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ABSTRACT 

The purpose of this thesis is to study the effect of the distribution damage holes 

in a plate by applying kriging methods. Considering the importance of uniform 

thickness in some industries, measuring the material thickness distribution is essential. 

Assuming a thickness and location of damage, kriging methods could be used to 

estimate the thickness distribution to evaluate the effect of damage holes under 

several conditions. In this thesis, damage holes have been characterized with four 

conditions, which are different radii, different radii in hole arrangements, different 

distances between holes and different patterns of holes. A relationship between 

damage distance and size was developed. 

 The value of this thesis is to apply available programs using kriging methods to 

obtain the thickness distribution quickly and easily which could serve large scale 

industrialized applications.   



2 

Chapter 1 

Introduction 

Uniformity of plate thickness is one of the most significant factors in the 

processing and manufacturing of plates. This is related to the performance, safety and 

service life of plates used for structural components. Structural thickness is one of the 

most important concerns in the nuclear industry especially for components in 

containment vessels. A plate with sufficient thickness is an effective shield to prevent 

nuclear radiation leakage, so uniform thickness could guarantee that the plate prevents 

penetrability. In addition, areas subjected to stress, whose thickness is small, may 

grow into cracks that will affect the service life of plates. Above all, thickness is a 

crucial parameter for structural plates, and its estimation is warranted.  

1.1 The Statement of Problem 

Due to the importance of plate thickness, this article will consider a 20 ft × 20 ft 

plate which contains known damage. The goal of this thesis is to estimate the effect of 

the known damage on the thickness distribution. So that structural integrity 

assessments can be made.   

1.2 Purpose of the Study 

As a core factor, thickness is usually immeasurable for a whole plate, especially 
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large plates. For some applications even very small through – thickness holes can 

have severe consequences. Typical, measurement devices are not capable of scanning 

large structures in a timely fashion. The purpose of this research is to evaluate an 

estimation method for the thickness distribution and assess the rationality of this 

method. This method being considering is kriging, which was first used to weight 

average gold at the Witwatersrand reef complex in South Africa by Krige, D. G [1] for 

geostatistical analysis. The purpose of kriging is to forecast size at unobserved 

locations by spatial size which is partially observed. How kriging could be applied to 

calculate the thickness distribution is developed in this thesis. 

1.3 Outline of Thesis 

This thesis contains four other chapters: 

Chapter 2 involves three parts. One is the introduction of kriging principles. The 

next part illustrates the reason why kriging methods are chosen for this research. The 

last part presents four softwares that are applied in this thesis. Three of them, ArcGIS, 

SGeMS and Surfer, are existing proven software programs for kriging methods. They 

are implemented to estimate the thickness distribution. Image-pro Plus is used for 

image measuring to compute the damage effect ratio. 

 Chapter 3, a key part of this thesis, describes the application of kriging methods 

to analyze and solve the problem stated above and gain images of the thickness 

distribution under five different conditions using the three Kriging related programs. 
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According to the results, some conclusions were inferred to show the effect of damage 

area relative to the whole plate.  

Chapter 4 gives conclusions of this research and suggestions for future work. 
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Chapter 2 

Kriging and Related Software Programs 

As mentioned, measuring the thickness of every point on a plate is not 

practical, but the goal is for global estimation based on limited measurements. Using 

inferential statistics principles, patterns based on known thickness values from 

measured points can be developed to estimate the thickness distribution of the whole 

plate. The kriging method is one of the better choices to obtain such a distribution. 

2.1 Introduction to Kriging 

    Kriging is one of the families of optimal interpolations used to estimate unknown 

values based on regression against observed values of surrounding data. Kriging is 

frequently used in geostatistics to interpolate the value of a random field. The 

coefficients of kriging methods and the associated error are weighted based upon 

observed patterns, which contain spatial data, the unobserved location relative to the 

data locations, and spatial correlation or the degree to which one location can be 

predicted from a second location as a function of spatial separation. 

   Goovaerts has an excellent presentation on kriging which is summarized as [2]: 

all kriging estimators are but variants of the basic linear regression estimator Z*(u) 

defined as [3]: 
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  Z∗(𝐮) −  m(𝐮) =  �λα[Z(𝐮α) −  m(𝐮α)]
n(u)

α=1

                               (1) 

    The meanings of the symbols are following as: 

u, uα : location vectors for a point to be estimated and one of the neighboring data 

points, indexed by α, respectively; 

n(u) : number of data points in a local neighborhood of u used for the estimation of 

Z*(u); 

m(u), m(uα) : expected values (means) of Z(u) and Z(uα), respectively; 

λα(u): Kriging weight assigned to datum z(uα) for estimation at location u; same 

datum will receive different weight for different estimation location 

Equation (1) is the basic form of the kriging estimator. The goal is to determine 

weights, λα , which minimize the variance of the estimator 

σE2  (𝐮) = Var{Z∗(𝐮) −  Z(𝐮) }                                               (2)   

under the unbiasedness constraint E{Z∗(𝐮) −  Z(𝐮)}=0. 

Z(u) is treated as a random field (RF) with a trend component, m(u), and a 

residual component, R(u) = Z(u) – m(u). The residual component treated as an RF 

with stationary with mean zero and a stationary covariance (a function of lag, h, but 

not of position, u): 

E{R(𝐮)} =  0                                                           (3) 

Cov{R(𝐮), R(𝐮 + 𝐡)} =  E{R(𝐮) ⋅ R(𝐮 + 𝐡)} =  CR(𝐡)                         (4) 

The residual covariance function is generally derived from the input 

semivariogram model, 
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CR(𝐡) =  CR(𝟎) −  γ(𝐡) =  Sill −  γ(𝐡)                                              (5) 

Sill is the origin point of semivariogram curve, which is shown in Figure 1.  

There are three main kriging variants, which are simple kriging, ordinary kriging 

and kriging with a trend. The differences among of them are their treatments of the 

trend of component, m(u). 

2.1.1 Simple Kriging 

For simple kriging, the trend component is assumed to be a constant and known,   

m(u) = m, which is assumed to be the case for the data in this project[4]. There, 

ZSK∗ (u) =  m +   �λαSK(𝐮)[Z(𝐮α) −  m]
n(u)

α=1

                                     (6)  

It is obvious that E[Z(𝐮α)-m] = 0, so the estimation error ZSK∗ (𝐮) −  Z(𝐮) is a 

linear combination of random variables representing residuals at the data points, uα , 

and the estimation point, u: 

ZSK∗ (𝐮) −  Z(𝐮) =  [ZSK∗ (𝐮) −  m] − [Z(𝐮) −  m]

=    �λαSK(𝐮)R(𝐮α) −  R(𝐮) =  RSK
∗

n(u)

α=1

(𝐮) −  R(𝐮)                            (7)  

    Using rules for the variance of a linear combination of random variables, the 

error variance is then given by  
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σE2(𝐮) = Var{RSK
∗ (𝐮)} + Var{RSK(𝐮)} − 2Cov{RSK

∗ (𝐮), RSK(𝐮)}

= ��λαSK(𝐮)λβSK(𝐮)CR�𝐮α − 𝐮β� + CR(𝟎)
n(𝐮)

β=1

n(𝐮)

α=1

−  2 �λαSK(𝐮)CR(𝐮α − 𝐮)
n(𝐮)

α=1

                                                                       (8) 

To minimize the error variance, the derivative of the above expression with 

respect to each of the kriging weights is taken and set to zero. This leads to the 

following system of equations: 

�λβSK(𝐮)CR�𝐮α − 𝐮β� =  CR(𝐮α − 𝐮)      α = 1, … , n(𝐮)
n(𝐮)

β=1

                        (9) 

From the assumption, the mean is constant, so the covariance function for Z(𝐮) is 

the same as that for the residual component, C(h) = CR(h). The equation (9) can be 

written in terms of C(h) 

�λβSK(𝐮)C�𝐮α − 𝐮β� =  C(𝐮α − 𝐮)      α = 1, … , n(𝐮) 
n(𝐮)

Β=1

                        (10) 

This can be written in matrix form as 

       𝐊λSK(𝐮) = 𝐤                                                          (11) 

Where K is the matrix of covariances between data points and k is the vector of 

covariances between the data points and the estimation points. 

So the kriging weights can be solved by using 

        λSK(𝐮) = 𝐊−1𝐤                                                        (12) 

Depend on the equation (6), the prediction can be obtained. 
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2.1.2 Ordinary Kriging 

    In ordinary kriging, the mean in the local neighborhood of each estimation point 

is assumed to be constant, rather than assuming that it is constant over the whole 

domain.[5] For each nearby data, the mean is that m(uα) = m(u) and Z(uα) is used to 

estimate Z(u). Under such circumstances, the kriging estimator could be written as,  

Z∗(𝐮) =  m(𝐮) +   �λα(𝐮)[Z(𝐮α) −  m(𝐮)]
n(𝐮)

α=1

 

= �λα(𝐮)Z(𝐮α)
n(𝐮)

α=1

+ �1 −� λα(𝐮)
n(𝐮)

α=1

�m(𝐮)                                 (13) 

under the condition that the kriging weights sum to 1, leading to an ordinary kriging 

estimator of 

ZOK∗ (𝐮) =  �λαOK(𝐮)Z(𝐮α)
n(u)

α=1

    with    �λαOK(𝐮)
n(u)

α=1

= 1                   (14)  

With the purpose of minimizing the error variance, a Lagrange parameter, μOK(u) is 

involved:  

L = σE2(𝐮) +  2µOK(𝐮) �1 −� λα(𝐮)
n(𝐮)

α=1

�                              (15) 

There is a constraint that must be satisfied for the Lagrange parameters due to the 

minimization: 

1
2
𝜕𝐿
𝜕𝜇

=  1 −� λα(𝐮)
n(𝐮)

α=1

= 0                                               (16) 

From the above equations, the system of equations for the kriging weights turns 

out to be  
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⎩
⎪⎪
⎨

⎪⎪
⎧
� λβOK(𝐮)CR�𝐮𝛂 −  𝐮β� +  µOK(𝐮) =  CR(𝐮𝛂 −  𝐮)
n(𝐮)

β=1

                α = 1, … , n(𝐮)     (17)

�λβOK(𝐮) =  1
n(𝐮)

β=1

                                                                                                                    (18)

� 

As for simple kriging, CR(h) and C(h) could be calculated according to the 

assumption of a constant mean. In practice, the ordinary kriging system can be stated 

directly by a semivariogram instead of CR(h). 

After obtaining the Lagrange parameters and kriging weights, the ordinary 

kriging error variance is solved by 

𝜎𝑂𝐾2 (𝐮) =  𝐶(0) −� λαOK(𝐮)C(𝐮𝛂 −  𝐮) −  µOK(𝐮)
n(𝐮)

α=1

                        (19) 

Depending on equations (11) and (12), the ordinary kriging weight λOK(u) could 

be solved. Then the predicted value could be gained by using the equation (13). 

2.1.3 Universal Kriging 

The difference between universal kriging and ordinary kriging is that a linear or 

higher-order trend in the global coordinates is added in the ordinary kriging 

estimation. [3] In other words, ordinary kriging is universal kriging with zero-order 

trend. The assumed local mean in the neighborhood of the estimation point and added 

trend are two keys to estimate values of unobserved points for universal kriging. 

Considering the difficulty in obtaining the semivariogram after adding the trend, 

universal kriging is not applied widely in practice. 
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2.1.4 Other Kriging Methods 

 Some other kinds of kriging methods are illustrated as following [6][7][8][9]: 

Indicator Kriging: This method is a nonlinear and nonparametric forecasting 

method which converts continuous variables to a range of binary string. Indicator 

kriging is useful to retain continuity of high and low permeability regions. 

Disjunctive Kriging: This is a nonlinear kriging by transforming the observed 

data to a series of additive functions, like Hermite polynomials. Disjunctive kriging is 

very useful for decision but not predict. 

Co-kriging: This method is expanding single variable to two or more correlated 

variables. It is useful for the condition that costly and rare samples are related with 

low-cost and large quantities’ samples. Through applying co-kriging, forecast 

accuracy of rare samples could be raised by dense sampling. 

 Among these kriging methods, simple kriging which is employed in this thesis 

is the most steady and commonly applied method.  

2.2 Reason of Choosing Kriging 

In order to look for a method to measure the thickness distribution, interpolation, 

which is an estimation of a variable at an unobserved location from observed values at 

surrounding locations, is an effective and accuracy method relying on the strong 

computing capability.[9] Most interpolation (polynomial, splines, rational interpolation, 

etc.) algorithms use some functions to build models to estimate the unobserved values. 
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Their properties are stated below [10][11]: 

Almost all interpolations would be reasonable estimations, if the data locations 

are distributed uniformly over the field. 

Almost all interpolations will lose accurancy, if the data locations are distributed 

in clusters and the distance between clusters are large. 

Due to the nature of averaging, interpolation algorithms underestimate high 

extremer and overestimate the low ones. 

Kriging as an interpolation algorithm also has these properties, but it has these 

benefits [10][11][12]: 

Kriging is based on by the best linear unbiased estimator. It reduces the effect of 

bias towards input sample values by kriging weights that are derived from a 

data-driven weighting function which requires that the sum of the weights is one. 

The variogram of kriging does not rely on the actual value of samples, but their 

distribution. With construction of a perfect variogram model, prediction will represent 

a better value-distribution and error of estimation will be a minimum. 

For the data locations that are distributed in a cluster, kriging assigns individual 

points within a cluster less weight than isolated data points. 

Kriging provides estimation of errors that gives a basis for random simulation of 

possible realizations. 

After the development of kriging, since its first use by Krige, D.G, kriging 

methods have become a large family including many branches. So kriging could be a 
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reasonable technique well suited for some particular interpolation problems. 

2.3 Software Be Applied 

Based on the advantages listed in part 2.2, a large number of programmers have 

focused on constructing softwares for kriging methods to solve related problems fast 

and efficiently. Many such software is commercial, but non-commercial software is 

employed widely in Geostatistics, Environmental Science, Mining, Remote Sensing, 

Hydrogeology, etc. Such large-scale applications indirectly prove the applicability 

kriging. From the now-commercial software, three were applied in this thesis; they are 

ArcGIS, Golden Surfer and SGeMS. The goal of using three programs is to compare 

the estimated thickness distribution from the different packages.  

2.3.1 ArcGIS 

ArcGIS includes a set of programs for geographic information system (GIS) 

programmed by Esri.[13] It is a complex and powerful commercial software which is a 

system for people who rely on accurate geographic information to make decisions. 

These packages contain ArcCatalog, ArcGlobe, ArcMap, and ArcScene. ArcMap 

whose functions are to view spatial data, create layered maps, and perform basic 

spatial analysis by some interpolation algorithms, one of which is kriging, was applied 

in this research to analyze samples to obtain the thickness distribution.  

ArcMap is the central application in ArcGIS for all map-based tasks including 

map analysis and editing. It provides two ways to view map. One is a page layout 
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view which is to view geographic data as well as other map elements. The other is a 

geographic data view which transfers geographic layers to GIS datasets. The data 

view is a window for any GIS datasets for a given area. ArcMap is always applied to 

construct a virtual map on page for printing. 

2.3.2 Golden Surfer 

Golden Surfer is produced by Golden Software which has developed advanced 

mapping and graphing solutions since 1983. [14] Surfer is grid-based mapping software 

which transfers patchily spaced XYZ data into a regularly spaced grid. The best 

feature of Surfer is simulating a full-function three dimensions visualization 

contouring and surface model. Due to applying various available interpolation 

algorithms and controlling gridding parameters, Surfer is used for terrain modeling, 

landscape visualization, surface analysis, and other territories. It provides numerous 

excellent display methods like contour maps, 3D maps, 3D wireframe, vector and 

shaded relief that makes solutions represented and understood easily. Golden Surfer is 

not a huge and complex commercial software, but is easy to operate. 

2.3.3 SGeMS 

The Stanford Geostatistical Modeling Software (SGeMS) is a cross-platform 

(Windows, UNIX) and open-source software for solving problems involving spatially 

related variables by implementing most of the classical geostatistics algorithms 

(Kriging, Gaussian and indicator simulation, etc). [15]  
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SGeMS was designed with two objectives. One is to provide a user-friendly 

software that applies a large number of geostatistics tools. The user-friendliness 

means that is a non-obtrusive graphical user interface, it is easy to directly visualize 

data, and it gives results in a full three dimension interactive environment. Other 

functions of SGeMS could also conveniently be augmented. As an open-source 

software, SGeMS functions as a main software, and new tools could be added by 

other scientists.  

2.3.4 Image Pro-Plus 

Besides these three Geostatistical softwares, Image Pro-Plus was implemented to 

process the images. It can measure the area of color-coded colors, which shows the 

extent of damage areas. In this thesis, this software was used to measure the 

proportion of damage area, which is related by the damage effect ratio. 
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Chapter 3 

Kriging Estimation  

This chapter will clarify the overall process of implementing kriging method to 

estimate the thickness distribution in an assumed field. The entire processing contains 

creating a grid, loading data sets, setting up conditions and analyzing results. This 

chapter includes seven parts, which are required for pre kriging data processing and 

kriging estimation. 

3.1 Introduction to Kriging Estimation 

3.1.1 Creating a Simulation Grid 

As stated in Part 1.1, the objectives are to consider a 20 ft × 20 ft plate to 

estimate the variability in thickness. Obtaining and analyzing the thickness 

distribution is the aim. Almost all simulations are started with creating an 

environment. The plate is divided into numerous cells in a three dimensional 

Cartesian grid. In kriging, units of all the location data are ignored, so the plate could 

be simplified to 20×20 without units. The environment contains the dimensions 

(20×20) of the grid, the coordinates of the origin of the grid which is from the lower 

left corner to the higher right corner and the dimensions of each grid cell. After setting 

this environment, all data in this simulation contain two properties: a point-set and a 

Cartesian grid. 
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3.1.2 Loading the Data Set  

The basis for gaining an accurate solution is the input data set, so it is essential 

that correct and good data be loaded. Unfortunately, the three primary software 

packages require different file formats, but they can be transferred to be used for each. 

A Microsoft Excel file (.xls) is supported by Surfer and ArcGIS, but SGeMS requires 

using a GSLIB format.  

3.1.3 Operation the Kriging Algorithm 

After creating the grid and loading the data set, a kriging algorithm can be 

implemented. Before applying software, some parameters should be set to fit different 

input data. These parameters are solved by several algorithms called variogram 

models. [16][17][18][19] There are four basic linear models which are the core of the 

nugget effect model, the spherical model, the exponential model and the Gaussian 

model.  

3.1.3.1 Nugget Effect Model 

Nugget effect is only for h =0, which is for input data that are quite dissimilar 

and separated by small distances. If the value of variogram at the origin is not 0, it is 

called the Nugget Effect.[20][21] 

γ(𝐡) =  �0         if �|𝐡|� = 𝟎
1          Otherwise

�                                                   (20) 
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3.1.3.2 Spherical Model 

γ(𝐡) = c ∙ Sph �
𝐡
a�

=  

⎩
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�            𝐡 ≤ a
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�                    (21) 

3.1.3.3 Exponential Model 

γ(𝐡) = c ∙ Exp �
𝐡
a�

=  c ∙ �1 −  exp �−
3𝐡
a �

 �                          (22) 

3.1.3.4 Gaussian Model 

γ(𝐡) =  c ∙ �1 −  exp �−
(3𝐡)2

a2
� �                                      (23) 

For the spherical model, exponential model and Gaussian model, their values of 

the variogram at the origin are all zero and the values close to a constant along with 

the increasing values of the lag h. Figure 1 shows the curve of variogram function 

about these effect models.  

 

Figure 1 Curve of variogram function about spherical model, exponential model and 

Gaussian model 
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3.1.4 Displaying and Analyzing Results 

After running these software programs, the thickness distribution was obatined 

as a data file. Based on these data, several types of images can be drawn, like contour 

maps, or 3D maps. These maps are colored with these different colors used to 

distinguish the different thickness.   

The goal of this thesis is to measure the effect of observed damage against 

neighboring location by estimating the thickness distribution. Damage is considered 

as thickness that is decreased by 50%. The effect is indicated by the damage effect 

ratio (φ), which is defined by the follow formulation: 

φ =  
Total Damage Area

Total Area of The Measured Pleat
 × 100%                  (24) 

Depending on the color maps, Image Pro-Plus is employed to measure the total 

damage area, that is, areas whose color are represent thickness that is less than half 

the nominal thickness.  

3.2 Pre Kriging Data Processing 

The simulation environment and five conditions to be considered are described. 

All points are located in a 20ft × 20ft plate. The location and thickness of some points 

are assumed to be known. These are different and illustrated in every condition. The 

nominal thickness of the plate is 0.375 inch except for areas with damage.  

It is assumed that holes whose radii are vary from 1/16 in, 1/8 in, 1/2 in and 1 in 

are representative of actual damage. Kriging method is based on numerous point 
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locations, so it is difficult to use circular damage. Considering that a plate is made up 

of infinitely many points, the holes are represented by several points. The next step is 

to test this assumption and determine the number of points needed to represent s the 

circle. Figure 2 shows two patterns used to approximate circular damage. One has 9 

points and the other was 17 points. For the one with 9 points, one point is on the 

centre of the circle, and the other 8 points are on the circumference. For the one with 

17 points, 9 points locate in the same place as the other case and another 8 points are 

located on the midpoint of the radii between the center and the 8 points on the 

circumference. 

 

Figure 2 Two Patterns Used to Represent Circles 

In order to decide the number of points to be used, 3 simulations were done for 

radii of 0.25 inches, 0.5 inches, and 6 inches. The reason of choosing these three radii 

is assessing the applicability of this assumption and considering the effect of the 

distance between circle centers on the radius.  

These simulations are performed in the following circumstance. The 20ft × 20ft 

plate is divided into 400 cells and 396 points are located in the center of these cells 

except for 4 cells in the center of the plate. The thicknesses of the 396 points are 
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0.375 inches. The other 4 cells are the locations of 4 holes which are of known 

damage. The following figures show the differences between holes represented by 9 

points and 17 points for radii of 0.25 in, 0.5 in and 6 in. 

 

Figure 3 9 Points Used to Represent a Circle of Radius 0.25in 

 

Figure 4 17 Points Used to Represent a Circle of Radius 0.25in 

For Figures 3 and 4, the differences between them are slight. 
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Figure 5 9 Points Used to Represent a Circle of Radius 0.5in 

 

Figure 6 17 Points Used to Represent a Circle of Radius 0.5in 

For Figure 5 and 6, the differences between them are minimal. 
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Figure 7  9 Points Used to Represent a Circle of Radius 1 in 

 

Figure 8  17 Points Used to Represent a Circle of Radius 1 in 

For Figure 7 and 8, the differences between them are negligible. 
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From these six figures, it is concluded that both 9 points and17 points could 

represent a circle, even when the circles are positioned 0.25in, 0.5in and 1in from 

each other. In order to gain accuracy solution, 17 points was selected to represent 

circular damage. 

Considering the difficulty of calculating the locations of the 17 points, a program 

was co structured with Matlab for the locations of the points which transferred them 

into an excel file as a data. 

 The program is presented in the appendix.  

Completing the pre kriging data processing, the simulation of five conditions 

could be run. All five conditions are listed as following: 

(1) All holes are located in the center of the plate and have the same radius, but 

the radii range over 1/16 ft, 1/8 ft, 1/2 ft and 1 ft. This is to evaluate the effect 

of relative hole location. 

(2) The four holes are located in the center of the plate and each has a different 

radius for 1/16 ft, 1/8 ft, 1/2 ft and 1 ft.  Considering the symmetry, there are 

three different arrangements. This is to evaluate the effect of different 

arrangements of hole size. 

(3) All four holes have the same radius but different locations. They are located 

in the four corners of a square whose lengths of a side are assumed to be 1in, 

3 in and 5 inch. This is to evaluate the effect of between holes distance. 

(4) There are varying numbers of holes from 1 hole to 6 holes. These holes make 
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up different patterns which are located as a circle whose radius is 1 foot. This 

is to evaluate the effect of different patterns of holes. 

(5) In this part, the location and radius of these holes are varied. This is to 

evaluate the relationship between the distance and radius to avoid the 

interaction.  

3.3 Effect of Radius  

3.3.1 Creating Data Set 

The circumstance of this part is that the 20ft × 20ft plate is divided into 400 cells, 

and 396 are represented by a single point located in the center, and 4 cells near the 

center of the plate contain damage. The thicknesses of the 396 points are 0.375 in. 

The other 4 cells have known damage. These simulations will consider the effect of 

different radii of holes and different locations of holes.  

3.3.2 Simulation of All Four Holes with 1/16ft Radius  

3.3.2.1 Setting up Parameters 

Figure 9 shows the curve of the variogram function for holes with a 1/16ft radius 

by using ArcGIS. The variogram was drawn based on the simple kriging methods 

which are gained by ArcGIS. The based principle is to use the points in clusters and 

neglect the signal point. So some following curves don’t look reasonable.  
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Figure 9 Curve of Variogram Function for 1/16ft Radius 

Based on this curve, the spherical effect model was selected. The other 

parameters of the spherical model are as following: 

Mean Value: 0.32004                 

Major range: 4.89919 

3.3.2.2 Displaying the Images  

Using the above parameters in the three softwares, the estimated thickness 

distribution was computed. Given on these files, the four figures are developed from 

the packages. Every software gives a contour map of the distribution and Surfer yields 

a 3-D distribution map. 
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Figure 10  Contour of Thickness Distribution from ArcGIS for 1/16ft Radius 

 

Figure 11  Contour of Thickness Distribution from Surfer for 1/16ft Radius 
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Figure 12 Contour of Thickness Distribution from SGeMS for 1/16ft Radius 

 

Figure 13 3-D Model of Thickness Distribution from SGeMS for 1/16ft Radius 

The damage effect ration (φ) was measured from Figures 10, 11 and 12 by Image 

Pro-Plus, and Table 1 contains the results. 
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3.3.3 Simulation of All Four Holes with 1/8ft Radius  

3.3.3.1 Setting up Parameters 

Figure 14 shows the curve of variogram function for 1/8ft radius by ArcGIS.  

 

Figure 14 Curve of Variogram Function for 1/16ft Radius 

Based on this curve, the spherical effect model was selected. The other 

parameters of the spherical model are as following: 

Mean Value: 0.32004 

Major range: 4.87849 

3.3.3.2 Displaying the Images  

Using the above parameters in the three softwares, the estimated thickness 

distribution was computed. Given on these files, the four figures are developed from 

the packages. Every software gives a contour map of the distribution and Surfer yields 

a 3-D distribution map. 
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Figure 15  Contour of Thickness Distribution from ArcGIS for 1/16ft Radius 

 

Figure 16  Contour of Thickness Distribution from Surfer for 1/16ft Radius 
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Figure 17 Contour of Thickness Distribution from SGeMS for 1/8ft Radius 

 

Figure 18 3-D Model of Thickness Distribution from SGeMS for 1/8ft Radius 

The damage effect ration (φ) was measured from Figures 15, 16 and 17 by Image 

Pro-Plus, and Table 1 contains the results. 
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3.3.4 Simulation of All Four Holes with 1/2ft Radius  

3.3.4.1 Setting up Parameters 

Figure 19 shows the curve of variogram function for 1/2ft radius by ArcGIS.  

 

Figure 19 Curve of Variogram Function for 1/2ft Radius 

Based on this curve, the spherical effect model was selected. The other 

parameters of the spherical model are as following: 

Mean Value: 0.32283 

Major range: 5.05648 

3.3.4.2 Displaying the Images  

Using the above parameters in the three softwares, the estimated thickness 

distribution was computed. Given on these files, the four figures are developed from 

the packages. Every software gives a contour map of the distribution and Surfer yields 

a 3-D distribution map. 
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Figure 20  Contour of Thickness Distribution from ArcGIS for 1/2ft Radius 

 

Figure 21  Contour of Thickness Distribution from Surfer for 1/2ft Radius 
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Figure 22 Contour of Thickness Distribution from SGeMS for 1/2ft Radius 

 

Figure 23 3-D Model of Thickness Distribution from SGeMS for 1/2ft Radius 

The damage effect ration (φ) was measured from Figures 20, 21 and 22 by Image 

Pro-Plus, and Table 1 contains the results. 
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3.3.5 Simulation of All Four Holes with 1ft Radius  

3.3.5.1 Setting up Parameters 

Figure 24 shows the curve of variogram function for 1ft radius by ArcGIS.  

 

Figure 24 Curve of Variogram Function for 1ft Radius 

Based on this curve, the spherical effect model was selected. The other 

parameters of the spherical model are as following: 

Mean Value: 0.32854 

Major range: 5.97872 

3.3.4.2 Displaying the Images  

Using the above parameters in the three softwares, the estimated thickness 

distribution was computed. Given on these files, the four figures are developed from 

the packages. Every software gives a contour map of the distribution and Surfer yields 

a 3-D distribution map. 
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Figure 25  Contour of Thickness Distribution from ArcGIS for 1ft Radius 

 

Figure 26  Contour of Thickness Distribution from Surfer for 1ft Radius 
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Figure 27 Contour of Thickness Distribution from SGeMS for 1ft Radius 

 

Figure 28 3-D Model of Thickness Distribution from SGeMS for 1ft Radius 

The damage effect ration (φ) was measured from Figures 25, 26 and 27 by Image 

Pro-Plus, and Table 1 contains the results. 
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3.3.5 Conclusion of Radius Effect 

By combined the above gained damage effect ratio, Table 1, it is easy to 

illustrate the damage effect ratio which is effect by changing radius. 

Radius (feet) 
Damage Effect Ratio (φ): (%) 

ArcGIS Surfer SGeMS 

1/16 0.99 0.97 1.41 

1/8 1.06 1.07 1.67 

1/2 1.52 1.56 2.22 

1 2.50 2.27 3.06 

Table 1 Damage Effect Ratio with different radii 

Comparing the Table 1 and with the contour figures, the conclusions about the 

effect of the radius are stated as following: 

(1) The damage effect ratio tends to increase with increasing radius, and the 

relationship between them is non-linear. 

(2) The holes only affect their adjacent areas. 

(3) The patterns of damage areas from the three softwares are similar. For the 

damage effect ratio, the difference between ArcGIS and Surfer is little, but 

the difference is significant for SGeMS, because the accuracy of SGeMS is 

lower than the other two softwares. 
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3.4 Effect of Different Radii Holes Arrangement 

3.4.1 Creating Data Set 

The condition for this section is that the 20ft × 20ft plate is divided into 400 cells 

with 396 cells represented by the nominal thickness of 0.375in which located in the 

center of these cells. The other 4 cells contain holes which have known damage. Each 

of the holes have a different radius, chosen from 1/16ft, 1/8ft, 1/2ft and 1ft. 

Considering symmetry, the four holes could have 3 different arrangements, which 

start from the left-low corner of a square as clockwise order:  

(1) 1ft → 1/8ft → 1/16ft → 1/2ft; 

(2) 1ft → 1/16ft → 1/2ft → 1/8ft; 

(3) 1ft → 1/16ft → 1/8ft → 1/2ft; 

3.4.2 Simulation of the First Holes Arrangement  

3.4.2.1 Setting up Parameters 

 

Figure 29 Curve of Variogram Function for the First Arrangement 

Based on this curve, the spherical effect model was selected. The other 
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parameters of the spherical model are as following: 

Mean Value: 0.32213 

Major range: 4.68727 

3.4.2.2 Displaying the Images  

Using the above parameters in the three softwares, the estimated thickness 

distribution was computed. Given on these files, the four figures are developed from 

the packages. Every software gives a contour map of the distribution and Surfer yields 

a 3-D distribution map. 

 

Figure 30  Contour of Thickness Distribution from ArcGIS for the First Arrangement 
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Figure 31  Contour of Thickness Distribution from Surfer for the First Arrangement 

 

Figure 32 Contour of Thickness Distribution from SGeMS for the First Arrangement 
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Figure 33 3-D Model of Thickness Distribution from SGeMS for the First Arrangement 

The damage effect ration (φ) was measured from Figures 30, 31 and 32 by Image 

Pro-Plus, and Table 2 contains the results. 

3.4.3 Simulation of the Second Holes Arrangement 

3.4.3.1 Setting up Parameters 

 

Figure 34 Curve of Variogram Function for the Second Arrangement 

Based on this curve, the spherical effect model was selected. The other 

parameters of the spherical model are as following: 

Mean Value: 0.32143               Major range: 4.72251 
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3.4.3.2 Displaying the Images  

Using the above parameters in the three softwares, the estimated thickness 

distribution was computed. Given on these files, the four figures are developed from 

the packages. Every software gives a contour map of the distribution and Surfer yields 

a 3-D distribution map. 

 

Figure 35  Contour of Thickness Distribution from ArcGIS for the Second Arrangement 
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Figure 36  Contour of Thickness Distribution from Surfer for the Second Arrangement 

 

Figure 37 Contour of Thickness Distribution from SGeMS for the Second Arrangement 
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Figure 38 3-D Model of Thickness Distribution from SGeMS for the Second Arrangement 

The damage effect ration (φ) was measured from Figures 35, 36 and 37 by Image 

Pro-Plus, and Table 2 contains the results. 

3.4.4 Simulation of the Third Holes Arrangement 

3.4.4.1 Setting up Parameters 

 

Figure 39 Curve of Variogram Function for the Third Arrangement 

Based on this curve, the spherical effect model was selected. The other 

parameters of the spherical model are as following: 

Mean Value: 0.32213            Major range: 4.68911 
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3.4.4.2 Displaying the Images  

Using the above parameters in the three softwares, the estimated thickness 

distribution was computed. Given on these files, the four figures are developed from 

the packages. Every software gives a contour map of the distribution and Surfer yields 

a 3-D distribution map. 

 

Figure 40  Contour of Thickness Distribution from ArcGIS for the Third Arrangement 
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Figure 41  Contour of Thickness Distribution from Surfer for the Third Arrangement 

 

Figure 42 Contour of Thickness Distribution from SGeMS for the Third Arrangement 
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Figure 43 3-D Model of Thickness Distribution from SGeMS for the Third Arrangement 

The damage effect ration (φ) was measured from Figures 40, 41 and 42 by Image 

Pro-Plus, and Table 2 contains the results. 

3.4.5 Conclusion of Different Holes Arrangement Effect 

By combined the above gained damage effect ratio, Table 2 is easy to illustrate 

the damage effect ratio from changing arrangement of holes with different radii. 

Different Holes Arrangements 

(clockwise) 

Damage Effect Ratio (φ): (%) 

ArcGIS Surfer SGeMS 

1ft → 1/8ft → 1/16ft → 1/2ft 1.53 1.55 1.85 

1ft → 1/16ft → 1/2ft → 1/8ft 1.57 1.60 1.94 

1ft → 1/16ft → 1/8ft → 1/2ft 1.53 1.56 1.87 

Table 2 Damage Effect Ratio with Different Radii Holes Arrangement 

Using the Table 2 and the above figures, the conclusions about the radius effect 
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are stated as following: 

(1) The various radius holes arrangements cause more damage than that 

indicated in Table 1, but the effect is small between the different cases. 

(2) The damage effect ratio tends to increase with the increasing distance 

between the two adjacent holes whose radii are the largest and the next 

largest. That means the damage effect ratio for the two holes whose radii are 

the largest and the next largest are adjacent is larger than those are located in 

the diagonal. 

3.5 Effect of Different Distance between Holes 

3.5.1 Creating Data Set 

The circumstance of this part is that the 20ft × 20ft plate is divided into 400 cells, 

and 396 are represented by a single point located in the center, and 4 cells near the 

center of the plate contain damage. The thicknesses of the 396 points are 0.375 in. 

The other 4 cells have known damage. These simulations will consider the effect of 

different distances between two adjacent holes varied from 1ft, 3ft and 5ft.  
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3.5.2 Simulation of Separation is 3 ft 

3.5.2.1 Setting up Parameters 

 

Figure 44 Curve of Variogram Function for Separation is 3ft 

Based on this curve, the spherical effect model was selected. The other 

parameters of the spherical model are as following: 

Mean Value: 0.32004 

Major range: 2.05927 

3.5.2.2 Displaying the Images  

Using the above parameters in the three softwares, the estimated thickness 

distribution was computed. Given on these files, the four figures are developed from 

the packages. Every software gives a contour map of the distribution and Surfer yields 

a 3-D distribution map. 
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Figure 45  Contour of Thickness Distribution from ArcGIS for Separation is 3ft 

 

Figure 46  Contour of Thickness Distribution from Surfer for Separation is 3ft 
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Figure 47 Contour of Thickness Distribution from SGeMS for Separation is 3ft 

 

Figure 48 3-D Model of Thickness Distribution from SGeMS for Separation is 3ft 

The damage effect ration (φ) was measured from Figures 45, 46 and 47by Image 

Pro-Plus, and Table 3 contains the results. 
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3.5.3 Simulation of Separation is 5 ft 

3.5.3.1 Setting up Parameters 

 

Figure 49 Curve of Variogram Function for Separation is 5ft 

Based on this curve, the spherical effect model was selected. The other 

parameters of the spherical model are as following: 

Mean Value: 0.32004 

Major range: 2.05927 

3.5.3.2 Displaying the Images  

Using the above parameters in the three softwares, the estimated thickness 

distribution was computed. Given on these files, the four figures are developed from 

the packages. Every software gives a contour map of the distribution and Surfer yields 

a 3-D distribution map. 
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Figure 50  Contour of Thickness Distribution from ArcGIS for Separation is 5ft 

 

Figure 51  Contour of Thickness Distribution from Surfer for Separation is 5ft 
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Figure 52 Contour of Thickness Distribution from SGeMS for Separation is 5ft 

 

Figure 53 3-D Model of Thickness Distribution from SGeMS for Separation is 5ft 

The damage effect ration (φ) was measured from Figures 50, 51 and 52 by Image 

Pro-Plus, and Table 3 contains the results. 
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3.5.4 Conclusion of Different Distance between Holes 

By combined the above damage effect ratio, Table 3 is easy to illustrate the 

damage effect ratio which is caused by changing the distance between the holes. 

Different Distances  
Damage Effect Ratio (φ): (%) 

ArcGIS Surfer SGeMS 

1 ft 0.99 0.97 1.58 

3 ft 0.82 0.7 1.78 

5ft 0.8 0.71 1.76 

Table 3 Damage Effect Ratio with Different Radii Holes Arrangement 

Comparing the Table 3 and the above figures, the conclusions are as following: 

(1) The damage effect ratio reduces with the increasing separation of the holes. 

There will be nearly no change when the separation exceeds a certain value, 

because these holes will not interact with each other after that amount of 

separation. The relationship between distance and radius will be studied in 

the following part. 

(2) When the distances are 3ft and 5ft, holes will not interact. Thus, every hole 

only affects its adjacent areas; and the patterns around the holes are similar. 

3.6 Effect of Different Patterns of Holes 

3.6.1 Creating Data Set 

The condition for this section is that the 20ft × 20ft plate is divided into 400 cells 
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with 396 cells represented by the nominal thickness of 0.375in which are located in 

the center of these cells. The other 4 cells consisted to a square. There are from 1 to 6 

holes which make up patterns are symmetry with the corner of square. The radii of 

these holes are 1/16ft. These patterns that are considered are shown in Figure 54. 

Expect that the first 1 point was located in the center of a circle, all the other points 

were located on a circumference with radius of 1.414ft centered on the center of the 

pleat. Four hole patterns have been considered in 3.3.2 . 

 

Figure 54 Different Patterns 
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3.6.2 Simulation of 1 Hole 

3.6.2.1 Setting up Parameters 

 

Figure 55 Curve of Variogram Function for 1 Hole 

Based on this curve, the spherical effect model was selected. The other 

parameters of the spherical model are as following: 

Mean Value: 0.35956 

Major range: 1.97907 

3.6.2.2 Displaying the Images  

Using the above parameters in the three softwares, the estimated thickness 

distribution was computed. Given on these files, the four figures are developed from 

the packages. Every software gives a contour map of the distribution and Surfer yields 

a 3-D distribution map. 
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Figure 56  Contour of Thickness Distribution from ArcGIS for 1 Hole 

 

Figure 57  Contour of Thickness Distribution from Surfer for 1 Hole 
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Figure 58 Contour of Thickness Distribution from SGeMS for 1 Hole 

 

Figure 59 3-D Model of Thickness Distribution from SGeMS for 1 Hole 

The damage effect ration (φ) was measured from Figures 56, 57 and 58 by Image 

Pro-Plus, and Table 4 contains the results. 
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3.6.3 Simulation of 2 Holes 

3.6.3.1 Setting up Parameters 

 

Figure 60 Curve of Variogram Function for 2 Holes 

Based on this curve, the spherical effect model was selected. The other 

parameters of the spherical model are as following: 

Mean Value: 0.34535 

Major range: 4.00929 

3.6.3.2 Displaying the Images  

Using the above parameters in the three softwares, the estimated thickness 

distribution was computed. Given on these files, the four figures are developed from 

the packages. Every software gives a contour map of the distribution and Surfer yields 

a 3-D distribution map. 
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Figure 61  Contour of Thickness Distribution from ArcGIS for 2 Holes 

 

Figure 62  Contour of Thickness Distribution from Surfer for 2 Holes 
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Figure 63 Contour of Thickness Distribution from SGeMS for 2 Holes 

 

Figure 64 3-D Model of Thickness Distribution from SGeMS for 2 Holes 

The damage effect ration (φ) was measured from Figures 61, 62 and 63 by Image 

Pro-Plus, and Table 4 contains the results. 
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3.6.4 Simulation of 3 Holes 

3.6.4.1 Setting up Parameters 

 

Figure 65 Curve of Variogram Function for 3 Holes 

Based on this curve, the spherical effect model was selected. The other 

parameters of the spherical model are as following: 

Mean Value: 0.33221 

Major range: 4.44091 

3.6.4.2 Displaying the Images  

Using the above parameters in the three softwares, the estimated thickness 

distribution was computed. Given on these files, the four figures are developed from 

the packages. Every software gives a contour map of the distribution and Surfer yields 

a 3-D distribution map. 
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Figure 66  Contour of Thickness Distribution from ArcGIS for 3 Holes 

 

Figure 67  Contour of Thickness Distribution from Surfer for 3 Holes 
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Figure 68 Contour of Thickness Distribution from SGeMS for 3 Holes 

 

Figure 69 3-D Model of Thickness Distribution from SGeMS for 3 Holes 

The damage effect ration (φ) was measured from Figures 66, 67 and 68 by Image 

Pro-Plus, and Table 4 contains the results. 
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3.6.5 Simulation of 5 Holes 

3.6.5.1 Setting up Parameters 

 

Figure 70 Curve of Variogram Function for 5 Holes 

Based on this curve, the spherical effect model was selected. The other 

parameters of the spherical model are as following: 

Mean Value: 0.30873 

Major range: 5.64382 

3.6.5.2 Displaying the Images  

Using the above parameters in the three softwares, the estimated thickness 

distribution was computed. Given on these files, the four figures are developed from 

the packages. Every software gives a contour map of the distribution and Surfer yields 

a 3-D distribution map. 
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Figure 71  Contour of Thickness Distribution from ArcGIS for 5 Holes 

 

Figure 72  Contour of Thickness Distribution from Surfer for 5 Holes 
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Figure 73 Contour of Thickness Distribution from SGeMS for 5 Holes 

 

Figure 74 3-D Model of Thickness Distribution from SGeMS for 5 Holes 

The damage effect ration (φ) was measured from Figures 71, 72 and 73 by Image 

Pro-Plus, and Table 4 contains the results. 
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3.6.6 Simulation of 6 Holes 

3.6.6.1 Setting up Parameters 

 

Figure 75 Curve of Variogram Function for 6 Holes 

Based on this curve, the spherical effect model was selected. The other 

parameters of the spherical model are as following: 

Mean Value: 0.29819 

Major range: 5.92179 

3.6.6.2 Displaying the Images  

Using the above parameters in the three softwares, the estimated thickness 

distribution was computed. Given on these files, the four figures are developed from 

the packages. Every software gives a contour map of the distribution and Surfer yields 

a 3-D distribution map. 
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Figure 76  Contour of Thickness Distribution from ArcGIS for 6 Holes 

 

Figure 77  Contour of Thickness Distribution from Surfer for 6 Holes 
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Figure 78 Contour of Thickness Distribution from SGeMS for 6 Holes 

 

Figure 79 3-D Model of Thickness Distribution from SGeMS for 6 Holes 

The damage effect ration (φ) was measured from Figures 76, 77 and 78 by Image 

Pro-Plus, and Table 4 contains the results. 
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3.6.4 Conclusion of Different Patterns of Holes 

By combined the above damage effect ration, Table 4 illustrates the damage 

effect ratio which is altered by different patterns of holes. 

Different Patterns  
Damage Effect Ratio (φ): (%) 

ArcGIS Surfer SGeMS 

1 hole 0.39 0.26 0.94 

Line pattern of 2 holes 0.64 0.59 1.18 

Triangular pattern of 3 holes 0.90 0.88 1.33 

Square pattern of 4 holes 0.99 0.97 1.41 

Pentagon pattern of 5 holes 1.02 1.02 1.48 

Hexagon pattern of 6 holes 1.04 1.06 1.54 

Table 4 Damage Effect Ratio with Different Patterns of Holes 

Comparing the Table 18 and the above figures, the conclusions about the effect 

of the patterns constituted by different number of holes are as follows: 

(1) The damage effect ratio tends to increase as the number of holes in a fix area 

increases. 

(2) The damaged areas caused by the holes have a similar pattern as that of the 

holes. 

 3.7 Relationship between Radius and Distance 

    As shown in 3.3.2 and 3.5, when the distance between two holes exceeds 3ft or 
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5ft, there is minimal interaction between them, but when the distance is less than 3ft, 

their interaction with each other can be substantial. This is an interesting issue. This 

part of the study will consider this problem to seek a value of distance so that the 

holes do not interact with each other for different radii, which are 1/16ft, 1/8ft and 

1/2ft. From above parts, the value of the distance is located between 1ft and 3 ft for a 

1/16ft hole. The solution from ArcGIS and Surfer are similar, so only ArcGIS is used 

to estimate the thickness distribution. 

3.7.1 Creating Data Set 

The condition for this section is that the 20ft × 20ft plate is divided into 400 cells 

with 396 cells represented by the nominal thickness of 0.375in which located in the 

center of these cells. The other 4 cells contain holes which have known damage. The 

separation of the other 4 cells corner is from 1ft to 3ft for the 1/16ft radius. The 

separation for 1/8ft and 1/2 ft is investigated in the following.  

3.7.2 Relationship of Radius and Distance for 1/16ft radius 

The 1ft distance for 1/16ft has been estimated in 3.3.2, and 3ft distance for 1/16ft 

has been estimated in 3.5.2. The next step is estimating the 2ft distance for 1/16ft 

radius, which is shown in Figure 80. 
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Figure 80 Contour of Thickness Distribution from ArcGIS for 2ft Distance 

The above figure illustrates that the holes also interact with each other at 2ft 

distance, so other distances should be checked. The value of distance should be 

correct to two decimal values. At the end, the value of distances was found between 

2.67ft and 2.68ft, whose distribution shown in figures 81 and 82. 
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Figure 81 Contour of Thickness Distribution from ArcGIS for 2.67ft Distance 

 

Figure 82 Contour of Thickness Distribution from ArcGIS for 2.68ft Distance 

From these figures, it is obvious that there is no interaction when the distance of two 

radius 1/16ft holes corner is more than 2.68ft. For the distances which are less than 2.67ft, the 

interaction would exist. 
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3.7.3 Relationship of Radius and Distance for 1/8ft radius 

The 1ft distance for 1/8ft has been estimated in 3.3.3. Based on the result of 3.7.2, 

the no interaction distance for 1/8 ft must be around 2.68ft because all the conditions 

are same except the small separation of radius from 1/16ft to 1/8ft. From 3.5.2, there 

is no interaction when distance is 3ft. Firstly, distances of 2.68ft and 3ft would be 

checked, which are shown in Figure 83 for 3ft and Figure 84 for 2.68ft. 

 

Figure 83 Contour of Thickness Distribution from ArcGIS for 3ft Distance 
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Figure 84 Contour of Thickness Distribution from ArcGIS for 2.68ft Distance 

After reducing the distance, 2.67ft distance was found to be a value that the holes were 

interaction, which is shown in Figure 85 

 

Figure 85 Contour of Thickness Distribution from ArcGIS for 2.67ft Distance 
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From these figures, it is obvious that there is no interaction when the distance of two 

radius 1/8ft holes’ center is more than 2.68ft. For the distances which are less than 2.67ft, the 

interaction would exist. The result is same as the result for 1/16ft, but it is obvious that the 

effect for 1/8ft radius is more than that for 1/16ft radius whose distances are both 2.67ft and 

2.68ft. 

3.7.4 Relationship of Radius and Distance for 1/2ft radius 

The 1ft distance for 1/2ft radiushas been estimated in 3.3.4. The radius increases 

from 1/8ft to 1/2ft. The changing is very large, so the result from above parts could 

not be used. As the first step, 3ft distance should be checked, which is illustrated in 

Figure 86. 

 

Figure 86  Contour of Thickness Distribution from ArcGIS for 2.67ft Distance with No 

Additional Points. 
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When the distance is 3ft, the centers of holes are located the sides of the 4 

damage cells and there are no points on the corner of these cells. After checking no 

additional points in Figure 86, some points were added in this location and checked to 

show in Figure 87. 

 

Figure 87  Contour of Thickness Distribution from ArcGIS for 2.67ft Distance with 

Additional Points. 

From figure 86 and 87, the difference between them is not large, so these points 

will be added in the following estimation to make them reasonable. In order to seek 

the value so that there is no interaction, the separation of the next steps is 0.2ft, and 

other separations would be adjusted according to the testes. Along with the increasing 
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of distance, some points in above assumption would locate in the holes. These points 

will be removed. The following figures will show the thickness distribution. 

 

Figure 88  Contour of Thickness Distribution from ArcGIS for 3.2ft Distance 

 

Figure 89  Contour of Thickness Distribution from ArcGIS for 3.3ft Distance  
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Figure 90  Contour of Thickness Distribution from ArcGIS for 3.35ft Distance  

The value of distance with no interaction finally located between 3.3ft and 3.35ft 

which are shown in figure 89 and 90. 

3.7.5 Conclusion of Relationship between Radius and Distance 

(1) Along with increasing the distance, the interaction between holes tends to 

reduce, and at an appropriate value of distance, the interaction will disappear.  

(2) The value of the distance with no interaction tends to increase with increasing 

radius, but the separations of two closest points of two neighboring holes are not 

much different for different radii.  
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Chapter 4 

Conclusion and Future Work 

In this chapter, some conclusions based on the results illustrated in the previous 

chapters are presented. Some extended work for future applications are also 

recommended. 

4.1 Conclusion 

The aim of this thesis is to apply kriging methods to investigate the effect of 

damage areas in a large plate by estimating the thickness distribution. All simulations 

were computed for a 20ft × 20ft plate The major conclusions obtained in this research 

are the following: 

(1) Kriging can be used to estimate thickness distributions quickly and easily by 

using proven software packages, given the observed data.  

(2) The applied software, ArcGIS, Surfer and SGeMS, predict similar thickness 

distributions. ArcGIS and Surfer yield similar predictions of the damage effect ratio, 

and SGeMS gives slightly bigger results. The reason for this is that the accuracy of 

SGeMS is lower than the other two softwares. 

(3) The damage holes only affect their adjacent areas, with nearly no affect on 

farther areas. 

(4) The damage effect ration tends to rise with increasing hole radius, and the 
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relationship between them is non-linear. 

(5) The various holes radii arrangements influence the damage effect ratio and 

the pattern is different, but the difference of in the pattern is small. 

(6) For arrangement of several holes whose radii are different, the damage effect 

ratio for the two holes whose radii are the largest and the next largest are adjacent is 

larger than those are located in the diagonal. 

 (7) The damage effect ratio tends to decrease with the increasing separation of 

two holes and that will nearly change when the separations close to a value. Because 

these holes will not interact with each other after the separation closes to the value.  

(8) The damage effect ratio tends to increase with an increasing number of holes 

in a fix area, but the difference of ratios will be smaller with the increasing. The 

damaged areas influenced by damage holes have the similar pattern as the patterns of 

damage holes. 

(9) Along with increasing the distance, the interaction between holes tends to 

reduce, and at an appropriate value of distance, the interaction will disappear.  

(10) The value of the distance with no interaction tends to increase with 

increasing radius, but the separations of two closest points of two neighboring holes 

are not much different for different radii.  

4.2 Suggestions for Future Work 

Although kriging methods has been applied in geology and mining for more than 
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50 years and plenty of commercial and non-commercial softwares that were 

programmed by this algorithm have been proven to work well, it has not been applied 

in Mechanical Engineering very much. Considering the differences among Mechanics, 

Geology and Mining, there is still room to update and examine kriging methods for 

Mechanics. Some works are given below. 

(1) The data sets used in this thesis are assumed, but the practical data sets are 

very different. Kriging methods maybe better than other algorithms, but they are also 

linear least squares estimation algorithms, which predict the distribution. Some 

experiments should be done to test the accuracy of kriging methods. 

(2) Based on the above results, the minimum thickness in some figures is less 

than 0, which is not reality. Some work should be done to eliminate this situation to 

make the results reality. 

(3) Besides simple kriging, there are also other kriging methods like ordinary 

kriging, universal kriging. These methods could also be used to estimate the thickness 

distribution to compare the results with real situation so that the best kriging methods 

could be implemented in this problem. 
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APPENDIX 

    This program is used to calculate the locations of 17 points which represent 

circular damage. 

% This program is to calculate the location of 17 points which express 

a 
% circle and transfer them into .xls file 
  
clear all; 
clc; 
r=input('Radius = '); % Input the radius of the hole 
  
% Determine the distance between each 16 points and circle center 
L_far=[-r,0]; 
L_close=[-r/2,0]; 
LU_far = [-2^0.5/2*r,2^0.5/2*r]; 
LU_close = [-2^0.5/4*r,2^0.5/4*r]; 
U_far = [0,r]; 
U_close = [0,r/2]; 
RU_far = [2^0.5/2*r,2^0.5/2*r]; 
RU_close = [2^0.5/4*r,2^0.5/4*r]; 
R_far = [r,0]; 
R_close = [r/2,0]; 
RD_far = [2^0.5/2*r,-2^0.5/2*r]; 
RD_close = [2^0.5/4*r,-2^0.5/4*r]; 
D_far = [0,-r]; 
D_close = [0,-r/2]; 
LD_far = [-2^0.5/2*r,-2^0.5/2*r]; 
LD_close = [-2^0.5/4*r,-2^0.5/4*r]; 
  
p=input('Point location = '); % Input the location of circle center 
  
% Gaining the location of other 16 points 
p_L_far= p - L_far; 
p_L_close= p - L_close; 
p_LU_far = p - LU_far; 
p_LU_close = p - LU_close; 
p_U_far = p - U_far; 
p_U_close = p - U_close; 
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p_RU_far = p - RU_far; 
p_RU_close = p - RU_close; 
p_R_far = p - R_far; 
p_R_close = p - R_close; 
p_RD_far = p - RD_far; 
p_RD_close = p - RD_close; 
p_D_far = p - D_far; 
p_D_close = p - D_close; 
p_LD_far = p - LD_far; 
p_LD_close = p - LD_close; 
  
% Output the location of 17 points as a matrix  
P(1,:)=p_LD_close; 
P(2,:)=p_LD_far; 
P(3,:)=p_D_close; 
P(4,:)=p_D_far; 
P(5,:)=p_RD_close; 
P(6,:)=p_RD_far; 
P(7,:)=p_R_close; 
P(8,:)=p_R_far; 
P(9,:)=p_RU_close; 
P(10,:)=p; 
P(11,:)=p_RU_far; 
P(12,:)=p_U_close; 
P(13,:)=p_U_far; 
P(14,:)=p_LU_close; 
P(15,:)=p_LU_far; 
P(16,:)=p_L_close; 
P(17,:)=p_L_far; 
P 
 

 


