached. Finally, the deformation 

rate increases drastically in the tertiary region until the specimen fails.  

 

 

Figure 3.8 Three Stage Creep Curve 

 

Since creep is a thermally-activated phenomenon, the activation energy (Q) needed 

for plastic deformation in the steady-state region has an important role. The magnitude of 

Q for creep at a particular stress or load level can be determined using two methods. The 

first method is based on Equation 3.9 [9]. 

 

, ε0 
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Q
Aexpε

o

s     Equation 3.9             

where  A = Pre-exponential complex constant containing the frequency of vibration of        

the flow unit and the entropy change, and is a factor that depends on the structure of 

the material, 

     T = Absolute temperature (K) 

Taking natural logarithm on both sides of Equation 3.9, one can get Equation 3.10, as 

given below. 
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    Equation 3.10 

Equation 3.10 represents a straight line having a linear equation (y = mx + c) when ln 

(εs
o) is plotted against (1/T). Q can be calculated from this equation as the product of the 

negative of the slope of this straight line and R (universal gas constant).  

The second method of Q calculation is based on the applications of Equations 3.11 

and 3.12, as given below. Here the magnitude of A is considered to be constant 

irrespective of the testing temperature. Thus, rearranging Equation 3.9, one arrives at 

equation 3.11. 

                         A = 
ο

1ε exp (Q/RT1) = 
ο

2ε exp (Q/RT2)              Equation 3.11 

Equation 3.8 can be reached by simplification, as given below.                  

ο ο

1 2

2 1

Rln ( )
Q = 

(1/T -1/T )

ε / ε
     Equation 3.12 

where 
ο

1ε and 
ο

2ε
 are the steady-state creep rates at temperatures T1 and T2, 

respectively. 
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3.4 Stress Rupture Testing 

Stress rupture testing is very similar to creep testing with an exception of higher 

applied stresses, compared to that of creep test.  This type of testing is continued until the 

specimen fails. Stress rupture testing has been performed in this investigation in 

accordance with the ASTM Designation E 139-06 [26] using load frames that were also 

used in creep testing.  However, for stress rupture testing, an auto load mode was used, 

thus maintaining a constant level of applied load until the sample failed. Cylindrical 

double-notched specimens were used in this type of testing. Since elongation 

measurements were not needed, extensometers were not used in stress rupture testing. 

Testing was conducted at 750, 800, and 850 oC under applied stress levels of 20, 25 and 

30 ksi, respectively. Triplicate testing was performed under each experimental condition. 

Two sets of data were used to determine the different stress rupture parameters, and a 

third set was used to check the accuracy of the predicted rupture time using the calculated 

parameters.  

3.4.1. Extrapolation of Stress Rupture Data 

The primary objective of stress rupture testing was to predict the long-term creep 

deformation behavior of Alloy 230. However, reliable extrapolation of creep and stress 

rupture curves to longer times can be made only if structural changes do not occur in the 

region of extrapolation, thus preventing a change in slope of the curve [9]. For 

extrapolation of stress rupture data, several parameters have been considered. These 

parameters include the time, temperature and stress, incorporated into a single expression. 

The stress at a service temperature can be estimated from a ‘master curve’ generated over 

a prolonged period at temperatures significantly higher than the operating temperature 
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range. Some of the commonly accepted expressions for extrapolation are the Larson- 

Miller (LM) parameter, Orr-Sherby-Dorn (OSD) parameter, and the Manson-Hafred 

(MH) parameter.   

Larson and Miller [33] first introduced the concept of a time-temperature grouping in 

the form of Equation 3.13.  

P = T (ln tr + C)    Equation 3.13 

where  P = LM parameter 

T = Temperature  

tr = Rupture time, and  

C = LM constant 

The value of C was originally proposed to be 20, but optimized values ranging 

between 10 and 40 were subsequently accepted, depending on a specific type of material. 

For common usage, T is expressed in absolute unit and t in hours. In the current work, the 

value of C was determined from a plot of ln (tr) versus 1/T corresponding to different 

applied stress levels. A linear relationship was observed, which was allowed to converge 

to a single point as the value of 1/T approached zero. This point along the vertical axis 

was taken as an approximate value of C.  

Unlike the LM plot, the relationship between ln (tr) and 1/T under different stress 

levels was manifested as parallel lines without any convergence to a single point in the 

analysis of the OSD parameter [34].  The OSD parameter is expressed as θ, which can be 

given by Equation 3.14.  

    r

Q
θ lnt

2.3RT
                                         Equation 3.14 
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Equation 3.14 also represents a linear relationship for which the slope can be given by 

-Q/2.3R, where Q is the activation energy for creep deformation and R is the universal 

gas constant.  

The expression for the MH parameter [  f ] is given by Equation 3.15, which is 

somewhat different from that of the LM and OSD parameters in that rln t  is plotted as a 

function of T, causing the lines to intersect at coordinates given by Ta and ln ta, 

respectively [35].  

 
)T(T

)ln t(ln t
f

a

ar




    Equation 3.15  

All three parameters (LM, OSD and MH) are shown in Table 3.2. The different 

equations, shown in this Table, were used to calculate the various stress-rupture 

parameters and subsequently analyzed for comparison purpose.   

 

Table 3.2. Stress Rupture Test parameters 

LM Parameter  Cln tTP r   tr is the time to rupture in hours, T is the 
absolute temperature, and C is a constant 

OSD Parameter 
r

Q
θ lnt

2.3RT
   

Q is a characteristic activation energy for 
the process determined from the creep 
experiments and R is the universal gas 
constant 

MH Parameter  
)T(T

)ln t(ln t
f

a

ar




  
Constants ln ta and aT  are the coordinates 

of the point of convergence 

 

3.4.2 Minimum Commitment Method 

A major deficiency of the empirical parameters discussed in section 3.4.1 is that they 

are assumed to be constant at a specific temperature irrespective of the stress level.  

Further, none of these parameters consider the effect of metallurgical instabilities. In this 
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regard, the minimum commitment method (MCM), proposed by Manson and Ensign 

[36], holds considerable promise. The basic purpose of MCM is to consider a generalized 

time-temperature-stress relationship, which has a form given by Equation 3.16.  

    GPtln PA tln rr     Equation 3.16 

where tr = Time to rupture 

           A = Constant 

           P = Function of temperature and is given by Equation 3.17 

   









m
2m1 T

1

T

1
RTTRP                    Equation 3.17 

where T = Temperature in absolute scale 

                 Tm = Mid-range temperature of data base 

      R1 and R2 = Constants 

      G = Function of stress and is given by Equation 3.18 

2G=B+Clogσ+Dσ+Eσ                                 Equation 3.18 

where B, C, D, E = Constants, σ = Applied Stress 

Equations 3.16, 3.17 and 3.18 can be combined to arrive at Equation 3.19, as shown 

below.   

r 1 1 2 2 3 4 5ln t = R X + R X + CX + DX + EX + B           Equation 3.19 

where X1 = (Tm - T) (1 + A ln tr) 

      X2 = (1/Tm – 1/T) (1 + A ln tr) 

      X3 = ln σ 

      X4 = σ 

      X5 = σ2  
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Equation 3.19 is a linear equation, where the value of ln (tr) depends on independent 

variables X1, X2, X3, X4, and X5. In order to get a generalized expression for time-

temperature-stress relationships given by Equation 3.16 and 3.19, it is necessary to 

determine the values of seven constants (A, B, C, D, E, R1 and R2). The value of ‘A’ was 

determined by focal point convergence method, proposed by Manson and Ensign [51]. As 

indicated in section 3.4.1 the time-temperature plots were assumed to converge to a 

common point, except for the OSD analysis where the plots of ln (tr) versus 1/T were 

assumed to generate parallel lines. A negative inverse of ordinate of this point of 

convergence was considered to provide the best theoretical A-value for the MCM 

analysis. Multiple linear regression analysis [52] was used to determine the values of the 

remaining constants.  

3.4.3 Application of Stress-Rupture Parameters and MCM Analysis   

The stress rupture parameters, determined from different extrapolation techniques, 

were used to estimate the time to rupture in stress-rupture testing. It is a common practice   

by the scientific community to represent the variation of these parameters with stress in a 

single plot, which is often referred to as the ‘master plot’ for that particular parameter. 

The master plot is a best fit line drawn for all estimated values of parameters, which is   

independent of temperature. It serves as a look-up chart for predicting a particular stress-

rupture parameter, and eventually the rupture life using Equations 3.13, 3.14 and 3.15. 

Efforts have been made in this investigation to construct a master plot involving three 

stress-rupture parameters discussed earlier.  The linear equation obtained from this plot 

was then used to predict the value of a particular parameter under consideration and 

substituted in Equations 3.13, 3.14 or 3.15, depending on the chosen parameter. The 
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strength and accuracy of the best fit line or master plot is judged based on the value of 

coefficient of determination (R2) [52], given by Equation 3.20. The value of R2 can range 

from 0 to 1, with R2 = 1 being the best fit, and R2 = 0 defining no correlation.  

2

n n n

i i i i
i=1 i=1 i=12

2 2n n n n
2 2
i i i i

i=1 i=1 i=1 i=1

n X Y - X Y

R =

n X - X n Y - Y

         
 
        

        
        

  

   
       Equation 3.20  

where Yi = Particular Stress Rupture Parameter Data Points, Xi = Stress Data Points 

The values of constant considered in the LM analysis, slope in OSD analysis and 

coordinates (Ta, ln ta) in MH analysis were same as those determined experimentally, as 

discussed in section 3.4.2. Thus, it was possible to predict the rupture time of Alloy 230 

for any particular combination of stress and temperature. Predictions of rupture time were 

also carried out by using the results of the MCM analysis. A generalized equation was 

obtained by substituting the values of the constant in Equation 3.19, which enabled the 

prediction of the rupture time for Alloy 230 for any combination of stress and 

temperature.  However, it was necessary to check the accuracy of these parameters and 

techniques used in predicting the rupture time. The accuracy level in prediction was 

decided based on the root-mean-square (RMS) value [53], given by Equation 3.21.  

 
1/22

actual predictedln t - ln t
RMS=

N

 
 
 
 


  Equation 3.21 

where tactual = Actual time to rupture 

 tpredicted =  Predicted time to rupture 

 N = Number of data points    
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3.5 Crack-Growth-Rate (CGR) Evaluation  

In view of the extreme operating conditions associated with the GEN IV program, 

identification and subsequent selection of suitable structural materials for heat exchanger 

constitute an enormous challenge.  A combination of monotonic creep and fatigue, 

resulting from the synergistic effect of high temperature environment and temperature-

induced repeated or alternating stress, can adversely influence the mechanical 

performance of these materials. Thus, the consequence of creep and fatigue interaction 

(creep-fatigue) must be addressed in the selection of materials prior to the design of high 

temperature structural components such as heat exchangers. The complex creep-fatigue 

loading can often be simplified by considering high temperature low-cycle-fatigue (LCF) 

conditions with a hold time at a constant tensile strain [54, 55].  The fatigue life of a high 

temperature component under an LCF condition, however, depends not only on the 

temperature but also on the loading waveform due to the occurrence of time-dependent 

deformation or creep. 

Prior to the CGR testing, the 0.25-inch CT specimens were precracked up to a length 

of 2 mm (0.078 in.) in the Instron testing equipment (Figure 3.1) at room temperature 

according to the ASTM Designation E 647-2000 [56] at a load ratio (R = minimum load, 

Pmin/maximum load, Pmax) and a frequency of 0.1 and 1 Hz, respectively. A direct-

current-potential-drop (DCPD) technique was used to continuously monitor the crack 

propagation during both precracking and CGR testing involving the CT specimens.  The 

DCPD method involved passing a constant current of 300 mA through the cracking 

specimen and detecting the voltage drop across the crack mouth due to the extension of 

crack length using Johnson’s equation [57], given by Equation 3.22. 
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where Vo and ao are the initial crack mouth potential and crack length, Vi and ai are the 

instantaneous crack mouth potential and crack length, y is half of the distance between 

the two points for which the crack mouth potential is measured, and W is the specimen 

width. 

A CT specimen, showing the current and potential leads used in crack-growth 

monitoring, is shown in Figure 3.9.  A ceramic-lined split furnace (model 3320), attached 

to the Instron testing machine, was used to heat the CT specimens to the desired testing 

temperatures.  CGR testing was performed involving precracked CT specimens under a 

constant ΔK (Kmax – Kmin) of 25 MPa√m at 600, 700 and 800 оC.  The load range (ΔP = 

Pmax – Pmin) was gradually reduced as the crack length was enhanced to maintain a 

constant ΔK of 25 MPa√m.  Initially, testing under cyclic loading (fatigue CGR) was 

performed using a triangular waveform (constant ΔK-controlled mode) with frequency (f) 

and R value of 0.33 Hz and 0.1, respectively without any hold time.  Subsequently, the 

creep-fatigue CGR testing was performed at each temperature involving the same CT 

specimen (initially tested under R and f values of 0.1 and 0.33, respectively)  by 

superimposing hold times of 60, 120, 300, 600 and 1000 seconds on the triangular 

waveform employed in the fatigue CGR testing at Pmax. Crack extensions ranging from 

0.5 to 0.8 mm between each hold time was selected to monitor the instantaneous crack 

length as a function of the loading cycle at each tested temperature.  A software program 

[58], provided by the Fracture Technology Associates, Bethlehem, PA, was used to 
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continuously monitor cracking and record data, leading to the development of crack 

length versus number of loading cycle plots.  Figure 3.10 illustrates the waveform 

associated with the CGR testing performed under synergistic effect of cyclic loading and 

variable hold time at Pmax.       

 

                    

Figure 3.9 Creep-Fatigue Test Setup 

 

 

 

 

 

 

 

 

 

Figure 3.10 Loading Waveform vs. Hold time. 
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3.6. Microstructural Characterization 

The metallographic technique, using an optical microscope, enables the 

characterization of phases present, their distributions within grains and their sizes that 

depend on both the chemical composition and the thermal treatment of the test material. 

The principle of an optical microscope is based on the impingement of a light source 

perpendicular to the test specimen. The light rays pass through the system of condensing 

lenses and then shutters up to the half-penetrating mirror. This brings the light rays 

through the objective to the surface of the specimen. Light rays are reflected off the 

surface of the sample, which then return to the objective, where they are gathered and 

focused to form the primary image. This image is then projected to the magnifying 

system of the eyepiece. The contrast observed under the microscope results from either 

an inherent difference in intensity or wavelength of the light absorption characteristics of 

the phases present. It may also be induced by preferential staining or attack of the surface 

by etching with a chemical reagent. 

The test specimens were sectioned, and mounted using standard metallographic 

technique, followed by polishing and etching to reveal their metallurgical 

microstructures. The etchant used was Kalling’s Reagent, which composed of a mixture 

of 40 ml of distilled water, 2 grams of cupric chloride (CuCl2), 40 ml of hydrochloric acid 

and 40 ml of ethanol. The polished and etched specimens were then evaluated for 

determination of their microstructures in a Leica optical microscope, shown in Figure 

3.11. This microscope was capable of resolution of up to 1000X. A digital camera with a 

resolution of 1 Mega pixel enabled the image capture on a computer screen, utilizing the 

Leica software. 
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Figure 3.11 Leica Optical Microscope 

 

3.6.1 Grain Size Evaluation 

Efforts were made to determine the grain size of the tested materials from their 

optical micrographs. The ASTM grain size number (G) as well as the grain size (diameter 

D) will be determined using the ‘mean lineal intercept method,’ prescribed by the ASTM 

Designation E 112-1996 [59]. The following steps were used to determine the G and D 

values. 

 First, a template (Figure 3.12) consisting of three concentric circles with a total 

length of 500 mm was placed over the resultant optical micrograph, and the total 

number of grain boundary intersections with these test lines was determined. 
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Figure 3.12 Template used in Grain Size Determination 

 

 Then, the mean lineal intercept length (
_

LL ) was determined by using Equation 

3.23. 

                             
_

T
L

L
L =

PM
     Equation 3.23      

where 

 LT = Total length of test lines 

 P = Total number of grain boundary intersections 

 M = Magnification of the micrograph 

 Next, the value of G was calculated using Equation 3.24 

.G = -3.2877-6.438log
_

LL     Equation 3.24         

 Finally, the grain diameter (D) was determined using Equations 3.25 and 3.26 

 N = 2G-1      Equation 3.25 
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                          D = 
1

N
       Equation 3.26                         

where  

 N = Number of grains/sq. mm at a magnification of 1X 

 D = Grain diameter, mm 

3.6.2. Calculation of Volume Fraction and Precipitate Size  

 The volume fraction and size of second phase particles or precipitates visible under 

optical microscopy were evaluated using methods of quantitative stereology [60]. In 

order to measure the volume fraction of precipitates, point count method [60] was used. 

A (10 x 10) grid consisting of total 100 points was placed over the optical micrograph 

and the number of points lying within the precipitates was determined. The volume 

fraction of precipitate was calculated using Equation 3.27. 

P

n
V p

v      Equation 3.27  

where   Vv = volume fraction of precipitate, 

         np= number of points lying within the precipitate, and 

         P = total number of grid points (=100). 

The size of the precipitates was determined using mean linear intercept method [60]. A 

series of 10 lines of equal lengths at same spacing were placed and the number of points 

intersecting the precipitates was counted. The counting was performed both in the 

horizontal and vertical direction to minimize the error due to different aspect ratios of the 

particles. The precipitate size was determined using Equation 3.28. 

-
v

L

2V
L =

P
    Equation 3.28 
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where  


L  = Mean particle size, 

  Vv = Volume fraction of particles 

  PL = number of intersection points per unit length of lines. 

3.7 Fractographic Evaluations 

The extent and morphology of failure of the tested specimens were determined using 

a scanning electron microscope (SEM). Analysis of failure in metals and alloys involves 

identification of the type of failure. The tested specimens were sectioned into 1/2 to 3/4 

of an inch in length to accommodate them in the vacuum chamber of the SEM. Failures 

can usually be classified into two common types including ductile and brittle. Dimpled 

microstructure is a characteristic of ductile failure. Brittle failure can be of two types; 

intergranular and transgranular. An intergranular brittle failure is characterized by crack 

propagation along the grain boundaries while a transgranular failure is characterized by 

crack propagation across the grains. 

In SEM evaluations, electrons from a metal filament are collected and focused, just 

like light waves, into a narrow beam. The beam scans across the subject, synchronized 

with a spot on a computer screen. Electrons scattered from the subject are detected and 

can create a current, the strength of which makes the spot on the computer brighter or 

darker. This current can create a photograph-like image with an exceptional depth of 

field. Magnifications of several thousands are possible to achieve. A JEOL-5610 SEM, 

shown in Figure 3.13, and capable of resolution of up to 50 nm at magnifications of up to 

100,000 times was used in this study. The manual stage of this SEM unit can 

accommodate four 1 cm diameter samples or one sample with up to 3.2 cm diameter.  
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Figure 3.13 Scanning Electron Microscope 

 

3.8 Transmission Electron Microscopic Study 

Transmission electron microscopic (TEM) studies were conducted to characterize 

dislocations and precipitates of the tested creep specimens using a Tecnai G² F30 S-

TWIN TEM (Figure 3.14). This equipment operates at 300kV acceleration voltage that 

allows a point-to-point resolution of 0.2 nanometer. Magnifications up to 1,000,000 times 

can be achieved with this TEM. This system is fully loaded including HAADF (high 

angle annular dark field) detector, EDX (X-ray energy disperse spectrometry), and GIF 

(Gatan Image Filter). Multiple samples were prepared from tested specimens of interest 

to obtain valid TEM micrographs. The sample preparation technique is described in 

details in the next subsection. 
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Figure 3.14 Transmission Electron Microscope 

 

3.8.1 TEM Sample Preparation  

Sample preparation for the TEM study involved a state-of-art technique. To ensure 

electron transparency of the sample by the TEM method, the specimen thickness was 

maintained between 50-100 nanometers. This was achieved through a series of operations 

[61-64]. Initially, multiple circular disc-shaped samples were cut from the gage length of 

a tested creep specimen up to a thickness of 500–700µm, using a precision cutter. These 

sectioned samples were mechanically ground (Figure 3.15) to about 100–150 µm using a 

grinder in the TEM laboratory. This process involved rough-grinding and fine-polishing. 

Specimen thickness was monitored periodically during this process. The samples were 

punched into 3mm diameter discs using a disc puncher (Figure 3.16). Finally, electro-
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polishing was done to attain the desired specimen thickness. A twin-jet TenuPol-5 electro 

polisher (Figure 3.17) was used for this purpose. The electro-polishing process involved 

removal of material from the sample surface as well as surface finish prior to the TEM 

observation. The electrolyte used composed of 5% perchloric acid (HClO4) in methanol 

(CH3OH) under an applied potential of 50V and a pump flow rate of 12 at a temperature 

of -3°C [61]. Care was taken to control the flow of electrolyte to prevent the formation of 

anodic film that could cause etching of the specimen rather than polishing [61-64]. 

 

                                              

     Figure 3.15 Grinding Accessories                             Figure 3.16 Disc Puncher 

 

 

Figure 3.17 TenuPol-5 Electro-polisher 
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CHAPTER 4 

RESULTS 

This chapter presents the results of all experimental work identified in the proposed 

test matrices, shown in Table 1.1. These data include the results of tensile testing, fracture 

toughness evaluation, creep and stress rupture testing, crack growth study under creep-

fatigue conditions, microstructural characterization using optical microscopy and 

transmission electron microscopy (TEM), and fractographic evaluation by scanning 

electron microscopy (SEM).  

4.1 Microstructural Evaluation of As-Received Material 

Figure 4.1 shows the optical and TEM micrographs of the as-received samples of 

Alloy 230. The optical micrograph, shown in Figure 4.1(a), revealed a fully austenitic 

microstructure with an average grain size of 50 ± 4 m that correspond to an ASTM 

grain size number of 5. There were no evidence of precipitation within the grain and 

grain boundaries, as expected for a fully annealed material.  The TEM image, shown in 

Figure 4.1(b), shows dislocation alignment in a particular direction, which is a 

characteristic of dislocation climb phenomenon that occurred due to recovery during 

solution annealing treatment. The EDX analysis revealed common elements such as Ni, 

Cr, W, Mo, Fe and C that are present in Alloy 230, as shown in Figure 4.1(c).   
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Figure 4.1 (a) Optical Micrograph; (b) TEM Image; and (c) EDX Spectra of As- 
Received Alloy 230 

 

4.2 Results of Tensile Testing 

Tensile testing was performed at a strain rate of 0.001 sec-1 to generate a baseline 

mechanical properties data including the yield strength (YS), ultimate tensile strength 

(UTS), percent elongation (%El) and percent reduction in area (%RA) of Alloy 230 at 

temperatures ranging from ambient to 950 °C. The magnitudes of stress applied in creep 

testing were calculated from the YS values determined at different temperatures.  The 

results of tensile testing are illustrated in Figure 4.2 in the form of superimposed 
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engineering stress versus engineering strain (s-e) diagram as a function of the testing 

temperature.  It is interesting to note that serrations of different heights were observed in 

the s-e diagrams at 300 and 500 °C.  Formation of serrations at some specific 

temperatures could be the result of repeated hardening and softening due to the diffusion 

of solute elements within the matrix and near grain boundaries, thus causing reduced 

dislocation mobility and plastic strain.  Such phenomenon is known as dynamic strain 

ageing, which is beyond the scope of the current investigation.  The overall tensile data, 

shown in Table 4.1, revealed that both YS and UTS were gradually reduced with 

increasing temperature, as expected.  Simultaneously, the ductility in terms of %El and 

%RA was gradually enhanced as the testing temperature was increased.   

 

 

 Figure 4.2 s-e Diagrams vs. Temperature  
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Table 4.1 Tensile Properties of Alloy 230 

Temperature (oC) YS, 
 ksi (MPa) 

UTS, 
ksi (MPa) 

%El %RA 

Room Temperature 63 (434) 130 (896) 15.0 40.6 
150 46 (317) 111 (765) 15.8 42.9 
300 41 (283) 109 (751) 16.5 44.0 
500 40 (276) 103 (710) 17.3 53.4 
750 40 (276) 71 (489) 18.5 61.4 
850 37 (255) 43 (296) 20.0 76.0 
950 21 (145) 25 (172) 23.0 83.7 

 

4.3. Results of J1C Testing 

J1C testing was performed to develop a baseline fracture toughness data as a function 

of temperature. However, testing could not be performed at elevated temperatures due to 

combined equipment and funding constraint.  Figure 4.3 shows a Load versus LLD curve 

at ambient temperature. A plot of J-integral value with corresponding increment in crack 

length is also illustrated in Figure 4.4. Both figures were automatically generated by 

using a J1C fracture toughness software [refs]. The conditional JQ value was calculated to 

be 98.27 KJ/m2, which satisfied the validation criteria prescribed by the ASTM 

Designation E 813-1989 [42].  Thus, the calculated JQ value was taken as J1C, which was 

subsequently converted into KIC value using Equation 3.7.  A  KIC value of 137 MPa√m 

was estimated based on this conversion, which was lower than those of Alloys 617 and 

276 [6, 65].  Thus, the resistance of Alloy 230 to fracture in the presence of a pre-existing 

crack appears to be somewhat lower than that of other Ni-base alloys considered for the 

NGNP application.  
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Figure 4.3 Load vs. LLD  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4 J-integral vs. Crack Extension 
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4.4 Results of Creep Testing 

Figures 4.5 and 4.6 show the creep curves of Alloy 230 generated under applied 

stresses of 10 and 25% of its YS values at 750, 850 and 950 оC.  As shown in Figure 4.5, 

this alloy exhibited two-stage (primary and secondary) creep deformation under applied 

stresses equivalent to its 0.10YS values at three temperatures.  The total strain did not 

exceed 1% at all three tested temperatures even after 1000 hours of loading. Creep strain 

not exceeding 1% following 1000 hours of sustained loading has been considered to be 

the maximum allowable plastic strain for creep-resistant materials [66].  Using such an 

acceptance criterion, it can easily be stated that Alloy 230 would be a creep-resistant 

material at temperatures ranging between 750 and 950 оC when loaded to stresses up to 

its 0.10YS values at temperatures within this range.  It is, however, interesting to note 

that the steady-state creep rate and the total creep strain after 1000 hours of testing was 

slightly higher at 750 оC compared to those at 850 оC. Such anomaly in creep 

deformation could possibly be attributed to microstructural changes resulting from the 

combined effect of temperature and applied stress. Table 4.2 shows the overall creep data 

of this alloy following 1000 hours of loading at the tested temperatures.  

At higher applied stress levels (0.25YS values), this alloy showed enhanced creep 

deformation at 850 and 950 оC. At these temperatures, all three stages (primary, 

secondary and tertiary stages) of creep deformations were observed. The onset of tertiary 

deformation occurred following 200 hours of testing at 950 оC, as illustrated in Figure 

4.6.  Further, the extent of total creep strain was increased beyond 1% at 850 and 950 оC 

under applied stresses equivalent to the material’s 0.25YS values. Thus, Alloy 230 failed 

to satisfy the acceptance criterion of maximum creep strain of 1% at these temperatures 
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when loaded under applied stresses corresponding to its 0.25YS values. However, at 750 

оC, this alloy exhibited a maximum creep strain (0.45) that fell within the acceptable level 

under an applied stress equivalent to its 0.25YS value.  The overall results of creep 

testing are given in Table 4.2.  
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Figure 4.5 Creep Curves of Alloy 230 vs.Temperature under 0.10YS Stress Values  
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Figure 4.6 Creep Curves of Alloy 230 vs. Temperature under 0.25YS Values 

 

Table 4.2 Results of Creep Testing 

Temperature 
(οC) 

Applied Stress 
(MPa) 

Steady State Creep 
Rate (% creep/hour) 

Total Creep Strain after 
1000 hours testing 

28 3.96E-05 0.147 750 
71 1.71E-04 0.446 
26 2.57E-05 0.112 850 
64 3.47E-03 4.352 
15 8.32E-05 0.252 950 
37 3.72E-03 3.482* 

* Testing was discontinued after 470 hours due to unstable plastic deformation 

 

Microstructural characterization was performed using both optical microscopy and 

TEM to develop a basic understanding of creep deformation of Alloy 230. Parameters 
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including grain size, dislocation structures, and size and volume fraction of precipitates 

formed during creep deformation were analyzed. The optical micrographs of specimens 

tested at 750, 850 and 950 oC under applied stresses corresponding to 10 and 25% of the 

material’s YS values are shown in Figures 4.7 and 4.8, respectively. Precipitates of 

secondary particles, both intra- and intergranular, were observed in these micrographs.  

However, the formation of intergranular precipitates was more pronounced at 750 and 

850 oC, showing very thick layers along grain boundaries irrespective of the applied 

stress levels.  

Characterization of these precipitates were performed by TEM, verifying the 

formation of superstructures having a composition of type Ni2 (Cr, W) based on the 

analyses of the EDX spectra and indexing of the electron diffraction pattern, as shown in 

Figure 4.9.  The EDX data showed the presence of Cr, Ni and W as major elements in the 

precipitate, but no carbon. The absence of carbon confirmed that these precipitates were 

not carbides. The formation of orthorhombic Ni2 (Cr, W) superstructures due to long-term 

exposure of Ni-base alloys at temperatures above 500 оC has been reported in the open 

literature [67-69]. The Ni2 (Cr, W) superstructures are known to be sufficiently coherent 

with the matrix, and have long-range ordering, as seen in the diffraction pattern presented 

in Figure 4.9. However, their size and volume fraction varied with the temperature and 

the applied stress level, as shown in Table 4.3. The calculated values of the average size 

of the austenitic grains have also been included in this table, showing insignificant 

variation even under different experimental conditions. Annealing twins were also 

observed in all micrographs. 
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Figure 4.7 Optical Micrographs of Samples Tested at (a) 750 oC (b) 850 oC, and (c) 950 
oC under Applied Stresses of 0.10YS 
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Figure 4.8 Optical Micrographs of Samples Tested at (a) 750 oC (b) 850 oC, and (c) 950 

oC under Applied Stresses of 0.25YS 
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Figure 4.9 Characterization of Ni2 (Cr, W) Superstructures using (a) TEM (b) STEM (c) 
EDX Analysis, and (d) Indexed Electron Diffraction Pattern 
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Table 4.3 Austenitic Grain Size and Characteristics of Ni2 (Cr, W) Superstructure 

Temperature 
(оC) 

Applied Stress 
(MPa) 

Grain Size 
(m) 

Volume fraction of 
Ni2 (Cr,W) 

superstructures 

Size of Ni2 
(Cr,W) 

superstructures 
(m) 

10%YS 96 0.09 13.8 750 оC 
25%YS 98 0.06 9.9 
10%YS 97 0.09 7.4 850 оC 
25%YS 102 0.07 3.4 
10%YS 103 0.03 2.9 950 оC 
25%YS 105 0.01 1.0 

 

The relatively lower steady-state creep rate and total strain, observed in Alloy 230 at 

850 oC, compared to those at 750 oC, could possibly be explained by a precipitation 

hardening mechanism that would depend on the size of the resultant precipitates.  

Evaluation of the data shown in Table 4.3, and the optical micrographs (Figures 4.7 and 

4.8) suggests that the size of Ni2 (Cr, W) superstructures formed at 750 oC was much 

larger than those developed at higher temperatures.  Further, the volume fraction of these 

superstructures was gradually reduced with increasing temperature and applied stress 

level.  The formation of second phase particles, such as superstructures, can impede the 

dislocation motion through the austenitic grains and past the grain boundaries, thus 

causing reduced plastic strain.  Since the superstructures formed at 750 oC were relatively 

larger in size and greater in volume fraction, dislocations could move through the metal 

lattice by bowing out around these second phase particles, thus resulting in relatively 

greater plastic strain than that developed in the presence of finer secondary particles 

formed at higher temperatures around dislocations. 

As the size of these second phase particles became smaller at a relatively higher 

temperature (850 oC), the dislocations would need greater driving forces to cut through 
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the metal lattice since these finer precipitates would exert significant resistance to plastic 

deformation by either minimizing or preventing dislocation motion.  As a result of such 

reduced dislocation mobility, the plastic strain would also be reduced, as indicated by the 

lower creep strain observed in this alloy under an applied stress of 0.10YS at 850 oC. 

Precipitates of different types, such as Cr-rich Cr23C6 (M23C6 type) and Ni-rich 

Ni3W3C (M6C type) can also be formed at higher temperatures.  However, under a greater 

loading constraint (0.25YS level), the formation of these types of precipitates would not 

be able to prevent or reduce the dislocation motion, thus causing accelerated creep 

deformation.  Such a phenomenon could possibly account for enhanced total creep strain 

and steady-state creep rate under higher applied stress levels at elevated temperatures 

tested in this investigation. Figure 4.10 illustrates the STEM images and the 

corresponding EDX spectra of a specimen tested under an applied stress equivalent to the 

material’s 0.10YS value at 950 oC.  All three types of second phase particles including 

Ni2 (Cr, W), Ni3W3C and Cr23C6 formed under this experimental condition are evident in 

this figure.  These results are consistent with the observations made by other investigators 

involving Ni-base alloys [24-25, 67-69].  
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Figure 4.10 STEM images and corresponding EDX analysis of (a) Alloy 230 matrix (b) 

Ni2 (Cr, W) superstructure (c) Ni-rich Ni3W3C carbides (d) Cr-rich Cr23C6 carbides 
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The dislocation structure changed depending on the temperature and stress. Figure 

4.11 shows the dislocation network in Alloy 230 seen at 750, 850 and 950 oC, 

respectively for an applied stress of 0.10YS corresponding to the test temperature. At 750 

oC, the TEM image shows random distribution of dislocations, as shown in Figure 4.11 

(a). At a higher temperature of 850 oC, the dislocations align themselves along the stress 

axis, as indicated by Figure 4.11 (b). Complete re-arrangement of dislocation and 

subgrain formation is seen when the temperature is raised to 950 oC. As the applied stress 

is increased to 0.25YS, the dislocations now form complete subgrain structure. In 

addition to the subgrain, newly recrystallized grains and very fine microcracks are seen 

along the grain boundary, as indicated in Figure 4.12 (a) and (b). Hence, the material 

reaches the unstable tertiary region of creep at a higher stress of 0.25YS and 950 oC. In a 

nutshell, it can be said that the plastic flow resulting in softening during creep is 

controlled by dislocation glide, subgrain formation and recrystallization, while the strain 

hardening occurs due to obstructions to the dislocation motion by second phase particles 

of Ni2 (Cr,W) superstructures, Ni3W3C and Cr23C6 precipitates. The amount of creep 

strain and the steady state creep rate is controlled by the morphology (size and volume 

fraction) of these precipitates. 
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                               (a)       (b) 
 
 

 
 
      (c) 
 
Figure 4.11 Dislocation structures of creep tested samples at (a) 750 oC (b) 850 oC and (c) 

950 oC for an applied stress of 0.10YS 
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\      (a) 
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Figure 4.12 TEM image of Alloy 230 creep tested at 950 oC and 0.25YS showing (a) 
dislocation structure (b) microcrack at grain boundary 
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4.4.1 Activation Energy Evaluation  

The activation energy (Q) for creep deformation of Alloy 230 was estimated by using 

Equations 3.10 and 3.12.  Method 1 of Q calculation, using Equation 3.10, was based on 

the plot of natural logarithm of steady-state creep rate (єs
o) versus reciprocal of the testing 

temperature (T).  A linear relationship was observed, as shown in Figure 4.13, from 

which the Q value was calculated using the negative slope for two levels of applied 

stresses. Q values of 195 and 90 kJ/mole.K, respectively were determined corresponding 

to applied stresses equivalent to the material’s 0.10YS and 0.25YS values. The Q values, 

obtained by using Equation 3.12, were 110 and 97 kJ/mole.K, respectively under similar 

levels of applied stress.  Even though literature data on Q for Alloy 230 do not exist, 

values ranging from 300 to 3000 kJ/mole.K have been cited [66, 70] for creep 

deformation of Ni-base alloys.    

-23
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2
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o
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Figure 4.13 ln (єs
o) vs. 1/T 

 

                   Slope = -23418 (0.10YS) 
                                 -10833 (0.25YS)  
Activation Energy =   195 KJ/K-mol (0.10YS) 
                                      90 KJ/K-mol (0.25YS)           
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4.5 Results of Stress Rupture Testing  

Stress rupture testing was performed at stress levels of 20, 25 and 30 ksi at 750, 800 

and 850 oC. Efforts were made to determine the different stress rupture parameters 

including the Larson-Miller Parameter (LMP), Orr-Sherby-Dorn Parameter () and 

Manson-Hafred Parameter [f()]. Figures 4.14, 4.15 and 4.16 show the graphical 

representations for determination of these three parameters using Equations 3.13, 3.14 

and 3.15, respectively. As expected, the rupture time was reduced with increasing 

temperature at higher applied stresses. The estimated values of these three parameters are 

given in Table 4.4 as functions of temperature and applied stress.  

 

 

Figure 4.14 Plots for Larson-Miller Parameter Determination  

C = 36

    20 ksi 
    25 ksi 
    30 ksi 
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Figure 4.15 Plots for Orr-Sherby-Dorn Parameter Determination 
 

 

Figure 4.16 Plots for Manson-Hafred Parameter Determination  

    20 ksi 
    25 ksi 
    30 ksi 

Average Slope = 41953 

Ta = 424 K 
ln (ta) = 27.813 
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Table 4.4 Stress Rupture Testing Parameters 

Temperature 
(oC) 

Stress 
(ksi) 

Larson-Miller 
Parameter (P) 

Orr-Sherby-Dorn 
Parameter () 

Manson-
Hafred 

Parameter 
[f()] 

20 43665 -35.40 -0.0333 
25 42160 -36.87 -0.0361 

 
750 

30 40685 -38.31 -0.0385 
20 43526 -32.53 -0.0343 
25 41918 -34.03 -0.0366 

 
800 

30 40888 -34.99 -0.0381 
20 43629 -32.57 -0.0343 
25 42295 -33.76 -0.0360 

 
850 

30 40657 -35.22 -0.0381 
 

 

The value of Larson-Miller Constant (C) was estimated to be 36 that falls within an 

acceptable range of 20 to 46 for conventional stress-rupture analysis. The average value 

of the slope in the OSD analysis was found to be 41953. Using backward interpolation, 

the coordinates (Ta, ln ta) for the MH analysis were estimated to be 424 and 27.813, 

respectively. As mentioned in section 3.4.3, efforts were also made to draw master plots 

for all three parameters that are shown in Figures 4.17, 4.18 and 4.19 for LM parameter, 

OSD parameter and MH parameter, respectively. Of all these master plots, the LM plot 

showed the highest correlation coefficient (R2) of 0.998. As defined in section 3.4.3, R2 is 

a measure of how well the data fits the regression model, with R2 = 1 being a perfect fit, 

and R2 = 0 being no correlation. The mathematical expression for R2 is given by Equation 

3.20 in Chapter 3. The OSD master plot exhibited the lowest value of R2 (0.385), and 

hence a considerable risk may be expected in such extrapolation. The MH master plot, 

however, had an acceptable correlation coefficient of 0.963.  
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 Figure 4.17 Master Plot for LM parameter 
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Figure 4.18 Master Plot for OSD parameter 

      750 oC 
      800 oC 
      850 oC 

σ = -0.0035 P + 172.25 
where σ = stress 
           P = LM Parameter 
R2 = 0.998 

      750 oC 
      800 oC 
      850 oC 

σ = -3.742 θ -105.43 
where σ = stress 
           θ = OSD Parameter 
R2 = 0.385 
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Figure 4.18 Master Plot for MH parameter 

 

Tables 4.5, 4.6 and 4.7 present the predicted rupture times at 750, 800 and 850 οC 

under applied stresses of 20, 25 and 30 ksi, which were calculated using the C value, the 

slope and  the coordinates (Ta, ln ta) estimated from the LM analysis, the OSD analysis 

and the MH analysis, respectively. The data presented in these tables indicate that among 

the three parametric extrapolations, the LM and OSD analyses showed the least Root 

Mean Square (RMS) value of 0.13. The RMS value is a frequently-used measure of the 

differences between values predicted by a model or an estimator and the values actually 

observed from the thing being modeled or estimated. The mathematical expression of 

RMS value is given in Equation 3.21, in Chapter 3. However, if the master plots are 

considered, the LM master plot had a greater R2 value of 0.998 compared to a R2 value of 

0.385 in the OSD plot. The OSD analysis might have resulted in a good prediction within 

the current testing conditions but significant errors may result if extrapolation is done 

      750 oC 
      800 oC 
      850 oC 

σ = -2307.5 f(σ) -58.835 
where     σ = stress 
           f(σ) = MH Parameter 
R2 = 0.963 
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beyond the current temperature range of 750 to 850 οC. The MH analysis showed the 

largest amount of error in rupture time prediction with an RMS value of 0.19. Thus, 

based on the overall analyses, it may be concluded that of all parametric extrapolation 

techniques, LM analysis could provide the best estimate of rupture time.   

 

 Table 4.5 Time to rupture prediction data using LM analysis. 

Temperature 
(οC) 

Stress 
(ksi) 

ln (tr) - 
Actual 

ln (tr) - 
Predicted 

Difference  RMS Value 

750 20 7.683 7.522 0.161 
750 25 6.213 6.126 0.087 
750 30 4.771 4.729 0.042 
800 20 5.565 5.541 0.024 
800 25 4.060 4.209 -0.149 
800 30 3.091 2.878 0.214 
850 20 3.850 3.736 0.115 
850 25 2.639 2.463 0.176 
850 30 1.099 1.191 -0.092 

 
 
 
 

0.13 

 
 

Table 4.6 Time to rupture prediction data using OSD analysis. 

Temperature 
(οC) 

Stress 
(ksi) 

ln (tr) - 
Actual 

ln (tr) - 
Predicted 

Difference  RMS Value 

750 20 7.683 7.490 0.193 
750 25 6.213 6.154 0.059 
750 30 4.771 4.818 -0.047 
800 20 5.565 5.579 -0.015 
800 25 4.060 4.243 -0.183 
800 30 3.091 2.907 0.184 
850 20 3.850 3.838 0.012 
850 25 2.639 2.502 0.137 
850 30 1.099 1.163 -0.065 

 
 
 
 

0.13 
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Table 4.6 Time to rupture prediction data using MH analysis. 

Temperature 
(οC) 

Stress 
(ksi) 

ln (tr) - 
Actual 

ln (tr) - 
Predicted 

Difference  RMS Value 

750 20 7.683 7.348 0.335 
750 25 6.213 6.050 0.162 
750 30 4.771 4.752 0.018 
800 20 5.565 5.640 -0.076 
800 25 4.060 4.234 -0.173 
800 30 3.091 2.827 0.264 
850 20 3.850 3.932 -0.082 
850 25 2.639 2.417 0.222 
850 30 1.099 0.900 0.198 

 
 
 
 

0.19 

 
 

The MCM analysis, discussed in section 3.4.2, is a more generalized approach and is 

based on experimental data. The objective of such analysis was to determine the values of 

constants namely, A, B, C, D, E, R1 and R2. As indicated earlier, the value of A was 

calculated by using the focal point convergence method.  This method considers the 

negative inverse of the ordinate of a point, where the plots shown in Figures 4.14 and 

4.16 converge. For both LM and MH analyses, extrapolation of linear plots to a point of 

convergence gave ‘A’ values of +0.0278 and -0.036, respectively. The OSD analysis 

gave the ‘A’ value of zero, since the resultant lines were parallel leading to a convergence 

point of infinity. Table 4.7 summarizes the values of ‘A’ based on all three approaches. 

The reference temperature (Tm) of Alloy 230 was considered to be 1073 K (800 οC), 

which represents a mid-value within the testing temperature range. Finally, the rupture 

times at 1023 K (750 οC)  and 1123 K (850 οC ) under applied stress levels of 20, 25 and 

30 ksi were used to estimate the magnitude of the other six constants (B, C, D, E, R1 and 

R2) based on the multiple linear regression analyses, which are given  in Table 4.8.  
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Table 4.7 Theoretical values for the Constant A in MCM analysis 

Parameter Value of ‘A’ 
Larson-Miller 

0278.0
36

11


C
 

Orr-Sherby-Dorn 
0

1



 

Manson-Hafred 
- 036.0

83.27

1

ln

1


At
 

 

Table 4.8 Estimated values of constants for MCM analysis 

 A = 0.0278 A = 0 A = -0.036 
R1 0.0052 -0.0278 -0.1004 
R2 -31418 -73901 -165629 
B 12.029 12.104 12.271 
C 0 0 0 
D -0.359 -0.364 -0.374 
E 0.0018 0.0019 0.0021 

 

The estimated values of these constants were then substituted in Equation 3.19 to 

predict the rupture time for different values of ‘A’, which are shown in Tables 4.9, 4.10 

and 4.11 as functions of temperature and applied stress level. An RMS value of 0.09 was 

obtained by the MCM analysis taking the magnitude of ‘A’ as 0.0278 based on the LM 

approach, as shown in Table 4.9. This is the least RMS value obtained so far. With A = 0 

and -0.036, the predictions were similar to parametric extrapolations, with RMS values 

equal to 0.11 and 0.15, respectively.  
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Table 4.9 Prediction using MCM analysis with constants determined using A = 0.0278 

Temperature 
(οC) 

Stress 
(ksi) 

ln (tr) - 
Actual 

ln (tr) - 
Predicted 

Difference  RMS Value 

750 20 7.683 7.639 0.044 
750 25 6.213 6.191 0.021 
750 30 4.771 4.839 -0.069 
800 20 5.565 5.592 -0.028 
800 25 4.060 4.212 -0.152 
800 30 3.091 2.924 0.167 
850 20 3.850 3.864 -0.013 
850 25 2.639 2.541 0.098 
850 30 1.099 1.306 -0.208 

 
 
 
 

0.09 

 

Table 4.10 Prediction using MCM analysis with constants determined using A = 0 

Temperature 
(οC) 

Stress 
(ksi) 

ln (tr) - 
Actual 

ln (tr) - 
Predicted 

Difference  RMS Value 

750 20 7.683 7.576 0.108 
750 25 6.213 6.190 0.023 
750 30 4.771 4.900 -0.129 
800 20 5.565 5.599 -0.035 
800 25 4.060 4.213 -0.153 
800 30 3.091 2.924 0.167 
850 20 3.850 3.923 -0.072 
850 25 2.639 2.537 0.102 
850 30 1.099 1.247 -0.148 

 
 
 
 

0.11 

 

Table 4.11 Prediction using MCM analysis with constants determined using A = -0.036 

Temperature 
(οC) 

Stress 
(ksi) 

ln (tr) - 
Actual 

ln (tr) - 
Predicted 

Difference  RMS Value 

750 20 7.683 7.467 0.216 
750 25 6.213 6.180 0.033 
750 30 4.771 4.988 -0.217 
800 20 5.565 5.622 -0.058 
800 25 4.060 4.218 -0.158 
800 30 3.091 2.917 0.174 
850 20 3.850 4.040 -0.190 
850 25 2.639 2.536 0.103 
850 30 1.099 1.142 -0.044 

 
 
 
 

0.15 
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4.6 Results of Creep-Fatigue Testing 

The variations of crack length (a) with the number of cycles (N), superimposed for no 

hold time, and hold times testing at 600, 700 and 800 oC, are illustrated in Figures 4.19a, 

4.19b and 4.19c, respectively.  It is interesting to note that, in general, ‘a’ versus N plots 

generated under all tested conditions exhibited a linear relationship, showing steeper 

slopes at longer hold times.  These data clearly indicate that the extent of cracking 

became more pronounced at longer hold times, irrespective of the testing temperature.  

However, it should be noted that at higher temperatures (700 and 800 oC), the crack 

length could not be measured by the DCPD method at hold times of 1000 seconds, and 

300, 600 and 1000 seconds, respectively (Figures 4.19b and 4.19c) due to plastic 

instability of Alloy 230 at these temperatures that caused bending and buckling of the two 

arms of the tested CT specimens.  

Another interesting observation made from these data was the overlapping of ‘a’ 

versus N plots at 600 oC when the test specimen was subjected to cyclic loading at hold 

times of 60 and 120 seconds, respectively, as shown in Figure 4.19a.  Thus, no 

appreciable crack extension occurred at this temperature even though the hold time was 

increased from 60 to 120 seconds.  However, the crack length was enhanced to some 

extent at 700 oC when the CT specimen was held for 120 seconds under longer cycles of 

loading (Figure 4.19b).  
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(c) 

Figure 4.19 Crack Length vs. N. (a) 600 oC; (b) 700 oC; (c) 800 oC 

 

The data, shown in Figure 4.19, were subsequently converted to crack-growth-rate 

(CGR) in terms of da/dN that were plotted as a function of hold time at three different 

tested temperatures, as illustrated in Figure 4.20.  These results clearly indicate that 

substantial crack-growth occurred at 800 oC even at shorter hold times of 60 and 120 

seconds.  Further, the same test specimen could not sustain any cyclic loading at longer 

hold times (300, 600 and 1000 seconds) at this temperature, suggesting that Alloy 230 

may not be capable to withstand the long-term creep-fatigue loading constraint at 

temperatures in the vicinity of 800 oC.  In a similar manner, this alloy showed unstable 

crack-growth when tested at 700 oC at a hold time of 1000 seconds. 

800oC
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Figure 4.20 da/dN vs. Hold Time 

 

Based on the data shown in Figures 4.19 and 4.20, it appears that temperature plays 

an important role in enhancing the CGR of Alloy 230 under creep-fatigue conditions 

incorporated in this investigation.  Figure 4.21 illustrates ‘a’ versus N plots as functions 

of both temperature and hold time.  

     600оC 
     700оC 
     800оC 
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 Figure 21 Crack Length vs. N as Functions of Temperature and Hold Time 

 

It is interesting to note that this alloy was capable to withstand a maximum number of 

loading cycle (N) at 600 oC even up to the longest hold time of 1000 seconds.  However, 

the magnitude of N was substantially reduced at higher testing temperatures, showing a 

drastic drop in the N value at 800 oC.  Further, this alloy could not sustain combined 

creep-fatigue loading cycles for holding times in excess of 120 seconds at this 

temperature.  A similar observation with respect to the combined effects of temperature 

and hold time on crack-growth behavior of other austenitic superalloys has been reported 

elsewhere [71].  Thus, it is obvious that the creep-fatigue behavior of Alloy 230 has to be 

optimized in terms of a synergistic interaction between the temperature-induced loading 

cycles and the hold time for propagation of cracking. 

600оC

700оC

800оC

            No Hold Time      
Hold Time:     60 sec 
Hold Time:   120 sec 
Hold Time:   300 sec 
Hold Time:   600 sec 
Hold Time: 1000 sec 
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Efforts have also been made to develop a relationship between the rate of crack 

propagation (da/dN) and the testing frequency (f), as a function of temperature.  The hold 

time has been converted to ‘f’ by using Equation 4.1. 

     f = (T + th)
-1                                           Equation 4.1 

where T is the cyclic time of the baseline triangular waveform (3 second) and th is the 

hold time imposed at Pmax (60, 120, 300, 600 and 1000 seconds, respectively).  The 

variation of da/dN with ‘f’ is shown in Figure 4.22 for all three tested temperatures on a 

log-log scale.  All three plots, corresponding to different testing temperatures, exhibited a 

linear relationship with somewhat different slopes up to certain cyclic frequencies, 

indicating a time-dependency on da/dN.   Negative slopes of 0.017, 0.038 and 0.042 (at 

600, 700 and 800 oC, respectively) were calculated from these three lines, implying that 

da/dN of Alloy 230 was inversely proportional to the cyclic frequencies at the tested 

temperatures.  Such trend indicates that crack length was a direct function of time, 

without any dependence on the number of cycles.  Further, a relatively steeper slope at 

800 oC indicates a faster CGR at both no hold and shorter hold times (60 and 120 

seconds), confirming a detrimental effect of higher temperature on the cracking tendency.  

Thus, the crack-growth behavior of this alloy at 800 oC was totally time-dependent for 

three cyclic frequencies, as shown in Figure 4.22. 

At 600 and 700 oC, the crack-growth behavior was mixed time and cycle-dependent 

at frequencies ranging from 9 x 10-4 to 0.33 Hz.  At or slightly below a frequency of 0.33 

Hz, CGR was independent of the testing frequency, where the crack length at any time 

was a function of the number of applied stress cycle, i.e. cycle-dependent.  Thus, the 

transition from the cycle-dependent to mixed time-cycle-dependent CGR at these 
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temperatures occurred within a lower frequency range of 9 x 10-4 to 1.58 x 10-2 Hz.  The 

creep-damage zone at the crack-tip was, therefore, time-dependent and grew faster while 

the fatigue-damage zone was dependent on the ΔK value that did not change much during 

crack-growth testing.  In essence, the overall crack-extension due to the combined creep-

fatigue interaction was influenced by both the cyclic frequency and hold time as a 

function of the tested temperatures. 
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Figure 4.22 da/dN vs. Frequency 
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The optical micrographs of the cross-sections through the fractured surfaces of Alloy 

230 tested at 600 and 800 oC for different hold times are illustrated in Figures 4.23 and 

4.24, respectively.  An evaluation of the micrographs shown in Figure 4.23 reveals that at 

600 oC, precipitates were formed both within the austenite grains and along the grain 

boundaries.  However, very little precipitates were observed in the specimen tested solely 

under cyclic loading without any hold time (Figure 4.23a).  The extent of precipitation 

was gradually enhanced as the hold time was increased from 60 to 1000 seconds, as 

shown in Figures 4.23b through 4.23d.  Further, with longer hold times, significant 

amount of precipitation occurred along the grain boundaries causing severe intergranular 

cracking, which is a manifestation of time-dependent deformation or creep at a particular 

temperature.   

A similar observation was made with the specimens tested at higher temperatures, 

with and without hold time, as illustrated in Figures 4.24a and 4.24b.  It should, however, 

be noted that the extent of intergranular cracking was more pronounced at 800 oC even at 

a much shorter hold time of 120 seconds.  Thus, once again, the inference is strong that 

the combined effect of temperature and hold time will have a profound impact on the 

performance of Alloy 230 under creep-fatigue conditions. 
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(b)  Hold Time: 120 sec 
 

Figure 4.23 Optical Micrographs of Specimen Tested at 600 oC 
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(c)  Hold Time: 600 sec 
 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

(d)  Hold Time: 1000 sec 
 
 

Figure 4.23 Optical Micrographs of Specimen Tested at 600 oC (contd….) 

 

50 m 

Grain boundary precipitates 

 
50 m 



 

 84

  

 

 
 
 
 
 
 
 
 
 
 
 
 

(a)  No Hold Time 

 

 

 

 
 
 
 
 
 
 
 
 

 

         (b)  Hold Time: 120 sec  

Figure 4.24 Optical Micrographs of Specimen Tested at 800 oC 
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Figures 4.25, 4.26 and 4.27 show the SEM micrographs of the fractured surfaces of 

specimens tested at 600, 700 and 800 oC, respectively, with and without hold time.  

Fractures of Alloy 230 at 600 and 700 oC without any hold time were predominantly 

characterized by well-defined striations resulting from cyclic loading, as illustrated in 

Figures 4.25a and 4.26a, respectively.  A very few transgranular cracks were also seen in 

these micrographs.  At 600 oC and 120 second-hold time, this alloy exhibited striations 

and transgranular cracking, with a very few intergranular cracks (Figure 4.25b).  

However, the mode of cracking became mostly intergranular at this temperature as the 

hold time was increased to 600 and 1000 seconds, as shown in Figure 4.25c.  Even 

though a mixed transgranular/intergranular cracking mode was observed when a hold 

time of 120 second was imposed at 700 oC, this alloy showed predominantly 

intergranular cracking at the 600 second hold time (Figures 4.26b and 4.26c, 

respectively).  Finally, the fracture morphology was changed from mixed 

transgranular/intergranular to solely intergranular cracking mode at 800 oC due to the 

introduction of a 120 second hold time at Pmax , as illustrated in Figures 4.27a and 4.27b, 

respectively. 
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(a)  No Hold Time 

 

 

(b) Hold Time: 120 sec 

Figure 4.25 SEM Micrographs of Specimen Tested at 600 oC 
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(c) Hold Time: 1000 sec 

Figure 4.25 SEM Micrographs of Specimen Tested at 600 oC (continued…) 

 

(a) No Hold Time 

Figure 4.26 SEM Micrographs of Specimen Tested at 700 oC 
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(b)  Hold Time: 120 sec 

 

(c)  Hold Time: 600 sec 

Figure 4.26 SEM Micrographs of Specimen Tested at 700 oC (continued…) 
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(a)  No Hold Time 

 

(b)  Hold Time: 120 sec 

Figure 4.27 SEM Micrographs of Specimen Tested at 800 oC 
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CHAPTER 5 

DISCUSSION 

This investigation was focused on the evaluation of metallurgical and mechanical 

properties of Alloy 230, in particular, its creep and stress-rupture behavior, fracture 

toughness, and creep-fatigue interaction under conditions relevant to the NGNP program. 

The significant results obtained from this work are discussed in separate sections as 

outlined below.   

5.1 Tensile Properties Evaluation   

Baseline tensile data were generated for calculating the values of applied stresses 

used in creep testing. The results of tensile testing, performed at temperatures ranging 

from ambient to 950 οC, were presented in superimposed graphical format (s-e diagram), 

and in a tabular form showing the magnitude of YS, UTS, %El and %RA. As expected, 

the magnitudes of YS and UTS were gradually reduced with increasing temperature.  

Serrations of different heights were also seen in the s-e diagrams generated at 300 and 

500 οC that may indicate the occurrence of the DSA phenomenon. However, the 

characterization of DSA was not performed since it was beyond the scope of this work...   

5.2 Fracture Toughness Evaluation 

Fracture toughness of this alloy, in terms of J1C, was evaluated only at ambient 

temperature. Testing at elevated temperatures could not be performed due to a limitation 

in equipment usage. A J1C value of 98.27 KJ/m2 was determined that was relatively lower 

than the fracture toughness values of other Ni-base alloys including Alloys 617 and 276 

[6, 65]. The lower J1C value of Alloy 230 could be attributed to the presence of W, 

causing a greater susceptibility to brittle failure.   
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5.3 Creep Deformation Evaluation 

The results of creep testing involving Alloy 230 indicate that this alloy satisfied a 

maximum allowable strain criterion of 1% following 1000 hours of loading at applied 

stresses corresponding to its 0.10YS values at all three tested temperatures.  However, 

this alloy failed to meet this acceptance criterion when tested under applied stresses 

equivalent to its 0.25YS values at 850 and 950 οC.  Thus, it can be stated that this alloy 

could be safely used as a heat exchanger material at operating temperatures of up to 950 

οC, when the applied stress levels are maintained within the 0.10YS values.   

As anticipated, the steady-state creep rate was enhanced with increasing temperature 

and applied stress level, verifying that creep is a thermally-activated phenomenon, and 

the cracking tendency is influenced by the magnitude of the applied stress. However, an 

anomalous behavior was observed at 750 and 850 οC, where the steady-state creep rate 

and total creep strain following 1000 hours of testing were slightly higher at 750 οC, 

compared to those at 850 οC when loaded under an applied stress equivalent to its 0.10YS 

value at this temperature. Such anomaly in creep deformation behavior of Alloy 230 can 

be explained by a precipitation hardening mechanism, discussed in the results section.   

5.4 Stress Rupture Evaluation 

Analytical and empirical techniques were used to predict the long-term creep-rupture 

behavior of Alloy 230 with a minimum error. Techniques based on Larson-Miller (LM) 

analysis, Orr-Sherby-Dorn (OSD) analysis, and Manson-Hafred (MH) analysis was 

applied.  The LM analysis proved to be the most efficient approach and exhibited a 

minimum error in the prediction of rupture time.  Nevertheless, all three applied methods 

were used to develop master plots at temperatures spanning a wide range that could 
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determine the different stress-rupture parameters for a particular stress level.  A major 

drawback of this method is that its accuracy depends on a large number of testing data.  

Further, this approach does not consider metallurgical instabilities resulting from changes 

in temperature and stress level.  Thus, for accuracy, it is necessary to conduct a large 

number of testing over a wide range in temperature and stress level involving different 

heats of a material for a specific time period.  Analyses based on a minimum commitment 

method (MCM) are, therefore, effective in eliminating the drawbacks associated with the 

use of LM, OSD, and MH techniques.  MCM analyses using a time-temperature-stress 

equation was very effective in predicting the rupture time of Alloy 230 for specific 

temperature and stress level combinations without showing any major error.    

5.5 Creep-Fatigue Interaction Evaluation 

The results of creep-fatigue testing indicate that the cracking susceptibility of Alloy 

230 became more pronounced when this alloy was subjected to longer hold times.  

However, temperature also played an important role in that the crack-growth-rate (CGR), 

in terms of da/dN, was substantially higher at 800 oC compared to those at 600 and 700 

oC even at shorter hold times of 60 and 120 seconds.  It is interesting to note that this 

alloy could sustain a maximum number of loading cycle at 600 oC even up to the longest 

hold time of 1000 seconds.  On the contrary, this alloy was unable to sustain creep-

fatigue loading constraint for durations exceeding 120 seconds at 800 oC.  Thus, an 

optimization has to be made as to the synergistic interaction between the temperature-

induced loading cycle and hold time for crack-growth.  This observation was consistent 

with the results cited in the open literature.  The results also indicate that CGR of this 
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alloy was a function of both hold time and applied stress cycle at 600 and 700 oC.  

However, at 800 oC, CGR was totally time-dependent.   

The optical micrographs revealed substantial precipitation along the grain boundaries 

of the tested specimens, leading to intergranular cracking, the extent of cracking being 

more pronounced at 800 oC even under a much shorter hold time of 120 seconds. At 600 

oC, the concentration of intergranular precipitates was gradually enhanced with longer 

hold times. The fracture mode was changed from transgranular to mixed transgranular/ 

intergranular, then to predominantly intergranular due to the imposition of longer hold 

times and/or increasing temperatures. Thus, the cracking susceptibility of Alloy 230 was 

influenced by both hold time and temperature.   
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CHAPTER 6  

SUMMARY AND CONCLUSIONS 

Alloy 230 has been extensively studied for evaluation of its metallurgical and 

mechanical properties under conditions relevant to the NGNP application. The key results 

and the significant conclusions drawn from this investigation are summarized below. 

 Alloy 230 showed serrations in the s-e diagrams at 300 and 500 οC that could be 

the result of the DSA phenomenon.  Both YS and UTS were gradually reduced 

with increasing temperature. However, the ductility was enhanced due to 

increased plastic flow at elevated temperatures.   

 A J1C value of 98.27 KJ/m2 was determined for this alloy, which was lower than 

that of other Ni-base alloys considered for NGNP application.  

 Alloy 230 exhibited a significant resistance to creep deformation under applied 

stresses equivalent to its 0.10YS values at 750, 850 and 950 oC.  The total creep 

strain did not exceed 1% following 1000 hours of loading under these 

experimental conditions, thus satisfying the maximum strain acceptance criterion.   

 The steady state creep rate was enhanced with increasing temperature and applied 

stress level. The activation energy for creep deformation of this alloy was 

calculated to be 195 and 90 KJ/mol-K, respectively for applied stresses equivalent 

to its 0.10YS and 0.25YS values. However, these values could not be compared 

due to a lack of literature data.  

 Dislocation creep was the dominant mechanism of creep deformation of Alloy 

230. The mobility of dislocations was found to be influenced by the morphology 

of second phase particles such as Ni2 (Cr, W) superstructures, and carbide 
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precipitates including Ni3W3C and Cr23C6. While the formation of superstructures 

is favored at lower temperatures and stress levels, carbide precipitates can form at 

higher temperatures.  

 The results of stress rupture testing indicate that the rupture time was enhanced 

with a reduction in temperature and applied stress level.   

 Of all applied analytical methods, the LM approach appeared to be most effective 

in predicting the rupture time of Alloy 230, showing a minimum error.  

 The MCM analysis, based on a time-temperature-stress equation, proved to be 

very useful in predicting the creep-rupture properties of Alloy 230 with a highest 

accuracy.  

 An enhanced cracking tendency of Alloy 230, due to the synergistic effect of 

creep and fatigue, was observed at elevated temperatures.  The number of cycles 

to failure was reduced at higher temperatures even after shorter hold times.  While 

failure of this alloy was totally time-dependent at 800 oC, a mixed time and cycle 

dependency on cracking was noted at 600 and 700 oC.   

 The increased CGR at higher temperatures and longer hold times was 

characterized by grain-boundary precipitation in the tested specimens, leading to 

intergranular cracking. The extent of intergranular precipitation was more 

pronounced at 800 oC even after a very short hold time of 120 seconds. 

Simultaneously, the concentration of intergranular precipitates was enhanced with 

longer hold times at 600 oC.  

 The morphology of failure was changed from transgranular to mixed 

transgranular / intergranular, then to predominantly intergranular due to the 
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imposition of longer hold times and/or increasing temperatures. Thus, the 

cracking susceptibility of Alloy 230 was influenced by both hold time and 

temperature.   

  



 

 97

CHAPTER 7 

SUGGESTED FUTURE WORK 

 Fracture toughness evaluation using J1C Testing at elevated temperatures can 

depict the resistance to fracture of Alloy 230 in presence of flaw at temperatures 

relevant to NGNP applications. 
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APPENDIX A 

TEST MATRIX- MATERIAL CONSORTIUM 

* 800-1000°C 

** 700-850°C 

***600-750°C 

MIT:  Massachusetts Institute of Technology 

BSU:  Boise State University 

UNLV: University of Nevada Las Vegas 

INL:  Idaho National laboratory 

ORNL: Oak-Ridge National laboratory 

 L indicates lead organization with primary responsibility in area-responsible for 

coordinating the overall effort in an area and production of deliverables. 

 C indicated collaborator in an area who, while not the “Lead” will still do significant 

work in an area although the level of effort will not be as high as the Lead 

organization. 

 P indicates that the organization will participate in the overall integrated process but 

will not have active work in an area-no funded scope. 

 X indicates temperature regime of area 

 

http://www.google.com/url?sa=t&source=web&ct=res&cd=1&ved=0CAgQFDAA&url=http%3A%2F%2Fweb.mit.edu%2F&rct=j&q=MIT&ei=4iSLS4eqPJC2swO6xYyFAw&usg=AFQjCNFGEpEnwRBMPQvRT7ueDZqPQAU23g&sig2=sFp25xlty42AfZQrwoMNLg�
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APPENDIX B 

REACTOR SYSTEMS PROPOSED FOR NGNP PROGRAM 

B1. Gas Cooled Fast Reactor (GFR) System [2] 
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B2. Lead Cooled Fast Reactor (LFR) System [2] 
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B3. Molten Salt Reactor (MSR) System [2] 
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B4. Sodium-Cooled Fast Reactor (SFR) System [2] 
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B5. Supercritical-Water-Cooled Reactor (SCWR) System [2] 
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B6. Very-High-Temperature-Reactor (VHTR) System [2, 3] 
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APPENDIX C 

CANDIDATE MATERIALS –NGNP PROGRAM 

C1. Summary of materials considered for NGNP applications [2] 

 

 
 



 

 106

APPENDIX D  

PROPERTIES OF NICKEL-BASE SUPERALLOYS FOR NGNP PROGRAM 

D1. Chemical Composition [72-74] 

Alloy Nia Cr Mo W Co Fe C Mn Al B Ti 
230 57 22 2 14 5* 3 0.1 0.5 0.3 0.015 ---- 
617 54 22 9 --- 12.5 1 0.07 --- 1.2 --- 0.3 

800H 35 23 --- ---- --- bal 0.10 1.5 0.6 --- 0.6 
aBalance, * Maximum 

D2. Physical Properties [72-74] 

Property Alloy 230 Alloy 617 Alloy 800H 
Density (g/cc) 8.97 8.36 8 
Melting Range (οC) 1290-1375 1332-1377 1350-1400 
Electrical Resistivity (ohm-cm) 125 122 93 
Modulus of Elasticity (GPa) 211 211 197 
Thermal Conductivity (W/m-K) 8.9 16.1 11.6 
Specific Heat (J/kg-K) 397 419 500 

 

D3. Mechanical Properties [72-74] 

0.2% Offset YS 
(MPa) 

UTS (MPa) %Elongation Test 
Temperature 

(οC) Alloy 
230 

Alloy 
617 

Alloy 
800H

Alloy 
230 

Alloy 
617 

Alloy 
800H

Alloy 
230 

Alloy 
617 

Alloy 
800H

Room 395 367 200 860 779 531 50 52 52 
540 275 254 114 705 618 438 53 67 51 
650 275 239 102 675 627 384 55 67 50 
760 275 245 99 605 483 223 53 92 78 
870 255 207 80 435 286 128 65 99 120 
980 145 111 61 240 155 70 83 93 120 
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APPENDIX E 

TENSILE PROPERTIES DATA 

 

E1. Data for Specimens Set 1 

Temperature (oC) YS, 
 ksi (MPa) 

UTS, 
ksi (MPa) 

%El %RA 

Room Temperature 62 (434) 131 (896) 15.1 40.7 
150 44 (317) 112 (765) 15.6 43.0 
300 41 (283) 108 (751) 16.5 44.0 
500 40 (276) 103 (710) 17.3 53.2 
750 40 (276) 71 (489) 18.5 61.4 
850 36 (255) 43 (296) 20.0 76.1 
950 20 (145) 25 (172) 23.0 83.8 

 

 

E2. Data for Specimens Set 2 

Temperature (oC) YS, 
 ksi (MPa) 

UTS, 
ksi (MPa) 

%El %RA 

Room Temperature 63 (434) 132 (896) 15.0 40.6 
150 47 (317) 111 (765) 15.7 42.9 
300 41 (283) 109 (751) 16.4 44.0 
500 40 (276) 105 (710) 17.2 53.4 
750 40 (276) 72 (489) 18.4 61.4 
850 39 (255) 43 (296) 20.1 76.0 
950 22 (145) 25 (172) 23.0 83.7 
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APPENDIX F 

CREEP TESTING- ADDITIONAL INFORMATION  

F1. WinCCS Data Acquisition System 

 The WinCCS data acquisition system is a state-of-the-art system that offers a number 

of unique features for enhanced control and monitoring of long-term creep, creep-

rupture,and stress-rupture testing. WinCCS delivers an industry-leading array of test 

control, data acquisition, archiving, analysis, and reporting features. From frame setup, 

accessory calibration, and specification creation to report generation and data graphing, 

menu-driven displays lead the operator through easy-to-follow steps that add up to 

accurate, repeatable, and fully-documented test results. 
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 F2.  Duplicate Creep Curves – 0.10YS Applied Stress 

A1. 750oC, 28 MPa

A2. 850oC, 26 MPa

A3. 950oC, 15 MPa 

B1. 750oC, 28 MPa

B2. 850oC, 26 Mpa

B3. 950oC, 15 MPa
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F3. Duplicate Creep Curves – 0.25YS Applied Stress 

A1. 750oC, 71 MPa

A2. 850oC, 64 MPa

A3. 950oC, 37MPa

B1. 750oC, 71 MPa

B2. 850oC, 64 MPa

B3. 950oC, 37 MPa 
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APPENDIX G 

STRESS RUPTURE TESTING- ADDITIONAL INFORMATION 

G1. WinCCS Stress Monitoring Window 

 The stress rupture testing aims at maintaining a constant stress during testing. The 

WinCCs system allows monitoring the stress condition during testing through the 

following window. 

 

 



 

 111

G2. Raw Data – Stress Rupture Testing 

Temperature (K) 
 

Stress (ksi) 
 

Rupture Time (Hours) 
 

1023 20 2180 
1023 20 2165 
1023 20 2170 
1023 25 495 
1023 25 505 
1023 25 496 
1023 30 120 
1023 30 115 
1023 30 119 
1073 20 260 
1073 20 262 
1073 20 261 
1073 25 60 
1073 25 57 
1073 25 58 
1073 30 23 
1073 30 22 
1073 30 22 
1123 20 45 
1123 20 48 
1123 20 48 
1123 25 15 
1123 25 14 
1123 25 14 
1123 30 3 
1123 30 3 
1123 30 4 

 

G3. Multiple Linear Regression (MLR) using MS-EXCEL LINEST Function  

The LINEST function in MS-EXCEL calculates the statistics for a straight line by 

using the "least squares" method that best fits a set of data. The LINEST function can 

also be combined with other functions to calculate the statistics for other types of models 
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that are linear in the unknown parameters, including polynomial, logarithmic, 

exponential, and power series. Because this function returns an array of values, it must be 

entered as an array formula. 

The equation for a line is:   

y = mx + b or 

y = m1x1 + m2x2 + ... + b (if there are multiple ranges of x-values) 

where the dependent y-value is a function of the independent x-values. The m-values are 

coefficients corresponding to each x-value, and b is a constant value. Note that y, x, and 

m can be vectors. The array that LINEST returns is {mn, mn-1,..., m1, b}. LINEST can 

also return additional regression statistics. 

Syntax: LINEST(known_y's, known_x's, const, stats) 

Known_y's is the set of y-values you already know in the relationship y = mx + b. If the 

array known_y's is in a single column, then each column of known_x's is interpreted as a 

separate variable. If the array known_y's is in a single row, then each row of known_x's is 

interpreted as a separate variable. Known_x's is an optional set of x-values that you may 

already know in the relationship y = mx + b. The array known_x's can include one or 

more sets of variables. If only one variable is used, known_y's and known_x's can be 

ranges of any shape, as long as they have equal dimensions. If more than one variable is 

used, known_y's must be a vector (that is, a range with a height of one row or a width of 

one column). If known_x's is omitted, it is assumed to be the array {1, 2, 3, ...} that is the 

same size as known_y's. Const is a logical value specifying whether to force the constant 

b to equal 0. If const is TRUE or omitted, b is calculated normally.  If const is FALSE, b 

is set equal to 0 and the m-values are adjusted to fit y = mx. 
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Stats is a logical value specifying whether to return additional regression statistics. If 

stats is TRUE, LINEST returns the additional regression statistics, so the returned array is 

{mn,mn-1,...,m1,b;sen,sen-1,...,se1,seb;r2,sey;F,df;ssreg,ssresid}. If stats is FALSE or omitted, 

LINEST returns only the m-coefficients and the constant b. 

The following illustration shows the order in which the additional regression statistics 

are returned. 

  A  B  C  D  E  F 

1  mn  mn‐1  …..  m2  m1  b 

2  sen  sen‐1  …..  se2  se1  seb 

3  r2  sev         

4  F  df         

5  ssreg  ssresid         

 

The additional regression statistics are as follows. 

Statistic Description 

se1,se2,...,s
en 

The standard error values for the coefficients m1, m2... mn. 

seb The standard error value for the constant b (seb = #N/A when const is 
FALSE). 

r2 The coefficient of determination. Compares estimated and actual y-values, and 
ranges in value from 0 to 1. If it is 1, there is a perfect correlation in the 
sample — there is no difference between the estimated y-value and the actual 
y-value. At the other extreme, if the coefficient of determination is 0, the 
regression equation is not helpful in predicting a y-value. For information 
about how r2 is calculated, see "Remarks" later in this topic. 

sey The standard error for the y estimate. 

F The F statistics or the F-observed value. Use the F statistic to determine 
whether the observed relationship between the dependent and independent 
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variables occurs by chance. 

df The degrees of freedom. Use the degrees of freedom to help you find F-critical 
values in a statistical table. Compare the values you find in the table to the F 
statistic returned by LINEST to determine a confidence level for the model. 
For information about how df is calculated, see "Remarks" later in this topic. 
Example 4 below shows use of F and df. 

ssreg The regression sum of squares. 

ssresid The residual sum of squares. For information about how ssreg and ssresid are 
calculated, see "Remarks" later in this topic. 

 

G4. Regression Statistics for MLR Performed for MCM Analysis with A = 0.0278 

 
  

 G5. Regression Statistics for MLR Performed for MCM Analysis with A = 0 

 

 

G6. Regression Statistics for MLR Performed for MCM Analysis with A = -0.036 
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APPENDIX H 

CREEP-FATIGUE TESTING – ADDITIONAL INFORMATIONS 

H1. Pure Fatigue Triangular Waveform 

 

 

H2. Hold Time Imposed on the Pure Fatigue Triangular Waveform  
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APPENDIX I 

ADDITIONAL MICROGRAPHS – OPTICAL 

I1 Optical Micrographs of Creep-Fatigue Tested Specimens at 700 οC. 

 
 

 
 

I1 (a) 700oC, No Hold 
 
 

 
 

I1 (b) 700oC, Hold Time = 60 sec 

50 m 

50 m 
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I1(c) 700oC, Hold Time = 120 sec 
 
 

 
 

I1 (d) 700oC, Hold Time = 600 sec 

50 m 

50 m 
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I2 Optical Micrographs of Creep-Fatigue Tested Specimens at 800 οC. 

 
 

 
 

I2 (a) 800oC, No Hold 
 
 

 
 

I2 (b) 800oC, Hold Time = 60 sec 

50 m 

50 m 
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I2 (c) 800oC, Hold Time = 120 sec 
 
 

50 m 
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APPENDIX J 

ADDITIONAL MICROGRAPHS – TEM 

J1. TEM Image of Creep Tested Specimens at 750 οC-0.10YS 
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J2. STEM Image and EDX Spectra of Creep tested Specimens at 750 οC-0.10YS 
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J3. TEM Image of Creep Tested Specimens at 850 οC-0.10YS 
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J4. STEM Image and EDX Spectra of Creep tested Specimens at 850 οC-0.10YS 
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J5. TEM Image of Creep Tested Specimens at 950 οC-0.10YS 
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J6. STEM Image and EDX Spectra of Creep tested Specimens at 950 οC-0.10YS  
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J7. TEM Image of Creep Tested Specimens at 750 οC-0.25YS 
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J8. STEM Image and EDX Spectra of Creep tested Specimens at 750 οC-0.25YS  
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J9. TEM Image of Creep Tested Specimens at 850 οC-0.25YS  
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J10. STEM Image and EDX Spectra of Creep tested Specimens at 850 οC-0.25YS  
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J11. TEM Image of Creep Tested Specimens at 950 οC-0.25YS  
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J10. STEM Image and EDX Spectra of Creep tested Specimens at 950 οC-0.25YS 
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APPENDIX K 

UNCERTAINITY ANALYSIS  

A precise method of estimating uncertainty in experimental results of CGR testing 

has been presented by Georgsson [refs]. This method is applicable to tests conducted in 

load control mode at constant-amplitude (using the DCPD technique) and performed 

under uniaxial loading at ambient temperature. 

The combined uncertainty in the results of this investigation was calculated by using 

the root sum squares equation, given below [75]. This uncertainty corresponds to plus or 

minus one standard deviation on the normal distribution law representing the studied 

quantity. This combined uncertainty has an associated confidence level of 68.27%. 

                                               
N

2

c i i
i=1

U y  = c u x                                 Equation K-1 

Where Uc(y) = Combined uncertainty in the results 

            ci = Sensitivity coefficient associated with xi, usually = 1 

 The expanded uncertainty (U) was obtained by multiplying the combined uncertainty 

(Uc) by a coverage factor (k), the value of which was taken as 2 that corresponds to a 

confidence interval of 95.4% [75, 76]. It is to be noted that all uncertainty calculations in 

this section are based on a crack length of 0.9 mm for a CT specimen tested at ambient 

temperature and a load ratio of 0.1. However, this analysis can be applied to all other 

crack lengths. 

K1 Uncertainty in Crack Length [U(a)] 

Sample Calculation: 

Standard deviation in crack length error due to PD-variation = Sea = ±1.08 μm (Sea value 

was determined from the ‘ea’ versus ‘a’ plot, as illustrated in Figure F-1).  
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Error in crack length =  N+ΔN N

da
ea = a - a -  × ΔN

dN

  
    

 

Uncertainty in crack length due to PD variation = 

  ea vPD
PD

δa
u a  = = S  × d  = 1.08  1 = 1.08 μm

a
     
 

 

Combined uncertainty in crack length = 

       
N 22 2

c i i PD PD
i=1

U a  = c u x  = c u a  = 1  1.08  = 1.08 μm         

Expanded uncertainty in crack length =  

U(a) = Uc(a) × k  

        = ±1.08 × 2  

        = ±2.16 μm 

        = ±0.00216 mm 

 

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

6 6.5 7 7.5 8 8.5 9

a

ea

 

Figure K-1 ea vs. a 
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K2 Uncertainty in Stress-intensity-factor-range [U(ΔK)] 

Sample Calculation: 

Following analysis is based on ΔK = 25 MPa√m, corresponding to crack length of 0.9 

mm. 

K2.1 Uncertainty due to Alignment [u(ΔK)a] 

Uncertainty in Instron alignment = ea = ±5% = ±0.05  

  va
a

δΔK
u K  =  = ΔK × ea × d  = 25  0.05  0.5 = 0.625 MPa m

K
      
 

 

K2.2 Uncertainty due to Load Cell [u(ΔK)l] 

Uncertainty in Instron load cell = ea = ±0.25% = ±0.0025  

  vl
l

δΔK
u K  =  = ΔK × ea × d  = 25  0.0025  0.5 = 0.03125 MPa m

K
      
 

 

Combined uncertainty in ΔK = 

       

   

N 2 22

c i i a la l
i=1

2 2

U ΔK  = c u x  = c u ΔK  + c u ΔK

               = 1 × 0.625  + 1  0.03125  = ±0.488 MPa m

        




 

Expanded uncertainty in ΔK =  

U(ΔK) = Uc(ΔK) × k  

            = ±0.488 × 2  

            = ±0.976 MPa√m 
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K3 Uncertainty in da/dN [U(da/dN)] 

Sample Calculation:  

5

average,(a=0.9mm) average,(a=0.83mm)

da Δa Δa 0.9 - 0.83
 =  =  =  = 2.7  10  mm/cycle

dN ΔN N - N 100472.8 - 97881
  

 
N

6

S N

da Δa 0.9 - 0.83
 =  =  = - 9.3  10  mm/cycle

dN ΔN - S 100472.8 - 97881  - 10145.445
   

 
 

Error in da/dN =  

   
N

v
S

6 5

5

da da da da
u  = δ  =    d  

dN dN dN dN

              =  9.3  10  - 2.7  10   0.5

              = 1.815  10  mm / cycle

 



                 
         

     
 

 

Combined uncertainty in da/dN =  

 
2

N
2

c i i
i=1 a

25

5

da da
U  = c u x  =  c u

dN dN

                = 1 × (1.815  10 )

                = ±1.815  10  mm/cycle





              

  





 

Expanded uncertainty in da/dN =  

U(da/dN) = Uc(da/dN) × k  

                = ±(1.815 × 10-5) × 2  

                = ±3.63 × 10-5 mm/cycle 
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