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Abstract

Otitis Media (OM) is the most commonly diagnosed childhood illness that affects

thousands of children per year [1]. Dysfunction of the Eustachian Tube (ET), which is a

collapsible tube that connects the Middle Ear (ME) to the Nasopharynx (NP), is the

primary etiology ofOM. In healthy adults, periodic openings of the ET due to contraction'

of the tensor veli palatini (TVPM) and levator veli palatini (LVPM) muscles, equalize

ME pressure and/or drain ME fluid [2]. However, patients with cleft palate syndrome

have a 100% incidence rate of OM due to ET dysfunction. The overall goal of this study

is to develop fluid-structure interaction computational models of ET function in both

healthy adult and cleft palate subjects and compare model results to identify the

mechanisms responsible for dysfunction in cleft palates.

The effects of tissue morphology were investigated by creating decoupled fmite

element models (FEM) of both healthy adult and cleft palate ETs. Results indicate that

ET function in healthy adults is highly sensitive to TVPM forces. However, in cleft

patients, ET function was relatively insensitive to TVPM and LVPM forces. We conclude

that the altered tissue morphology in cleft palates plays a vital role in ET dysfunction.

Experimental data suggests a strong coupling between the amount ofmuscle force

generated and the amount of flow through the lumen. We developed coupled fluid,.

structure interaction (FSI) models to simulate dynamic flow phenomena during ET

opening in oq,e healthy adult and one cleft palate patient. Results indicate that although

ET opening phenomena was very sensitive to the relative timings of muscle contractions

in the adult subject, the cleft palate patient showed very little sensitivity to muscle timing.
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We conclude that changing muscle timing is not a viable option for treating ET

dysfunction in cleft palate patients.

Finally, the ET is a very complex system and several efforts were made to model

more components of the system including the auditory canal, tympanic membrane and

ME to better replicate experimental results. Also, new FEM techniques are being

developed that can handle the large deformations experienced during ET opening and

closing better than the previous models.

Keywords

Eustachian Tube, Otitis Media, cleft palate, tissue mechanics, middle ear, histological

image, computational modeling, computation fluid dynamics, fmite element analysis,

fluid-structure interaction
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I. Introduction

One ofthe most commonly diagnosed childhood illnesses is a disease called Otitis

Media (OM). This disease is characterized by pain and inflammation of the Middle Ear

(ME). OM affects thousands of patients per year and has an annual health-related cost of

four billion dollars in the United States [1]. The persistence of OM has been directly

related to dysfunction ofa patient's Eustachian Tube (ET).

Eustachian tube

Figure 1: Engineering Model oftbe Eusta~bianTube

Nasopharynx

Figure 2: Anatomy oftbe Eusta~bianTube

The ET is a collapsible tube that connects the ME and the Nasopharynx (NP) (Figure 2).

The ET is responsible for three primary functions: I) regulation of ME pressure 2)

protection of the ME from foreign pathogens and 3) drainage of fluid from the ME [2].

The ET is structurally homologous with the small pulmonary airway that connect alveoli

and the larger bronchial airways. Specifically, the lumen of these collapsed airways

contains a fluid-mucosa layer and is surrounded by viscoelastic soft tissue elements
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(Figure 1). The ability to open these airways will therefore depend on both tissue

mechanical properties (e.g. applied muscle forces, Fm, and tissue elasticity, E and

viscosity, Jl) and micro-scale, adhesive properties within the mucosa (e.g. molecular

adhesion forces, Fa, and surface tension forces, 1). In healthy patients, the ET opens

during swallowing because the surrounding tissue is deformed by muscle activity. If the

ET fails to open, the ME develops painful sub-ambient pressure. As a result, liquid is

then pulled in from the mucosal tissue surrounding the middle ear. This can result in

fluid accumulation within the ME and any bacteria present in the accumulated fluid are

provided with an environment that is perfect for infection to develop. Standard practice

for treating ET dysfunction includes having a ventilation tube inserted through the

eardrum [2]. This procedure relieves the symptoms of ET dysfunction, however the r

procedure has some adverse effects. A perforation in the tympanic membrane can lead to

hearing loss and provides an accessible pathway for foreign material and infectious

agents. Furthermore, these ventilation tubes typically fall out within 3-4 months and can

therefore require repeated surgeries.
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Cartilage

Lumen

Glandular
Tissue

TVP Muscle

Muscle

Figure 3: Cross sectional slice oftbe Healthy Adult Eustacbain Tube

The ET is a complex, three dimensional structure made of primarily cartilage and

glandular tissue surrounded by bone and muscle as seen in Figure 3. There are two

primary muscles that act on the ET, the tensor veli palatini muscle (TVPM), and the

levator veli palatini muscle (LVPM). The TVPM is a ribbon-like or flat muscle that

attaches to the cartilage and glandular tissue at one end and then wraps around the

Pterygoid Hamulus at the other end. The LVPM is a muscle bundle that runs along the

length of the ET and expands during contraction, such that it exerts normal or distributed

forces on inferior portions of the cartilage and glandular tissue. There are several factors

that can influence ET function, the fIrst ofwhich are the magnitudes and directions ofthe

forces generated by the TVPM and LVPM. Previous investigations have demonstrated

that if the TVPM is paralyzed, the ET will fail to open [3]. Another factor in E,! function

is the compliance and/or elasticity of the surrounding tissues, as displayed in Figure 1.

For example, if the cartilage and/or glandular tissue are too stiff, the forces exerted by the
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TVPM cannot deform the tissue and generate an opened lumen. Conversely, if the

cartilage and/or glandular tissue are too soft, the forces generated by the TVPMmay not

be transmitted to luminal surfaces and as a result, muscle contraction may not generate

the luminal forces needed to overcome the adhesion forces that maintain a closed ET. In

either way, abnormal mechanical properties of the ET soft tissue elements can

significantly compromise ET function. Finally, another important factor is the position of

the Hamulus, since the position of the Hamulus governs the direction vector of the

TVPM forces. Moving the Hamulus distally, laterally, or superiorly can have either

adverse or positive effects on EY function.

There have been previous investigations, including computational and

experimental studies, into the mechanics of ET function and dysfunction [5-9]. Bell, et

al. [6] developed 2 dimensional finite element models of tissue deformation and lumen

opening in order to simulate ET function in healthy adults. These models used one cross

sectional histological image similar to the one shown in Figure 3 to generate 2D solid

models which captures the shape and size of ET tissues at one axial location. These 2D

models were then used to simulate tissue deformation and lumen opening and a ID fluid

model was used to predict flow through the lumen [6]. This model has some obvious

drawbacks. The first ofwhich is that the solid model is only two dimensional. The ET is

a complex three dimensional structure and a two dimensional model cannot accurately

represent the morphology of the ET. Secondly, a ID fluid model was useq,~at assumed

a constant pressure drop through the lumen and fully developed flow in the axial

direction. Due to the lumen's complex shape, the assumptions that the pressure drop will

be constant throughout the length of the lumen and that the flow is fully developed are
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not likely to be valid. Warrick et ai. developed three dimensional models to analyze ET

dysfunction in cleft palate patients [7]. The main limitation of these models is that the

fluid and solid domains were completely uncoupled. These models were therefore unable

to capture the transient flow dynamics that occur during ET opening and closing.

Ghadiali et ai. [8,9] developed two clinical tests~orced Response Test and a

Modified Force Response Test, that can quantify ET fuiiction [8,9]. During the forced

response test, a

Perforated Tympanic
Membrane

Pressure and Flow
Rate Transducers-----------,I I

I I

Data Acquisition

Computer },~!..- - -- _.... - -)
t .,.
1/lIS\~"2jjIj;~J

I
I

: Syringe Pump
I
I

Figure 4: Experimental Apparatus

patient undergoes myringotomy (surgical incision through the ear drum), allowing

externally applied pressure (P) to reach the ET. The patient's auditory canal is fitted with

an experimental apparatus that contains a pressure transducer and mass flowrate sensor.

The apparatus forms an airtight seal against the auditory canal allowing the ET to be

inflated with externally applied pressure. A syringe pump applies 200 rom H20 of

pressure through the auditory canal and ME into the ET establishing a baseline flowrate

of air (Q). The patient is then asked to swallow. The action of swallowing causes

contraction of the TVPM and LVPM which apply forces to the ET tissues and thereby

producing a change in flowrate through the ET. This flowrate is recorded as a function of
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time. In addition, changes in lumen pressure (P) are also recorded as a function of time.

Then a parameter called resistance to flow, Rv is calculated as pressure divided by

flowrate (Le. Rv(t)=P(t)/Q(t». The resistance as a function of time, Rv(t) can then be

plotted as shown in Figure 5.

Typical Forced Response Test Rv results
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Figure S: Typical resistance plot form a Forced Response Test
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Figure 6: Typical hysteresis loops from a Modified Forced Response Test
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The other test that can be performed on patients in a clinical setting is the

Modified Forced Response test. During this test, the initial procedure is the same. The

patient undergoes myringotomy and the same apparatus is inserted in the patients

auditory canal. The syringe pump then applies 200 mm H20 of pressure establishing a

baseline flowrate through the ET. Then, rather than having the patient swallow, the

computer-controlled syringe pump is used to oscillate the externally applied pressure at a

given frequency and the resulting flowrate is recorded. This produces a pressure curve

that is a sine wave with specified amplitude and frequency and a resulting flowrate curve

that is a scaled, shifted sine wave relative to the pressure curve. Due to the phase lag

between the pressure and flowrate wave forms, when you plot pressure versus flowrate

for one cycle, the resulting graph is a hysteresis loop. Some typical hysteresis loops from

modified force response tests are shown in Figure 6. As seen in Figure 1, the hysteresis

loops can be quantified in terms ofwall compliance, C=i, and wall viscosity, 1.1. As in

Ghadiali et al. [8], the compliance of the ET has a direct impact on the overall slope of

the hysteresis loop, while ET wall viscosity has a direct effect on the area contained.
inside the hysteresis loop. Subjects with higher compliance show much shallower slopes

than subjects with a less compliant ET. Increasing the wall viscosity introduces more

visco-elasticity thus making the loops contain more area. These two clinical tests show

the transient dynamics that occur within the ET during opening and closing. Figure 5 and

Figure 6 graphically demonstrate the different types oftransient dynamic phenomena that
/

decoupled models, such as the ones developed by Warrick et al. [7], cannot capture and

therefore may not be able to accurately analyze/interpret ET function from experimental

9



data. Therefore, there is a need to develop fully coupled fluid-structure interaction (FSI)

models ofET function that can simulate experimental conditions.

This paper outlines two separate studies that share the common result of

improving our understanding of ET function and dysfunction. First, Chapter II describes

the methodology and results from a parameter variation studies done on healthy adults

and cleft palate patients. Using decoupled FE models of 6 different patients with a cleft

palate, the parameters that can possibly affect ET function were symmetrically varied to

fmd their respective sensitivity to ET function. Secondly, Chapter III describes the

methodology and results from two fully coupled, FSI models, one ofa healthy adults and

one of a cleft palate infant. Using these two models, a study is performed that varied

relative muscle timing to see its possible impact on ET function. Third, new modeling

efforts and new FEM techniques are outlined that make the previous models even more

advanced. Finally, the conclusions chapter summarizes what both studies have taught us

about ET function.

10



II. Decoupled Finite Element Analysis (FEA) Modeling

A. Methodology

In the fIrst part of this study, we analyze both healthy adult and cleft palate

patients using the procedures described in previous studies [7]. First, histological data of

the ET soft tissue structure is obtained from the University of Pittsburgh's Otopathology

laboratory located within the Children's Hospital of Pittsburgh. The histological

specimens are processed based on the method developed by Sando et. al [4]. Cross-

sections are sliced perpendicular to the long axis of the ET after being fixed in formalin,

decalcifIed with trichloroacetic acid and dehydrated in ethanol. The cross-sections are

cut every 30/lm and every 20th section is stained with hematoxylin and eosin. The

specifIc area of the histological slide of interest includes the ET cartilage, TVPM, LVPM

and glandular tissue (as shown in Figure 7).

Lateral

A

Figure 7: A sample histological cross section showing outlines and sections

11



The histological cross-sectional images are analyzed using the image analysis procedure

described by Ghadiali et al.[5]. Briefly, the MetaMorph image analysis software

(Sunnyvale, CA) is used to obtain outlines of the different tissue elements; cartilage,

glandular tissue, lumen, TVPM and LVPM (see Figure 7). The attachment of the

cartilage to the cranial base is identified, to be used as a boundary condition, as section A.

The areas where the TVPM is acting on the cartilage and glandular tissue are shown in

Figure 7 as sections B and C respectively. The areas where the LVPM acts on the

cartilage and glandular tissue is shown as sections E and D respectively. During this

process the lumen is artificially opened due to tissue dehydration. However, the models

are constructed with a closed lumen to better simulate in-vivo conditions. In all these

models, the lumen is drawn with respect to the medial edge of the artificially opened

lumen as shown in Figure 7.

This process is repeated for each sequential cross section along the distal axis of

the ET starting from the ME and moving toward the NP. Figure 8 is one example ofhow
,-

the geometry of the ET changes along the distal axis from the ME (Figure 8A) to the NP

(Figure 8C).

A LVPM)

Figure 8: Histological cross sections of the ET showing distal geometry changes.
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Some patients show more drastic geometry changes along the distal axis, which is why

the three dimensional modeling procedure is so important.

Outlines obtained in sequential axial images are used to generate a 3D solid

model in Pro/Engineer CAD program (Needham, MA) of the cartilage and glandular

tissues. A cubic spline algorithm is used for each subject to generate smooth lofted

surfaces between the cross-sections. Each section (A-E, Figure 7) is converted into a 2D

surface in order to facilitate the application of boundary conditions and loads. Once the

solid model is created, it is ready to be loaded into the FEA program.

Figure 9: 3D CAD model P847 Eustachian Tube

The basis of Finite Element Analysis is that the differential equations which

govern tissue deformation in the solid domain or fluid flow in the fluid domain are solved

over a series of finite elements rather than over the domain as a whole. To do this, the

geometry is broken down into a system of points, or nodes, that are connected into

13



(1)

individual elements to create a mesh that represents the original structure. Then material

properties are assigned to each element so that the mesh accurately represents both the

original geometry and the type of tissue simulated. An example mesh can be seen in

Figure 10. The Finite Element program chosen for all the analysis is ADINA

(Watertown, MA).

In these cleft palate models, the cartilage and glandular tissue are both modeled as

a Mooney-Rivlin hyperelastic material. This material model is based offofthe following

expression.

WD= Cl(ll - 3) +C2(I2 - 3) +C3(Il - 3)2 +C4 (Il - 3)(12 - 3) +CS(I2 - 3)2 +
C6 (Il - 3)3 +C7 (Il - 3)2 +Ca(Il - 3)(I2 - 3)2 +C9(I2 - 3)3 +Dl eD2(It-3)-1

where Wo is the strain energy density and CI-C9, D1, and D2 are material constants, II and

h are strain invariants as defined as by Bathe [17]. This form ofthe strain energy density

assumes an incompressible material, h=l, and is further modified depending on 3D,

plane strain, or axisymmetric analysis. The bulk modulus 1C is used to model the

compressibility of the material. ADINA uses a default form for the bulk modulus based

on small strain, near-incompressibility defmed as

E
Ie = 3(1- 2v) (2)

where E is the modulus ofelasticity and u is the Poison's ratio. For both the cartilage and

glandular tissue, ucart=Ugland=0.499, where u=O.5 is an incompressible material. The bulk

modulus can also be written in terms ofa small strain shear modulus, G [16]

Ie = 26(1 + v) (3)
3(1- 2v)

These moduli can be used to defme a standard two-parameter Mooney-Rivlin strain

energy density function

14



(5)

G K
W=ZUl- 3)+'2 U3 - 1)2 (4)

Here J1 and J3 are reduced strain invariants as defmed as by Bathe [17]. The baseline

elastic modulus for the cartilage and glandular tissue for the CP subjects was found in

literature to be Eeart = 150 kPa and Egland = 25 kPa [5,10]. In previous studies using

healthy adult patients the elastic moduli were found in literature to be Eeart = 300 kPa and

Egland = 50 kPa [11,12]. Literature data [13] found that in infants and young children the

modulus of elasticity is twice as compliant than in adults, which is why the values of 25

kPa and 150 kPa were chosen. Solving the 3D tissue deformation equations during ET

opening phenomena required the use ofa non-

linear, large displacement fmite element routine [17]. The equations to be solved are

au& s 1 (aw aw) 1 (adt ad})-=0 Ut =- -+- E"=- -+ax} , ) 2 aEt} aE)t' l] 2 ax) aXi
Here (Js is the Cauchy stress tensor, W is the strain energy density, E is the strain, and dt

is the displacement of each mesh node. However, before the equations can be solved,

boundary conditions and forces must be applied. The main boundary condition in the

model comes from the attachment of the ET to the cranial base as modeled by Section A

in Figure 7. On this surface of the model, a boundary condition of zero displacement in

all directions is applied because this tissue is fixed to bone. The other boundary

condition represents attachment to bony portions of the ET via tendons which allow for

in-plane displacements only. Therefore a boundary condition of zero displacement in the

z-direction is specified only on the proximal and distal ends. In all models, the rotational

DOF are not allowed, the model is only capable of linear displacements. The boundary

conditions placed in the model are summarized in Figure 10.
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Figure 10: FE model ofET ofep infant P847 with the applied boundary conditions

In Figure 10, the boundary condition for the cranial base is applied to every node labeled

with a C, and the proximal and distal condition is applied to every node labeled with a B.

Also in the model, the force from the TVPM and the LVPM need to be represented. The

TVPM is a ribbon like muscle that extends from the superior faces of the glandular tissue

and the cartilage and then wraps around the pterygoid hamulus [14]. The LVPM pushes

up on the inferior surfaces of the glandular tissue and cartilage. The TVPM and LVPM

forces need to be adjusted for the infant models. It is not appropriate to apply the same

amount of force on the smaller models that is applied to the larger models. From

previous research, it has been found that the amount of force the muscle applies is

linearly proportional to the cross sectional area of the muscle [15]. The cross sections of

the muscle for all the different models are measured using MetaMorph. It was found that

the ratio of cross sectional areas of both TVPM and LVPM for adults to CP infants was

1:0.5. In previous ET study, 20N and 5N were used for the TVPM and LVPM,

16



respectively in healthy adults. Therefore, values of ION and 2.5N were used for the CP

infants based on the muscle area ratio. The LVPM and TVPM muscles are both

visualized in Figure II.

WPM forct poilltlag /
lomlrds Hmnulus LocalioD

\

.....-- lWDulus LocatiOD

(Disbl)0(Superior)

l\
(Latrral)

Figure 11: FE model ofET ofCP infant P847 showing the TVPM and LVPM Fortes

In the above figure, note how the force vectors due to the TVPM all point to the same

physical point in space, the pterygoid hamulus. The TVPM load is a follower load so it is

displacement dependant. As the solid model deforms, the vectors change direction so

they are always pointing the pterygoid hamulus location. The LVPM load is modeled as

a pressure, normal to the surface that is also displacement dependant.

The model is now fully defmed and can be solved. Solving equation (5) yields a

deformed solid model that now has a lumen opening as shown in Figure 12.
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Figure 12: Deformed solid model with extracted lumen opening

Once the solid model is deformed, the lumen opening must be extracted out ofthe

model. In previous research [6], a ID fluid model was used to quantify flow through the

deformed shape. The ID model assumed fully developed flow with a linear pressure

gradient. Due to the complex 3D geometry, a linear pressure gradient is a very large

assumption and might not necessarily be true. In this study however, 3D computational

fluid dynamics (CFD) is used. CFD can take into account the complex geometry with no

assumptions about pressure gradients or fully developed flow therefore giving the most

accurate results. To extract the deformed lumen shape form the solid model, a series of

scripts are used in MatLab, then TecPlot, then Rhinoceros to make the lumen geometry

which defines the CFD or fluid domain. The resulting lumen that was extracted out ofthe

deformed solid model is also shown in Figure 12.

In the extracted lumen opening, flow is governed by the incompressible continuity

and Navier-Stokes equations

(6)
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where p is the density of air, 1.229 kg/m3
, ~ is the viscosity of air, 1.8xlO-5 Pa·s, and v is

the velocity vector. To quantify ET function, the same pressure drop was applied to all

lumen openings, 200 mm H20 from ME to NP. To accomplish this, no slip boundary

conditions are applied to all the walls of the lumen, a normal traction of 1961 Pa is

applied to the ME side (least distal) opening of the lumen, and a zero pressure condition

is applied to the NP side (most distal) of the lumen. The flowrate is found by integrating

the velocity profile at a specified cross section in the middle of the lumen.
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Figure 13: Cross sections of velocity profile in the lumen opening

Figure 13 shows the typical velocity profiles at different cross sections down the distal

axis of the lumen. The typical velocity scale through the lumen is on the order of25 mis,

which gives a maximum Re of 335 in healthy adults. Given this maximum value ofRe,

which represents the ratio of inertial to viscous forces, the flow is in the laminar regime.

Once the flowrate in the lumen was determined, the degree of lumen opening was

quantified by calculating a flow resistance parameter,
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(7)
l1P

Rv =-
Q

where l1P is the pressure drop from the ME to the NP, and Q is the flowrate. Note that

larger values of Rv represent ET dysfunction while smaller values of Rv represent better

ET function.

The reason for calculating Rv IS to facilitate comparison with the experimentally

measured data.

To quantify how sensitive ET function is to a specific parameter, a new quantity,

sensitivity, is defined. For this parameter variation study, the sensitivity is defmed as the

ratio of the resistance value at the baseline parameter divided by the resistance value at 4

times the baseline parameter value.

B. Parameter Variation Studies

For a healthy adult, a full parameter variation study was done for one patient

where the parameters varied were TVPM force magnitude, LVPM force magnitude,

Young's modulus ofCartilage, Young's modulus ofglandular tissue, Hamulus X position,

Hamulus Y position, Hamulus Z position. The range of the seven parameters is given in

Table 1.

Table 1: List and ranges of parameters varied for study

Parameter E.:art Boland TVP LVP HamXPos HamYPos Ham ZPos

Original Original Original
Min Value 75.4 kPa 31.5 kPa 5N 0.5N LocationLocation Location minus 10%

100% 100% 120%
Max Value 3000 kPa 500kPa 50N 8N Lateral Superior Distal

Movement Movement Movement

For this study, Ecart and Boland were both varied from their minimum up to their maximum

value in 8 increments. TVPM and LVPM magnitudes were varied over 10 increments.
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Lateral and Superior movement of the hamulus location was varied from its original

location up to 100% of the available lateral/superior measurement. More specifically, if

all the tissue that comprises the ET measured 5 mm in the lateral direction at its widest

point, then the hamulus point was allowed to vary 5 mm laterally. The same procedure

was applied to superior and distal movement of the hamulus position. Lateral and

Superior movement were varied over 10 increments, while the distal movement was

varied in 12 increments. In total, 68 simulations were run to compile all the data for this

study.

In the cleft palate population, a study was done that varied the magnitude of the

TVPM and the LVPM across 6 patients. The TVPM magnitude was varied from 4 N up

to 40 N in 10 increments and the LVPM was varied from 0.25 N up to 10 N in 10

increments. In total, 120 simulations were done to compile the data.

C. Results

i. Healthy Adult Simulations

The results for the parameter variation study for the health adult are summarized

in the following seven figures.
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22



Ecart Variation
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Figure 17: Plot of Resistance versus Modulus ofGlandular Tissue
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Figure 20: Plot ofResistance versus Hamulus Z Location

On the vertical axis ofall the plots is the resistance to flow plotted on a log scale, and on

the horizontal axis is the range ofthe parameter being varied. Looking at Figure 14, one

can see that as the TVPM magnitude increases, the resistance values continually

decrease. This is due to a larger lumen opening resulting from larger TVPM forces.

However, looking at Figure 15, as the LVPM magnitude goes up, so does the resistance.

This is due to the fact that the LVPM actually decreases the lumen opening and constricts

flow. Looking at Figure 16, one can see that changing the modulus ofelasticity ofthe

cartilage has a large effect when the modulus is small, but then as the modulus grows, the

sensitivity to the stiffness drops off. Physically, this makes sense since most ofthe lumen

opening is contained in the glandular tissue, and only a small part ofthe opening is in the

cartilage. Noting this fact also helps to explain Figure 17. Since most ofthe lumen

opening is in the glandular tissue, it makes sense that the modulus ofthe glandular tissue
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has a large effect on ET function. And fmally, looking at Figure 18 through Figure 20,

one can see that ET function is relatively insensitive to any changes in the hamulus

position. Also, to reinforce these qualitative statements, Table 2 is a list of the parameters

varied and their respective sensitivities, calculated as described at the end ofChapter II,

Methodology section.

Table 2: List of parameter and its respective sensitivity value

Parameter Sensitivity
TVPM 5.516
LVPM 1.061

ECart 0.745
EGland 0.217

Lateral Hamulus Movement 1.387
Superior Hamulus Movement 1.076
Distal Hamulus Movement 1.344

For sensitivity values, a value close to 1 corresponds to a graph whose line is relatively

flat so the ET is insensitive to changes in this parameter. However, a sensitivity value

much larger than 1 corresponds to a graph that has a negative slope meaning that as the

parameter goes up in value, the resistance goes down in value. This implies that

increasing the parameter has a positive effect on ET function. Then a sensitivity value

much smaller than 1 corresponds to a graph that has a positive slope meaning that as the

parameter goes up in value, so does the resistance. This implies that increasing the value

ofthis parameter has a detrimental effect on ET function. So looking at all the values in

Table 2, ET function is again most sensitive to TVPM magnitude and EGland, which

agrees with the all the rest of the data.

ii. Cleft Palate Parameter Variation Studies

The results from the cleft palate TVPM and LVPM magnitude variation study can be

summarized in the following graphs.
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Figure 21: Summary ofCleft Palate TVPM Variation Study

Figure 21 is a plot ofResistance values on a log scale versus magnitude ofTVPM force

on a log scale. As the figure implies, all patients showed a reasonable amount of

sensitivity to changing the TVPM force, however P703 showed extreme sensitivity to this

muscle force change. Figure 22 i~ a plot of resistance values on a log scale versus

magnitude ofthe LVPM force on a log scale. Again, P703 has much larger resistance

values than all the other patients.
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In both Figure 21 and Figure 22, P703 is obviously an outlier. This can be explained by

Figure 23. Looking at all the morphologies, it is clear that P703 has a much smaller

lumen opening than all the other patients. This explains why the resistance values are so

high for the same pressure drop. Since P703 is determined to be an outlier, it is not

included in the following sensitivity calculations.

Table 3: Summary of Cleft Palate Sensitivities

Looking at Table 3, you can see some varlabihty among the patients, but overall, these

Patient TVPM LVPM
506 1.44 0.993
578 2.23 0.997
598 1.94 0.964
847 0.57 0.993
849 1.11 1.051

Average 1.46 1.00.

numbers tell us that the degree ofET opening in cleft palate patients is less sensitive to

TVPM and/or LVPM forces than in normal adults.

D. Discussion

Patients with cleft palate disorder have a 100% incidence rate ofdysfunction of

the ET resulting in the development ofchronic OM. Currently, surgeons do not take into

account issues with the ET, such as the abnormal morphology or ET dysfunction, when

performing the surgery to repair the hard palate. This study gives some insight into the

mechanics ofthe ET and provides valuable information to the surgeons. By comparing

the flow resistances ofhealthy adult patients to cleft palate patients, this study concludes

what parameters are most effective in patient populations and highlights the differences

between the models.

In the first part of this study, it was shown that the healthy adult patient's ET

function was most sensitive to the magnitude ofthe TVPM and modulus ofelasticity of

29



the glandular tissue. This is shown both in Figure 14 through Figure 20, and also

numerically in Table 2. The high sensitivity value ofthe TVPM and low sensitivity value

ofEoJand prove that changing either of these two parameters had the largest effect on ET

function. Given the sensitivity values, increasing the TVPM force or decreasing the

stiffness ofthe glandular tissue has a positive effect on ET function.

In the second part of this study, it was shown that the cleft palate patients were

insensitive to muscle force changes. Neglecting the outlier, P703 from the sensitivity

calculations, Table 3 shows all the patients were completely insensitive to changes in the

LVPM magnitude, while the TVPM sensitivities showed some variability, but on the

whole, the population is insensitive to these changes as well.

Both of these results reinforce the original hypothesis that to fix the underlying

ET dysfunction in cleft palate patients, the morphology has to be corrected.
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ill. Fully Coupled Fluid-Structure Interaction (FSI) Modeling

A. Methodology

The second goal of this thesis was to build FEA models that can capture the

transient dynamics that occur during opening and closing of the ET. All the models built

either in previous studies [6-7] or utilized in Chapter II were either two dimensional or

the fluid and solid models were decoupled. As a result, these previous models could not

capture the temporal dynamics of airflow within the ET during swallowing as recorded

during experimental studies (see Figure 5 and Figure 6). Therefore, capturing the

transient dynamics of ET function requires the development of new models that have a

fully coupled solid and fluid domain so that the interactions between the two can be

accurately simulated.

All the models built for previous investigations, as in Chapter II, Section A, were

built with an initially closed lumen to better simulate in-vivo conditions of the tissue. To

build a fluid-structure interaction (FSI) model, there needs to be a distinct fluid domain

and a distinct solid domain present at all times in the model. To build an anatomically

correct lumen opening, the original closed model was used and the lumen was inflated

with a small amount of pressure so that a small opening would form. An alternative

method to creating a distinct fluid domain would have been to redraw outlines on the

histological slides to include the lumen opening due to dehydration. However, this

technique would require the development ofnew image analysis procedures similar to the

ones described in Chapter II, Section A. More importantly, since experimental studies use

pressure to open an initially closed lumen, the first procedure will produce a more

physiologically relevant lumen open as compared to the lumen opening due to
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dehydration observed in the histological images. In addition, the first method was chosen

because a great amount of effort was placed on drawing the outlines on the histological

slides accurately so that the resulting models were a good representation of the true

morphology of the patient. Redrawing all the outlines would not only take a lot of time,

but could also lead to possible degradation of the accuracy of the models. Therefore, the

method of creating an open lumen was chosen to be using the originally closed models

from the previous study and using artificial lumen pressure to create an opening. The

procedure for starting with an initially closed solid model and creating a FSI model is

outlined below.

As shown in Figure 24A, all the muscle forces were taken off the model so the

only force left was a lumen pressure while all the boundary conditions remained the same

as described in Chapter II. This resulted in a deformed model as shown in Figure 24B.
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Figure 24: FEA Model with only Lumen pressure to create an initial Fluid Domain
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Data was extracted from the deformed model and then run through a MatLab (Natick,

MA) script that processed and rearranged the data. All the data was then imported into a

FEA Post-Processing program, Tecplot (Bellewe, WA) which further processed the data

and then extracted the boundaries of all the defor.med bodies. All the data was then

processed again with another MatLab script. This script is where most of the important
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post-processing is done. The main purpose of the MatLab script is to read in all the data,

interpret it and then export it to Rhinoceros 3.0 CAD software (Seattle, WA) in the

proper way so that Rhinoceros can make three distinct solid bodies (cartilage, glandular

tissue, and lumen). The MatLab script uses a custom programmed graphical user

interface so the user can monitor what the program is doing, making sure that the

geometry is correct and other important parameters are not being distorted. Once the

MatLab script is finished processing the data, the Rhinoceros makes the 3D solid bodies

and now the three bodies are ready to be imported into ADINA. Note that the three

bodies include the cartilage, glandular tissue and lumen opening. The procedure that was

outlined in the above paragraph has a few important points that should be noted. First, in

Figure 24A, you will notice that there are four distinct color zones in the model. The

procedure that is outlined in the decouple FEA models section creates four separate solid

bodies, two to represent the cartilage, and two to represent the glandular tissue. The new

procedure fixes this problem and creates one solid body that represents the cartilage and

one solid body that represents the glandular tissue. This is more anatomically correct

because in the decoupled models, you had to apply rigid link constraints between the two

bodies that make up the cartilage and then apply rigid link constraints between the two

bodies that make up the glandular tissue. By eliminating these constraints, the model is

more anatomically correct and does not produce non-physiologic stress concentrations at

body boundaries.

With a 3D CAD model of the cartilage, glandular tissue, and small lumen

opening, all the components are in place to make a FSI model. In the FSI model, the
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geometry is broken down into a solid and fluid domain. Each domain has its own distinct

material models, boundary conditions, and loading.

Figure 25: Viseoelastic material model for the glandular tissue.

In the solid domain, there are two different materials cartilage and glandular

tissue. In the FSI model the cartilage is modeled as a Mooney-Rivlin hyper-elastic

material just as in Chapter II, Methodology, equations (1) - (4). However, in the FSI

model, the glandular tissue is modeled as a three parameter, viscoelastic material as

shown in Figure 25. If Ei were set to zero in this model, then the material would be

equivalent to a Kelvin-Voigt solid. If E2 were set to zero, then the material would act a

Maxwell Fluid. For the ET model, it is chosen that Ei=25·E2. Since the model is three

parameter, choosing this relationship between Ei and E2 makes this material behave more

like a viscoelastic solid which is appropriate since it is modeling tissue. Initial values of

EI, E2, and '1 were taken from previous studies [6], and these values are Ei=9.38x106
,

E2=3.75x105
, and 'l=3.25x106

• ' To implement this model, it is known that the material

satisfies the following convolution integrals.
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rt aG(r)
5ij = 2G(O)eij (t) +2J

o
eij (t - 1:) --a;-or

rt iJK(1:)
(Jij = 2K(O)ekk(t) +2 J

o
ekk(t - 1:)~ar

(8)

(9)

where a is the stress, s is the deviatoric stress, e is the deviatoric strain, G is the Shear

modulus, and K in the Bulk modulus, with the following definitions

1
Sij = (Jij - '3 0tj (Jkk

1
eij = Et) - '30ijEIeIe

E.. = ! (adt +adj )
l} 2 ax} aXi

(10)

(11)

(12)

where E.ij is the strain and di are displacements. For ADINA, the Bulk and Shear moduli

are directly input as Prony-Dirchlet series as defmed below.

N N

G(t) = Goo +LGie-Pit ,and K(t) = Koo +LKie-Pit (13)
t=l i=l

where Goois the long time shear modulus, Koo is the long time bulk modulus, and Pi. are

the decay coefficients. For the ET material model, we use the leading tenn and then only

the first term in the series, G1e-P1t and . K1e-P1t, respectively. We calculate the tenns in

the Prony-Dirchlet series directly from the tenns EI, Ez, and 11 from the original material

model as given by equations (14) through (20).

(14)

(15)

(16)
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EA (17)GA = 2 +2v

Eoo (18)
Koo = 3 - 6v

EA (19)KA =--
3 -6v

E1 +E2
(20)p=--

TJ

In the solid domain, there exists one major boundary condition that represents the

attachment of the ET to the cranial base of the skull. This is boundary condition ofzero

displacement on the lateral face of the cartilage. Just like in Chapter II, the TVPM force

is a directional force that pulls to the Hamulus position and the LVPM force is a pressure

that is normal to the surface. Since the FSI models are transient, the TVPM and LVPM

forces are now functions oftime. According to EMG data found in literature [18], the

muscle wave forms can be approximated as shown below in Figure 26.

-.
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Figure 26: Muscle Force Waveforms in Simulation

The LVPM force ramps up as a quarter sine wave over 0.5 sec, holds constant for 1.5 sec,

then ramps down as a quarter sine wave over 0.5 sec. The TVPM force is a half sine

wave with a duration of 1sec.

In the fluid domain, the working fluid is air and the flow is governed by the

incompressible, continuity and Navier-Stokes equation

aVt aVt aVj ap a2Vt
p-= Oandp~+pvt-=--+Il-- (21)

aXt at aXt aXt aXtXj

where p is the density of air, 1.229 kg/m3
, Jl is the viscosity of air, 1.8xlO-sPa's, and v is

the velocity vector. Since the FSI models are made to replicate clinical tests, a normal

traction is applied to the ME (least distal) end of the lumen and a zero pressure boundary
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condition is applied to the NP (most distal) end of the lumen to establish a baseline

flowrate. The other sides of the lumen are identified as FSI interfaces and have the

corresponding boundary conditions applied, which are described below.

For the FEA model to truly be a FSI model, then coupling between the solid and

fluid domains needs to exist. In ADINA, the coupling between the domains is achieved

by solving the equations for one domain, then solving the equations in the other domain

and iteratively going back and forth until convergence is reached. Between the domains,

there are three boundary conditions that are enforced. First, a kinematic condition

requiring displacement continuity is imposed.

d! = d~t t

The second condition requires velocity continuity between the domains.

(22)

(23)

It states that the normal velocity in the fluid domain on the interface must be equal to the

normal velocity of solid on the interface. The third boundary condition is a dynamic

condition that requires stress continuity between the domains.

(24)

Figure 27 shows a plot containing velocity vectors at different time steps in the

simulations when the muscles are acting on the ET.
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Figure 27: Velocity plot at different time steps in the simulation

Just like in Chapter II, once the flow field has been solved for, the velocity profile at the

mid cross section of the lumen is integrated at every time step to find the flowrate and

then a resistance parameter is calculated by

(25)

This resistance parameter is calculated to facilitate comparison of the numerical data with

experimental data. Since the models are transient, Q=Q(t) so the resistance can then be

found as a function oftime and plotted just like in Figure 5.

Finally, since these are transient models, some thought had to go into deciding on

a reasonable time step for the model to make computation as efficient as possible while

,yielding good results. The model goes through four distinct time regions during one

simulation. Looking at Figure 26, the first zone from time=O sec up until time=12.5 sec,

the pressure in the fluid domain is ramping up linearly from 0 mm H20 up to 200 mm

H20. Then from time=12.5 sec up to time=25 sec, the model is equilibrating, letting any

of the viscoelastic effects from the pressure ramp up decay away before the muscle

activity starts. Then from time=25 sec until time time=27.5 sec is when all the muscle

activity takes place as described in Figure 26. Then from time=27.5 sec until the
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simulation ends at time=30 sec the model is again allowed to equilibrate. Ideally, you

would like to take small time steps when the fluid pressure is ramping up, take large time

steps when the model is equilibrating, and then take very small time steps when the

model is undergoing muscle activity. However, it was found that changing the time step

multiple times during a simulation led to numerical instabilities in the solver and as a

result the solution would not converge. So the decision was made to fix the time step at a

reasonable value for stability. The time step of 0.1 sec was chose because it could easily

resolve all the muscle activ(ty~give a reasonable value of 300 time steps for a

simulation. Then, to validat~his choice, one simulation was run at a time step of 0.05

sec to compare the results.
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Figure 28: Comparison of results for different simulation time steps

As Figure 28 shows, cutting the time step in half produces exactly the same results. This

validates our choice of ~t=O.l sec, therefore all simulations were then run with a ~t=O.l

sec.
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B. Muscle Delay Timing Study

For this study, relative muscle timing was changed to see what influence it would

have on ET function when comparing the healthy adult to the cleft palate patient. The

parameter that was varied is td , as defined in Figure 29. Note that in the below figure, t d
J

is equal to 1 sec.
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Figure 29: Defmition ofDelay Time for Study

Physically, when tdis negative or larger than the duration of the LVPM, the TVPM acts

independently of the LVPM. When· tdJs in the middle of the range, the TVPM and
.

LVPM act together. The parameter tdWas varied through the range -1.0 sec up to 2.5 sec

with data points taken at an interval of 0.25 sec. Simulations were run at td= -1.0 sec,-

0.75 sec, -0.5 sec, all the way up to td=2.0 sec, 2.25 sec, 2.5 sec.
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C. Results

i. Results matching Forced Response Test

Experimental results from Forced Response Tests all have the same general shape

as seen below in Figure 30.
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Figure 30: Typical resistance plot showing different regions

In the above figure, from time=25 sec until time=26 sec, there is an increase in Rv, this is

known as a pre-swallow constriction and is mainly due to LVPM contraction. Then from

time=26 sec to time=27 sec, there is a sharp drop and rise of Rv, this region is known

swallow dilation and is mainly due to TVPM contraction. Finally from time=27 sec to

time=27.5 sec, this region is known as post-swallow constriction and is mainly due to

continued LVPM contraction. You can see all three of regions in all the experimental

data, such as Figure 5. On the vertical axis of Figure 30, one Can see that the resistance

values change very little, 0.5% - 1% while in Figure 5 the resistance values change

significantly, 75% - 100%. This is due to a meshing constraint within ADINA. ADINA
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can only use first order fluid elements, so as a result many"elements are needed to

discretize the fluid domain and produce accurate results. Shown in Figure 31 is the

Figure 31: ADINA Ouid domain mesh

mesh used in the fluid domain for all the simulations. Notice that seven elements are

needed across the lumen to get good results. The problem with using this mesh for the

ET is that when the ET opens or closes, the lumen goes through very large deformations,

on the order of 150% increase in volume, or a cross sectional aspect ratio (width of

opening/height of opening) change from 100:1 down to 5:1. The large deformations

cause the very small elements to collapse onto themselves which fails the simulation.

The sliver tetrahedron that are present across the opening of the lumen deform so much

that a tetrahedron will get turned inside-out or degrade far enough that it has an interior

angle of greater than 1200 therefore making the element invalid. Therefore, all models

need to be run with forces that are an order of magnitude lower than the prescribed

physiological forces. As a result, the change in flow resistance calculated by the FSI
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models are significantly smaller than the changes measured experimentally. This

problem is addressed more in Chapter N when new techniques are developed to solve

this problem.

ii. Results matching Modified Forced Response Test

As talked about in Chapter I, performing a Modified Forced Response test in the

clinic involves generating hysteresis loops in pressure and flow rate to help find

mechanical properties of the tissue. Since the FSI models created are transient, the

boundary conditions in the FSI models can be set to replicate this clinical test. Using this

clinical test is a very good way of validating the material properties of the FSI model.

Shown in Figure 32 is a comparison of a hysteresis loop obtained from a healthy adult

model and the results from the corresponding FSI model.
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Figure 32: Healthy adult hysteresis loop comparison
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Figure 32 shows that the computational model is in fairly good agreement with the

experimental test. The slope of the hysteresis loop appears to match, but the
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experimental model has more viscoelastic effects as given by more area in the loop.

However, we could not get the simulations to match the viscoelastic aspects of the

experimental data due to problems with the model. The hysteresis loop in Figure 32 was

obtained with the baseline material parameters used in the FSI models. The problem with

the model is that going back and changing the material properties then rerunning the

simulation has extremely minimal effect on the hysteresis loop. This problem has two

major sources. First, during the clinical test, the ET is open very little. To create an FSI

model, we used 200 mm H20 of pressure to create an open model as described in the

Methodology section in this chapter. However, using 200 mm H20 might have made too

large an ET opening. However, using 100 mm H20 ofpressure to create an open lumen

exacerbated the meshing constraints as described in the above Forced Response Matching

Results section. Secondly, the boundary conditions may not be exactly correct to get the

best results. Again, as stated in the Methodology section in this chapter, we use a zero

pressure boundary condition on the downstream end ofthe ET.

y

z~
x

Figure 33: Displacement magnitude plot from a Modified Forced Response Simulation
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As a result (shown in Figure 33), in the solid model there is no displacement and no stress

in the tissues near the NP end (least distal) of the ET implying that not all the tissue is

being engaged by the pulsatile pressure like in the clinical test. The simulations will not

give good results until all the tissue is engaged which might be able to be accomplished

by changing the boundary conditions. Right now, we impose a 200 mm H20 pressure

drop between the ME and the NP buy using 200 mm H20 at the ME and 0 mm H20 at the

NP because 200 mm H20 is externally applied in the clinical test and the pressure is

assumed to be 0 mm H20 in the NP. However, it might be possible to better replicate

clinical test results using 300 mm H20 at the ME and 100 mm H20 at the NP. Doing this

should help to engage all the tissue thus producing better results.

iii. Muscle Timing Study

The previous two results sections serve as qualitative model verification.

Although the current model does not match ofexperimental magnitudes perfectly, it does

reproduce experimentally perceived trends. Given this state of the model, it is verified

enough to do a comparative study. For this study, the goal is to find out how muscle

timing affects ET function in a healthy adult and a cleft palate infant. For each

simulation, a specific td was chosen and then a Forced Response Test was simulated. So

a total of 30 simulations were run to compile the data shown below. For this study, two

pieces of data were extracted from each simulation, the magnitude of pre-swallow

constriction and the magnitude ofthe swallow dilation. Figure 34 is a plot ofthe flowrate

of air through the ET from a simulation. The two quantities measured in this study are

shown on the graph.
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Figure 34: Definition ofquantities in Muscle Timing Study

All the results presented below in a new parameter called the sensitivity, which is

calculated differently from the sensitivity in Chapter II. This sensitivity parameter is best

described as a slope. To calculate the parameter, td =0 was taken as the baseline. The

sensitivity parameter is then defmed as

Rvltd=yy - Rvltd=o
yy-O

where yy can take on any of the td values, except 0 sec. During this study, sensitivities

were calculated with td =-1, t d =1, td =2, td =2.5.

All the results from the study are summarized in the following two graph and two tables.
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Figure 35: Magnitude ofLumen Dilation
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Figure 36: Magnitude of Pre-Swallow Constriction
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On the vertical axes ofboth of the graphs is l!.Q from baseline as defined in Figure 34.

Looking at Figure 35, you will see that the lumen dilation is largest in healthy adults

when the TVPM is acting independently ofthe LVPM (i.e. td is negative or very large).

Looking at Figure 36, as you would expect, when td is less than 0 sec, there is no pre-

swallow constriction since the TVPM is acting before the LVPM. In both figures, you

will notice that the line corresponding to the cleft palate patients is very flat compared to

the healthy adult line.

Table 4: Sensitivity of Swallow Dilation

Sensitivity of Swallow Dilation
Sensitivity Value Cleft Palate Healthv Adult

SensitivitYn .... -1 0.16 0.9018
SensitivitYn .... 1 0.0864 0.276
Sensitivityn .... 7 0.1563 0.1563

Sensitivity n .... 7-':; 0.1632 0.3921
Averll2es 0.141475 0.43155

Table 5: Sensitivity ofPre-swallow Constriction

Sensitivity ofPre-Swallow Constriction
Sensitivity Value Cleft Palate Healthv Adult

Sensitivitvn .... 1 0.0354 0.846
Sensitivitvn .... ? 0.0177 0.5241

Sensitivitv n .... ? <: 0.0064 0.4193
Avera~es 0.019833 0.59646

For these sensitivity values, the higher the sensitivity value, the more ofa change in ET

function is recorded. All the values in Table 4 and Table 5 reinforce the results from the

graphs. The adult sensitivities for both pre-swallow constriction and swallow dilation are

both much higher than the respective values for the cleft palate patient. This fact leads to

the biggest conclusion drawn from this study, cleft palate patients are insensitive to

muscle timing. This is not a big surprise given the cleft palate insensitivity to muscle

forces as found in Chapter II. In this study, the only difference in the models is the
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morphology; muscle forces, tissue stiffuess, and muscle timing are all the same. This

reinforces the hypothesis that morphology is the underlying factor in ET dysfunction and

changing muscle timing is not a viable option for treatment in this patient group.

D. Discussion

As·previously stated, it is imperative that we understand the mechanisms ofET

dysfunction ifwe want to be able to treat diseases such as chronic OM. In this chapter,

fully coupled FSI models were created to capture the transient phenomena that occur

during ET closing and opening. The models created were capable of reproducing

experimental trends so they were then used for a parametric study. This study included

one healthy adult patient and one cleft palate infant, and the parameter being investigated

was muscle delay timing. It was found that the cleft palate patient was insensitive to

muscle timing changes. Sensitivity values for the cleft palate patient were on the order of

0.14 and 0.019 respectively for swallow dilation and pre-swallow constriction while the

values for the healthy adult were 0.431 and 0.596 respectively for swallow dilation and

pre-swallow constriction. These values lead to the conclusion that the cleft palate patient

is insensitive to muscle timing changes and that therefore, changing the muscle timing in

these patients in not a viable option for treating ET dysfunction. This reinforces the

original hypothesis that only surgically correcting the morphology will lead to better ET

function.
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IV. Advanced Finite Element Techniques

A. Modeling the Middle Ear (ME)

Some efforts have been made into modeling the auditory canal, tympanic

membrane and Middle Ear (ME). During the clinical tests, the tympanic membrane is

punctured and the entire system from the edge of the auditory canal through the ME is

inflated with pressure. This allows the volume inside the middle ear to potentially act as

a pressure reservoir, supplying air flow through the ET. A literature search revealed that

the average volume ofthe ME in healthy adults was 0.5 cc3 [19]. Using this information,

a very rough CAD model of the auditory canal, tympanic membrane and the ME was

made as shown in Figure 37.

Figure 37: CAD model ofauditory canal, Tympanic membrane, and ME

The auditory canal is represented by a cylinder, then a round I mm diameter hole in the

tympanic membrane and a box with the anatomically correct volume of 0.5 cc3 to

represent the ME. This model was then incorporated into some ofthe FEM models to see
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what result it would have. It was inserted into a Modified Forced Response Test model as

shown in Figure 38.

A,
D
II

NI
A

Figure 38: FEA model including the Middle Ear Model

Figure 38 shows the scale difference of the ET problem. The ME is relatively large when

compared to the ET. For this model, the externally applied pressure was then applied to

the end ofthe auditory canal. Unfortunately, inserting the ME model had a minimal

effect on the overall results ofthe simulation. As mentioned in Chapter II, Section C, ii,

it is hypothesized that one ofthe problems with the model is the fact that the starting

lumen opening is too large. One result of this problem is large flowrates and therefore

small resistances when compared to the experimental data. Putting the ME model in the

simulation alleviated this problem slightly. The flowrates through the lumen were

effectively cut in half, so the resistances got larger, but were still much smaller than the

experiments. Modeling the ME to match clinical tests proved to have little effect now,

however the model ofthe ME is going to be very important in future problems, such as

simulating the drainage ofME mucus through the ET.

52



B. Large Deformation Modeling

Due to the large displacements seen during the opening and closing of the ET,

ADINA is not a suitable program for performing the analysis. Once this was realized, a

search began for a method that would be able to handle such large displacements. The

solution was found in a different FEA program called COMSOL.

The difference in the method goes all the way back to the very fundamentals of

the fmite element procedure. Once the geometry is meshed, basis functions must be

chosen to interpolate the unknown quantities across the elements. When performing

CFD, the unknown quantities, or Degrees of Freedom (DOF), are x-velocity, y-velocity,

z-velocity, and pressure. ADINA can only support basis functions that are first order,

meaning that only linear changes of the DOFs are allowed across any given element.

With something as complicated a fluid flow, this means that many elements are required

to capture the flow field. COMSOL can use elements that have much higher order basis

functions. To solve this specific mesh collapsing problem, elements with 4th order basis

functions are implemented. This means that now the DOFs can vary as a 4th order

polynomial across any given element. With 4th order elements, the element itself can be

much larger so fewer are required to capture the flow field with the same accuracy as frrst

order elements.

This method difference can easily be verified. In Ohadiali et al. [8], an analytical

solution is derived for pressure driven flow through a spinal needle that is 0.3 mm in

diameter and 8 cm in length. The analytical solution gives the following relationship

between pressure difference and flowrate through the needle.

(27)
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where llP is the pressure drop across the length of the needle, L is the length of the

needle, A is the cross sectional area of the needle, J.l is the viscosity of the working fluid,

and r is a hydraulic shape factor based only on the geometry. Using air as the working

fluid, a 200 mm H20 pressure drop through the needle, L=8 c~ A=1tR2 for a circle, and

r=81t for a circle, the flowrate Qcan be found to be 2.703e-7 m3/s. Then the spinal needle

is modeled in both ADINA and COMSOL with their corresponding meshes. The

differences in the mesh are outlined in Figure 39.

ADINA

1st order elements, 188 elements
on a face, 35 divisions down the
length of the needle

Flowrate: 2.73c-7 m3/s
%Difference from Theory: 1%

COMSOL

4th order elements, 24 elemcnts on
a face, 35 divisions down the
length of the needle

Flowrate: 2.707c·7 m3/s
%Difference from Theory: 0.1%

Figure 39: Comparison oftbe mesh used in both system verification models

As seen in the figure above, the ADINA model used 188 elements on a face with 35

divisions down the length of the needle giving a total of6580 1st order elements resulting

in a 1% difference with its calculated flowrate as compared to the theoretical value.
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\vhere t:.P is the pressure drop across the length of the needle. L is the length of the

needle. A is the cross sectional area of the needle. I.l is the viscosity of the working fluid.

//

and r is a hydraulic shape factor based only on the geometry. Using air as the working

fluid. a 200 mm H"O pressure drop through the needle. L=8 em, A=rcR" for a circle. and

r=8J[ for a circle, the tlowrate Q can be found to be 2.703e-7 m3/s. Then the spinal needle

is modeled in both ADINA and COM SOL with their corresponding meshes. The

differences in the mesh are outlined in Figure 39.

ADINA
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on a face. :i5 cllvlslomelown the
length of the neeelle
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length of the neeclle

Flowrate: 2.707e-7 m;/s
':\, Difference from Theory: 0.1'\,

Figure 39: Comparison of the mesh used in both system verification models

As seen in the figure above. the ADINA model used 188 elements on a face with 35

divisions down the length of the needle giving a total of 6580 Ist order elements resulting

in a I% difference with its calculated flowrate as compared to the theoretical value.
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cOMSOL used only 24 4th order elements on a face with 35 divisions down the length of

the needle for a total of 840 4th order elements resulting in a 0.1% difference with its

calculated flowrate as compared to the theoretical value. Note that in Figure 39, the

COMSOL mesh plot shows linear elements. The elements are truly 4th order as basis

functions, and also 4th order in shape as well, however cOMSOL has no way of

visualizing higher order elements. This verifies that 4th order elements can be just as

accurate as 1st order elements even though they are much bigger.

Applying this new method to the ET problem yields very good results. Using 4th

order elements allow us to use very few elements across the lumen opening thus allowing

for much larger displacements. Pictured below is a test model that demonstrates this new

method.

.,0-3

....

........

.... ".

: .' . /~~~~<.."
: ../ .... "
>. "\" :
/"'/' ", .

,

\,'... ' ,

('
\1
"~.1>3

Figure 40: Test model in COMSOL using new method

In this new test model, there is an anatomically correct lumen opening surrounded by a

cylinder ofcartilage. This a fully coupled FSI model to demonstrate how using a mesh
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with mixed elements types work. The cylinder is meshed with 2nd order tetrahedral solid

elements while the fluid domain is meshed with 4th order tetrahedral fluid elements and

the domains are coupled using an Arbitrary Lagrangian Eulerian (ALE) method.

Figure 41: Mesh in the COMSOL fluid domain

As you can see in Figure 41, the mesh of4th order elements is much coarser than the

mesh of 1st order elements used in Figure 31. In COMSOL, only two elements across

the lumen opening are needed. Having these large tetrahedral allows for much more

deformation without any element collapse.

In this model the cartilage is represented by a hyper-elastic Mooney-Rivlin

material model just as in ADINA. The material model is formulated the same way as

described in Chapter II, Methodology, equations (1) - (4). In the fluid domain, the flow is

governed by the incompressible continuity and Navier-Stokes equation just as described

in Chapter ill, Methodology, equation (21). The major difference between ADINA and
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\vith mixed elements types work. The cylinder is meshed with 2nd order tetrahedral solid

elements while the fluid domain is meshed with 4th order tetrahedral fluid elements and

the domains are coupled using an Arbitrary Lagrangian Eulerian (ALE) method.

Fi!!ure 41: Mesh in the COM SOL fluid domain

As you can see in Figure 41. the mesh of 4th order elements is much coarser than the

mesh of Ist order elements used in Figure 31. In COMSOL. only two elements across

the lumen opening are needed. Having these large tetrahedral allows for much more

deformation without any element collapse.

In this model the cartilage is represented by a hyper-elastic Mooney-Rivlin

material model just as in ADINA. The material model is formulated the same way as

described in Chapter II. Methodology, equations (I) - (4). In the fluid domain, the flow is

governed by the incompressible continuity and Navier-Stokes equation just as described

in Chapter III. Methodology, equation (2 I). The major difference between
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COMSOL is in how the FSI coupling is done. As stated before, ADINA solves the fluid

domain, then solves the solid domain and iterates back and forth between the domains

until convergence is reached. In COMSOL, an ALE method is used which introduces

more DOFs into the model, but then, in this case, solve the fluid equations in the moving

frame ofreference as defined by the ALE method. In the ALE method, let the fixed

spatial coordinates be X, Y, Z and let the moving.coordinate system be defined as X, y, z.

x, y, and z are new variables introduced into the model that must be solved for. So at the

beginning ofthe problem, X and x are the same, Y and yare the same, and Z and z are

the same. The equations for the ALE displacements are as follows.

a2 ax a2 ax a2 ax
aX2at +ay2 at +aZ2at = 0

a2 ay 02 ay 02 ay
aX2at +ay2 at +aZ2at = 0

a2 az 02 az a2 az
aX2at + ay2 at + aZ2at = 0

(28)

(29)

(30)

Now, all the equations for the solid domain written in the fixed reference frame, the ALE

equations, and the equations for the fluid domain written in the moving reference frame

are all assembled into one system and solved simultaneously.

Results from this test model are very promising. Figure 42 is shows a snapshot of

the deformed model as well as fluid streamlines at a given point during the simulation.
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Figure 42: Deformed COMSOL test model

The most important thing to note about this model is the scale ofthe deformation. The

original lumen opening is roughly 2 mm tall and 0.1 mm wide then undergoes

displacements on the order of0.3 mm, and strains ofgreater than 10 %. Comparing the

volume of the lumen opening ofthe un-deformed model to that of the deformed model

shows the opening underwent a 262% increase in lumen volume without.element

collapse.
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v. Conclusions and Future Work

In Cliapter II, decoupled FEA models were created so that a parameter variation

study could be conducted in both a healthy adult patient and in cleft' palate patients. The

parameter variation study in the healthy adult showed that ET function is most sensitive

to TVPM force magnitude and the modulus ofelasticity ofthe glandular tissue, changing

these two parameters made the biggest difference in how well the ET performed. This

conclusion is based on the sensitivity values in Table 2. The only parameters with a high

impact sensitivity values were the TVPM magnitude, 5.516 and the EGland, 0.217. All the

other parameters had sensitivity values that were close to 1 meaning that changes in these

parameters had little to no effect on ET function. The sensitivity value for the TVPM

being much greater than I impli~s that increasing the TVPM force improves ET function,

and the sensitivity value for the glandular tissue being much smaller than I implies that

decreasing the tissue stiffness improves ET function. Using this information, a parameter

variation study was done in six cleft palate patients where the TVPM and LVPM force

magnitude was varied to study its respective impact when the morphology is altered. It

was found that most patients showed little sensitivity to the TVPM force, however there

was an outlier patient that showed extreme sensitivity but this due mainly to the highly

altered morphology and size difference compared to the other patients. Both the TVPM

and LVPM magnitudes had very low average sensitivity values, 1.46 and 1.00

respectively. These results reinforce that hypothesis that the morphology is the

underlying cause for poor ET function. Studying the results of the most current studies

and previous studies done in our lab [6-9] suggest that the only way to improve ET
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function in pathological patients with a cranio-facial disease, such as a cleft palate, is to

surgically alter ET morphology. This can be accomplished at the same time when the

surgeon is repairing the hard palate.

Then in Chapter Ill, fully coupled FSI models ofthe ET were created to better

replicate two clinical tests and to capture the complex ET opening and closing

phenomena observed experimentally. The FSI models created were able to both

qualitatively and quantitatively replicate experimental trends with some limitations. The
"'-)

models were then used to perform a parameter variation study where relative TVPM and

LVPM timing was varied to see its effect on ET function. It was shown that the cleft

palate patient showed very little sensitivity to muscle timing compared to the healthy

adult patient. As showed in Table 4 and

Table 5, the sensitivity values ofthe cleft palate patient is significantly lower than the

sensitivity values ofthe healthy adult. This is not a surprising result given the results

from Chapter II showing that changes in the TVPM and LVPM muscle forces had little

effect on ET function. Again, this reinforces the hypothesis that altering the morphology

is the only way to restore ET function.

Then in Chapter IV new techniques were developed to model more of the

complicated ET system. A model was developed that connected the ME with the ET and

will be used in the near future to create FSI models that simulate gas exchange dynamics

and the drainage ofhighly viscous ME fluid via the ET. Then, a new technique based on

the fundamental principles of the finite element method was developed that allows the ET

models to undergo the large displacements that failed in earlier simulations. Based on the

idea of using less elements with higher order basis functions allows for larger
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displacements. in the complex 3D geometry that is present in the ET problem. Results

from this new technique are very promising. A test model created with an anatomically

correct lumen opening demonstrated that the new model allowed for a 262% increase in

the lumen volume without any element collapse. This will allow for all the older models

to be run at the full, physiological levels to even better replicate ET function.

In the future, the goal is to develop a multi-scale model ofthe ET that can account

for the molecular scale adhesion forces referenced in Figure 1, while implementing oUr

new large displacement method. During inflammatory conditions, it is hypothesized that

due to changes in surface tension and mucosal surface conditions, molecular scale

adhesion forces dominate BT function and can completely pr~nt the ET from opening.

Also, the FSI model is going to be used along with the model of the ME to investigate the

drainage mechanism of highly viscous mucus through the ET, as well as gas exchange

dynamics in the ME.
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