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Abstract

New methods are needed to recover water and heat from boiler flue gas in order

to reduce overall plant water intake, increase efficiency, and reduce harmful emissions.

This project involved design and testing of a condensing heat exchanger for use in pilot

scale testing with an oil or coal fired boiler. The heat exchanger design described in this

report consists ofvertical cylindrical tubes in cross-flow, with cooling water on the inside

of the tubes and the flue gas flowing on the outside of the tubes. The heat exchanger was

split into stages so that acid can be condensed in the early stages, while the water will be

condensed in the later stages. Testing was done using flue gas provided by Lehigh

University's steam generation plant, which burns No.6 fuel oil. The results from six

tests show that 80% of the total moisture present in the flue gas was condensed and

recovered. The sulfuric acid measurements showed that 80% of the sulfuric acid mist

was condensed from the flue gas. The sulfuric acid was collected mostly in the early

stages ofthe heat exchanger, while the water condensed separately in the later stages of

the heat exchanger.
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1.0 Introduction

Every fossil fuel power plant needs a massive amount of water to operate. Some

plants take in up to 50 million gallons ofwater each day [5]. For some power plants, it

can be difficult to obtain enough cooling water for its processes. Other plants are looking

to limit their impact on the environment and the local marine life. Yet power plants

release a large amount of water vapor into the atmosphere through the stack. The flue

gas is a potential source for obtaining much needed cooling water for the plant.

Water is a natural product ofcombustion. Depending on the fuel being burned,

the flue gas can contain up to 20% moisture (by volume). If a power plant can recover

and reuse a significant portion of this moisture, it can lower its total cooling water intake

requirement. The most practical way to recover this water is to use a condensing heat

ex'Changer. In doing so, the plant can also recover lost heat. A plant's overall thermal

efficiency directly depends on how much heat it releases to the atmosphere. In addition,

harmful acids exist in the flue gas which are normally released through the stack. Some

of these acids can conceivably be condensed out along with the water. The benefits of

condensing the flue gas are threefold:

1. Recover Water

2. Recover Heat

3. Reduce emissions

The goal of this project is to create a new and cost effective design for a

condensing heat exchanger, to be used in coal fired power plants. The heat exchanger

will recover moisture from the flue gas, improve efficiency, and reduce harmful

emISSIOns.
2



2.0 Theory

2.1 Sources of Water

The water that exists in flue gas comes from three sources. First, water is a

product of combustion. Any fossil fuel has hydrogen, and the hydrogen is oxidized to

form water. Second, water is present in the fuel. Coal can consist of up to 40% moisture,

and this moisture evaporates during combustion. Third, moisture is present in the air

used for combustion (humidity). Figure 2.1 shows the total moisture content of the flue

gas produced by different fuels.
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Figure 2.1. Flue Gas Moisture Content by Fuel
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It can be seen from the figure that plants which bum a high moisture coal (such as

a lignite or subbituminous coal) or natural gas, can release a significant amount ofwater

through the stack.
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Figure 2.2. Typical Coal and Flue Gas Moisture Flow Rates for a 600 MW Power Plant

[3]

Figure 2.2 sho typical coal and flue gas moisture flow rates for a 600 MW

power plant.

In comparison, a ical cooling tower in a 600 MW unit has an evaporation rate of about

1.6 million lbs/hr. So, if even 80% of the water in the flue gas can be recovered, then a

lignite plant could su 'tute 30% of its total cooling tower water requirements with

recycled water from the flue gas



2.2 Psychrometries

2.2.1 Water

In order to recover the water from the flue gas, a condensing heat exchanger will

be used to cool the gas-vapor mixture to a temperature below the dew point of the water.

Once water begins to condense out, the gas-vapor mixture is said to be saturated. This

means that the gas is holding the maximum amount ofmoisture possible at that

temperature and pressure. The dew point of water varies according to the volumetric

percentage of water in the flue gas. Figure 2.3 shows how the dew point ofwater varies

according to the water content.
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Figure 2.3. Dew Point of Water as a Function of Volumetric Percentage of Water in Flue

Gas (Atmospheric pressure) [3]
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Using this principle, the amount of water to be removed can be achieved only if

the flue gas can be cooled to a certain temperature. For example, a plant burning No.6

Fuel oil with a flue gas moisture content of 10% by volume wants to recover water. In

order to condense 80% ofthe total moisture by volume, the outlet flue gas must have a

moisture content of2% by volume. According to Figure 2.3, the flue gas must be cooled

to a temperature below 70°F in order to condense the desired amount ofwater.

Therefore, the amount of water that can be condensed out of the flue gas is restricted by

the ability to cool the flue gas to a certain temperature. This suggests that water recovery

from flue gas may only be practical for plants that bum fuel which has a high moisture

content.

2.2.2 Acids

Similar to the condensation of water, acids present in flue gas will also be

condensed out with respect to their individual dew points. Three acids will be considered

in this report: sulfuric acid (H2S04), nitric acid (RN03), and hydrochloric acid (Hel).

Flue gas from coal or oil contains small quantities of SO/-/H2S04 in the vapor

phase (the maximum expected range is 20 to 40 ppmv), depending on the characteristics

of combustion and the amount of sulfur in the fuel. The dew point temperature of the

SO/-/H2S04depends on this concentration, as well as the amount ofwater present in the

flue gas. For the scope of this project, the expected dew point of the SO/-/H2S04 in the

flue gas is 280°F to 300°F [3].

6



The dew points of the other two acids are determined by the same factors. For

RN03 the expected dew point range is from 65°F to 110°F. For HCI, the expected dew

point range is from 100°F to 120°F [3].

The design of the condensing heat exchanger for this project takes advantage of

the higher dew point temperature of sulfuric acid. As the flue gas cools, the first vapor to

condense out will be the sulfuric acid. Later in the process, water will condense out at

roughly the same temperature as both RN03 and HCl. For this reason, the heat

exchanger will be built into sections so that the sulfuric acid condensate can be collected

separately from the water and other acids. This will assist in purification of the flue gas

condensate to ensure that it can be used in other processes in the plant. However, it may

present some corrosion issues. These topics will be discussed in greater detail later in the

report.

2.3 Efficiency

The outlet temperature of the flue gas directly affects the overall thermal

efficiency of the plant. If the proposed recovered heat is used somewhere else in the

plant, the overall thermal efficiency of the plant will be improved by using heat

exchangers to recover water from the stack gas.

2.4 Heat Transfer

The heat exchanger to be modeled will be a shell-and-tube, counter flow system. It

will consist ofbanks of tubes in cross-flow in which, cooling water is flowing on the

inside of the tubes, and the flue gas is flowing over the outside of the tubes. It will

recover both sensible and latent heat.

7 --.



2.4.1 Log Mean Temperature Difference Method

The Log Mean Temperature Difference was used to design and develop the stages of

the heat exchanger. The main equations are as follows:

Q=UAI1T;m (2.1) [1]

(2.2) [1]

where, Q is the heat transfer, U is the overall heat transfer coefficient, A is the overall

heat transfer surface area, and 11Tim is the log mean temperature difference.

Tc,i
Water

,

,i
Heat

Th,o

Exchanger
Gas

Tc,o

Flue

Figure 2.4. Heat Exchanger Flow Diagram

In Figure 2.4, Th,i, etc. refer to the temperatures of the hot or cold fluid, at the inlet

or the outlet. The hot fluid is the flue gas, and the cold fluid is the cooling water. The

temperature differences are then implemented in the Log Mean Temperature difference

as follows: .

/-
(2.3) [1]

(2.4) [1]
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The log mean temperature difference method was developed for either parallel

flow or counter flow heat exchangers. However, this study utilizes a cross flow heat

exchanger, so a correction factor must be applied [1].

(2.5)[1]

The overall heat transfer coefficient for a tube in cross flow is calculated by the

following equation, assuming no fouling:

(2.6) [1]

Aoand Ai are the outside and inside surface areas, respectively. Do and Dj are the outside

and inside diameters of the tube in cross flow. "L" is the length of the tube, and "k" is

the thermal conductivity of the tube material. "hi" and "ho" are the inner and outer

convection coefficients.

The design approach involved an iterative process where, the VA needed was

calculated and a configuration was chosen with respect to duct dimensions, tube size,

number of tubes, etc. The heat transfer properties were then calculated, including the VA

supplied by the proposed configuration. The _VA needed was compared with the VA

supplied, and adju~tments were made until the two matched.

2.4.2 Mass and Energy Balance

In order to calculate the VA needed, the total heat transfer must be known. Since

there will be condensation in some of the heat exchangers, both sensible and latent heat

must be considered. The heat transfer can be derived from a control volume analysis.

9



Flue
,

Flue
Gas Gas

Heat
Exchanger

Water Water
Vapor Vapor

Condensate

Figure 2.5. Control Volume Analysis

Through conservation of mass, the following equations can be derived:

. .
mdfg,in =mdfg,out

mdfg,in : mass flow rate of dry gas in

mdfg,out : mass flow rate of dry gas out

mV,in : mass flow rate ofwater vapor in

mv,out : mass flow rate ofwater vapor out

m : mass flow rate of condensate outcond

(2.7)

(2.8)

Through conservation of energy, the heat transferred to the cooling water can be derived:

Qfg : heat transfer from flue gas

hdfg,in : enthalpy of dry gas in

hdfg,oUl : enthalpy ofdry gas out

10
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hv,in : enthalpy ofvapor in

hv,oul : enthalpy of vapor out

hcond : enthalpy of water condensate out

Equation 2.9 shows the formulation for the heat transferred from the flue gas. In

order to do an energy balance, it must be determined to where the heat is transferred. The

objective is to transfer all of the heat to the cooling water running through the heat

exchanger tubes. However there will be some losses to the surrounding environment.

Qcw : heat transfer to cooling water

Q10ss : heat transfer lost to surroundings

2.4.3 Condensation

In order to design the heat exchanger, Qfg must be calculated. The known

parameters for the design are:

1. Flue gas flow rate

2. Flue gas inlet and outlet temperature and pressure

3. Cooling water inlet temperature and pressure

4. Flue gas inlet moisture content

(2.10)

The only unknown left in Equation 2.9 is the condensate mass flow rate. It is assumed

that for each heat exchanger that produces condensation, the exiting flue gas will be

saturated. This means that the relative humidity of the flue gas exiting the heat exchanger

is 100%. The inlet moisture content is specified by volumetric ratio (<1».

11
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Where Vv is the volumetric flow rate of the vapor, and VW!g is the volumetric flow rate of

the wet flue gas. The total pressure of the flue gas can be broken down into the sum of

the partial pressures of the vapor and dry flue gas:

(2.12)

The moisture content is equivalent to the ratio of the partial pressure of the vapor to the

total pressure of the wet flue gas, assuming the ideal gas law applies [4].

(2.13)

Assuming that the pressure of the wet flue gas is at atmospheric pressure, the partial

pressure of the vapor can be calculated, given <D. The humidity ratio is defined as the

mass of water vapor divided by the mass of dry flue gas [4].

(2.14) [4]

Using the ideal gas law, this ratio can be expressed in terms ofpartial pressures and

molecular weights.

(2.15) [4]

Combining Equations 2.12 and 2.15 results in:

(2.16) [4]

Combining Equations 2.13 and 2.16 results in

(2.17)

12



Because the flue gas vapor exiting the heat exchanger can be assumed to be

saturated, if the exit temperature and pressure are known, the partial pressure of the vapor

is equal to the saturation pressure of the vapor. For example, flue gas exiting a

condensing heat exchanger at 100°F contains saturated water vapor also at 100°F.

Therefore, the partial pressure of the vapor can be found in a table containing properties

of saturated water. In this case, the partial pressure is 0.95 psi [4].

At this point, humidity ratios can be calculated for both the inlet and the outlet of

the heat exchanger, given the following known properties:

1. Inlet volumetric moisture content

2. Molecular weights for water and flue gas

3. Total pressure of flue gas

4. Outlet temperature of flue gas

By conservation ofmass, the condensate flow rate is

(2.18)

Where the mass flow rate of the wet flue gas is comprised of vapor and dry flue gas:

Combining Equations 2.14, 2.18, and 2.19 leads to

(2.19)

(2.20)

Combining Equations 2.14, 2.18, 2.19, and 2.9 leads to the final equation from which the

total heat transfer can be calculated:

13
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The only unknowns left in equation 2.6 are the convection coefficients and the

heat transfer surface areas. The heat transfer required is known from equation 2.21. Now

is the time to select a configuration for the heat exchanger, calculate convection

coefficients, and calculate the UA and try to match it to the UA required.

2.4.4 Gas Side Convection Coefficient

The heat exchanger will be modeled as banks of cylindrical tubes in cross flow.

A relati?nship must be determined between the characteristics of the flue gas flow and

the geometry of the tubes. The Nusselt number for a cylinder in cross flow is:

-
- hD
NUD=-

k

Where h is the gas side convection coefficient, D is the diameter of the cylinder, and k is

the thermal conductivity of the gas. There are numerous empirical formulations for

calculating the mean Nusselt number. For this st\ldy, the Zhukauskas correlation was

used for banks of tubes in cross flow:

( J

1/4
- Pr
NUD =C .Re; Pr°.36 -

Prs

The Zhukauskas correlation is valid over the following range of conditions:

NL 2: 20
0.7<Pr<500
1000 < ReO,max < 2 x 106

(2.23)[1]

[1]

Where Reo,max is the maximum Reynold's number based on the diameter of the cylinder:

R - vmaxDeDmax -
, lJ

14
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Vmax is the maximum velocity through the banks of tubes, and u denotes kinematic

viscosity.

In Equation 2.23-,..Fr is the Prandtl number, and Prs is the Prandtl number

evaluated at the surface temperature of the cylinder. NL is the number ofbanks of tubes
/

in the direction of the flow. A correction factor may be applied for a set of tubes with

less than 20 banks of tubes, according to Table 2.1.

1 234 5 7 10

(2.25)[1 ]

13 16

Aligned
Staggered

0.70 0.80 0.86 0.90 0.92
0.64 0.76 0.84 0.89 0.92

0.95 0.97
0.95 0.97

0.98 0.99
0.98 0.99

Table 2.1 Correction factor C2 for Equation 2.26 for NL < 20 (ReD> 103) [1]

The constants C and m in Equation 2.23 can be found in Table 2.2, depending on

the configuration and Reynold's number.

Configuration ReD,max C m

Aligned,
103

- 2 X 105 0.27 0.63(ST/SL > 0.7)

Staggered, 103
- 2 X 105 O.35(ST/Sd1/5 0.60

(ST/SL < 2)

Staggered,
103

- 2 X 105 0.40 0.60
(ST/SL > 2)

Aligned 2 x 105 - 2 x 106 0.021 0.84

Staggered 2 x 105 - 2 x 106 0.022 0.84

Table 2.2. Constants of Equation 2.25 for the tube bank in cross flow [1]

15



"Staggered" and "Aligned" refers to the configuration of subsequent banks of

tubes. Figure 2.6 shows the difference, as well as the dimensions ST, SL, and So.

S S
L L

00 V
ST

ST

00 0
vel fg

Aligned Staggered

Figure 2.6. Cross Section of Tube bank configurations [1]

For flow where Reo,max < 1000, the Nusselt number can be approximated by flow

over a single cylinder. For this, the Hilbert correlation can be used:

C and m are constants determined by Table 2.3.

ReD,max

0.4-4

4 - 40

40 - 4000

c

0.989
0.911
0.683

m

0.330

0.385
0.466

(2.26)[3]

Table 2.3. Constants of Equation 2.27 for the circular cylinder in cross flow [1]

Once the Nusselt number has been calculated, the gas side heat transfer

convection coefficient can be calculated from Equation 2.22.

16



2.4.5 Water Side Convection Coefficient

The water side convection coefficient will be determined by modeling the system

as flow through a straight cylinder. The Nusselt number for internal flow largely depends

on whether the flow is laminar or turbulent. Both cases will be considered for this

project.

For turbulent flow, the Gnielinski correlation will be used.

Nu = (f /8)(Re D-I000)Pr
D 1+12.7(f/8)l/2(Pr2/3-1)

For conditions:

0.5 < Pr < 2000

3000 <ReD < 5 x 106

(2.27)[1]

In Equation 2.27,fis a friction factor determined by the Moody diagram, ReD is the

Reynold's number for the flow of the water inside the tube (see Equation 2.28), and Pr is

the Prandtl number evaluated at the bulk temperature of the water.

vD
Reo=-

v
(2.28)

The diameter used in Equation 2.28 is the inner diameter of the tube, and v is the bulk

fluid velocity. Once the Nusselt number is known, the water side convection coefficient

can be calculated from Equation 2.22.

For laminar, fully developed flow, the Nusselt number for internal flow through a

circular tube can be approximated as a constant. Assuming uniform surface heat flux,

NUD =4.36

17
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Because of the nature of the heat exchanger, the flow may not be fully developed

throughout the tube. For low Reynold's numbers,

NU
D

=1.86(ReD pr)I/3(J!...]O.14
LID J.1s

where L is the length of the tube and Jls is the viscosity evaluated at the surface.

(2.30)[1]

Once the inside and outside convection coefficients for the geometry are known,

UA can be calculated by Equation 2.6. Adjustments should be made to the geometry or

the outlet gas temperature until the UA supplied equals the UA required.

2.4.6 Condensation effect on heat transfer

In general, water condensing on the surface of a tube in cross-flow will improve

the heat transfer. For design purposes, this is neglected in this study to ensure a higher

factor of safety.

18



3.0 Design

3. 1 Scope of Design

The scope of this project was to design and build a multi-stage heat exchanger in

order to recover water and heat, and to extract acids from the flue gas of a fossil fuel

power plant. The heat exchanger was built on the Cf\.l1lpUS of Lehigh University and

installed at the on-campus steam generation plant. The unit bums eit4er natural gas or

No.6 fuel oil. A slip stream of flue gas was extracted after the economizer and routed

through the heat exchanger assembly.

3.2 Design Specifications

The design criteria for the heat exchanger are listed in the following table.

Flue Gas Inlet Temperature 450 degrees F
Flue Gas Outlet Temperature 90 degrees F
Flue Gas Flow rate 300 Ib/hr
Flue Gas Inlet Moisture Content 10 % (vol)
Flue Gas Outlet Moisture Content 5 % (vol)
Cooling Water Inlet Temperature 55 degrees F

Table 3.1. Design Specifications

3.3 Design Approach

The proposed solution [3] consists of three stages of heat exchangers. The

purpose of the first stage will be to condense out sulfuric acid. This stage will need to

have some type of resistance to corrosion. The second stage will be a "buffer stage", in

order to ensure that all of the acid has been removed. The third stage is the condensing

stage, where the majority ofthe water will be recovered.

19



There are three main components to the design: the duct, the heat exchanger, and

the supporting structure. Each will be briefly examined in this section.

3.4 Ductwork

It was necessary to build ductwork in order to transport the flue gas from the exit

of the economizer to the part of the plant where the heat exchanger was to be built. First,

an adapter to the existing ductwork was needed. For this, a custom built, sheet metal

door adapter was built which transitioned into a round duct fitting.

A damper gate was fixed to this section in order to control the flow rate of the flue

gas.

From the economizer adapter and damper gate, a high temperature, corrosion

resistant, insulated, flexible hose duct was used to carry the flue gas to the heat

exchanger.

After the heat exchanger, an eight foot straight length ofPVC pipe was used to

create a laminar, fully developed flow region (temperatures below 100 degrees

Fahrenheit were expected here). In this section a pitot tube was implemented to measure

the pressure drop due to the flow velocity.

After the pitot tube, an induced draft fan was used to draw the flue gas through

the heat exchanger system.

After the fan, another flexible hose duct was used to exhaust the/ remaining flue

gases to the roof. All ductwork and sheet metal adapters were supported by steel wire­

ropes suspended from the framework of the ceiling. High temperature silicone, and

20



glass-fiber gaskets were used to seal all connections. The ductwork and the overall

scheme of the system can be seen in Figures 3.1 - 3.3.

Window

Figure 3.1. Front view of heat exchanger and ductwork
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Top

eo.t excho.ngers

Boiler

Figure 3.2. Top view of heat exchangers and ductwork

1 1 1 1
Boiler

Side

Figure 3.3. Side view ofheat exchangers and ductwork
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3.5 Heat Exchanger Design

The heat exchanger design utilized banks of aligned, vertical cylinders in cross-

flow. Vertical cylinders were chosen in order to control the condensation occurring on

the tubes.

It was necessary that the heat exchangers could be easily taken apart to observe

and clean any acid buildup on the tubes. For this reason, the heat exchangers were

modeled after the standard "shell-and-tube" heat exchanger.

As mentioned in the introduction, a standard shell and tube heat exchanger could

not be used because of the high cooling water requirement. A typical shell-and-tube has

many straight tubes in a cylindrical shell, and the water flows in a straight path through

the heat exchanger. The flue gas makes several u-turns flowing over baffles, in order to

enhance heat transfer.

Tube
Outlet

Shell
Inlet Baffles

Shell Tube
Outlet Inlet

Figure 3.4. Shell-and-tube diagram [Courtesy Washington University - St. Louis]
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In order to maintain this effect, the heat exchanger designed in this project simply

switches the paths of the two fluids. The new design uses bent tubing in a straight duct,

so that the flue gas will flow in a straight path, but the water will make several u-turns.

Flue Gas
_

_ ....~----- ~OOling Water

.. -----.llll.Ulll .. Flue Gas

Side View

Top View

Figure 3.5. New heat exchanger design

Figure 3.5 shows the basic design. This arrangement allows for a similar surface

area as compared to the traditional shell-and-tube, but uses fewer tubes.

The tube bundles are welded to the top plate and a cap is welded on the outside of

the plate to act as manifolds for the inlet and outlet cooling water.
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Figure 3.6. Top cover and manifold

Figure 3.7. Tubing bundles

The tube bundle and top cover units are dropped down into a trough-like,

rectangular shell. The lower wall of each shell is slightly tapered to allow the condensate

to drain freely. The shells are also equipped with various porthole fittings to allow
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Figure 3.6. Top covcr and manifold

Figure 3.7. Tubing bundles

The tube bundle and top cover units are dropped down into a trough~lik~, ,

rectangular shell. The lower wall of each shell-is slightly tapered to a"l!ow'the condellsate

, -

to drain freely. The shells are also equipped with various porthole fittil1gS to 'allow
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thermocouples and stack probes to be inserted during operation. Figure 3.8 shows the

details of the shell.

L

Figure 3.8. Heat exchanger shell

The original design for the heat exchanger called for three stages: the acid stage,

the buffer stage, and the condensing stage. After completing the calculations for the
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thermocouples and stack probes to be ins!.?rted during operation. Figure 3:8 shows the

details orthc shell.
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-,$>_/I
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Figure 3.8. Heat exchanger shell

. 'the original design for the heat exchang<;r called for three stages: the acid 'stage,
. . . .' .

the butJerstage, and the condensing stage. After completing the calcltlati~ms for the
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design, it was found that it would be best to break the heat exchanger into six parts. The

first part is a preliminary section, used only if the inlet flue gas was above the desired

temperature. The second part is the "acid stage", third part is the "buffer stage", and

parts 4-6 comprise the "condensing stage". The heat transfer performance design

specifications can be found in Table 3.2. "Transverse" refers to the direction

perpendicular to the flow of flue gas. "Longitudinal" refers to the direction in line with

the flue gas.
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Heat Exchanger Performance Design Specifications

Units HX 1 HX2 HX3 HX4 HX5 HX6 total

temperature of flue gas in deg F 450 310 205 146 103.2 97.1
temperature of flue gas out deg F 310 205 146 103.2 97.1 89.2
mass flow rate of flue gas Ib/hr 300 300 300 300 300 300

temperature of cooling water in deg F 125 125 125 65 65 65
temperature of cooling water out deg F 136.2 133.4 129.7 74.9 70.2 68.9
mass flow rate of cooling water Ib/hr 900 900 900 900 900 900
transverse tube spacing pitch in 0.722 0.722 0.722 0.722 0.722 0.722

longitudinal tube spacing pitch in 2 2 2 2 2 2
width of flue gas duct in 14 14 14 14 14 14
height of flue gas duct in 6 6 6 6 6 6

number of rows in the longitudinal
direction 4 6 10 14 14 14

number of rows in the transverse
direction 8 8 8 8 8 8

length of heat exchanger section ft 0.708 1.042 1.708 2.375 2.375 2.375 10.6
outside diameter of cooling tube in 0.5 0.5 0.5 0.5 0.5 0.5

inside diameter of cooling tube in 0.37 0.37 0.43 0.43 0.43 0.43
AISI AISI AISI AISI

cooling tube material AL6XN AL6XN 316 316 316 316

heat transfer surface area ft"2 5.0 7.5 12.5 17.5 17.5 17.5 42.6
total length of tubing (heat

transfer) ft 38.1 57.3 95.7 134.1 134.1 134.1 593
velocity of flue gas ftls 3.3 2.8 2.4 2.2 2.0 2.0

maximum velocity of flue gas ftls 9.8 8.3 7.2 6.5 6.0 6.0
Reynolds # for hot fluid 1126 1252 1333 1379 1381 1398
Nusselt # for hot fluid 17.7 20.0 21.7 22.4 22.4 22.6

BTU/(hr-
ft"2-deg

convection coefficient for hot fluid F) 8.9 8.9 8.8 8.6 8.3 8.3
velocity of cooling water ftls 0.7 0.7 0.5 0.5 0.5 0.5
Reynolds # for cold fluid 3784 3736 3161 1692 1637 1622
Nusselt # for cold fluid 22.8 22.6 18.7 17.6 17.6 17.6

BTU/(hr-
convection coefficient for cold ft"2-deg

fluid F) 277 274 195 171 170 170
deg F- 1.85E 1.23E 3.24E 2.31E 2.31E 2.31E

thermal resistance of tube wall hr/BTU -04 -04 -05 -05 -05 -05

heat transfer BTUlhr 10080 7560 4248 8891 4670 3522
BTU/(hr-
ft"2-deg

overall heat transfer coefficient F) 8.4 8.4 8.3 8.1 7.8 7.8
BTU/(hr-

UA supplied by arrangement deg F) 41.8 62.6 102.0 174.9 144.9 136.1 662

average surface temp of metal deg F 140.9 134.1 129.2 69.7 67.2 66.8
%by

% moisture in flue gas inlet volume 0.10 0.10 0.10 0.10 0.08 0.06
% by

% moisture in flue gas outlet volume 0.10 0.10 0.10 0.07 0.06 0.05

mass flow rate of condensate Ib/hr 0.0 0.0 0.0 5.6 4.1 2.8 12.5

Table 3.2. Heat Exchanger Performance Design Specifications
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3.6 Heat Exchanger Materials

Since the heat exchanger was expected to be in a corrosive environment, material

selection was a critical part of the design. The environment was expected to consist of

high concentrations of sulfuric acids in Heat Exchangers 1-3, and fairly high

concentrations of nitric and hydrochloric acids in Heat Exchangers 4-6 (this is because

the dew point of sulfuric acid is much higher than that ofwater and nitric / hydrochloric

acids). Cost ofmaterials was also a consideration.

Stainless steel (SS 316) is known for having a high resistance to corrosion from

nitric and hydrochloric acids [6]. For this reason, SS 316 was chosen for the shell-duct

material, and also the tube material for HX 4-6. SS 316 is also a moderately priced

material and widely available.

For Heat Exchangers 1-3, a more resistant alloy would be needed to protect

against high concentrations of sulfuric acid, because in these stages, water will not be

condensing out to rinse the tubes off. A moderately priced alloy was chosen called AL-

6XN. It is a high molybdenum, high chromium, stainless steel. There were other alloys

available that may protect better against sulfuric acid, but they would not be economical

for this project.
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4.0 Experimental Setup

97 F

Floor -----"A..---

Support Frame

Heat Exchanger

/146F 103F

Flue Gas
450 F-- Temperature

I """310 F 205 F

Inlet Duct
Exhau~Duct ----~

1 Flue Gas

Figure 4.1. Overview of heat exchangers

As seen in Figure 4.1, the experimental setup consists of six heat exchangers, an

inlet and outlet duct, an induced draft fan, cooling water lines, and a hot water heater.

The reason for the hot water heater is to keep the cooling water in the first three heat

exchangers above the dew point temperature for the water vapor in the flue gas. Since

one of the objectives is to separate sulfuric acid from the water condensate, it is desired to

have water vapor condense out only in the last three heat exchangers. If the cooling

water in the tubes causes the surface temperature of any tube to drop below the dew point

temperature, there will be condensation. The hot water heater is used to control the

condensation. Figure 4.1 also shows the design flue gas temperatures as they progress

through the heat exchanger.
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Mixing valves were used in the cooling water line between Heat Exchangers 1 &

2, and between 2 & 3. These valves attempted to take the hot water from the previous

heat exchanger and mixed with the cold tap water to lower the cooling water temperature

to roughly 125 of. These valves did not work very well, and only succeeded in lowering

the water temperature by a few degrees. However, these valves were not essential to the

overall performance of the heat exchanger.

4.1 Measurement Equipment

Figure 4.2. Test Equipment

K and T type thermocouples were used to measure the flue gas temperature before

and after each heat exchanger. The cooling water temperature was also measured before

and after each heat exchanger. Thermocouples were also attached to heat exchanger

tubes to monitor the metal surface temperature (see Figure 4.3).
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Mixing valvcs wcrc uscd in thc Gooling water line betwecn Heat Exchangers I &
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overall performance of the heat exchanger.

4.1 Measurement Equipment

Figure 4.2. Test Equipment

K and T type thermocouples were used to measure the flue gas temperature before

and after each heat exchanger. The cooling watertemperature was also measured pefore

and after each-heat exchanger. Thermocouples were also attacJ)"ed to heat exchanger

tubes to monitor the metal surface temperature (see. Figure 4.3) .
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Rotameter type flow meters were used between each heat exchanger to measure

the cooling water flow rate. Plastic jugs were used to collect the condensate at each heat

exchanger.

A pitot tube and manometer were used in a straight section of the exhaust duct in

order to measure the flue gas velocity. The S-type pitot tube was placed in the center of

the circular duct. The following velocity profile was assumed:

1

~=(~)6.6
Vmax R

(4.1)[1]

where V is the velocity of the flue gas as a function ofr (radius). Vmax is the velocity at

the center of the duct, and R is the actual radius of the duct. The flue gas velocity equals

Oat r = R. The flue gas flow rate can be determined from Equation 4.2.

R

m= fpVAdr
o

(4.2)

Combining Equations 4.1 and 4.2 and evaluating the integral, the flue gas flow

rate reduces to

. 66 V Am =-P max
71

Insulation was not initially installed, but after a few initial tests, it was found that

insulation was necessary in order to control the condensation. The ducts and the heat

exchangers were insulated as seen in Figure 4.4.
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Figure 4.3. Surface thermocouple on heat exchanger tube

Figure 4.4. Heat exchanger insulation
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Figure 4.3. Surf~lce thermocouple on heat exchanger tube

Figuioe 4.4. Heat exchanger insulation
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5.0 Test Procedures

5.1 Data Acquisition

The heat exchanger process was evaluated on a total run, time average basis. This

means that the performance of the heat exchangers was determined using the average

temperatures over the run, once the system reached steady state.

Thermocouples were continuously monitored using a multiple channel

thermocouple data acquisition system (DAS) which was connected to a PC. Certain

thermocouples were not connected to the PC DAS.

Cooling water flow meters and the pitot-tube manometer were read manually

every ten minutes.

The condensate jugs were emptied after the system reached steady state. After

the run, the total volume of condensate was measured manually. The time was kept so

that the condensate flow rates could be determined.

The following chart and diagram show which measurements were made and the

frequency.
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ID

TC-1
TC-2
TC-3
TC-4
TC-5
TC-6
TC-7
TC-8
TC-9
TC-10
TC-11
TC-12
TC-13
TC-14
TC-15
TC-16
TC-17
TC-18
TC-19
TC-20
TC-21
TC-22
TC-23
TC-24
TC-25
TC-26
TC-27
TC-28
RM-2
RM-3
RM-4
RM-5
RM-6

PT
CJ-3
CJ-4
CJ-5
CJ-6

Device

Thermocouple, Type K
Thermocouple, Type K
Thermocouple, Type K
Thermocouple, Type K
Thermocouple, Type K
Thermocouple, Type K
Thermocouple, Type K
Thermocouple, Type K
Thermocouple, Type K
Thermocouple, Type K
Thermocouple, Type T
Thermocouple, Type T
Thermocouple, Type T
Thermocouple, Type T
Thermocouple, Type T
Thermocouple, Type T
Thermocouple, Type T
Thermocouple, Type T
Thermocouple, Type K
Thermocouple, Type K
Thermocouple, Type K
Thermocouple, Type K
Thermocouple, Type K
Thermocouple, Type K
Thermocouple, Type K
Thermocouple, Type K
Thermocouple, Type K
Thermocouple, Type K

Rotameter
Rotameter
Rotameter
Rotameter
Rotameter

Pitot Tube, Manometer
Condensate Jug
Condensate Jug
Condensate Jug
Condensate Jug

Data Acquisition

Location

Flue Gas, Economizer outlet
Flue Gas, before HX1

Flue Gas, between HX 1 & HX 2
Flue Gas, between HX 2 & HX 3
Flue Gas, between HX 3 & HX 4
Flue Gas, between HX 4 & HX 5
Flue Gas, between HX 5 & HX 6

Flue Gas, after HX 6
Flue Gas, Wet Bulb, after HX 6

Flue Gas, before Pitot Tube
Cooling Water, Inlet

Cooling Water, between HX 5 &HX 6
Cooling Water, between HX 4 &HX 5

Cooling Water, between Hot Water Heater &HX 4
Cooling Water, between HX 3 &Hot Water heater

Cooling Water, between Water Mixing Valve & HX 3
Cooling Water, between HX 2 & Water Mixing Valve

Cooling Water, Outlet
Heat Exchanger Tube Surface, HX 2 front
Heat Exchanger Tube Surface, HX 2 rear
Heat Exchanger Tube Surface, HX 3 front
Heat Exchanger Tube Surface, HX 3 rear
Heat Exchanger Tube Surface, HX 4 front
Heat Exchanger Tube Surface, HX 4 rear
Heat Exchanger Tube Surface, HX 5 front
Heat Exchanger Tube Surface, HX 5 rear
Heat Exchanger Tube Surface, HX 6 front
Heat Exchanger Tube Surface,HX 6 rear

Cooling Water, HX 2 inlet
Cooling Water, HX 3 inlet
Cooling Water, HX 4 inlet
Cooling Water, HX 5 inlet
Cooling Water, HX 6 inlet

After HX 6
HX 3
HX4
HX 5
HX 6

Measurement Freguency

10 min.
5 sec.
5 sec.
5 sec.
5 sec.
5 sec.
5 sec.
5 sec.

10 min.
10 min.
10 min.
5 sec.
5 sec.
5 sec.
5 sec.
5 sec.
5 sec.
5 sec.
5 sec.
5 sec.
5 sec.
5 sec.
5 sec.
5 sec.
5 sec.
5 sec.
5 sec.
5 sec.

10 min.
10 min.
10 min.
10 min.
10 min.
10 min.

when full, or once per run
when full, or once per run
when full, or once per run
when full, or once per run

Table 5.1. Data Acquisition
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5.2 Sulfuric Acid Measurement

In order to measure the sulfuric acid content of the flue gas, equipment rented

from CleanAir Engineering was used. It is a modified ASTM Method D3226-73T

(Controlled Condensation, also referred to as EPA Method 8B) for sulfuric acid mist (see

Figure 5.2). This method was developed especially for the determination of sulfuric acid

emissions from combustion sources. The technique utilizes a glass lined probe heated to

600 OF which pulls the flue gas sample through at a constant flow rate. The flue gas then

passes through a glass fiber filter maintained at a temperature of 550 OF, then through an

impaction type condenser for the collection ofsulfuric acid vapor and/or mist. The

condenser is then rinsed with water and the rinse is tested for sulfuric acid concentration.

The samples were sent to a lab for ion chromatography analysis. The samples were

tested for the S04-2 ion [2].

Only one location could be sampled at a time with the equipment available for

testing, however it was desired that the flue gas sulfuric acid concentration be known at

each point between each heat exchanger. The heat exchangers were designed with a 3

inch diameter port located between each section. Because only one probe was available,

the probe was moved from port to port, down the line, from one heat exchanger to the

next. Sampling time took about 30 minutes for each run. Six port locations were

sampled, encompassing five heat exchanger sections (the first heat exchanger section was

not used because flue gas temperature was below 350 OF).
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Figure 5.2. Sulfuric acid sampling train

This method also allowed the measurement ofwater vapor during the test using

the condensing impingers. This value was compared with moisture calculated by other

means. Wet and dry bulb temperatures were measured after the last heat exchanger.

5.3 Short-Term Test Plan

The short-term test plan was carried out in six experiments. Among the six

experiments, the variable parameter was the flue gas flow rate. This was set by adjusting

the damper gate before the heat exchangers. The pressure drop over the pitot tube was

monitored to set the flue gas flow rate. Other parameters naturally changed between
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tests. The inlet flue gas temperature from test to test fluctuated as much as 100 of. The

inlet moisture content varied as temperature varied. The ambient temperature, as well as

inlet cooling water temperature varied. Because of these factors, actual flue gas flow rate

was very difficult to control. In the end flue gas flow rate varied from 300 lb/hr to 450

lb/hr.

Each test took about eight hours to run. Because the tests spanned such a long

period of time, there was some variation in the loading ofthe boiler. The flue gas inlet

temperature seemed to be a fairly good indicator of this variation.

5.4 Long-Term Test Plan

The long-term test plan includes the use of finned heat exchangers and installation

at a coal-fired power plant. The long-term testing is not within the scope of this report.
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6.0 Results

Table 6.1 shows the tests carried out and the specific parameters observed in each

test.

Test Date
Flue Gas Flow EPA Method 88 Condensate Lab AnalysisRate (Ib/hr, wet)

804-- N03- CI-

01/08/07 300 Port 1 only none none none
01/10/07 300 All 6 ports none none none
01/12/07 370 All 6 ports none none none
01/16/07 420 All 6 ports HX-1-6 HX 3-6 HX3-6
01/18/07 380 All 6 ports none none none
01/19/07 350 All 6 ports none none none

Table 6.1. Completed Tests

The Condensate Lab Analysis refers to ion chromatography tests done on the

condensate collected from the heat exchangers. This analysis was performed by

Benchmark Analytics, Center Valley, PA. EPA Method 300.0 was used.

6.1 Temperatures

The average temperatures of the system for one run can be seen in Figure 6.1

below. These are the average temperatures over the duration of the test on 01-10-2007.
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Heat Exchanger Number

Figure 6.1. Temperature progression through heat exchanger, 01110/2007

Figure 6.1 shows the flue gas temperature, the cooling water temperature, and the

..
heat exchanger tube wall surface temperature. The reason there are two values for tube

wall surface temperature is because these measurements were very difficult to obtain

using thermocouples due to the high temperatures and corrosive environment. Paste-on

thermocouples were used for tube wall surface temperature, and a layer ofhigh

temperature epoxy was applied over top of the thermocouple patch. Nonetheless, the

thermocouples seemed to detach from the tube, especially in the high temperature zones.

This is why Figure 6.1 shows measured tube wall surface temperatures that are erratic.

The indicated temperatures are actually closer to the flue gas temperature than the

expected tube wall surface temperature. This is simply because the thermocouple wire
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was severed at the point of connection to the patch, due to corrosion. The "calculated

tube wall temperature" in Figure 6.1 is back-calculated by using the measured cooling

water temperature at that point, utilizing the theoretical tube wall conduction resistance.

Also notice the increase in cooling water temperature (from right to left) due to

the hot water heater between heat exchangers 3 and 4. Only a very small temperature

drop was observed over the mixing water valves. Even though these valves did not work

as planned, they did not negatively affect the heat exchanger performance. Temperature

profiles for all the runs can be found in Appendix A.

6.2 Flue Gas Moisture Content

Three different methods were used to measure flue gas moisture content. First,

during the controlled condensation method for sulfuric acid measurement, four impingers

were used to collect the moisture in the sample, as a standard procedure inherent to the

method. This provided a manual measurement of the moisture content.

Second, a wet bulb temperature was measured at the exit of the heat exchanger

system. This measurement, coupled with the dry bulb measurement at the same location,

allows for the determination of the flue gas moisture content. This measurement was

only made at one point.

The third method used to measure flue gas moisture content assumed the water in

the flue gas exiting Heat Exchanger 6 was saturated (see section 2.2.1). The flue gas

moisture content was calculated using the flue gas temperature after Heat Exchanger 6.

The rates of condensation from each individual heat exchanger were measured. In order

to calculate the flue gas moisture content in Heat Exchangers I through 5, the
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condensation rates were added back into the total vapor content ofthe flue gas. For

example,

mvapor,in,6 =mvapor,ollt,6 + mcondensate,6 (6.1)

where, the mass flow rate of vapor in the flue gas coming into Heat Exchanger 6 equals

the mass flow rate of vapor going out of Heat Exchanger 6 plus the mass flow rate of

condensate produced by Heat Exchanger 6. The mass flow rate ofvapor entering Heat

Exchanger 6 equals the mass flow rate ofvapor exiting Heat Exchanger 5, and so forth.

Figure 6.2 shows results from the three measurement methods plotted as the gas

progresses through the heat exchanger.
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~~
,
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\ ~
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Figure 6.2. Moisture Content for Test on 01-18-2007, Flue Gas Flow = 380 lb/hr
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For the most part, the three methods are in agreement as far as the general amount

of moisture. Looking at the same charts for other tests (in Appendix B), it seems that the

measured values are somewhat inconsistent. The wet bulb measurement is very

consistent with the calculated method using the saturated vapor assumption. Measuring

the weight of the water in the impingers proved to be difficult; therefore it should be

considered the least accurate form of moisture content measurement. It does, however

serve as a good approximation.

Figure 6.2 indicates that the inlet flue gas moisture content was roughly 14%.

After the flue gas passed through the heat exchangers, the moisture was reduced to about

4%. Over all six tests, these numbers were fairly consistent, with flue gas inlet moisture

contents ranging from 11% to 14%, and outlet moisture contents ranging from 2% to 5%.

6.3 Flow Rates

6.3.1 Water Flow Rates

There was some discrepancy in the measurement of the water flow rates through

the heat exchanger tubes. Heat Exchangers 3 - 6 were in series, such that the water from

Heat Exchanger 6 flowed directly into Heat Exchanger 5, and so forth. Each heat

exchanger had its own water flow meter. Even though it was known that the same

amount of water was flowing through each flow meter, they read slightly different flow

rates. This represents the error in the flow meters. Also, the water temperature changed

as it flowed through the system, causing density changes which affects the reading on the

flow meters (scaled in gpm). The flow rates were corrected for temperature, but this still

causes some variation.
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Each water flow meter was manually calibrated before testing at different flow

rates to ensure minimal error. Data taken from flow meters that were in series were

corrected for temperature, corrected for any calibration errors, and then averaged because

it was known that the mass of the water did not change through heat exchangers that were

In senes.

6.3.2 Flue Gas Flow Rate

Flue gas flow rate proved to be one of the most difficult measurements to make.

The S-type pitot tube used to measure pressure drop became clogged up over time,

causing inaccuracies in measurement. Efforts were made to clean the pitot tube before

every test.
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6.4 Heat Transfer Calculations

An overall heat and mass balance analysis was performed on each test run, using

the equations derived in Section 2.4. The analysis accounts for energy transfer from the

wet flue gas, energy leaving the system in the form offlue gas moisture condensation,

and the energy transfer to the cooling water. Even though the system was insulated, there

inevitably was heat lost to the surrounding environment. Efforts were made to estimate

the extent of the heat loss.

Figure 6.3 shows a heat balance for one day's testing. A negative (-) value of heat

transfer represents heat loss from a control volume encompassed by one whole section of

the heat exchanger, and a positive (+) value ofheat transfer represents heat gain to the

control volume. Each column represents one heat exchanger in Figure 6.3. Each column

has an equal amount of energy above and below the horizontal axis. The "Heat Loss /

Gain / Error" portion of the heat balance is simply the amount ofheat unaccounted for in

the heat balance. If this portion appears as a positive value it means that amount of heat

is attributed to heat loss. If the portion appears as a negative value it means that amount

ofheat is attributed to heat gain. More discussion on this will take place later in the

report, but it is not rational that there is heat gain to the system because the ambient

temperature was always less than the flue gas outlet temperature.
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Figure 6.3. Heat Balance Chart for Test on 01-18-2007, Flue Gas Flow = 380 lb/hr

Figure 6.3 shows that the majority ofthe heat transfer takes place in the last three

heat exchangers. Almost all of the condensation occurs here. The remaining heat

balance charts can be found in Appendix C.

Table 6.2 shows the data used to make Figure 6.3. "Q water vapor" denotes the

heat transfer from the flue gas vapor cooling and condensing (from Equation 2.9, the

terms mv,inhV,in - mv,outhv,out)' "Q condensate" represents the heat leaving the control

volume in the form of flue gas condensate (from Equation 2.9, the term mcondhcond)'
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Figure 6.3. Heat Balance Chart for Test on 01-18-2007, Flue Gas Flow = 380 Ib/hr

Figure 6.3 shows that the majority of thehcat transfer takes place in the last three

heat exchangers. Almost all of the condensation occurs here. The remaining heat

balance charts can be found in Appendix C.

Table 6.2 shows the data used to make Figure 6.3. "Q water vapor" denotes the

heat transfer from the flue gas vapor cooling and condensing (from Equation2.9, the

terms lil".II,hrJII ~ lil".,,",h,..,,"/), "Q condensate" represents the heat leaving the control

volume in the form oftlue gas condensate (from Equation 2.9, the term lil,,,")l'''"d)'
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HX 1 2 3 4 5 6

Q cooling water BTU/hr 0 7800 5500 14100 11500 8600

Q dry flue gas BTU/hr -1700 -7900 -4500 -4600 -3700 -2900

Q water vapor BTU/hr -100 -800 -500 -8600 -9600 -8400

Q condensate BTUlhr 0 0 0 -500 -400 -200

Q loss BTU/hr 1800 800 -500 -400 2200 2900

Table 6.2. Heat Transfer, Test Date: 01/18/2007

Overall heat transfer coefficients were calculated for each heat exchanger and for

each test. These coefficients were calculated using Equation 2.1 where Q is "Q Cooling

Water". Figure 6.4 shows the results.
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For the most part the results are relatively consistent. It is consistent that the

condensing heat exchangers (HX 4 - 6) have a higher overall heat transfer coefficient.

This is because condensation improves the convection heat transfer coefficient.

The amount of condensation by each heat exchanger varied slightly by test.

Figure 6.5 shows how each condensing heat exchanger performed with respect to flue gas

flow rate, and with respect to the other condensing heat exchangers.
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Figure 6.5. Individual Heat Exchanger Condensation Performance

One conclusion that can be taken from this plot is that the amount of water

recovered from the flue gas does not change as flue gas flow rate increases. The

individual heat exchanger sections did perform differently from test to test. Heat
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Exchanger 6 condensed the most water, among the three condensing heat exchangers,

four out of six times. The other two tests, Heat Exchanger 5 condensed the most water.

Perhaps the most important outcome of the test is the amount of total water

condensed by the entire system. Figure 6.6 shows the total amount of water recovered in

each test, as a fraction of the total water present in the flue gas.
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Figure 6.6. Total Water Recovered from Flue Gas

It can also be seen in Figure 6.6 that the total amount ofwater that can be

recovered is not dependent on flue gas flow rate. In each test, roughly 80% (by mass) of

the total water existing in the flue gas was condensed out and collected.
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6.5 Acid Measurements

6.5.1 Flue Gas Measurements

The controlled condensation method was used at each port to measure the

concentration of sulfuric acid mist in the flue gas after each heat exchanger coil. Figure

6.7 shows the results as a progression through the heat exchanger sections, for each test.
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Figure 6.7. Sulfuric Acid Flue Gas Concentration as a function of Flue Gas Temperature

It can clearly be seen that there is a reduction in sulfuric acid flue gas

concentration as the flue gas cools in each test. The concentrations of the flue gas in the

condensing sections of the heat exchanger are all below 5 ppm. Figure 6.8 shows the

overall sulfuric acid reduction in the flue gas for each test.
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Among the five tests, it is consistent that about 80% of sulfuric acid was removed

from the flue gas.

6.5.2 Heat Exchanger Condensate Acid Measurements

The condensate of only one test was analyzed for acids. The samples were sent to

a laboratory and measured using ion chromatography. Sulfate (SOl) was tested for in

all six heat exchangers. Nitrate (NOn and Chloride (Cn were tested for in Heat

Exchangers 4 - 6. Figures 6.9 - 6.11 show the concentrations in each heat exchanger

condensate sample.
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Figure 6.9 shows sulfuric acid concentrations of nearly 6000 mg/L (equivalent to

ppm by mass). While this is a high concentration (0.6 % by mass), it is not nearly as high

as expected. This figure supports the hypothesis that the majority of the sulfuric acid

would condense out in the first three heat exchangers. Sulfuric acid is negligible in the

condensing heat exchangers (HX 4 - 6).

Figures 6.10 and 6.11 show very low concentrations of nitric and hydrochloric

acids. Heat Exchanger 3 seemed to have the most significant amount of acids. This is

contrary to what was expected. It was expected that the condensing heat exchangers

would have the most significant amounts of nitric and hydrochloric acid because of the
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expected flue gas temperature. On a positive note, the condensate collected in HX 4 - 6

is considerably clean.
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7.0 Discussion

The primary goal of the project was to recover water from flue gas. Eighty

percent ofthe water in the flue gas (by weight) was recovered in five out of six tests.

This is a substantial portion of the existing water, and from this standpoint, the project

was successful.

The secondary goal of the project was to recover heat from the flue gas. This was

accomplished in conjunction with the first goal, simply by lowering the stack temperature

of the flue gas. A low stack temperature is essential to achieving a high thermal

efficiency. The heat was recovered from the flue gas and transferred to the heat

exchanger cooling water. The condensate does have an acidic nature and depending on

the use, water treatment may be necessary to neutralize the acid.

The final goal of the project was to reduce emissions. Figure 6.8 showed that the

sulfuric acid mist emissions were reduced by about 80% in every test. Chlorides and

nitrates were also shown to be present in the condensate, highlighting two more

pollutants that were captured instead of being emitted into the atmosphere.

7.1 Complications

One of the major discrepancies in the analysis of the results was the heat balance.

Appendix C shows the heat balance for each of the six tests. Heat Exchangers 3 & 4 both

showed a heat gain to the system in every test. This is an obvious error because there is

no reason why there would be any heat gain to the system. There should be calculated

heat loss from the system because the insulation cannot be perfect. The tests were run in
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wintertime when the ambient temperature was low enough to suspect significant heat

loss. The hot water heater was a source of heat gain to the system, but this was taken into

account with thermocouples in the water lines before and after the water heater.

One likely cause of this error is in the measurement of the amount ofwater

condensed from each individual heat exchanger section. As moisture is condensed in one

heat exchanger, the water collects on the tube surface and should drip down into the drain

for that particular heat exchanger. Because of the high velocity of the flue gas through

the heat exchanger tube banks, it is possible that some of the moisture from one heat

exchanger is entrained in the flue gas and carried into the next heat exchanger. This

would attribute condensation of one heat exchanger to the subsequent heat exchanger.

This would in effect create a situation where a lower amount of condensate would be

measured than expected from the temperature rise in the cooling water. Since the heat

exchangers are so close to each other, this theory is likely the reason why a heat gain is

being observed in Heat Exchangers 3 & 4, and not in 5 & 6.

A mass balance for sulfuric acid was also attempted. More acid was measured in

the flue gas than was measured in the condensate. Also, in Figure 6.7 it can be seen that

some flue gas sulfuric acid measurements were higher as the flue gas progressed through
.

the heat exchanger. This suggests that the noise range of the controlled condensation

manual method is too large to consider an acid mass balance. The actual uncertainty

range could only be obtained with repeat testing.

Significant fouling was observed on the three heat exchangers that were not

condensing water (HX 1 - 3). Black soot had built up on the tube wall surface. Upon

inspection, the heat exchanger tubes were removed and rinsed off with a neutralizing
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solution. There was no observed corrosion over the period of testing, on any of the heat

exchangers. Also, there was no soot buildup on the ~ondensing heat exchangers (HX 4 -

6).

Some ofthe tube wall surface thermocouples were destroyed during testing. This

is apparent by looking at Appendix A. Some of the measured tube wall surface

temperatures are far off from the calculated values and are closer to the actual flue gas

temperature in many cases. This is because after examination it was found that the

thermocouple insulation had deteriorated (most likely due to the acid condensation).

Because the thermocouple wires were exposed, they ended up short-circuiting in the flue

gas environment, which means the thermocouple is measuring the temperature at that

point: the flue gas. This is why during some tests the tube wall surface thermocouple

would read a reasonable value for a while, and then jump 50 - 100 degrees F for awhile,

and then go back to a reasonable temperature. In later tests, these thermocouples

measured consistently higher than expected. This is because the thermocouple wire had

become completely detached from the thermocouple in some instances. The calculated

tube wall surface temperatures in Appendix A are considered to be more accurate than

the measured values.

7.2 Conclusions

The acid in the condensate collected was much less than was anticipated. Since

the dew point of sulfuric acid is higher than that of water, it was expected that very high

concentrations of sulfuric acid would be observed in Heat Exchangers 1-3. The highest

sulfuric acid concentration measured was only 0.6% (6000 mg/L). In the condensing
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heat exchangers, the concentrations of sulfuric, nitric, and hydrochloric acids were even

lower. Sulfuric acid was under 250 mg/L, hydrochloric acid was less than 10 mg/L, and

nitric acid was less than 5 mg/L.

These results mean that super alloys or other technologies may not be needed to

avoid heat exchanger corrosion. More testing would need to be done to observe any

variance in acid measurement and heat exchanger corrosion. There also should be more

work done to observe nitric and hydrochloric acids in all heat exchanger sections.

This thesis shows that a significant portion of water can be recovered from boiler

flue gas, and in doing so, sulfuric acid emissions are reduced.

7.3 Next Steps

Future work for this project includes the use of finned heat exchangers to reduce

the overall size ofthe heat exchangers. Also, this system will be transported to a full­

scale coal fired power plant in order to analyze the effects of different flue gas.

60



References

1. Incropera, Frank P., DeWitt, David P. Fundamentals ofHeat and Mass
Transfer. Fifth Ed, 2002.

2. Kephart, Allen. CleanAir Engineering. Proposal to Lehigh University's
Energy Research Center for S03 Measurement - Controlled Condensation.
September 2006.

3. Levy, Edward K. "Recovery of Water From Boiler Flue Gas". Project
Narrative: Research Proposal in Response to Funding Opportunity Notice DE­
PS26-05Nt42411. June 2005.

4. Moran, Michael 1., Shapiro, Howard N. Fundamentals ofEngineering
Thermodynamics. 4th ed. 2000.

5. Pegg, J.R. "States, Environmentalists Challenge Power Plant Cooling Water
Rule," Environment News Service, 07/27/2004.

6. Roberge, Pierre R. Handbook of Corrosion Engineering. First Ed. 1999.

61



Appendix A: Temperature Profiles

Temperature Profile 01·08-07 Flue Gas Flow =300 Ib/hr
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Temperature Profile 01-10-07 Flue Gas Flow =300 Ib/hr
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Temperature Profile 01-12-07 Flue Gas Flow = 370 Ib/hr
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Temperature Profile 01-16-07 Flue Gas Flow = 420 Ib/hr
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Temperature Profile 01-18-07 Flue Gas Flow =380 Ib/hr
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Appendix B: Moisture Content
Moisture Content Through Heat Exchangers 01-08-07 Flue Gas Flow = 300 Ib/hr
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Moisture Content Through Heat Exchangers 01-12-07 Flue Gas Flow =370 Ib/hr
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Moisture Content Through Heat Exchangers 01·18·07 Flue Gas Flow =380 Ib/hr
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Appendix C: Heat Balance

Heat Transfer Analysis 01-08-07, Flue Gas Flow =300 Ib/hr
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Appendix C: Heat Balance
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