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Abstract

High moisture coal leads to low power plant efficiency, increased stack emissions of

pollutants and maintenance and operational problems when it is used in coal fired power

plants. In this study, laboratory experiments and theoretical calculations of the coal

drying process were carried out and compared in order to determine proper drying

conditions.

This research describes several experiments to present the effects ofparameters,

such as drying temperature, on drying performance. The tests were carried out with three

different coals - Buckheart, Crown mine and Viper mine, which have initial moisture

contents of23%, 18% and 20%, respectively. The drying tests were performed from

1.1m/s to 1.2m/s air velocity and from 110°F to 140°F drying temperature. In this paper,

the effect of drying temperature on drying rate of different coals was studied to obtain

'"information relating to optimal operating conditions. The drying performances for each

coal can be determined by analyzing the test data and operation conditions.

The author also utilized a theoretical model for the drying process based on mass

balances and conservation of energy. Comparisons were made between experimental and

theoretical results. Good agreement with laboratory test results was obtained especially in

lower drying temperature. It is shown that this model can be reasonably used to predict

the drying performance.

x



Chapter 1 Introduction

Some coals used in U.S. coal flred power plants have unusually high moisture levels.

When this coal is used in coal-frred boilers, the high moisture affects the operation of the

power plant, results in the reduction ofpower plant effIciency and the increase of stack

gas emission and station service power. It also affects heat rate, mass rate of emissions

and the consumption ofwater needed for evaporative cooling.

Recent research work concerns about the impact of coal moisture content on boiler

effIciency and cooling water makeup flow from an evaporative cooling tower (Ref. 1).

The theoretical analysis and experimental results show that drying the coal from 40 to 25

percent moisture can reduce makeup water flow rate by 5 to 7 percent while the average

reduction in auxiliary power as fans and mill was reduced by 3.8 percent. Drying the coal

from 37.5 to 31.4 percent can improve the boiler effIciency by about 2.6 percent and the

net unit rate by 2.7 to 2.8 percent. The test data also showed the fuel flow rate was

reduced by 10.8 percent and the flue gas flow rate was reduced by 4 percent. Another

study also shows lower mass emissions of C02 and S02 when coal moisture content is

low (Ref. 2). Besides, another research (Ref. 3) shows that approximately 80% excess air

is required to prevent smoke formation for moist coals. For dry coals, only 30% excess
/-'
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air is required. Using less excess air reduces sensible heat losses with the flue gases,

increasing boiler efficiency. Another reason for a higher overall boiler efficiency is the

lower flue gas temperature to the stack. In a boiler without coal drying, the flue gas

temperature might be 350°F or higher, but with a dryer this temperature will be closer to

220°F coming out of a dryer. The overall thermal efficiency increases can amount to

5%-15%; with steam production increases of 50-60%. These studies show the benefits of

reducing the coal moisture content in power stations.

Energy efficiency in drying can be improved by using recirculating exhaust gases.

The air leaving a directly heated air dryer is usually not saturated, so some of the hot

exhaust gas can be recirculated to the inlet of the dryer. Because it is still warm, energy is

not needed to heat it, increasing the drying efficiency. (Ref. 3) In addition, power stations

generate a large amount of low quality heat which is removed by cooling water from the

condenser. Coal drying would be accomplished by both warm air passing through the

dryer, and a flow ofhot circulating cooling water passing through a heat exchanger

located in the dryer. Higher temperature drying can be accomplished if hot flue gas from

the boiler or extracted steam from the turbine cycle is used to supplement the thermal

energy obtained from the circulating cooling water. The thermal efficiency of the boiler
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will be increased while thermal pollution is decreased.

In an earlier paper (Ref. 4), the authors also presented that low rank coal can be

dried in a fluidized bed using low grade waste heat with coal residence time which are

short enough to make the drying process practical and economic for power plant use. The

approach for doing this is making use of the hot circulating cooling water leaving the

condenser to provide the thermal energy used for coal drying. The temperature of the

circulating water leaving the condenser is usually about 120°F, and this can be used to

produce an air stream at approximately 110°F. Therefore, the coal drying performance,

which is drying rates, at this range of temperature was studied to see if the coal can be

dried effectively.

The drying rates of the coal depend critically on the design and operating conditions

of the drying system, which are drying temperature, mass of coal in the reaction, drying

air velocity, bed depth, the equilibrium moisture content of the coal, in-bed heat flux and

inlet air humidity, but not on fluidized bed bubble behavior or on particle-gas contact..

(Ref. 5). P. P. Thomas (Ref. 6) used two kinds of fluidized beds-batch and continuous, to

dry granular cellular materials. The experimental results show that the critical moisture

content depends on the velocity and temperature of the heating medium, as well as the
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particle size and mass of solids. With the moisture content of 62 to 66%, the drying rate

of these materials is enhanced by an increase in the feed temperature of the air or an

increase in its flow rate. It is reduced by an increase in the particle size or an increase in

solids inventory. Julia ZH Gao et al. (Ref. 7) shows that inlet air velocity can playa

critical role in maintaining proper fluidization and ultimately, uniform drying. W.K. Ng

et al. (Ref. 8) carried out an optimization study of fluidized bed drying, using an

industrial-scale fluidized bed dryer. The results show that the drying rates are

approximately 10 to 12% higher as the fluidization velocity increased from 1.5 Umf to 2

Umf. On the other hand, the drying temperature is also an important factor during drying

process. Higher drying temperatures imply greater driving forces for the heat transfer. P.

K. Agarwal et al. (Ref. 9) conducted an important model for coal drying. His results show

that the drying time decreases significantly when the drying temperature increase. In

addition, the equilibrium moisture content in the fmal product may be lower for a higher

drying temperature. The results also show describe that the size of coal particles

influences significantly the time required for the particles to reach a steady state. In the

report of coal drying written by Levy and Cararo et al. (Ref. 10), the drying rates of two

coals (PRB and lignite) were compared at different drying temperatures. The results show
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that with the same general characteristics, the drying rate ofPRB was 14 to 20 percent

lower than lignite. Both of the drying rates were reduced when the drying temperature

was decreased.

This research deals with three coals, Buckheart, Crown mine and Viper mine.

Typically, the moisture content of Buckheart is 23 percent, where Crown mine and Viper

mine are 18 and 20 percent, respectively. Three of them are expressed on a dry coal basis,

as Kg H20/ Kg dry coal. Ifwe consider the wet coal basis, as Kg H20/ Kg wet coal, the

moisture content ofBuckheart, Crown mine and Viper mine are 19 percent 15 percent,

and 17 percent, respectively.

An experimental investigation on drying of Buckheart, Crown mine and Viper mine

under batch fluidization was carried out in this study. By doing experiments in a lab scale

fluidized bed, the drying conditions of the industrial drying equipment can be easily

simulated. The performance ofcoal drying reached in the laboratory will provide useful

information for optimum drying operation and for building an optimum dryer in

coal-fIred power plants. The signifIcant facts that can affect the drying performance are

drying temperature, mass ofcoal in the reaction, drying air velocity, bed depth, inbed

heat flux, and inlet air humidity. In this thesis, the effect of the flow rate and drying
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temperature of the drying medium for three different coals are studied.

In this paper, a theoretical model of the drying process was used in which the air and

coal particles are assumed to be at the same temperature and the air-water vapor mixture

leaving the bed at the free surface is in equilibrium with the local values ofparticle

moisture. The model was compared with experimental data in different drying conditions.

With the completion of experimental work and theoretical analyses, the variation of

drying rate versus the drying parameters can be found and the prediction of drying

process will be certainly obtained.
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Chapter 2 Experimental Description

2.1.Experimental Setup

The drying experiments were performed in the Energy Research Center's Fluidized

Bed Laboratory as shown in Fig 2.1. The steel bed has a height of 15 inches and a

diameter of 6 inches. A 5 feet Plexiglas tube was attached above the metal bed. A

4.3-inch-diameter metal duct was connected to the Plexiglas tube. The duct ended with a

filter bag to capture elutriated particles. The compressed air used in the experiments

flowed though a rotameter and air heater before entering the plenum. Thermocouples

inserted through the bed wall were used to measure vertical distribution of bed

temperature. A horizontal bundle of eighteen 0.5 inches diameter electric heating

elements is used to provide in-bed heating. The heaters are located in the region from 3

inches to 12 inches above the distributor (Fig 2.2) and are instrumented with

thermocouples to indicate heater surface temperature. By controlling power to the heaters,

the heater surface temperature can be operated in a range from 100°F to 140°F. At a

given heater surface temperature, total heat flux to the bed can be reduced from the

maximum by disconnecting selected heaters from the power supply.
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Figure 2.1 Sketch of the experimental apparatus
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Figure 2.2 In-bed heaters distribution

2-2



2.2 Coal particle size distribution

To analyze further for the drying mechanisms involved in the effectivemean particle

diameter, dp had to be calculated. The effective mean particle diameter is the term which

has the most relevance to fluid and particle mechanics, since it is based on an equivalent

diameter. The mean particle sizes, defmed as (Ref. 11, Ref. 12)

1
(1)

Figure 2.3,2.4 and 2.5 present the particle size distributions for the Buckheart, Crown

mine, and Viper mine coals. The top size of these three coals is 0.25 inches.

Buckheart size distribution

0.40

0.30
=o
'l:

~
of. 0.20
'il
~

0.10

0.00

Mean article size: 0.0563 inehes
0.25 lnehes Top size

Figure 2.3 Buckheart particle size distribution
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Crown mine size distribution
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Figure 2.4 Crown mine particle size distribution

Viper mine size distribution
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Figure 2.5 Viper mine particle size distribution
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2.3 Minimum Fluidization Velocity Measurement

The flow rates at which a bed is expanded to such a degree that the particles may move

within the bed is known as the onset of fluidization or fluidization point, and the bed is

referred to as an incipiently fluidized bed. When mixing occurs, because of the high

degree of turbulence, temperatures are quickly attained throughout the system. Large

instabilities with bubbling and channeling ofgas occur when the flow rate is increased

above the minimum fluidization velocity. (Ref. 11)

The minimum fluidization velocity (Umf) is the superficial velocity point where the

bed pressure drop reaches the maximum value and remains constant (Ref 11). Figure 2.6

to Figure 2.8 show the pressure drop ofbed under different fluidization velocities for the

Buckheart, Crown mine and Viper mine coals. These results show that Urnf ranged from

1.1 to 1.25 mls.

Fluidization Test_Buckbeart

.. 2.5
~..
~ 2

..c..e 1.5
Co
Q

.a I
~
=
~ 0.5

Co 0

0.10 0.30 0.50 0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10

veloclty(m's)

Figure 2.6 Bed pressure drop versus velocity _ Buckheart
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fluidization Test Crown mine

~ 8
; 7
..c 6
'"<!s
go 4..
"" 3OJ
; 2

~ I

"" 0
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

Veloclty(m's)

Figure 2.7 Bed pressure drop versus velocity _Crown mine

Fluidization Test_ Viper mine

"'"; 1.2
~ 1

.c:...

.5 0.8
'-'
Coe 0.6

~ 0.4
"'";l 0.2

E 0
Co

0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

velocity(m's)

Figure 2.8 Bed pressure drop versus velocity_Viper mine

2.4 Drying Test Procedure

The drying tests were performed with specific humidity of the inlet air ranging from

0.007 to 0.009. Small samples of the coal were removed from the bed periodically during

the tests and coal moisture content was measured. The complete test procedure used in

these experiments is detailed in Figure 2.9.
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Figure 2.9 Drying test procedure
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Chapter 3 Experimental Results

The drying tests were done over a range of conditions. Both inlet air temperature and

surface temperature were the same during a test, with these values ranging from 110°F to

140°F. According to the fluidization experiments, the Umf of the Buckheart, Crown mine

and Viper mine coals are 1.2 mis, 1.1m1s and 1.25 mis, respectively. The initial bed mass

for the Buckheart is 4 kg, which has 12.5 inch bed depth. For the Crown mine and Viper

mine, the initial mass is 2.5 kg, with 8 inch bed depth. The initial moisture contents

ranged from 18% to 23% (kg water/ kg dry coal). All the tests were performed with the

coal which had a 1/4 inch top size.

3.1 Moisture reduction curves

The extent to which coal can be dried depends on the way the moisture is associated

with it, and hence knowledge of the moisture-solid equilibrium is an important aspect

when considering drying processes. A coal drying curve is the best characterization of the

simultaneous heat and mass transfer between the coal and hot air drying medium. (Ref.

13) The curve can also be used directly to determine the time required for drying larger

batches under the same drying conditions. Figure 3.1 shows the moisture content

reduction ofBuckheart within 45 minutes of drying time for two different drying
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temperatures. The moisture contents decreased more rapidly at higher temperature. The

same results can be seen in the Crown mine and Viper mine coals (Figure 3.2 and 3.3).

The time to attain equilibrium moisture content is reduced when increasing drying

temperature. N.C. Diamond et al. (Ref. 14) had the same results when carrying out lignite

drying in a fluidized bed.

Coal Moisture Versus Time(BuckardLdry basis

---------

TestRI,R2
Vair,in= \.2m1s

a,in8Hslll"f=.l25F,I40F- - - - -
ho = 12.5"
weight: 4kg

0.3 1-----------------------;::::=======::::;1
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Figure 3.1 Moisture content versus time Buckheart
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Coal Moisture Versus Time(Crown mlneLdry basis
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Figure 3.3 Moisture content versus time _ Viper mine
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3.2 Drying rates

The slopes of the drying curves indicate the rate ofdrying (Ref. 5). The characteristics

of drying behavior show that the drying rate is reduced after 5 to 10 minutes. Figure

3.4--3.6 present the drying rates ofBuckheart, Crown mine, and Viper mine in the first 5

minutes. The drying rates were enhanced by increasing the drying temperature.

Especially in the tests ofViper mine (Fig 3.6), the drying rate increased 40% when drying

temperature was increased from 110°F to 140°F.
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Figure 3.4 Initial drying rates versus temperature_ Buckheart
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3.3 Exit air temperature

To determine the equilibrium state of the drying medium, exit gas temperature was

measured periodically. The exhaust air temperature can be used to detect poor fluidization.

If the exit air temperature rises more rapidly than anticipated, it is an indication that

fluidization is incomplete. (Ref. 7) The exit air temperature changed with time for the

Buckheart, Crown mine and Viper mine coals as is shown in Fig 3.7 to 3.9. These tests

were done by three different drying temperatures - 110°F, 125°F and 140°F. Obviously,

the exhaust air temperature rises gradually with time. The trend was similar to the result

obtained by loao F. A. Vitor et. a1.(Ref. 15). The exit air temperature increased more

rapidly when drying temperature was increased.
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Exit Air Temperature Versus Time_buckheart
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Figure 3.8 Exit air temperature versus time_ Crown mine
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Exit Air Temperature Versus Time_Viper mine
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Figure 3.9 Exit air temperature versus time_ Viper mine

3.4 Exit Specific humidity

The specific humidity was obtained from (Ref. 16)

w=(1093-0.556t")~" -0.240(t-t")

1093+0.444t - t*
(2)

where Ws" = 0.62198 Pws
p- Pws

(3)

From the thermocouples located at the exit of the fluidized bed, the dry and wet bulb

temperatures of the exit air were measured. Using Equation (2), the specific humidity of

the exit air was calculated. Figure 3.10 - 3.12 indicate the variations between specific

humidity and saturated air in 140°F. At the beginning, the specific humidity was close to
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saturated conditions. With the increase ofdifference between these two, the coal moisture

content was decreasing.
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Figure 3.12 Specific humidity versus time _ Viper mine

3.5 Relative humidity

The relative humidity (¢) can be calculated from (Ref. 16)

(4)

where the Degree of Saturation, J..L, is

w
J.L=

W
s I,p

1+(1-¢)~ /0.62198
(5)

The relative humidity of air can also be expressed as a function of coal moisture

content. Figure 3.13-3.15 show the relation between these two. The data were fitted by

an exponential or polynomial function. By using these relations, along with the equations

3-10



of conservation of mass and conservation of energy, the coal drying mathematical model

could be developed.
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3.6 Bed and surface temperature

The surface temperature was set equal to the inlet air temperature during the test. The

higher temperature the in-bed heaters have, the lower the moisture content of the coal

would be. The power input of the heaters was adjusted continuously to keep the surface

temperature stable. Figures 3.16 - 3.18 show the bed, surface and exit temperatures. The

bed temperatures measured by the top and bottom thermocouples are very consistent.

That means the coal in the bed is well fluidized and mixed. Also, with the increase of the

difference between dry and wet bulb temperature at the exit of our system, the coal

moisture content was simultaneously reduced.
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Bed, surface and exit temperature vs time_Viper mine
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Figure 3.18 Bed, surface and exit temperature versus time_Viper mine

3.7 Heat transfer coefficient

The heat loss in our system is considered relatively low and was neglected. The heat

transfer coefficient of in-bed heaters can be expressed as (Ref. 17)

h =_---'Q~·""he""al;;:..er__

Ah (~ealer - ~ed )

(6)

It can be seen in Fig3 .19 that the heat transfer coefficients are lower for wet materials

and increase slightly during the drying process.
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Figure 3.19 the heat transfer coefficients versus moisture content

3.8 Type ofcoal

Experiments were performed with the Crown mine and Viper mine coals at comparable

test conditions to determine the relative rates of drying of these two fuels. Tests were also

run to determine if the key parameters have the same effect on the drying kinetics for

different kinds of coals. Fig 3.20 ~ 3.22 show the drying curves for the two coals in

110°F, 125°F and 140°F. These tests were done with the same values of coal top size,

settled bed depth, air and heater temperature, and approximately the same air velocity.

The drying rate for these coals was shown in Fig 3.23. In the fIrst 5 minutes, the drying

rate ofViper mine was higher than Crown mine by 28% in 140°F, by 36% in 125°F and

by 13% in 110°F. Obviously, there was only small difference between these two coals in
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IlOaF. The exit air temperature was also considered in the tests. Fig 3:24 and 3.25

compare the exhaust air temperatUre for these two coals in different drying temperature.

The values for Viper mine and Crown mine were almost the same during the drying tests,

and the trends for those two coals were similar to Lignite (Ref. 18). When considering the

time requirements to reduce 80% moisture content, as shown in Fig 3.26 and 3.27, the

Crown mine coal has a better drying performance than the Viper mine coal. For the

Buckheart and Viper mine coal, the time required to reach 80% moisture reduction was

decreased when using higher drying temperature.
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Coal Moisture Versus Tlme(dry baslsL Crown mine and Viper mlne_12SF
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Initial Drying rate vs temp._ Viper mine
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Figure 3.24 Exit air temperature versus time in 125°F
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Exit Air Temperature Versus Tlme_ Crown mine and Viper mine
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Figure 3.25 Exit air temperature versus time in 140°F
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Time required for 80% moisture reductloD_ Buckheart
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Figure 3.27 Time required for 80% moisture reduction _ Buckheart
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.
Chapter 4 Theoretical model

The laboratory data in this study were obtained with various drying conditions as

shown in the previous chapter. When the drying operations are known, drying

performance can be predicted by a mathematical model originally developed by Feng Gu

(Ref. 18). This model was developed based on the comprehensive understanding of the

mechanisms ofdrying process.

The parameters controlled in this simulation were inlet air velocity, inlet air

temperature, in-bed heater temperature, specific humidity, initial moisture and mass of

dry coal. The four parameters which were calculated as a function of time, are coal

moisture content (r), exit air temperature (1; ), exit air specific humidity ( 0)2) and exit

air relative humidity ( ({J2)' The control volume is sketched in Fig 4.1.

r, T z , (oz , 'l'z

A L
Air + Vapor

Qheater lOde + IOL

r o

A
" ~ IL
Ir + Vapor

Fig 4.1 Sketch ofcontrol volume
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To describe the drying process, several assumptions were made: (a) at any instant of

time, the particles and air in the bed are at the same temperature (b) gas and particle

properties do not vary with vertical distance in the bed (c) the temperature, flowrate and

specific humidity of inlet air remain constant during a test (d) the energy losses on the

dryer wall only occur in the interstitial gas phase (e) the solid phase behaves as a perfect

mixer (t) all the transfer mechanisms presented in the bubble gas phase are purely

convective and unidirectional (g) the mass of inlet and outlet dry air are equal, while the

water vapor content increases as the air passes through the dryer.

The governing equations for the drying process can be written as follows:

(1) Conservation of energy (Ref. 5, Ref. 18):

Qheater - Q/ass =d(mdcudJ +d(mLuL) +(mah a+mvh.)z - (mah a+mvh.),
dt dt

=mdJ(Cc+rCL) dJ; +UL(_ ma )(llJz - llJ,)] +~a[Cpa(J; - 1;)+llJ2hgz -llJ,hg,]
dt mdc

The left tenn is heat flux transferred through the-system. The tenn

(7)

d(mdcudJ +d(mLuL) represents internal energy change in the control volume, and
dt dt

equation of enthalpy can be obtained by data curve fitting ofThennodynamic properties

table. It can be written as:
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hg = -6E-07 XT3 + 6E-05 XT2 + 0.4369 xT + 1061.4 (8)

(2) Conservation of mass (Ref. 5):

dr
mdc .-+ma ,(w2 -WI) =0 (9)

dt

Where r = mL (10)
mdc

(3) Equation ofspecific humidity and relative humidity (Ref. 16)

0.622x¢2 X~2
w2 =

P-¢2 X~2
(11)

The saturation pressure (~2 ) can be defmed by the curve fitting of data from

Thermodynamic properties table. The equation of saturation pressure is:

Pg2 =5E-06xT3 -O.001lxT2 +0.0999xT-2.5654 (12)

(4) Equation ofrelative humidity and coal moisture content

The relation between coal moisture content and relative humidity of air leaving the bed

¢ = fer) is given graphically in Fig 4.2~4.3 for the Buckheart, Fig 4.4~4.5 for the

Crown mine and Fig 4.6~.7 for the Viper mine coals. By curve fitting of these data, the

equations of relative humidity versus coal moisture content can be acquired.
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Two equations, exponential and polynomial functions, were developed from these
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relations. For Buckheart, the equation is

1.14578
rjJ=0.96973- f-0.05692 (13)

1+exp( )
0.03023

or rjJ = 1162*f4
- 580.01*f3 + 61.878*f2+ 6.6736*f - 0.0855 (14)

For Crown mine, the equation is

rjJ = 0.8877 (15)
1+10.8328x exp(-33.995f)

or rjJ =3260.5*f4
- 1678.7*f3 + 259.41 *f2 - 7.6571*f + 0.2049

For Viper mine, the equation is

rjJ=' 0.78592 (16)
1+21.2577 x exp(-43.9929f)

or rjJ = 2373.2*f4
- 1339.3*f3 + 221.53*f2 - 6.4544*f + 0.1535 (17)

The equations of energy balance, mass balance, the relation of specific and relative

humidity, as well as the relation ofrelative humidity and coal moisture content were used

to calculate the four unknowns, which are coal moisture content during drying tests (f),

exit air temperature (Tz), exit specific humidity (Q)2)' and exit relative humidity (rjJ). The

initial coal moisture content was used to obtain relative humidity by equation (13) ~ (15).

Through equation (11), exit specific humidity can be acquired. Equation (7) and (9) were

used to calculate the changing rate of exit air temperature and moisture content. After

knowing these two values, the numerical method was applied to calculate the following

coal moisture content and exit air temperature. This equilibrium model can be compared

with the experimental results to see how the prediction works.
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Chapter 5 Simulation results compared with measured values

Some cases were run numerically from the experimental conditions and compared with

the experimental results. Four parameters, which are moisture content, exit air

temperature, exit specific humidity and exit relative humidity, were performed to

represent the predicted drying test results for the Buckheart, Crown mine and Viper mine

coals. The two equations, exponential and polynomial functions, were compared with the

same conditions in order to determine the most accurate equation.

5.1 Coal moisture content versus time

Fig 5.1 and 5.2 show the comparison ofmoisture content between calculation and

experimental results for the Crown mine and Viper mine coals in 110°F. Lines and data

points represent the calculated values and experimental results, respectively. It can be

seen that these two coals present good agreement in lower temperature. When the drying

temperature was increased to 125°F, as shown in Fig 5.3~5.5, there was a small

difference between these two results in the first 5 minutes. Fig 5.6~5.8 give the

predictions for these three coals in 140°F. The error between test and calculation results

was slightly enhanced. The simulation data predict more nicely in lower temperature than

in higher temperature. From the following graphs, it can be seen that using exponential
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functions to predict the drying performance will be better than using polynomial

functions.

Moisture content versus time _ Crown mine
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Moisture content versus time _ Buckbeart(125F)
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Moisture content versus lime _ Viper mine (125F)
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Moisture content versus time _ Crown mine
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5.2 Exit air temperature versus time

Comparisons between test and simulation results for exit air temperature were shown

in Fig 5.9 ~ 5.16. They have nice fit, especially the Crown mine, if all the operating

conditions were used to calculate drying perfonnance.

Exit temp vs time
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Exit temp vs time
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Exit temp vs tlme_ Crown mlne(125F)
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Exit temp vs time
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Exit temp vs time
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Fig 5.16 Exit air temperature simulation results _ Viper mine (140°F)

5.3 Exit specific humidity versus time

Fig 5.12~5.14 give the predictions for exit specific humidity. Obviously, Fig 5.12

shows a small error during the drying period. The predicted values were approximately

17.8% higher than the measured values at the beginning of drying test and 37.6% lower

than the test values at the end. From equation (11), specific humidity comes from the

calculation of relative humidity and saturation pressure, which are function ofmoisture

content and exit air temperature. If more test data can be obtained to develop a more

accurate equilibrium model, a prediction with excellent agreement to experimental results

will be reached. Besides, the Crown mine and Viper mine models work very nicely for
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simulation.
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Fig 5.17 Exit specific humidity simulation results _ Crown mine (110°F)
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Exit specific bumldity_ Buckbeart(125F)
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Fig 5.19 Exit specific humidity simulation results _ Buckheart (125°F)

Exit specific bumldlty_ Crown m1ne(125F)

0.045

0.05 I--------------------~;::::======:::;l
• from test

--from calculation(exp.)

''''-''from calculation(poly.)
0.04

•

0.035
C

~ 0.03

.a

.lJ 0.025

.~...
::: 0.02

~
0.015

0.01

0.005

"' ...• ,.-.~, " .
- - - - -.:...:""~,;-:~o- - - - - - - - - - - - - - - - - - - - - --

~~~------------------------
A2

_____________ ~~=1.1m~_

Ta,in ; Tsurf = 125F
ho =8"

- - - - - - - - - - - - - - - - - - - - - - welglit:2.5Kg - -

elulriation: 3.10%

504540353025

time(m1n)

20IS10

O'----"-----'-----'--__--'-__...J-__--'-__---'-__-...J-__~______'

o

Fig 5.20 Exit specific humidity simulation results _ Crown mine (125°F)
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Exllspeclfie humidity_Viper mine (125F)
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Fig 5.21 Exit specific humidity simulation results _ Viper mine (125°F)
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Fig 5.22 Exit specific humidity simulation results _ Buckheart (140°F)
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Exit specilic humidity
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Fig 5.23 Exit specific humidity simulation results _ Crown mine (140°F)
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Fig 5.24 Exit specific humidity simulation results _ Viper mine (140°F)
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5.4 Exit relative humidity versus time

Fig 5.15 ~ 5.17 present the comparison between theoretical and experimental results

of exit relative humidity in 125°F drying temperature. The prediction results depend on

the equations from numerical curve fitting in the graph of moisture content and relative

humidity. In the previous research, Edward K. Levy et al. (Ref. 19) introduced a

mathematical model which requires a relation for r =f(¢, T) . However, this relation

didn't work very well in the drying conditions of this study. From the following graphs,

the model ¢ = f(r) is successful in describing the drying process.

Relative humidity vs time
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Fig 5.25 Exit relative humidity simulation results _ Crown mine (110°F)
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Relative humidity vs time
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Fig 5.26 Exit relative humidity simulation results _ Viper mine (110°F)
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Fig 5.27 Exit relative humidity simulation results _ Buckheart(125°F)
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Relative humidity vs time_ Crown mlne(125F)
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Fig 5.28 Exit relative humidity simulation results _ Crown mine (125°F)
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Fig 5.29 Exit relative humidity simulation results _ Viper mine (125°F)
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Relative humidity vs time
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Fig 5.30 Exit relative humidity simulation results _ Buckheart (140°F)
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Fig 5.31 Exit relative humidity simulation results _ Crown mine (140°F)
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Relative humidity vs time
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Fig 5.32 Exit relative humidity simulation results _ Viper mine (140°F)

5.5 Different type ofcoals

Comparisons for all of the test runs are given in Figure 5.33 ~ 5.37. Fig 5.33

compares predicted and measured values ofmoisture reduction, which is the difference

between the initial and the end moisture content. Fig 5.34 and 5.35 show the test and

simulation results of average exit air temperature and specific humidity. The measured

values were the average values obtained from air temperature and humidity measurement

downstream of the bed. The average values from the computer simulations were obtained

by integrating exit air temperature and specific humidity from th~tial to the end. For

all types of coals; Fig 5.33 and 5.34 show an excellent agreement between the two results.
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In Fig 5.35, the experimental data of the Viper mine coal with 140°F drying temperature

(V3, V6) have 1O~15% error comparing with predicted values. In Fig 5.36, the test

results were the average relative humidity calculated from equation (4), and the predicted

results were the average values obtained from the computed data using equation

(13)~(15). From this graph, the Viper mine coal with higher drying temperature (V6) has

a larger error than the other coals. Fig 5.37, which compares measured to predicted initial

drying rates in the fIrst 5 minutes, presents a bias error (Ref. 10) between the two. The

experimental data were larger than calculated values by 12% to 25%. The error will be

larger when the drying temperature was increased (R2, A3, A5, V3, V6).
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Relative Humidity
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Chapter 6 Conclusions

The objective ofthis research was to use quantitative and qualitative methods for

finding the factors which affect the drying performance of coals from the Buckheart,

Crown and Viper mines. Experimental data were obtained to fmd the effects of drying

temperature on drying rate for different kind ofcoals. A theoretical model based on all the

drying conditions was also developed to predict the drying process and compare to test

results. Systematic analysis of the experimental results leads to the following

conclusions:

• The initial drying rate was increased by increasing the drying temperature. The

drying rate of Viper mine has the most significant enhancement when drying

temperature rises.

• With the smooth increasing of exit air temperature, as well as the consistency of

top and bottom bed temperature, the coal in fluidized bed was considered to be

well fluidized and mixed.

• The coal moisture content was considered to be reduced with the increase of

difference between exit specific humidity and saturate air, and also between exit

dry and wet bulb temperature.
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• During the drying test, the wetter materials are, the lower heat transfer coefficient

would be.

• For the Buckheart and Viper mine coals, the time required to reach the

equilibrium moisture content was decreased when enhancing the drying

temperature.

• Based on the initial drying rates, the drying performances ofViper mine was

better than Crown mine. If they were based on the drying time to reduce the

moisture content down to 20%, Crown mine was preferable.

• By analyzing numerically the relation between relative humidity (¢) and moisture

content (r), the mathematical equations used to calculate the drying performance

were established. The theoretical model of the drying process in this study is in

excellent agreement with the laboratory data.

• The drying performance was more predictable in lower drying temperature than in

higher drying temperature. When doing theoretical calculation, using the

exponential functions to fit the test data was more proper than using the

polynomial ones.
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