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Abstract 

The research of knitted fabric reinforced thermoplastic had a great breakthrough 

recently. A series of simulation and analysis have been developed regarding deformation 

behavior and other mechanical properties. Following this train of thought, this study focuses 

on validation of those simulations by experimental approaches. Moreover, the best way to 

utilize this composite has been discussed and applied to improve the thermoforming process. 

Using elastomeric material as matrix and fiberglass plain weft-knitted fabric as 

embedding reinforcement, the formability and flexibility of this composite is outstanding. 

Because this combination will not block knitted fabric when forming, it can offer more 

stretch than comparable fabrics. Different knitting density gives different stretchability. 

Based on that discovery, fabric with varying densities can be embedded in one sheet to 

improve the product thickness distribution when thermoforming. 
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1. Introduction 

1.1. Review of knitted fabric reinforced thermoplastic 

A number of researches had been dealt focusing on the mechanical properties of knitted 

fabric reinforced thermoplastic and demonstration of the forming potential of knitted fiber (Mayer 

J, July 1991) (Mayer J H. S., 1994). The field of formability of knitted fabric reinforced 

thermoplastic, however, is relatively blank for the reason that knitted fabric reinforced composite 

cannot fit the highly curved corner without wrinkles (Xiong-Kui Li, 2009). Some studies on deep 

drawing and thermoforming filled this blank. In the research conducted by Naoki Takano, the 

composite was made by Polypropylene sheet and dry rib-knitted fabric using compression 

molding. And the deep-draw forming was hemispherical dealt by a male punch (Naoki Takano, 

2004).  

 

Figure 1 Deep draw forming 

  

Khondker, Herzberg and Leong tested fiberglass knitted fabric in vinyl ester resin 

composites with variant of knitting patterns. The composites failed before they reached 3% strain 

in loading direction for both wale and course loading cases. And more interesting is, three 

different knitting patterns responded very similar and a different load-displacement curve than 

what would be expected from a knitted fabric (Khondker O.A, 2001). 
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Lam et al showed some data using Polypropylene and PET fibers in 2003. The fibers were 

co-knitted and the former material was allowed to melt to fill the voids around the latter under 

elevated temperature and pressure to produce composite. Although pure PET fibers could only 

experience a maximum of about 17% ultimate stretch, the composite was reported to give 

maximum elongation of 80% and 123% in warp and weft direction, respectively. 

V-shape knitted fabric reinforce composites was formed and studied by Miro Duhovic et al 

in 2005. Made of weft knitting E-glass fiber embedded in Polypropylene (PP) matrix, the 

specimens were heated to 160°C and formed with V-shape match dies. The test was mainly 

focused on shear performance during the forming. Dome shape tests were done in the same 

manner with rubber male punch instead of V-shape dies.  

 

Figure 2 V-shape specimens 

  

Within those previous researches, the doctoral dissertation of Burak Bekisli definitely needs 

to be highlighted simply because the results presented hereinbelow is the extension of his works. 

Based on this point, general review of his work will be presented here and more details will be 

given in context with following chapters for better understanding. The main objective of his 

dissertation was the analysis and better utilization of knitted fabrics reinforced composites, in a 

more theoretically way. To begin with, some experimental efforts were done to obtain initial data 
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about the material. But major contribution was establishing the numerical models of its 

deformation behavior. As a result, nonlinear finite element (FE) analysis was developed in 3D 

unit cell (micro/meso scale) level and 2D global (macro scale) level to establish the deformation 

model of both knitted fabrics and the reinforced composite materials. The analysis and simulation 

was very comprehensive and also gave promising results. So based on the simulations, some 

innovative concepts related to the thermoforming process were investigated using the numerical 

models. Within limited time, no further experiments were done to verify the accuracy of these 

models in reality, not to mention applied new ideas on thermoforming machine.  

 

1.2. Objective of this study 

So that brings up the objective of this study; as an extension of previous research, keep using 

the materials and methods, explore the deformation behavior of knitted fabric reinforced 

thermoplastic in an experimental way. And try to compare the results with numerical models to 

further validate the feasibility of numerical theory. Investigate other methods of making this kind 

of composites if possible. Furthermore, examine the innovative idea on thermoforming machine. 

If obtained quite matching results to numerical prediction, the ultimate goal of this study will be 

establish a database for the deformation behavior of most popular fiber materials and matrix 

materials and their combinations, such as for example, Polyester or even Kevlar. That will 

certainly help to offer more options when comes to applications in the near future. 

 

1.3. Organization of this thesis 

The following chapter will be a brief introduction about thermoforming process. Since 

thermoforming is the platform to explore the deformation behavior of this very kind of material. 
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And some innovative concepts may benefit this process as well, it is necessary to have a visit on 

this process and also introduce the thermoforming machine that being used. The two chapters 

after this will talk about thermoplastic sheet and knitted fabrics, respectively. Those two materials 

consist the final composite therefore the chapter 5, about knitted fabric reinforced thermoplastic, 

is brought up. The layout of chapter 3, 4 and 5 is in order of time. Then some experimental results 

will be presented as well as comparison to numerical prediction as mentioned before. It will end 

up with a brief visit of potential applications and future prospects. 

Two user manual were created and documented during this study for better references and 

knowledge passing. They are regarding to compression molding machine and knitting machine 

and will be attached in Appendix IV and V, respectively.  
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2. Introduction of thermoforming 

2.1. Brief history 

Thermoforming is one of the sheet-forming techniques have been known since the turn of 

the 20th century. The modern thermoforming industry, however, which regards to forming plastic 

sheet, started to boost after WWII. By 1950s, the demand of packaging industry stimulated the 

growth of thermoforming. Numerous manufacturers rapidly learned and adopted these sheet 

forming techniques and therefore forced the techniques to evolve.  The 1960s was a milestone era 

that set the thermoforming industry into an ambitious pattern and defined its future trends. 

Roughly at that time, the specialization and separation of „thin‟- and „thick‟- gauge industries was 

established. When this business went into the late 1970s and the early 1980s, bold and 

nontraditional equipment lineups began to offer by equipment manufacturers. Starting with 

plastic pellet, the machinery is capable of producing finished products required little attendance. 

The major development in 1980s was reducing cost of the equipment allowed more people to 

enter into this business. General recession impacted the thermoforming industry in the 1990s. As 

approaching the end of 1990s and continued to move into 21st century, the digitalization is 

offering more precise control over the entire process which means the whole industry is entering 

a new era. 

 

2.2. Industry and market 

Since the beginning of thermoforming, the packaging industry has remained the highest 

volume user. The production of blister pack alone numbered in the millions of units for the 

packaging of retail goods. For food industry, there is numerous of containers made by 

thermoforming in take-out or retailing food packages. Transportation, medical usage, housing and 

construction business shared a big number of thermoforming market as well. 
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2.3. Process 

Thermoforming is a manufacturing process where a plastic sheet is heated to a pliable 

forming temperature, usually 0-20°C higher than the melting point of the material, formed to a 

specific shape in a mold, and trimmed to create a usable product. There are two general 

thermoforming process categories, thin-gauge and thick-gauge, which is defined by sheet 

thickness less than 1.5mm (0.06inches) and greater than 3mm (0.12inches), respectively. One 

obvious difference between them is thinner sheet is usually delivered to the thermoforming 

machine from rolls or extruder while thicker sheet is delivered by hand or auto-feed method. 

Typical thermoforming process involves clamping, heating, forming and cooling, and trimming. 

That raises the introduction of corresponding components of typical system, thermoplastic sheet, 

which will be given more details on following chapter, clamping mechanisms, heating systems, 

molds, forming forces, trimming cutters.  

 

2.4. Components 

Clamping. To carry out a successful thermoforming process, all thermoplastic sheet 

materials must be held securely on all four sides and through all phase of the process. There are 

two mechanism, clamp-frame and transport-chain, the former is widely used. There are many 

variations of the basic clamp-frame mechanism and all the clamp frames follow the basic frame 

appearance and have a matching counterframe. Usually one frame is made stationary while the 

other tends to open with hinges on the back side. The clamping power can be offered either by 

pressurized air or hydraulic forces. The Figure 3 below shows the pneumatic clamp system using 

in this experiment. When a sheet-fed machine is used in a continuous manner, a transport-chain 

system performs the duties of a clamp frame. The transport-chain system functions as the two 

parallel sides of the clamp frame. 
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The thermoforming machine being used in this research is ZMD V-223. It equipped with 

pneumatic clamp-frame in various length which offers multiple options. One of the most 

customized feature of this clamping frame design is it can be changed to any desired size, from 

6”x6” up to the full size of the forming area. The clamp bars feature spring loaded pins to ensure 

proper holding of plastic sheet. This only require about ½” edge grip on each side. In the left of 

Figure 3 is a middle size clamping frame assembly with a 6” ruler for reference. In the right 

shows the installed four clamps. 

 

Figure 3 Clamping system 

 

Heating. The heat applied to this process could come from a number of sources. The two 

basic energy sources are gas and electricity and therefore there are three basic heating methods, 

gas-fired convection oven, contact heating, and radiation heating. Heating with radiation energy 

essentially uses infrared spectrum wavelengths and is most popular heating method among the 

three. There are many types of radiant heater element variations, such as, for example, open 

resistor, flat strip, ceramic, Pyrex glass, and quartz, each with unique differences and special 

characteristics. 24 independent ceramic radiant heaters installed in ZMD V-223, 12 for the top 

and 12 for the bottom. That feature can provide 30 Watt per square inch which is a relatively 
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good performance compare to other thermoforming machine being manufacture at that time. The 

Figure 4 is the layout of the heater for both top and bottom identically. 

 

Figure 4 Heater layout for ZMD-223 

 

Molds. The actual shaping and forming in thermoforming process are done with molds. 

Molds have two functions, providing a basis for the sheet to receive its shape, and cooling down 

the sheet. A mold made with a cavity configuration is called „female‟ mold and it is usually 

shaped in an open, flared cavity form. Due to the stretching in the forming cycle, the thinning 

effect will cause mechanics weakness of the sheet. The deeper the mold cavity, the thinner in the 

side and bottom wall thickness. Therefore, with simple female mold types of forming, there is 

ideal depth-of-draw ratio which should be limited to 1:1. The shrinkage of materials will make 

the formed part smaller than the actual mold and pulls away from the mold side which cause no 

trouble for removal from the mold. A male mold essentially is a completely reversed form of the 

female mold. Instead of a cavity configuration, these molds are in the form of a protrusion.  Male 
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molds are often selected over female molds due to less costly. Only notable issue is adding 

sidewall tapers in the male mold design could reduce the difficulties of removal. Borrowing 

techniques from stamping, the matched molds are used in forming thermoplastic sheet as well. 

There are two types of matched molds, completely matching contoured molds and partially 

matching contoured molds.  

 

Figure 5 Match die schematic 

 

The mold dimension and material selection should be considered following some rules when 

comes to mold design. Clamping frame dimensions and stroke height etc. need to be 

compromised in dimensional design. In terms of material selection, the period of time and light 

usage in this research free our hands from choosing wood, plastic and metal. Based on 

minimizing material cost and milling machine cost, and the need of forming, two molds are used. 

A 8.5”x5.5” rectangle with 1” depth cavity female mold, and its matching male mold. Both made 

by High-density Polyethylene (HDPE). Figure 6 is a glance of them. The drawings with more 

details will be attached in the following Appendix III. Venting holes also need to be considered as 

part of the evacuation system in the mold design. Though venting holes, vacuum pressure can 
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apply to make sheet stick to the mold surfaces. The diameter, location and number are determined 

by vacuum surge tank volume, vacuum pressure, mold vacuum box volume and desired vacuum 

time.  Since the capability of vacuum is much higher than required for this small mold, an array 

of 4x9 with diameter 1/32” venting holes are designed. With this level of diameter, the quality of 

product surface will not be affected. 

 

Figure 6 Female and male mold 

 

Forming forces. To shape a flat sheet form into a different form and compel it to follow the 

contours of the adjacent mold, outside forces must be employed. The common forming forces 

used are, vacuum, pressure, matched mold, and combinations of those three. Vacuum is the 

oldest, easily accomplished, manipulated, and controlled method in this industry. The basic 

principle relies on the self-sealing ability of heated sheet and trapped air evacuation by vacuum, 

allowing natural atmospheric pressure to fill the cavity and force the heated sheet into the 

evacuated space. To obtain higher forming speeds and clearly defined detail, a greater force than 

gentle vacuum forming can offer should be applied. Pressure forming is actually accomplished 

with higher air pressures and, depending on the needs, can be tuned from 10 psi to the maximum 

of full line pressure of the plant‟s compressed air system. The use of pressure combined with 

vacuum evacuation can consistently guarantee the best uniformity and detail resolution to part 
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after part. In matched mold forming, the process mimics the sheet metal stamping operation. The 

forming is done by the mechanical forces of the platens. There are three basic criteria that have to 

be met to achieve satisfactory thermoforming with this technique. The first is that the platen must 

have enough mechanical energy forces. The second criterion for matched molds have proper 

escapement for the entrapped air. The acceptable depth-of-draw ratio is the third criterion should 

be concerned as well. Here in this research, the conjunction of vacuum and matched mold is used.  

Trimming. After the forming cycles are completed, the formed parts usually have to be 

trimmed out of the surrounding panel. It has to be done without damage, distortion, cracking, or 

tearing. The type of trimming apparatus can range from a simple hand-held knife or scissors to 

the most sophisticated laser beam equipment. Based on the amount of specimen in this study, 

there is no special need for trimming device. The composites were cut by paper trimmer. 
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3. Thermoplastic sheet 

3.1. Thermoplastic materials 

Thermoplastics are unique man-made compounds. If exposed to elevated temperatures, they 

become soft and eventually even liquefy, and if cooled down, they harden and set up firm. 

Thermoplastic polymers differ from thermosetting polymers in that they can be re-melted and re-

molded. Many thermoplastic materials are addition polymers; e.g., vinyl chain-growth polymers 

such as Polyethylene and Polypropylene. Thermoplastics are elastic and flexible above a glass 

transition temperature, specific for each one.  Some thermoplastics normally do not crystallize. 

They are amorphous plastics and are useful at temperatures below the glass transition 

temperature. They are frequently used in applications where clarity is important. Some typical 

examples of amorphous thermoplastics are PMMA, PS, and PC. Thermoplastics will crystallize 

to a certain extent and are called "semi-crystalline" for this reason. Typical semi-crystalline 

thermoplastics are PE, PP, PBT and PET. The speed and extent to which crystallization can occur 

depends in part on the flexibility of the polymer chain. Semi-crystalline thermoplastics are more 

resistant to solvents and other chemicals.  The thermoplastics are manufactured from monomers, 

which are derived from crude oil, coal, and natural gas. These monomers will create high-

molecular-weight chainlike molecules when been through high heat, pressure, and catalysts 

which is called polymerization. During that procedure, it can gain strong covalent chemical bonds 

within the independent long-chain molecules, and they have strong tangled or woven 

intermolecular bonds as well. The longer the molecular chains, the higher the molecular weight, 

and the stronger or tougher the plastic produced. The key demand in thermoplastics when used in 

the thermoforming is that the resin of high molecular weight with the best intermolecular 

entanglement available. Since the thermoforming process uses a preformed plastic sheet clamped 

and held only by its edges, the actual material stretching and material distribution are highly 

depend on that molecular relation. Initially, the thermoplastic sheet should contain molecules with 
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maximum molecular weight to permit optimum stretching without rupturing or splitting. A fact 

often being ignored is that degradation and scission of molecules take place throughout the 

thermoforming process. Some products may not accept any recycled material without damage to 

their integrity. 

During thermoforming process, thermoplastic will exhibit a reduction of modulus of 

elasticity, stiffness, and load-bearing capacity. To obtain desired products, better understanding of 

their properties and undermined relations is necessary. Table shows some data of typical 

thermoplastic materials. 

Table 1 Typical thermoplastic materials 

 

Density 

(g/cm
3
) 

Tensile 

strength 

(N/mm
2
) 

Elastic 

modulus 

(N/mm
2
) 

Linear 

thermal 

expansion 

(10
-6

/°C) 

Transformation 

temperature 

(°C) 

Crystallite 

melting 

range  

(°C) 

Processing 

shrinkage 

(%) 

PS 1.05 55 3350 75 80  0.5 

ABS 1.05 50 2500 92 100  0.6—0.7 

HDPE 0.95 28 1100 200 105 125+15 1.2—7.0 

PP 0.92 30 1200 150 140 158+10 1.5—1.8 

PC 1.2 61 2300 65 150  0.9—1.1 

PVC 1.39 65 3100 63 82 100—260 0.25 

 

 

3.2. Thermoplastic elastomer (TPE) 

Thermoplastic elastomers (TPE), sometimes referred to as thermoplastic rubbers, are a class 

of copolymers or a physical mix of polymers which consist of materials with both thermoplastic 
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and elastomeric properties. They are relatively easier to use in manufacturing compare to the 

mainstream of elastomers, which are thermosets. And with some clear advantages, demands and 

production of thermoplastic elastomers are booming nowadays. One advantage is the fact that 

they can be processed several times by production techniques involving heating and recycling. 

There are six generic classes of TPEs generally considered to exist commercially. Examples of 

TPE products that come from block copolymers group are Styroflex (BASF), Kraton (Shell 

chemicals), Pellethane, Engage (Dow chemical), PEBAX (Arkema), Arnitel (DSM), Hytrel (Du 

Pont) and more. The thermoplastic elastomer currently be used in the particular research is 

PEBAX® 2533 from Arkema. Some main ingredients include flexible polyether and rigid 

polyamide and the grade is specially designed to medical and food uses. The table followed can 

give a glance of some important features and processing requirements. More details about this 

material offered by supplier will be showing in Appendix I.  

Table 2 PEBAX processing recommendation 

Density 1.00 g/cm
3
 Drying 4-8 hours/ 55-65°C 

Melting point 134 °C Injection Temp 

180°C min/ 

210°C recommend/ 

240°C max 

Vicat 

softening point 
58°C Mold Temp 10-30°C 

 

 

3.3. Sheet making 

All the known thermoplastic resins have to be converted into sheet form, by various 

methods, resulting in precut panels or continuous sheets which are then wound onto coiled rolls. 



16 
 

There are three basic sheet making methods, calendaring, casting, and extruding. In many cases, 

only one method can be used to make sheeting of particular material. 

Calendaring is a very simple process that is easily adaptable to thermoplastics. This process, 

which replicates the well-established sheet-rolling and rubber sheet-making process, is the same 

technique as that used in mechanized pizza-dough-making apparatus. The calendars consist of a 

series of rollers which are rather large in diameter and heated to 325°F above. A fixed gap or 

roller distance is set between the initial rollers and is then continuously reduced between 

subsequent rollers. The function of the initial two rollers is to provide for mixing, blending, 

heating, and metering of the softened plastic. The remaining rollers are used to size the thickness 

of the sheet to the final gauge required. The arrangement and array of calendar rollers vary from 

manufacturers and the rollers are also selected according to resin type, sheet size, feed method, 

and other individual requirements. One of the most frequent problems for calendaring method is 

that small pinhole are often manufactured in the sheet. It will be rejected for vacuum or air 

pressure failure. 

For particular resin materials, the casting method may be the only method available for the 

product of sheet forms. The basic casting technique has two variations, each used for specific 

purposes. The first is almost always used with acrylic materials. The casting process is 

accomplished by pouring the base monomers, or in many instances, partially polymerized syrups 

or their blends into suitable sheet molds of onto moving stainless steel belts. When heat is 

applied, final polymerization will take place. The second type is called solvent casting. This 

method is used mostly with PVC. The basic resin material and the necessary additives are 

softened and heated in predesigned flat die. All sheet made by both casting methods are typically 

free of pinholes, have no hidden strains, and have equal strength in both directions of the sheet. 

Just like calendaring, the casting method fails to create a molecular orientation in plastic sheet. 
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Extrusion is by far the most common and most versatile sheet manufacturing technique for 

the thermoforming industry. The process always starts with the basic resin supply. The 

thermoplastic resin materials are introduced to the feed hoppers by mechanical pumps which lift 

and carry the material from a smaller box reservoir or central storage silo system. The extruder, 

which is the main component, receives the solid thermoplastic pellets, granules, or powders, then 

melts, blends, and pressurizes the resins for introduction into the die. The second section, which 

is called transition section, is where the solid thermoplastic particles are compressed, heated, and 

further compressed and liquefied. The third metering section is following, completes the melting 

procedure, creating a well-mixed, homogeneous thermoplastic flow. The other components 

include die, roller stack and the sheet-takeoff system. 

The sheet used in this experiment was obtained in the form of pellets and manufactured by 

compression molding. Since we do not have the apparatus for any of three methods 

abovementioned, compression molding became the only yet easiest way to make the sheet. The 

compression molding machine is Tetrahedron MTP-14. By setting two steps: 1) heat up 90g 

pellets to 320°F and hold for 25mins, and 2) cool down to 90°F and keep for 5mins, that machine 

allows us to have up to 14” in length with approximately 1/32” in thickness for a single layer of 

thermoplastic sheet. The specification and user manual of the machine will be attached in 

Appendix IV for more detail references. 
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Figure 7 Tetrahedron MTP-14 compression molding machine 

 

The material was tested in simple tension. Specimen dimensions are 18 cm length and 1.2 

cm width with thickness of 1.27 mm approximately. Uniaxial tension tests for this material was 

performed on an Instron tensile testing machine equipped with 10 Klbs load cell and the strain 

rate was chosen to be 10 mm/min. Typical stress-strain curves obtained are illustrated in the 

Figure 8 below. Results from three specimens are given and it should be mentioned that no failure 

was observed before the full stroke of the testing machine is reached at around 300% stretch. A 

specimen was unloaded at an earlier stage to observe the unloading behavior at different 

deformation instants. The PEBAX® 2533 clearly exhibit very high strains as expected from 

elastomers and the recovery of the deformation when the specimen is unloaded is quite 

impressive. 
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Figure 8 Tensile test results on pure polymer 
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4. Knitted fabric 

4.1. Introduction 

Numerous fabric types and manufacturing techniques have been developed in textile 

industry to fulfill the increasing needs. Woven, braided and knitted fabrics are the three major 

formations to arrange yarns to a textile fabric. There are plenty of variations within each category. 

For instance, woven fabric is conducted by a set of parallel yarns placed perpendicularly to 

another set of parallel yarns. In textile terminology, warp is used to define length and weft to 

width. The yarns in the warp direction are positioned over the first of the crossing weft yarns and 

are pushed under the next one. The one-up-one down interlacing pattern is called plain woven, 

like the left one in Figure 9 shown here. Variation happens when changing the frequency of the 

pattern. The right pattern shown in Figure 9 is an example for 8 harness satin, representing a yarn 

come up every eighth interlacing with the crossing yarn. 

 

Figure 9 Woven fabrics 

 

Braiding is similar to weaving in terms of structures. The obvious difference is yarn threads 

go diagonally in general. Well advanced weaving and braiding machines of today are capable of 

producing planar, tubular and 3D fabric with hundreds of patterns. 



21 
 

The remaining category is knitted fabric which is important to following chapters. Knitting 

is the most versatile textile forming technique and can be investigated in two major groups. Weft 

knitting is simply formed by a dingle yarn looping around itself and knitting process proceeds in 

the weft direction, or along the width of the fabric. On the other hand, warp knitting employs 

multiple yarns to form an interlocking chain-like structure and the formation is along the warp 

direction. Figure 10 compares these two knitted fabrics with a solid black line showing the loops 

formed by a yarn during a single knitting cycle. Also depicted in the Figure 10 is the special 

terminology for the knitted fabric directions, warp and weft directions are called wale and course 

directions, respectively. (Bekisli, 2010) 

 

Figure 10 Knitted fabrics 

 

In standard manufacture, special needles are placed along course direction and at a 

predetermined distance to each other in weft knitting. A yarn is fed by making a loop around 

these needles and latch mechanism attaches new course to a previously formed course by an 

alternation up and down motion (A.R.Horrocks, 2000). In this simple motion, the latch needle is 

placed inside a formed loop and move upward first. The hook at the top of the latch needle then 

catches the new yarn feed and a new loop is formed when this yarn is carried through the hole 

with a downwards motion of the needle. The process repeats until a desired number of loops are 

formed. The Figure 11 could help understanding the whole process. (Bekisli, 2010) 
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Figure 11 Knitting schematic 

 

Warp knitting equipment, in the other hand, is fed with multiple threads therefore generally 

larger in size and only used for industrial applications. In the mean time, knitting machines have 

more flexibility on size ranging from semi-automatic personal equipment to large industrial 

machine so can be used for various purposes. For making foot-long fabric in this research, a 

Silver Reed knitting machine series number SK 840 made by Silver Seiko, Ltd. is handy to use. 

Its main features include 20” length, adjustable loop density from 1 (finest) to 10 (loosest), 

11/64” between needles which are fixed, and even more patterns beyond in this study. The Figure 

11 above shows clearly two different needles. The needles on SK 840 share the same 

configuration with the right one. Figure 12 is the machine from top view. User manual and 

troubleshooting regarding to this machine will be attached in Appendix IV for further references. 
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Figure 12 SK -840 knitting machine 

 

4.2. Deformation mechanism of woven and knitted fabrics 

 

Figure 13 Deformation comparison of woven fabrics and knitted fabrics 

 

A visit of the deformation mechanisms is good for better understanding the reason of 

choosing knitted fabrics as reinforcement rather than woven fabrics. Figure 13 illustrates a 

representation of typical deformation curves for woven fabrics and knitted fabrics. For a tensile 

loading case as an example, three distinct phases are expected to dominate the deformation range 

for both fabrics. Region-I is due to the static friction between contacting yarns and between the 

fibers inside the yarn as well. Most studies suggest a very small, sometimes completely 

unrecognizable range in this region. When this frictional resistance is overcome, the region which 
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gives these fabrics the uniqueness in terms of deformation behavior starts. Initially curved yarns 

glide over each other and are bent until they are as straight as possible in the load direction. In 

this region, knitted fabrics may experience a very large range of stretching under small loads. Of 

course, a woven fabric will also have somehow similar deformation region as its initially wavy 

yarns will straighten and yarns will rotate over each other under a tensile load. But a biaxial 

stretch over 30% is only achievable with knitted fabric. Moreover, if using highly formable 

materials, extensions of over few hundred percent is possible. Finally in Region-III, the 

deformation mainly relate to fiber extension. A high tensile modulus can be obtained in this 

region. Some curvature will always reside due to geometrical constraints and therefore yarns 

could be jammed. That can trigger another deformation mechanism called transverse compression 

of yarns which is especially important in the strength properties of the fabric, as any kinking in 

the tightened loops will cause extremely high stress concentration which means fiber failure 

eventually. 

Based on the deformation theory abovementioned, it seems fiber material can have some yet 

limited effect on deformation, because major extensions will happen on Region-II and have 

limited relation with material properties. So to begin with, we chose fiberglass due to it has been 

widely used especially in polymer reinforcement field. With relatively lower tensile strength, E-

glass fiber, from Advanced Glassfiber Yarns (AGY), is being tested. Product number is ECG37 

1/3 3.8S and please refer to Appendix for more information about it. Other kinds of fibers, such 

as carbon fiber or even Kevlar, are on the list for potential reinforce materials in the foreseeable 

future. One thing for sure is fiberglass will pave the way to other materials to explore more 

wonderful applications serving people.   

Four sets of knit density were tested uniaxial. Photos of each specimen was analyzed using a 

picture editing software and wale (W) and course (C) number for each specimen had been found 

by averaging at least 10 digital measurements. Table 3 shows the average and standard deviation 
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values measured and calculated for each set. Test length is 10 cm and each specimen has seven 

full loops in course direction. A close up picture in Figure 14 shows some clue about the tests. 

Table 3 Specimen details 

 

 

Figure 14 Uniaxial tensile tests on knitted fabric 

 

The load-stretch outcome of set number 2 shows in Figure 15. Each set of experiments 

showed a moderate scatter of results, which are believed to relate to manual knitting process. 

Although knitting manually is a good choice for low volume prototyping, skilled labor is required 
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for repeating product quality. For better results, automatic knitting machine is recommended. 

(Bekisli, 2010) 

 

Figure 15 Tensile tests results 
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5. Knitted fabric reinforcement 

5.1. Introduction  

Two types of materials, the knitted fabrics and elastomers were discussed separately in 

previous chapters. In this section, the composite structures obtained by the combination of these 

materials will be examined in detail.  

The utilization of fiber reinforcement started in military at the end of WWII. With the 

maturation of polymer industry in mid 20
th
 century, fiber reinforced composite drew lots of 

attention due to their excellent mechanical properties with respect to their weights. Aerospace, 

marine and automotive industries benefited from its development first because weight reduction 

is highly crucial in these fields. Compare to other two fabric formations, woven fabric played a 

dominant role in the reinforcement applications so far. Its popularity can be explained as woven 

fabrics are mechanically similar to conventional continuous fibers laid in two directions 

perpendicularly therefore have good stiffness and strength in two main directions. On the other 

hand, the best utilization of knitted fabric as reinforcement will not be the cases when high 

stiffness and strength values from the composite are sought (X.P.Ruan, 1996). The most 

advantageous and unique property of knitted fabric is extensional formability. Hence, knitted 

fabric reinforced composite should be given full play to its flexibility. There are some examples 

using rigid materials as matrix, such as Khondker et al tested fiberglass with vinyl ester resin and 

Ramakrishna used epoxy in the same manner. The results of them consistently imply reduced 

mechanical properties which firmly proved the theory described earlier in this section. 

Thermoplastic polymers, on the other hand, can generally provide more flexibility and will 

not restrain deformation of fabric loops therefore can be a better candidate of utilization of knitted 

fabric reinforcement. The term “Flexible composites” was introduced by Chou et al for a set of 

composites based upon elastomeric or rubber-like polymers. Up to a few hundred percent of 
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deformation range make them very suitable for the outstanding mechanical behaviors of knitted 

fabrics when reinforced with them. In open literature, there are limited suggestions concerning 

the use of these materials. A uniaxial test result of polyester fabric in polyurethane matrix was 

presented by Huang et al. It shows the specimen could stretch to a failure strain of more than 

100% in both wale and course direction as desired as shown in following Figure 16 . 

 

Figure 16 Tensile test results on polyester fabric in Polyurethane matrix 

 

5.2. Experiment process and results 

The basic expectation from this composite is the full utilization of the reinforcement 

capability of the fabric, which usually occurs after an extensive amount of deformation. As 

mentioned before, such large extensions can only be accommodated by a matrix material at least 

has the same stretchability. Thermoplastic elastomer (TPE) seems to be the ideal matrix material 

for that reason. It raises a question how to combine them for the best mechanical performance. 

The easiest way is embedding knitted fabrics in the elastomer matrix, as is typically done in other 

fiber reinforcement studies. By setting the same parameter with single elastomer sheet in 

compression molding machine, two layers of elastomer material will fill the space between yarns 
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which lay in middle as the process goes on. The schematic layout shows in Figure 17. Due to the 

transparency of this matrix material, there is a very clear view of knitted fabrics in the composite, 

as shown in Figure 18. Each loop is quite uniform and being stretched in a hexagonal shape. 

Another feature that does not show in the picture but need to be mentioned is the composite is 

very flexible, due to the selection of matrix material.  

 

Figure 17 Schematic of composite manufacturing 

 

 

Figure 18 Knitted fabric embedded in TPE as specimen 
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Besides compression molding, there are other methods have the potential to manufacture 

this composite, such as thermoforming and extrusion. Because of the limitation on extrusion 

apparatus, only thermoforming method was tested. But the outcome is far away from satisfactory. 

The main reason causing failure is elastomer material sag too much when in the oven. There were 

two attampts; a) put a knitted fabric in middle of two layers of elastomer sheet, and then sent into 

oven. The bottom sheet would sag rapidly before reaching the forming temperature because it is 

only clamped around the edges. b) put knitted fabric beneath two layers of elastomer sheet. The 

elastomer would not sag due to the support of fabrics in this case. But when exposed to high 

temperature and radiant, the fabric burn out before elastomer reaches its glass transition 

temperature. Neither method works in some measure means making this composite by 

thermoforming is no chance for advancement. 

The composite was cut into 18 cm by 1.2 cm for simple tension test. Transparent matrix 

made a clear observation of fiber movement possible during the test. A sequence of deformation 

is shown in Figure 19. Loading in coursewise direction is shown in the former image while the 

latter shows walewise. In Figure 19, the yarns inside appear to be aligning themselves in the 

loading direction. There are some data generated during the tests in form of curve. The results in 

first graph clearly show that the deformation range of the composite was not dramatically lost. 

The local failure did not lead to ultimate failure and the elastomer still carried the load in the 

fabric-failed regions. This allowed the specimen to stretch further while other regions of the 

fabric failed in succession. 
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Figure 19 Several stages of tensile test 
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The results indicate that the elastomer-based composite with embedded knitted fabrics can 

be used especially in energy absorption application. Even with single layer of knitted fabric, as 

can shown in Figure 20 (c), the strain energy, i.e. the area under the stress-strain curve, is largely 

enhanced when compare to the elastomer-only case. A multilayer reinforcement system, with 

possibly different knitting patterns in each layer and thus different failure stretches, would 

naturally make the composite more effective in terms of energy absorption capacity. (Bekisli, 

2010) 

 

Figure 20 Stress-stretch curves: (a) walewise loading, (b) coursewise loading, (c) composite vs. elastomer, (d) 
walewise vs. coursewise 

 

5.3. Thermoforming optimization 

Thermoforming is widely used in polymer processing, especially if the product is large in 

dimensions. And other advantages like relatively lower initial tooling cost or lower design-to-

market time make thermoforming very suitable for prototyping or low volume production. 
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As described in previous chapter, the process starts with heating up the polymer sheet above 

its glass transition temperature to the sheet turns into rubbery state. The following step is to 

retrieve from oven and apply forming force to desired shape. Though seems simple in theory, the 

process might be difficult to control and may require skilled labor for consistent quality. One of 

the most crucial issues of thermoforming process is the variation of thickness on different regions 

of the final product. Due to the fact that regions of formed plastic experiences varying amounts of 

stretch during the forming process, the thinning of the part is more significant at the locations 

where contact the mold last, for example, corners or edges for a simple box. The effect can be 

compromised by zone-heating, (deLorenzi H.G, 1991) where localized temperature variations are 

intentionally applied instead of uniform heating. But it faces many problems when comes to 

practice. First of all, assuming there is a reliable database of material properties with respect to 

temperature changes at these elevated levels, getting the desired initial temperature map to obtain 

the desired thickness distribution at the end still requires either a trial-error procedure or a reliable 

solution of a series of nonlinear finite element iterations (Nied H.F, 1990). Moreover, even with 

such information in hand, how to obtain the desired temperature map is an additional issue and 

requires either another trial-error procedure or a numerical thermal analysis based on the heater 

settings (Bourgin P, 1995). Most of the time, small changes in temperature result in great changes 

in the mechanical behavior of the rubbery polymer and process parameters need to be 

continuously updated as the environmental conditions continuously changes. Therefore, even if a 

very careful numerical and experimental analysis is performed beforehand, the nature of the 

process requires close tracking for the best results (Bekisli, 2010). 

An innovative way to stabilize the thermoforming process and acquire control is using 

knitted fabrics. As discussed previously, the deformation property of knitted fabrics is unique in 

two aspects; a) they are generally very easy to stretch and can be well-suited even for deep-draw 

forming applications, and b) they exhibit a sudden stiffening behavior at given biaxial stretch that 



34 
 

is controllable via manipulate the knitting density. The concept is very simple: instead of 

struggling to control the polymer, knitted fabric can be introduced to control the deformation by 

geometric design. 

In Bekisli‟s study, the finite element simulation of thermoforming using knitted fabric 

reinforcements was developed and further applied on controlling thickness distribution for long 

channel-like part. The numerical models will be described first and then the experiments to 

validate the models will be presented next. 

Thermoformed long channels with a U-shape cross section are frequently encountered in the 

automotive industry. The advantage of this geometry in the numerical case is due to the fact that 

the length of the part is large compared to other dimensions, and a plane strain assumption can be 

combined with plain stress in the thickness direction. Therefore, the problem actually reduces to 

1-D. and utilizing the symmetry condition along the width direction, only half of the strip will be 

meshed with proper symmetric boundary conditions on symmetry edge. 

 

Figure 21 (a) a portion of long U-shape channel and the strip being considered, (b) FE mesh and mold geometry 
used in analysis 
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The finite element analysis predicts the thickness distribution plotted for Polypheneylene 

Oxide (PPO), uniformly at 168°C. The thickness values along a path starts at the edge as shown 

in Figure 22 (a) and passing along the width of the strip is presented in Figure 22 (b). Thickness 

in both plots is normalized with the original thickness of the sheet. As expected, the region 

corresponding to the corner stretches more than anywhere else and ends up with the most reduced 

thickness.  

 

Figure 22 Predicted thickness distribution after thermoforming of PPO strip at 168°C, (a) thickness contour plot, (b) 
thickness value along arc-length showing in (a) 

 

Next, suppose that the fabric is reinforced with an embedded glassfiber-knitted fabrics with 

the following pattern; Wale = 2.58 loops/cm, Course = 4.09 loops/cm (W/C = 0.63). 

Thermoforming simulation of the composite results in an improved distribution around the 

critical corner due to the fact that the fabric stiffens up at 70% stretch and distributes the further 

stretch to the neighboring regions. Simulation shows a better thickness distribution could obtain. 
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Figure 23 Results of thermoformed PPO strip reinforced with uniform knitted fabrics; (a) Deformed and 
undeformed configuration of reinforcements, (b) Thickness distribution of the formed part. 

  

The thickness distribution can be further improved by tailoring the knitting pattern. This can 

be achieved by making the critical regions of the initial sheet stiffer than other regions, similar to 

zone heating principle. In other words, the knitting pattern can be so arranged that a pattern which 

stiffens up very early is placed at the critical regions before forming. In this case, a three-pattern 

arrangement is studied and shown in Figure 24; a knitted pattern of W/C = 0.37 in regions 

corresponding to corners and W/C = 0.63 elsewhere on the strip. The Figure 24 (a) is to 

emphasize the changing of knitting density. But the real knitting density will be tighten in the 

middle, opposite to what is showing in the Figure 24 (b). 
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Figure 24 Three-pattern knit fabric hexagonal structure; (a) undeformed view, (b) deformed view. 

 

When the forming is analyzed numerically, knitted fabric deformation is shown in Figure 25 

(a) and the thickness distribution is shown in Figure 25 (b). As clearly seen, the distribution 

becomes more uniform, since after a stretch of 44%, the middle region becomes difficult to 

stretch further and pulls the neighboring regions that are still very deformable, thus distributing 

the total stretch to a larger section. (Bekisli, 2010) 

 

Figure 25 Results of thermoformed PPO strip reinforced with a “tailored” knitted fabric; (a) Contour plot, (b) 
Thickness distribution along the arc length and comparison with the polymer-only case. 
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In terms of experimental approach, the same order was followed.  

The pure polymer sheet was sent into thermoforming machine first. Because of the nature of 

this elastomer and lacking support in the center of the sheet, it began to sag very fast. The pure 

sheet was forced to pull out before reaching its melting point. Saggy means stretch which makes 

the surface area much larger than before when the heating cycle ends. Then the same before-

mentioned U-shape molds were used to mimic the long channel forming. The larger yet thinner 

sheet overlapped each other when touching the mold surface therefore wrinkles appeared. The 

Figure 26 shows clearly how it failed. 

 

Figure 26 Forming failure on pure elastomer 

 

In another attempt, the heating cycle was intentionally reduced to avoid saggy. Lack of 

heating time leaded to lower forming temperature. Under this case, the sheet conducted a 

stubborn performance. In other words, the sheet shrank significantly in the center forming area. 

That made the sheet an oval like shape in depth direction. 

 So based on those tests, conclusion can be drew that this elastomeric sheet could not form to 

other shape by itself. That made it inevitable to work with reinforcement. 
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With knitted fabric reinforcement, the result was much better. First of all, the composite was 

able to form and no significant shrinkage observed. And an obvious improvement should be 

mentioned during the heating process is that the composite only had limited sagging. Within 

knitted fabric reinforced, the distance of sagging was about half inch which is normal case in 

thermoforming process. The inner square marked in blue was the U-shape area before forming. 

Inside the square, simple 1” by 1” grid was marked as well. The Figure 27 clearly shows what 

specimen looked like after thermoforming. The curvature in blue also implied some basic theory 

of thermoforming which is the deformation is non-uniform as well as the thickness distribution. 

 

Figure 27 Formed composite 

 

To close up the side wall and corner, there is slight difference in loop density between side 

wall fabric and bottom fabric. The straight line in red is for better distinguishment. It seems loop 

distance in wale direction of side wall is larger than bottom. To confirm and quantify this 

enlargement, careful measurement was done by micrometer. Table 4 gives a glance of the 

outcomes. 
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Figure 28 Close up critical area 

 

Table 4 Loop distance in wale direction 

 Side wall Bottom  

Before forming 0.1 inch 0.1 inch 

After forming 0.12 inch 0.1 inch 

 

The measurement was done in various spots to minimize error. It indicates that the loop 

elongation in wale direction is about 20% in the critical area, i.e. the side wall. 

One more detail should be mentioned is that in the forming phase, the vacuum was applied 

before the male mold closing. That can help minimize the thickness variation caused by mold 

contact. But the following side effect is that the surface of final specimen is not smooth in certain 

area. The matrix material was suck out from each fabric loop by strong vacuum force and formed 

a hilly-like surface. Fortunately, this hilly area only takes about 30% of entire specimen. So the 
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thickness distribution still can be measured and was dealt deliberately. For showing the data more 

directly, the cross section of the specimen was drawn in Figure 29. As usual, multiple spots were 

taken for minimum error. 

 

Figure 29 Thickness distribution on experimental specimen 

 

Compare to original sheet thickness 0.089”, the three areas in Figure 29 were all stretched 

thinner during the forming phase. And as predicted in numerical study, the side wall is about 30% 

thinner than others. This experimental approach is definitely a strong support of the simulative 

works. 

 

5.4. Current and potential applications 

Fiber reinforced composite are widely used in all kinds of products to get better mechanical 

performances. Differ from woven fabric, the knitted fabric reinforce composite should apply on 

energy absorbing for better utilize its flexible property, as mentioned in previous chapters. 

With outstanding flexibility, impact absorption could be its main application. Currently yet 

how the composite will behavior under low speed impact is unknown, but my peer J. Payne is 

working on it and I believe very promising results is coming soon. If it applies well under low 
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speed impact, high speed impact will proceed in the future. That sure can open many markets 

from personal security to even military applications. Here in the Figure 30 shows some examples 

where knitted fabric reinforced composite can be used. 

 

Figure 30 Some current and potential uses of flexible composites: (a) Crash cushion and barrier applications, (b) 
Protective wear, (c) Tires reinforced with knitted fabric, (d) Lightweight, high strength and flexible hose and pipe 

applications.  

 

Figure 30 also implies automotive industry might be the largest potential market. Plastics 

have been commonly used in exterior and interior panels such as front or rear bumpers, claddings, 

and rocker panels. To enhance their impact absorption ability in order to protect people, knitted 

fabric reinforcement could be introduced. Moreover, since thermoforming is one of the key 

manufacturing processes in this industry, knitted fabric reinforcement can play a crucial role 

during the manufacturing as well. 
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6. Conclusions and future prospects 

6.1. Conclusions  

The deformation behavior of composite made of knitted fabric reinforcement and elastomer 

matrix was studied. The analysis showed better utilization of knitted fabrics will be the matrix 

material should be at least as flexible as the fabric itself. Elastomers were investigated in this 

regard instead of more common thermoset or thermoplastic materials. Uniaxial tension test 

showed this composite can achieve elongation over a few hundred percent which is quite 

promising for energy absorbing applications. Knitted fabric is embedded in the elastomer matrix 

which might yield fabrics from further elongation. 

Some experiments were done to validate the numerical models established in previous study. 

The innovative idea on thermoforming process was not only simulated, but also validated in 

experiments. Thermoforming with embedded fabric was introduced as well. With the use of these 

models and specimens, it was shown that some common problems can be slightly reduced or 

completely eliminated. By an intentionally designed knitting pattern, the thickness distribution of 

final product was shown to be significantly improved. This was approached by placing knitting 

pattern with less stretchability under the critical regions like the corner or side walls. By doing 

that, extra support to critical regions was obtained. 

Another problem can be challenged by reinforced with knitted fabrics is the high sensitivity 

of thermoforming process to the small changes in processing conditions, especially to thermal 

variations. This is caused by the drastic transition of mechanical properties of the polymer at 

thermoforming temperature range. Since the mechanical properties of the knitted fabrics will not 

be affected by thermal variations and its stiffness is larger than molten polymer, deformation of 

the composite can be stabilized.  
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6.2. Future prospects 

Plain weft knitting was modeled to start with due to it is the simplest. Other knitting 

patterns, such as rib-knit and warp-knit can also worth further exploration. Study of new knit 

patterns can be the first natural extension of this study. 

Material variations can provide numerous topics to investigate as well. Only E-glass fiber 

and PEBAX was test in this study. With various properties, other materials like carbon fiber, 

Kevlar, polyester, and other thermoplastic elastomers can be used too. The big picture is to 

establish a database for deformation behaviors and other properties in different combinations of 

these potential materials. Then when come to applications, people can easily get information and 

references from the database. Considering there are so many potential materials can be used in 

this manner, the data collection could take years of efforts. 

Besides making the composite by embedding the reinforcement into the matrix material, 

there is another way to arrange two materials into a composite which is sandwich formation. To 

be more specific, that means when these layers are combined, the skin layers should be attached 

to each other only at edges and at limited number of other locations if needed. The key idea is to 

free the fabric to achieve larger deformation than embedment. There are some methods to 

manufacture this kind of composite, such as, sewing the edges or compression molding the edges. 

Twin-sheet thermoforming is also a very interesting process to produce hollow composite with 

knitted fabrics in the middle. The Figure 31 shows the idea of manufacturing a twin-sheet 

composite. And if the part is large in size, it might require that skin can attach more locations to 

assure structural stiffness. This can easily be solved by simply adding tack-offs on the mold. 
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Figure 31 Simple twin-sheet thermoforming to form hollow shaped parts 

 

 

Figure 32 (a) Illustration of a flexible composite sandwich that can be produced by twin-sheet thermoforming; (b) A 
part produced with polystyrene skins and glassfiber fabric, pictured without the foam core. Tack-offs are designed 

to provide additional shear resistance 

 

The picture of Figure 32 (b) is done by Cai who did very good job on similar topic in Lehigh 

University. He explored the methods of making twin-sheet composite. It is worth to mention that 

the matrix material he used is Polystyrene instead of thermoplastic elastomers.  His work focused 

on manufacturing, no further test on mechanical properties was dealt. So twin-sheet with knitted 

fabric reinforcement can be another possible direction to go. 
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Appendix I  PEBAX 

 

  



47 
 

Appendix II  Glass Fiber 
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Appendix III  Mold Drawings 
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Appendix IV  Compression Molding User Manual 

Major features: 

 Platen size: 14” square 

 Maximum force: 24 tons 

 Maximum temperature: 600°F 

 Thermal uniformity: ±5°F 

 Heating rate: 15°F per minute 

 Cooling rate: 50°F per minute 

 

 

 

Zoom in to the control panel, there are five sections that are often used and distingushed by 

red, blue, yellow, green, and purple for better reference. Each sections will be introduced. 

Basic layout:  

The black switch on the right bottom is the power switch.  

The two red button on the top is platen closing button. Need to be push simutanously to 

close the platen. 

The screen on the top center shows three things, 1) program number („4‟ in the picture), 2) 

step number („2‟ in the picture), and 3) the parameter you are reading or setting („185°F‟ in the 

picture). 
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Red section: 

This section is for program number and step number selection. There are six available 

programs to choose. Each program could have up to eight steps. Then choose the step number. 

Take the picture for instance, the machine is working on program number 4, step number 2. 

Yellow section: 

This section is for control the data by increasing or decreasing. Any number changing is 

done by this section. 

Blue section: 

This section is for parameter reading and setting. The top row is for reading current average 

temperature, force, and time. It is very useful during the compression process. On the other hand, 



52 
 

bottom row is for setting parameters which need to be done before close the platens. This is the 

most important section. 

Green section: 

This is very useful when you trying to set up time. If you want to have a 12 hours cycle, 

changing in second will be ridiculers. This section allows you to change in hour, minute, or 

second. Other than that it will not be used. 

Purple section: 

This section is for control, such as start or emergency stop.  

 

Example: 

After set up the material and mold properly in the platen, you can start pressing „program 

number‟. Then press „increase‟ or „decrease‟ to adjust the number to desired. Then press „step 

number‟ to step 1. Now you can input the desired parameter. Take heating time for example, 

press „time‟ in setting row, blue section. Then press „increase‟ or „decrease‟ to adjust the time. 

Finally press „save‟ in yellow section. The dwell time is set up. Heating temperature, pressing 

force follow the same rule. When step 1 is finished, press „step number‟ again to enter next step, 

follow the same rule. If want the next step be the end, just press „end‟ in yellow section. Finally 

„save‟ all data, change „step number‟ to 1. Press „start close‟ in purple section, there will be 

multiple lights flashing. Press red button together to send the platen closing. Then after certain 

time, the platen will open automatically and you can remove the mold and material. 
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Notice: 

During the process, you can press read row of blue section, but do not change „program 

number‟ or „step number‟. That will interrupt current program or step. 

Dwell time is not required during preheat or cooling cycles. 

Do not use temperature rate higher than 250°F/min. 

Remember to log equipment time in log book. 
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Appendix V  Knitting Machine User Manual 

In this instruction, the common steps and some important notice will be given in picture and 

description for better understanding. If you follow the rules and steps, you will be able to knit a 

fabric in short time. The crucial part of this knitting machine is the needles. So the first rule is do 

not break or bend the needles. They are fragile under force and very painful when come to 

replacement. But worst-case scenario, the needle replacement, will be shown in the very end of 

this manual. 

Another personal feeling I think should be said in the beginning is that the machine is very 

tricky to use. Every point I emphasized later can play a role in your failure if not being careful. It 

took hours for me to finally figure out a system for success knitting. Now the machine is sitting 

there and ready to work, but it might be moving to another lab in future therefore need to be set 

up again. So I think creating the manual from the beginning is the best way to pass the knowledge 

without losing anything. 

To start with, the proper fiber feeding system should be set up. In the left hand side of the 

machine, there is a small hole allowing the fiber feed in from the spool. 

 

Then the fiber should go into the triangle guider on the erect bracket. The white plastic 

holding it has another function that allows tying the fiber when not using. 
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The fiber goes to the white knob. That controls the friction of the fiber therefore control the 

tightness of fiber when knitting. There are 10 levels. 1 means minimum friction, 10 means 

maximum. The selection of proper friction depends on fiber material. For this glass fiber that 

currently used, minimum friction is the best. There is a V-notch indicating which level it is. 

 

Then the fiber connects the antenna-like spring. When knitting, the spring will go up and 

down to assure proper fiber tension. The criterion of good friction in white knob is the spring will 

not bend all the way down and hit the next part. 

The next part is another guider. The fiber needs to go through the circle. After that, the fiber 

can be tied to the white plastic holder and the set up for fiber is done. 
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Handle, the main part of this machine needs to be introduced. It consist two parts, the white 

plastic one on the top, and the shiny steel part on the bottom. They connect by two white plastic 

knobs that can be unlocked. When knitting, the fiber can go wrong therefore stuck the handle. 

The only way to free the handle is to remove the steel part and untie all the fibers. The density 

control knob pointed out in red controls the knitting distance in wale direction. Since the course 

direction is fixed, it further controls the knitting density. There are multiple levels options. The 

smaller number means higher density. For this material, under level 2 cannot achieve because the 

tighter it goes, the easier fiber breaks. And above level 6 is good starter for a new sheet. The 

switch pointed out in blue is a pattern selector. It offers multiple knitting patterns. But for plain-

weft knitting, it should be positioned like the picture. 

Back to knit a sheet. The next step is set up the needles. Select proper length of needles 

firstly. Due to the knitted fabric curl a lot, make sure to use more needles than the actual fabric 

length you want. Pull the selected needles all the way out. Then slide the handle over them from 
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right to left and come back to right again. I will name it „slide a cycle‟ for better understanding. 

Then the selected needles will become shown in picture, about half inch closer to you. 

  

Then what you need to do is pull every other needle all the way out like the second picture. 

The needle set up is done. 

To here, all the set up is done. Now come to the knitting. Let the fiber follow the path as 

shown in picture. Through center hole of the steel, go underneath the steel, and lay above the 

needles. Left hand should stretch a little to keep fiber straight. 

 



58 
 

Then use right hand proceed slide cycle several times. After succeed in first couple of rows, 

the two weights should be used to stretch the fabric, preventing curl to mess with later knitting. 

 

Even using these two weights helping out, there is a gap in the middle need to be stretched 

by your left hand if the sheet length is like the picture. So I found another way to stretch that is 

using cardboard and push pins.  

  

After nailed the fabric on the cardboard, the left hand can be focused on left and right ends 

of the sheet, because those are the easiest curling locations. So the left hand should stretch the 

sheet when right hand is knitting. Keep knitting with both hands until you have desired length of 

fabric sheet. 

When finished, you need to make knot to every loop manually using certain tool. I named 

that tool „needle pen‟ for better understanding. 
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It is the same needle used in the machine. It consists of two parts, hook and latch. The right 

finger should control the latch when making knot. When starting, place the handle in the very 

right first. And then use the needle pen to hook the first left loop, left hand hold the sheet still. 

 

Then slide right hand forward to make the fiber loop under the latch. 

 

Keeping pressure on the latch, the front hook goes to the next fiber loop. 

 



60 
 

Then close the latch, slide the needle pen backward to finish one knot. 

 

Repeat the same movement to each loop. Proceed with caution, especially right hand. 

Because if you lose it, the entire sheet will be tore apart and all efforts will turn into trash. In the 

right end, the chance of failure raises. So I will highlight this part. 

 

When come to the last loop, stretch more like the picture did. Then hold the loop with your 

left finger. Then use the notch pointed in red circle to cut the fiber. And finally make a knot using 

the circle and rest fiber. 

To here, a brand new sheet is done. 

It may seem hard, but all you need to do is practice. When you can dexterous handle the 

needle pen, you are very close to knit large sheet in short time. 
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Troubleshooting 

This section will generally include two parts, one is a small trick when knitting, another is 

how to disassemble the machine in needle replacement. 

Firstly, when starts knitting a new sheet, the first couple of rows are the easiest place the 

fiber can go wrong. By go wrong it means missing loop. But if you keep knitting, any type of 

missing loop can convert to one and only type of flaw. That is the red in the picture. 
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The loop should not have any contact with the front cylinder like pin. It is very easy to fix 

with a yellow pen like tool in the picture. What you need to do is unhook it. 

The worse case is the handle stuck by the fiber and cannot move. Like said before, do not 

force it, otherwise there is high possibility to bend or even break the needle. You should twist the 

two white knobs and remove the steel. Cut or remove the fiber and start over. 

 

 

The worst case scenario is a needle break and need replacement. I will show a serious of 

picture here to give you a hint how complicated it is. Due to that was done a while ago and only 

once, I am not completely sure that is the best way to do it. But it worked after spent 4 hours 

disassembling and reassembling. So needle replacement is the last thing you want to do. 

Firstly, remove the handle, unscrew and open the plastic lid on the left. 

Then, do the same to right lid. 
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The main part can separate from the shell after remove more screws. But several L-shape 

steel connectors are still on the main part. Mark the positions and unscrew them. 

 

The needles are locked by spring (blue arrow) and a U-shape track (red arrow). 
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Now you need to do is remove the U-shape track by unscrewing. Then the tension on the 

needles is gone therefore you can replace the bad one. 

To here, we are half way done. Now it need to be reassembled. The only thing need to be 

highlighted is how to put the U-shape track back. Since there was spring tension on it when 

removing, it is not the samw way to put back. Now you need to do is pull all the needles out like 

to the right of the blue line. 

 

Then slide the U-shape track in and tight all screws. And use tweezers to pull every single 

needle back and lay on top of the U-shape track. That can be very time consuming. 

 

After finishing the needles, other works are just reversing what you did earlier. Then the 

needle replacement is finished. 
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