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ABSTRACT  

 

 

The understanding of the microstructure evolution during the deformation processes 

is very important to predict the mechanical properties of the deformed workpiece. In the 

present work two aluminum alloys from different series were studied in two different 

deformation processes.  

The first part is the surface grain structure evolution in AA6082 hot direct extruded 

shapes with different ram speeds (0.25, 0.5, 1, 2 mm/sec). The samples were 

characterized by the light optical microscopy (LOM) and by electron backscatter 

diffraction (EBSD) to measure the grain size and misorientation angle in the thickest part 

of the extrudates. Also, numerical simulation process was performed by a finite element 

package         3D to obtain the state variables such as stress, strain, strain rate, 

temperature and their distribution in the deformation zone. These state variables were 

incorporated in a joint dynamic recrystallization model which is developed by Bandar 

and modified by Depari and Misiolek  to predict the surface grain structure and the 

misorientation angle . The experimental results showed a good agreement with the model 

predictions.  

The second part is focused on the microstructure evolution of asymmetrically rolled 

AA-5182. Asymmetric Rolling (ASR), where the linear speeds at the surfaces of the 

upper and lower roll differ in order to impose shear within the workpiece, has been 

shown to be a promising, economical approach to altering the microstructure of rolled 

aluminum alloy sheet. The purpose of this process is to produce intense shear 

deformation throughout the entire sheet thickness, as opposed to superficial shear 
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deformation imposed by conventional rolling. The microstructure response to the ASR 

process conditions for the aluminum alloy AA5182-O was analyzed using metallographic 

techniques. The initial sample microstructure and the deformed microstructure after the 

first and fourth passes were analyzed at three locations in each sample - near the top 

surface where contact with the upper roll took place, near the mid-plane, and near the 

bottom surface where contact with the lower roll took place. In each case, the 

microstructure was examined in the rolling direction (RD) and the normal direction (ND). 

The results show that the grain size varies within the samples and even more between the 

samples representing different stages of the ASR process. However, for the reported 

rolling conditions, the fine grain structure has not been produced. 
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1 CHAPTER 1: INTRODUCTION 

1.1 Aluminum and its Alloys 

 

Aluminum is one of most used metallic element on earth[1].It is used in  many 

engineering applications such as automotive, constructions, buildings, packaging… etc. 

Also, It also is involved in a lot of modern life applications and has more than three 

hundred alloys ranging from pure Aluminum to complex alloys with different physical 

and mechanical properties. Therefore, Aluminum is attractive and common in industry 

because of its appearance, light weight, formability, and corrosion resistance. 

One of the most important properties of Aluminum is its density of 2.7 g/cm
3
, 

approximately one third of the value for steel (7.83 g/cm
3
), Copper (8.93 g/cm

3
), or Brass 

(8.53 g/cm
3
). Moreover, Alumium is a reflective and has high thermal conductivity, about 

50 to 60% that of copper and it is nontoxic. 

Aluminum and its alloys may be cast or processed in wrought form by many 

manufacturing processes such as rolling, extrusion, forging, stamping, powder metallurgy 

to form sheet, plate, foil, rod, bar, wire, tube, pipe, structural forms and metal-matrix 

composites. The final stage of Aluminum products can also be achieved in one of the 

machining processes. 

Among the most important characteristic of Aluminum is its high formability. The 

strength, ductility give a good combination of forming flexibility. In addition, the heat-

treatable Aluminum alloys can be formed which result in  a high strength to weight ratio. 

Aluminum alloys can be divided into two major categories: casting compositions 

and wrought compositions. Additionally, wrought alloys can be classified as heat 
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treatable (HT) and non heat treatable . For wrought alloys a four-digit system is used to 

produce a list of wrought composition families as follows[1]: 

 1xxx Controlled unalloyed (pure) compositions. 

 2xxx Alloys in which Copper is the principal alloying element, though other 

elements, notably Magnesium, may be specified. 

 3xxx Alloys in which Manganese is the principal alloying element. 

 4xxx Alloys in which Silicon is the principal alloying element. 

 5xxx Alloys in which Magnesium is the principal alloying element. 

 6xxx Alloys in which Magnesium and Silicon are principal alloying elements. 

 7xxx Alloys in which Zinc is the principal alloying element, but other elements 

such as Copper, Magnesium, Chromium, and Zirconium may be specified. 

 8xxx Alloys including Tin and some Lithium compositions characterizing 

miscellaneous compositions. 

 9xxx Reserved for future use. 

In the present work, I have focused on two aluminum alloys which are AA 5182 

and AA 6082. The 5xxx series has Magnesium as the major alloying elements where 

Magnesium is an effective element to increase the hardness of the alloy and when the 

Manganese is added to Aluminum, the result is a good work-harden alloy. Also, alloys in 

this series have good welding characteristics and good resistance to corrosion. This series 

is used in beverage cans and can ends; home appliances; and automotive industry[2].  

6xxx series contains Silicon and Magnesium which form Mg2Si. It allows the 

alloy to be heat treatable. In addition this series has a medium strength, good formability, 

machinability, weldability, and corrosion resistance when compared to 2xxx and 7xxx 
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series. Uses include transportation equipment, architectural applications, bridge railings, 

and welded structures. 

Table 1. AA 5182 and AA 6082 chemical compositions, weight % 

Alloy Si % Fe % Cu % Mn % Mg % Cr % Zn % Al % 

5182 0.20 0.35 0.15 0.20-0.50 4.0-5.0 0.10 0.25 BAL 

6082 0.7-1.3 0.50 0.10 0.40-0.10 0.6-1.2 0.25 0.20 BAL 

                                                   

1.2 Types of Aluminum Products 

 

Formed aluminum products are classified to five major categories based on 

deformation processes and  geometry of the final product , the following categories are:  

 Flat-rolled products (sheet, plate, and foil) 

 Rod, bar, and wire 

 Tubular products 

 Shapes 

 Forgings 

The term mill product is used for the extruded  rod, bar, wire tubular products, and 

shapes. However Aluminum forgings are not considered mill products.  
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1.3 Forming of Aluminum Alloys 

 

Aluminum and its alloys are considered to be one of the most formable metals and 

alloys. Materials formability depends on the amount of alloying elements see Fig.1 [3]. 

Moreover, general material formability cannot be restricted only to the yield strength or 

work hardening, ductility, strain rate but also it should include the ease of machining and 

consistency of the finished products in mass production according to Kazanowski [3]. 

 

Figure 1. Correlation between tensile yield strength, elongation, and magnesium content for some 

commercial aluminum alloys in the annealed temper[3] 

On the other hand deformation failures of aluminum alloys such as cracking or 

splitting can be caused by ductile fracture. It can start from the crack nucleation points 

and connect them to microscopic voids and/or by localized strain at the shear bands the 

fracture could appear. In the following sections two forming processes namely extrusion 

and rolling will be discussed since they were the subject of performed materials 

investigations.  
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1.4 Extrusion 

 

Extrusion is a process in which wrought products are formed by forcing a heated 

billet through a die opening with a required shape[4]. There are many classifications of 

extrusion process based on temperature, lubrication and relative motion between the ram 

and the billet.  

In terms of temperature, there is hot extrusion where the process is performed at 

elevated temperature above recrystalization temperature which is about 60% of the 

material melting temperature. In contrast, the cold extrusion is performed at room 

temperature or close to it. Finally, warm extrusion is performed above the room 

temperature and below the recrystalization temperature. Some materials cannot be 

formed by the cold extrusion especially when the shape is too complex. On the other 

hand, hot extrusion is used to produce different shapes such as rods, bars, tubes, strips 

and wires. 

The second classification is based on the lubrication. As a consequence of that, 

there are three different types[5]. 

 1) Nonlubricated extrusion process where a flat-face die is used and the billet is 

pushed inside the container where the dead metal zones are formed between the container 

and the die as shown in Fig.2a. 

 2) Lubricated extrusion where a suitable lubricant is used between the billet, the 

container and the die Fig.2b. 

 3) Hydrostatic extrusion in which a fluid layer is under a pressure would deform 

the material and push it through the die Fig.2c. 
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Figure 2. Schematic illustrations showing the major difference between (a) nonlubricated extrusion, 

(b) lubricated extrusion, and (c) hydrostatic extrusion processes [5].  

 

Based on the relative motion between the billet and the tolling, there are two 

extrusion types. The first type is direct extrusion where the billet slides into the die with 

the same direction of the ram as shown in Fig.3a. However, in the indirect extrusion- 

process, the billet slides in the opposite direction of the ram as shown in Fig.3b. 

Accordingly, the friction between the container and the billet in the direct extrusion is 

higher than the indirect extrusion and consequently more energy is required to performed 

the process. 

 

 

Figure 3. (a) direct extrusion and (b) indirect extrusion[4] 
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 The extrusion process has the ability to produce a good finished complex shapes 

with a long length, Therefore, many metals are formed by this process such as aluminum, 

lead, tin, magnesium, zinc, copper, steel, titanium, nickel and others metals and alloys. 

One of the most ideal material for forming in extrusion is Aluminum and its alloys 

because of its high ductility of the FCC crystal structure even in low temperature [6]. The 

most suitable aluminum alloys for extrusion are 1xxx, 3xxx, 5xxx, and 6xxx series. 

1.5 Etrudability of Aluminum 

 

Good extrudibility is a term that described many significant process variable such 

as high extrusion speed, low extrusion load, decreasing the defects, good tolerance, long 

tool life. It is hard to define the extrudability precisely because there are many conditions 

which affect the extrusion process directly and indirectly. Among these conditions are 

state of the stress within the deformation zone, friction, strain, strain rate, ram speed, the 

exit speed, temperature of the billet, composition of the alloy and many more. However, 

in the literature there are different approaches one of them is plotting the relation between 

maximum extrusion exit speeds ,preheat billet temperature and extrusion ratio as shown 

in Fig. 4. 

 

Figure 4. Extrusion exit speed as a function of temperature [6]. 
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 Also, Mondolfo and Peel [7] had define the extrusion behavior in two holes die 

test as shown in Fig.5. The longer the thicker section, the higher is the extrudibilty. 

Misiolek & Zasadzinski had designed seven holes die test as shown in Fig.6 “which give 

more possibility to carry out several independent processes simultaneously and thus 

obtain several rates of metal outflow during the extrusion of a single billet” [8] . In 

addition, Castle and Lang used a test die and test section to measure the extrudibility with 

the speed as determinant factor for the quality of the extruded part [7].  

 

Figure 5. Mondolfo and Peel experimental test die for measuring the extrudibility [7]. 

 

 

Figure 6.Misiolek & Zasadzinski test die with seven holes [8]. 
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1.6 Rolling 

 

Rolling is the process of plastically deforming material by passing it between 

rolls. It is the most widely used metalworking process because of its high production and 

close control of geometrical tolerances of the final product. In rolling, the metal is 

subjected to compressive stresses from squeezing action of the rolls on the metal. The 

frictional force is drawing the metal into the gap between the working rolls [9]. 

In another definition, rolling is a deformation process in which the thickness of 

the work is reduced by compressive forces exerted by two rolls . The rolls rotate to pull 

and simultaneously squeeze the work between them[10]. 

 

Figure 7. The flat rolling process [10] 

1.7 History of  Rolling 

 Rolling of gold and silver is known from the 14
th

 century. Leonardo da Vinci 

designed the first rolling mills in 1480. By around 1600, lead and tin was cold rolled by 

manually rolling mills. In Europe, iron bars were rolled to sheets in the 18
th

 century. 

Later, the modern rolling started from 1783 when England issued patent for using 

grooved rolls to produce the iron bars. The first rolling mill was for I-beam for railway in 

1820. In fact, the rolling require more energy so, it was driven by water and then by 

steam engine until the invention of the electric motor[10]. 
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1.8 Rolling Mills 

 

Different designs of the rolling mills have been developed over the years and they can 

be classified into various types of  Rolling [10] 

 Based on workpiece geometry : 

 Flat rolling - used to reduce thickness of a rectangular cross section.   

 Shape rolling – a square cross section is formed into a shape such as an 

I-beam.  

 Based on work temperature : 

 Hot Rolling – where the work is above the recrystallization temperature- 

most common due to the large amount of deformation required  

 Cold rolling – where the work is done below the recrystallization 

temperature -produces finished sheet and plate stock  

 

Figure 8. Side view of flat rolling, indicating before and after thicknesses, work velocities, angle of 

contact with rolls, and other features[10]. 
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Rolling mills consist of  rolls, bearing, a housing for containing these parts and  drive 

motor for applying the required power. 

 

 Rolling mill configurations: 

 Two-high – two opposing rolls. 

 Three-high – workpiece passes through rolls in both directions. 

 Four-high – backing rolls support smaller working rolls. 

 Cluster mill – multiple backing rolls for smaller working rolls. 

 Tandem rolling mill – sequence of two-high mills. 

 

       

 

Figure 9. Various configurations of rolling mills  (a) 2-high rolling mill. (b) 3-high rolling mill. (c) four-high 

rolling mill. (d) cluster mill [10]. 
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2 CHAPTER 2: Surface Grain Structure Evolution in AA6082 Hot Direct 

Extrusion  

 

As a Part of prepared paper : Modeling Surface Grain Structure Evolution in AA6082 

Hot Direct Extrusion, Luigi De Pari Jr., Nabeel H. Alharthi Andreas Jäger, Ahmet Güzel,  

William Van Geertruyden, Marco Schikorra, Wojciech Z. Misiolek, A. Erman Tekkaya. 

To be submitted to Acta Materialia 

2.1 Introduction 

 

Peripheral coarse grains (PCG) structure is one of the common defects that appears 

in the hot deformed aluminum alloys see Fig.10 as a result of a  post-dynamic 

recrystallization phenomenon .The PCG is a large recrystallized grain appears in the 

circumference or the peripheral of the deformed workpiece. Due to the Hall-Petch effect, 

the region that contains PCG will have lower mechanical properties in comparison to the 

whole deformed part. Also, PCG will lead to lower corrosion resistance [11]. For 

consistent mechanical properties, the manufacturers are spending more cost to remove 

this defects and consequently, will increase the cost of the products. Therefore, the 

understanding of the degree of the dynamic recrystallization is very important in 

predicting PCG.  

 

 

Figure 10. Peripheral Coarse Grains (PCG) in hot AA 6082 extrudate. 



15 

 

 

There are two mechanisms of dynamic recrystallization in high stacking fault  

energy material such as aluminum reported in literature [12-15]. The first one is the 

continuous dynamic recrystallization (CDRX) and the second is geometric dynamic 

recrystallization (GDRX). CDRX occurs by the accumulation of dislocations into cell 

walls which will form a substructure of low-angle grain boundaries (LAGBs). With 

enough dislocation accumulation, the boundary misorientation and LAGBs transform to 

high angle grain boundaries (HAGBs) and small grain are formed [16]. 

 In GDRX, the original grains are elongated by deformation. At enough strain the 

original grains thickness is reduced to almost 2 subgrains diameter. Consequently, 

subgrains are formed and suddenly, the subgrains is pinched-off resulting in new small 

equiaxed grains  Fig. 11.   

 

 

 
Figure 11 When the grains are elongated and thinned extremely, they pinch off where opposite 

serrations meet and form new grains by GDRX mechanism [17] 
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DePari and Misiolek  have developed a new joint DRX model that considers both 

CDRX and GDRX to predict the surface microstructure evolution (i.e., grain diameter, 

subgrain diameter, and grain boundary misorientation) of aluminum alloy 6061 during a 

hot-torsion test and hot-rolling [18] as a function of the state variables: strain, strain rate, 

temperature, and stress. Later, they used the same model to predict the surface 

microstructure evolution in AA 6082 hot extrudate to check the validity of the model 

[16]. Also, They have verified the model experimentally by characterization of AA 6082 

extrdate [16][18]. However, one ram speed hot extrudate sample (1 mm/sec) has been 

verified.  

The objective of constructing the DRX model is to give the suppliers of the 

deformed material an information about the surface physical properties of their products 

depending on a state variables During deformation, the state variables can be obtained 

from a different software simulation package such as DEFORM
TM

, QFORM
TM

 LS-

DYNA
TM , 

FORGE
TM 

and others. 

In this work, four different ram speeds (0.25, 0.5, 2, 5 mm/sec) in hot extrusion 

were investigated in terms of surface microstructure evolution (i.e. grain size and 

misorintation angle. Also, numerical modeling package DEFORM
TM

 -3D was used to 

simulate the hot extrusion for AA 6082. After that, the state variables results which were 

obtained from DEFORM
TM

 -3D  were plugged in the Joint DRX model to predict the 

surface grain size for different ram speeds. 
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2.2   AA6082 Hot Direct Extrusion 

An aluminum  alloy AA6082 (Al-Mg-Si) was analyzed as shown in Fig.12 .The 

geometry is a double symmetric solid profile with a wall thickness of 3 mm in the center 

increasing up to 15 mm to the sides by a main diagonal of 70 mm   

 

Figure 12. (a) General view of the extrusion specimen (b) Cross-section of the extruded profile 

 

Extrusion was performed on a 10 MN direct extrusion press with a flat die, which 

had a constant bearing length equal to 15 mm.  Direct-chilled cast and homogenized 

billets with dimensions of 140 mm (diameter) 300 mm (length) were used with a 

container of 146 mm in diameter. The extrusion ratio 26.3.  This extrusion was performed 

in high temperature up to 537°C which was measured by a thermocouple in the surface of 

the billet. Also, the ram speeds were set to 0.25, 0.5, 2, 5 mm/sec, which resulted in 

exiting speeds of 6.57, 13.15, 52.6, 131.5 mm/sec respectively.  Immediately, after 

initiation of the process in a distance of 250 mm from the die exit, a quenching was 

applied. The quenching apparatus consisted of two pairs of air atomizing nozzles 

mounted above and below the extrudate. This arrangement was chosen to avoid the static 

recrytalization and to keep the extrudate under slow cooling conditions which over-
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locked the microstructure as under  dynamic recrystallization during the extrusion Fig 13 

. 

 

Figure 13. Experimental setup for the extrusion of AA6082 

 

2.3 Sample preparation for Light Optical Microscopy (LOM)  

 

The microstructure of AA 6082 hot extrudate was analyzed at three locations in 

each sample as shown in Fig.14. The samples were prepared using the following 

procedures: 

1- Cutting the samples by using Isomet low speed Buehler saw with diamond wheel. 

2- Mounting the samples in Epoxy with cylindrical shape. 

3- Grinding samples by using silicon carbide papers 320, 400, 600 and 800 µm 

respectively and water as coolant. Each sample were ground for one minute. 

4- Polishing samples with diamond 6, 3, 1 µm respectively and the final polishing 

with silicon dioxide. 

5- Electroetching samples with 30 V for 60 to 90 sec immersed in Barker’s 

(Tetrafluoroboric Acid 48%) 3% in distilled water. 
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Figure 14, Schematic drawing for the sample which shows where the LOM images were taken  

2.4 Images from LOM 

 

After sample preparation, Nikon light optical microscopy was used to analyze the 

microstructure of four samples in three different locations as shown in Fig.14. Each 

sample was represented a part extruded with specific ram speed. All LOM images were 

polarized. The following images represent the microstructure for each location for each 

part .   

 

 
 

(a) 

 

    (a) 

 

    (b) 

 

    (c)  
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(b) 

 

 
 

(c) 
Figure 15. Light Optical Microscopy images for the thickest part of the extrudate  extruded with the 

ram speed 0.25mm/sec (a) top (b) center (c) middle  

 

(a) 
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(b) 

 

 
 

(c) 

 
Figure 16. Light Optical Microscopy images for the thickest part of the extrudate  extruded with the 

ram speed 0.50mm/sec (a) top (b) center (c) middle 

 
 

(a) 
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(b) 

 

 
 

(c) 

 
Figure 17. Light Optical Microscopy images for the thickest part of the extrudate  extruded with the 

ram speed 2mm/sec (a) top (b) center (c) middle 

 
 

(a) 
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(b) 

 

 
 

(c) 

 
Figure 18. Light Optical Microscopy images for the thickest part of the extrudate  extruded with the 

ram speed 5mm/sec (a) top (b) center (c) middle 
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2.5 Sample preparation for Electron Backscatter Diffraction (EBSD) 

 

 

Samples of AA 6082 hot extrusion were prepared for EBSD analysis by the following 

procedures:  

1- Cutting the samples and mounted in epoxy mounts. 

2- Grinding samples by using silicon carbide papers 320, 400, 600 and 800 µm 

respectively and water as coolant. Each sample were ground for one minute. 

3- Polishing samples with diamond 6, 3, 1 µm respectively then with silicon dioxide. 

4- Final polishing with  0.5 µm SiO2 to eliminate any aluminum oxide layer.  

5- chemical polish solution which is comprised of: 70% (H3PO4)  Phosphoric Acid, 

25% (H2SO4)  Sulfuric Acid, and 5% (HNO3) Nitric Acid .  The solution was 

heated to 85ºC and the samples were dipped in the solution for approximately 20s 

[19] 

 

Because of the difficulty in measuring the grain size with the light optical microscopy 

technique, the EBSD was used to measure the grain size and the misoriantation angle 

fraction at the surface of the thickest part of the extrudate as shown in Fig. 19.  

  

 

Figure 19. Schematic drawing illustrating where the EBSD analysis was performed  

 

Locations for EBSD 

Analysis 
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2.6 EBSD analysis results 

 

Four samples were analyzed using EBSD in Hitachi S-4300 SEN. The EBSD 

images were taken as shown in Fig.19. In the following sections and for every ram speed 

extrudate, the EBSD images were posted with the directions and inverse pole figures 

which map the orientation of the grains. Also, the grain size distribution with the area 

fraction are plotted. In addition, the fraction of low angle grain boundaries histograms are 

plotted which show the misoriantaion angle versus the number of fraction.    

 

 
 

Figure 20. EBSD image for a part extruded with ram speed 0.25 mm /sec 
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Figure 21. Area fraction of grain size for a part extruded with ram speed 0.25mm/sec  

 
Table 2. Area fraction of the grain size for a part extruded with ram speed 0.25mm/sec 
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Figure 22.  The fraction of LAGB for a part extruded with ram speed 0.25 mm/sec 

 

 

 

 

 

 
 

Figure 23. EBSD image a part extruded with ram speed 0.5 mm /sec 
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Figure 24. Area fraction of grain size for a part extruded with ram speed 0.5mm/sec  

 

 

 
Table 3. Area fraction of the grain size for a part extruded with ram speed 0.5mm/sec 
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Figure 25.  The fraction of LAGB for a part extruded with ram speed 0.5 mm/sec 

 

 

 

 
 

Figure 26. EBSD image for a part extruded with ram speed 2 mm /sec 
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Figure 27. Area fraction of grain size for a part extruded with ram speed 2 mm/sec 

 
Table 4. Area fraction of the grain size for a part extruded with ram speed 2 mm/sec 
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Figure 28.  The fraction of LAGB for a part extruded with ram speed 2  mm/sec 

 

 

 
 

Figure 29. EBSD image for a part extruded with ram speed 5 mm /sec 
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Figure 30. Area fraction of grain size for a part extruded with ram speed 5mm/sec 

 

 

 
Table 5. Area fraction of the grain size for a part extruded with ram speed 5mm/sec 
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Figure 31. The fraction of LAGB for a part extruded with ram speed 5 mm/sec 

 

 

The EBSD analysis results were summarized in Table 6. These results are verification for 

with the model results presented in the discussion section. 

 
Table 6.  Average grain size in μm  and the fraction of  LAGBs for all the extruded parts with 

different ram speeds 

 

Ram Speed Avg. Grain Diam., Df  (μm) Fraction of LAGBs, fLAGB.  

0.25 mm/sec 4.9 0.4489 

0.5 mm/sec 5.12 0.5656 

2 mm/sec 4.268 0.5065 

5mm/sec 4.71 0.4948 
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2.7 AA6082 Hot-Direct Extrusion simulation 

 

The simulation of the extrusion process was done by using the finite element-

modeling package DEFORM
TM

 -3D to obtain the localized state variables of temperature, 

strain, strain rate, and stress . The initial conditions for the simulation are in table 7. 

Then, the localized state variables  from DEFORM
TM  

-3D were used in MATLAB codes 

which were written by Luigi De Pari Jr[16].  

 

Table 7.  Initial condition for the DEFORM
TM

 -3D simulation of analyzed extrusion 

 
Billet Diameter 140 mm (5.51 in) 

Billet Temperature 537 
o
C (999 

o
F), 

Extrusion Ratio 26.3 

Die Temperature  380 °C (716 
o
F)  

Container Temperature  450 °C (842 
o
F)  

Ram Temperature  450 °C (842 
o
F)  

Ram Speed 0.25, 0.5, 1, 2 & 5 mm/sec  

Heat Transfer Coefficient (Billet - Die) 11000 W/(m
2
 
o
C) 0.538 Btu/(s ft

2
 
o
F)) 

Heat Transfer Coefficient (Billet - Container) 11000 W/(m
2
 
o
C) 0.538 Btu/(s ft

2
 
o
F)) 

Heat Transfer Coefficient (Billet - Ram) 11000 W/(m
2
 
o
C) 0.538 Btu/(s ft

2
 
o
F)) 

Time Step Varying (max 0.0025 sec) 

Die Shear Friction Coefficient 0.5 

Container Shear Friction Coefficient 0.9 

Ram Shear Friction Coefficient 0.9 
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Figure 32.  Image of the         3D simulation for the hot extrusion of AA 6082 

2.8 Simulation Results 

 

The models were coded as a MATLAB codes and were run. The results of the prediction 

of the average grain size and the fraction of LAGBs for three different models Joint 

DRX, CDRX and GDRX were summarized as shown in Table 8. 

 

Table 8. The Joint DRX, CDRX, GDRX models average grain diameter,    and fraction of LAGB 

(fLAGB) 

Ram Speed Measured Item 
Model 

Joint DRX CDRX GDRX 

0.25 mm/sec 
Avg. Grain Diam., Df  (μm) 8.16 8.18 4.04 

Fraction of LAGBs, fLAGB 0.5898 0.6 0.7609 

 

0.5 mm/sec 

 

Avg. Grain Diam., Df  (μm) 9.06 8.99 3.472 

Fraction of LAGBs, fLAGB 0.5724 0.5843 0.777 

2 mm/sec 

 

Avg. Grain Diam., Df  (μm) 7.37 7.47 3.57 

Fraction of LAGBs, fLAGB 0.5873 0.5974 0.6589 

5mm/sec 

 

Avg. Grain Diam., Df  (μm) 7.012 7.088 3.02 

Fraction of LAGBs, fLAGB 0.5580 0.5632 0.684 
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The following graphs is showing the comparison between the different three models 

prediction of the grain size and the experimental results. 

 

Figure 33. Joint DRX, GDRX, CDRX, and experimental results for average grain diameter at the 

surface for AA6082 hot-direct extrusion for different ram speed 0.25 mm/sec 

 

Figure 34. Joint DRX, GDRX, CDRX, and experimental results for average grain diameter at the 

surface for AA6082 hot-direct extrusion for different ram speed 0.5 mm/sec 
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Figure 35. Joint DRX, GDRX, CDRX, and experimental results for average grain diameter at the 

surface for AA6082 hot-direct extrusion for different ram speed 2mm/sec 

 

Figure 36. Joint DRX, GDRX, CDRX, and experimental results for average grain diameter at the 

surface for AA6082 hot-direct extrusion for different ram speed 5 mm/sec 
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2.9 Discussion 

 

The main objective of this work was to verify the Joint DRX model by 

characterizing and evaluating AA 6082 hot extruded parts. These parts were extruded in 

different ram speeds. Definitely, the variation of the ram speeds was resulted to different 

deformation behavior. Consequently, material behaved differently in terms of grain 

diameters and misorientation angle . Also, the experimental work was provided a good 

connection between the microstructure at the surface of the extruded part with the state 

variables that were obtained from the finite element package DEFORM
TM

 -3D. 

2.9.1 Light Optical Microscopy Characterization 

 

The goal of LOM images was to measure the average grain size in the extruded 

parts. As shown in Fig. 14-18, it was difficult to determine the average grain size from 

the polarized images. But, these images were provided a qualitative description of the 

deformed parts. It can be observed that the more fine grain microstructure were located in 

the locations “a” which were in the thickest section of the extruded part. This a good 

indication that the material went through sever deformation and the dynamic 

recrystallization took place. Also, it can be observed the shear bands in the location “b” 

and “c” because of the easy of the flow throughout the die in these locations. In Fig. 18a, 

the PCG can be observed in the extruded part with ram speed of 5mm/sec. 
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2.9.2 EBSD analysis 

 

 EBSD was determined the average grain size in the thickest section of the 

extruded parts and the LAGBs distribution. It can be observed  from Figs. 20, 23, 26, 29 

and  Table 6, that the average grains diameters were between 4 and 5 µm which is 

considered a fine grain microstructure. Also, from Table 6, the fraction of LAGBs were 

obtained by calculate the misorientation angles distribution below 15 º. The fraction of 

LAGBs were ranged from 45% to 56% which would play a role in the dynamic 

recrystallization [17] and consequently the formation of PCG [19] .  

2.9.3 3D simulation and the Joint DRX Model 

 

The results from the experimental work and the predicted models’ results for the 

average grain diameter were compared in Table 9. The results showed that the joint DRX 

model predicted the fraction of the LAGBs very close in comparison to the experimental 

work and better than the GDRX alone. However it is very close to the CDRX. This 

prediction was very important to expect the formation of PCG as mentioned in the 

previous section.  

The average grain diameter was predicted very well by the GDRX alone. On the 

other hand, the prediction in the joint DRX is better than the CDRX alone. In general, the 

experimental results showed a good a agreement with the model as shown in Fig. 32-36. 

The model accuracy was discussed in Luigi Ph.D dissertation [16]. 
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Table 9. Comparison between experimental average grain diameter, D and fraction of LAGB (fLAGB) 

and the Joint DRX, CDRX, GDRX models predictions  

Ram 

Speed 
 

Exp. 

Values 

Joint DRX CDRX GDRX 

Sim. Diff. Sim. Diff. Sim. Diff. 

0.25 

mm/sec 

Avg. Grain Diam., 

Df  (μm) 
4.9 8.16 3.26 8.18 3.28 4.04 -0.86 

Fraction of LAGBs, 

fLAGB 
0.4489 0.5898 0.1409 0.6 0.1511 0.7609 0.312 

 

0.5 

mm/sec 

 

Avg. Grain Diam., 

Df  (μm) 
5.12 9.06 3.94 8.99 3.87 3.472 -1.648 

Fraction of LAGBs, 

fLAGB 
0.5656 0.5724 0.0068 0.5843 0.0187 0.777 0.2114 

2 mm/sec 

 

 

Avg. Grain Diam., 

Df  (μm) 
4.268 7.37 3.102 7.47 3.202 3.57 -0.698 

Fraction of LAGBs, 

fLAGB 
0.5065 0.5873 0.0808 0.5974 0.0909 0.6589 0.1524 

5mm/sec 

 

 

Avg. Grain Diam., 

Df  (μm) 
4.71 7.012 2.302 7.088 2.378 3.02 -1.69 

Fraction of LAGBs, 

fLAGB 
0.4948 0.5580 0.0632 0.5632 0.0684 0.684 0.1892 

 

 

From the model predictions and the state variables –stress ,strain, strain rate, and 

temperature - that were obtained from the finite element package - DEFORM
TM

 -3D, a 

correlation  between the average  grain diameter and the fraction of the LAGBs can be 

made with the state variables directly. This correlation helps to know what the amount of 

strain rate, stress, and temperature that could cause the fine grain microstructure and 

consequently the formation of the PCG by DRX. Also, by the verification from the 

experimental work, the manufacturers of the deformed materials could built data base for 

their final product to eliminate the expected PCG that could be formed during the 

manufacturing process and maintain good specifications their product Fig.37. 
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Figure 37. Illustration of how the manufacturer data can be built. 

2.10 Conclusions 

 

 

In this work, hot extrusion of AA 6082 had been investigated in the manner of the 

evolution of microstructure and the following conclusions were drawn:  

 Light optical microscopy analysis was performed for hot extruded AA 

6082 part as qualitative analysis. 

 Electron back scatter diffraction (EBSD) for hot extruded AA 6082 part 

was performed as quantitative analysis. 
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  The average grain diameters were obtained for AA 6082 extruded parts 

with different ram speeds (0.25 ,0.5, 2, 5 mm/sec) as well as the fraction 

of  the low angle grain boundary (LAGB). 

 Four different simulation processes by using finite element package 

DEFORM
TM

 -3D were done to simulate the hot extrusion process for 

AA6082. 

 State variables from the simulation were linked to three different models 

Joint DRX, CDRX, GDRX  to predicts the average grain diameter and the 

fraction of LAGB and HAGB. 

 The Joint DRX has been verified and showed a good a agreement to the 

experimental work.  

 The GDRX model’s predictions is the best model to predict the average 

grain size. 

 The Joint DRX model’s predictions is the best model for the fraction of 

LAGB. 
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3 Chapter 3: Microstructure Evolution of Asymmetrically Rolled AA-5182 

 

       Based on a paper presented in ASME District A 2011 Student Professional 

Development Conference, Temple University, Philadelphia, PA  

3.1 Introduction 

 

The formability of aluminum alloy can be increased by the sever plastic deformation 

processes such as equal channel angle pressing (ECAP), high-pressure torsion (HPT), 

twist extrusion (TE), multidirectional forging (MDF), accumulative roll bonding (ABR), 

cyclic extrusion and compression (CEC)  and asymmetric rolling (ASR)[20]. Due to 

modification of material microstructure, the ASR process where the linear speeds at the 

surfaces of the upper and lower roll differ in order to impose shear on the workpiece, has 

been shown to be a promising, economical approach to altering the rolled microstructure 

of aluminum alloy sheet in such a way that it may improve material formability. Also, 

ASR can be achieved by changing friction between the workpiece and upper or/and lower 

working mill.  The purpose of the ASR process is to produce intense shear deformation 

throughout the entire sheet thickness, as opposed to superficial shear deformation 

imposed by conventional rolling. The application of ASR may lead to a small grain size 

below 2µm.   

Many studies have focused on investigating the effect of asymmetric rolling 

conditions on microstructure evolution [20-26]. Most of the studies are focused on the 

shear texture components generated by ASR, and the effect of shear texture on 

formability in aluminum sheets [27-35]. 

  The ASR processing of high-purity aluminum was investigated by Cui et.al [23]. 

ASR was achieved until 90% reduction different asymmetry ratios where the ratio if the 
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upper mill roll velocity to the lower mill roll velocity differs from 1 and 4. The 

authors[23] claimed that the grain evolution is a result of the intense shear deformation 

and the compression which lead to development of sub boundaries to high angle 

boundaries within the deformed grains [23] . ASR followed by annealing was performed 

by Jin and Lloyed [26, 36]  in order to produce very fine grain sizes as small as 1μm in 

AA5754 and in material annealed at 250 °C. Moreover, the tensile response of this fine-

grained material has been compared with that of other fine grained alloys produced by 

alternative methods. Also, they demonstrated that it is possible to achieve a good 

combination of strength and ductility by producing a duplex grain structure after 

asymmetrical rolling followed by annealing in AA5754 [37]. Recently, Simoes et al. [38] 

studied ASR of 1050-O aluminum alloy sheets followed by annealing. The authors 

evaluated the effect of the rolling parameters on the development of shear texture 

components for improving formability, and grain refinement for optimization of the 

mechanical properties. Roumina and Sinclair [39]emphasized that deformation geometry 

and the variation of the reduction per pass, will affect the shear strain gradients 

throughout the thickness significantly at a given level of asymmetry. Also, more uniform 

shear strains through thickness will be affected by the large reductions per pass. 

However, small reductions per pass leads to lower overall shear strain magnitudes [39]. 

In addition, the role of the friction in the upper and lower surfaces and its effects in the 

texture was studied [30, 39]. Wronski and his collaborators concluded that the 

temperature and the degree of asymmetry affects the texture development and its 

hetroginity throughout the thickness of the sheet [35] 
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 In the present work, an asymmetrically rolled AA 5182 microstructure evolution 

was investigated using the Light optical  Microscopy (LOM). However, the fine structure 

was not obtained and the reasons for that will be discussed in the next sections. 

3.2 Asymmetric Rolling Experiment 

 

A four-pass ASR test on an AA5182-O (Al-Mg alloy, annealed) sample was carried 

out on the laboratory at the University of Aveiro. Each roll was driven by a separate 

motor, so that the roll speeds can be independently controlled by software. A schematic 

of the set-up is shown in Fig.38. The top and bottom rolls have the same diameter of 180 

mm. The top and bottom roll speeds are 15 and 11 rpm, respectively, in the directions 

indicated in Fig.37, giving a relative speed ratio of 1.36. The initial, nominal dimensions 

of the sample were 60mm × 20mm × 8mm (rolling direction -RD × transverse rolling 

direction-TD × normal to rolling direction-ND). To prevent the sample from bending up 

or down, top and bottom guides were placed at the exit from the rolling gap.  

 

Figure 38. Schematic set-up of asymmetric rolling experiment. 
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For the first two passes, the sample passed through the mill in the same direction. 

After the second pass, the sample was rotated 180º about ND to effectively reverse the 

rolling direction for the last two passes. A reduction of approximately 25% was imposed 

for each pass, and the actual reduction was determined from measurements after each 

pass. The actual, measured, reduction ratios per pass and cumulative reduction ratios are 

listed in Table 9, where hp is the measured sample thickness for given pass . 

Table 10. Measured reduction ratios for each rolling pass. 

 

Pass Reduction per pass 

(1− hp/hp−1)*100 

Total reduction  

(1 − hp/h0)*100 

1 20 % 20 % 

2 25 % 39 % 

3 21 % 53 % 

4 28 % 66 % 

 

 

3.3 Experimental procedures 

 

The microstructure response to the ASR process conditions for the AA5182-O was 

analyzed using metallographic techniques. The initial sample microstructure and the 

microstructure after the first and fourth passes were analyzed at three locations in each 

sample - near the top face where contact with the upper roll took place, near the mid 

plane, and near the bottom face where contact with the lower roll took place. 
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Figure 39. The specific locations of metallographic sample locations with marked rolling direction. 

 

The specimens for analysis were cut from the sample using a Unitom-2 abrasive 

cut-off Struers aluminum oxide wheel and an Isomet low speed Buehler saw with a 

diamond wheel. The specimens were then ground with progressively finer silicon carbide 

papers with ANSI (CAMI) US 800 as the finest and water used as coolant. The 

specimens were then polished with diamond and finally silicon dioxide. Next, the 

samples were etched using 3% tetrafluoroboric acid (Barker’s, 48%) in distilled water 

with a voltage of 30 V for 60-90 sec, depending on the thickness of the sample, with the 

most highly deformed specimen needing less time for etching due to an increased stored 

energy. 

3.4 Results 

The microstructures of the rolled specimens are shown in Figs. 40-42. The grain 

sizes were measured by using ASTM E112 specifically intercept method. It varies within 

the samples and much more between the samples representing different stages of the 

ASR process. The initial, as received, sample is shown in Fig.40, the grain size is 

observed to be varying from about 47 μm for the top of the sample to about 56 μm in the 

middle and about 58 μm near the bottom. The microstructure after one pass is shown in 

Fig.41, the grain size did not change significantly due to the low reduction. The grain 

sizes are similar to those in the initial material, but the grains are elongated along RD as 
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shown in Fig. 41. However, by the end of the fourth pass, the grain size has been 

significantly reduced as can be seen in Figs. 42. The grain size varies from about 10 μm 

near the top and bottom of the sample to about 13 μm in the middle. This indicates that 

the shearing by the ASR process used in this work is not as strong near the center as near 

the rolls, and thus, the deformation induced grain refinement is less near the mid-plane. 

These microstructures are very similar to microstructures observed in conventional 

rolling, where the high friction at the workpiece/ working roll interfaces induces a larger 

shear deformation near the rolls in addition to the plane strain compression experienced 

throughout the bulk of the material. 

      

               (a)               (b)                                                     (c 
Figure 40. The longitudinal sections of the samples of the as received (initial) material, (a) top of the 

sample, (b) middle of the sample, (c) bottom of the sample  

 

              

                    (a)         (b)                                               (c) 
 

Figure 41.The longitudinal sections of the samples of the material after one pass (20% total 

reduction) , (a) top of the sample, (b) middle of the sample, (c) bottom of the sample. 
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             (a)             (b)                                                      (c) 
Figure 42. The longitudinal sections of the samples of the material after the fourth pass (66 % total 

reduction), (a) top of the sample, (b) middle of the sample, (c) bottom of the sample. 

3.5 Discussion 

 

It is well known that in the conventional rolling, the shear stress on the surface of 

the produced sheet will result in higher local strain and therefore produce a smaller grain 

size in comparison to the grain size in the middle of the sheet thickness due to the high 

strain rate near the surfaces. In the present work, it was expected that the differences in 

the diameters of the roll or the different speeds of the working rolls will be the main 

factor to produce the high shear stress and compression throughout the whole material 

thickness and subsequently a fine grain microstructure [24]. 

Several conditions are needed to achieve the fine grain microstructure such as 

high thickness  reduction per  pass (1− hp/hp−1)*100  which should be around 40% to 50 

%. and alternating the direction of the rolling [28]. In addition the 
  

 
 parameter ,where 

   is the projected length of a contacted arc between roll and sheet and   is the mean 

thickness of the sheet in the deformation zone Fig. 43 , should be close between 0.1 to .15 

of  the thickness reduction per pass to provide microstructure  with finer grains [29]. 

 
    

     
               

  

    
                                                                (3-1) 
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Figure 43. Schematic of the rolling process geometry [9]. 

In the present work the reduction per pass (20 % -28 %) was not sufficient to 

produce a fine grain structure as expected. Moreover, alternating the sample after each 

pass is needed to assure a uniform distribution of the fine grains through the thickness. 

Furthermore, the requirement of the rolling temperature below 150° C (423° K) of ASR 

is important to provide a stable fine grain [23].  

The shape factor of the deformation zone geometry   which is defined as the ratio 

of the mean thickness to the projected length of the arc of contact   .    is a good 

indicator of a redundant work, frictional work and forming force [40].  

For achieving a more uniform shear strain profile throughout the thickness, the 

shape factor     
      

   
  should be small – less than 0.75 which means a high thickness 

reduction per pass [41]. Conversely, at a large    more strong shear strain profile will be 

observed [39]. When the high thickness reduction is achieved some considerations have 

to be taken to avoid the rolling defects such as split ends also known as alligatoring and 

central burst[41].  
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Figure 44. The deformation zone shape factor and the relative reduction for the AA5183 

asymmatrically rolled. 

The safe zone can be as high as 50% reduction with   less than 0.75 as shown in s 

Fig.45. The safe zone is applied for conventional rolling but it is a good indication for the 

asymmetrical rolling as shown in Fig.44 which indicated that they were in the safe zone . 

However, it has to be kept in mind that the proposed calculations may not be directly 

transferred to asymmetric rolling conditions. 

 

 

 

Figure 45.  Influence of the roll gap shape factor on central burst and split ends defects during 

conventional rolling [41] 
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3.6 Conclusions 

 

In this work, an asymmetrical rolling for AA5182 had been investigated in the 

manner of the evolution of microstructure and the following conclusions were drawn: 

 Aluminum alloy sheet- AA5182- was asymmetrically rolled.  

 

 Light optical microscopy analysis was performed to characterize the 

microstructure.  

 

 The fine grain structure was not obtained across the entire sheet thickness.  

 

 In order to achieve the fine grain structure many conditions should be 

optimized during the process. Among those condition are   parameter, 

temperature, maximum reduction per pass to ensure a uniform fine grain 

structure throughout the whole thickness. Meeting those conditions should 

allow us to obtain improved sheet formability. 

 

4 General Summary 

 

The presented case studies show different techniques used to predict final product 

microstructure. In both case, in rolling and extrusion, combination of material 

characterization and numerical process simulation allowed very satisfactory results for 

selected Aluminum alloys. The microstructure characterizations were done using Light 

Optical Microscopy (LOM), Electron Backscattered Diffraction (EBSD). The state 

variables during deformation were predicted using finite element method package 

DEFORM™ -3D, which were used successfully in the proposed microstructure model. 
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