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ABSTRACT

Optimal Design of Vehicle with Internal Space Frame Structure Subjected to High
Impact Load

by
Jagadeep Thota
Dr. Mohamed B. Trabia, Examination Committee Chair

Professor of Mechanical Engineering
University of Nevada, Las Vegas

Dr. Brendan J. O’Toole, Examination Committee Chair
Associate Professor of Mechanical Engineering
University of Nevada, Las Vegas

Armored military vehicles are heavily used in modern warfare. These vehicles are
subjected to lethal attacks from projectiles and land mines. The shocks from these attacks
may risk the safety of the occupants and damage the electronic instruments within the
vehicle. Extensive research on the analysis and reduction of shocks on civilian vehicles
has been performed. Fewer researchers addressed these problems in the case of military
vehicles. Space frames are usually used to enhance structural strength of the vehicle
while reducing its overall weight. These frames comprise of beams connected together at

joints. Recently, space frames were incorporated in military vehicles.
In this dissertation, a finite element model of a military vehicle with an internal space
frame is developed. The space frame is composed of hollow square cross-section bars and
angle sections. These frame members are bolted to the joints. The space frame is enclosed

by uniform-thickness armor, except at the turret. The vehicle is subjected to high impact



load that simulates a projectile hit. The vehicle design is optimized to reduce the overall
mass, and shock at critical locations of the space frame.

A lab-scale space frame structure derived from the military vehicle space frame is
designed and built. The lab-scale space frame is subjected to non-destructive shock
propagation tests. A finite element model of this structure is developed with the objective

of matching the experimental results.
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CHAPTER 1
INTRODUCTION

Armored personnel vehicles are extensively used in modern warfare. These vehicles
are subjected to lethal attacks from projectiles and land mines. The shocks from these
attacks may risk the safety of the occupants and damage the electronic instruments within
the vehicle. Extensive research on the analysis and reduction of shocks in civilian
vehicles has been conducted [1-4]. Fewer researchers however addressed these problems
in the case of military vehicles [5-7].

In the modern world, light combat vehicles and armored vehicles are playing a key
role in supporting the troops and other heavily armored combat vehicles. As such, during
the real combat situations they are subjected to extreme loading scenarios. Fierce
battlefield environments make these vehicles susceptible to damage and the survivability
of the occupants becomes questionable. Appropriate design of these vehicle structures
against severe on field conditions is vital to ensure occupant survivability and vehicular
operational needs [5].

Several types of armored vehicles are used in modern wars. While heavily armored
vehicles play a major role, medium and light vehicles usually help in consolidating
positions. While all types of combat vehicles need to be designed keeping in view of their
severe environments, light combat vehicles are at greater risks when subjected to shock
loads. These shock loads primarily occur due to impacts from projectiles or blasts. An
area of critical concern is the propagation of shocks within combat vehicles to the
location of the driver and the other personnel in the crew compartment as well as

attachment points for optical and electronic devices [6]. Failure of equipment due to



shock and vibration may render the whole system ineffective leading to life threatening
situations. Detailed study of shock propagation can help reduce these effects by

appropriate design of all the structural sub-assemblies.

11 Literature Review
1.1.1 Description and Analysis of Space Frame Structures

Medwadowski [8] stated that in general, all structures could be divided into two
categories, depending on the manner in which they transfer load. The most common
category is that of rigid structures, which includes space frames. When subjected to
applied loads rigid systems experience deformations that are small compared to the
overall dimensions of the structure itself. This is true even in the case of “large
deformations”. The geometry of the structure after deformation is essentially the same as
its geometry prior to deformation. Thus, in majority of cases, the mathematical model is
linear and generally, the equations of equilibrium can be written for the undeformed
structure. In most general cases, internal force transfer in rigid structures is achieved with
the aid of three distinct mechanisms: axial, bending and torsional. Of these, the axial
force transfer mechanism is considered most efficient, since all fibers of an element
participate equally in the task.

The second category is of flexible structures or tension structures. When subjected to
transverse loads, flexible structures experience a significant change of geometry. In fact,
their ability to transfer such loads depends on their ability to change shape. Thus the
problem of analysis of tension structures involves a mathematical model, which

experiences deformations large compared to the overall dimension of the system, hence



geometrically nonlinear. The consequences are likely to be severe, not only from the
point of view of analysis, but also from the point of view of fabrication of elements, and
construction.

It is expected that the beam members of a space frame within an armored vehicle may
undergo severe deformations when subjected to projectile impacts and blasts. Similarly, it
is observed that load transmitted within assembled structures is influenced by the
distribution of joints of the space frame [9]. Therefore, the study of shock transmission
through the various jointed components within a combat vehicle is of particular interest
due to the need of guaranteeing the survivability of its occupants. Mackerle [10, 11]
published a bibliography of research pertaining to the finite element vibration and
dynamic response analysis of engineering structures subjected to impact, blast or shock
loadings.

Meek et al. [12-14] conducted research on geometrically nonlinear static analysis of
three-dimensional space frame structures. The elastic analysis of frame structures through
FE method in the post-buckling range inevitably involves the solution of large systems of
nonlinear equations. The authors [12-14] proposed that the most satisfactory way of
solving such problems was to combine the arc-length method within each increment with
the Newton-Raphson method as the iteration strategy. For large joint rotations, Oran’s
joint orientation matrix was used to update the rotational displacement of a joint. The two
examples studied by the authors were a two hinged deep arch and a shallow geodesic
dome. The work dealt with the ‘imperfect’ approach to trace the secondary paths of three-

dimensional frame structures. Eigenvetors are calculated at bifurcation points to force the



structure on to the secondary path by introducing small perturbation either in load or in
geometry.

A dynamic response analyses method of space frame structures was presented by
Masuda et al. [15], which can deal with frames having finite rotations in the three-
dimensional space. This method mainly concentrates on studying the dynamic instability
(a state at which small increment in loading produces sudden changes in maximum
response) in the presence of strong geometric non-linearity and three-dimensional
behavior. Karpurapu et al. [16] proposed a kinematic model for linear/nonlinear analysis
that is suitable for the analysis of three-dimensional framed structures of general shape.
The accuracy of the proposed model was evaluated by analyzing two full-scale structures,
four-legged stiff tower and nine-legged tower, Figure 1, for random and periodic ground
accelerations applied at various frequencies. The kinematic model comparison with the
full structure was excellent both in terms of peak magnitudes and also the distribution of
peaks over the entire duration of analysis. Vasilopoulos et al. [17] successfully presented
a rational and efficient seismic design methodology for regular space steel frames using
an advanced time domain finite element analysis that takes into account geometrical and
material nonlinearities. Two numerical examples, 3-story and 7-story steel space frame

structures were presented to illustrate the method and demonstrate the advantages.
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Figure 1.1: Space frame structures analyzed by Karpurapu [16]

Goman et al. [18] suggested a displacement-based finite element technique that can
handle large deflections with rotations of more than 15°. An incremental secant stiffness
approach which considered the effects of joint flexibility for the nonlinear analysis of two
and three-dimensional frames was used. The model was successful in handling large
deflections accurately in three-dimensional space. It exhibited fast rate of convergence. A
simple procedure for dynamic and static analysis of space frames undergoing large
deflections was explained by Chan et al. [19]. This method combined ease of
implementation and fast rate of convergence for equilibrium. Research has also been
done on developing tools that help in optimizing geometric parameters of space frames
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by imposing stress and free frequency constraints [20]. Ohga et al. [21] used a combined
finite element-transfer matrix (FETM) method to investigate space frame structures under
harmonic and impulsive excitations. The authors showed that for the case of space frame
structures with large number of degrees of freedom, the computation time for the FETM
method is appreciably shorter than that for the ordinary finite element method.

Liew et al. [22, 23] described a second-order plastic hinge analysis of three-
dimensional frame structures. This beam-column formulation is based on the use of
stability interpolation functions for the transverse displacements, and considers the elastic
coupling effects between axial, flexural and torsional displacements. The developed
algorithm was used to predict accurately the elastic flexural buckling load of columns and
frames by modeling each physical member as one element. It could also predict the
elastic buckling loads associated with axial-torsional and lateral-torsional instabilities,
which are essential for predicting the nonlinear behaviour of space frame structures.
Material nonlinearity was modeled by using the concentrated plastic hinge approach.
After applying this concept to several space frame examples, Liew [22, 23] noted that the
accuracy of the plastic hinge analysis is reasonable only for cases when material stress-
strain law is essentially elastic-plastic. Huu et al. [24] proposed a modified plastic hinge
analysis known as fiber plastic hinge concept. This considers the second order inelastic
behaviour of space steel frames. This approach compared well with the ABAQUS
program for space frame structures. Dabaon et al. [25] conducted experiment to study the
behaviour of steel space frames and composite semi-rigid joints. A three-dimensional

finite element model was proposed using ANSYS software for the analytical



investigation. With respect to initial stiffness and moment capacity, the finite element
model gave good agreement with the experimental results.

A finite element formulation for analyzing prismatic thin-walled space frame
structures composed of arbitrary cross sections was developed by Chen et al. [26] based
on second order geometric theory. It can also be used to consider distributed loading in
large-deformation analysis. Using the elemental stiffness equation, a set of global
nonlinear stiffness equations were established, based on an updated Lagrangian
formulation and direct stiffness assembly. A work-increment-control method, which
converges quadratically, was used to solve the nonlinear equations. The FE program
developed was tested on a three-dimensional L shaped space frame structure. Two types
of cross sections were considered: first case had C type sections and in the second case
there were | beams. When compared between distributed versus equivalent point loading,
the equivalent loading leads to less accurate results.

Yu et al. [27] presented a structural analysis algorithm called the finite particle
method (FPM) for kinematically indeterminate frame structures. FPM models the
analyzed domain composed of finite particles. Newton’s second law is adopted to
determine the motions of all particles. With FPM there isn’t a need to solve nonlinear
equations to calculate the stiffness equilibrium matrix. Yu [27] analyzed three examples
using the FPM method and showed it can produce a more accurate analysis result. Haq et
al. [26] talked about a generic graph-based design language which enables the automation
of space frame structures design process by facilitating the generation of a large variety
of design variants very efficiently. This approach consists of basic components

(vocabulary) and a set of rules (design patterns), which enables the designer to define a



formal graph-based, but still domain-independent representation form of an object. The
authors presented three case studies; a motorbike space frame, a transverse control arm
and automotive space frame structure, and showed that this method leads to time savings
and increase in product quality due to analysis of many design variants of the product.
Kollar [29] discussed the stability problems of space frame structures. He proposed that
space frame structures essentially show two kinds of instability: local and overall
buckling. Kollar also mentions snapping of space frames under concentrated load present
a special problem. According to him this problem can be treated either by the discrete or
by the continuum method.

Space frame structures are built with a number of beams connected together at joints.
The beam members in an armored vehicle may undergo severe deformation in the
presence of high transient events like projectile impacts and blasts. To ensure the safety
of the crew inside armored vehicles, the whole structure should collapse within the
crushable zone to absorb the impact energy. This can be achieved by reducing the
stiffness of the structure with the addition of imperfections like dents and bends [30]. The
resistance of sandwich beams to dynamic loads remains to be fully investigated in order
to quantify the advantages of sandwich construction over monolithic designs in shock
resistant structures [30]. Every space frame structure is under some degree of direct
member loading. At least, the self weight of the structure certainly affects the members
directly, and in structures covered with panels their weight is also likely to apply some
lateral pressure on the members. In spite of this fact, direct member loading is usually

ignored in space frame designs and assumed to lead only to a negligible effect on frame



performance. El-Sheikh [32] did a parametric study on space frame structures and proved
conversely.

Liu et al. [33] looked at strengthening the space frame joints by reinforcing them with
carbon cloth. They considered four side joints of a beam column plate, made of
reinforced concrete and subjected to low cycle repeated load. Numerical simulations were
carried out using ANSY'S software. The results showed a marked increase in the ultimate
bearing capacity and yield load of the frame side joints. The stiffness of the joints are
increased due to the high strength feature of the carbon cloth.

Damages in space frame structures can be detected using state-spaced based
algorithms. They traditionally involve comparisons between measurements taken at the
same location but at different times to determine if a change has taken place. However,
Overby et al. [34] added features such as state-space cross-prediction error and
generalized interdependence such that the detection method instead compares
simultaneous measurements at different locations. With this a fuller assessment of
structural damage was possible. In addition, other characteristics such as extent, location,
and type of damage were revealed from this method. Qian et al. [35] proposed a two-
stage approach to diagnose the damage location and extent in steel braced space frame
structures. The two-stage approach comprises of the damage locating vectors method and
eigensensitivity analysis. To verify the effectiveness of the proposed approach, numerical
simulation and experimental testing of a steel braced space frame model were performed.
Ten and seven damage patterns were simulated in the numerical and experimental test
respectively. Modal parameters of the undamamged and damaged structures were

extracted from the acceleration data using the natural excitation technique (NexT) and the



eigensystem realization algorithm (ERA). The extended damage locating vectors method
was utilized to determine potentially damaged elements. Based on the identified modal
information, the extent of damage of the potentially damaged elements is estimated using
the second-order eigensensitivity analysis. The authors [35] demonstrated that this
approach was effective when the damage of the frame members or joints in steel braced
space frame structure reaches a certain level.
1.1.2 Optimization of Space Frame Structures

Research has been going on in the area of optimization of the space frame structures.
The objective of a majority of this optimization work involves minimizing the mass of
the space frame structures. Degertekin et al. [36] compared optimization techniques, tabu
search (TS) and genetic algorithm (GA), for the optimum design of geometrically
nonlinear steel space frames. TS utilizes the feature of short-term memory facility (tabu
list) and aspiration criteria. GA employs reproduction, crossover and mutation operators.
The objective of the optimization procedure was to obtain minimum weight frames by
selecting suitable sections from a standard set of steel sections such as American Institute
of Steel Construction (AISC) wide-flange shapes. Three space frame structures were
considered for optimization: a 3-story 24-member space frame, 2-story 26-member space
frame, and 4-story 84-member space frame, Figure 2. Stress constraints of AISC Load
and Resistance Factor Design (LRFD) specification, lateral and interstory displacement
constraints, and size constraints for the columns were imposed on the frames. TS resulted
in obtaining 8% more lighter space frames when compared to GA. This is due to that TS
does not turn back to the old designs using its artificial memory facility and it is able to

inspect much more area than GA in the solution space. This increases the probability of
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reaching global optima in TS. However, the computing time associated with TS is larger

than that of GA.
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Figure 1.2:  Space frame structures optimized by Degertekin [36]

Jalkanen [37] studied four heuristic methods; simulated annealing (SA), tabu search
(TS), genetic algorithm (GA) and particle swarm optimization (PSO), on a discrete space
frame sizing optimization problem. This work considered minimizing the mass of two
cases: structure with eight beams and a structure with twenty-six beams. In both cases,
the structures are subjected to displacement, stress, buckling and frequency constraints. It
was shown that population based methods (GA and PSO) worked better than the local
search methods (SA and TS). An optimization study similar to that of [37] was performed,

but only for an eight-beam space frame structure [38]. It compared two algorithms (SA
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and GA) only. This work did not consider the frequency constraint. Contrary to [37], the
results of [38] indicated that SA algorithm gave a better design approach for the space
frame structure when compared to GA, though GA was much faster in converging toward
the results. A structural optimization on a car space frame was conducted [39] using a
gradient-based algorithm known as method of moving asymptotes (MMA) [40].

Hayalioglu [41] utilized a GA code to optimize the weight of steel moment-resisting
space frames subjected to AISC LFRD specifications. The design variables were selected
similar to [36]. The types of space frame structures considered were: 1-story 8-member
space frame, 4-story 84-member space frame, and 10-story 130-member space frame.
Displacement and AISC LRFD stress constraints were imposed on the structure. The
optimized designs obtained using AISC LRFD code were compared to those where AISC
Allowable Stress Design (ASD) was considered, and the former code resulted in lighter
structures. Savings in weight for designs based on LFRD when compared to ASD were
28%, 12%, and 0.7% for the 1-storey, 4-storey, and 10-story frames respectively. For
LFRD designs lighter frames were obtained when the stress constraint is dominant when
compared to having dominant displacement constraints. Soegiarso [42] did a similar
study using a robust optimality criteria algorithm.

Optimization of large space frame steel structures subjected to realistic code-specified
stress, displacement, and buckling constraints was investigated by Soegiarso et al. [43].
The design of the space frame structure was based on the AISC ASD specifications. The
structures were subjected to wind loadings according to UBC in addition to dead and live
loads. A parallel-vector multi-constraint discrete optimization algorithm was developed.

This algorithm is applied to three building space frame structures ranging in size from a

12



20-story structure with 1,920 members to 60-story structure with 5,760 members, and its
parallel processing and vectorization performance was evaluated. For the largest structure,
speedups of 6.4 and 17.8 were achieved due to parallel processing and vectorization,
respectively. When vectorization is combined with parallel processing a very significant
speedup of 97.1 is obtained.

Czyz et al. [44] presented an optimization methodology for the design of maximum
natural frequency space frames subjected to constant volume constraint. Rectangular
cross-sections of the frame members were considered, and the limits on the maximum
and minimum sizes, as well as on the ratio of two dimensions of each cross section, were
imposed. From the results of the optimization process the authors indicated that the
formulation of optimality conditions based on the separation of bending energy in two
orthogonal planes accelerates the convergence.

Hamza et al. [45] optimized an N-shaped truss (NTS) structure using three types of
GAs and a version of TA known as reactive taboo search (RTS). RTS predicted better
performance than the GAs but lacked some of the GA capabilities to span the search
space. A modified RTS that uses a population based exploitation of the search history
was proposed in [45], and it showed improved results. Hamza and Saitou [46] presented
an automated algorithm for design of vehicle structures for crashworthiness, based on the
analyses of the structural crash mode. The algorithm applies fuzzy logic concept to
compare the crash modes between iterations. This algorithm was successfully tested
using the models of a front half of a vehicle and a fully detailed vehicle.

Lyu and Saitou [47, 48] presented a method for identifying the optimal designs of

components and joints in a space frame of a vehicle. They considered structural
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characteristics, manufacturability and ease of assembly. Lee and Saitou [49, 50] focused
on the dimensional integrity of the vehicle design. The optimization problem was posed
as a simultaneous determination of the location and feasible types of joints in a structure
selected from predefined joint libraries. The structural stiffness was evaluated by finite
element analysis of a beam-spring model modeling the joints and joined frames.
Manufacturing and assembly costs were estimated based on the geometries of the
components and joints. They used an enumerative approach for considering the
dimensional integrity of an assembly. Lyu et al. [51] extended on their previous work and
combined the structural stiffness, manufacturing, assembly costs, and dimensional
integrity under a unified framework of multi-objective optimization process. Dimensional
integrity in this case was evaluated as the adjustability of the given critical dimensions,
using an internal optimization routine that finds the optimal subassembly partitioning of
an assembly for in-process adjustability. GA was used as the optimization algorithm for
the aforementioned studies [47-51].
1.1.3 Optimization of Military Vehicles

The following is a survey of research in the area of optimizing military vehicles for
shock loading. Trabia et al. [52] conducted shock optimization studies on a single hull
Armored Personal Carrier (APC) that is subject to mine blast loading or projectile impact.
The objective of the study was to interrupt shock at critical locations on the APC hull by
welding or bolting joints to the panels and varying its dimensional parameters. Three
locations were chosen: the driver seat, the commander seat, and an instrumentation panel
having the electronic components. This work was extended to the design of joints for

reducing projectile impact, [53]. Sakaray et al. [54] optimized the mass of a military
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vehicle internal space frame, subjected to a projectile impact, by varying the locations of
the space frame joints as well as their lengths while maintaining the stresses in the
vehicle within a preset limit. This work showed that the problem exhibited limited
sensitivity to the location of the joints.
1.1.4 Space Frame Material: Aluminum

The use of aluminum alloys in the manufacturing of components subsystems, systems
and full vehicles has been on the rise, especially with electric vehicles. The drive for
lighter weight and less fuel consumption has contributed to the widespread use of
aluminum alloys in the automotive industry. Having a density equal to one third that of
steel, aluminum material has been used as a substitute for steel at the component, system
and full vehicle levels. Even when used at higher thickness, aluminum components
remain lighter than steel ones. For a aluminum component with a thickness equal to one
and one half that of a similar steel component, the aluminum component weight is equal
to half the weight of its equivalent in steel. Aluminum components substitution in steel
vehicle bodies has been on the rise as more and more steel parts are being replaced by
aluminum ones. Full structural aluminum systems are more popular with aluminum
intensive and electric vehicles. In these cars, either stamping or extrusion, or a
combination of both is used with the vehicles bodies. Casting, at present, is not as popular
as stamping or extrusion in components designed for crash energy management. Several
aluminum intensive commercial vehicles have been built in the past few years including
Audi ASF A8, Ford Taurus, Honda Acura NSX, Jaguar Sport XJ220, SCCA Trans-AM,

GM Impact Electric, etc [54].

15



Aluminum is a material that is soft, ductile and possesses a great resistance to
corrosion in its pure state. To enhance its strength, aluminum is often mixed with other
materials to form alloys with higher yield and ultimate strength. The 5000 and 6000
series aluminum alloys are most widely used in impact applications. Aluminum has a
lower modulus of elasticity when compared to steel. The modulus effect can be critical
when failure is by elastic buckling. However, for plastic buckling, the failure is by
material yield, rather than through local structural instability. This makes yield strength
more critical in plastic buckling.

Aluminum elongation at rupture averages 15-25% in comparison to about 40% in
steel. Elongation at rupture is critical in high impact applications as the strain associated
with the folding process of deep collapse is high enough to crack and possible rupture the
material. Elongation in the ranges of 15-25% has been demonstrated to satisfy the strain
required during crashing and folding of energy absorbing components. Aluminum is
easily recyclable and has a strong corrosion resistance.

The quest for lighter crash energy absorbing automotive structures has increased the
use, parallel with other materials, of the 5000 (for sheets) and 6000 (for extruded parts)
series aluminum structures. These aluminum structures, when properly designed and
joined, are able to demonstrate a very high impact energy absorbing capability [55].
Baccouche [56] conducted frontal impact studies on aluminum vehicle space frame.
Component and system modeling of the front end were conducted under NCAP’s 35 mph
full frontal impact using rigid body dynamic, nonlinear beam FE and stability codes. A
three-dimensional spring mass model was built for the front end structure using the rigid

body and finite element code MADYMO. Component load versus crash distance and
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system versus time response were computed. The authors concluded that the aluminum
space frame vehicle demonstrated an outstanding capability to manage the impact energy

during the crash.

1.2 Objectives

The objective of this dissertation is to present a methodology for the design of
military vehicles with an internal space frame structure subjected to high impact or shock
loadings. Based on this objective the conducted work is broadly classified into:
e Develop a FE model of a military vehicle with an internal space frame structure.
e Parameterize this FE model, and conduct mass and shock optimization studies.

e Manufacture a lab-scale space frame structure to conduct shock transmission studies.
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CHAPTER 2
FINITE ELEMENT MODEL
2.1 Military Vehicle Description

A light weight military vehicle, with an internal space frame structure, is being
conceptualized by the United States Army Research Laboratory (US ARL). This test
vehicle is named IS-ATD and its internal space frame structure AX-1. Figure 2.1 shows a
concept of the IS-ATD vehicle with an internal AX-1 space frame and bottom hull. The
research for this dissertation concentrated on the upper half of the vehicle, namely the
outer armor and the internal space frame, and the bottom portion, which majorly
comprises of the hull and the wheels, were not considered. This was due to the objective
expected from this project by the US ARL which funded the work. Also, Trabia et al.
[52] and Sakaray et al. [54] dealt with the design and optimization of the hull and its
joints for a military vehicle quite adequately. This study doesn’t take into account some
of the general vehicle components such as doors, hatches, etc so as to simplify the
computational study to make it less expensive and concentrate more on the internal space
frame structure. Also, these components don’t significantly contribute to the studies
carried out in this dissertation.

Figure 2.2 shows a simplified model of the upper half of the vehicle. The vehicle is
supported by internal space frame structure, Figure 2.3. The space frame is a non-
monolithic type with joints and frame members making up the entire structure. The frame
members are bolted together through common components at the joints. Figure 2.4 shows
a typical joint with frame members bolted to the joint branches. This arrangement allows

for quick replacement of any section of the space frame that might get damaged in

18



combat due to a projectile hit or blast impact. This design of the upper half of the vehicle
with the internal space frame structure is chosen as the base model for conducting the

studies in this dissertation.

Figure 2.1:  I1S-ATD military vehicle (model supplied by US ARL)

Turret
(125 mm thick)

Armor
(32 mm thick)

/Spﬂce Frame

Figure 2.2:  Simplified model of upper half of the military vehicle
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- Square Joint

Figure 2.3:  Line diagram of the internal space frame

Space Frame Members

Figure 2.4: Model of a joint and frame members pertaining to that joint
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The outer armor of the vehicle has a uniform thickness of 32 mm except around the
turret region, where it is stiffened to be 125 mm. Overall, the upper half of the vehicle
measures 4.05 m in length and 1.94 m in width. The maximum height of the vehicle,
which is the back end portion of the vehicle, is 0.82 m. The height at the frontal portion
of the vehicle, where it is at minimum, is 0.31 m. The vehicle, including the internal
space frame, is symmetric about the x-y plane. The maximum height of the space frame
structure, back end portion, is 0.76 m, and the minimum height located at the front end
measure 0.25 m. The numbers in Figure 2.3 represent the space frame joint locations.
Table 2.1 provides the coordinates of these joint locations. The data of the joints for other
half of the space frame are not included due to the aforementioned symmetry of the
vehicle. The space frame members are mostly made of hollow square section bars. The
side members, one on each side, comprise of angle sections. These members are labeled
angle in Figure 2.3. The joints comprise of either hollow square sections (S) or C-type
sections (C). All sections have uniform thickness. The arrangement of the space frame
members with the joints are as shown in Figure 2.3 and Figure 2.4. Table 2.2 lists the
dimensions of these members and joints. The details of the branches of each joint are
listed in Table 2.3. The following notation is used to describe the length and the section
type of each branch. For example, LNg is the branch starting from joint 8 along the line
connecting it to joint 7. On the other hand, LNy g is the branch starting from joint 7 along
the line connecting it to joint 8. LN;; is the branch from joint i in the direction of the
vehicle symmetry plane, x-y plane, which is the negative z-direction. The joints at the
front of the vehicle, joint 6 and joint 7, are connected with one branch only due to the

space limitations in this region.
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Table 2.1:

Coordinates of the space frame joint locations ( meters)

Joint | Type X-coordinate Y-coordinate Z-coordinate
1 S 1.015 0.217 0.597
2 S 2.618 0.207 0.597
3 S 2.618 0.207 0.972
4 S 1.891 -0.512 0.597
5 S 0.400 -0.512 0.597
6 S -1.441 -0.512 0.597
7 S -1.441 -0.260 0.597
8 S 0.000 0.000 0.597
9 S 1.008 0.249 0.972
10 S -0.759 -0.512 0.597
11 C -0.759 -0.512 0.972
12 C 0.400 -0.512 0.972
13 C 1.008 -0.512 0.972
14 C 1.891 -0.512 0.972
15 C 2.618 -0.512 0.972
16 S 2.618 -0.512 0.597
Square i
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Square - D,
(Joint) L s -
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Figure 2.5: Different sections of the space frame
Table 2.2:  Sectional dimensions of the space frame (mm)
Section Type
Square (Frame) Df=69.9 - tr=6.4
Angle (Frame) D,=92.1 W, = 28.6 t,=15.9
C (Joint) D.=101.6 w, =25.4 t.=12.7
Square (Joint) D; = 101.6 - =127
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Table 2.3:  Details of the joint branches (mm)

Joint | Joint branch Length | Section Joint | Joint branch Length | Section

LNy, 77 S LNg e 148 S
LNy, 195 S ° LN 10 148 S
LNy, 147 S LN7¢ 253 S

' LNys 142 S 7 LN, 148 S
LNyg 196 S LN;g 148 S
LNyo 77 S LNs.1 198 S
LN+ 190 S LNgs 134 S
LN, 77 S 8 LNs; 197 S

i LNy 77 S LNgg 77 S
LN, 89 S LNg 10 134 S
LN, 143 S LNg1 143 S

3 9
LNa 15 51 S LNg 1 51 S
LN, 120 S LNyos 143 S
LNy, 124 S LN1os 143 S

10

4 LNys 143 S LN1os 143 S
LN 14 57 C LNzt 57 C
LN 16 143 S 11 LNj110 57 C
LNs 124 S 12 LNy, 5 57 C
LNs 4 143 S 13 LNj3g 25 C

5 LNsg 120 S 14 LNy 4 57 C
LNs 10 143 S 15 LNjs 3 25 C
LNs 1, 57 C
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2.2 System and Software

All the computational analysis is done on a 2.8 GHz AMD Athlon processor, having a
2 GB RAM. Altair HyperMesh v9.0 is used as the pre-processor to create and mesh the
3D model of the military vehicle and the internal space frame. Explicit finite element
(FE) code, LS-DYNA v971 [57], is used to simulate the structural response of the FE
model. LS-POST and Altair HyperView v9.0 are used as post-processors for analyzing

the results obtained after processing the FE model through LS-DYNA.

2.3 Units
The standard S.1. system of units is used to create the FE model of the vehicle and
simulate the response through LS-DYNA. The basic and derived units used in defining

the FE model in LS-DYNA are listed in Table 2.4 and Table 2.5 respectively.

Table 2.4:  Basic units used in LS-DYNA

Basic Parameter Units
Length Meter (m)
Mass Kilogram (kg)
Time Second (s)

Table 2.5: LS-DYNA derived units

Derived Parameter Units
Density kg/m®
Force N
Stress / Pressure / Modulus GPa
Strain m/m (dimensionless)
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24 Material

The entire vehicle, including the internal space frame structure with the joints, is
made of Aluminum 7039 alloy heat treated to a T64. The material characteristics of this
alloy are listed in Table 2.6. *MAT_PLASTIC_KINEMATIC [Appendix A] material
model, present in LS-DYNA, is used to define the Aluminum 7039-T64 properties for the
dynamics analysis of the vehicle. This material model essentially behaves like a bilinear
elastic-plastic material and is used to model isotropic and kinematic hardening plasticity
materials. This material model covers for the stress strain curve in the elastic region (until
yield stress) and also in the plastic region (beyond yield stress). The stress-strain curve is
assumed to be linear within each of these regions and hence made up of two straight lines.
Such a simplified stress strain curve is shown in Figure 2.6. The slope of the stress-strain
curve (from origin to the yield point) is defined as the Elastic Modulus of the material.
While the slope of the stress-strain curve (beyond yield point) is defined as the Tangent
Modulus for this material model. To determine the linear portion of the curve in the
plastic region, a point that lies intermediate to the points corresponding to the ultimate
stress and failure stress values on the stress-strain curve is selected so as to achieve a

reasonable value for the Tangent Modulus.

Table 2.6:  Material properties of Aluminum 7039-T64

Property Value
Density (kg/m®) 2700
Modulus of Elasticity (GPa) 69
Poisson's Ratio 0.33
Yield Strength (MPa) 380
Tangent Modulus (MPa) 562
Failure Strain (m/m) 0.13
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Figure 2.6: Material model for the FE analysis

2.5 Element Types

Accurate modeling of the components of the vehicle and their modes of interaction is
essential for predicting the dynamic response of the vehicle under projectile impact load.
A simplified model that combines shell and beam elements is used to reduce the
computational time while maintaining reasonable accuracy. The outer armor and turret
plates are meshed using shell elements. The internal space frame structure comprises of
beam elements. Also, this model was created keeping the objective of optimization in
perspective.
2.5.1 Beam Element

The beam element is defined by two nodes and is a one-dimensional line with
bending capabilities. The element has six degrees of freedom at each node: translation in
the nodal x, y and z directions and rotation about the X, y and z axes. A third node known

as orientation node is required to create this element. This orientation node ensures that
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the cross-section of the beam is defined such that it is perpendicular to the axis of a
segment of the beam. This type of element is used in explicit dynamic analysis.

Figure 2.7 depicts the creation of the beam element in LS-DYNA. The beginning and
end of the element are defined using nodes n; and n,. Node n3 (orientation node) is added
to create a plane (r-s plane) along with nodes n; and n, that is normal to the cross section
of the element (s-t plane). Since n3 is defined in the r-s plane, the cross section of the
beam element is oriented along the s-t plane. Since the space frame structure comprises
of straight beams or lines, single orientation node can be used to define the beam
elements along that line. An example for meshing one segment of the space frame, a
hollow square frame member, is shown in the Figure 2.8, where a segment of the tubular
cross-section, A-B, uses a single orientation node, C, to mesh all the elements in that
segment. If the beam is curved, each element in the segment should have a separate
orientation node so that the orientation of cross-section is perpendicular to any given

element.

Figure 2.7:  Scheme of a beam element [57]
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Figure 2.8: Example showing creation of the beam elements

Since the AX-1 space frame comprises of different cross-sections, Figure 2.5, two
cards present in LS-DYNA are used to define the beam elements for a type of cross-
section. The *SECTION_BEAM [Appendix A] card is used to define the cross-sectional
dimensions of the beam. Three parameters of the beam, namely the wall thickness, height
and width are defined through this card. Another card known as
*INTEGRATION_BEAM [Appendix A], defines the number of integration points
through the thickness of the beam and the shape of the beam cross-section (angle, C, etc).
The basis of the integration point is to divide the cross-section into simple rectangular
regions, as shown in Figure 2.9 for an angle section. The center of each rectangular
region is an integration point. First the strain is evaluated at each integration point, based
on the curvature and relative nodal displacements. Then using the basic relations, the
stresses corresponding to the strains are evaluated at each integration point. Finally, the

stresses are integrated numerically to produce the axial force and moments [54].
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Figure 2.9: Integration points for an angle section [57]

2.5.2  Shell Element

The shell elements used in meshing the outer armor and turret plates are four-noded
with bending capabilities. Both in-plane and normal loads are permitted. The element has
six degrees of freedom at each node: translation in the nodal x, y and z directions and
rotation about the x, y and z axes. This type of element is used in explicit dynamic

analysis [57].

=4
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Figure 2.10: Scheme of a shell element [57]
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The node numbering is done in the anticlockwise direction for this type of element as
shown in Figure 2.10. With this type of node numbering the loads act towards the
element, i.e., positive load acts in the negative z direction with respect to the Figure 2.10.
The Belytschko-Lin-Tsay shell type of element formulation is used for this shell element.
This is the default shell element formulation used in LS-DYNA due to its computational
efficiency. The Belytschko-Lin-Tsay shell element [57] is based on a combined co-
rotational and velocity strain formulation. The efficiency of the element is obtained from
the mathematical simplifications that result from these two kinematical assumptions. The
co-rotational portion of the formulation avoids the complexities of nonlinear mechanics
by embedding a coordinate system in the element. The choice of velocity strain, or rate

deformation, in the formulation facilitates the constitutive evaluation.

2.6 FE Model

The FE model of the vehicle is as shown in Figure 2.11. The model has a total of
1192 beam elements and 8872 shell elements. Mesh stability studies were conducted to
ascertain the appropriateness of the element size in the model. Trabia et al [52] showed
that a uniform mesh of 0.04 m can be used to model projectile impact on the vehicle.
Therefore, the vehicle shell is meshed with a uniform size of approximately 0.04 m. The
mesh of the space frame is represented in Figure 2.12. The beam elements are shown as

blocks in this figure for illustration purposes only.
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Figure 2.11: FE model of the vehicle with the internal space frame

Figure 2.12: FE model of the space frame represented in 3D blocks

2.7  Boundary Conditions
2.7.1 Contact Definitions
Interaction between the space frame and armor elements was simulated using the
following two types of contact definitions available in LS-DYNA:
e *CONTACT_TIED_NODES TO_SURFACE (Appendix A) is used for the locations
where the armor is rigidly fastened to the frame. Sixteen regions of these contacts are

included in the model, Figure 2.13.
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2.7.2 Constraints

The vehicle, in general, is in contact with the ground through the wheels when
subjected to impact load. This type of boundary condition will result in diverting a
portion of the impact energy as kinetic energy. Therefore, it was decided to fix some
locations on the vehicle to study its performance under a situation when it will absorb all
of the impact energy. Four nodes on the internal space frame were selected and fixed
completely. These four nodes represent the four corners at the back-end of the space

frame shown in Figure 2.15.

Cpnsirain

i
A

;,;};:“' _ . ﬂ[‘ onstrabo
| 0 A
}‘E’nnslmim

E_ N J\/ / | -7 . AConstraint

Figure 2.15: Locations or nodes on the space frame rigidly constrained

2.7.3 Loading Conditions
The vehicle is subjected to projectile impact loading on the side wall, Figure 2.16.
The projectile impact location was chosen to be closer to the front of the vehicle to

increase the bending effect due to the fixed-displacement boundary conditions at the rear.
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This force impact curve is a smooth, simplified load curve approximately equivalent to
force resulting from the momentum of a projectile of mass 0.8 kg hitting the side of the
vehicle with an initial velocity of 938 m/s over 0.25 ms. It is assumed that the mass of the
projectile is steadily disappearing through the loading phase and the force is increasing
linearly. The calculations result in a peak load of 600 kN. The load curve goes back to
zero linearly over 8.05 ms. The duration of the impact load and the FE model run time is
8.4 ms. The loading curve is shown in Figure 2.17.

The total computational time for this FE model with the aforementioned boundary

conditions is approximately five minutes.

Impact point

Figure 2.16: Side projectile impact location
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CHAPTER 3
OPTIMIZATION

Optimization can be defined as the procedure for achieving the most desirable design
of any product. Optimization is predominantly iterative and hence a series of operations
are performed sequentially to obtain the optimal result. In the past, optimization of a
product was done manually. This made the optimization process very tedious and time
consuming, and hence the field was very limited. But with the advancement of
technology and advent of computers, there is more scope available for optimization. With
regard to space frames optimization, there has been active research in minimizing the
weight, as was noticeable from the literature survey listed in Chapter 1. The research in
the area of military vehicle space frame optimization is minimal and mostly classified.
Optimization can be an important tool for the military vehicle and its internal space frame
structure to minimize the overall mass, which can be an essential aspect for the mobility
of the vehicle in transport and frontline. The structural integrity of the vehicle can be
improved with the help of optimization technique. This can lead to mitigating shock in
the vehicle due to projectile hits or explosive loads. The objectives of this chapter are,
e To propose and validate an optimization technique for the military vehicle and the

internal space frame structure.
e To minimize the mass of the military vehicle.
e To reduce the shock at identified critical locations on the space frame structure.

The FE model of the military vehicle with its internal space frame detailed in Chapter

2, Figure 3.1, is taken as the base model for conducting optimization studies. This model
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IS most suitable for the iterative optimization procedure due to its combination of

accuracy, computational efficiency and modeling simplicity.

Figure 3.1:  FE model of the vehicle with the internal space frame

3.1  Mass Optimization
3.1.1 Problem Description

The objective of this optimization process is to reduce the mass of the vehicle by
minimizing the mass of the components of the internal space frame structure and the
outer armor. This is obtained by varying the cross-sectional parameters of the space
frame components and the thickness of the armor, while maintaining its structural
integrity. Previous optimization study explored the effect of varying joint locations on the
mass of the vehicle [51]. This study showed that moving joint 5, Figure 3.2, in
increments between joint 4 and joint 10 along the x-direction resulted in a negligible
change in vehicle mass (less than 0.03%). Therefore, it is decided not to include varying

the joint locations as a design variable for optimization.
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Figure 3.2: Internal space frame structure of the military vehicle

3.1.2 Parameterization of the FE Model
Five independent variables that describe the various cross-sections of the frame
members and joints, Figure 3.3, are considered for the optimization,
e x;: wall thickness of the frame members.
e Xo: inner height of the frame members.
o x3: wall thickness of the angle member.
o x4 wall thickness of the C-joints.
o xs: wall thickness of the joints.
A sixth independent variable is considered,

e Xg: thickness of the armor plate.
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Figure 3.3: Parameterization of the space frame sections for mass optimization

The thickness of the armor around the turret is kept fixed. The dependent variables of
the cross-sectional dimensions of the frame and joints components of the space frame are
given in Equation 3.1 below (dimensions are in meters). A 12.7 mm extension is used for
w, and w, in Figure 3.3 to allow space for bolting the angle and the C-joint to the other

frame members.

D, k. I

D, Ik. I I
D, k. I Ik
w, [Jo27 Ik
D, .(2 .x1 lx4
w, o127 Ik,

3.1)

39



The mass of any frame member or joint is given as,

Mi,j -—Ni,jABi,j .—Nj,iABj,i .Li,j .—Ni,j .—Nj,i)Ai,j] (3.2)

Mi; mass of frame member or joint branches connecting joint i to joint j (kg)
p  mass density of frame members and joints (kg/m°)
LN;; length of joint branch starting from joint i along the line connecting joint j (m)
Li; length of vector connecting joint i to joint j (m)
ABi; combined cross-sectional area of the branch connecting joint i to joint j and the
enclosed frame member (m?)

Aij  cross sectional area of frame members or joints between joint i and joint j (m?)

The areas of the frame members and joints are obtained from Table 3.1. The area of
the optimized armor portion is computed to be 12.957 m? (As), which is the total surface
area of the vehicle’s top and sides minus the turret hole and stiffening portion

surrounding it. Therefore, the mass of the vehicle armor is obtained from Equation 3.3,

M rmor ERA)(HK %) (3.3)

where,

Marmor ~ Mass of the outer armor of the military vehicle (kg)

A surface area of the armor (m?)
p mass density of the armor material (kg/m®)
X6 thickness of the outer armor (m)
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Table 3.1:  Areas of relevant sections (m?)

Section type Area equation

Square (Frame) ax (x k)

Angle (Frame) x(2x, Ik, Ik, I .0127)

C (oint) x,(2x, Ik, I~ IB.0254)

Square (Joint) ax,2x, I L)

3.1.3 Objective Function and Constraints

The objective function is given as,

Minimize, M ./larmor lM11,15 l“«Mj,k .Hn (3.4)
) 20T,

The variable Jjy is the reverse Kronecker delta and is defined by Equation 3.5. The
second term in Equation 3.4 corresponds to the mass of the two side angle members
while the fourth term describes the fact that there are single frame members in the center

of the vehicle that start from joint 6, joint 7, joint 8, joint 1, and joint 2, Figure 3.4.

Cif ik
lk1 i ik (3.5)
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Figure 3.4: Line drawing of the internal space frame structure

Twelve geometric constraints are used to ensure realistic dimensions of the frame and
armor by imposing upper and lower limits on the dimensions of the frame members and

the armor (all the limits are in meters),

0.003 ik, [i§.007
0.040 [k, I .110
0.003 k. [ .035
0.003 [k, 014
0.003 k. 014
0.020 [k, [ .040

(3.6)
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Additionally, the stress constraint below, Equation 3.7, ensures that the plastic stress

within the vehicle does not exceed a preset value, 110% of yield stress which is 418 MPa,

to maintain the structural integrity of the space frame and armor. The stress limit of 418

MPa corresponds to a strain limit of 7.41%, which is slightly more than half the material

failure strain, Figure 3.5.

where,

Omax

Oy

Nl

maximum Von Mises stress in the military vehicle (MPa)

yield stress of the vehicle material (MPa)

500 - 418 MPa

Stress limit

1.100,
400 -

300 -

Stress (MPa)

200 - |

7.41%
100 -

O T T | | I
0 002 004 006 0.08 0.1

Strain (m/m)

Figure 3.5:  Stress-strain curve of aluminum 7039 showing the stress limit
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These thirteen constraints are formulated in the standard form,
o; B (3.8)

The constraints are incorporated in the objective function by using the penalty
function to maintain the search within the feasible region. After including the constraints,

the objective function becomes,

winnize, = B, . S, . [ o
] N0l !

As the problem is prohibitively expensive, the program starts by evaluating the
penalty terms. If any is violated, the finite element program is not assessed and the

objective function is assigned a large value,

if, g, D A ¢ B (3.10)

i, o, I Al e B (3.11)

R and B are the penalty parameters that are assigned values of 10™ and 600,000

respectively.
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3.2 Shock Optimization
3.2.1 Problem Description
Eight locations on the internal space frame structure of the military vehicle, Figure
3.6, are identified as critical for the optimization studies. These points were chosen
because they have relatively high accelerations during the simulated projectile impact and
they could be mounting locations for critical interior components such as crew seats or
control computers. It is decided not to include any node in the immediate vicinity of the
impact as this may bias the results. The selected critical locations are:
e Locations on the right side of the space frame, which is subject to the projectile
impact (N1, N2, and N3).
e Front hood portion (N7).
e Locations on the left side of the space frame, which is opposite to the projectile

impact (N4, N5, N6, and N8).

N
o s g )
&SN N N ANz |
- N4 o f" s

\ ’ /}
- 1 1 .
o

Figure 3.6:  Critical locations on the space frame
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The chosen locations include both joints (N1, N4, and N8) as well as mid-member
locations (N2, N3, N5, N6, and N7). Figure 3.7 shows the unfiltered acceleration profiles
at the critical locations for the original vehicle design. The accelerations at the joint
locations (N1, N4, and N8) are comparatively less than the frame members, as the joints
are acting as a medium to mitigate shock. The locations in the front of the space frame
(N5, N6, and N7) exhibit much higher acceleration values than those further away from
impact (critical locations N2 and N3). Hence, no location on the middle and back
portions of the space frame structure is chosen as critical for optimization study. Also,
none of the armor nodes were selected since there are no mounting locations on the armor

as it will be subjected directly to the impact.
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Figure 3.7:  Shock profiles at the critical locations for the original vehicle design
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The objective of the optimization process is to reduce shock or acceleration profiles
of the aforementioned critical nodes on the space frame. This is obtained by varying the
cross-sectional parameters of the space frame and the thickness of the armor, while
maintaining its structural integrity.

3.2.2 Parameterization of the FE Model

Similar to the mass optimization, based on the space frame sections shown in Figure
3.8, and the armor, six independent variables are considered for optimization,

e x;: wall thickness of the frame members.

e Xo: inner height of the frame members.
o xs3: wall thickness of the angle member.
o x4 wall thickness of the C-joints.

o xs: wall thickness of the joints.

e Xg: thickness of the armor plate.

Square
Square (Frame) Angle (Frame)
(Joint) X3 b C (Joint)
—>f [o— :
D; Da
Square

Square Angle (Frame) (Frame)
(Frame)

Figure 3.8: Parameterization of space frame components for shock optimization
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The dependent variables, like wise to the mass optimization, are as listed in Equation

3.12,

D, k. B

D, k. I I,
D, k. Il .
w, o127 Ik,
D, k. I« I,
w, [o27 Ik,

(3.12)

3.2.3 Objective Function and Constraints

The objective function for the optimization is given as,

where,
S

Nk
Avg(NK)

r

!g(Nk)
Minimize, S (3.13)

r

total mean acceleration of the critical nodes (m/s?)
node at a critical location
mean of the acceleration profile at node Nk (m/s%)

number of critical locations
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Twelve geometric constraints are used to ensure realistic dimensions of the frame and
armor by imposing upper and lower limits on the dimensions of the frame members and
the armor (all the limits are in meter). Additionally, the stress constraint below ensures
that the Von Mises plastic stress within the vehicle does not exceed a preset value to

maintain the structural integrity of the space frame and armor.

0.003 ik, .07
0.040 ik, I .110
0.003 k. [ .035
0.003 k. 014
0.003 k. 014

0.020 [k, [ .040
W BG (3.15)

(3.14)

These thirteen constraints are formulated in the standard form similar to the mass
optimization, Equation 3.8. The constraints are incorporated in the objective function by
using the penalty function to maintain the search within the feasible region. After

including the constraints, the objective function becomes,

g(Nk)
Minimize, T [ (3.16)
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As the problem is prohibitively computationally expensive, the program starts by
evaluating the penalty terms. If any is violated, the finite element program is not assessed

and the objective function is assigned a large value,

if, o, I, A e KRB (3.17)
if, g, I, Al e B (3.18)

R and B are the penalty parameters that are assigned values of 10™ and 600,000
respectively, in order to assign the objective functions large values when the constraints

are violated.

3.3 Organization of the FE code

LS-DYNA has the capability to write the finite element model input file in text
format. The optimization code, which is written in MATLAB v2006a, is coupled with the
LS-DYNA input file to run the simulation of the vessel in an iterative procedure. The
entire optimization process is conducted within the MATLAB environment. The FE
model of the vehicle, written in text format within MATLAB, is divided into fixed and
variable code portions.
3.3.1 Fixed Code

This code comprises of all the features of the FE model that remain constant
irrespective of changes in the values of the design variables. Fixed code contains
components such as, nodal coordinates, element connectivity information, and material

properties.
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3.3.2 Variable Code

This portion of the FE code depends on the design variables. Variable code comprises
of the cross-sectional properties of the space frame structure and armor plate shell
elements. The variable code text is generated by the optimization program according to

the values of the optimization variables.

3.4 Optimization Process

To obtain the function value at any point, the independent variables are used to create
the variable FE code of the vehicle, which is added to the fixed code to form the FE input
file. This input file is processed in LS-DYNA through MATLAB environment. The
computational time for processing the input file is approximately five minutes. The
element output file obtained from computing the input file is then read within MATLAB
to calculate the Von Mises stresses, acceleration profiles at the critical locations (for
shock optimization), and the objective function. This procedure roughly takes 10 minutes
of the computing processor time. Hence, the total computational time for one function

evaluation is approximately 15 minutes.

3.5  Optimization Algorithm

The vehicle space frame optimization problem is solved using the Successive
Heuristic Quadratic Approximation (SHQA) algorithm [55]. This method was developed
to reduce stress corrosion cracking effects in cylindrical containers by maximizing the
compressive stress on the outer surface of the closure weld region. SHQA improved the

resultant compressive hoop stress by 126% in comparison to the original design. SHQA
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provided results that were better than those of an off-the-shelf optimization program as
well as the successive quadratic approximation.

SHQA optimizes designs of computationally intensive problems with large number of
variables. This method combines successive quadratic approximation with a controlled
random search. If the problem is almost quadratic, the quadratic approximation will
improve the search quickly. The controlled random search is an effective tool for highly
nonlinear problems.

The following is a brief overview of the optimization process. At the initial step,
upper and lower bounds, L;j and U;, of the previous section are used. Within these bounds,
m initial points are generated using s equally-spaced values for the n design variables.
The newly created variable code is added to the fixed FE code to form the FE input file of
the vehicle. This input file is processed in LS-DYNA and the objective function is
computed. The element output file is read and the Von Mises stresses are evaluated. The
objective function and the variables are fed back into the SHQA algorithm. This process
is repeated for all the m points. A quadratic polynomial is fitted to these data points. The
minimum point of the quadratic surface is determined numerically. This solution is then
input into the finite element software to obtain the objective function value for this point.
This point is added to the m points already generated.

The K points in the lower half of the function value range are identified. New upper
and lower bounds of the design variables that enclose these points are identified. These
bounds are expanded by a factor « to avoid over-constraining the search. The minimum
function value point of the quadratic curve fitting is added if it belongs to the lower half

of the function value range. Additional m+1-K data points are randomly generated. The
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finite element program calculates the function values of these points. These m+1-K data
points replace the ones that were in the upper half of the function value range of the

previous iteration.
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v
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Figure 3.9: Flowchart of the optimization process
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The algorithm has the following set of criteria to terminate the optimization process:
e The minimum function value in the current iteration (Fmin,) is greater than the
minimum function value of the previous iteration (Fmin,.1).
e The ranges of all the independent variables are less than the specified accuracy (D).
e The maximum iteration limit (Inax) IS reached.
e The ratio of the standard deviation (SD) of the function values to their average (Avg)
function value is less than a predetermined function closeness parameter (E,).
The entire optimization problem is solved in the MATLAB environment. Figure 3.9
depicts the flowchart of the optimization algorithm while Table 3.2 shows the SHQA

parameters defined for this problem.

Table 3.2:  SHQA input parameters

Parameter Mass Shock
No. of independent variables, n 6 6
No. of equal size spaces between data points, s 7 7
No. of initial data points, m 49 49
Factor of expansion for the range of variables, « 5e-2 5e-2
Maximum no. of iterations, Imax 2500 1000
Function value closeness parameter, E; le-5 le-3
Specified accuracy of the variables, D le-6 le-6
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3.6 Results
3.6.1 Mass Optimization

The optimization algorithm underwent 9817 function evaluations and 2215 iterations.
The total optimization process approximately took 580 hours of computational time. The
optimization process was terminated as the function value closeness parameter was
reached. The results of the design variables from the optimization process are compared

with the original design values in Table 3.3. All the variables, except xg, reach the lower

limits.
Table 3.3:  Comparison of the variables before and after mass optimization (mm)
Parameters Original design Final design Lower limit Upper limit

X1 6.4 3.0 3 7

X2 57.2 40.0 40 110
X3 15.9 3.0 3 35
X4 12.7 3.0 3 14
X5 12.7 3.0 3 14
X6 32.0 28.0 20 40

An off-the-shelf optimization program was also used [Appendix B], but obtained
results were poor and the off-the-shelf program was inadequate to handle the mass
optimization problem. The neighborhood of the optimized design parameter Xxs was
surveyed [Appendix C]. The results indicated that no neighboring point provided a better

value.
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Table 3.4 compares the objective function in the original and final designs. The table
also lists maximum Von Mises stress values in the space frame structure and armor for
these two cases. Figure 3.10, stress contour plot, shows the maximum Von Mises stress
occurring at the location of impact on the armor. Due to the nature of the impact location
the highest stresses are localized at the side of the vehicle and the angle frame member,
located at the side of the vehicle. As expected these areas absorb most of the impact
energy. While the mass of the space frame is reduced by 77%, the mass of the armor is
reduced by 13%. This reduction is accompanied by an increase in armor and space frame
Von Mises stresses, by 5% and 3% respectively. The results indicate that stresses in the
armor and space frame are in the plastic range. Also, the armor stress has reached the
stress constraint of 418 MPa, hence preventing the design variable xg from further
reducing towards the lower limit. The overall mass of the vehicle is reduced by 25%.
With this reduction in the vehicle mass, the increase in the vehicle stresses is still
considerably below the failure limit of the material (450 MPa), therefore maintaining the

structural integrity of the vehicle.

Table 3.4:  Comparison between the optimized and original results

Parameters Original design | Final design | % change
Armor 1119.50 979.73 -12.5
Mass (kg)

Space frame 263.46 58.98 -77.6

Total mass (kg) 1382.96 1038.71 -24.7

Armor 397.14 417.97 +5.2

Max stress (MPa)

Space frame 392.92 406.15 +3.4
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Figure 3.10: Maximum Von Mises stress contour plot for side impact

3.6.1.1Front Impact

As the vehicle can be subject to various impact locations, it may be of use to study the
behavior of the optimized vehicle under different loading scenarios. The optimized
military vehicle is subjected to a projectile impact on the front hood of the vehicle, Figure
3.11. The same loading time-history for side impact is applied for the front impact,

Figure 3.12.

Figure 3.11: Front impact location
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Figure 3.12: Triangular impact impulse of the projectile

The results of the front impact are shown in Table 3.5. As in the side impact case, the
final design of the armor experiences increase in the maximum Von Mises stress when
compared to the original design. The stress values in the space frame are almost
maintained the same. The maximum stress for the space frame occurs at the back end of
the structure where the frame is rigidly constrained. The impact load results in pushing
the vehicle backwards, but the constraints at the back end of the space frame resist this
movement and hence results in higher stressed region at the constraint locations. The
stresses at the front impact location are much lesser as the impact load in this case is
distributed more evenly over the entire space frame structure. Overall, there is a 17%
increase of maximum Von Mises stress for the armor while for the space frame there is a
miniscule decrease of 0.3%. Figure 3.13, stress contour plot, shows the region of
maximum Von Mises stress on the vehicle. From the side and front impact scenarios it
can be concluded that the optimized design of the vehicle is functional of different

loading conditions.
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Table 3.5:

Stress results for the front impact case

Parameters Original design Final design % change
Armor 252.66 295.78 +17.1
Max stress (MPa)
Space frame 382.62 381.38 -0.3
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Figure 3.13: Maximum Von Mises stress contour plot for front impact

3.6.2 Shock Optimization

The optimization algorithm underwent 2960 function evaluations and 792 iterations.

The total optimization process took 145 hours of computational time. The optimization
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process was terminated as the function value closeness parameter was reached. The
results of the optimization process are compared with the original design values in Table
3.6. Unlike mass optimization, it is interesting to note, the search does not stop at any of
the upper or lower limits of the variables. The optimized point was checked for

optimality by surveying the neighboring points [Appendix D]. This did not result in a

better point.

Table 3.6:  Change in the variable values after optimization for shock optimization
Parameters Original design Final design Lower limit Upper limit
X1 6.4 5.6 3 7
X2 57.2 40.1 40 110
X3 15.9 20.2 3 35
X4 12.7 4.1 3 14
X5 12.7 9.8 3 14
X6 32.0 38.2 20 40

Similar to mass optimization, an off-the-shelf optimization program

was also used

[Appendix E], but the results obtained were poorer than SHQA results. Hence, it was

concluded that the off-the-shelf program was inadequate for shock optimization of the

military vehicle.

The stress contour plot in Figure 3.14 shows the maximum Von Mises stress on the

armor. Due to the nature of the impact location the highest stresses are localized on the
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side of the vehicle, especially on the impact side angle frame member. The stresses in the
armor are maintained just below the yield strength of the material while the space frame
structure undergoes plastic deformation The optimization makes the armor lot more
stiffer which significantly contributes in the reduction of the front end displacement of

the vehicle, from 26 mm for the original design to 18 mm after optimization.
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Figure 3.14: Maximum Von Mises stress contour plot after shock optimization

Table 3.7 compares the objective function in the original and final designs. The table
also lists maximum Von Mises stress values in the space frame structure and armor for
these two cases. A comparison of the original and final designs leads to the following

observations:
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The total mean acceleration, S, obtained from the considered critical nodes is
significantly reduced, by 95%, while there is a 9% increase in the overall mass of the
vehicle

The final design results in significant change in the area moment of inertia of the
frame members (1.11E6 mm* in the original design versus 0.36E6 mm* in the final
design). This makes the frame less stiff, hence allowing more energy absorption by
the space frame structure.

A joint wall thickness acts as medium of shock transmission between adjacent frame
members. The optimization search results in reducing the wall thicknesses, x4 and Xs,
by more than 20%, which makes the joints less stiff than in the original design. The
change also allows for increased absorption of shock by the joints.

The angle member near the impact point experiences the maximum Von Mises stress
In the final design, the wall thickness of the angle members, xs, are slightly increased,
which results in greater shock distribution along the length of the angle members and
hence a reduction in the maximum stress value.

There is a 35% decrease in the overall mass of the space frame so as to make the
structure softer and hence result in more energy absorption. Since no locations on the
armor were considered critical for shock reduction there is 19% increase in the mass
of the armor which in turn results in making the armor stiffer and hence maintaining

the overall integrity of the vehicle.
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Table 3.7:

Shock optimization results

Parameters Original design Final design % change
Mass (kg) Armor 1119.50 1335.70 +19.3
Space frame 263.46 172.10 -34.7
Armor 397.14 373.82 -5.9
Max stress (MPa) 1= ce frame 392.92 383.42 2.4
Max displacement (mm) 26.00 18.00 -50.0
Total mean acceleration (m/s°) 46,109.00 2,479.70 -94.6

Figure 3.15 and Figure 3.16 show the acceleration profiles before and after
optimization for the critical locations. At all the locations the shocks are significantly
reduced when compared to the original design shock profiles. Figure 3.17 compares the
mean acceleration profile of the critical locations for the original design and the result
obtained after optimization. The plot clearly depicts the significant reduction in the shock

due to optimization.
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Figure 3.15: Shock profiles at the critical locations before optimization
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Figure 3.16: Shock profiles at the critical locations after optimization
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Figure 3.17: Mean shock profile for the original design and after optimization
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3.6.2.1 Front Impact
Similar to the mass optimization, the shock optimized design parameters are applied
to the vehicle and a front impact case, as shown in Figure 3.18, is considered. The same

loading time-history for side impact is applied for the front impact, Figure 3.19.

Figure 3.18: Front impact location
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Figure 3.19: Triangular impact impulse of the projectile
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The results of the front impact are shown in Table 3.5. There is decrease in the
maximum stress values for both the armor, considerably, and space frame structure,
miniscule, due to the significant increase in the mass of the armor. This shows that the
front impact case is a function of the armor behavior, while the side impact is more
dependants on the space frame structure. Figure 3.20 shows a maximum armor stress

contour plot and it is clear that this impact scenario is less critical that the side hit.

Table 3.8:  Stress results for the front impact case

Parameters Original design Final design % change
Armor 252.66 205.87 -18.5
Max stress (MPa)
Space frame 382.62 380.98 -04

Fringe Levels
4.200e+008
3.780e+008
3.360e+008
2.940e+008
2.520e+008 __
2.100e+008

1.680e+008 J

1.260e+008 _
8.400e+007

4.200e+007 7I
0.000e+000 _|

Figure 3.20: Maximum Von Mises stress contour plot for front impact
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3.7 Conclusion

From the literature survey it is evident that the area involving the optimization studies
regarding military vehicle and its space frame structures is very limited. There is a need
for designing an optimization technique for military vehicles which are subjected to more
robust loading scenarios such as projectile hits, mine blast, etc., and this research lays a
platform for such a study. This chapter proposes an optimization technique and also
validates it by conducting two types of optimization case studies.

The objective of the first study involved minimizing the overall mass of the military
vehicle, including the internal space frame structure. The second study dealt with
reducing the shock or acceleration profiles at identified critical locations on the internal
space frame structure. For the case studies the FE model of the military vehicle and the
internal space frame structure, detailed in Chapter 2, is parameterized. The cross-
sectional parameters of the internal space frame components and the outer armor are
chosen as the design variables for the optimization process. The structural integrity of the
vehicle is maintained when conducting the optimization studies. Successive Heuristic
Quadratic Algorithm (SHQA) [58] is utilized to solve the optimization problem. This
algorithm combines successive quadratic approximation with a controlled random search.
SHQA is suitable for computationally intensive and highly non-linear problems.

The mass optimization results showed 25% decrease in the overall mass of the
vehicle when compared to the original design. For shock optimization there was a 9%
increase in the overall mass of the vehicle, while the decrease in overall shock was 95%.
These significant decreases in the objective functions of the optimization processes

resulted in acceptable limits of changes in the Von Mises stress, displacement and area
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moment of inertia for the space frame structure and armor, thus maintaining the structural
integrity of the vehicle. The SHQA algorithm was found to be computationally expensive
for the optimization problem presented in this paper but very productive in reaching the
objective. Hence, the optimization technique proposed in this chapter for military

vehicles subjected to high impact loads is validated.
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CHAPTER 4
LAB-SCALE SPACE FRAME

The works described in the previous chapters were all computational. Currently,
limited research is available in assessing the adequacy of the finite element codes in
modeling shock loading across structures with joints, such as the military vehicle space
frame structure. Hence, it was decided to build a lab-scale space frame structure
comprising of joints similar in shape to the military vehicle space frame joints. This lab-
scale space frame structure is subjected to impact tests and the obtained results are
compared with the simulated predictions. The objectives of this chapter are:
e Design and build a lab-scale space frame structure.
e Conduct shock transmission studies.
e Create FE model of the lab-scale structure.
e Compare FE results with the experimental data for frequency response and

accelerations at strategic points.

4.1  Description

The lab-scale space frame structure is derived from the military vehicle space frame.
It was decided to make the lab-scale space frame as a cube shaped structure so that during
shock studies all the three global directions (X, y and z) can be considered similar to the
military vehicle. Figure 4.1 shows a 3D model of the cube shaped lab-scale space frame
structure. Overall length of the cube is 482.6 mm. The shape of the joint in the lab-scale

structure is based on the military vehicle space frame, Figure 4.2. The joints halves are C-

69



shaped sections, which are bolted together through the hollow square sectioned frame

members.

Frame Members

Figure 4.1: Model of the lab-scale space frame structure

Figure 4.2: Model of the joint on the lab-scale space frame structure
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Overall, the two orthogonal joint branches measure 114.3 mm, and the width of the
joint is 50.8 mm. The wall thickness of the joints is 6.35 mm, while that of the frame
members is 3.175 mm. Based on the length, the frame members are of two types. One set
of members are 342.9 mm long. The ends of these frame members are housed in the two
orthogonal joint branches. The second set of the frame members are 482.6 mm long, and
their ends are enclosed by the angle joints. The angle joint legs are 100 mm in length,
while the width is 50.8 mm. The wall thickness of the angle joints is 6.35 mm. Figure 4.3
shows the different sections used in the lab-scale space frame and Table 4.1 gives the

dimensional parameters needed to define these sections.
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Figure 4.3:  Sections comprising of the lab-scale structure

Table 4.1:  Dimensional parameters of the lab-scale sections (mm)

Section Type D wW tw te
Frame 38.1 38.1 3.2 3.2
Joint 88.9 88.9 6.4 6.4
Angle 50.8 25.4 6.4 6.4
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4.2 Material

The entire cube; frame members, square joints, and angle joints are made of
Aluminum 6061 alloy. The material characteristics of this alloy are listed in Table 4.2.
*MAT_PLASTIC_KINEMATIC [Appendix A] material model, present in LS-DYNA, is
used to define the Aluminum 6061 alloy for computational analysis. In the material
model the elastic-plastic nature of the material is defined as shown by the stress-strain in

Figure 4.4. The assembled aluminum cube, including the nuts and bolts, weighed 11.4 kg

and is shown in Figure 4.5.

Table 4.2:  Material properties of Aluminum 6061

Property Value
Density (kg/m°) 2700
Modulus of Elasticity (GPa) 68.9
Poisson's Ratio 0.33
Yield Strength (MPa) 276
Tangent Modulus (MPa) 562
Stress
A Failure
Point
Yield
Point__—"" | Tangent
Modulus
Elastic
Modulus
» Strain

Figure 4.4: Material model for the FE analysis

72



Figure 4.5: Lab-scale aluminum space frame cube

4.3  Bolt Tightening

All the bolts on the lab-scale space frame are tightened to a preload of 10.8 kN. To
obtain the aforementioned preload, a torque of 12.5 N-m is applied to the bolts with the
help of a torque wrench. These values were evaluated by using the standard bolt design

equations shown below [59],

Preload: F, [lB-9S,)(A) (18)
Torque: T, IlB-21(F))(d,) (19)
where,
Sp proof stress of the bolt material = 586 MPa

A tensile stress area of bolt = 2.1E-5 m?

dp pitch diameter of bolt treads = 5.525E-3 m
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The bolts are tightened so as to reduce the noise in the output recording, and they are
tightened to a standard preload to keep the experiment consistent and obtain repeatability

in the result.

4.4  Joint Contact
The faces of the joint halves which meet with each other are machined off by 1.58
mm, Figure 4.6, so as to obtain a more homogenous contact between the joint and the

frame members. Due to this the noise in the shock signal is removed.

Figure 4.6: Machined joint halves

4.5 Impact Experiment

Non-destructive impact testing is done on the lab-scale space frame structure to
conduct shock transmission studies.
45.1 Experimental EQuipments
4.5.1.1 Force Hammer

The impact on the cube structure is applied by PCB 086D05 [Appendix F] force
hammer. It is a short-sledge impact/impulse hammer with force sensor at the tip, Figure

4.7. The salient features of the force hammer are listed in Table 4.3.
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Figure 4.7:

PCB 086D05 force hammer

Table 4.3:  Characteristics of the PCB 086D05 force hammer

Sensitivity (£15%) 0.23 mV/N
Measurement range +22000 N pk
Resonant frequency > 22 kHz
Sensing element Quartz
Hammer mass 0.32 kg
Head diameter 25 mm
Tip diameter 6.3 mm
Hammer length 227 mm
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4.5.1.2 Accelerometer

A piezoelectric accelerometer is used to record shock in the form of acceleration
signal, produced due to the application of the force hammer on the cube structure, at a
couple of identified locations on the cube frame members. The accelerometer used is
PCB 352C22 model [Appendix G], Figure 4.8. Table 4.4 lists some of the characteristics

of the accelerometer.

Figure 4.8: PCB 352C22 model accelerometer

Table 4.4:  Features of the PCB 352C22 accelerometer

Sensitivity (+15%) 1.0 mV/(m/s°)
Measurement range +4900 m/s* pk
Resonant frequency > 50 kHz
Frequency range (+5%) 1.0 to 10,000 Hz
Sensing element Ceramic
Sensing geometry Shear
Size 3.6mm x 11.4mm x 6.4 mm
Weight 05¢g
Mounting Adhesive
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4.5.1.3 SignalCalc ACE Il Dynamic Signal Analyzer

Ultra-portable, SignalCalc ACE Il from Data Physics features compact signal
processing hardware containing 24-bit input and output channels with dedicated DSPS
for each set of channels. The multiple DSP architecture allows measurements to be made
at the same real-time rate regardless of the number of channels in use. This hardware is
connected to the laptop by using the USB. Figure 4.9 shows the signal analyzer ACE II.
Figure 4.10 shows the signal analyzer during the experimental setup. It has 4 channels for
4 inputs, a trigger and an easily configurable Tachometer [61]. This instrument is used

when calibrating the force hammer or the accelerometer.

Figure 4.9: Signal analyzer
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Figure 4.10: Signal analyzer during experimental setup

4.5.1.4 Signal Conditioner

A signal conditioner is a device that converts one type of electronic signal into
another type of signal. Its primary use is to convert a signal that may be difficult to read
by conventional instrumentation into a more easily readable format. In performing this
conversion a number of functions may take place. For example, when a signal is
amplified, the overall magnitude of the signal is increased. Converting a 0-10 mV signal
to a 0-10 V signal is an example of amplification. The 4103C current source, Figure 4.11,
power unit, manufactured from Dytran Instruments, is used as the signal conditioner,
Figure 4.10. Some important specifications of the signal conditioner are listed in Table

4.5.
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Figure 4.11: The 4103C current source/signal conditioner

Table 4.5:  Specifications of signal conditioner [Appendix H]

Power source 9V (two in number)
Battery life 40 hours
Size (Hx W x D) 63.5x 132.1 x 83.8 mm
Weight 0.34 kg

4.5.1.5 Calibrator
Calibrator is hand held shaker used to calibrate the accelerometers. The model
number of calibrator is 394C06, Figure 4.12, and it is manufactured by PCB. Some of the

specifications for the calibrator are listed in Table 4.6 [Appendix I].

79




Figure 4.12: PCB 394C06 Calibrator (hand held shaker)

Table 4.6:  Salient features of PCB 394C06 Calibrator (hand held shaker)

Operating frequency (+ 1%) 159.2 Hz
Acceleration output (+ 3%) 9.81 m/s®rms
Maximum load 210¢g
Size (diameter) 56 mm
Weight (with batteries) 900 ¢

4.5.1.6 Oscilloscope
The DL 750 ScopeCorder Oscilloscope is used to capture the output signals from the
accelerometer and force hammer. The oscilloscope has the capability to store and display

the captured output signals in voltage. The number of data points needed for each test can

80




be adjusted by setting the sampling rate in the oscilloscope to the required value. Figure

4.13 depicts the DL 750 ScopeCorder Oscilloscope [62].

Figure 4.13: DL 750 ScopeCorder Oscilloscope

45.2 Experiment

During the non-destructive experiment, the lab-scale space frame is placed on an
aluminum support as shown in 4.14. One of the top frame members is impacted at the
mid-member location with a force hammer and the acceleration is recorded, though an
accelerometer, on the opposite mid frame member location. A current source is used to
supply voltage to the force hammer and the accelerometer. The output voltage obtained

from the force hammer and accelerometer is converted into waveform and displayed by
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the oscilloscope. The sampling rate used for collecting data was 1 mega-sample/second,
i.e., a data point was collected for every micro-second. Figure 4.15 depicts the flowchart
of the setup for the impact testing of the cube space frame. A program, in MATLAB, was
written to obtain the Fast Fourier Transform (FFT) of the outputted acceleration wave,

from which the natural frequencies of the cube space frame is determined.

Figure 4.14: Experimental setup of the lab-scale structure
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Figure 4.15: Flowchart of the impact experiment on the cube space frame

4.6  Finite Element Model

All components of the cube space frame structure are modeled using beam elements.
This is done since the military vehicle space frame, from which the cube design is based
on, was also modeled entirely with beam elements. Altair Hypermesh was used to create
the FE model of the cube space frame, while the explicit code LS-DYNA is used to
process the FE model. The same system of units and beam element type described in
Chapter 2 for the military vehicle is used for the creation of cube FE model. The length of
each beam element was maintained at 3.2 mm. The FE model comprises of 1,832 beam
elements. Figure 4.16 shows the FE model of the cube space frame with the boundary

conditions.
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Figure 4.17: FE model depicting the mass elements at the cube corner
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Elastic-plastic material model, described in section 4.2, is defined for all the structural
components of the cube space frame. The common elements between the different
component faces are merged to obtain contact definitions between them. Four nodes on
the bottom of the cube model are constrained, as shown in Figure 4.16, to not move in the
vertical direction (z-axis). The force curve obtained from the impact experiment is used
to simulate the impact on the FE model and the acceleration at the accelerometer location
during experiment is outputted. The bolts are not modeled in the FE model, but their
mass is taken into account. This is done by adding mass elements, having the total mass
of the bolts present at a joint, to each corner of the cube, Figure 4.17.

The joints in the FE model of the cube space frame structure are modeled as two parts.
The first part comprises of the combined cross-section of the frame and the joint (shown
in blue color in Figure 4.18). The second part consists of just the joint cross-section
(shown in red color in Figure 4.18). The dynamic response of the cube space frame
model was stimulated for 18 ms to keep it in tune with the experiment. The total

computational time taken to run this cube FE model was 14 minutes.

Figure 4.18: FE model of the cube space frame shown in 3D blocks
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4.7  Results

The acceleration and FFT plots obtained from the impact experiment are compared
with the computational results. Figure 4.19 shows the force curve obtained from the
impact hammer during the experiment. The same force curve is taken for simulating the
impact for the FE model.

The acceleration profiles obtained from the experiment and FE analysis of the cube
space frame are filtered at 10,000 Hz. The filter type used is Butterworth with low-pass,
and the frequencies above 10,000 Hz are not considered because of the limitation in
accelerometer frequency range. Figure 4.20 compares the filtered acceleration signals of
the experiment and the FE analysis. The predicted acceleration signal captured the first
peak of the experiment, but the subsequent acceleration peaks for the FE model were
smaller than the experimental ones. The frequency of the signal is good up to 8 ms, and
then starts to deviate away from the experiment. After 8 ms the predicted acceleration
signal gets incomparable with respect to the experimental signal which may be due to the

joint effects in the cube.
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Figure 4.19: Impact force applied to the cube space frame
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Figure 4.20: Filtered acceleration curves

FFT of both the experimental and simulated acceleration signals were computed.
Figure 4.21 and Figure 4.22 show the FFT curves of the experimental and simulated
acceleration signals respectively. From the FFT curves the natural frequencies of the cube
space frame were determined. Since the cube space frame comprises of many
components and the structure is not solid, there is more than one natural frequency. The
first natural frequency from the experimental signal is 530 Hz. The simulated first natural
frequency of the cube is 500 Hz, which is very close to the experimental value. The FE
model of the cube predicts rest of the experimental natural frequencies, including the
predominant natural frequency of 1500 Hz. There is an additional natural frequency
predicted by the FE model, of 810 Hz. This may be due to the non-modeling of some
structural components such as the angle joints and bolts, and also not taking into account

the holes in the model. The amplitude of this additional frequency is small and hence can
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be ignored. Overall, for a complex structure such as the cube space frame which
comprises of 48 bolts and 8 bolted joints, there is a very good match between the

predicted and experimentally obtained frequency response.
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Figure 4.21: FFT of the experimental acceleration signal
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Figure 4.22: FFT of the predicted acceleration signal
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4.8  Conclusions

Previous chapters looked at the computational work of the military vehicle with an
internal space frame structure when subjected to a high impact hit. To check the
validation of the simulated models and to conduct practical shock transmission studies a
lad-scale space frame structure was derived from the military vehicle space frame. The
lab-scale space frame structure was manufactured in the form of a cube. Non-destructive
impact experiments were conducted on the cube shaped space frame structure, and
acceleration and frequency responses were studied. A FE model of this cube space frame
was created, entirely with beam elements, and the simulated results were compared to the
experimental data. The initial peak of the acceleration signal was captured by the FE
model, and the frequency of the predicted signal compared well with experimental signal
up to 8 ms. The natural frequencies were computed by applying FFT to the acceleration
signals. The FE model of the cube predicted all the experimental natural frequencies,
including the predominant natural frequency. Overall, for the complex cube shaped space
frame structure the simulated dynamic response was satisfactory matched with the

experimental data.
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CHAPTER 5
CONCLUSIONS

This chapter summarizes the work presented in this dissertation and looks at the
possibility of continuity with the research. The primary objective of this dissertation was
to present a methodology for the design of military vehicles with an internal space frame
structures subjected to high impact or shock loadings. Based on this objective the work
accomplished was threefold:
o Developed FE model of a military vehicle with an internal space frame structure.
e Parameterized this FE model, and conducted mass and shock optimization studies.

e Manufactured a lab-scale space frame structure to conduct shock transmission studies.

5.1  FE Model of the Military Vehicle

A light weight military vehicle, with an internal space frame structure, Figure 5.1, is
being conceptualized by the US ARL. The research for this dissertation concentrated on
the upper half of the vehicle, namely the outer armor and the internal space frame. Figure
5.2 shows a simplified model of the upper half of the vehicle. The space frame is a non-
monolithic type with joints and frame members making up the entire structure. The frame
members are bolted together through common components at the joints. Figure 5.3 shows
a typical joint with frame members bolted to the joint branches. This arrangement allows
for quick replacement of any section of the space frame that might get damaged in
combat due to a projectile hit or blast impact. The entire vehicle, including the internal

space frame structure with the joints, is made of Aluminum 7039 alloy heat treated to a
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T64.This design of the upper half of the vehicle with the internal space frame structure

was chosen as the base model for conducting the studies in this dissertation.

Figure 5.1: IS-ATD military vehicle (model supplied by US ARL)

Turret
(125 mm thick)

Armor
(32 mm thick)

/Spﬂm Frame
Figure 5.2:  Upper half of the military vehicle with internal space frame
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Space Frame Members

Figure 5.3: Model of a joint of the internal space frame structure

The FE model of the vehicle is as shown in Figure 5.4. The model has a total of 1192
beam elements and 8872 shell elements. The mesh of the space frame is represented in
Figure 5.5. The beam elements are shown as blocks in this figure for illustration purposes
only. Contact models present in the dynamic code LS-DYNA were used to define the
interaction between the outer armor and inner space frame structure. It was decided to fix
some locations on the vehicle to study its performance under a situation when it will
absorb all of the impact energy. Four nodes on the internal space frame were selected and
fixed completely. These four nodes represent the four corners at the back-end of the

space frame.
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Figure 5.4:  FE model of the vehicle with the internal space frame structure

Figure 5.5: FE model of the internal space frame structure

The vehicle was subjected to projectile impact loading on the side wall, Figure 5.6.
The projectile impact location was chosen to be closer to the front of the vehicle to
increase the bending effect due to the fixed-displacement boundary conditions at the rear.
This force impact curve was a smooth, simplified load curve approximately equivalent to

force resulting from the momentum of a projectile of mass 0.8 kg hitting the side of the
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vehicle with an initial velocity of 938 m/s over 0.25 ms. It was assumed that the mass of
the projectile was steadily disappearing through the loading phase and the force was
increasing linearly. The duration of the impact load and the FE model run time was 8.4
ms. The impact impulse is shown in Figure 5.7. The total simulation run time for this FE

model was approximately five minutes.

Impact point

Figure 5.6:  Side impact location

600kN- -
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0.25 83 84
Time (ms)

.

Figure 5.7:  The impact impulse curve
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5.2  Optimization of the FE Model

The research in the area of military vehicle space frame optimization is minimal and
mostly classified. Optimization can be an important tool for the military vehicle and its
internal space frame structure to minimize the overall mass, which can be an essential
aspect for the mobility of the vehicle in transport and frontline. The structural integrity of
the vehicle can be improved with the help of optimization technique. This can lead to
mitigating shock in the vehicle due to projectile hits or explosive loads. Hence, two types
of optimization studies were conducted on the FE model of the military vehicle.

The objective of the first study involved minimizing the overall mass of the military
vehicle, including the internal space frame structure. The second study dealt with
reducing the shock or acceleration profiles at identified critical locations on the internal
space frame structure. The cross-sectional parameters of the internal space frame
components, shown in Figure 5.8, and the outer armor were chosen as the design
variables for the optimization process. The structural integrity of the vehicle was
maintained when conducting the optimization studies. Successive Heuristic Quadratic
Algorithm (SHQA) [58] was utilized to solve the optimization problem. This algorithm
combines successive quadratic approximation with a controlled random search. SHQA is
suitable for computationally intensive and highly non-linear problems. Figure 5.9 shows

the flowchart of the optimization process.
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Figure 5.9:  Flowchart of the optimization process using SHQA
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The mass optimization results showed 25% decrease in the overall mass of the
vehicle when compared to the original design. For shock optimization there was a 9%
increase in the overall mass of the vehicle, while the decrease in overall shock was 95%.
These significant decreases in the objective functions of the optimization processes
resulted in acceptable limits of changes in the VVon Mises stress, displacement and area
moment of inertia for the space frame structure and armor, thus maintaining the structural
integrity of the vehicle. The SHQA algorithm was found to be computationally expensive
for the optimization problem presented in this paper but very productive in reaching the

objective.

5.3  Lab-Scale Space Frame Structure

Currently, limited research is available in assessing the adequacy of the finite element
codes in modeling shock loading across structures with joints, such as the military vehicle
space frame structure. Hence, it was decided to build a lab-scale space frame structure, in
the shape of a cube, comprising of joints similar in shape to the military vehicle space
frame joints, Figure 5.10. The entire cube; frame members, square joints, and angle joints
was made of Aluminum 6061 alloy. All the bolts on the lab-scale space frame were
tightened to a preload of 10.8 kN. Non-destructive impact experiments were conducted
on the cube shaped space frame structure, and acceleration and frequency responses were
studied. Figure 5.11 gives a pictorial arrangement of the impact experiment. A FE model
of this cube space frame was created, entirely with beam elements, Figure 5.12, and the

simulated results were compared to the experimental data.
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Figure 5.11: Flowchart of the impact experiment setup of the cube
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Figure 5.12: FE beam model of the cube

The initial peak of the acceleration signal matched but the simulated signal started to
deteriorate after 5 ms, Figure 5.13. There was better match with the experimental and
simulated natural frequencies of the cube, Figure 5.13 and Figure 5.14 respectively. The
natural frequencies were computed by applying FFT to the acceleration signals. The FE
model of the cube closely predicted most of the experimental natural frequencies, mainly
the predominant natural frequency. Overall, for the complex cube shaped space frame

structure the dynamic response was satisfactory.
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5.4  Scope for Future Work

The entire military vehicle can be considered for high impact and optimization studies.
The use of other global optimization methods can be pursued and compared with
SHQA.

Redesigning of the vehicle for the case of mine blast loading.

More generalization of the design process can be achieved by including additional
dimensional parameters of the vehicle space frame, such as the length of the frame
members and joints.

Consider modeling the bolts on the FE model of the cube space frame structure to get

a better understanding of their effect.
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APPENDIX A
LS-DYNA INPUT CARDS
The dynamic software LS-DYNA is used to process the FE models listed in this
dissertation. The input file for LS-DYNA is in the form of a text file. This text file
comprises of sections defining each unique aspect of the FE model. These sections are
known as cards. The LS-DYNA cards used to create the FE models in this dissertation

are explained in this Appendix.

A.l  Material Model

The type and properties of the component materials can be defined in the MAT cards
available in LS-DYNA. Material type MATS3 is used to define the isotropic properties of
the vehicle and cube FE models.
A.ll MAT3

MAT3 card is named as *MAT_PLASTIC_KINEMATIC in the LS-DYNA input file.
This material model essentially behaves like a bilinear elastic-plastic material and is used
to model isotropic and kinematic hardening plasticity materials. This material model
covers for the stress strain curve in the elastic region (until yield stress) and also in the
plastic region (beyond yield stress). The stress-strain curve is assumed to be linear within
each of these regions and hence comprises of two straight lines. Such a simplified stress
strain curve is shown in Figure A.1. The slope of the stress-strain curve (from origin to
the yield point) is defined as the Elastic Modulus of the material. While the slope of the
stress-strain curve (beyond yield point) is defined as the Tangent Modulus for this

material model. To determine the linear portion of the curve in the plastic region, a point
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that lies intermediate to the points corresponding to the ultimate stress and failure stress

values on the stress-strain curve is selected so as to achieve a reasonable value for the

Tangent Modulus.

Stress
A Failure
Point
Yield
Pont __——" Tangent
Modulus

Elastic
Modulus

» Strain

Figure A.1: Stress-strain curve for MAT3 material model in LS-DYNA

This material model can be used for beam, shell and solid elements, and is cost

effective. MAT3 card is defined in the LS-DYNA input file as shown below,

TMAT PLASTIC KINEMATIC

SHMNAMNE MATS llmat gteel

§ MID RO E PR BIGY ET4N BETA

o ; SO - SIS, - USSP " R SUISPSSP, ety T 7
11 7B50,02 ., D000E+11 0.3500000000, 100000.0

§ SEC SEP TS VP

o ; SIS Pt . ISP " (R SENSUSSP, ey . 7
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where,
MID

RO

PR

SIGY

ETAN

A2

Two sets of boundary conditions are defined for all the FE models. First set
comprises of the constraints applied to the nodes to define the translational and rotational

degrees of freedom. The second set of boundary conditions is the load definitions.

Material identification number
Density (kg/m®)

Modulus of Elasticity (N/m?)
Poisson’s Ratio

Yield Strength (N/m?)

Tangent Modulus (N/m?)

Boundary Conditions

A.2.1 Constraints

For the vehicle the four back end nodes of the space frame are rigidly constrained,
while for the cube two rows of nodes on the bottom frame members are constrained to
move in the downward direction. The LS-DYNA card used to define constraints is
*BOUNDARY_SPC_NODE. This card has the option of constraining a specified node or
a set of nodes along the six degrees of freedom (three translational along the three

coordinate axes X, y and z, and three rotational about these axes). Below is a sample of

this card defined in the LS-DYNA input file,
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PEQUNDARY SPC MODE

SHIMMAME LOADCOLS aCOnNSLralnts
FHUCOLOR LOADCOLS 2 £+
§ NID ZID DOFZE DoFY DoFa DOFRE DOFRY DOFRZ
§ommmmme 1o e fomm G Bmmmm————— fim———————— Fm—————— g
=07 u] 1 1 1
530 u} i i i
227 n] 1 1 1
516 u} i i i
where,
NID Node identification number
CID Coordinate system id
DOFX, DOFY, DOFZ Translational constraint along the x, y and z axes

DOFRX, DOFRY, DOFRZ Rotational constraint about the x, y and z axes

A.2.2 Load

For the vehicle the impact impulse of the side of the vehicle is applied in the form of
a point load. The LS-DYNA card used is *LOAD_NODE_POINT shown below. The
node on which the impact load is applied is defined in this card. The impact impulse
curve is defined by using the *DEFINE_CURVE card present in LS-DYNA. This

impulse curve is called in the *LOAD_NODE_POINT card.

TLOAI NODE FOINT

f— 1— — — 44— E— fm———————— T g

§ MNODE LioF LCIn aF CIn M1 Mz M3

fm——— Iommm oo R e e Fommmm Gomm Bemmm - fim———————- Fommm————- g
22567 g z 1.0 a
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where,

NODE

Node identification number

DOF Applicable degrees of freedom

LCID Load curve ID (*DEFINE_CURVE)

SF Load curve scale factor

CID Coordinate system ID

TDEFTME CUREVE

g 1 7 3 4 5 -
g LCfD SfDR SFL SFD OFF L OFFD DATTYP
g 1 7 3 4 5
2 ] .0 1.0 .0
g 1 7 3 4 5
§ Al (1
g 1 7 3 4 5
0.0 0.0
O.0oEEs —e0oooo. 0O
O.0o83 0.0
O.0o0s4 0.0
where,
LCID Load curve id
SIDR Stress initialization by dynamic relaxation
SFA, SFO Scale factor for abscissa & ordinate values of the curve
OFFA, OFFO Offset for abscissa & ordinate values of the curve
Al Abscissa (x) values of the curve
o1 Ordinate (y) values of the curve
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When the scale factors (SFA & SFO) and offset values (OFFA & OFFO) are defined

in the *DEFINE_CURVE card, then the new abscissa and ordinate values are given as,

Abscissa value = SFA*(Defined value + OFFA) (A1)

Ordinate value = SFO * (Defined value + OFFO) (A.2)

A.3  Contact Algorithms

To define interaction between the armor and the space frame componenets in the
military vehicle the *CONTACT_TIED_NODES_TO_SURFACE card is used. This card
ties the nodes of one component to the surface of another component. Hence, the contact
obtained from this card behaves similar to a welded or bolted connection, assuming no

failure in the connection.

TCONTACT TIED NODES TO SURFACE

4§ 331D M3ID SETYP HITYP SEOXID MECEID 4R MPR

fom————— B Z————————= F————————= Gommm B fm———————— T g
z 2 4 O

] TS FD o Vo Vo PENCHE ET oT

- i A 3 G B f———————— T 8

] 3F3 3FM IET MET SFST SFNT FaF VAR

- i A———————— 3 G 5 f————————— T 8

where,

SSID Slave segment id

MSID Master segment id

SSTYP Slave segment type

MSTYP Master segment type
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The *CONTACT _TIED NODES TO SURFACE card comprises of three
mandatory rows. The first row is used to define the slave and master segments of the
contact. The second row is used if there is a need to define the coefficient of friction
values between the interfaces. If any scale factors are to be utilized then the third row of

the card is applied.

A4 Property Definitions

These cards give the overall property of the component, such as if the component
comprises off shell elements or beam elements, the material type, nodes forming the
element, etc. The *NODE card is used to define the x, y and z coordinates of the nodes

present in the FE model. The format of this card is as shown below

*NODE
§  MNID X ' TC RC
§——— R B - TR g LS T 7 S P o

=
=
=}
=}

0.0 O.454
—-0.025187543156 D0.4033452125741

=
(e
=
=)

=
[y
=
i [
=)
=]

. -0. 173453325725 D.4518583860232
1201 0,0 -0, 156877004132 0.4421486687032

where,

NID Node id

XY, Z The global coordinates of the specified node

For LS-DYNA to know if the specified element is shell or beam, there is a need to

define the *ELEMENT _SHELL or *ELEMENT_BEAM card. The former card is used if
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the element type is shell and the later for beam elements. The nodes associated with each

element are defined in these cards. The formats of these cards are as shown below,

*ELEMENT SHELL

& EID PID N1 ME N3 N
f——— et g B B e g o
1 & 257 2nl R 256
& & 256 R 283 255
13 & 238 2nd 229 230
14 & 2nd 2nn 228 229

FELEMENT EEALN

§ EID PID N1l Mz 13!
§ommmme Lmmmm— Z——————e F——————— g 5
1oos 1 10006 10007 10016
1oio 1 1pozl 10023 10038
1113 1 1pozs  1ooze 10041
1114 1 1pozs  loozy 10042
where,
EID Element id
PID Part id
N1, ....,N8 Node id’s comprising of an element

To define the sectional properties of the shell and beam elements,
*SECTION_SHELL and *SECTION_BEAM cards are respectively used. The general

*SECTION_SHELL card is as shown below,
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*BECTION SHELL

SHMMAME PROPS lshell B230

3 SECIL ELFCREN SHEF MIF PRIOPT QRS TIRIT ICOHP SETYP

§——————— i Fommm Fommm———— Fomm e Bomm f-———————= T-———————- &
1 i] 1.0 s 0.0

§ T1 Tz T3 T4 MLOC MAREL

o 1-———————- Eomm - oo Gommmmm B ——— O P g

0.016 0.016 0.016 0.0186

where,

SECID Section id

ELFORM Element formulation options

SHRF Shear correction factor

NIP Number of through thickness integration points

T1,T2, T3, T4 Shell thickness at nodes N1, N2, N3 and N4

For all the *SECTION_SHELL cards the default Belytschko-Lin-Tsay shell element
formulation present in LS-DYNA is utilized. The number of integration points in the
thickness direction of any shell layer is taken as two. For the *SECTION_BEAM card
the Hughes-Liu with cross section integration element formulation is used. In order to
define the integration rule of the beam elements the *INTEGRATION_BEAM card is
used. This card has the flexibility to use user defined through the thickness integration

rules for the beam element. Predetermined cross section shapes are available in this card,
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FSECTION BEAN

$ SECID ELFORM SHEF OR/IRID CST SCOOR HE N

L DENEIEPRepeg - SETEURICISPRIRe B B B fsreara s 7
31 -27 z

s Tl TSZ TT1 TTZ HSLOC NTLOC

| DENEIPTIepeg - SETEURIUIPURIRe. 7 IEDURIERRIRepge B ! IEUREPIRep—. B fsreara s 7

Q0513000 00513000 Q.0513000 00513000

where,

SECID Section id

ELFORM Element formulation options

SHRF Shear correction factor
QR/IRID Rule number for user defined integrated beams
CST Cross section type

AINTEGRATION BELHM

& IRID MIF =5 ICST K

g — I —— e f— f————— ]
FA ] ] 5

& Ll o2 5 i

fmmm————— 1-————————= dmm————— A —————— G f— fr——— ]

0.0513000 0.0056000 D.USlSDDd 0. 0058000

where,

IRID Integration rule ID (from *SECTION_BEAM card)
NIP Number of integration points

RA Relative area of cross section

ICST Standard cross section type

D1, D2, D3, D4 Cross section dimensions
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APPENDIX B
OFF-THE-SHELF PROGRAM FOR MASS OPTIMIZATION

The optimization problem presented in this dissertation was also solved using an off-
the-shelf optimization program from Matlab Optimization Toolbox. The optimization
program used from the toolbox is called fmincon. This algorithm is useful in finding the
minimum of a constrained nonlinear multivariable function. The fmincon is a medium
scale optimization algorithm and uses a sequential quadratic programming method. This
algorithm computes the Lagrange multipliers of the Kuhn-Tucker (KT) equations [60]
directly. A constrained Quasi-Newton line search method is used for convergence by
accumulating second order information of the KT equations. The algorithm solves a
quadratic program sub-problem at each iteration. When the optimization problem
becomes infeasible, fmincon algorithm attempts to minimize the maximum constraint
value. The default termination tolerances for fmincon algorithm are 1e-6. This is less than
or equal to the SHQA termination tolerances. Hence, during the fmincon optimization
process the default termination tolerances are maintained.

The same upper and lower bounds that were used for SHQA are used for fmincon
algorithm, Table B.1. The fmincon optimization algorithm underwent 606 function
evaluations and 24 iterations to reach the minimum. The optimization process took 45
hours of computational time. Table B.2 compares the results before and after
optimization using the fmincon algorithm. While the computational time of fmincon is
less than that of SHQA, it resulted in greater minimum than SHQA. There is a 16%

decrease in the vehicle mass with the fmincon algorithm whereas SHQA resulted in 25%
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decrease. This shows that the off-the-shelf optimization program is inadequate to solve an

optimization problem like the one detailed in this dissertation.

Table B.1:  Comparison of variables before and after optimization using the fmincon
algorithm
Parameters Original design Final design Lower limit Upper limit
X1 6.4 5.2 3 7
X2 57.2 51.4 40 110
X3 15.9 11.6 3 35
X4 12.7 9.5 3 14
X5 12.7 9.5 3 14
X6 32.0 28.0 20 40
Table B.2:  Optimization results using the fmincon algorithm
Parameters Original design | Final design | % change
Armor 1119.50 979.6 -12.5
Mass (kg)
Space frame 263.46 180.6 -31.5
Total mass (kg) 1382.96 1160.1 -16.1
Max Von Mises stress Armor 397.14 418.0 +5.3
(MPa) Space frame 392.92 401.2 +2.1
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APPENDIX C
OPTIMALITY CHECK FOR MASS OPTIMIZATION

Since the variable xg, thickness of the armor, did not reach the lower or upper bounds
after optimization, the final design variables obtained after optimization, shown in Table
C.1, is checked for optimality. This is done by varying the optimized value of the design
variable by a sensitivity parameter, ¢, in the positive and negative direction. While
varying Xe, the rest of the variables are maintained at the optimized values. The value of ¢
is taken to be £0.25 mm. Table C.2 shows the results of this optimality check, and from
this table it is clear that the SHQA optimized value for X is optimum, since increasing
the armor thickness by the value ¢ results in increasing the overall mass, while decreasing
Xe by the parameter ¢ leads to increase of the armor stress beyond the stress limit of 418

MPa.

Table C.1: Comparison between optimized results and the original variables for mass

optimization
Parameters Original design Final design Lower limit Upper limit

X1 6.4 3.0 3 7

X2 57.2 40.0 40 110
X3 15.9 3.0 3 35
X4 12.7 3.0 3 14
X5 12.7 3.0 3 14
X6 32.0 28.0 20 40
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Table C.2:  Results of the optimality check

Optimized € Armor stress Space frame stress Total mass
variable (mm) (MPa) (MPa) (kg)
+0.25 416.1 404.5 1047.2
e -0.25 420.1 407.9 1029.8
Original design 397.1 392.9 1383.0
Final design 418.0 406.1 1038.8
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APPENDIX D
OPTIMALITY CHECK FOR SHOCK OPTIMIZATION

The minimum point; the final design variables obtained after shock optimization,
shown in Table D.1, is checked for optimality. Sensitivity analysis at the SHQA
minimum point is conducted by varying each design variable by a value ¢ in the positive
and negative direction. While varying one design variable, the rest of the variables are
maintained at the optimized values. The value of ¢ is taken to be £0.5 mm. Since the
shock optimization problem comprises of six design variables, a total of 12 points in the
neighborhood of the SHQA minimum point are checked for optimality. Table D.2 shows
the results at these 12 points and their comparison to the SHQA minimum point. From
Table D.2 it is clear that the total mean acceleration of the identified critical points on the
space frame, S, is less for the minimum point obtained from SHQA algorithm when
compared to the rest of the 12 neighboring points. Hence, the final design, which is a

result of optimization using SHQA algorithm, is the optimum point.

Table D.1: Comparison of optimized variables with the original design values for

shock optimization

Parameters Original design Final design Lower limit Upper limit
X1 6.4 5.6 3 7
X2 57.2 40.1 40 110
X3 15.9 20.2 3 35
X4 12.7 41 3 14
Xs 12.7 9.8 3 14
X6 32.0 38.2 20 40
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Table D.2: Results of the optimality check for shock optimization

Optimized € Armor stress Space frame stress S

variable (mm) (MPa) (MPa) (m/s?)
+0.5 374.1 3834 2533.0

" -0.5 3734 383.3 2757.9
+0.5 373.8 383.4 2539.0

" -0.5 373.7 383.5 2706.9
+0.5 374.2 383.2 2701.6

" -0.5 373.3 383.5 2678.5
+0.5 373.9 383.0 2615.1

. -0.5 373.5 384.4 2552.6
+0.5 373.8 383.6 2572.5

" -0.5 373.8 383.3 2542.5
+0.5 366.8 382.7 2724.2

. -0.5 3794 383.7 2840.0
Original design 397.1 392.9 46109.0
Final design 373.8 383.4 2479.7
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APPENDIX E
OFF-THE-SHELF PROGRAM FOR SHOCK OPTIMIZATION

The shock optimization problem was also solved using an off-the-shelf optimization
program from Matlab Optimization Toolbox. Similar to mass optimization, the
optimization program used from the toolbox was fmincon [Appendix B].

The same upper and lower bounds that were used for SHQA are used for fmincon
algorithm, Table E.1. The fmincon optimization algorithm underwent 28 function
evaluations and 2 iterations to reach the minimum. The optimization process
approximately took 18 hours of computational time. Table E.2 compares the results
before and after optimization using the fmincon algorithm. While the computational time
of fmincon is much lesser than that of SHQA, the resulted minimum was higher than
SHQA optimized result. Hence, SHQA is a better option to conduct shock optimization

on the military vehicle

Table E.1:  Comparison of design variables before and after shock optimization using

fmincon algorithm

Parameters Original design Final design Lower limit Upper limit
X1 6.4 7.0 3 7
X2 57.2 110.0 40 110
X3 15.9 35.0 3 35
X4 12.7 14.0 3 14
Xs5 12.7 14.0 3 14
X6 32.0 40.0 20 40
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Table E.2:  Optimization results using the fmincon algorithm

Parameters Original design Final design % change
Armor 1119.50 1399.40 +25.0
Mass (kg)

Space frame 263.46 565.59 +114.7

Armor 397.14 381.02 -4.1

Max stress (MPa)
Space frame 392.92 380.18 -3.2
Total mean acceleration (m/s?) 46,109.00 3145.5 -93.2
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APPENDIX F
FORCE HAMMER

The specifications of the force hammer listed in this appendix are from [63].
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APPENDIX G

ACCELEROMETER

’7,56 (9.1) —-—I

The specifications of the accelerometer shown in this appendix are from [64].

CABLE DB30A10
MINI COAXIAL TO
10-32 COAKIAL PLUG

ETCHED COVER |
(TOP) 140
“(3s56) — - - -
{ [

PERFORMANCE EHGLISH sl
Sensfivity= 15 %) 16 m\ig 1.8 mviimiz
HEBSUTEH'IEHTHEHQE =500 gk = 4500 mé=® pk
Frequency Rangei=5 %) ] I.‘rtt- 10,000 H= 1 Dtﬂ 10,000 H=

Fregusncy Rangsz 10 %51
Frequency Rangeiz 3 4B
Rezonant Frequency
Hruadhﬂmi ‘Rezolution(1 e 10 EL[.‘-BH:;
Non-Lmeariy

Transverse Sensitivity
EHVIRONMENTAL
Overioad Limit Shoch)
Tempsrature Range{Operating)
Tempsraiurs Responss
ELECTRICAL

Excastion Volage

I::unsmnt Current Exaiation
Output Il'ru:r&ﬂ-a nce

Gutput Bias Veltage
ﬂEﬂhﬂ[gE Time Constant
Settiing Timel within 10% of bias
Spectral Noizsil Hz)

Spectral Naizz(10 Hz)
Spectral Nome( 100 Hz)
Bpectral Noissl1 kHz)
Spectrel Noizs10 kHz)
ﬂ&ctn[:&l lsuIaTmntElase
PH‘!SICAL

Senzing ET&m;-.nt

Senzing Genmetry

Housing Material

Zealing

Siza (Height = Length x Width )
Weght

Electrical Tonnactar

Electrical Lunnr:::tmn Pn._ o
Mounting

SUPPLIED AECEESDR]‘ES

0. 7ta LrDI}EI Hz
0:3 520,000 Hz
=5l kHz
0062 grms
=1%
=59

= 10,000 g ph

£510+250 'F
See Graph

18 to 30 VOC
Zto 20 mA
£300 ohm
7o 11 VDC
11'.Ho 3IS=ec
<Fssc
S00 ygivHz
250 ugivHz
80 poisHz
20-ugivHz
10 pgivHz
.-1I:I§ ohm

Ceramic
ShEBr
Lnpdizsd Alumifum
Epoxy
F1amnxD45mx 325N
0. 017 oz
8 Coaxial tack
Si=s
Adhesive

lpdel 030ATD Cnﬁxﬂabl.e 101t 12m), 3-55 plug to 10-22 plig (1)
Modsl 038427 One-piece Femoval tool for Modeis 352022 357010, 352421, & 35TA08 [1)

Medsl 0204708 Petro Wax (1)

Modsl ATE NBT traceable frequency rezponze (10 Hztn Upper = pant). (1%

122

07to 1..rDI}EI HE
0:3 ta-20.,000 Hz

= £0 kiiz

.02 mis® rms i
= 1% =
5%

= 53,000 més pk
54 {g+$21 0
See Graph 1]
12 to 30 VOC
2to 20 mA
£ 300 ohm
fio 11 VDL
1Dip35s=c
=Fssc
Te4l (umisectivHz in
2450 (umisect iuHz {1
£30 (umisecyxHz (1
185 l_umn'seu:i}-'x'l‘:l_z [
g8 (ymisscTivHZ i
=1 I:IE ohm

Ceramic
ShEBr
&npdizsd Alumifum

Epoxy

36 mmx 11 4 mm x84 mm

0.5gm [l
238 Coaxial tack
Si=s
Adhesive



APPENDIX H

SIGNAL CONDITIONER

The specifications of the signal conditioner are taken from [65].

&
5]
L)

—FALLT MONITOR
\ METER

330

,—SENSOR JACK, BNC
£ L

/ TYP2
'

d

BN
7 TYP3PL

\- “BATTERY TEST SWITCH,

N
—4 POSITION ROTARY

SELECTOR SWITCH

MOMENTARY PUSH BUTTON

(FWR OFF, CH 1, CH2&CH3)

—— SIGNAL OUTPUT JACK,
C

METER FULL SCALE—,
ADJUSTMENT N
TRIMPOT

I
/
/
/
/ 4
REPLACEABLE

9 VOLT BATTERIES

SPECIFICATION VALUE UNITS
COMMON SPECIFICATIONS, EACH CHANNEL

SENSOR SUPPLY CURRENT. FIXED. 20 b
COMPLIAMCE VOLTAGE 13 VRC
VOLTAGE GAIN UnITY

COUPLING TIME CONSTANT INTZ 10 MEGOHM LOAD 10 SEC
COUPLING TIME CENSTANT INTO 1 MEGCHM LOAD S SEC
LOW FREGUENCY -2db FREQ., 10 MEGOHM LOAD 0016 Hz
LOW FREQUENCY -3d4b FREQ. 1 MEGOHM LOAD .03z Hz

HIGH FREQUENCY RESPONSE
COUPLING SAPACITOR, NOM,
PULLDOWN RESISTOR
MONITOR VOLTMETER RANGE,F3S
ELECTRICAL NOISE, WIDEBAND
SENSOR CONNECTOR

QUTPUT CONNECTOR
GEHERAL SPECIFICATIONS
PLWER SOURCE ﬁ
BATTERY LIFE. TVF.
SIZE(H=Wx D)

WEIGHT

DETERMINED BY SENSOR, CABLE LENGTH AND SIGHAL LEVEL
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]

e

1.0 MEGDHMS
28 VDC
g0 LV, RMS
BN JACHK
BNC JACK
SYVOLTBATTERIES 2

40 HOURS
25x53%33 INCHES
12 QUNCES



APPENDIX |

CALIBRATOR (HAND HELD SHAKER)

The information of the Calibrator shown below is taken from [66].

10=32 UNF—28
X .20(5.1) ¥

— .05(1.3)

0

MIEL 1 0gf3HimsY)
FREQ. 159.7 Ha

7.80{1398.1)

i (1=
PIEZOTROMICS

igacoe
SN KXXK

D610 MALTSS 2. AP

— @2.19(p556)
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PERFORMANRCE EHGLISH
Operating Fregquency (= 1 %) {58.2H=
Acceteration Gutpul(= 2 %) 1.00 g rm
‘-.!elui:d:_lr Durtput o, E infzecrms
EFrsplﬂﬂeme-nt Outpit 0 '4{! mil rms-
Transverse Output =3%
Distoron(l to 700 grams iead;) =2%
Diztortign( 100 te 210 grams lead) Z3%
fedimum Logd T4 14
-l'-‘u.riu I‘ﬁﬂl‘lt-‘q'n'n'ﬂﬂ O Trrn= 1.0 tu 25 mlm.rhes
E‘allbmtrun E_','t:ie._!IE gram Ipat} 120 c:,'nles
Calibration. Cyales (25 gram luad.b E00 cyoles
Eahhremun Cyclesi5) gram Juam 1500 I:_',I'Cl-EE-'r
Calibration Cycles{100 gram load) 400 cycles
Calibraticn Cycles{ 150 gram load) 180.cycles
Calibraton Cycies{211 gram laad) 50 gycies
ENVIRONMENTAL - _
Tempersture H.angerD_;.remtlng- =15 1p =130°F
ELECTRICAL

Ramp-Lip time S3sec
el BatieryQuaniiy) &
Internal Batterv(Tyvpe) &8

DC Power _HvBC
€ Power Z.4-amps
H—EJIEF‘_." Lifei2 gram lead) & Noure
HEIiery Lits{25 gram lead) 15 hours
Hattary Lle{‘I:I. gram load) A0 hours
Battery Lifai100 gram luad.b 10 huurs
Battery Life{150 cEerJUEHJ} 4h|:|er3
Battery Life(210 gram ioad} 7 hours
PHYSICAL - }
Size [Thameter € Helght) 22mnx T &m
‘Weightiwith balteries} ez
Meunting Threat 10-2Z Femmale
Mpunting TorguaiMaximum) 1|:r in-lb
SUPPLIED AEEEESDEIES

lgdel 073415 Eﬂ'ttﬂl‘y‘ Pack (1}

Meds] 0e0A105 Petro Wax (13

Modsl 080484 Mounfing Base (5-40 to 10-32) (1)

Modsl ﬂ%ﬂﬁ.ﬂﬁ Mounting Base (a2 X 0510 10-3Z) (1)

Modsl BE1408 Muun'l'rrlgStu.d |‘|ﬂ—3r_ to 123} (1)

Mods! 031805 Mounting Stud (10-22 ta 10-22) (2)

Mpds| I'.'I[IIE1 BOS Huun'tmg ST.Lrﬂ ‘II:I—E-Z to MG X 0, T5(1)

MI:I-I:I'-E'I MI]E'IEZE letric muurrhng 311.}!1 111—32 o M':xﬂ g0 dong. {1}
{J‘FHDHM R{J:ESEGHL'ES.

Modsl 072416 DC switching pawer supply (for Mode! 384008) (1)
Model 0504150 Wounting Base (14-23) (1)

Modsl E%I}BH 3-Fin Mounting Adapter (1}

L'rP"ﬁDH.AL U'EES!GHE

M- Metrie Maunt

-l'-".{:-'.‘ﬂ:ﬁtlﬂn Gutp Ltf=2 %) 1.02 g rme

125

1592 Hz
EE1 1'r1¢‘s-r'|'|1*==
EE! TT1TT‘I:F3-1'I‘I‘B'
.81 pm rms

=3 %
=2
=3

210 am

1.0 t_:i 2_5 7T ul;—:ss..

370 eycles.
F-[]'I'.} cyeles
1200 eyties
400 cycles
168 cycles
Elcycles

10t +55°C

=3F=zep
S
Ay
oevnc
24 ampz
3 Meurs
is huurs
40 haurs
10 hnurs
4 haurs
Zhours

= T % EI..‘-EI m
a00 am
1[] 32 F:-rmile
1 1__2 _hl-:m

10.0 m/s® rms.

HEE

B
8}
)
I£]
=
(5]
&l

=)

[l

2
£l
1443]
il
15}
[l
5]
Bl
B

{1
Tl
i)



APPENDIXJ

CALIBRATION OF THE ACCELEROMETER

In order to calibrate the accelerometer, it is stuck on top of the calibrator. The wire
attached to the accelerometer is connected to the input sensor port of the signal
conditioner. The output of the signal conditioner is connected to one of the input channels
of the signal analyzer. The output signal obtained from the signal analyzer is viewed on a
computer having the SignalCalc software, by connecting the signal analyzer to the
computer. Figure J.1 shows the flowchart of the experimental setup for calibrating the

accelerometer.

Accelerometer Calibrater
Signal
Conditioner
Signal
SignalCalc Analyzer
Software
e ——| -+ ‘
I

I -

Figure J.1:  Flowchart of the setup for accelerometer calibration
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When the calibrator is switched on, it starts vibrating and the accelerometer captures
the acceleration of the vibrations, which are then processed through the signal conditioner
and signal analyzer. The SignalCalc software gives the sensitivity value of the
accelerometer based on the recorded acceleration signal. This is then compared with the

specified sensitivity, from the data sheet provided, of the accelerometer.
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APPENDIX K
CALIBRATION OF THE FORCE HAMMER

A cylindrical block of metal of known mass is hung from and A-shaped frame by
means of rope as shown in Figure K.1. An accelerometer is glued onto one end of the
metal block, while the other end is impacted by the force hammer to be calibrated. The
force and acceleration signals from the hammer and accelerometer respectively are
recorded onto the SignalCalc software, after going through the signal conditioner and
signal analyzer boxes. In the SignalCalc software, from the force and acceleration signals
obtained, the accelerance value is obtained. Accelerance is measure of ratio of
acceleration and force. Hence, by taking the inverse of accelerance the mass of the metal
block can be obtained. This obtained mass of the block is compared with the known value.
If the experimentally obtained mass of the block does not match with the known value,
the sensitivity of the force hammer is changed and the experiment is repeated. This is
carried out till there is good match between the experimental value and known value of
mass. Figure K.2 gives the flowchart of the experimental setup for calibration of the force

hammer.
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Figure K.1: Cylindrical metal block hanging from an A-frame

Solid
Cylinden

Impact Accelerometer

Hamme! l ru I

Signal
Conditioner

Signal
Analyzer

SignalCalc
Software

Figure K.2: Flowchart of the setup for force hammer calibration
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APPENDIX L

MATLAB PROGRAM FOR CREATING THE VARIABLE CODE

% Defining the functlbn: prygram to be used/talled by SHOL algorichny

| function £H=L£(x)

% Rkefining the oglohsl arrsys/varibles

global myvar:

glokbal fEvals:

global hestanameal:

global shellmaxval:

vleleting any previcus Tunction evwalustion filles
delete('=lout '}

delete | ' nodouc'y;

delete(' combined. k') ;

vdtoring the wvalues 3T che independernt variables ohtailased from JHOE
variabhles=x:

Shen=ity of Alionminm

rho=2700;

vitdess deta o Eluweinum

sigma y=3i80e6; =Tleld stress

gigma f=450edq; Sfellure stress

plefining che geomerrie conscralncs (cot&al nwaber == 12)
gily=x(1)-0.003;
gi21=0.007-% (1) :
gi3r=x{2)-0.04:
gi41=0.110-%(2) ;
@i5)==i3)-0.003:
g(E)=0.035-x% (4] ;
gi7)i=x(4)=0.003;
gia)=0.014-x (4] ;
@9y =x{5)-0.003:
{10y =0.014-%(5) ;
gilly=x{6)-0.02;
gila)=0.04-x(6);

shpnlving the penslty concept to check for the violation of the geonetric

¥ RCONScralnts

Ll fer i=1:1E

1f (@li)<0d)
@(iy=10"50%0 (1) *2;
efae
gfi)=0;
end:

end:
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588

55—
e =
5 =

Hl=
80 =
61 -

53
54
H5
&

68 -

H =
7z

23—
74 -
75

76 =
'Jt.'? -
78

78 —
o -
Al —
B2 -

v =Cfontinuation of the penalty conoenf:

¥ 2If any of the geROmELElC OORSLrslnt® are violated then no Lime 18

% zevaluating the obisotive funotilon, and this plfogram goss haok to

v Throgram contilnues Lo evaluane the oh)
1T (zumig)=0)
Emean=0:
Ha=s=0;
Marmor=0;
H=pace=0:
sigma maxbeam=0:
sigma maxshell=0;
Jtheaw=0;
Jt=hell=0;
fx=zum(g):
ledynabeam=0;
lzdynashell=0;
slse

sripenzsional parametans

EFrams

Dfrese= (X (Z)+(2%x (1) )]
WErame=(x (2)+(2%x (1)) )

ingle=
Dangle=(x(2)+eF (1) 4w (3] )
Wangle=(0.01274x () ) :

rL—geotion
Dosection=s(x (2)+2 (1) 4270 (42))
Wesestion=(0.0129+2 (4] ) ;

Floint
Dyoine=(x(2)+(27K L) 1 H12%=(5) ) )2
Wjoint=(x(2)+ (27 (1) )+ (27 (5))):
thires oaloulation
Lframe=4%x (1) % (x (1] +x12)]);
hangle={2%x 1) +x (2] +x(3)+0. 0127 %= (3] 2

5 5S5HQLA profgram. I€ &ll the constraints ars
=]

withiln tlhe houndds

Evaluating tliE oghffsetive funetilon (fwerall mass

Aozection= (27X (1) 4+x(2)+27x (F)+0.0254) Tx (4] :

Bjoint=(2%x 1)+ (&) +[(5) ) *4¥x[5) 2
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BF

4 sLeagth daca
85 LFrams
B6: = Lframe sym=[0.3910;0.2607,1.119;0:6385;0.8729;0.3957;0.2607; 06433 ..
B 0.7061,1.205,0.191,0.69089,0.68927,1.2825,0.,8155,0.279%,0.56835, ...
fg 0,155 ,.0.6488] :
Ba — Lframe ind=[0.8977,0.8977,1.04,1.04,1.04] :
a0 Tingle
i Langle=3 ;377;
ag sC-secrion
a4z - Losection=[0,05715,0,05715,0,05715,0,05715,0,05715,0,01905,0,0381, ...
a4 0.01905] ;
55 Idoine
ag — Lijoinc=[0,1477,.0.1477 0.2525,.0., 1477 .0, 1477 .0, 1431,0,14931,0., 1434, ...
o 0.07671,0,1980,0, 1340,0.1340,0,1974,0,.1431,0,12,0,1240,0, 1431, ...
a3 0.1960,0.07672:0.1935:0.147.0,07672;0.142;0.10%3;0.051;0.1431, ...
gg: 0.1£6,0.11680,0.1451,0. 1903, 0. 0767, 0.0767, 0. 06886, 0.1451,0.051] :

1on

10L ZNaggs galonlatlons

10z = Frates

s L for i=1:19

lpd= | mframel (1) = (rho*Aframe*LErame Sym (i) ) :

W= | =halel

106: = for j=iyb

10 = mwfrawe? ()= (rho*ifrawe*Lirawe ind(j) ) :

iog = | aricl

109 - witame symw=z "sum(miramel) :

LG = mframes indssunm(mfzemed) ;

el Mfrawe=mirame sSym-+mfrawme ind:

1= shingle

1% Mangle=2 7 (rho*iangle*Langle) :

T4 FL—I@0Cion

i for k=1:8

1lg = ' mosentinn k) = (rho #*Loseotion*Losection (k) ;

il et

IR 2 Hesection=2 fsuminosect ion) ;

1hs: aJoint

= = for 1=1:3§

J.2:_.L 5 mwijoint (1= (rho*ijoint*Lijoint (1)) 2

TRda s | end

LG Mjoint=2 *fauimjoinc) ;

124

185 sMass of the Armor

L80: = Marmor= (12.857%x (&) Frhoi ;

1273

leg 1Hags of the space frame

12:9_. = Nspace=Nframe+Mangle+Mosection+Mjoing:

130

131 FTotal mass of the ¥elhicle

J.%Z 5This 15 the dbhjpcbive functlon for mass optimlisatlion

1.33 = Hazsz=Napace+Marmor:
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I&%=—
158~
159 —

161 =

sdreqating the varialhls. FE

ETki

REE)y={" 5555555

r=r+i;
¥Frame
=Wirame:
TF=x{l):
D=Dframes:
TW=w(1) :

We=numZstr (W,
TFe=numZstr (TF,

205 s

\EL JTREN )5

Ds=numZsatr (D, ' =1.72%);

TWE=numZser (TW, '~ 1.7 2
Liri={ TINTEGRATION BEANM}:r=r+l:
LiE)={'27,0,0,5%) ;r=r+1;
&{xy=[wa,' ', TFa,', ' ,/Da,' ' Tis};

L=

factnin =

Afri=4 FEECTICON BEANT }resrtds
AFEY={" 31,1,1,-27; 2y sE=E+1
Ligy=[wa, ', ', uws,', ' ,Da3,', ', D3a]:

r=r+l;
Thrgle
W=Wangle;
TF=x%(3):
D=Dangle;
Tu=x(3):

Tg=numZstr (W, '51.7L'):
TFs=numiZstr (TF, '%1.7% ) ;
De=nimistr (D, '=1. 7L} ;

Ts=numa str (TH,

1,754 )

Atey={" *INTEGRATION BEAN"}rf=c+1:
Alpy={'2H,0,0,3"%) ;r=t+1:
hiry=[Ws,',',TFs,',',;D5,"'," ,TUs]:

r=r+l;

ATEy={" *SECTICN BEAN"}rE=t+1}
Alzy={"32,1,1,-28H
Ari=(us,', "', Ws,"

r=r+l;

FC—geprion

W=Wcaection:

TF=x(4) :

D=Desswtion;

Tw=w (4]

1,20} sp=t+1:

¥

We=pumZats (W, ' =1.78) ;2
TFs=nimgser (TF, '= 1. 74" ) 2

De=numistr(D; =1.
TW=snumZstyr (TW, '21.7%") ;2
Lip)={'*"INTEGHATICN BEAM');r=r+1:
b2ty ir=c+l:

Afr)=t29,
Liry={Ts;

¥

» TFS.:;

7L

’

|j;

’ DS.:J'

’

LyDs,t N, DE] 2

y T=] :
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r=r+1:

Aip)=(' "SECTIIN, BEAM' }irsr+l;
Rler={'33,1; 1:= Ivprr=r4l;
BEEF=[D&E;" " #DE)  oDEg) 0 sDE]
r=r+1:

Zdirine

W=Wioint:

TF=x(5) =

D=Djoint;

TU=% (&) *

Wa=nwedser (M, ' 1.7 ) ;
TFe=tnm@str (TF, ' 51.7%' )z
De=numzstr (D, '=1,7£'):
TUs=num2str (T, ‘51,750 ) ;

A{r)={' TINTEGRATION BELN'}r=r+l:
App)={'30,0,0, 51} Fr=£+1;
b{ry={ws,',',TFs,', ' ,Dg,', ', TWa]:
r=r+1:

) ={' "SECTION BELN'};r=r+1;
W) =034, 1,1, =30, 2L} SE=F-+1;
Yoei={uss ' s e, T
r=r+l:

FArimor

Ti=%[6) :

Tis=numZscr (T, '=1.78'):

Afr)={' "SECTION SAELL' }ir=r+i;
Elry={"10,2, 1,2 " b re=r+1s
BpEy=[TES; 0, TS oTasy) ) T
r=r+i:

Air)={'"END'};

% The fixad dode iz gtarad inca - dor k (LESDYNA - inpur formet) £ile known

static.k

i

"

=2
x The fixed zDode 12 merged with the variable sode orested and nhis file

is pamad as . combinad. b
copyfile('scatic. k! ' comined. ! ;"€ ) 2

% The varigble code i3 written intc the Sumbined,k file
fid = fopen('combinsd.k', 'a+');

EprintE{fid, ‘e \ul jE{iH):

folose (fid):

:The combined.k-file, comprising of phe variable £ fixed FE code 1n thel
YLE=DYNL -inpur File Eormet, iz run dsing the L3=SDYNI &xphlieits cods

|;_ii;_31: ey Program Files) Ansvae Tnelwl10h ANSTE bin dneall 12551 exa? r.lr=_u_'_|-'-"_Il"|' i="eombined
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233

BT

iCaleoularing che Van-Mises (VM) stresses from the L5-DTHA elemant

Loutput f£ile

zopening: the LE-DYNA slemspnr oncpur Lile

fid=fopen|'=lout'):

FS5kdping the first 42 character sgoménts in the 'elout file
skipl=textosecan(fid, '=*s' 49>

2Defining twog wvarislbiles for storing bhe max: VN stress wvalias
ladynabheam=-1; SHmx WM stress for the besm i3 stored in thia
ledynashell=—1; =Max VN stress of the shell is stored in chis

penalty=ldy SPenslty ferm for violation of atrsss oconatraint

2 Beam acresz oalonlation
for kappasl:13 3LE-LYNA outpucas 131 diploca
for alpha=1:1192 Total mumber of bheam elemants

FSvoring the element number
‘heamelestext=can (fid, '==' 1) ;
beatele=hbeamele] 1}
heame leno=stridouble (heamele{1} ) ;
25kiping the unwanted materisl

R R RS
Flntegratlon polints Surmsars
2C-gectlon = 8

2ingle sadtion: =5

FHollow Scuare seotion = 9

variabhle
varishle

=ralonkating VN atrasges for the firat 4 intergration points of

Zthe ‘hean & lemsnt
for beta=1l:4
2Feading the stress values fram the elout file
détal?texpsganffid;'%s',Sﬁ;
datalsdatal{ 1} ;
FComweErting the streag valuea from string state to
Tnumerlecsl form
sigma 11=stridouble (dacalfl}):
sigma 12sstrddouble (datal{2i):
sigms Fl=stridouble (datalid}):

N stress equatilon for che ‘beam element

wvonmisesl=sgrr (sigmwa 11°2+(37 (sigwa 12*2+sigma 31°2))):
Fheack vao-=ee 1f the present VN stress-valies diB greatep

Sthan the last one
$If true then save the presesnt value g3 the max UN

twvalue and digscard the pevious valiue

sStresp

=If Laslse recain whe previons value sz twhe max VH acress

it (wornmisesl=lsdynsbesm)
ladynabeam=vrormisesi:
Jthearn= [beamsleno sigma;ll sigmwa. 12 sigma 31..
lzdynabesmn] ;
end
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299 TRkiping unvantsd dsts

280 — skipi=textscan(fid, ‘7= ,2);

Zel= | end

2BE ¥Csloculecion for Sth intsgrstcion point

283 = datal=textscan(fid, '==',3);

284 — datal=datal{ )

25 = gigma ll=sstridouble (datalil}):

286 = Sigma lz=stridouble (datali{z]});

287 = Figma 31=stridouble (datal{d}):

288 — vonmisesl=sgreo (simea 112+ (3% (gigma 12%2+sioma 31°2)) )

288 = 1 (wonmizesl>ladynabeam)

280 = lsdynabeawm=vomnaisesal;

’Eﬁ_l = Jjtheam=[beamesleno aigra 11 sigma 12° sigma 31 1sdynabean] ;
292 — end '

283

288 = skipi=vextacan(fid, '2%5' 1) ;

205 = akipd=textsran(fid, 's=',1);

238 = skipd=skipd{ i

287 = datai=sstridouble (akipdi1}):

288 $Cherking o gses if: thers I & 6Ll intsgrstion poaint

2og : If coue: then dontinuse celoculscing VM stresass for the: 6th, Tth
._3IJEI tand Sth i1ntegratibn points

apl= | 1f [datal==g)

SRE = for gatma=1:2

o039 = datal=textscan(fid, '==',3);

304 — daral=datal{:}:

305 = ‘Bigma ll=stridouble (datalil});

306 — Sigma 12=strZdouble (datal{zZ]);

o= gigma 3l=stridouble(daral{3}):

.SEE‘ = vonmisesl=sgreisigma 11°2+ (3% isigwa 12*Z4+sigmwa 31°2)));
308 = 1 (wvonmisesl>ladynabean)

SR = ladynabeaw=vontniseal;

.-_31_1 = Jtheam=[beameleno =2igms 11 =igma 12° =2igma 31...
3.L2 Iadynaheam) ;

[y = end

314 = skipd=vaxvsvan(fid, ' ¥35' JE);

.-_31_5 = end

.E.L-E = datal=textsean(fid, '==',3);

Ayl = datal=datal{}:

BlE = sigma ll=scridouble (datal{l));

ale= sigms li=stridouble (datal{z}):

azn = sigma 31=stridouble (dacal{3});

ATl = vommlseslssqgrt (eigwa 11%2+ (57 (eigwa L2*Z+aigma 31°27)):
BER = if (wonmiseslslsdinabeam)

Faal= Isdynabeam=vonmisesl:

334 = j'tbe'a.m=[b|=_-amelem:| siga 11 sigws 12 sigwa 31...
375 Ladynabeam] ;

FAS = end
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skipd=textzcan (fid, '=%=',1);
skipS=rtextscan(fid, 's=' 1)
skiph=skiph&{:};
dataf=stridouble {skip5{1}]:
3Chenkding to sea 1f thers 15 & 90h integration point
I true thenoehtinue calonulating VN atresges for the:-9th
Zintagrarion polnt
it (datai==3)
datal=textscan(fid, 's=',3):
détal=détal{;}:
sigms 1l=stradouble idatal{l}];
aigma_l12=stradouble (datal{2i) ;
sigma Fi=stridouble (datalid}) ;
wonmiseslssgrt (sigwa. 1124037 (Siomwa. 12*2+sigma. 31°2) ) ) 2
if ivonmigeslzladynabeam)
ladynabeam=vonmisesl:
Jtbeam=[beamelenn Sigms 11 Sigma 12 Sigms 31...
ladynakhesamn) :
and
FEk1p unwanced data
skipi=textscan(fid, '=*=' 2}
end:
znd
FEkiping unwvanved data
Skip6=textacan (fid, 's*=',2):
2Check no gae 1T there iz a viglation of the acregg consatraint
gil3)=(1.1%sigma y)—lsdynabeam; =3Tress Cconatralnt
1T the st¥eas. constEaint Is wviolsbed then che loop. for
Sealeulacing VN stresges for the ‘beam elemants is bhroksan
1f (oh(13)<0)
penalty=10450%g013) 2
break
zrircl
end:
=If fihe sStress conagtraint is-vicIavted then: the program £ox
Foaloulsting VI streapea is ceérinsted
if (gi13] <)
‘break
end
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367

ﬁﬁﬂ‘ Shell stress calculation
369 25kiping unwanned dats
A = skipf=text=scanifid, '=*=' ;53]

FE = for chi=1:8390 ITotal nuwber of anell elsmstita

sHaving the shell element number

IE shellelea=textscan(fid, '=5=' 1)
A = shelleleb=sshelleleal ) :

e shelleleno=stridouble{3hellelebi1}) :

ave Skiping unimanted data

a7 = akipi=textscan(fid, '=*=' . 5):

aTa sPaving phe stress stcate of fhe shell slemsnt

FET shell=textsacan (fid, '=3' . 6):

agn = Shell=shell{:}:

agl SUomverting The atring charachers of the atress 9tave ©o

E82 saumeyricsl valnues

T aigma xx=stridouble{shelll1}):

g4 — sigma yy=stridouble (Shell{z}):

385 - sigma. xy=arrzdouble (shell{d}) :

386 — sigwa yasstradouble ishell{5}];

83 sigua zx=stridouble(shell{t}):

ang sBquation for caloulsting the VN stress of the shell elemem
339 5 wonmisesissqrt (Sigma. xx"I+siomwa. ¥V i-(sigmwa. xxTsiogma. vy +3%. ..
300 (=sigme xyt24sigme yeti4sigme ext2) )

391 ¥Cheel to see 1f the predent VN stress value is grester than
Foz Sthe lsst one

21T true then gave the pragent value a3 the wax VI atrasg valus

a04 zand discerd the pevioogs valoes

3058 31 Lfalge retain the previous walys a8 the ek VR stress

a5 = if (vonmiseszslsdynashell)

#97 = lsdynashell=svonmisesa;

ang — jtshell=[shelleleno sigma ¥¥ - 3igwa vy 3igms ¥y sigwa yoo ..
399 aigma zx l=zdynashell] :

ang = =nicl

;iﬂl Uontinue the gsame procedurs as sbove Tor the 2nd Integratlon
40z Zhoint of the shell e=lemsnc

403 — skip7=textsean (fid, '57=' 4]

apa = shell=textacan (fid, '+s',6):

-2[]5? 5 shell=sshell{:};:

40f: — sigwa xxsstradouble ishell{1}];

407 = aigma yy=stridouble (shelliZ}):

ang = sigma wy=str2double (shell{4}):

408 — sigma. ye=acridouble (Shell{5}) :

410 = sigma zx=stridouble (shell{a));

vormisesa=sqre (sigwa xx“2+oigwa yye2-(aigwa xxToigwa vy +3TL ..
(sigms vy Z4sigma ye Z4siogms zx"Z)):
1t (wonmisesZ:lsdynashell)
lzdynashell=vonmisesa;
jushell=[shelleleno 3igma xx Iigwa vy igmwa Xy sigwa VE. ..
Sigma zx lsdynashell] ;

el
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P ping untanted data
skipf=textsoan (fid, ' $*=', 1)
slheck-to . see Af - there 13 & vigletion ef - the stress copstraint
gila)=(l.1%zigws ¥) - ladynashell; #8tresa gonatraint
PIf tlim atrsss coustraint 1= violkated than the loop £or
ycaldvlsting VM =tresses of the shell slenments 15 hrok=En
1T (gl
pehslty=100507g{14) "2
break

end

end

ESkip unwantad data

skiplO=textscen(fid, 'v==',41);

¥I1T the =Stress onneEtralnt A8 violated: then the  program for

soaloulating VN o Stresses 19 Lermlinated

if (o140
break

end

e
folose | =all')

T Thig part of the program 19 for ahogk aptimizacion arly

ialoularing the rEaulfant -ascelasracion atr the 8 1dentifi=d podal
slogations from the LS-DYNR nodsl ounpun £ils
sopeiny the LE-DVNA nodout file
fid=fopeni' nodouct');
thatining the initial ‘ascelsracion valuss for the 8 nodes
Azum 10170=0;
Asum_ 10322=0;
‘hEum 10574=0;
Lsum 10639=0;
Asim 10691=0;
dzmm 11148=0;
deam 11308=0;
houm 14276=0;
*8kapping the imitisl unwanted dats in the nodoun ©ils
skipl=textscani(fid; =72, 16);
for zeta=1:13 FLE-DYNL outpura 13 daploca
agg=1l; %lirray incrapentor
Y8kapping soms unwanted datsa
skipZ=textscan(fid; =%z ,44);
for iota=1:8 F#No. of nodea gonzsidersed “for aprimizacion
skip3=textscan(fid, '+*=',7):
daq§1=text§qan(fid}'%3';33;
datal=datali:};

y=srtridouble (datal{ly) 2 iipgeleration valde if ¥x—=dirsption
Ly=3tr2ﬂguhletdatgl{2}]; vhogelaration valus in v—diraction
br=srrZdouble (datal{3}) 2 rictelaration vValuse in E-direction
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Lresiace)=sgre ( (Ax™2) + [ Ay"2) + (A2 ) 2 sFezulcanr soceleracion
gﬁjpg=textscantfid,V%fs';E{; '
aco=aco+l;

=hjia

zhdeling up the soesleration yvaluss st sach time increEment
Azum 10170=4zwn 10170+kres (1) &
Azum 103ZZ=kawnm 103Z2+hres (2] :
Az 10574=dzum 105Td+hrea 3] :
Lsum 10639=A5um 10639+ires(4):
Azum 10E91=Azum 10691+hres (5) :
Azum 11148=hzum 111484Ares(6) ;
Lewm 11308=dsum 11308+kres(7) :
bsum 14276=Lsum 14276+ires(g) ;
skipS=textscan(fid, 's7=',127):
| end
folese('all! ) s Fllosing the opsasd hodout £ile

xTaking the mesn aoceleracion valus st sach node

hwean 10170=4swm 10170/15;

J‘Lmea-n_lDSZ-z=_issg_u.m_1D32-2.-"13;

Imean 10574=Llsum 10574/ 13

hnipan 10539=Lswm 10639713

hean 10681=isum 10691/13;

Imean 111459=2sum 11145/13;

hpean 11308=Aswm 11308/15;

bmpan 14276=Lsum 19276/13;

3 Taldng  nhe medan anceleration value of all che & nodes

tThis 1z nthe gbhjemtive fungtion for shook optimization

hmean= (imean 10170+dnean 10322+omean 10573+dmean 1063 09+Mmean 10691+ ..
Iyeamn 11149+kmean 113 DEI'+Mniaan_1l}2-’?5:| Fa= T

FNodified chijeotive fTunotion (lncorporalon af the pepalty pepm) for

sshook oprimizstion

; fu=lmean+penalcy;
50l
502

505 ¥Modified abjEctive Tunation [(incorporaion of the pefslcy csem) Eor

S04 amasse optimization

ﬁI:IE m fe=Nass+penalty;
SR — et

508
EOo — t=tu:
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YWariahlss to output in the Veomsand rindow! safter sach fonction svaldacion
Ohjectivesf

dmean

Mei=s

Marmor

Mspace

LT = Beam Max Valuessjthesam

518 — Shell Max Waluss=jtshell

ih

ﬁais =Moo of fanction svaluatlions computed by SH2E slgorithm

Eeptbori ool

#Deca sSaved Aftar sacl function syaluAation; Ho be wviswad =St the sl of the
roptimlFarion prosesa

_myvarivaalsi:]={variahles ﬂarmﬁt Hspace lsdynsbesm lsdynashell £]:
‘beammarrral (fEwals; ) =[itheaw] ;

ghellmaxwal (fEvals, 1 )=[jtshell] ;

mave £ .
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