
Lehigh University
Lehigh Preserve

Theses and Dissertations

2016

Capabilities of Flight Controllers for UAV Group
Flight
Brendan Sullivan
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Sullivan, Brendan, "Capabilities of Flight Controllers for UAV Group Flight" (2016). Theses and Dissertations. 2828.
http://preserve.lehigh.edu/etd/2828

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2828&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2828&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2828&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=preserve.lehigh.edu%2Fetd%2F2828&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2828?utm_source=preserve.lehigh.edu%2Fetd%2F2828&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Capabilities of Flight Controllers for UAV Group Flight

by

Brendan Sullivan

A Thesis

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Mechanical Engineering

Lehigh University

Department of Mechanical Engineering and Mechanics

May 2016

i

CERTIFICATE OF APPROVAL

This thesis is accepted and approved in partial fulfillment of the requirements for the

Master of Science in Mechanical Engineering.

Date

 Thesis Advisor, Dr. Terry J Hart

 MEM Department Chair, Dr. Gary Harlow

ii

Acknowledgements

 First and foremost, I would like to thank my advisor, Professor Terry Hart, who

gave me the opportunity to work on such a project in a new and exciting field even

though it was new to my area of expertise. Without his support I would not have been

able to explore such interesting and less taught fields as controls and flight optimization. I

would like to thank Picatinny Arsenal, specifically Leon Manole, who provided the

direction and funding for this project. I also want to thank Professor Terry Hart for

bringing on Zachary Rambo (an alumni of Lehigh University with great passion in the

aerospace field) to aid in the building and testing of the UAV’s. Without his expertise

with drones and just hands-on engineering in general this project would not have

progressed so far and so smoothly (even though it was still pretty rocky!). He literally

taught me how to fly a drone, and was able to make my graduate studies at Lehigh that

much more fun.

 Last but not least, I have to thank my family for always being there for me and

trusting me enough to provide for me at my 5+ years at Lehigh University. My parents,

Mike and Cindy Sullivan, have always encourage me to push the limits and I don’t think

or hope they will stop in the near future.

iii

CONTENTS

Abstract 1

1 Introduction 2

1.1 Project Background 2

1.2 Objectives 3

2 UAV Testbed 5

2.1 Mechanical Design 5

2.2 Flight Controller and Software 9

2.3 Pixhawk Architecture 12

3 UAV Testing and Flying 17

3.1 Mission Planner Data Log Analyzer 17

3.2 Mission Planner “Swarming” 25

4 Kalman Filtering 32

4.1 Kalman Filtering Implementation 32

4.2 Kalman Filtering Tuning . 36

5 Conclusion and Future Work 41

iv

LIST OF TABLES
2.1 Hexacopter Specs 7

4.1 Tuning Parameters 37

LIST OF FIGURES
2.1 Hexacopter UAV 6

2.2 Quadcopter UAV 9

2.3 Pixhawk Connection Schematic for UAV 11

2.4 Person to UAV Block Structure 13

2.5 Ground Station to UAV Block Structure 13

2.6 Flight Stack Block Schematic 15

2.7 Hexacopter “X” Motor Layout 16

3.1 Altitude Analysis 18

3.2 Roll Analysis 18

3.3 Vibrations 19

3.4 Compass/Motor Interference 20

3.5 UAV Compass Mapping 22

3.6 X and Y Velocities 23

3.7 Mission Planner’s “Swarming” Command Setup 27

3.8 Programmed Waypoint UAV Flight 28

3.9 Waypoint Action Item List 28

3.10 Mission Planner Representation of UAV 29

4.1 Earth Velocity Measurements 35

4.2 Earth Position Measurement 35

4.3 Body Magnetic Field Flight Data Logs 38

4.4 Magnetometer In-Flight Noise Levels 39

4.5 GPS Location (Raw) 39

4.6 GPS Location (Filtered) 40

1

ABSTRACT

With the advancement of single UAV flight control there is a clear understanding

of the importance for future group UAV distributed control. This will in turn lead to

scenarios of “smart” communication between UAV teams. This hierarchal chain reaction

type control of UAV’s will provide more enhanced real time flight pattern optimizations

without the slow interactions of a UAV to a computer (aka a human). By relaying to just

the “Master” from the ground station to switch trajectories the human interaction never

needs to go any further to update the flight formations of the rest of the group members.

This type of “swarming” with UAV’s is only possible with the correct hardware and

software improvements. This is especially true when the trend for UAV “groups” are to

be higher in number and therefore much smaller (the size of an iPhone).

Apart from the already existing ways to manipulate flight paths – hardware

including better GPS locating and new censoring technologies for collision/spatial

recognition – software limitations are apparent to be the next large hurdle. To accomplish

such interactions between UAV’s, optimal flight patterns must be attained before any

inter-communication can be implemented. Current designs follow the traditional PD/PID

control schematics, but these lack the requirements to correct for real-world disturbances.

Kalman filtering control design on the existing architectures of the Ardupilot and Lisa/S

flight controllers was implemented to produce the most accurate flight paths of the

UAV’s.

2

CHAPTER 1

Introduction

1.1 Project Background

 The use for UAV’s is becoming prevalent in many different industries and for

many different jobs. The drastic reduction in costs needed to build, implement and run

UAV’s coupled with the replacement for direct human contact makes UAV’s a great

resource. Other projects at Lehigh University that pertain to the birth of this undertaking

deal with decreasing the size and payload capacity of UAV’s to be launched quickly and

effectively from the ground. In particular the group is trying to make a UAV that can fit

inside a 40mm and 60mm tube, launched from said tube (aka endure a lot of force upon

launch), open up in flight and start its task. Apart from the mechanical/aerodynamic

design needed for creating such a projectile the next steps include actually having the

UAV be as effective as possible during flight. The future of such a project is what this

thesis set out to explore.

Once optimized UAV’s can be launched from any platform and in any situation as

quickly as is required. Lack of real time active response among UAV’s to changing

environments or mission parameters is not optimal. Constant communication between a

human(s) and several different UAV’s in a formed group can be time detrimental and

impractical. The obvious progression of such technology is to create interactions and

communication between the UAV’s, which can best be described as autonomous flight or

3

known in the technical world as swarm behavior (abbreviated throughout also as

swarming).

Significant prior research and many scholarly articles can be found on the

dynamics of flight controls. They mostly deal with controlling changing parameters with

flight conditions of UAV’s. There have been very few approaches on an autonomous

level of communication between these vehicles, and these only involve computer

interaction to each individual UAV not computer to one UAV and then UAV to UAV

interactions.

1.2 Objectives

The long term goal of this project is to create a team of UAV’s that are able to be

easily deployable in the field on a minutes notice. These UAV’s will communicate

amongst each other to realize a central mission, designated to the “Master” of the group

by a human controlled ground station. This overall plan is estimated on a 4-5 year

timeline realized only upon future technological progress of software and hardware. Such

advancements include flexible electronics, higher resolution and further developed tech

for collision avoidance, etc. Work that can be more solidified by myself in the shorter

time period of 1.5 years deals with testing the theory of swarming amongst UAV’s by

building a UAV testbed of 4 hexacopters.

While mathematically there are plenty of theories and equations governing

swarming or particle swarm optimization, not to mention examples in the real world

(most notably with birds), there is still a large hurdle to apply this technique to flight

programming/controls. This is mainly due to the fact that implementing these governing

4

equations/algorithms to mimic swarming are highly process intensive. The first step of

this project was to test the current systems that had supposed swarming capabilities. After

understanding the limitations on the current technology either corrective algorithms

would be written or a new process to resemble swarming would be created. This process

took roughly .5 to 1 year and ended in changing the focus of this thesis.

As the project progressed it became quite evident that swarming was a long ways

away from being implementable in flight patterning. What did become apparent is the

lack of a true architecture in place that could support certain more advanced control

algorithms for flight path optimization. Current systems use almost a multitude of

different hardware/software components to act as a “complete” system. Better put,

several different very basic methods act as buffers and redundancies for and to each other

(accelerometers coupled with GPS, etc.). The focus of this thesis changed to look into

analyzing the control systems behind “how” the hexacopters fly and to improve upon

those by applying Kalman filtering. This would be accompanied at the same time by

understanding what it takes to create a ~.2 scale of the created hexacopters.

5

CHAPTER 2

UAV Testbed

2.1 Mechanical Design

The first step in analyzing UAV group flight is to actually build a platform for

testing such devices. The UAV testbed was chosen to consist of 4 hexacopters, one of

which is pictured below in Figure 1.1. The first consideration for building these

hexacopters was making them small enough to easily house the components but not be

too much to handle while transporting and flying. The hexacopters also needed to model

what an actual 60mm tube launched UAV could be down the road, so a roughly 5-scale

model was chosen. The symmetric frame design made it so placing the center of mass

was easier, there was no need to worry about the frame itself attributing to the mass. The

frame shape also allowed for the easy attachment and support structure for 6 props. More

specifically, a 6 prop UAV – hexacopter – was chosen to provide redundancies in case of

inflight complications. If any of the props broke (which happened quite often) the

individual controlling the UAV could compensate with the other props to land the

vehicle, and actually still fly if wanted.

6

Figure 2.1: Hexacopter UAV

The hexacopter has a relatively small air-frame, 260mm class, because it doesn't

have to hold much; a small camera, a flight controller, and a battery. The frame of each

hexacopter was comprised of two 3D printed plates. The two plates functioned to provide

easy placement of all components (and subsequent movement when needed). Another

reason for having two plates on top of each other is allowing certain components – the

flight controller and radio controller – to be on separate “levels” for the different

frequencies to interfere the least. This also allowed for the compact battery fitting on the

frame by being attached below the plates by Velcro. Another separate attachment feature

(shown projecting out ~4 inches from the top of the hexacopter in figure 1.1) needed to

be added later on to deal with the interference from the GPS “puck” signal. 3D printing

everything kept costs low and made it very easy to print in different colors, and this was

extremely important as many times during flight 2 people would have to watch 4

hexacopters and therefore recognizing each one by bright colors (red, green, white, and

7

blue). 3D printing made it very easy to change the design of the hexacopter. At one point

after some testing we decided to alter the shape of the frame, and it was a very quick,

inexpensive fix.

A complete list of components and specs of the UAV are listed in Table 1.1

below. The Multistar motors were the best at the time for the size, the props almost touch

and provide the most pull from these motors. All other motors were either too heavy, or

too tiny and wouldn't produce enough thrust. 6x3 props were chosen because they

provided easier take off and we didn’t really care about having a faster speed, or else we

would’ve used a prop with more thrust; like a 4.7x.4.7 prop. The battery was compact

enough to easily fit on the air-frame of the hexacopter but strong enough to provide

plenty of flight time, which was important at points for testing all hexacopters at once on

a planned loop course when leader-follower schema was in place (and therefore it took

some time to set up and actually complete the course).

Hexacopter Specs Vendor Stats

Motors (6) Multistar 2206 2150 KV

ESC’s (6) Multistar 10 amp V2 with BLheli firmware

Props (6) Generic 6x3 2-Blade

Battery (1) Zippy 3S 2200mah Li-Po

Radio Controller Pixhawk 2.4 GHz Spread Spectrum

Radio Transmitter Spektrum DX6i 2.4 GHz, 6-channel transmitter

Flight Controller Pixhawk PX4 w/ GPS & Telemetry

Static Thrust - 2760 g Total

Flying Weight - 950 g

Avg. Flight Time - 10 minutes

Top Speed - 16 m/s

8

The second main consideration was making the hexacopters robust enough,

through design, so they could survive plenty of crashes. As learning how to fly UAV’s

was new to myself and takes a “slight” learning curve to get used to, this aspect was

important. The motors and props were attached by poplar wood arms. These provided

enough rigidity to not flex in flight but offered the desired flexibility when crashing

where they would either distribute the forces or take all the damage, splinter, and break

off without other parts of the hexacopter being ruined. Not to mention the wooden arms

are cheap and easy to replace. 12 screws held the entire hexacopter together except for

the motor mounts, where 6 screws were used.

When Lisa/S testing started another UAV was built (Figure 2.2 below), this time

it was a simple quadcopter kit that was bought off the shelf. The design of which could

easily hold all Pixhawk and Lisa/S components as the original testbed and in this case it

was made to hold a larger battery and house larger props. This UAV allowed for longer

flight times and quicker speeds. This quadcopter was built to transfer from the Pixhawk

to the Lisa/S and to understand how the Lisa/S flight controller works.

9

Figure 2.2: Quadcopter

While both designs lend well to robustness and adaptability, which was needed

several times, in the long run they actually became a hindrance. After learning about all

the hardware components and how they interact with each other and affect the flight of

the hexacopter and more so understanding the lags/limitations associated with the parts it

became apparent that the system as a whole was nowhere near advanced enough. To truly

test the effectiveness of varying the flight controller parameters for the flight control

architecture much more advanced system hardware would be needed to compliment the

software.

2.2 Flight Controller and Software

Choosing to use the Pixhawk PX4 flight controller was one of the first and

foremost decisions that was made when building this testbed. The Pixhawk PX4 is an

10

inexpensive all in one unit; housing FMU (Flight Management Unit) and IO

(Input/Output module) aspects. This flight controller was chosen because it is widely

used and already has autonomous flight capabilities with a reasonably proven “beta”

swarming setting. It was quickly learnt that when Pixhawk advertises “swarming” all

they really mean is that you can control multiple UAV’s for extended autonomous flight,

no actual inter-communication but still multiple computer-drone interactions. The

Pixhawk is also very easy to “plug and play,” as you can see in Figure 2.2 below. It is

already set up to work directly with “ground station” simulating computer programs such

as Mission Planner, where you control the autonomous flight features and paths for the

UAV’s.

The Pixhawk also has a solid architecture for connecting with any of the other

hardware components that were required; radio controller, GPS, etc. The Pixhawk turned

out to be a perfect fit for the testbed in understanding how the system works. Down the

road the Lisa/S was swapped in because of its size and the future projects it can be

utilized in, compared to the larger, bulky and user friendly designed Pixhawk.

The Lisa/S flight controller is optimal for very small scale operations, it is

20x20x5 (mm) and only weighs 2.8g. The Lisa/S while being smaller still has the

capabilities to sustain autonomous flight (the company advertises its autonomous feature

heavily) and other than not having as much processing power and architecture for easy

adaptability as the Pixhawk is very similar to it. The point of research to look into the

Lisa/S was to examine whether or not it had the capabilities to add components to its

flight control architecture.

11

Luckily in the new and rapidly growing field of at home UAV’s most all of the

source codes of these components are open source. Both the Pixhawk and Lisa/S are open

source and this helped greatly in working with the code. The companies of both flight

controllers willingly lend the code for their consumers, and sometimes contributors can

even end up providing code updates and fixes for them. Throughout the whole project the

multitude of questions that needed to be answered were done by peers through forums

and support channels.

Figure 2.3: Pixhawk Connection Schematic For UAV

12

The flight controller is the medium between the UAV flying and inputs from the

user’s handheld transmitter. In the case of autonomous flight the flight controller

communicates with a ground station (running on a laptop) and for this research Mission

Planner was chosen. Another very similar program that could have been used is

QGroundControl. Mission Planner is essentially the ground station to communicate with

the UAV. The setup and design is very straightforward and set up to be extremely user

friendly. The main aspects of MP that made it the perfect program are:

- It is made to work with the Pixhawk flight controller

- Can quickly setup, configure, and tune the parameters of your UAV for

performance

- Can plan, save and load autonomous flight paths with waypoints on a GPS

controlled map into the UAV

- Allows you to download and analyze all of the logs created from autopilot

- Allows you to monitor all of the vehicle’s status while in autopilot mode

Mission Planner ended up being very helpful in seeing what types of latencies were

inherent in the systems’ components and allowed us to better analyze changes to the

flight controls later on.

2.3 Pixhawk Architecture

 The flight controller is the medium between the UAV flying and inputs from the

user’s handheld transmitter. In the case of autonomous flight the flight controller

communicates with a ground station. The high-level software architecture is set up very

simply to exchange blocks quickly and easily. Below are the two different scenarios for

13

I/O structures in the Pixhawk (Figures 2.4 and 2.5). Each of the blocks below is self-

contained in terms of code and dependencies, connected to other blocks by the arrows

through I/O or publish/subscribe calls.

Figure 2.4: Person to UAV Block Structure

Figure 2.5: Ground Station to UAV Block Structure

14

While the architecture for transmitter to UAV communication is straightforward

the UAV to ground station has several extra blocks that delegate inputs. These

interactions are controlled by "business logic" applications including the commander

(general command & control, e.g. arming), the navigator (accepts missions and turns

them into lower-level navigation primitives) and the MAVlink application (creates the

publish/subscribe data structures and consumes sensor data and state estimates).

The PX4 flight stack was chosen over the APM ardupilot because it is the newer

updated model; with a modern-32 bit processor it can handle such aspects as if a motor

fails the system automatically can adapt to turn it from a hexacopter to just a quadcopter.

While the APM 2.5+ is more well documented because it is older the PX4 is still all open

source so really no issue for getting used to it. The PX4 already includes controllers in its

flight stack for multirotor airframes (where going from quad- to hexa-copter was no issue

at all). The flight stack itself is a collection of guidance, navigation, and control

algorithms and estimators for attitude and positon for the autonomous flight being tested.

Below is an example of the implementation of these blocks. Another great aspect of the

PX4 is the fact that it already has simulation software for running the autopilot. This

came in handy at many times when testing different applications without having to

actually fly the UAV’s.

15

Figure 2.6: Flight Stack Block Schematic

 The above “mixer” block is basically what defines the flight output parameters for

the UAV, <turn right> command is defined as actuator commands controlling the motors

and servos. In the case of multirotor airframes the mixer combines 4 control inputs (roll,

pitch, yaw, and thrust) into actuator outputs driving the motor speeds in relation to each

other to get the desired output, <turn right>. This is where the ESC’s come into play,

which are simply electronic speed controllers for each motor that take those desired

output commands. The motor map becomes designated in the hexacopter “X” layout as

the numbers in the below Figure 2.7 and can be see implemented on the actual UAV in

Figure 2.1. The main difference between another common “+” layout is the offset rotors

from the point of heading.

16

Figure 2.7: Hexacopter "X" Motor Layout

 The whole code is able to be seen, edited and uploaded back onto the UAV’s

flight controller through Github (links located in the Appendix).

17

CHAPTER 3

UAV Testing and Flying

Creating the test bed and accomplishing autonomous flight with the ground

station let us initially look at the effectiveness of these systems. Before adding the strain

of the formation and flight pattern algorithms the inherent problems (latencies, lagging,

etc.) in the system needed to be understood and documented so they could be accounted

for in the long run. The starting point was using Mission Planner’s built in data analyzing

aspects to optimize the flight of each individual UAV. Then more group testing was

needed to understand how the “leader” during “swarming” interacts with the ground

station and then how that is transferred to the other 3 “follower” UAV’s. Mission Planner

turned out to be perfect for creating different flight paths with waypoints and being able

to log the data for later studies. The program also easily allowed for the user to control,

edit and create new commands/parameters beforehand and some of them in real time.

3.1 Mission Planner Data Log Analyzer

Mission Planner has a built in data log analyzer for comparing the real to the ideal

flight data. For example, in Figure 3.1 below you can see that the planned altitude is in

green and the actual altitude is in red (relative in blue). In areas where the red line is

further off the planned “course” you can speculate that most likely wind disturbed the

system to the point that an immediate reaction by the UAV mixer wasn’t possible and it

18

needed time to get back on the path, and in some cases overshoots or take its time to

recalculate (right around 1 min mark).

Figure 3.1: Altitude Analysis

Mission Planner’s data logs allowed the assessment of any type of failure and to

most accurately describe it as mechanical, vibrational, compass interference, GPS

glitches, power problems or unknown. Below are examples of each type of failure that we

experienced and were able to contribute to a specific problem.

Mechanical Failures

Figure 3.2: Roll Analysis

19

- The huge divergent oscillations in roll indicates a mechanical failure; motor, prop, or

ESC failure. This can also appear from a pitch graph. This wasn’t as useful since you

can clearly see when this happens in flight and usually can clearly speculate on the

mechanical failure before needing to analyze the logs.

Vibrational Excitations

Figure 3.3: Vibrations

- Vibrations can be the direct cause of problems with the altitude hold and loiter

commands. As seen above vibrations are most easily understood through graphing the

accelerometer values AccX, AccY, and AccZ values. AccX and AccY are primarily

used for the horizontal “x-y” positon control and AccZ is vertical “z” position control

(with acceptable ranges are in the above Figure 3.3). If the UAV falls within these

ranges when hovering then you are safe to assume during flight any momentary

outlier is probably just due to the movement of the UAV.

- To reduce this vibration the flight controller was attached to the airframe by sticky

rubbery/foam pads (3M foam from 3DRobotics), this reduced high/medium

20

frequencies while still allowing the low frequency board movement from flying

movements. Some other interesting and simple ways to accomplish this found on

forums from other users was simply platforming the flight controller on a double bed

frame held together with o-rings or even earplugs.

Compass and Magnetic Interference

Figure 3.4: Compass/Motor Interference

- This was an extremely important factor in dealing with troubleshooting problems.

Compass interference is when any of the various electrical components on the

airframe (motors, ESC’s, battery, PD board, etc.) throws off the compass heading.

The process to calibrate magnetic interferences works only if you have a battery

current monitor, where the magnetic interference is linear with the current drawn

(which is due to how much throttle output). The process was simple, you secure the

UAV to the ground and with Mission Planner’s “Compass/Motor Calibration” open

you variably increase and decrease the throttle to introduce into the system the

21

magnetic interferences. An ideal UAV that has no interferences from current changes

is above in Figure 3.5 (given this never actually happens so perfectly).

- Problems with magnetic and compass interference can create catastrophic and very

annoying problems with the UAV’s, where “toilet-bowling” or just flying off in the

completely wrong direction can occur (which happened quite a bit). We found that an

acceptable amount of magnetic interference is ~10-20% but a flyable amount is more

in the 5-10%. At one point when the testbed was first built the magnetic interference

was around 1000%.

- Once calibration is performed the system knows more of how to compensate out, as

much as possible, these interferences by switching how it routes power to the

different ESC’s and motors. Further ways to reduce interference include moving

around the components on the airframe (the GPS+compass puck up and away on a

mast as mentioned previously), making all the connecting wires as short as possible,

replacing the ESC’s with a 4-in-1 ESC, and add aluminum shielding to certain

components and around wires. Other ways to work with decreasing the magnetic field

is trying to increase the voltage as much as possible to decrease the current draw.

Interference readings of <25% were usually what was sought out, anything higher and

the autopilot mode would not function correctly.

22

Figure 1.5: UAV Compass Mapping

- Accurately setting up and calibrating the compass is extremely important as it

provides the heading for the UAV. Without this heading the autopilot mode is

practically impossible. With an internal compass the UAV has the most trouble with

interferences, it gets better with an external compass and a UAV can be programmed

to take up to 3 on board compasses. At the startup of every UAV connection with the

ground station you can perform a live compass calibration/mapping (Figure 3.10

below), essentially spinning the UAV in circles slowly to get its orientation. This

calibration also lets you know if there is any magnetic interference present. The trail

from the rotating UAV is colored, where yellow and red indicate medium and high

levels of magnetic interference.

23

Other Analyzable Data

Figure 3.6: X and Y Velocities

- Velocities were good to analyze to see how well the ground station/flight controller

were handling controlling the flight of the UAV’s. Optimally the velocities would

follow a perfect line, not bumpy, but that is not practical. This allowed us to see how

quick the response time was to any fluctuations to the system (wind pushing it off

course and having to speed up to relocate) and to in general improve on the

oscillatory nature in the system (working with the motors and ESC’s to reduce the

size of these ups and downs that the flight controller allowed). In the end this wasn’t a

large concern except for in certain areas you can see where the proposed speeds were

changing quickly and the UAV overshot a good amount such that is almost misses the

next speed change (around horizontal tick mark 8-10).

The data logs were helpful in reading how far off the real value was from the

intended value, as seen in the red and green lines of the various graphs above. This was

extremely helpful in tuning the gains of the UAV’s (pitch, roll, etc.). While an

experienced MAV controller can usually do this by feel it wasn’t practical to do this at

the start of every flight with so many UAV’s and such little battery lives. So with the help

of these graphs we were able to a good underlying “start” point for all the gains. We

24

looked to optimize such that it would allow for a slight overshoot (since that is not a large

issue) but the quickest reaction time to get back on the right path and least oscillations

afterward.

One factor during flight that was pretty much impossible to correct for through

the software was GPS glitches. After all of the flight tests it was obvious that the UAV’s

were most easily affected by loss in GPS, once compass interferences were left out.

Lehigh’s mountaintop campus had ~11 satellite locks and that was nowhere near good

enough to be foolproof. This created a cascading effect if the leader’s GPS lock was lost.

In one such flight test one of the follower UAV’s lost GPS signal and went off path, so it

wasn’t in its correct X-Y position coordinate in “swarming” mode relative to the leader.

Once the UAV regained signal it took too long to return to its path before slamming into

another of the following UAV’s. While this could also be attributed to the flight path it

took to get back on its correct path, to solve that problem would require to implement

inter-communication between the drones or a more complicated algorithm to assess the

correct flight path immediately from its new incorrect point to not overtake any other

UAVs’ flight path. This is definitely doable and is a future step consideration (definitely

an important aspect to note).

Another large factor is just the loss in connection between the transmitters of the

ground station to the receivers of the UAV. The quickest way to get around this was

trying to fly in open areas with nothing that could block the frequencies, aka trees. You

could fix these issues with hardware updates or using a land based GPS external locating

station to add better, more consistent GPS, but those are expensive and not practical for

these purposes.

25

In the end all of the analyses from Mission Planner helped to stabilize the UAV’s,

work out the bugs and optimize the hardware as much as possible. In most cases it meant

changing the firmware/software but in some cases it helped to make changes on the

airframe itself. As mentioned before, this is where it became apparent to move the GPS

puck 4 inches above everything else because there were too many GPS glitches and

compass interferences. We also had to switch the location of the radio receiver for

interference purposes with the motors. We ran diagnostics to change the frequencies for

the ESC’s and motors so they wouldn’t interfere. Once we moved on from updating and

optimizing each individual UAV we were able to focus more on the swarming feature of

Mission Planner and group flight.

3.2 Mission Planner “Swarming”

The first several individual flight tests took months – with the main issue that kept

arising being troubleshooting – so it definitely made transitioning to group flight that

much easier. It did take various tests to get the correct setup for connecting the UAV’s

with the computer and making sure that every single one was designated as the correct

unit, leader or follower. The general rundown for setting up a swarming procedure is as

follows:

- Connect each UAV to the ground station to upload any coding changes and connect

with the flight controller. During this stage you can turn on the UAV and make sure

that GPS locating occurs correctly.

- Once all UAV’s are connected each one of their radio transmitters are hooked up to

the ground station.

26

- Once a flight path has been created and uploaded into the program and the UAV’s

have been set in the field you are ready for takeoff.

- A secondary chart window pops up that provides the “swarming” data. On this screen

you can toggle between two 2D coordinate maps to create the 3D positioning of the

UAV’s in relation to the “leader” you have designated. In particular Figure 3.7 below

shows the X-Y coordinates of a UAV (abbreviated MAV sometimes) in relation to

the leader, designated as the center point. The other 2D map shows the Z axis. At the

same time you can see the positions of all UAV’s in relation to the earth in the main

Mission Planner window.

- Once you press start the UAV’s will assume the correct positions and hence start the

planned flight path. The leader will start and the other UAV’s will follow, while

trying to stay in the correct positions the whole time.

- At any point you can toggle a designated switch on the handheld transmitter to switch

the UAV autopilot to user controlled to manually take over if anything goes wrong.

27

Figure 3.7: Mission Planner's "Swarming" Command Setup

An example of a planned route, conducted on Lehigh’s University’s Goodman

Campus is in Figure 3.8 below. Each point represents a waypoint or the takeoff/landing

points. There is a way to alter the commands at every single point, which is the

screenshot (Figure 3.9) of the command list from Mission Planner. For example, you can

make the UAV’s hover or loiter for a certain amount of time, change altitudes by design,

and a good amount of other commands. When loitering you can plan for the UAV to go

in x number of circular loops around that waypoint before proceeding on the flight path,

which obviously for reconnaissance or search and rescue is important. This is also

important a lot of time for agriculture, where designated paths can be set and certain tasks

be performed at certain points. Apart from at the specific locations themselves you can

command the UAV’s to fly certain ways when transitioning through the waypoints. So

28

for instance if you want more of a smooth flight path you can spline the point, or you can

go through the waypoint and plan for an overshoot, or just the quickest route in general.

Figure 3.8: Programmed Waypoint UAV Flight

Figure 3.9: Waypoint Action Item List

 Examples of planned individual and group missions (failed, catastrophic, and

successful) that were flown were logged and saved, they can be located from the link in

the Appendix. By downloading and installing the free program Mission Planner one can

upload any flight and play it from start to finish, while also being able to analyze the data.

Essentially you are able to see all aspects of flying the UAV’s. The UAV is represented

29

as a simple quadcopter (Figure 3.10) and has 3 leading lines extending from it. The black

line the GPS track and the red line is the current/actual heading. The orange line is

designate as “Direct to Current WP,” which is the current directional vector to the next

waypoint. This is most useful to understand what the UAV is doing transitioning between

waypoints.

Figure 3.10: Mission Planner Representation of UAV

What became most apparent in the first several flight tests is how the “follower”

UAV’s communicate with the “leader.” Each individual UAV communicates with the

ground station (Mission Planner on a laptop) and all inputs and outputs go through the

computer. When a “mission” starts the GPS location of each UAV is shown and the

followers rely only on the GPS location that Mission Planner is receiving from the leader

UAV. Of course the limitations of this type of communication architecture is simply

more areas for signals to be lost or slow. In the future some type of inter-communication

sub-structure on the flight controller can easily be created (and there is a ton of research

30

being done currently on this with everything from cameras, lasers, simple radio, rf

readers, etc.).

Another aspect of Mission Planner that was used is to create and implement user

defined commands. One of the first things we noticed is that Mission Planner does not

allow you to switch the drone into Autonomous Mode and start the mission without the

UAV already in flight (which is strange because it has a built in command “Take-Off”).

We were able to implement in the command structure MAV_CMD_COPTER, not

technically a command but as an Action item parameter. This allowed the UAV to be

toggled into Autonomous Mode while on the ground, disarmed and start the mission; ie.

take-off to the preset altitude from the ground without the user. In this example it became

very easy with the user friendly command parameters interface to edit parameters,

commands and action items to control the UAV’s flight.

At the same time you can set it up to make certain commands/actions _DO_

commands, such so they are only executed if another parameter is met. This made it very

easy that if a certain command structure was ignored or failed then a failsafe command

would be executed (usually return to some path or return to home). Other types of uses

for this is with editing the yaw of the vehicles. Interestingly the yaw of each UAV is not

pre-programmed in the autopilot. So you can either have the user control it himself from

a transmitter during flight or create a command/action item MAV_CMD_CONDTION

_YAW to point the vehicle in the specified heading for a certain amount of time. If the

user does change the yaw it does not affect the flight path. We did implement some

protocol to show how the yaw can be pre-programmed and it is very useful for anything

like reconnaissance or for search and rescue (applying maximum coverage area to more

31

important sectors, etc.). To go along with the yaw you can also pre-program commands

to control autonomous on-board camera functions, like take a picture once you reach X

waypoint, hover for Y seconds, and turn to Z yaw.

The end result of working with Mission Planner is that you can manipulate the

UAV’s with plenty of commands that allow you to get a good feel for how and why the

UAV’s do certain things in flight (apart from the “mission”). This gave a really good

base, or control state, that later on analyzing flight control algorithms was a lot easier.

32

CHAPTER 4

Kalman Filtering

4.1 Kalman Filtering Implementation

As said previously the Pixhawk PX4 flight controller’s code is all located on

Github as an open source code for anyone to download, edit and upload to their own

UAV for testing (instructions to do this can also be found at http://dev.px4.io/tutorial-

hello-sky.html). The process is extremely simple and straightforward to apply any new

application/commands/parameters to the code.

 Kalman filtering is basically an optimal estimator, it takes in data noises and

“filters” out those noises. The beauty of such a filter is that it can react in real-time to

correct a flight path to unexpected and un-programmed changes in an environment.

Kalman filtering was chosen to explore as an option to better “tune” the flight controller

because it is fairly straightforward and easy to implement (much of the math around

Kalman filtering is readily found for application uses or study). The most significant

factor of using a Kalman filter is that it cannot only correct for otherwise problematic

inputs on the UAV but can change the state estimates to reflect these new measurements.

While the default tuned parameters of the UAV can allow it to fly, when you

move to autopilot the reaction times of the user are decreased greatly to the reaction times

of the ground station. In the end of all the flight tests we tuned the UAV’s as well as

possible but GPS was still a huge issue. The Pixhawk’s current attitude estimator is DCM

http://dev.px4.io/tutorial-hello-sky.html
http://dev.px4.io/tutorial-hello-sky.html

33

(direct cosine matrix). Instead a Kalman Filter was applied to the system, and fairly

quickly we moved to just implementing an Extended Kalman Filter (EKF). This extended

kalman filter algorithm uses accelerometer, compass, GPS, gyroscope, airspeed and

barometric pressure to estimate the position, velocity and angular orientation of the flight

vehicle. You can implement the EKF estimate as a compliment to the DCM to detect

excessive errors or you can just run the EKF solely as the attitude estimator (which is

what was attempted). The main reason for the EKF is for highly more accurate handling

of GPS data loss, which is the largest issue if you were to update all the

hardware/firmware (Figures 4.3 and 4.4).

The following is a basic description of how the filter works (author of the original

code/directions is Paul Riseborough, code in Appendix A):

1. Inertial Measurement Unit, IMU, angular rates are integrated to calculate the

angular position

2. IMU accelerations are converted using the angular position from body X,Y,Z to

earth axes and corrected for gravity

3. Accelerations are integrated to calculate the velocity

4. Velocity is integrated to calculate the position

This process from 1) to 4) is referred to as ‘State Prediction’. A ‘state’ is a

variables we are trying to estimate like roll, pitch yaw, height, wind speed, etc.

The filter has other states besides position, velocity and angles that are assumed to

change slowly. These include gyro biases, Z accelerometer bias, wind velocities,

compass biases and the earth’s magnetic field. These other states aren’t modified

34

directly by the ‘State Prediction’ step but can be modified by measurements a

described later.

5. Estimated gyro and accelerometer noise (EKF_GYRO_NOISE and

EKF_ACC_NOISE) are used to estimate the growth in error in the angles,

velocities, and position. Making these parameters larger causes the filters error

estimate to grow faster. If no corrections are made using other measurements this

error estimate will continue to grow. These estimated errors are captured in a

large matrix called the ‘State Covariance Matrix’.

Steps 1) to 5) are repeated every time we get new IMU data until a new

measurement from another sensor is available.

If we had a perfect initial estimate, perfect IMU measurements and perfect

calculations, then we could keep repeating 1) to 4) throughout the flight with no

other calculations required. However, errors in the initial values, errors in the

IMU measurements and rounding errors in our calculations mean that we can only

go for a few seconds before the velocity and position errors become too large.

The Extended Kalman Filter algorithm provides us with a way of combining data

from the IMU, GPS, compass, airspeed, barometer and other sensors to calculate a

more accurate and reliable estimate of our position, velocity and angular

orientation.

An example of the above steps being utilized is:

6. When a GPS measurement arrives, the filter calculates the difference between the

predicted position from 4) and the position from the GPS. This difference is

35

known as an ‘Innovation’. An example of the Innovations that are recorded are in

Figure 4.1 below. They show the innovations for the N, E, D GPS velocity

measurements, which show the health of the navigation filter. If you have good

quality IMU and GPS data it should look like the image below, with small to zero

measurements. These measurements would help in real flights by running the

diagnostics to see if while not moving the vehicle had any value for Earth

velocities, and if so you can offset and make the starting point or “noise” level for

the offset that amount. Same concept but with position is shown for the x-y

coordinate in the next Figure 4.2.

Figure 4.1: Earth Velocity Measurements

Figure 4.2: Earth Position Measurement

7. The ‘Innovation,’ ‘State Covariance Matrix,’ and the GPS measurement error

specified by EKF_POSNE_NOISE are combined to calculate a correction to each

of the filter states. This is referred to as a ‘State Correction’.

36

This is where the Kalman Filter is important, it can correct measurements other

than the ones being measured. For example GPS position measurements can also correct

errors in position, velocity, and angles. The amount of correction is controlled by the

assumed ratio of the error in the states to the error in the measurements. If the filter thinks

its own calculated position is more accurate than the GPS measurement, then the

correction from the GPS measurement will be smaller. The accuracy of the GPS

measurement is controlled by the EKF_POSNE_NOISE, making this parameter larger

causes less accuracy.

8. Because we have now taken a measurement, the amount of uncertainty in each of

the states that have been updated is reduced. The filter calculates the reduction in

uncertainty due to the ‘State Correction’, updates the ‘State Covariance Matrix’

and returns to step 1)

4.2 Kalman Filtering Tuning

Once the EKF is setup to run on the UAV you still need to conduct tuning on ~25

parameters to get the best baseline for the navigation filter to work off of, the parameters

are in Table 4.1 below. Essentially tuning these parameters allows you to pick which

measurements you want the filter to “trust” or consider more than others. For example, if

you think the accelerometer is cheap and not working great you can tune the value such

that the filter does not recognize changes in the sensor much (there would need to be a

large spike or something for the filter to take it into account). Of course these tuning

parameters can change due to location and even from UAV to UAV, since the motor

layout, wind, interferences, etc. can easily be different.

37

Designation Function

EKF_ABIAS_PNOISE Vertical accelerometer bias state error

EKF_ACC_PNOISE Accelerometer measurement errors

EKF_ALT_NOISE RMS value of noise in altitude measurements

EKF_EAS_GATE Airspeed measurement consistency check

EKF_EAS_NOISE RMS value of noise in compass measurements

EKF_GBIAS_PNOISE Speed and noise amounts of gyro bias state error

EKF_GLITCH_ACCEL Maximum allowed difference horizontal acceleration

between predicted filter value and GPS measured value

EKF_GLITCH_RAD Maximum allowed difference horizontal position

between predicted filter value and GPS measured value

EKF_GPS_TYPE Whether or not to use GPS velocity measurements

EKF_GYRO_PNOISE Estimated error from gyro measurement errors (excludes

bias)

EKF_MAGB_PNOISE Body magnetic field state errors

EKF_MAGE_PNOISE Earth magnetic field state errors

EKF_MAG_CAL Active learning during flight of needed magnetometer

offsets

EKF_MAG_GATE Magnetometer measurement consistency check

EKF_MAG_NOISE RMS value of noise in magnetometer measurements

EKF_POS_DELAY msec that GPS position measurements lag being inertial

measurements

EKF_POSNE_NOISE
RMS value of noise in GPS horizontal position

measurements

EKF_POS_GATE GPS position measurement consistency check

EKF_VELD_NOISE RMS values of noise in vertical GPS velocity

measurement

EKF_VELNE_NOISE RMS values of noise in North/East GPS velocity

measurement

EKF_VEL_DELAY msec that GPS velocity measurements lag behind

inertial measurements

EKF_VEL_GATE GPS velocity measurement consistency check

EKF_WIND_PNOISE Noise controlling growth of wind state error estimates

38

EKF_WIND_PSCALE Changes rapidness of wind states adapting to changing

altitude

Figure 2.1: Tuning Parameters

Some examples of analyzing data to set certain of the parameters above are with

EKF_ALT_NOISE, EAS_NOISE described in Figure 4.1 above. Another very easy to

understand example of the filter in action is in Figure 4.3 below. Graphed are the body

magnetic fields biases and by flying at a low speed for a 15 minutes you can see how the

lines slowly change. This is basically the filter ‘learning’ the earth’s magnetic field.

Afterwards you can know that the magnetic body field in the X coordinate stabilizes at a

value of 35, which means you would want to set the value for the compass offset in the X

coordinate at -35. The same type of analysis can be done for the magnetometer biases,

where we learned about small variances in differences between axes, misalignments, and

just varying magnetic fields produced by the electrical components. This led us to set the

default value to .05 (indicating a noise level of 50 in the sensor units). In Figure 4.4

below you can see an example of what happens with no calibration. The graph represents

a slow speed copter flight with a bad magnetometer calibration (set at just 0). As the

vehicle changes headings the noise levels spike above the appropriate +-50 range.

Figure 4.3: Body Magnetic Field Flight Data Logs

39

Figure 4.4: Magnetometer In-Flight Noise Levels

 We quickly learned at the beginning that the EKF filters in flight were not logged

correctly because we found out later on that you had to enable a certain data log feature,

AHRS, to be able to log the “flash logs,” which are the type of data logs that the EKF

information is stored. But once was all said and done we were able to have a good

starting point with all of the tuned parameters. We ran a typical simulation setup in

Mission Planner’s simulation software (Appendix B for codes/direction on how to use in

Mission Planner), to see correlation showing the difference in the applied Kalman filter to

the raw GPS data. The best results for the simulation are shown in Figures 4.5 and 4.6

below. Further real world testing should be conducted to analyze how the EKF might be

able to be used to implement it on the leader-follower schematic once inter-

communication is applied and becomes susceptible to signal disconnections.

Figure 4.5: GPS Location (Raw)

40

Figure 4.6: GPS Location (Filtered)

After changing out the Pixhawk with the Lisa/S we accomplished flight but could

not establish a successful autopilot. The Lisa/S is a little more complicated to work with,

more so just less well documented and less people contributing to the open source code

editing/improvements. The limited time left was put towards trying to implement a

Kalman filter on the Lisa/S. It was soon found out that the previously used extended

Kalman filter could not be used on the limited processing power of the flight controller.

A simplified version of the Kalman filter was cut to try and just use for certain aspects of

flight but could not be thoroughly tested. The obvious next steps would be to analyze the

most basic version of a Kalman filter that could, if so, be used on the Lisa/S and if not

start to figure out a way to add a sub-system architecture to house Kalman filtering

components and link it with Lisa/S.

41

Chapter 5

Conclusion and Future Work

As this project progressed the scope changed accordingly to the new limitations

learned from building and testing the UAV testbed. New understandings gained from

diving into the existent control systems and “genetic” makeup of these UAV’s shifted the

focus of this thesis to a long ways before a point where swarm behavior could be

implemented. In the end the flight control algorithms through the Pixhawk architecture

were used, analyzed and worked to be improved. The future steps include implementing

such EKF algorithms on a future smaller scale UAV using the Lisa/S flight controller.

There was a lot of testing to get to the stages of starting to implement new flight

control systems to optimize the flight patterns of these UAV’s. At the end of this research

we explored using Kalman filtering in the flight controllers and saw the viability and

effectiveness of it in the Pixhawk. Next steps would be to take the newly implemented

Lisa-S UAV and build the optimized flight control design features on top of that

architecture. Once accomplished more hurdles like collision avoidance, accurate

positioning, etc. should just come down to hardware updates. The progression for this

testbed would be in the end to have in place an autonomous inter-communication among

the group for a designated flight path “mission.”

Introducing a leader-follower method of communication implies getting as close

as possible to AI type responses by individual UAV’s in a “group”. Limiting the human

42

interaction increases efficiencies and overall responsiveness of the UAV’s. Improving the

flight control systems of UAV’s lends to a wide range of possibilities for implementation

in real world applications. It became obvious why UAV’s are becoming more and more

widely used in fields such as agriculture and police/fire departments. The multitude of

tasks or commands that you can program the UAV to do without the need of constant

human interaction is impressive. Other potential outcomes of this research include honed

ballistics testing, projectile path optimization and flight formation patterns. Real time

dynamic flying creates more accurate flight trajectories, dynamic vehicle control in

relation to each other, further recognition and ways to react to the surrounding

environment, consistent area coverage control amongst the “team.”

43

APPENDIX A

Mission Planner Log Files

https://www.dropbox.com/sh/0l2lr7uwv2542mh/AADD6hw0VcQWcOinD82aRfswa?dl

=0

APPENDIX B

Pixhawk PX4 Source Codes

PX4 Firmware: https://github.com/PX4/Firmware.git

Extended Kalman Filter Code:

https://github.com/priseborough/InertialNav/blob/master/derivations/GenerateEquations2

2states.m

Simulation Software: https://github.com/px4/jMAVSim

3D Simulation Software for Swarming, Autonomous Flight, etc.: http://gazebosim.org/

All other basic coding: https://github.com/PX4/DevGuide

https://www.dropbox.com/sh/0l2lr7uwv2542mh/AADD6hw0VcQWcOinD82aRfswa?dl=0
https://www.dropbox.com/sh/0l2lr7uwv2542mh/AADD6hw0VcQWcOinD82aRfswa?dl=0
https://github.com/PX4/Firmware.git
https://github.com/priseborough/InertialNav/blob/master/derivations/GenerateEquations22states.m
https://github.com/priseborough/InertialNav/blob/master/derivations/GenerateEquations22states.m
https://github.com/px4/jMAVSim
http://gazebosim.org/
https://github.com/PX4/DevGuide

44

WORKS CITED

[1] ArduPilot Autopilot Suite. Online. http://ardupilot.org/ardupilot/index.html

[2] 3DRobotics. Online. https://store.3dr.com/products/3dr-pixhawk

[4] Paparazzi. The Free Autopilot. Online. http://wiki.paparazziuav.org/wiki/Lisa/S

[5] “Fundamentals of Kalman Filtering: A Practical Approach” Third Edition

[3] Pixhawk PX4 Development Guide. Online. http://dev.px4.io/index.html

[] Balazs Gati Paparazzi Community, Open Source Autopilot for Academic Research

the Paparazzi System. In Proceeding of the American Control Conference 2013,

Washington, USA, Pages 17-19. June 2013.

[4] How, Jonathan, Flight Demonstrations of Cooperative Control for UAV Teams,

Aerospace Controls Lab at MIT, 2004.

[5] B.D.W. Remes, Lisa-S 2.8g Autopilot for GPS Based Flight of MAV’s, Delft

University of Technology at Delft.

[6] Brisset P., A. Drouin, M. Gorraz, P.-S. Huard, J. Tyler. The Paparazzi Solution.

http://www.recherche.enac.fr/paparazzi/papers2006/mav06paparazzi.pdf, 2006.

[10] Mao, Guoqiang. Design of a Extended Kalman Filter for UAV Localization. School

of Electrical and Information Engineering. University of Sydney.

[11] B.D.O. Anderson and J.B. Moore. Optimal Filtering. Prentice Hall, 1979.

http://ardupilot.org/ardupilot/index.html
https://store.3dr.com/products/3dr-pixhawk
http://wiki.paparazziuav.org/wiki/Lisa/S
http://dev.px4.io/index.html
http://www.recherche.enac.fr/paparazzi/papers2006/mav06paparazzi.pdf

45

[12] Jazwinski, A.H. Stochastic Processes and Filtering Theory. New York, Academic

Press. 1970

46

VITA

 Brendan Sullivan, son of Cindy and Mike Sullivan, is originally from

Chicopee, Massachusetts and was born on January 2, 1992. He attended and received

a dual degree from Lehigh University in the IBE Honors Program (Integrated

Business & Engineering). Brendan’s degrees included a Bachelor of Science in

Mechanical Engineering in May 2014, and a Bachelor of Science in Integrated

Business and Engineering in September 2014. Brendan always had an interest in

aerospace engineering and took that a step further by working towards his MS.

degree with Professor T. Hart in the Mechanical Engineering Department on UAV

design and systems controls.

	Lehigh University
	Lehigh Preserve
	2016

	Capabilities of Flight Controllers for UAV Group Flight
	Brendan Sullivan
	Recommended Citation

	tmp.1498661647.pdf.aflXC

