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ABSTRACT  

With the advancement of single UAV flight control there is a clear understanding 

of the importance for future group UAV distributed control. This will in turn lead to 

scenarios of “smart” communication between UAV teams.  This hierarchal chain reaction 

type control of UAV’s will provide more enhanced real time flight pattern optimizations 

without the slow interactions of a UAV to a computer (aka a human). By relaying to just 

the “Master” from the ground station to switch trajectories the human interaction never 

needs to go any further to update the flight formations of the rest of the group members.  

This type of “swarming” with UAV’s is only possible with the correct hardware and 

software improvements. This is especially true when the trend for UAV “groups” are to 

be higher in number and therefore much smaller (the size of an iPhone).  

Apart from the already existing ways to manipulate flight paths – hardware 

including better GPS locating and new censoring technologies for collision/spatial 

recognition – software limitations are apparent to be the next large hurdle. To accomplish 

such interactions between UAV’s, optimal flight patterns must be attained before any 

inter-communication can be implemented. Current designs follow the traditional PD/PID 

control schematics, but these lack the requirements to correct for real-world disturbances. 

Kalman filtering control design on the existing architectures of the Ardupilot and Lisa/S 

flight controllers was implemented to produce the most accurate flight paths of the 

UAV’s.  
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CHAPTER 1 

Introduction 

1.1 Project Background 

 The use for UAV’s is becoming prevalent in many different industries and for 

many different jobs. The drastic reduction in costs needed to build, implement and run 

UAV’s coupled with the replacement for direct human contact makes UAV’s a great 

resource. Other projects at Lehigh University that pertain to the birth of this undertaking 

deal with decreasing the size and payload capacity of UAV’s to be launched quickly and 

effectively from the ground. In particular the group is trying to make a UAV that can fit 

inside a 40mm and 60mm tube, launched from said tube (aka endure a lot of force upon 

launch), open up in flight and start its task. Apart from the mechanical/aerodynamic 

design needed for creating such a projectile the next steps include actually having the 

UAV be as effective as possible during flight. The future of such a project is what this 

thesis set out to explore.  

Once optimized UAV’s can be launched from any platform and in any situation as 

quickly as is required. Lack of real time active response among UAV’s to changing 

environments or mission parameters is not optimal. Constant communication between a 

human(s) and several different UAV’s in a formed group can be time detrimental and 

impractical. The obvious progression of such technology is to create interactions and 

communication between the UAV’s, which can best be described as autonomous flight or 
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known in the technical world as swarm behavior (abbreviated throughout also as 

swarming).  

Significant prior research and many scholarly articles can be found on the 

dynamics of flight controls. They mostly deal with controlling changing parameters with 

flight conditions of UAV’s. There have been very few approaches on an autonomous 

level of communication between these vehicles, and these only involve computer 

interaction to each individual UAV not computer to one UAV and then UAV to UAV 

interactions.  

1.2 Objectives 

The long term goal of this project is to create a team of UAV’s that are able to be 

easily deployable in the field on a minutes notice. These UAV’s will communicate 

amongst each other to realize a central mission, designated to the “Master” of the group 

by a human controlled ground station. This overall plan is estimated on a 4-5 year 

timeline realized only upon future technological progress of software and hardware. Such 

advancements include flexible electronics, higher resolution and further developed tech 

for collision avoidance, etc. Work that can be more solidified by myself in the shorter 

time period of 1.5 years deals with testing the theory of swarming amongst UAV’s by 

building a UAV testbed of 4 hexacopters.  

While mathematically there are plenty of theories and equations governing 

swarming or particle swarm optimization, not to mention examples in the real world 

(most notably with birds), there is still a large hurdle to apply this technique to flight 

programming/controls. This is mainly due to the fact that implementing these governing 
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equations/algorithms to mimic swarming are highly process intensive. The first step of 

this project was to test the current systems that had supposed swarming capabilities. After 

understanding the limitations on the current technology either corrective algorithms 

would be written or a new process to resemble swarming would be created. This process 

took roughly .5 to 1 year and ended in changing the focus of this thesis.  

As the project progressed it became quite evident that swarming was a long ways 

away from being implementable in flight patterning. What did become apparent is the 

lack of a true architecture in place that could support certain more advanced control 

algorithms for flight path optimization. Current systems use almost a multitude of 

different hardware/software components to act as a “complete” system. Better put, 

several different very basic methods act as buffers and redundancies for and to each other 

(accelerometers coupled with GPS, etc.). The focus of this thesis changed to look into 

analyzing the control systems behind “how” the hexacopters fly and to improve upon 

those by applying Kalman filtering. This would be accompanied at the same time by 

understanding what it takes to create a ~.2 scale of the created hexacopters.  
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CHAPTER 2 

UAV Testbed 

2.1 Mechanical Design 

The first step in analyzing UAV group flight is to actually build a platform for 

testing such devices. The UAV testbed was chosen to consist of 4 hexacopters, one of 

which is pictured below in Figure 1.1. The first consideration for building these 

hexacopters was making them small enough to easily house the components but not be 

too much to handle while transporting and flying. The hexacopters also needed to model 

what an actual 60mm tube launched UAV could be down the road, so a roughly 5-scale 

model was chosen. The symmetric frame design made it so placing the center of mass 

was easier, there was no need to worry about the frame itself attributing to the mass. The 

frame shape also allowed for the easy attachment and support structure for 6 props. More 

specifically, a 6 prop UAV – hexacopter – was chosen to provide redundancies in case of 

inflight complications. If any of the props broke (which happened quite often) the 

individual controlling the UAV could compensate with the other props to land the 

vehicle, and actually still fly if wanted.  
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Figure 2.1: Hexacopter UAV 

 

The hexacopter has a relatively small air-frame, 260mm class, because it doesn't 

have to hold much; a small camera, a flight controller, and a battery. The frame of each 

hexacopter was comprised of two 3D printed plates. The two plates functioned to provide 

easy placement of all components (and subsequent movement when needed). Another 

reason for having two plates on top of each other is allowing certain components – the 

flight controller and radio controller – to be on separate “levels” for the different 

frequencies to interfere the least. This also allowed for the compact battery fitting on the 

frame by being attached below the plates by Velcro. Another separate attachment feature 

(shown projecting out ~4 inches from the top of the hexacopter in figure 1.1) needed to 

be added later on to deal with the interference from the GPS “puck” signal. 3D printing 

everything kept costs low and made it very easy to print in different colors, and this was 

extremely important as many times during flight 2 people would have to watch 4 

hexacopters and therefore recognizing each one by bright colors (red, green, white, and 
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blue). 3D printing made it very easy to change the design of the hexacopter. At one point 

after some testing we decided to alter the shape of the frame, and it was a very quick, 

inexpensive fix.  

A complete list of components and specs of the UAV are listed in Table 1.1 

below. The Multistar motors were the best at the time for the size, the props almost touch 

and provide the most pull from these motors. All other motors were either too heavy, or 

too tiny and wouldn't produce enough thrust. 6x3 props were chosen because they 

provided easier take off and we didn’t really care about having a faster speed, or else we 

would’ve used a prop with more thrust; like a 4.7x.4.7 prop. The battery was compact 

enough to easily fit on the air-frame of the hexacopter but strong enough to provide 

plenty of flight time, which was important at points for testing all hexacopters at once on 

a planned loop course when leader-follower schema was in place (and therefore it took 

some time to set up and actually complete the course). 

 

Hexacopter Specs Vendor Stats 

Motors (6) Multistar 2206 2150 KV 

ESC’s (6) Multistar 10 amp V2 with BLheli firmware 

Props (6) Generic 6x3 2-Blade 

Battery (1) Zippy 3S 2200mah Li-Po 

Radio Controller Pixhawk 2.4 GHz Spread Spectrum 

Radio Transmitter Spektrum DX6i 2.4 GHz, 6-channel transmitter 

Flight Controller Pixhawk PX4 w/ GPS & Telemetry 

Static Thrust - 2760 g Total 

Flying Weight - 950 g 

Avg. Flight Time - 10 minutes 

Top Speed - 16 m/s 
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The second main consideration was making the hexacopters robust enough, 

through design, so they could survive plenty of crashes. As learning how to fly UAV’s 

was new to myself and takes a “slight” learning curve to get used to, this aspect was 

important. The motors and props were attached by poplar wood arms. These provided 

enough rigidity to not flex in flight but offered the desired flexibility when crashing 

where they would either distribute the forces or take all the damage, splinter, and break 

off without other parts of the hexacopter being ruined. Not to mention the wooden arms 

are cheap and easy to replace. 12 screws held the entire hexacopter together except for 

the motor mounts, where 6 screws were used.  

When Lisa/S testing started another UAV was built (Figure 2.2 below), this time 

it was a simple quadcopter kit that was bought off the shelf. The design of which could 

easily hold all Pixhawk and Lisa/S components as the original testbed and in this case it 

was made to hold a larger battery and house larger props. This UAV allowed for longer 

flight times and quicker speeds. This quadcopter was built to transfer from the Pixhawk 

to the Lisa/S and to understand how the Lisa/S flight controller works. 
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Figure 2.2: Quadcopter 

While both designs lend well to robustness and adaptability, which was needed 

several times, in the long run they actually became a hindrance. After learning about all 

the hardware components and how they interact with each other and affect the flight of 

the hexacopter and more so understanding the lags/limitations associated with the parts it 

became apparent that the system as a whole was nowhere near advanced enough. To truly 

test the effectiveness of varying the flight controller parameters for the flight control 

architecture much more advanced system hardware would be needed to compliment the 

software.  

2.2 Flight Controller and Software  

Choosing to use the Pixhawk PX4 flight controller was one of the first and 

foremost decisions that was made when building this testbed. The Pixhawk PX4 is an 
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inexpensive all in one unit; housing FMU (Flight Management Unit) and IO 

(Input/Output module) aspects. This flight controller was chosen because it is widely 

used and already has autonomous flight capabilities with a reasonably proven “beta” 

swarming setting. It was quickly learnt that when Pixhawk advertises “swarming” all 

they really mean is that you can control multiple UAV’s for extended autonomous flight, 

no actual inter-communication but still multiple computer-drone interactions. The 

Pixhawk is also very easy to “plug and play,” as you can see in Figure 2.2 below. It is 

already set up to work directly with “ground station” simulating computer programs such 

as Mission Planner, where you control the autonomous flight features and paths for the 

UAV’s.  

The Pixhawk also has a solid architecture for connecting with any of the other 

hardware components that were required; radio controller, GPS, etc. The Pixhawk turned 

out to be a perfect fit for the testbed in understanding how the system works. Down the 

road the Lisa/S was swapped in because of its size and the future projects it can be 

utilized in, compared to the larger, bulky and user friendly designed Pixhawk.  

The Lisa/S flight controller is optimal for very small scale operations, it is 

20x20x5 (mm) and only weighs 2.8g. The Lisa/S while being smaller still has the 

capabilities to sustain autonomous flight (the company advertises its autonomous feature 

heavily) and other than not having as much processing power and architecture for easy 

adaptability as the Pixhawk is very similar to it. The point of research to look into the 

Lisa/S was to examine whether or not it had the capabilities to add components to its 

flight control architecture.  



 
11  

Luckily in the new and rapidly growing field of at home UAV’s most all of the 

source codes of these components are open source. Both the Pixhawk and Lisa/S are open 

source and this helped greatly in working with the code. The companies of both flight 

controllers willingly lend the code for their consumers, and sometimes contributors can 

even end up providing code updates and fixes for them. Throughout the whole project the 

multitude of questions that needed to be answered were done by peers through forums 

and support channels.  

 

Figure 2.3: Pixhawk Connection Schematic For UAV 
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The flight controller is the medium between the UAV flying and inputs from the 

user’s handheld transmitter. In the case of autonomous flight the flight controller 

communicates with a ground station (running on a laptop) and for this research Mission 

Planner was chosen. Another very similar program that could have been used is 

QGroundControl. Mission Planner is essentially the ground station to communicate with 

the UAV. The setup and design is very straightforward and set up to be extremely user 

friendly. The main aspects of MP that made it the perfect program are:  

- It is made to work with the Pixhawk flight controller 

- Can quickly setup, configure, and tune the parameters of your UAV for 

performance  

- Can plan, save and load autonomous flight paths with waypoints on a GPS 

controlled map into the UAV 

- Allows you to download and analyze all of the logs created from autopilot 

- Allows you to monitor all of the vehicle’s status while in autopilot mode 

Mission Planner ended up being very helpful in seeing what types of latencies were 

inherent in the systems’ components and allowed us to better analyze changes to the 

flight controls later on.  

2.3  Pixhawk Architecture  

 The flight controller is the medium between the UAV flying and inputs from the 

user’s handheld transmitter. In the case of autonomous flight the flight controller 

communicates with a ground station. The high-level software architecture is set up very 

simply to exchange blocks quickly and easily. Below are the two different scenarios for 
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I/O structures in the Pixhawk (Figures 2.4 and 2.5). Each of the blocks below is self-

contained in terms of code and dependencies, connected to other blocks by the arrows 

through I/O or publish/subscribe calls.  

 

Figure 2.4: Person to UAV Block Structure 

 

Figure 2.5: Ground Station to UAV Block Structure 
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While the architecture for transmitter to UAV communication is straightforward 

the UAV to ground station has several extra blocks that delegate inputs. These 

interactions are controlled by "business logic" applications including the commander 

(general command & control, e.g. arming), the navigator (accepts missions and turns 

them into lower-level navigation primitives) and the MAVlink application (creates the 

publish/subscribe data structures and consumes sensor data and state estimates).  

The PX4 flight stack was chosen over the APM ardupilot because it is the newer 

updated model; with a modern-32 bit processor it can handle such aspects as if a motor 

fails the system automatically can adapt to turn it from a hexacopter to just a quadcopter. 

While the APM 2.5+ is more well documented because it is older the PX4 is still all open 

source so really no issue for getting used to it. The PX4 already includes controllers in its 

flight stack for multirotor airframes (where going from quad- to hexa-copter was no issue 

at all). The flight stack itself is a collection of guidance, navigation, and control 

algorithms and estimators for attitude and positon for the autonomous flight being tested. 

Below is an example of the implementation of these blocks. Another great aspect of the 

PX4 is the fact that it already has simulation software for running the autopilot. This 

came in handy at many times when testing different applications without having to 

actually fly the UAV’s.  
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Figure 2.6: Flight Stack Block Schematic 

 The above “mixer” block is basically what defines the flight output parameters for 

the UAV, <turn right> command is defined as actuator commands controlling the motors 

and servos. In the case of multirotor airframes the mixer combines 4 control inputs (roll, 

pitch, yaw, and thrust) into actuator outputs driving the motor speeds in relation to each 

other to get the desired output, <turn right>. This is where the ESC’s come into play, 

which are simply electronic speed controllers for each motor that take those desired 

output commands. The motor map becomes designated in the hexacopter “X” layout as 

the numbers in the below Figure 2.7 and can be see implemented on the actual UAV in 

Figure 2.1. The main difference between another common “+” layout is the offset rotors 

from the point of heading.  
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Figure 2.7: Hexacopter "X" Motor Layout 

 The whole code is able to be seen, edited and uploaded back onto the UAV’s 

flight controller through Github (links located in the Appendix).   
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CHAPTER 3 

UAV Testing and Flying  

Creating the test bed and accomplishing autonomous flight with the ground 

station let us initially look at the effectiveness of these systems. Before adding the strain 

of the formation and flight pattern algorithms the inherent problems (latencies, lagging, 

etc.) in the system needed to be understood and documented so they could be accounted 

for in the long run. The starting point was using Mission Planner’s built in data analyzing 

aspects to optimize the flight of each individual UAV. Then more group testing was 

needed to understand how the “leader” during “swarming” interacts with the ground 

station and then how that is transferred to the other 3 “follower” UAV’s. Mission Planner 

turned out to be perfect for creating different flight paths with waypoints and being able 

to log the data for later studies. The program also easily allowed for the user to control, 

edit and create new commands/parameters beforehand and some of them in real time.  

3.1 Mission Planner Data Log Analyzer 

Mission Planner has a built in data log analyzer for comparing the real to the ideal 

flight data. For example, in Figure 3.1 below you can see that the planned altitude is in 

green and the actual altitude is in red (relative in blue). In areas where the red line is 

further off the planned “course” you can speculate that most likely wind disturbed the 

system to the point that an immediate reaction by the UAV mixer wasn’t possible and it 



 
18  

needed time to get back on the path, and in some cases overshoots or take its time to 

recalculate (right around 1 min mark).  

 

Figure 3.1: Altitude Analysis 

Mission Planner’s data logs allowed the assessment of any type of failure and to 

most accurately describe it as mechanical, vibrational, compass interference, GPS 

glitches, power problems or unknown. Below are examples of each type of failure that we 

experienced and were able to contribute to a specific problem.  

Mechanical Failures  

 

Figure 3.2: Roll Analysis 
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- The huge divergent oscillations in roll indicates a mechanical failure; motor, prop, or 

ESC failure. This can also appear from a pitch graph. This wasn’t as useful since you 

can clearly see when this happens in flight and usually can clearly speculate on the 

mechanical failure before needing to analyze the logs.  

 

Vibrational Excitations 

 

Figure 3.3: Vibrations 

- Vibrations can be the direct cause of problems with the altitude hold and loiter 

commands. As seen above vibrations are most easily understood through graphing the 

accelerometer values AccX, AccY, and AccZ values. AccX and AccY are primarily 

used for the horizontal “x-y” positon control and AccZ is vertical “z” position control 

(with acceptable ranges are in the above Figure 3.3).  If the UAV falls within these 

ranges when hovering then you are safe to assume during flight any momentary 

outlier is probably just due to the movement of the UAV. 

- To reduce this vibration the flight controller was attached to the airframe by sticky 

rubbery/foam pads (3M foam from 3DRobotics), this reduced high/medium 
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frequencies while still allowing the low frequency board movement from flying 

movements. Some other interesting and simple ways to accomplish this found on 

forums from other users was simply platforming the flight controller on a double bed 

frame held together with o-rings or even earplugs.  

 

Compass and Magnetic Interference  

 

Figure 3.4: Compass/Motor Interference 

- This was an extremely important factor in dealing with troubleshooting problems. 

Compass interference is when any of the various electrical components on the 

airframe (motors, ESC’s, battery, PD board, etc.) throws off the compass heading. 

The process to calibrate magnetic interferences works only if you have a battery 

current monitor, where the magnetic interference is linear with the current drawn 

(which is due to how much throttle output). The process was simple, you secure the 

UAV to the ground and with Mission Planner’s “Compass/Motor Calibration” open 

you variably increase and decrease the throttle to introduce into the system the 
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magnetic interferences. An ideal UAV that has no interferences from current changes 

is above in Figure 3.5 (given this never actually happens so perfectly).  

- Problems with magnetic and compass interference can create catastrophic and very 

annoying problems with the UAV’s, where “toilet-bowling” or just flying off in the 

completely wrong direction can occur (which happened quite a bit). We found that an 

acceptable amount of magnetic interference is ~10-20% but a flyable amount is more 

in the 5-10%. At one point when the testbed was first built the magnetic interference 

was around 1000%.  

- Once calibration is performed the system knows more of how to compensate out, as 

much as possible, these interferences by switching how it routes power to the 

different ESC’s and motors. Further ways to reduce interference include moving 

around the components on the airframe (the GPS+compass puck up and away on a 

mast as mentioned previously), making all the connecting wires as short as possible, 

replacing the ESC’s with a 4-in-1 ESC, and add aluminum shielding to certain 

components and around wires. Other ways to work with decreasing the magnetic field 

is trying to increase the voltage as much as possible to decrease the current draw. 

Interference readings of <25% were usually what was sought out, anything higher and 

the autopilot mode would not function correctly. 
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Figure 1.5: UAV Compass Mapping 

- Accurately setting up and calibrating the compass is extremely important as it 

provides the heading for the UAV. Without this heading the autopilot mode is 

practically impossible. With an internal compass the UAV has the most trouble with 

interferences, it gets better with an external compass and a UAV can be programmed 

to take up to 3 on board compasses. At the startup of every UAV connection with the 

ground station you can perform a live compass calibration/mapping (Figure 3.10 

below), essentially spinning the UAV in circles slowly to get its orientation. This 

calibration also lets you know if there is any magnetic interference present. The trail 

from the rotating UAV is colored, where yellow and red indicate medium and high 

levels of magnetic interference.  
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Other Analyzable Data 

 

Figure 3.6: X and Y Velocities 

- Velocities were good to analyze to see how well the ground station/flight controller 

were handling controlling the flight of the UAV’s. Optimally the velocities would 

follow a perfect line, not bumpy, but that is not practical. This allowed us to see how 

quick the response time was to any fluctuations to the system (wind pushing it off 

course and having to speed up to relocate) and to in general improve on the 

oscillatory nature in the system (working with the motors and ESC’s to reduce the 

size of these ups and downs that the flight controller allowed). In the end this wasn’t a 

large concern except for in certain areas you can see where the proposed speeds were 

changing quickly and the UAV overshot a good amount such that is almost misses the 

next speed change (around horizontal tick mark 8-10).  

The data logs were helpful in reading how far off the real value was from the 

intended value, as seen in the red and green lines of the various graphs above. This was 

extremely helpful in tuning the gains of the UAV’s (pitch, roll, etc.). While an 

experienced MAV controller can usually do this by feel it wasn’t practical to do this at 

the start of every flight with so many UAV’s and such little battery lives. So with the help 

of these graphs we were able to a good underlying “start” point for all the gains. We 
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looked to optimize such that it would allow for a slight overshoot (since that is not a large 

issue) but the quickest reaction time to get back on the right path and least oscillations 

afterward.  

One factor during flight that was pretty much impossible to correct for through 

the software was GPS glitches. After all of the flight tests it was obvious that the UAV’s 

were most easily affected by loss in GPS, once compass interferences were left out. 

Lehigh’s mountaintop campus had ~11 satellite locks and that was nowhere near good 

enough to be foolproof. This created a cascading effect if the leader’s GPS lock was lost. 

In one such flight test one of the follower UAV’s lost GPS signal and went off path, so it 

wasn’t in its correct X-Y position coordinate in “swarming” mode relative to the leader. 

Once the UAV regained signal it took too long to return to its path before slamming into 

another of the following UAV’s. While this could also be attributed to the flight path it 

took to get back on its correct path, to solve that problem would require to implement 

inter-communication between the drones or a more complicated algorithm to assess the 

correct flight path immediately from its new incorrect point to not overtake any other 

UAVs’ flight path. This is definitely doable and is a future step consideration (definitely 

an important aspect to note).  

Another large factor is just the loss in connection between the transmitters of the 

ground station to the receivers of the UAV. The quickest way to get around this was 

trying to fly in open areas with nothing that could block the frequencies, aka trees. You 

could fix these issues with hardware updates or using a land based GPS external locating 

station to add better, more consistent GPS, but those are expensive and not practical for 

these purposes.  
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In the end all of the analyses from Mission Planner helped to stabilize the UAV’s, 

work out the bugs and optimize the hardware as much as possible. In most cases it meant 

changing the firmware/software but in some cases it helped to make changes on the 

airframe itself. As mentioned before, this is where it became apparent to move the GPS 

puck 4 inches above everything else because there were too many GPS glitches and 

compass interferences. We also had to switch the location of the radio receiver for 

interference purposes with the motors. We ran diagnostics to change the frequencies for 

the ESC’s and motors so they wouldn’t interfere. Once we moved on from updating and 

optimizing each individual UAV we were able to focus more on the swarming feature of 

Mission Planner and group flight.  

3.2 Mission Planner “Swarming”  

The first several individual flight tests took months – with the main issue that kept 

arising being troubleshooting – so it definitely made transitioning to group flight that 

much easier. It did take various tests to get the correct setup for connecting the UAV’s 

with the computer and making sure that every single one was designated as the correct 

unit, leader or follower. The general rundown for setting up a swarming procedure is as 

follows: 

- Connect each UAV to the ground station to upload any coding changes and connect 

with the flight controller. During this stage you can turn on the UAV and make sure 

that GPS locating occurs correctly.  

- Once all UAV’s are connected each one of their radio transmitters are hooked up to 

the ground station.  
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- Once a flight path has been created and uploaded into the program and the UAV’s 

have been set in the field you are ready for takeoff.  

- A secondary chart window pops up that provides the “swarming” data. On this screen 

you can toggle between two 2D coordinate maps to create the 3D positioning of the 

UAV’s in relation to the “leader” you have designated. In particular Figure 3.7 below 

shows the X-Y coordinates of a UAV (abbreviated MAV sometimes) in relation to 

the leader, designated as the center point. The other 2D map shows the Z axis. At the 

same time you can see the positions of all UAV’s in relation to the earth in the main 

Mission Planner window.  

- Once you press start the UAV’s will assume the correct positions and hence start the 

planned flight path. The leader will start and the other UAV’s will follow, while 

trying to stay in the correct positions the whole time.  

- At any point you can toggle a designated switch on the handheld transmitter to switch 

the UAV autopilot to user controlled to manually take over if anything goes wrong.   
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Figure 3.7: Mission Planner's "Swarming" Command Setup 

An example of a planned route, conducted on Lehigh’s University’s Goodman 

Campus is in Figure 3.8 below. Each point represents a waypoint or the takeoff/landing 

points. There is a way to alter the commands at every single point, which is the 

screenshot (Figure 3.9) of the command list from Mission Planner. For example, you can 

make the UAV’s hover or loiter for a certain amount of time, change altitudes by design, 

and a good amount of other commands. When loitering you can plan for the UAV to go 

in x number of circular loops around that waypoint before proceeding on the flight path, 

which obviously for reconnaissance or search and rescue is important. This is also 

important a lot of time for agriculture, where designated paths can be set and certain tasks 

be performed at certain points. Apart from at the specific locations themselves you can 

command the UAV’s to fly certain ways when transitioning through the waypoints. So 
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for instance if you want more of a smooth flight path you can spline the point, or you can 

go through the waypoint and plan for an overshoot, or just the quickest route in general. 

 

Figure 3.8: Programmed Waypoint UAV Flight 

 

Figure 3.9: Waypoint Action Item List 

 Examples of planned individual and group missions (failed, catastrophic, and 

successful) that were flown were logged and saved, they can be located from the link in 

the Appendix. By downloading and installing the free program Mission Planner one can 

upload any flight and play it from start to finish, while also being able to analyze the data. 

Essentially you are able to see all aspects of flying the UAV’s. The UAV is represented 
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as a simple quadcopter (Figure 3.10) and has 3 leading lines extending from it. The black 

line the GPS track and the red line is the current/actual heading. The orange line is 

designate as “Direct to Current WP,” which is the current directional vector to the next 

waypoint. This is most useful to understand what the UAV is doing transitioning between 

waypoints.  

 

Figure 3.10: Mission Planner Representation of UAV 

What became most apparent in the first several flight tests is how the “follower” 

UAV’s communicate with the “leader.” Each individual UAV communicates with the 

ground station (Mission Planner on a laptop) and all inputs and outputs go through the 

computer. When a “mission” starts the GPS location of each UAV is shown and the 

followers rely only on the GPS location that Mission Planner is receiving from the leader 

UAV. Of course the limitations of this type of communication architecture is simply 

more areas for signals to be lost or slow. In the future some type of inter-communication 

sub-structure on the flight controller can easily be created (and there is a ton of research 
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being done currently on this with everything from cameras, lasers, simple radio, rf 

readers, etc.).  

Another aspect of Mission Planner that was used is to create and implement user 

defined commands. One of the first things we noticed is that Mission Planner does not 

allow you to switch the drone into Autonomous Mode and start the mission without the 

UAV already in flight (which is strange because it has a built in command “Take-Off”). 

We were able to implement in the command structure MAV_CMD_COPTER, not 

technically a command but as an Action item parameter. This allowed the UAV to be 

toggled into Autonomous Mode while on the ground, disarmed and start the mission; ie. 

take-off to the preset altitude from the ground without the user. In this example it became 

very easy with the user friendly command parameters interface to edit parameters, 

commands and action items to control the UAV’s flight.  

At the same time you can set it up to make certain commands/actions _DO_ 

commands, such so they are only executed if another parameter is met. This made it very 

easy that if a certain command structure was ignored or failed then a failsafe command 

would be executed (usually return to some path or return to home). Other types of uses 

for this is with editing the yaw of the vehicles. Interestingly the yaw of each UAV is not 

pre-programmed in the autopilot. So you can either have the user control it himself from 

a transmitter during flight or create a command/action item MAV_CMD_CONDTION 

_YAW to point the vehicle in the specified heading for a certain amount of time. If the 

user does change the yaw it does not affect the flight path. We did implement some 

protocol to show how the yaw can be pre-programmed and it is very useful for anything 

like reconnaissance or for search and rescue (applying maximum coverage area to more 
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important sectors, etc.). To go along with the yaw you can also pre-program commands 

to control autonomous on-board camera functions, like take a picture once you reach X 

waypoint, hover for Y seconds, and turn to Z yaw.  

The end result of working with Mission Planner is that you can manipulate the 

UAV’s with plenty of commands that allow you to get a good feel for how and why the 

UAV’s do certain things in flight (apart from the “mission”). This gave a really good 

base, or control state, that later on analyzing flight control algorithms was a lot easier.  
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CHAPTER 4 

Kalman Filtering 

4.1 Kalman Filtering Implementation 

As said previously the Pixhawk PX4 flight controller’s code is all located on 

Github as an open source code for anyone to download, edit and upload to their own 

UAV for testing (instructions to do this can also be found at http://dev.px4.io/tutorial-

hello-sky.html). The process is extremely simple and straightforward to apply any new 

application/commands/parameters to the code.  

 Kalman filtering is basically an optimal estimator, it takes in data noises and 

“filters” out those noises. The beauty of such a filter is that it can react in real-time to 

correct a flight path to unexpected and un-programmed changes in an environment. 

Kalman filtering was chosen to explore as an option to better “tune” the flight controller 

because it is fairly straightforward and easy to implement (much of the math around 

Kalman filtering is readily found for application uses or study). The most significant 

factor of using a Kalman filter is that it cannot only correct for otherwise problematic 

inputs on the UAV but can change the state estimates to reflect these new measurements.  

While the default tuned parameters of the UAV can allow it to fly, when you 

move to autopilot the reaction times of the user are decreased greatly to the reaction times 

of the ground station. In the end of all the flight tests we tuned the UAV’s as well as 

possible but GPS was still a huge issue. The Pixhawk’s current attitude estimator is DCM 

http://dev.px4.io/tutorial-hello-sky.html
http://dev.px4.io/tutorial-hello-sky.html
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(direct cosine matrix). Instead a Kalman Filter was applied to the system, and fairly 

quickly we moved to just implementing an Extended Kalman Filter (EKF). This extended 

kalman filter algorithm uses accelerometer, compass, GPS, gyroscope, airspeed and 

barometric pressure to estimate the position, velocity and angular orientation of the flight 

vehicle. You can implement the EKF estimate as a compliment to the DCM to detect 

excessive errors or you can just run the EKF solely as the attitude estimator (which is 

what was attempted). The main reason for the EKF is for highly more accurate handling 

of GPS data loss, which is the largest issue if you were to update all the 

hardware/firmware (Figures 4.3 and 4.4).  

The following is a basic description of how the filter works (author of the original 

code/directions is Paul Riseborough, code in Appendix A): 

1. Inertial Measurement Unit, IMU, angular rates are integrated to calculate the 

angular position 

2. IMU accelerations are converted using the angular position from body X,Y,Z to 

earth axes and corrected for gravity 

3. Accelerations are integrated to calculate the velocity 

4. Velocity is integrated to calculate the position 

This process from 1) to 4) is referred to as ‘State Prediction’. A ‘state’ is a 

variables we are trying to estimate like roll, pitch yaw, height, wind speed, etc. 

The filter has other states besides position, velocity and angles that are assumed to 

change slowly. These include gyro biases, Z accelerometer bias, wind velocities, 

compass biases and the earth’s magnetic field. These other states aren’t modified 
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directly by the ‘State Prediction’ step but can be modified by measurements a 

described later. 

5. Estimated gyro and accelerometer noise (EKF_GYRO_NOISE and 

EKF_ACC_NOISE) are used to estimate the growth in error in the angles, 

velocities, and position. Making these parameters larger causes the filters error 

estimate to grow faster. If no corrections are made using other measurements this 

error estimate will continue to grow. These estimated errors are captured in a 

large matrix called the ‘State Covariance Matrix’. 

Steps 1) to 5) are repeated every time we get new IMU data until a new 

measurement from another sensor is available. 

If we had a perfect initial estimate, perfect IMU measurements and perfect 

calculations, then we could keep repeating 1) to 4) throughout the flight with no 

other calculations required. However, errors in the initial values, errors in the 

IMU measurements and rounding errors in our calculations mean that we can only 

go for a few seconds before the velocity and position errors become too large. 

The Extended Kalman Filter algorithm provides us with a way of combining data 

from the IMU, GPS, compass, airspeed, barometer and other sensors to calculate a 

more accurate and reliable estimate of our position, velocity and angular 

orientation. 

 

An example of the above steps being utilized is: 

6. When a GPS measurement arrives, the filter calculates the difference between the 

predicted position from 4) and the position from the GPS. This difference is 
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known as an ‘Innovation’. An example of the Innovations that are recorded are in 

Figure 4.1 below. They show the innovations for the N, E, D GPS velocity 

measurements, which show the health of the navigation filter. If you have good 

quality IMU and GPS data it should look like the image below, with small to zero 

measurements. These measurements would help in real flights by running the 

diagnostics to see if while not moving the vehicle had any value for Earth 

velocities, and if so you can offset and make the starting point or “noise” level for 

the offset that amount. Same concept but with position is shown for the x-y 

coordinate in the next Figure 4.2. 

 

Figure 4.1: Earth Velocity Measurements 

 

Figure 4.2: Earth Position Measurement 

7. The ‘Innovation,’ ‘State Covariance Matrix,’ and the GPS measurement error 

specified by EKF_POSNE_NOISE are combined to calculate a correction to each 

of the filter states. This is referred to as a ‘State Correction’.  
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This is where the Kalman Filter is important, it can correct measurements other 

than the ones being measured. For example GPS position measurements can also correct 

errors in position, velocity, and angles. The amount of correction is controlled by the 

assumed ratio of the error in the states to the error in the measurements. If the filter thinks 

its own calculated position is more accurate than the GPS measurement, then the 

correction from the GPS measurement will be smaller. The accuracy of the GPS 

measurement is controlled by the EKF_POSNE_NOISE, making this parameter larger 

causes less accuracy.  

8. Because we have now taken a measurement, the amount of uncertainty in each of 

the states that have been updated is reduced. The filter calculates the reduction in 

uncertainty due to the ‘State Correction’, updates the ‘State Covariance Matrix’ 

and returns to step 1) 

 

4.2 Kalman Filtering Tuning 

Once the EKF is setup to run on the UAV you still need to conduct tuning on ~25 

parameters to get the best baseline for the navigation filter to work off of, the parameters 

are in Table 4.1 below. Essentially tuning these parameters allows you to pick which 

measurements you want the filter to “trust” or consider more than others. For example, if 

you think the accelerometer is cheap and not working great you can tune the value such 

that the filter does not recognize changes in the sensor much (there would need to be a 

large spike or something for the filter to take it into account). Of course these tuning 

parameters can change due to location and even from UAV to UAV, since the motor 

layout, wind, interferences, etc. can easily be different.  
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Designation Function 

EKF_ABIAS_PNOISE Vertical accelerometer bias state error 

EKF_ACC_PNOISE Accelerometer measurement errors 

EKF_ALT_NOISE RMS value of noise in altitude measurements 

EKF_EAS_GATE Airspeed measurement consistency check 

EKF_EAS_NOISE RMS value of noise in compass measurements 

EKF_GBIAS_PNOISE Speed and noise amounts of gyro bias state error 

EKF_GLITCH_ACCEL Maximum allowed difference horizontal acceleration 

between predicted filter value and GPS measured value 

EKF_GLITCH_RAD Maximum allowed difference horizontal position 

between predicted filter value and GPS measured value 

EKF_GPS_TYPE Whether or not to use GPS velocity measurements 

EKF_GYRO_PNOISE Estimated error from gyro measurement errors (excludes 

bias) 

EKF_MAGB_PNOISE Body magnetic field state errors 

EKF_MAGE_PNOISE Earth magnetic field state errors 

EKF_MAG_CAL Active learning during flight of needed magnetometer 

offsets 

EKF_MAG_GATE Magnetometer measurement consistency check 

EKF_MAG_NOISE RMS value of noise in magnetometer measurements 

EKF_POS_DELAY msec that GPS position measurements lag being inertial 

measurements 

EKF_POSNE_NOISE 
RMS value of noise in GPS horizontal position 

measurements 

EKF_POS_GATE GPS position measurement consistency check 

EKF_VELD_NOISE RMS values of noise in vertical GPS velocity 

measurement 

EKF_VELNE_NOISE RMS values of noise in North/East GPS velocity 

measurement 

EKF_VEL_DELAY msec that GPS velocity measurements lag behind 

inertial measurements  

EKF_VEL_GATE GPS velocity measurement consistency check 

EKF_WIND_PNOISE Noise controlling growth of wind state error estimates 
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EKF_WIND_PSCALE Changes rapidness of wind states adapting to changing 

altitude 

Figure 2.1: Tuning Parameters 

Some examples of analyzing data to set certain of the parameters above are with 

EKF_ALT_NOISE, EAS_NOISE described in Figure 4.1 above. Another very easy to 

understand example of the filter in action is in Figure 4.3 below. Graphed are the body 

magnetic fields biases and by flying at a low speed for a 15 minutes you can see how the 

lines slowly change. This is basically the filter ‘learning’ the earth’s magnetic field. 

Afterwards you can know that the magnetic body field in the X coordinate stabilizes at a 

value of 35, which means you would want to set the value for the compass offset in the X 

coordinate at -35. The same type of analysis can be done for the magnetometer biases, 

where we learned about small variances in differences between axes, misalignments, and 

just varying magnetic fields produced by the electrical components. This led us to set the 

default value to .05 (indicating a noise level of 50 in the sensor units). In Figure 4.4 

below you can see an example of what happens with no calibration. The graph represents 

a slow speed copter flight with a bad magnetometer calibration (set at just 0). As the 

vehicle changes headings the noise levels spike above the appropriate +-50 range.   

 

Figure 4.3: Body Magnetic Field Flight Data Logs 
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Figure 4.4: Magnetometer In-Flight Noise Levels 

 We quickly learned at the beginning that the EKF filters in flight were not logged 

correctly because we found out later on that you had to enable a certain data log feature, 

AHRS, to be able to log the “flash logs,” which are the type of data logs that the EKF 

information is stored. But once was all said and done we were able to have a good 

starting point with all of the tuned parameters. We ran a typical simulation setup in 

Mission Planner’s simulation software (Appendix B for codes/direction on how to use in 

Mission Planner), to see correlation showing the difference in the applied Kalman filter to 

the raw GPS data. The best results for the simulation are shown in Figures 4.5 and 4.6 

below. Further real world testing should be conducted to analyze how the EKF might be 

able to be used to implement it on the leader-follower schematic once inter-

communication is applied and becomes susceptible to signal disconnections.   

 

Figure 4.5: GPS Location (Raw) 
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Figure 4.6: GPS Location (Filtered) 

After changing out the Pixhawk with the Lisa/S we accomplished flight but could 

not establish a successful autopilot. The Lisa/S is a little more complicated to work with, 

more so just less well documented and less people contributing to the open source code 

editing/improvements. The limited time left was put towards trying to implement a 

Kalman filter on the Lisa/S. It was soon found out that the previously used extended 

Kalman filter could not be used on the limited processing power of the flight controller. 

A simplified version of the Kalman filter was cut to try and just use for certain aspects of 

flight but could not be thoroughly tested. The obvious next steps would be to analyze the 

most basic version of a Kalman filter that could, if so, be used on the Lisa/S and if not 

start to figure out a way to add a sub-system architecture to house Kalman filtering 

components and link it with Lisa/S.  
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Chapter 5 

Conclusion and Future Work 

As this project progressed the scope changed accordingly to the new limitations 

learned from building and testing the UAV testbed. New understandings gained from 

diving into the existent control systems and “genetic” makeup of these UAV’s shifted the 

focus of this thesis to a long ways before a point where swarm behavior could be 

implemented. In the end the flight control algorithms through the Pixhawk architecture 

were used, analyzed and worked to be improved. The future steps include implementing 

such EKF algorithms on a future smaller scale UAV using the Lisa/S flight controller.   

There was a lot of testing to get to the stages of starting to implement new flight 

control systems to optimize the flight patterns of these UAV’s. At the end of this research 

we explored using Kalman filtering in the flight controllers and saw the viability and 

effectiveness of it in the Pixhawk. Next steps would be to take the newly implemented 

Lisa-S UAV and build the optimized flight control design features on top of that 

architecture. Once accomplished more hurdles like collision avoidance, accurate 

positioning, etc. should just come down to hardware updates. The progression for this 

testbed would be in the end to have in place an autonomous inter-communication among 

the group for a designated flight path “mission.”  

Introducing a leader-follower method of communication implies getting as close 

as possible to AI type responses by individual UAV’s in a “group”. Limiting the human 
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interaction increases efficiencies and overall responsiveness of the UAV’s. Improving the 

flight control systems of UAV’s lends to a wide range of possibilities for implementation 

in real world applications. It became obvious why UAV’s are becoming more and more 

widely used in fields such as agriculture and police/fire departments. The multitude of 

tasks or commands that you can program the UAV to do without the need of constant 

human interaction is impressive. Other potential outcomes of this research include honed 

ballistics testing, projectile path optimization and flight formation patterns. Real time 

dynamic flying creates more accurate flight trajectories, dynamic vehicle control in 

relation to each other, further recognition and ways to react to the surrounding 

environment, consistent area coverage control amongst the “team.”  

 

 

 

 

 

 

 

 

 

 



 
43  

APPENDIX A 

Mission Planner Log Files 

https://www.dropbox.com/sh/0l2lr7uwv2542mh/AADD6hw0VcQWcOinD82aRfswa?dl

=0  

APPENDIX B 

Pixhawk PX4 Source Codes  

PX4 Firmware: https://github.com/PX4/Firmware.git 

Extended Kalman Filter Code: 

https://github.com/priseborough/InertialNav/blob/master/derivations/GenerateEquations2

2states.m  

Simulation Software: https://github.com/px4/jMAVSim  

3D Simulation Software for Swarming, Autonomous Flight, etc.: http://gazebosim.org/  

All other basic coding: https://github.com/PX4/DevGuide  

 

 

 

https://www.dropbox.com/sh/0l2lr7uwv2542mh/AADD6hw0VcQWcOinD82aRfswa?dl=0
https://www.dropbox.com/sh/0l2lr7uwv2542mh/AADD6hw0VcQWcOinD82aRfswa?dl=0
https://github.com/PX4/Firmware.git
https://github.com/priseborough/InertialNav/blob/master/derivations/GenerateEquations22states.m
https://github.com/priseborough/InertialNav/blob/master/derivations/GenerateEquations22states.m
https://github.com/px4/jMAVSim
http://gazebosim.org/
https://github.com/PX4/DevGuide
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