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ABSTRACT 

 

Energy-Based Analysis of Utility Scale Hybrid Power Systems 

by 

Kwame Agyenim-Boateng 

 

Dr. Robert F. Boehm, Examination Committee Chair 

Professor of Mechanical Engineering 

University of Nevada, Las Vegas 

 

The promise of large-scale use of renewables such as wind and solar for supplying 

electrical power is tempered by the sources‟ transient behavior and the impact this would 

have on the operation of the grid. Among the methods cited for addressing some of those 

concerns are exploring the complementary nature of solar and wind power generation, 

and through the use of supplemental energy storage. While the technology for the latter 

has not been proven to be economical on a large scale at the present time, some 

assessments of what magnitude is required can be made. An energy–based analysis of 

utility scale hybrid electric power systems based on wind, solar photovoltaic (PV), energy 

storage and conventional plants has been performed. The main objective was to optimally 

size the required energy storage capacities for the given load profile with imposed grid 

supply generations from wind, solar PV and limited conventional plants outputs. A 

second objective was to address the question of optimal mix between solar and wind for a 

considered hypothetical case of 100% renewable energy based grid. The study was 
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carried out using a Southwestern U.S. utility grid hourly load data of 2008. NREL‟s Solar 

Advisor Model (SAM 2010) with TMY3 solar data was used to estimate the solar PV 

system power generation whereas the wind power output data was obtained from 

NREL/3TIER Group modeled wind data set developed for the U.S. Western Wind and 

Solar Integration Studies. It was found for the study area that the diurnal and seasonal 

output profiles of solar PV and wind power do not have the desired complementary 

nature for exploitation, with a significant weighting (95%/5%) in favor of solar PV when 

deployed in tandem. The required energy storage capacity was observed to be highly 

influenced by the flexibility (or base loading) of the grid system. 

 

Keywords: Energy storage, Hybrid system, Solar photovoltaic (PV) power, Wind power. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Background  

     Energy remains an essential input to economic development and industrialization of a 

nation and human life. The world‟s energy demand has mostly been met by the use of 

fossil fuels. Studies have predicted that these sources are finite and, moreover, their 

continuing use has negative environmental and health impacts. In view of this, the 

management of energy sources, rational utilization of energy, and renewable energy 

source usage are gaining prominence in energy policy formulation [1]. 

     A screenshot of the United States energy consumption from 2006 to 2010 is presented 

in Table 1.1 [2]. From Table 1.1, it is observed that except for 2007, renewable energy 

consumption experienced a steady increase in contrast to the total energy consumption. 

The worldwide upsurge interest in renewable energy is due to its inexhaustibility (thus, 

ensuring security of supply) and also, its relative environmental friendly form of 

electricity generation. Figure 1.1, which is an extract from Table 1.1, shows the 

renewable energy consumption in the United State‟s energy supply in 2010. In the period 

under consideration (i.e. between 2006 and 2010), the renewables share of total 

consumed energy grew from 6.7% to 8.2%. The nation‟s renewable energy consumption 

by energy source from 2006 to 2010 is presented in Figure 1.2. Here, we see that the rise 

in renewable share was spearheaded by considerable growth in wind energy and some 

biomass energy additions. 
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  Table 1.1:  U.S. energy consumption by energy source, 2006 – 2010 (in quadrillion Btu) [2] 

 

(Conversion: 1quadrillion = 10
15 

Btu; 1 kWh = 3414 Btu) 

 

 

Figure 1.1: Renewable energy consumption in the United Sates energy supply, 2010 [2] 
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   Figure 1.2: U.S. renewable energy consumption by energy source; 2006 and 2010 [2]. 

     The fuel mixes for electricity generation in different regions of the U.S. as of 2009 is 

presented in Figure 1.3 below. 

 

             Figure 1.3: U.S regional electricity generation fuel mixes [3] 
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     As shown in the Figure 1.3, different regions of the country rely on different fuel 

mixes which mostly, are influenced by the price and the availability of supply. Fuel 

diversity holds the key to affordable and reliable electricity by protecting the electric 

utility companies and consumers from contingencies such as fuel unavailability, price 

fluctuations, and changes in regulatory practices [3]. 

     According to Nevada Commission on Economic Development [4], renewable energy 

is the fastest growing industry in the state of Nevada. It also has an aggressive Renewable 

Energy Portfolio Standard (RPS) that requires all public utilities to generate 25% of their 

electricity from renewables by 2050, with at least 6% from solar energy through 2016-

2025. The state, ranked No. 1 in the United States in solar watts produced per capita, 

houses some of the world‟s largest solar installations near Las Vegas: 

- 64 MW Parabolic Trough Concentrating Solar Power (3
rd

 largest in the world), 

with site potential estimate of 2000 MW 

- 48 MW Thin-film Photovoltaic Power Generation (largest in North America) 

- 14 MW Solar Photovoltaic Power System at Nellis Air Force Base, north of Las 

Vegas. 

     Among the potential renewable energy resources in Nevada, wind power is the least 

exploited for electricity generation. However, the state has wind resources consistent with 

utility scale production, with good-to-excellent wind resources located in southern 

Nevada near Las Vegas and near Ely [4]. 

     It is well know that solar power and electricity demand in warmer climates are, in 

general, positively correlated, and wind power and electricity demand negatively 

correlated. The solar-demand correlation is mostly associated with air conditioning 



5 

 

demand loads during summer periods. The inherent negative correlation between 

intermittent solar and wind resources can be exploited as possible complementary power 

generation options to serve electricity demand in a short-term and/or long-term basis [5].  

     However, the large-scale deployment of intermittent renewables raises some concerns 

on the operation of the existing electricity grid which traditionally has been modeled on, 

and responded very well to, conventional/fossil fuel energy sources of generation. This 

problem is non-trivial because of the ramping requirements on the grid that already have 

to meet the fluctuating demand requirements of customers [6,7].  

 

1.2 Study objectives 

     The state of Nevada is located in the south-western region of the U.S. and has warm 

climate conditions.  As a result of the state‟s very hot summers, the grid peak loads 

during this period is quite significant in relation to the other seasons (i.e. winter, spring 

and fall). In Figure 1.4, the typical summer and winter season‟s average diurnal grid load 

profile for southern Nevada is presented. 

  

            Figure 1.4: Qualitative comparisons of summer and winter average diurnal loads 
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     This presents a major concern to the utility company in the state since to satisfy the 

enormous summer electricity demand the power company has to commission peaking 

plants into operation or buy additional power from neighboring states. Both of these 

options could result in significant increase in operational cost which could put them in 

financial distress. By extension the customers are also affected due to the differential rate 

they might have to pay for consumption in that period. 

     Renewables, especially solar and wind power can compete quite well with the 

conventional peaking plants in terms of $/kWh cost of delivered electric power. 

Consequently, the ability to displace the peaking plants which in any case operate for few 

hours in the year with renewable („free and inexhaustible‟ energy input) is seen as 

laudable. As already mentioned, the inherent intermittency of renewables (such as solar 

and wind) limits the practicality or success of integrating to the current electric grid 

structure.  

     However, several methods exist which can be used to address the intermittency of 

delivered power of renewable. These include combining geographically disperse 

intermittent resources of the same type, using supplemental energy storage, and combing 

different renewables with complementary intermittencies such as wind and solar [8]. In 

addition to the above methods, other investigators consider methods such as increasing 

grid flexibility, dumping of surplus renewable energy generation, and load shifting as 

ways of improving the energy penetration of intermittent renewables [9]. 

     In view of addressing the intermittent output of renewables and shaving of the annual 

peak grid load (i.e. in summer period), this research study has as its general objective to 
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examine utility-scale hybrid electric power systems with solar energy, wind energy and 

electrical energy storage for serving a typical southwestern utility load profile of 2008.  

     In particular, the maximum required storage capacities for different PV/wind system 

sizes will be determined. An evaluation of the daily and seasonal peak load shifting by 

employing varying storage capacities will be carried out. The average energy penetration 

based on the usable solar PV/wind output will also be examined under these conditions 

and at different levels of system flexibility. An attempt will be made at evaluating the 

seasonal optimal mix of solar and wind power for matching the load demand profile. 

 

1.3 Organization of the Thesis 

     The thesis is organized under five main sections/chapters. In Chapter 1 (Introduction) 

a brief background is presented on the U.S. energy consumption from 2006 to 2010, as 

well as the regional resource mixes for electricity generation. Moreover, notable solar 

installations in the state of Nevada are highlighted and followed by the layout of the 

objectives of the study. 

     Chapter 2 (Literature Review) gives an overview of solar energy, wind energy, and 

storage technologies. A review of published research articles on utility-scale hybrid 

power systems is covered in this section  

     In the Chapter 3 (Methodology) the grid load data for the analysis are given. The 

details of the methods used for accessing the PV energy generation and wind energy 

generation data are explained in this section. The logic for the algorithms developed in 

MATLAB for the study analysis is presented. 
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     Chapter 4 (Simulation Results and Discussion) highlights the key results obtained 

from the model simulations and the accompanying discussions with focus on their 

significance to the power utility industry. 

     Finally, in Chapter 5 (Conclusion and Recommendations) the conclusions drawn from 

the study, the limitations of the project and some recommendations for further works to 

improving the study are presented.  

     Further information about the MATLAB modeling can be found in the appendix.  
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CHAPTER 2 

 

LITERATURE REVIEW 

2.1  Overview of solar and wind energy technologies 

   2.1.1  Solar energy 

     Solar energy is the energy from the sun, and for which humans have always used as 

far back as they have existed on this planet. It is also the driving mechanism behind other 

renewable energy sources such as wind, bioenergy, and hydropower. Outside the earth‟s 

atmosphere it has an intensity of more than 1 kW/m
2
, however, with an average daily 

interception of about 4 kWh/m
2
 on the earth surface due to attenuation (from absorption 

and reflection) by the earth‟s atmosphere. The potential of this energy resource is 

enormous, and it is estimated that the solar energy intercepted by the earth in less than 

one month is equivalent of all the energy originally stored in conventional energy 

resources of coal, petroleum, and natural gas on the planet [10]. 

     The conversion of the solar energy resource to electricity is achieved basically in two 

ways referred to as direct and indirect. With the direct conversion, which is the method 

considered in this work, a photovoltaic cell (which is an electrical semiconductor) is 

adapted where the energy contained in the sun (photons) penetrating the cell is 

transferred to the electrons. The excited electrons are then channeled into an external 

circuit generating current for powering an electrical load. For useful electric power output 

the cells are connected in series (to increase the voltage) and parallel (to increase the 

current) into modules and arrays. Mostly, inverters are employed to convert the DC 
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output from the PV modules to AC before integrating it to the electric transmission or 

distribution grid for consumption.                                                                                                                                                                           

     With the indirect method, thermodynamic processes are employed to convert sunlight 

into electricity. Here concentrating solar collectors are used to collect and focus the solar 

radiation, and generating thermal energy which is then transferred to a steam boiler as the 

source of heat input. Power cycles such as Rankine, Brayton, or Stirling are used to 

convert the thermal energy to work by driving a turbine connected to an electric 

generator. The solar collectors used are of three main designs: parabolic troughs and 

dishes, non-imaging concentrators, and central receivers. 

 

2.1.2 Wind energy 

     Wind energy involves the conversion of the kinetic energy present in the wind into 

mechanical energy. The extraction of the wind‟s kinetic energy is accomplished by a 

blade-rotor system. The mechanical energy which is in a form of rotation of a shaft 

connected to the rotor system is then converted to electricity using a generator. Normally 

a gearbox (planetary or parallel design) is employed between the main shaft and the 

generator to step-up the shaft‟s speed to the electric generator. As applied to the solar 

resource, the wind energy available around the planet at any instant is quite vast. 

However, much of it is outside the earth‟s surface and beyond the accessibility of current 

conversion technologies, and would require enormous investment in R&D of the 

conversion devices (or wind turbines) to extract much of the wind resource potential [10]. 

Figure 2.2 shows a schematic diagram of a typical utility-scale wind turbine. The nacelle 

houses the mechanical and electrical controls which include a rotor brake, a mechanical 
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gearbox and a generator. A yaw mechanism is used to rotate the nacelle and the rotor 

system to face into the wind. 

     The U.S. use of wind power for electricity generation has been growing steadily. In 

Figure 2.3 the annual cumulative U.S. installed capacity growth of wind power is 

presented. The total U.S. wind installation as of first quarter of 2011 was 41,400 MW 

representing over 21% of global wind capacity [11]. Figures 2.4 and 2.5 present the U.S. 

wind power capacity installations (MW) by state in 2010, and the corresponding 

percentage of electricity generation by state in 2010. Thirty-eight (38) states have utility-

scaled wind power installations, with the state of Texas leading by installed capacity with 

10,085 MW while the state of Iowa leads by percentage of electricity generation with 

15% [11].   

 

 

Figure 2.2: Main parts of a utility-scale wind turbine [10] 
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Figure 2.3: U.S. Annual and cumulative wind power capacity growth [11] 

 

 

Figure 2.4: U.S. wind power capacity installations by state in 2010 [11] 
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Figure 2.5: U.S. wind percentage of electricity generation by state in 2010 [11] 

 

2.2 Overview of energy storage technologies 

     The variable nature of the energy output from most renewables oftentimes creates a 

mismatch between electricity demand and supply. This mismatch can however, be 

minimized or bridged by the use of energy storage. The use of energy storage can also 

benefit renewable energy electricity generation by providing the level of power quality 

and reliability required by the demand side. Moreover, energy storage can provide 

emergency power and peak shaving opportunities [12].                                                                                                                                                                                                                                                                     

     Technologies for energy storage come in a variety of forms but mainly in chemical, 

mechanical and thermal. Following is a list of some of the promising energy storage 

technologies  
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2.2.1 Pumped hydroelectric storage (PHS) 

     Pumped hydroelectric storage stores potential energy from height differences in water, 

however, with the ability to pump water from the lower reservoir to the upper reservoir. 

As of now it is the dominant form of energy storage in terms of installed capacity 

forming about 97%. It has a relatively high cycle efficiency (65 -85%), large power 

capacity (100 – 1000 MW), large storage capacity (1-24+h), long life (30 – 60 years) and 

a low cycle cost ($0.1-1.4/kWh) [12,13]. 

 

2.2.2 Compressed air energy storage (CAES) 

     Compressed air energy storage refers to storing energy as the potential energy of a 

compressed gas [14]. Typically, CAES system uses existing underground site (e.g. a salt 

dome, a rock cavern or an abandoned mine) to store gas at approximately 4-8 MPa at 

near ambient temperatures and thus, resulting in relatively smaller storage reservoirs 

[13,15].  During off-peak times, air compressors are operated to pump air into the cavern, 

which is then expanded through conventional gas turbines during on-peak grid demand. 

Oftentimes, natural gas is employed concurrently during the expansion process to 

maximize the energy output from the compressed air [14].  

     Currently there are two CAES plants in the world that make up the worldwide 400 

MW capacity of this energy storage technology. The first system installed in 1978 is in 

Huntorf, Germany with a capacity of 290 MW for ~2 h. The second plant built in 1991 is 

found in McIntosh, AL, USA with a capacity of 110 MW for 26 h. Characteristically 

CAES has large energy storage capacity, high power capacity (50–300 MW), a quick 

start-up (9 min emergency start, 12 min normal operation), a long storage period (over a 

year), and a relatively high efficiency (60–80%) [13].  
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2.2.3 Battery storage (including the flow batteries) 

     This type of energy storage is achieved through a reversible chemical reaction in 

accumulators. Chemical energy generated by the electrochemical reactions is transformed 

into electrical energy and vice versa. Batteries are typically classified on the basis of the 

accumulators employed, such as lead-acid, nickel-cadmium, sodium-sulphur, lithium-ion, 

etc. It is a relatively matured technology having good energy densities (up to 150 and 

2000 Wh/kg for lithium) [15]. However, their durability decreases considerably for high-

amplitude cycling. 

     To decouple a battery‟s energy storage capacity from its power capacity and depth-of-

discharge, a type referred to as „flow battery‟ is employed. An illustration of this type of 

energy storage is shown in Figure 2.6. 

 

 

                          Figure 2.6: Illustration of polysulfide bromide flow battery [15] 
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     With this type, at least one of its liquid electrolytes is stored in external tank and flows 

through a rector to store or generate electricity. In addition to the flexibility derived with 

this form, it has a quick response time, deep discharge capability and electricity storage 

efficiency of about 75% [13,15]. 

 

2.2.4 Hydrogen energy storage  

     This energy storage technology comprises three key components: electrolyzer, storage 

tank and fuel cell. To generate the hydrogen fuel, an electrolyzer is employed to 

decompose water into hydrogen (H2) and oxygen (O2) gas by introduction of an electric 

current. The hydrogen gas is then stored in a pressurized tank serving as a buffer between 

demand and supply. During time of need a fuel cell is used to generate electricity from 

the stored hydrogen and oxygen from air [13,15]. 

 

2.2.5 Flywheel energy storage 

     Flywheels use the mechanical inertia of a rapidly rotating disc attached to a motor or 

generator to store or retrieve energy depending on the rotational velocity. Although not 

widespread, it is a promising technology because of its long life of 15–20 years, long full 

cycle lifetimes range from 10
5
 up to 10

7
 and high cycle efficiency of about 90% [16]. 

However, flywheel energy storage is tempered by high capital cost in the range of $1000-

5000/kWh, and also a high self-discharge rate between 55% and 100%/day warranting 

the use of magnetic bearings and placing the flywheel in a vacuum [16]. Current 

applications are in the area of uninterruptible power supply, power conditioning and 

pulse power, and are beginning to be used with intermittent renewable energy sources. 
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2.2.6 Thermal energy storage (TES) 

     Another variant of energy storage referred to as thermal energy storage, holds quite a 

promise for utility-scale renewables especially in the context of solar thermal electric 

plant. This system uses molten salt or other thermal storage media to retain a high 

temperature thermal store from sun heat (employing concentrating collectors) for later 

use in electricity generation.  

   A comprehensive review of the characteristics of electrical energy storage systems for 

stationary applications can be found in [15,17-19]. Highlights are the different electricity 

storage techniques and their field of application (such as permanent or portable, long- or 

short-term storage), properties and uses of storage for enhancing the grid penetration of 

intermittent renewables. 

 

2.3 Progress in research on utility scale hybrid power systems 

     In Chapter 1 attention was drawn to the concerns about the operation of the existing 

electricity grid structure with large scale deployment of intermittent renewable. A number 

of research studies aimed at addressing some of the concerns have been undertaken.   

     Among them is U.S. Department of Energy (DOE) sponsored study entitled 20% 

Wind Energy by 2030: Increasing Wind Energy’s Contribution to U.S. Electricity Supply 

[20]. The study explored the impacts and considered specific needs and outcomes in the 

areas of technology, manufacturing and employment, transmission and grid integration, 

markets, siting strategies, and potential environmental effects associated with a 20% wind 

energy penetration scenario. The authors did not find significant technical barriers to 
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reaching 20% wind energy penetration in the continental U.S., however, they noted that it 

would require some enhancement of the grid transmission system in such a scenario.   

     A study on the large scale renewable energy use in the western corridor of the USA, 

entitled How do Wind and Solar Power Affect Grid Operations: The Western Wind and 

Solar Integration Study [6] has been undertaken by the U.S. National Renewable Energy 

Laboratory (NREL) and with other partners to examine the operational impact of up to 

35% penetration of Wind, Solar Photovoltaics (PV) and Concentrating Solar Power 

(CSP) on the WestConnect group of utilities (as shown in Figure 2.7) comprising 

Arizona, Colorado, Nevada, New Mexico, and Wyoming. The investigators concluded 

that 35% renewable energy penetration is operationally feasible provided significant 

changes to current operating practice are made, including balancing area cooperation and 

sub-hourly generation and interchange schedule. This and its partner study, the Eastern 

Wind and Transmission Study, form the largest solar and wind integration study to date 

[6].  

 

 Figure 2.7 Partial map of western U.S. showing the WestConnect grid [6] 
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     Parson et al. [21] compared the analytic frameworks from recent technical 

investigations of grid ancillary service impacts of wind power as applied to Xcel Energy 

(in Minnesota), PacifiCorp and the Bonneville Power Administration (both in the 

northwestern United States), and discussed the implications and cost estimates of wind 

integration. The authors noted that although the approaches vary, three utility time frames 

namely regulation, load following and unit commitment appear to be most at issue. Their 

findings were that there would be significant impact on power system operation and costs 

at relatively large-scale wind generation, but at penetration rates that are expected over 

the next several years these impacts and costs are relatively low. Such cost on the 

Bonneville Power Administration (BPA) is shown below. 

              Table 2.1: Cost of integrating 1000 MW of wind into the BPA system [21] 

 

 

     Weisser and Garcia [22] focusing on medium-sized diesel-based electricity grids 

reviewed key concepts concerning supply reliability and power quality at high wind 

penetration in such grid system. They noted that for questions about the grid stability to 

be addressed sufficiently, one must undertake a detailed study of the mechanical and 

electro-magnetic interactions between the wind turbines and the grid. The authors 

concluded that high wind penetrations in autonomous wind–diesel power systems pose a 

threat to power quality. However, the level to which the grid can absorb of wind 

penetration depends on factors such as turbine type, grid strength and prime mover (e.g. 
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diesel generator) responsiveness. Successful operation of medium-scale systems with 

wind penetrations (power) of up to 30–40% is reported without the need for special 

control measures. However, as power control concepts mature the limit on penetration 

may become less stringent [22].  

     To meet the stochastic demand in power systems, generation has to be continuously 

adjusted to meet the varying demand, thus leading to the decomposition of demand into 

typical and variable parts, and corresponding generating units into base-, demand 

following-, and regulating units. However, the degree to which load following and 

regulating capacity need adjustment as wind capacity on the system increases depends on 

several factors [23] such as size and type of the capacity reserve already on the system, 

the magnitude of aggregated wind output and demand fluctuation, and the legal criteria 

that specify the reliability of the power system. Other alternatives to adjusting the 

demand following capacity and ramping duty are the use of energy storage and/or 

demand side management measures [23].   

     Stodola and Modi [24] addressed the question of how much electric load can be 

substituted by solar electricity without requiring electric energy storage. Moreover, they 

considered a system that permits 95% of the annual PV output without reducing the base 

load plants generation since the base load plants have quite a low operating cost as 

compared to solar power generation. Using historical solar resource data and load data for 

2005 from 32 regions of the United States, they concluded that 7.8% of the total annual 

electric demand could be met by installing 59 GW of PV panels without significant 

investment in grid infrastructure. 
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     Denholm and Margolis [25] evaluated the limits of large scale solar photovoltaics 

(PV) in a conventional grid system using the data from the Electricity Reliability Council 

of Texas (ERCOT) in the year 2000 as a case study. Their focus was to evaluate the 

ability of PV to provide up to 50% of the grid system load demand by comparing a 

simulated PV system output to the its usable output. The authors noted that the limited 

flexibility of the base load plants and thus, the grid results in significant amounts of 

unusable/excess PV output when PV provides about 10-20% of the system annual energy 

demand. Several metrics were developed to analyze the excess PV output. Moreover, the 

limited coincidence of the daily peak solar PV output and the peak energy demand is also 

a contributing factor to the high levels of unusable PV generation [25]. 

     Solomon et al. [26] examined the grid matching capabilities of wind generation and 

solar PV generation as applied to the Israel Electric Corporation (IEC) grid system. Their 

analysis was based on the IEC load data for 2006 and a corresponding simulated hourly 

performance of PV power and wind power plants in the Negev Desert. Their major 

objective was to test the hypothesis that wind-PV hybrid system can achieve higher levels 

of energy penetration and improve matching than either system type alone. Based on the 

results from the analysis they concluded that due to the differences in diurnal and 

seasonal output profiles of PV and wind power generation, their combined deployment 

significantly improves grid penetration compared to their use individually. The authors 

also reported that they did not find a significant increase in PV grid penetration for the 

geographical dispersal of the PV plants throughout the Negev Desert as compared with 

large, single-site plants. However, they concluded that the dispersal strategy would 

reduce the grid ramping requirements. 
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     Focusing on Europe, Heide et al. [27] investigated the design of a future European 

electric power system for the case of a highly renewable energy penetration in the search 

for answers to some key questions such as: How much wind, solar, hydro and geothermal 

power is good for Europe? Is there an optimal mix between them? How much storage and 

balancing are needed? Aggregating the renewable power generation over Europe, they 

found that there exist strong seasonal behaviors between the wind power and solar power, 

with wind power generation being stronger in the winter than in summer and vice versa 

for solar power generation. The authors based their analysis on a 100% wind-plus-solar-

only scenario assigning the reason to the expected dominance of wind and solar power. 

Using load, solar and wind time series data (between 2000 and 2008) on a monthly 

resolution, the corresponding time series mismatch energy between load demand and 

supply generation was evaluated. The optimal mix was then found from the minimum of 

the standard deviation of the mismatch energy as a function of varying solar and wind 

power capacities. The investigators concluded on a seasonal optimal mix of 55% wind 

and 45% solar power generation weighting to supply the grid demand, and further 

remarked that for less than 100% renewable scenarios the fraction of the wind power 

increases and that of solar power decreases. 

      To address the question of the required size and properties that electric energy storage 

should have in order to enhance grid penetration of large PV systems, Solomon et al. [17] 

considered the Israel Electric Corporation (IEC) grid system for their analysis and used 

the hourly generation data for 2006. Evaluating the needed energy storage capacity for 

the IEC grid system with PV generation, they constrained the storage system losses to 

only that of the storage inefficiency (charging/discharging). With this constraint a 
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revealing linkage was observed between the energy and power capacities of the storage, 

PV system size, and the aggregate effect on the grid penetration. The energy capacity was 

seen to increase exponentially with PV capacity additions. They reported that at high grid 

flexibilities in the range of 80% -100%, the PV annual energy penetration of 60%-90% 

could be achieved. To reduce the size/energy capacity requirement of the energy storage 

they considered strategies such as PV energy dumping and base-load rescheduling. 
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CHAPTER 3 

 

METHODOLOGY 

 

This section highlights the logical framework with which the analysis was carried out. 

Also, the load data as well as the solar and wind resource data used are presented. Key to 

simulating a typical performance of photovoltaic or wind electric power generation 

system is a large weather data set with good spatial and temporal resolution over the 

study area [27].  

 

3.1   Data Sources 

 

3.1.1   Load 

      Here the characteristics of the grid load are examined. The data given in 30-min time-

step was processed to an hourly resolution, and afterwards normalized to the annual 

hourly peak demand. In Figures 3.1-3, the load data in various forms are presented.  

Figure 3.1 shows the load duration curve in fraction of the annual peak load. As can be 

seen from that figure the minimum grid demand (indicated by the dashed line) was 

approximately at 28% of the annual peak, and for about half of the year the grid was 

loaded at 40% of the annual peak.     

     The annual peak load for the given demand profile (of 2008) was about 5.525GW 

occurring in the month of July. Be advised that all the input time series data for the load, 

solar PV and wind outputs are normalized to this peak load. Consequently, the analysis 
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results are multiples or fractions of this peak load unless stated otherwise. The intent is to 

place the analysis in a more generic form. 

 

 

                        Figure 3.1: Utility annual load duration curve 

      In this work the months are grouped into four seasons, namely Spring (from March to 

May), Summer (from June to August), Fall (from September to November), and Winter 

(from December to February). Figure 3.2 shows the daily minimum and maximum, as 

well as the average daily grid loads for the year. 

 

 

                                      Figure 3.2: Utility daily load variations 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 1000 2000 3000 4000 5000 6000 7000 8000 

U
ti

li
ty

 L
o

ad
  

(f
ra

ct
io

n
 o

f 
p

ea
k
 l

o
ad

) 

Time [hr] 

load min load 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 50 100 150 200 250 300 350 

N
o

rm
al

iz
ed

 L
o

ad
 

Time [day] 

Avg Min Max 



26 

 

     From Figure 3.2 we see that the grid experiences a relatively large daily load variation 

between the minimum and maximum in summer months. This variation averages over 

40% as compared to 10-20% for other seasons. Analyzing the seasonal load data in terms 

of average diurnal variation as shown in Figure 3.3 gives another insight to the load 

characteristics.  

 

 

                      Figure 3.3: Qualitative comparisons of seasonal average diurnal loads 

 

    The summer load is observed to peak in late afternoon. This pattern is as expected of a 

typical southwestern desert location because in such areas the summer loads are mainly 

driven by air conditioning needs as already mentioned. The winter load profile is seen to 

have two peaks within a day. These peaks result from evening lighting requirements in 

addition to heating needs in the morning. 
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3.1.2   Photovoltaic Power Generation 

     NREL‟s Typical Metrological Year 3 (TMY3) weather data set for Las Vegas 

(Longitude = 115.1
o
W, Latitude = 36.1

o
N) was used for simulating the hourly 

photovoltaic power generation. It was assumed that solar radiation over the study area is 

similar to that of the measurement location. Practical non-tracking photovoltaic systems 

are oriented at particular azimuth and elevation angles so as to optimize the power output.  

     Although there are many orientation strategies to choose from, the most prudent 

choice is generally dictated by the time need of the energy. Moreover, to an electric 

power utility, maximizing photovoltaic power output at noon time may not necessarily be 

of primary importance if its grid peak load occurs at another hour besides noon (usually 

later in the day). Thus, for utility peak load shaving or load leveling with photovoltaic 

power generation, a prudent strategy would be to maximize the photovoltaic output at or 

close to the hour of peak demand [28]. This is achieved by changing the array or collector 

surface azimuth and elevation angles. However, it is instructive to note that such strategy 

would result in a lesser annual energy output as compared to the rule of thumb optimal 

position of south-facing latitude-tilt orientation (if located in the northern hemisphere). 

     Using NREL‟s Solar Advisor Model (SAM 2010) [29], a 1 MW photovoltaic power 

plant (based on silicon cells) was simulated for a Las Vegas location for different 

orientations using a derate factor (i.e. the conversion efficiency from DC to AC power) of 

0.8. It was found that the array orientation (azimuth = 190
o
, surface elevation = 15

o
) 

maximizes the average summer output, however, its peak generation was also found to be 

at noon as shown in Figure 3.4. 
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         Figure 3.4: 1 MW PV output comparisons for three orientation strategies in summer  

 

A screenshot of the user input interface is shown in Figure 3.5. 

 

Figure 3.5: A user input interface [29]  
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3.1.3   Wind Power Generation 

     NREL/3TIER Group modeled wind data set was used [30]. This modeled data set is 

for the period spanning 2004 to 2006, and has a spatial resolution of 2-km x 2-km grid 

cells and temporal resolution of 10-minutes. It includes the wind speed at 100 m height 

above ground and the wind turbine power output of an assumed 30MW (10 of 3MW 

wind turbines) wind farm per grid cell. The wind data as retrieved from the source are 

presented in Greenwich Mean Time (GMT) and has to be converted to the local time for 

the analysis. Figure 3.6 is a screenshot of the user interface for acquiring the modeled 

wind farm data set.  

 

 

       Figure 3.6: User interface for acquiring the modeled wind farm data set 

 

     One can obtain the data set by entering the site/station ID in the textbox (bottom left). 

Then that 30MW wind farm pops up from the group, and from the site summary table 



30 

 

one can download the required year‟s dataset. For this study ten (10) of the modeled 

30MW wind farm sites nearest to the load center were selected and their respective 10-

minute time series values of wind speed and wind turbine power output  from 2004 to 

2006 averaged. This was done to get a typical wind farm output and wind speed profiles 

close to the load center.  Then, this averaged 10-minute vector was converted into 

average hourly vector. Figure 3.7 shows the selected group of wind farms in the rounded 

rectangle.  

 

 

Figure 3.7: Selected wind farms (in rounded rectangle) for the study analysis 

 

     Pearson‟s product moment correlation coefficients between the time series wind 

speeds for the selected sites were calculated to determine the directional variations/trends 

(i.e. if they do increase and decrease at the same time or vice versa) in the data and thus, 
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the appropriateness of aggregating that set to estimate the average wind farm profile. 

Table 3.1 presents the correlation coefficient values obtained. 

 

Table 3.1: Correlation coefficients among the time series power outputs of selected sites 

Site ID 6228 6229 6248 6274 6275 6276 6301 6302 6303 6326 

6228 1 0.98 0.94 0.93 0.92 0.98 0.91 0.90 0.89 0.88 

6229 0.98 1 0.94 0.94 0.93 0.98 0.92 0.91 0.90 0.89 

6248 0.94 0.94 1 0.98 0.96 0.97 0.97 0.96 0.94 0.93 

6274 0.93 0.94 0.98 1 0.98 0.96 0.97 0.98 0.96 0.93 

6275 0.92 0.93 0.96 0.98 1 0.94 0.95 0.97 0.98 0.92 

6276 0.98 0.98 0.97 0.96 0.94 1 0.94 0.93 0.91 0.90 

6301 0.91 0.92 0.97 0.97 0.95 0.94 1 0.98 0.95 0.97 

6302 0.90 0.91 0.96 0.98 0.97 0.93 0.98 1 0.98 0.96 

6303 0.89 0.90 0.94 0.96 0.98 0.91 0.95 0.98 1 0.94 

6326 0.88 0.89 0.93 0.93 0.92 0.90 0.97 0.96 0.94 1 

 

 The correlation coefficient can take values from -1 to +1. A positive value of the 

coefficient indicates similarity in data trend (1 being the strongest) whereas a negative 

value shows an inverse/opposite relation. The values obtained for the correlations 

coefficients as shown in Table 3.1 indicate a close correlation between the wind power 

outputs of the selected group of sites and thus, justified for using their average to present 

a typical wind farm output. 

 

3.1.4   Relationships among the grid load, solar (PV) and wind power generations 

     As mentioned in the preceding section, the relationship between the grid load, solar 

power and wind power availability can, likewise, be best explained by calculating the 
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correlation coefficient as presented by [5,31] among them or among their corresponding 

resources (i.e. wind speed/power density and solar radiation) on which their power 

outputs depend. The results of the Pearson‟s product moment correlation coefficients 

calculation are shown in Table 3.2. 

                

                     Table 3.2: Correlation coefficient between the grid load (demand) and  

                                      photovoltaic and wind power generations.   

 Load Solar Wind 

Load 1 0.23 -0.04 

Solar 0.23 1 -0.22 

Wind -0.04 -0.22 1 

 

     

      From Table 3.2, it is found that although there exists a complementary potential  

(negative value of coefficient) between the solar and wind power generations in the study 

area, the strength is low (-0.22 out of -1). The positive solar – load correlation coefficient 

indicates some added value of solar PV in matching the grid load profile. Wind power is 

seen to anti-correlate with the grid load. This is expected in warmer climates, but the 

magnitude of the coefficient does not define the relationship more clearly for the area 

under consideration, southern Nevada. The observed  low correlation coefficient between 

the solar (PV) power and wind power availability could mean that when they are 

deployed in tandem, they may not be as effective (without storage, or as stand-alone 

system) in meeting/reducing the peak demand, the area of our interest. However, the 

results of the subsequent analysis of load matching in Chapter 4 would confirm the 

validity or otherwise of this assumption. 
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3.2   Development of the Model 

     A computing algorithm developed using MATLAB for performing an hour-by-hour 

assessment of photovoltaic-wind-load matching capability and also for determining the 

storage capacities is described here. In the code/model an Excel spreadsheet which 

contains hourly data for grid load, the simulated 1 MW photovoltaic system AC output 

and a 30 MW wind farm AC output is imported.  For the algorithm details, refer to the 

appendix. 

3.2.1 Determination of Non-Spilled (NS) Photovoltaic/Wind Capacity 

     „Non-spilled‟ photovoltaic/wind capacity denotes a hypothetical maximum capacity 

photovoltaic/wind system that would not generate more power than the required grid 

demand during any hour in the year if it were the only supply generation option on the 

grid. This however assumes a grid flexibility of 100%. Following the method presented 

by Solomon et al. [32], a non-spilled photovoltaic/wind capacity is determined by first 

evaluating the ratio of the 1 MW photovoltaic/wind system hourly AC output say 

(EPV/Wind) to the corresponding hourly grid load say (Eload) as shown in Eq. (3.1).  

                                               
           

        
                                                                                    

where i = 1 to 8760 (hours in a year) 

The maximum value of this ratio vector is evaluated and the obtained value of the 

reciprocal of this maximum ratio (max(Ratio(i))) gives the capacity of the non-spilled 

photovoltaic or the wind system. 
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For the load profile used for this study, the evaluated non-spilled PV and wind capacities 

were obtained as 2.376 GW (~ 43% of peak demand) and 1.740 GW (~ 31% of peak 

demand) respectively. 

3.2.2 Sizing of energy storage capacity requirements 

    In the model the storage system is characterized by the following parameters which are 

defined as: 

- Maximum energy capacity 

     This is the maximum amount of available energy in the storage system in a fully 

charged state. 

- Minimum energy capacity 

     This is the minimum amount of available energy in the storage system below which 

the storage is not discharged to complement supply generation in meeting the grid load. 

- Maximum power capacity  

     This is the maximum amount of energy that can be injected into or withdrawn from 

the storage system in any instant (or for any hour being the time step in this study). 

Though maximum power of charge and discharge may be sized differently, the two are 

set equal for this analysis. 

- Cycle efficiency  

     The product of the charging and discharging efficiencies of the storage system is the 

cycle efficiency. For this study the charging or discharging efficiency is obtained by 

finding the square root of the cycle efficiency. 
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- Total discharge time  

     This is the duration at which the storage energy capacity is exhausted at maximum 

power discharge. In the model this is obtained as the ratio of the energy capacity to the 

power capacity. However, in practical systems this depends on the depth of discharge and 

operational conditions of the system [15]. Separating the power and energy dimensions of 

storage systems is not trivial and this presents a challenge in choosing the optimum time 

constant for most storage technologies. 

- Self-discharge 

This is the rate at which the storage system intrinsically discharges/loses its available 

capacity whether it is being used or not. It represents an inherent loss to the storage 

system. It is dependent though on many factors including environmental conditions  

 

     In the model the storage losses are simplified to that of only cycle efficiency (ncycle) 

and self-discharge. Being guided by other investigators‟ work [9,17], the cycle efficiency 

was set at 80% (indicative of battery energy storage) and assumed that of self-discharge 

rate to be 10% per month of the available energy capacity. 

     To proceed with the evaluation, a base generation capacity (as a fraction of the peak 

load) is first defined which sets the minimum (annual or seasonal) conventional plant 

generation at any hour on the grid. Consequently, the flexibility of the grid is set by this 

value. During each hour, meeting the grid load/demand is first attempted with the base 

generation. If thereafter, a net load or mismatch in energy, (say EmBase) exists, the deficit 

in supply generation is then attempted with the PV/wind generation. Any remaining 

deficit or surplus in supply generation, (say EmPV/Wind) after accounting for the PV/wind 

output is then pulled from or charges the energy storage. However, the discharge process 
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is constrained by the minimum storage energy capacity, the maximum power capacity 

and discharge efficiency.         

     Figure 3.8 shows a schematic of a typical energy storage integrated hybrid (PV-Wind) 

grid power system. On the combined load-generation plot, the area indicated by the plus 

(+) sign is where surplus generations is observed and hence the energy storage being 

charged. The opposite is true for that indicated by the minus (-) sign. 

 

 

                  Figure 3.8: Typical PV-wind-storage grid power system [33] 
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     The mathematical description of the charging and discharging process is generally 

described by Eq. (3.3) below. 

 

                               

                                               

 

      
                                            

           

where: 

- t is time 

- effchg & effdsg are the charging and discharging efficiencies (which are related to  

the “cycle efficiency” denoted above) 

- DsgRate is the self-discharge rate 

The time series Estr(t) describes the charging level of storage. The difference between the 

maximum and minimum value of Estr(t), however, determines the required storage energy 

capacity. The storage power capacity is, however, set by the maximum value of time 

series given by (eff_c.EmPV/Wind or eff_d
-1.

EmPV/Wind) [27]. The developed algorithm has the 

capability of determining among other items the: 

 required magnitudes of energy and power capacities of the storage system; 

 annual/seasonal energy penetration of PV-wind only and PV-wind-storage 

system; 

  daily net storage energy capacities; 

  annual/seasonal peak load reductions for any desired period within the year; 

 system energy losses (due to storage inefficiencies and or dumped generations). 

The flowchart highlighting the general algorithm steps is presented in Figure 3.9. 

Definitions of the parameters are presented below. Refer to appendix for detailed 

descriptions. 
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 ChgDsgLoss is the energy loss due to storage charging and discharging cycles 

 Ht_max is the storage system maximum power capacity; 

 Hmin and Hmax are the storage system minimum and maximum energy capacities; 

 Hnew is the current/end of hour storage energy capacity; 

 Eout_RE is the total renewable energy generation at time t; 

 Emb is the resulting mismatch between load and base generation; 

 Eout_dmf  is the demand-following generation on the grid;  

 Edump_RE  and Eusable_RE  are the dumped and usable renewable energy generation;  

 StrShare_pk peak time storage dispatch capacity (refer to Eq. 4.3) 
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                          Figure 3.9: Flowchart for the hybrid system analysis  
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3.2.3 Quantification of seasonal optimal mix between wind and solar 

     In this section an attempt will be made to quantify an energy-based optimal seasonal 

mix between wind and solar (PV) power generation based on the given load profile. To 

begin with such an analysis the diurnal and seasonal variations of the wind and solar 

power for the selected location/geographical area have to be examined for 

complementarities. With the time series data (load, wind and solar power generations) 

quantifying the seasonal optimal combination for a 100% wind-solar scenario becomes a 

relatively straightforward analysis.  

     Key to such quantification is to determine the mismatch energy between the grid load 

and supply generation [27].  For this analysis the mismatch energy is evaluated as given 

by Eq.(3.4)   

 

                           
    

    
   

    

    
  

    

    
                                                   

 

Where: 

      Eme(t)  is mismatch energy during time step t (monthly considered in this case); 

      S(t)  is the total solar energy output during time t; 

     Smax is the maximum total monthly solar PV generation within the considered period; 

     W(t)  is the total wind energy output during time t; 

     Wmax is the maximum total monthly wind generation within the considered period; 

    L(t)  is the total demand during time t; 

    Lmax is the maximum total monthly grid load within the considered period 
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Coefficients a and b define the average fractions or percentage of the load to be served 

with the solar PV and the wind generations respectively for that demand profile 

matching. The coefficients are constrained to (a+b=1). Varying the values of the 

coefficients, a and b, the standard deviation of the mismatch energy is then calculated as 

a function of (a=1- b). Where the minimum of the standard deviation occurs provides an 

indication of the optimal contributions of the respective energy sources to matching the 

demand. The algorithm computed in MATLAB is presented in the appendix. 
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CHAPTER 4 

 

SIMULATION RESULTS AND DISCUSSION 

4.1 Dependence of storage capacities on PV system size and base generation 

     In this section we present the required annual storage energy capacities and the 

corresponding power capacities requirements for varying sizes of the PV system and base 

supply generation. Figure 4.1 shows the relationship among required annual storage 

energy capacity, PV system size and base generation capacity (which determines grid 

flexibility). Note that all the values found in the figure are multiples of the annual peak 

load. 

     From Figure 4.1 it is seen that the required energy capacity monotonically increases 

with increasing PV system size for a given base generation capacity. The increment is 

observed to be linear for all PV system sizes considered with the base generation capacity 

range 0-0.07 and partly for base generation range 0.14-0.28. For the latter range, an 

exponential increment is seen from absolute PV sizes of 0.75 upwards with base 

generation of 0.21 and approximately 0.35 upwards at base generation of 0.28.  

 

Figure 4.1: Relationship among storage energy capacity, PV size and system flexibility 
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The region of linear variation seen in Figure 4.1 is where the storage energy capacity 

need is determined by just the daily peak excess PV generation which charges the 

storage. The exponential increment is where the storage energy capacity requirement is 

determined by the cumulative effect of the sum of the net daily stored energies from 

previous days and the next day‟s peak excess PV generation [17]. 

     Additional insight into the observed exponential variation of energy capacity in Figure 

4.1 can be gained by plotting the net daily storage energy capacities of different PV 

system sizes as shown in Figure 4.2.  It can be seen in Figure 4.2, especially for the 0.6 

and 0.7 PV system sizes that the energy capacity monotonically increases between 

approximately the 75th and the 120th day of the year. This period represents the spring 

season where grid loads are relatively low while favorable ambient temperature 

conditions and the sun intensities lead to higher PV generation outputs. As a result of 

much more surplus PV generation, a larger storage capacity is required to contain these 

surpluses. This is what results in the exponential increments noted in Figure 4.1 and 

Figure 4.2 

  

Figure 4.2: Daily storage energy capacities at base generation of 0.28 of annual peak load 
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     Figure 4.2 reveals that for the considered PV system sizes the storage capacity is 

exhausted during the day‟s period in the summer season (days 151-243) and early fall 

(days 243~285). However, it is seen that higher PV system capacities close up the storage 

„dry up period‟ but result in excessively high storage energy capacities. We note in 

passing that the size of the storage system also depends on the orientation strategy of the 

PV arrays since higher surface elevation angles generally produce more energy in fall-

winter periods and less in summer in contrast to lower elevation angles such as one 

employed for this study. 

     Moreover, Figure 4.2 brings to fore some of the challenges that power utilities would 

likely be faced with higher penetrations of the power grid system with conventional PV 

systems energy generation. An operational strategy has to be devised to contain these 

seasonal energy surpluses by this technology in view of ensuring economically utilizable 

storage sizes. One way of addressing this could be dumping of some generation and/or 

increasing the flexibility of the grid system. 

     If we consider no dumping of excess PV generation, then the maximum annual hourly 

peak value of the energy capacity within the simulated time period is selected as the 

required storage energy capacity for the given PV system size and with regard to base 

generation or grid flexibility employed. It can be recalled from Chapter 3 that we defined 

our power capacity to be the maximum charging or discharging load at any instant/time 

step within the simulated time period. Thus, as said of the energy capacity, either the 

annual hourly peak storage charge load resulting from the excess PV generation, or the 

annual maximum discharge load to meet deficit in grid demand for a given base 

generation determines the annual storage power capacity requirement.   
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     In Table 4.1, the required annual storage energy capacities and power capacities for 

different sizes of PV system and for a base generation of 0.28 are presented. As observed 

for the energy capacities, the power capacities tend to increase with the PV size. The 

increment in the power capacity could be assigned to the potential of the storage having 

more of available energy capacity now for discharge to meet the deficits in grid demand.  

It is instructive to note that having a power capacity value greater than 0.72 (since base 

generation is considered to be 0.28) is as a result of discharge inefficiency, thus drawing 

more than actually used to serve the demand deficit. 

 

Table 4.1: Required annual storage energy capacities and power capacities 

 for different sizes of PV system at 0.28 base generation 

PV Capacity 

Storage Capacity 

Power Energy [h] 

0.1 0.01 0.05 

0.2 0.08 0.50 

0.3 0.15 1.15 

0.4 0.23 2.59 

0.5 0.31 11.04 

0.6 0.63 31.49 

0.7 0.63 60.68 

0.8 0.72 92.58 

0.9 0.72 124.77 

1.0 0.74 166.28 

                         Note: all values are multiples of the annual peak load [5525 MW] 

 

4.2 Annual PV system energy penetration with varying base generation 

     In this work the PV energy penetration is obtained as the ratio of the total usable PV 

generation to the total grid demand/load. One of the options cited for enhancing the 

economic penetration of intermittent renewables is by increasing the flexibility of the 
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electric grid system [9,34]. Figure 4.3 presents a hypothetical 0.5 PV systems annual 

energy penetration and total energy losses with varying base generation. In the legend, P 

and L represent energy penetration and losses respectively. The storage system assumed 

for the following analysis has max power capacity (of 0.5) and max energy capacity (of 

10 h). 

 

 

   Figure 4.3: Annual PV energy penetration and total losses with varying base generation 

                              (PV = 0.5; storage cap [power = 0.5, energy = 10 h]) 
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which PV grid penetration can be increased, which results from the usefulness of 

otherwise excess/dumped PV generation for a PV-only system. 

     Superimposed on the PV energy penetration versus base generation plot (Figure 4.3) is 

the accompanying total energy losses observed for the two PV systems. The PV-only 

system energy loss is derived from the dumped excess generation whereas that of the PV-

storage system is the aggregate of the excess dumped generation, the storage charging 

and discharging losses. The total energy loss is observed to increase exponentially for the 

PV-only system as the grid becomes increasing inflexible.  

 

4.3 Relation between PV energy penetration and storage energy capacity 

     The size (i.e. the MWh or energy capacity) of energy storage technology is the 

determining factor of the investment cost as opposed to its power capacity (i.e the MW 

size); the larger the energy capacity the higher the capital cost. Thus, a utility planner 

would opt for low MWh to MW ratio in sizing of storage capacity [28]. Effectively, this 

would mean having shorter discharge times. Typical energy-to-power capacity ratio of 

utility-scale energy storage systems, however, ranges between 4-16 h [9]. It is instructive 

to note that determining the required energy capacity of storage systems based on losses 

resulting only from cycle efficiency and self-discharge as had been the case in our 

previous analysis could lead to a „wasteful‟ sizing [34] and would be shown by the 

subsequent analysis. 

     Consider a hypothetical 0.5 PV system having integrated energy storage with 

maximum power capacity of 0.5 of annual peak load (i.e. 0.5 x 5.525 GW). The storage 

energy capacity is obtained and varied by multiplying assumed discharging times from 1 
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to 10 hours by this maximum power capacity respectively. The annual base generation is 

fixed at 0.28.  

Figure 4.4 presents the relationship between PV annual energy penetration with 

corresponding losses and storage energy capacity. 

 

 

            Figure 4.4: Relation between energy penetration and storage energy capacity 

                               (PV = 0.5; storage max. power cap. = 0.5; base gen. = 0.28) 
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4.3) and a storage system with maximum energy and power capacity of 2-2.5 h and 0.5 

respectively. However, it is worth to note that the latter storage capacity would result in 

between 7.5 -7.8% loss of available PV energy generation compared to 6.2% for the 

earlier storage capacity of (power = 0.31, energy = 11 h).   

     To refine further the values of the power and energy capacities of the required storage 

for the given load profile and annual base generation of 0.28 and an assumed 0.5 PV 

capacity, two boundary conditions were defined. The optimized/minimum storage 

capacity values (power and energy) should allow for less than 7.5% loss of the annual PV 

energy output and in addition not less than 17.5% PV energy grid penetration. Based on 

these two criteria, the energy-based optimized storage capacity was found as (power = 

0.25, energy = 2.5 h) resulting in losses of 7.45% and penetration of 17.86%. Figure 4.5 

shows the relation among energy penetration, energy losses and storage power capacity 

observed for the selected optimized storage energy capacity. 

 

 

            Figure 4.5: Relation between energy penetration and storage power capacity 

                           (PV = 0.5; storage max. energy cap. = 2.5 h; base gen. = 0.28) 
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     The results such as presented by Figure 4.4 and Figure 4.5 could be of significance to 

a  power utility investment decision process on energy storage capacity integration with 

intermittent renewables.  This results from the observation that with a smaller energy-to-

power capacity ratio of the same storage technology, potential savings in cost could be 

realized. However, such a decision will call for additional economic analysis on the 

associated energy losses. 

 

4.4 Impact on grid peak loads with PV-wind-storage system 

4.4.1 Seasonal peaks 

     Table 4.2 shows the grid seasonal performance characteristics for the different hybrid 

systems with an imposition of 0.28 base generation. For this analysis, the energy-based 

optimized storage system capacities (max. power = 0.25, max. energy = 2.5 h) 

determined in the preceding section for a 0.5 PV system and 0.28 base generation is 

adopted. Refer to the endnotes at the bottom of the table for the definitions of the hybrid 

systems. 

     Here the respective seasonal effects of the energy storage on the integrated storage 

hybrid system were evaluated by isolating the season‟s source/input data (i.e. the load, 

PV and wind power outputs) from the rest. Initializing (i.e. @ t = 0) the available storage 

energy capacity to zero, the simulation was then executed for that season as a standalone 

time period. By doing this the net stored energy from the other periods are not brought 

into it, and thus reflecting the actual season‟s impact or interactions. From Table 4.2 it is 

observed that the seasonal peak load reductions and the corresponding energy 

penetrations, in general, increase with wind and storage integrations with the PV.  



52 

 

Table 4.2: Seasonal performance characteristics of the hybrid systems 

 

Hybrid System 

 PVa PV-W1b PV-W1-Sc PV-W2d 

 

Period 
Energy Penetration [%] 

Notes 

Spring 

(Mar.-May.) 
13.02 16.68 24.09 18.16 

 

 

Percentage of season‟s total grid demand 

 

 

Summer 

(Jun.-Aug.) 
16.07 16.36 16.76 16.39 

Fall 

(Sep.-Nov.) 13.37 15.60 19.10 16.13 

Winter 

(Dec.-Feb.) 
6.76 10.31 16.69 11.72 

 
Peak Load Reduction [%] Notes 

Spring 

(Mar.-May.) 
4.32 6.88 7.69 9.44 

Percentage of the season‟s peak load 

Summer 

(Jun.-Aug.) 
5.34 5.59 5.59 4.82 

Fall 

(Sep.-Nov.) 
11.46 12.40 12.57 13.31 

Winter 

(Dec.-Feb.) 
0 5.63 10.61 5.63 

 
System Energy Losses [%] Notes 

Spring 

(Mar.-May.) 
51.50 44.77 20.08 45.87 

Percentage of the season‟s total renewable 

output 

Summer 

(Jun.-Aug.) 
3.00 2.94 0.59 4.45 

Fall 

(Sep.-Nov.) 
28.58 23.42 4.98 26.75 

Winter 

(Dec.-Feb.) 
60.32 48.36 15.11 48.87 

 
Demand Deficit [%] Notes 

Spring 

(Mar.-May.) 
15.46 11.80 4.39 10.32 

Percentage of season‟s total grid demand 

 

Summer 

(Jun.-Aug.) 
41.35 41.06 40.66 41.04 

Fall 

(Sep.-Nov.) 
24.28 22.05 18.54 21.52 

Winter 

(Dec.-Feb.) 
16.32 12.76 6.38 11.35 

      

 a: 0.5 PV-only; b: 0.4 PV-0.1Wind; c: 0.4 PV-0.1Wind-2.5h Storage@ 0.25 max. power capacity; d: 0.3 PV-0.2 Wind; 

    

Interestingly, for the summer season increasing the wind capacity/share of the hybrid 

system (as found with PV-W2 system), the percentage peak load reduction is seen to 
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rather drop in magnitude (from 5.59% to 4.82%; see columns 3 and 5) as compared to the 

PV-W1 system. 

     This contrast with the other seasons is somehow expected in warm climates since the 

monthly cumulative wind power output is normally found to be at its lowest in the 

summer season as opposed to solar power. Thus, reducing the PV share in favor of wind 

capacity could invariably reduce the aggregate summer output. Moreover, referring to 

Table 3.2 (in chapter 3) the wind power for the area under consideration was found to 

anti-correlate with the grid load, the strongest seen in summer. This also offers some 

explanation to the lesser impact of the PV-W2 system in reducing the summer peak.  

     The storage integrated hybrid system (i.e. PV-W1-S) is seen not having any 

appreciable impacts on both the peak load reduction and energy penetration during the 

summer season. An insight to the reason for this could be seen from a plot of the net daily 

stored energy of the storage system showing the summer season. Figures 4.6 and 4.7 

present the net daily and hourly storage energy capacities for the PV-W1-S hybrid system 

during the year.  

     From Figure 4.6 it is seen that during the summer period (from the 152th to the 243th 

day of the year), which also represents the grid annual peak demand period, all the 

available storage capacities if they exist, are used up  during the day.  Figure 4.7 further 

reveals that apart from the early weeks of summer (i.e. 3625~3950 hours), the storage 

does not even receive any boost for the rest of the defined summer period, indicating no 

excess renewable generation. 
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               Figure 4.6: Net daily storage energy capacities for PV-W1-S system         
(PV = 0.4; wind = 0.1; max. storage caps. [power = 0.25, energy = 0.5]; base gen. = 0.28) 

            

 

 

                   Figure 4.7: Hourly storage energy capacities for PV-W1-S system 
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     Moreover, the closeness of summer season‟s energy penetrations for both PV-W1 and 

PV-W1-S systems (Table 4.2) is due to the fact that the aggregate renewable energy 

generation fits relatively well with the season‟s demand pattern/profile.   As a result there 

is practically no excess renewable generation available as indicated by Figures 4.6 and 

4.7, and as will be seen later from Figure 4.10. 

 

4.4.2 Storage discharge strategy for load leveling or peak shaving 

     The preceding analysis for sizing the storage size assumed a parallel stock and flow 

process. In others words, the storage is made available on the grid as part of the grid 

energy supply capacity throughout the day. It is discharged when supply deficit requires, 

nonetheless, should have available capacity and be charged when there is excess 

renewable generation on the grid. However, for utilities the practical storage dispatch 

approach for load leveling (or peak shaving) would be to store up energy during off-peak 

times of the day and use during peak times. This stems from the fact that oftentimes 

energy is mostly available and the cost is cheaper during off-peak times as opposed to on-

peak times. 

     Before comparisons are made of the impact of the hybrid systems on the daily peak 

load (as covered in the next section, 4.4.3), the season‟s daily on-peak period(s) would be 

assumed and fixed as follows where the energy storage is put on line. 

- Spring  season :  11am – 5pm 

- Summer season: 11am – 7pm 

- Fall season :       11am – 5pm   

- Winter season:   11am – 5pm  
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Moreover, a novel conception about the storage dispatch (being referred to as 

StorageShare_peak) for this analysis was the assumption that the available storage energy 

capacity during peak period is discharged (if required) in equal amounts between the 

present hour of peak period and the end of the peak period. Thus, the available energy 

capacity for discharge during any hour of the peak period could be thought of as some 

kind of a moving average. The mathematical description is given in Eq.(4.1) following 

as:  

 

                 
                       

             
                                     

where 

- Capacityt-1 is the available energy capacity preceding the present peak hour 

- Capacitymin is the minimum capacity to which the storage can be discharged 

- tpeak_end is the end hour of the peak period 

- tj is the present peak hour 

The objective of this dispatch methodology is to avoid the possibility of the storage being 

depleted before the peak period was over, and as such to have the storage available to 

back up the renewable output during such „critical‟ period. Do refer to Appendix for more 

details.  

     During off-peak period the priority of the renewable generation would be to charge the 

storage and when its full energy capacity is achieved then the remaining renewable 

generation is put onto the grid, however, limited by the base generation. The reverse 

applies during peak times. However, this strategy could possible add to the losses of 

renewable generation because of the charging and discharge inefficiencies of the energy 

storage system. This would be ascertained from the next section of the analysis. 
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4.4.3 Daily peaks 

     In this section plots of a 7-day (Monday through Sunday) grid net load profile for 

selected months of the seasons are presented. The purpose of doing this is to depict 

typical seasonal weekly load patterns that compare the PV-W1 hybrid system and the 

PV-W1-S (i.e. with integrated energy storage) hybrid system. These are shown in Figures 

4.8 through 4.11. Note that this analysis is carried out assuming constant base generation 

of 0.28.  

     From the Figures 4.8 to 4.11 it is seen that except for the selected week in April (of the 

spring season) the grid load/demand is generally reduced during weekends. This 

observation is expected since typically there is less power demand from most commercial 

buildings (offices, industrial machinery and others) in this time period.   

     Looking at Figure 4.10, the renewable energy generations for both hybrid systems are 

seen to fit quite well with the grid demand profile. Consequently they are both found to 

supply the July (summer) peak demand hours very well, reducing and shifting the 

observed daily peak loads to about 3 and 4  hours later (typically from 4pm to 7pm and 

8pm) during weekdays for the PV-W1 system and the PV-W1-S system respectively. 

Actually, the selected week contains the annual peak load which was recorded on the 4th 

day (@ 88th week hour or 4pm on Thursday). 

     Referring to Figure 4.11, for the week of October (fall season) the generation profiles 

from both systems are found to slightly match the demand profile. The hybrid systems 

are seen to reduce the peak loads by some few percentage points as well as narrowing the 

peak demand hours. For the other selected weeks of January (winter) and April (spring) 

the RE generations are found to be less coincident with the peak demand hours.  
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              Figure 4.8: Comparison of daily net load patterns in a week of January (7th – 13th) 

 

 

 

               Figure 4.9: Comparison of daily net load patterns in a week of April (7th – 13th) 
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           Figure 4.10: Comparison of daily net load patterns in a week of July (7th – 13th) 

 

 

       Figure 4.11: Comparison of daily net load patterns in a week of October (6th – 12th) 
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  However, considering the spring season, both systems are observed to impact very well 

on the first peak period (refer to Figure 4.9) by supplying all the required grid demand. 

Generally both the wind and the PV outputs assume higher output values during the 

spring season and as such leading to their ability to deal with the morning to late 

afternoon demand and even left with excess generation for storage charging as had 

already been seen and discussed in the preceding sections.     

     To further compare the performance of the PV-W1 and PV-W1-S hybrid systems, the 

following energy-based performance metrics were adopted for the analysis. They are the: 

energy penetration, peak load reduction, system energy loss and grid supply deficit all 

evaluated on annual basis. The performance characteristics values obtained for both 

systems are presented in Table 4.3.  

 

Table 4.3: Energy performance characteristics for the PV-W1 and PV-W1-S hybrid systems 

Parameter PV-W1 PV-W1-S Notes 

Energy penetration 15.34 14.85 % of total grid demand 

Peak load reduction 5.59 8.54 % of annual peak load 

System energy loss 27.30 29.11 % of total renewable generation 

Supply deficit 8.75 5.52 % of total grid demand 

 

     From Table 4.3 it is realized that the non-storage integrated system out performs the 

storage-integrated system in terms of annual renewable energy penetration. Recall from 

section 4.4.2 (in the last paragraph) it was said the storage dispatch strategy being 

adopted could possible increase the system energy losses because of the charging and 

discharge inefficiencies of the energy storage system. Thus any chance of using the 
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output from the renewable generation directly is always desired at least from the 

standpoint of efficient utilization. This explains the higher value of the energy penetration 

for PV-W1 system over the PV-W1-S hybrid system. Actually about 4% of the PV-W1-S 

system total energy loss is coming from the storage system. However, the benefit of the 

storage integrated system (i.e. PV-W1-S) is seen the area of the annual peak load 

reduction which is about three (3) percentage points over that of the corresponding non-

integrated storage hybrid system. 

 

4.5 Seasonal optimal mix between wind and solar (PV) power generations 

     In this section the results of the search for an energy-based optimal combination of 

solar (PV) and wind power for a hypothetical 100% renewable grid supply generation is 

presented. The diurnal and seasonal patterns of the solar and wind power generations are 

evaluated.  

 

4.5.1 Annual diurnal variation of the load, solar and wind 

     One of the ways to compare and correlate the wind and solar power potentials for 

supplying the given load profile is to examine their diurnal patterns. Figure 4.12 presents 

the annual average diurnal patterns of the load, solar and wind power generations. 
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     Figure 4.12: Annual average diurnal patterns of the load, solar (PV) and wind power 

      

     From Figure 4.12, as expected the solar PV generation picks up in the morning, peaks 

at mid-day, and sets between 18:00 and 19:00 hours of the day. The wind generation on 

the other hand has its peak values in the night, continues on the downward trend till late 

morning and then picks up again. In Figure 4.12 the desired complementary outputs of 

the wind and solar power are observed not to be strong. This confirms the evaluated 

smaller value for the correlation coefficient obtained in Table 3.2 and the statement made 

towards it, that wind and solar might not complement well to serving the grid load for the 

geographical area under consideration. This observed pattern could lead to a 

disproportionate fraction in favor of solar PV in an attempt to find the seasonal optimal 

combination of the two resources for 100% grid supply scenario. 
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 4.5.2 Seasonal variation of the load, solar and wind generations 

     Having examined the annual average diurnal patterns, the seasonal variations are then 

evaluated. Figure 4.13 presents the seasonal/monthly variations of the load, solar (PV) 

and wind power generations. 

 

 

Figure 4.13: Seasonal average patterns of the load, solar PV and wind power generations 

 

     From Figure 4.13 it is observed that the inference drawn from Figure 3.12 and Table 

3.2 about the non-complementary nature of the wind and solar (PV) generations in the 

geographical area under consideration is confirmed. Both the wind and solar PV power 

have their peak or close to peak generations in the spring season (March – May) and with 

the wind dropping to its lower values in summer. Moreover, though the solar radiation is 

generally high in summer season, one can see from the plot (Figure 4.13) that the solar 
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PV energy output rather reduces a bit compared with the output in May (in a spring 

season month). This can be attributed to the sensitivity of silicon cells to high ambient 

temperatures, and thus having reduction in their performance at those summer elevated 

temperatures. 

     The patterns observed for the two generations do not readily serve as an attraction for 

combining them with the aim of grid peak load/demand reductions and the futuristic 

objective of 100% wind-solar grid supply generation. As aforementioned, this would tilt 

the scale much in favor of the solar PV in any attempt to find the seasonal optimal mix. It 

will be confirmed in the next section.    

 

4.5.3  Seasonal optimal combination/weighting of solar and wind generations 

   Figure 4.14 shows the result of the load matching profile of the seasonal optimal 

combination of solar PV and wind power generations based on minimum summer season 

energy deficit. Executing the algorithm for the evaluation of the seasonal optimal 

combination of the solar PV and wind power generations, it was found that to match the 

given grid load profile and with a maximum supply generation to the summer load, it will 

require that 95% of grid load has to be supply with the solar PV generation whereas the 

wind takes the remaining 5%. The required installed capacities could be derived from this 

by multiplying the respective percentages by the total grid load to obtain the resulting 

annual total generation requirements. With these values one can then determine either the 

PV or wind installed capacity required to output that annual total energy value.  
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Figure 4.14: Optimal seasonal weighting of 95%/5% (solar/wind) generation requirement 

 

     From Figure 4.14 it seen that even with this optimal mix there will be enormous 

excess generation in the spring season (March – May) and also during the fall season 

(August – November). These large surpluses do not represent economic use of 

infrastructure, and can be more beneficial if some sort of storage is employed. Also, the 

use of conventional plant(s) as backups could help with making up for the summer 

generation deficit. 
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CHAPTER 5 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

     Renewables will continue to be inherently intermittent. However, to smooth out this 

variability and enhance their desirability for utility scale deployment in electric power 

systems, some form of buffering system and hence supplemental energy storage will be 

required. Moreover, the seemingly natural complementing profiles of wind and solar 

resources provide an opportunity for dealing with their variability and as such for their 

exploitation for electricity production. 

     In this work a MATLAB code has been developed which helps to provide preliminary 

estimates of maximum required annual energy storage capacities for a given grid load 

data/profile. Energy storage cycle (i.e. round-trip) efficiency of 80% and inherent/self 

discharge losses of 10% of available capacity per month were assumed for the analysis.  

     By allowing for about 7.5% loss (i.e. dumped + storage charging and discharging 

losses) of annual PV energy output, the energy-based optimized storage capacity was 

found as (power = 0.25, energy = 2.5 h) and resulting in annual energy penetration of 

17.86% for 0.5 PV size and 0.28 base generation capacity. This contrasts the non-dumped 

storage capacity (power = 0.31, energy = 11.04; refer Table 4.1) observed for the same 

configuration, however, with storage system losses of 6.4% of annual PV output and 

annual energy penetration of 18.06%.  

     Thus, it is noted that sizing of the required storage capacities based on losses resulting 

only from cycle efficiency and self-discharge losses could potentially lead to a „wasteful‟ 
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sizing. In practice, settling on the optimum size of annual required storage capacity will 

be made based upon factors inclusive of the operating strategies to be employed and 

percentage of other energy losses to be accepted. 

     The deployment of greater capacities of either wind or solar PV power on the current 

grid for the study area poses challenge for utilities to seek bigger energy storage 

capacities for storing the excess generation (especially in the spring season) if no 

dumping is considered. Otherwise, there must be other strategies to deal with the 

excesses.  

     Performance analysis and comparisons of non-storage and storage-integrated hybrid 

systems (using PV-W1 and PV-W1-S) have been carried out. The following energy based 

performance metrics - energy penetration, peak load reduction, system energy loss and 

grid supply deficit - all on annual basis were adopted (refer Table 4.3). For the analysis, 

the deployment of the energy storage for complementing the supply generation was 

considered only during defined peak period whereas it was charged with only the 

renewable generations during off-peak period. Such deployment is thought to closely 

resemble the practical use of storage by utilities for peak load shaving/leveling. 

     The complementary nature observed for solar PV and wind power generation profiles 

for the study area were found to be weak on seasonal basis (see Figure 4.13). Thus the 

two resources/generations do not readily serve as an attraction for deploying them in 

tandem to effectively match the seasonal grid demand in the futuristic objective of 100% 

wind-solar grid supply generation. Consequently, a seasonal optimal mix weighting of 

95%/5% in favor of solar PV for meeting the given grid load profile and based on 

minimum summer supply deficit, was observed for their combination. However, be 
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advised that this evaluation applies only to the study area (which is southern Nevada) and 

could significantly change when an area with good wind resource is considered. The 

above analysis though evaluated for non-tracking solar PV system is presumed to follow 

similar patterns when considered for other solar PV technologies and tracking strategies. 

     It is noted here that one significant limitation or challenge to this study was the 

acquisition of utility hourly load data. It is recommended for further work that: 

 load data that extends a couple of years be acquired for such analysis to help 

„truly‟ examine the average seasonal and or diurnal load patterns and make the 

results/conclusions more encompassing; 

 such analysis be performed on a finer time scales/steps of less than one (1) hour to 

evaluate the interactions among the hybrid system components (solar-wind-

energy storage), which may give additional insight to the storage needs; 

 some sort of economic evaluations be incorporated. 
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APPENDIX 

Hybrid Electric Power System Model with MATLAB 

 
%SIMULATION OF HYBRID (solar+wind+storage)ELECTRIC POWER SYSTEMS. 

% 

clear all 

clc 

tic  %to check run/simulation time 

% 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%INPUT 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

%%%%%Import hourly power data/values from excel 

%---------------------------------------------------------------------- 

%NOTE:-ALL hourly values are normalized to the annual peak hourly grid load 

Data = xlsread('ThesisData_In',2,'B3:E8762');  

% 

Time = Data(:,1); 

Load_1 = Data(:,2);           %Grid demand/load 

Solar_1 = Data(:,3);          %PV output 

Wind_1 = Data(:,4);           %Wind energy output 

% 

MaxLoad = max(Load_1); 

MaxPV = max(Solar_1); 

MaxWnd = max(Wind_1); 

% 

%Base Generation 

BaseGenVar = 0;       %set to zero (0) for constant annual base gen 

                      %set to 1 for seasonal base gen 

%....if assumed annual constant  

BaseGen_Annual = min(Load_1); 

%....if assumed seasonal variable    

Winter1 = min(Load_1(1:24*59));  

Winter2 = min(Load_1(24*334+1:24*365));  

BaseGen_Winter = min(Winter1,Winter2);          %Dec-Feb 

BaseGen_Spring = min(Load_1(24*59+1:151*24));   %Mar-May 

BaseGen_Summer = min(Load_1(24*151+1:243*24));  %Jun-Aug 

BaseGen_Fall = min(Load_1(24*243+1:24*334));    %Sep-Nov 

% 

% 

%%%%%Scaling of capacities (output) of hybrid plants 

%----------------------------------------------------------------------- 

f_slr = 4;                     %solar pv [1 is equiv. to 10% of peak load] 

f_wnd = 1;                     %wind 

%      

%  

%%%%%Storage Characteristics 

%------------------------------------------------------------------------ 

eff_cycle = 0.8;           %cycle/round trip efficiency 

eff_c = sqrt(eff_cycle);   %charging efficiency(assumed same as discharge)                               

eff_d = sqrt(eff_cycle);   %discharging efficiency 

selfdschg = 1.39*10^-4;    %self-discharge per hour [assumed 10% per month      

%                             ...of available capacity] 

% 
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H_t_max = 0.25*MaxLoad;    %maximum discharging/charging power capacity 

dschgTime =10;            %[hr]storage discharge time @ max power capacity 

H_max = dschgTime*H_t_max;    %max storage energy capacity  

H_min = 0*H_max;          %assumed min storage energy capacity 

% 

%Initialization of other parameters 

%----------------------------------------------------------------------- 

H_old =H_min;         %storage energy level or capacity at time t=0 or(t-1) 

Ebse_dump = 0;          %base generation dumped 

hr_bd = 0;              %hours of dumping of base generation 

offpk_hrs =0;           %off-peak hours 

onpk_hrs=0;             %on-peak hours 

% 

BaseGenVar =0;       %Apply variable/seasonal base gen. yes=1 and no=0 

PkDmdApp=0;    %set to 1 to apply peak and off peak; otherwise set to zero 

dmf_red_applied = 1;  %applying demand-following reduction strategy during  

%                         ...off peak; yes=1 and no=0 

StrShare_Pk =0; 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%CALCULATIONS (Dispatch strategy for the PV/Wind/Storage system) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%----------------------------------------------------------------------- 

 for i=152:243                    %day of year 

   % 

   if PkDmdApp ==0    

      peak1_start = 0;          

      peak1_end = 24; 

      peak2_start = peak1_start;          

      peak2_end = peak1_end; 

   else 

   %....setting of the demand periods (peak and off-peak) 

    if i>59 && i<=151            %spring 

       peak1_start = 11;         %hour beginning the peak period 

       peak1_end = 17;           %hour ending the peak period 

       peak2_start = peak1_start;    

       peak2_end = peak1_end;   

    elseif i>151 && i<=243       %summer 

       peak1_start = 11;    

       peak1_end = 19; 

       peak2_start = peak1_start;    

       peak2_end = peak1_end;   

    elseif i>243 && i<=334       %fall 

       peak1_start = 11;    

       peak1_end = 17; 

       peak2_start = peak1_start;    

       peak2_end = peak1_end;   

    else                         %winter 

       peak1_start = 11;    

       peak1_end = 17; 

       peak2_start = peak1_start;    

       peak2_end = peak1_end;       

    end 

   % 

   end 

      % 

   if BaseGenVar == 0 

       %...if considering annual constant base gen 

      f_bse = BaseGen_Annual;   

   else 
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      %...if considering variable/seasonal base gen 

    if i>59 && i<=151 

       f_bse =BaseGen_Spring; 

    elseif i>151 && i<=243 

       f_bse =BaseGen_Summer; 

    elseif i>243 && i<=334 

       f_bse =BaseGen_Fall; 

    else 

       f_bse =BaseGen_Winter; 

    end 

     %      

   end 

    %  

      for j=1:24                 %hour of day 

          k = 24*(i-1)+j;        %hour of year 

          % 

          Load(i,j) = Load_1(k,1);        %just for reformatting the data 

          Solar(i,j) = Solar_1(k,1);      %          -do- 

          Wind(i,j) = Wind_1(k,1);        %          -do- 

          %           

          Eout_pv(i,j) = f_slr*Solar(i,j);     %scaled hourly solar output 

         Eout_w(i,j) = f_wnd*Wind(i,j);       %scaled hourly wind output 

         Eout_RE(i,j) = f_slr*Solar(i,j)+f_wnd*Wind(i,j);%Total ren. Gen. 

        %++++++++++++++++++++++++++++++++++++++++++++++++ 

       %%OFF PEAK hours [assumed demand met with other plants exclusive of   

         %                 ...PV/Wind/Storage] 

        %+++++++++++++++++++++++++++++++++++++++++++++++ 

        if (j<peak1_start || j>peak1_end)&&(j<peak2_start || j>peak2_end) 

              DsgLoss(i,j)=0;            %storage discharging energy loss  

              Eout_dmf_OnPk(i,j) = 0;    %demand following generation for  

              %                               ...ON PEAK period 

              Eout_dmf_OnPk_str(i,j) = 0;            

              offpk_hrs=offpk_hrs+1; 

              Eout_bse(i,j) = f_bse*MaxLoad;        %base generation            

              E_mb(i,j) = Load(i,j)-Eout_bse(i,j);  %mismatch energy after  

              %                        ...considering only base generation           

              if E_mb(i,j)==0 

                 Eout_dmf_OffPk(i,j)=0;         %for non-storage system 

                 Eout_dmf_OffPk_str(i,j) = E_mb(i,j); %initial assumption,  

              % ...because charging of storage is priority during OFF PEAK 

                 Edump_RE(i,j) = Eout_RE(i,j)     %i.e. demand is met, and  

                 %                        ...excess gen. from RE is dumped 

              elseif E_mb(i,j)>0        %i.e. deficit in supply generation  

                  %RE only system (i.e. non-storage system) 

               Eout_dmf_OffPk(i,j)=E_mb(i,j)-Eout_RE(i,j);%for RE only sys 

               Edump_RE(i,j) = 0; 

                  if Eout_dmf_OffPk(i,j)<0  %more RE gen. than demanded 

                     Edump_RE(i,j) = abs(Eout_dmf_OffPk(i,j)); 

                     Eout_dmf_OffPk(i,j)=0;                 

                  end 

                Eout_dmf_OffPk_str(i,j) = E_mb(i,j);  %because charging of  

                  %                 ...storage is priority during off peak                                    

              else  %not demanded if all times Load(i,j)>=Eout_bse(i,j); 

                 Ebse_dump = Ebse_dump + abs(E_mb(i,j));   

                 hr_bsd = hr_bsd + 1;      %hours of dumping of base gen   

                 Eout_dmf_OffPk(i,j)=0; 

                 Eout_dmf_OffPk_str(i,j)=0; 

                 Edump_RE(i,j) = Eout_RE(i,j); 

              end 

              Load_net(i,j) = 0;     %hour grid demand is fully met i.e no   
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              %                          ...residual load 

              Load_net_str(i,j) = 0;  %-do- (for integrated str. scenario) 

              Eout_deficit(i,j) = Load_net(i,j); 

              Eout_deficit_str(i,j) = Load_net_str(i,j); 

              %   

              %RE generation during off peak 

              E_ms(i,j)= Eout_RE(i,j); %mismatch energy (=gross RE output) 

              %   

              %charging of storage with RE generation   

              H_t(i,j) = eff_c*E_ms(i,j);    %actual energy to charge str. 

              ChgDsgLoss(i,j) = (1-eff_c)*E_ms(i,j);  %loss due to storage      

              %                                 ...charging or discharging 

              ChgLoss(i,j) = (1-eff_c)*E_ms(i,j); 

              Edump_RE_str(i,j)= 0;    

             Eusable_RE_str(i,j)=0; %=0 since not contributing to the load  

              %                        ...immediately            

              % 

              if H_t(i,j)>H_t_max  %i.e. if the required power cap. @ time  

               %                 ...t is greater than the str. max pwr cap    

                 H_t(i,j)=H_t_max; 

                Edump_RE_str(i,j) = E_ms(i,j)-(H_t(i,j)/eff_c); %excess RE  

                 %              ...generation w.r.t str charging is dumped  

                 ChgDsgLoss(i,j) = (1-eff_c)*(H_t(i,j)/eff_c); 

                 ChgLoss(i,j) = (1-eff_c)*(H_t(i,j)/eff_c); 

                 Eusable_RE_str(i,j) =0;  

                %....if surplus RE generation is used to reduce required  

                %                         ...demand-following generation  

                    if dmf_red_applied == 1 

                      Eout_dmf_OffPk_str(i,j)=E_mb(i,j)-Edump_RE_str(i,j); 

                       Eusable_RE_str(i,j) = Epv_dump_str(i,j); 

                       Edump_RE_str(i,j)=0; 

                       if Eout_dmf_OffPk_str(i,j)<0                     

                          Edump_RE_str(i,j)=abs(Eout_dmf_OffPk_str(i,j)); 

                          Eusable_RE_str(i,j) =E_mb(i,j); 

                          Eout_dmf_OffPk_str(i,j)=0; 

                       end 

                    end  

              end 

              H_new = H_old+H_t(i,j);  

              % 

                if H_new>H_max     %i.e. if max energy storage capacity is  

                   %                                          ...surpassed           

                   H_t(i,j) = H_max-H_old; 

              %NOTE:if it is assumed for now that all surplus RE after str  

                 %                                   ...charging is dumped  

                    Edump_RE_str(i,j) = E_ms(i,j)-(H_t(i,j)/eff_c); 

                    ChgLoss(i,j) = (1-eff_c)*(H_t(i,j)/eff_c); 

                    ChgDsgLoss(i,j) = (1-eff_c)*(H_t(i,j)/eff_c); 

                    Eusable_RE_str(i,j) = 0; 

                 %**if surplus RE generation is used to reduce required    

                 %                       ...demand-following generation  

                    if dmf_red_applied == 1 

                       Eout_dmf_OffPk_str(i,j)=E_mb(i,j)-Edump_RE_str(i,j); 

                       Eusable_RE_str(i,j) = Edump_RE_str(i,j); 

                       Edump_RE_str(i,j)=0; 

                       if Eout_dmf_OffPk_str(i,j)<0                     

                          Edump_RE_str(i,j)=abs(Eout_dmf_OffPk_str(i,j)); 

                          Eusable_RE_str(i,j) = E_mb(i,j); 

                          Eout_dmf_OffPk_str(i,j)=0; 

                       end 
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                    end                     

                    H_new=H_max; 

                end  

       %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

       %ON peak hours [Storage system contributes to grid supply] 

       %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

        else 

          ChgLoss(i,j)=0;           %initial assumption of no charging 

          Eout_dmf_OffPk(i,j)= 0;  %demand following generation (OFF PEAK)  

          Eout_dmf_OffPk_str(i,j)= 0;  

          onpk_hrs = onpk_hrs+1; 

          Eout_bse(i,j) = f_bse*MaxLoad;    %base generation  

          E_mb(i,j) = Load(i,j)-Eout_bse(i,j);   %mismatch/residual load     

          %                        ... after accounting for only base gen.         

             % 

             if E_mb(i,j)>=0                                

                E_ms(i,j) = Eout_RE(i,j)-E_mb(i,j);   %mismatch load after      

                %            ...accounting for both RE and base generation 

             else 

              %..(not needed if min. load is considered for the base gen.)  

               Ebse_dump = Ebse_dump + abs(E_mb(i,j)); %dumped base energy  

             %...(not needed if we consider no dumping for base generation 

                hr_bsd = hr_bsd + 1;           %hours of dumping base gen                           

                E_ms(i,j) = Eout_RE(i,j); 

             end 

              %     

              if E_ms(i,j)>=0   %i.e. having equal/excess supply (i.e. RE)     

              %                                    ...over net grid demand 

                 Eout_dmf_OnPk(i,j)= 0;  %i.e. no demand following gen. 

                  Eout_dmf_OnPk_str(i,j)= 0; 

                 % 

                 %for non-storage scenario 

                   Edump_RE(i,j)= E_ms(i,j); 

                   Eout_deficit(i,j)=0;         %i.e no residual grid load 

                   Load_net(i,j) = Eout_deficit(i,j);  

                  % 

                  %for storage integrated scenario 

                  Eusable_RE_str(i,j) = E_mb(i,j); %actual RE gen. used to       

                  %                ...service demand; rest go into storage 

                   Eout_deficit_str(i,j)=0;                                     

                   Load_net_str(i,j) = Eout_deficit_str(i,j);                      

                   %....charge storage with excess RE gen. 

                   H_t(i,j) = eff_c*E_ms(i,j);              

                   Edump_RE_str(i,j) = 0; %initial assumption that all the  

                   %                  ...charging supply will go into str. 

                   ChgDsgLoss(i,j) = (1-eff_c)*E_ms(i,j); 

                   ChgLoss(i,j) = (1-eff_c)*E_ms(i,j);                                        

                  % 

                  %...charging storage in consideration of power capacity  

                  if H_t(i,j)>H_t_max 

                     H_t(i,j)=H_t_max; 

                     Edump_RE_str(i,j) = E_ms(i,j)-(H_t(i,j)/eff_c);                   

                     ChgDsgLoss(i,j) = (1-eff_c)*(H_t(i,j)/eff_c); 

                     ChgLoss(i,j) = (1-eff_c)*(H_t(i,j)/eff_c); 

                     Eusable_RE_str(i,j) = E_mb(i,j);  

                  end                     

                    H_new = H_old + H_t(i,j);                     

                    % 

                    %..charging of storage with regard to max. energy cap. 

                     if H_new>H_max  % max str. energy cap.is surpassed?          
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                        H_t(i,j) = H_max-H_old; 

                        Edump_RE_str(i,j) = E_ms(i,j)-(H_t(i,j)/eff_c); 

                        ChgDsgLoss(i,j) = (1-eff_c)*(H_t(i,j)/eff_c); 

                        ChgLoss(i,j) = (1-eff_c)*(H_t(i,j)/eff_c); 

                        Eusable_RE_str(i,j) = E_mb(i,j);  

                        H_new=H_max; 

                     end                                                  

             % 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

             %....discharging from storage because of supply deficit 

             elseif E_ms(i,j)<0          

                    % for non-storage case 

                    Edump_RE(i,j)=0; 

                    Load_net(i,j) = abs(E_ms(i,j));   

                    Eout_deficit(i,j) = Load_net(i,j); 

                    Eout_dmf_OnPk(i,j)= abs(E_ms(i,j));  

                    % 

                    % for storage integrated system case 

                    if j<peak2_start 

                        peak_end = peak1_end; 

                    elseif j>=peak2_start 

                        peak_end = peak2_end; 

                    else 

                    end 

                    StrShare_Pk = (H_old-H_min)/(peak_end-j+1); 

                    Edump_RE_str(i,j)=0; 

                    H_t(i,j) = abs((E_ms(i,j)/eff_d));   %discharge energy  

           %..from storage (incl. losses)to make up for the remaining load 

                    %  

                    %..if there is sufficient str. cap. to meet demand        

                     if H_t(i,j)<= StrShare_Pk      

                        Load_net_str(i,j) = 0; 

                        ChgDsgLoss(i,j)=(1-eff_d)*H_t(i,j); 

                        DsgLoss(i,j)=(1-eff_d)*H_t(i,j);  

                        Eout_deficit_str(i,j) = Load_net_str(i,j);  

                        Eout_dmf_OnPk_str(i,j) = Load_net_str(i,j); 

              %(Eusable_RE_str=RE gen.+draw from storage-discharge losses) 

              Eusable_RE_str(i,j) = Eout_RE(i,j)+H_t(i,j)-ChgDsgLoss(i,j);  

                        H_new = H_old - H_t(i,j);                         

                       % 

                       if H_t(i,j)>H_t_max                    

                          H_t(i,j)=H_t_max; 

                      Eout_deficit_str(i,j)=abs(E_ms(i,j))-eff_d*H_t(i,j); 

                          Load_net_str(i,j)= Eout_deficit_str(i,j); 

                       Eout_dmf_OnPk_str(i,j) = Load_net_str(i,j); %use of  

                       %...demand following gen to make up for the deficit 

                          ChgDsgLoss(i,j) = (1-eff_d)*H_t(i,j); 

                          DsgLoss(i,j) = (1-eff_d)*H_t(i,j); 

                Eusable_RE_str(i,j)=Eout_RE(i,j)+H_t(i,j)-ChgDsgLoss(i,j); 

                          H_new = H_old - H_t(i,j); 

                        end     

                      % 

                      elseif H_t(i,j)>StrShare_Pk 

                         H_t(i,j) = StrShare_Pk;  

                        Load_net_str(i,j) = abs(E_ms(i,j))-eff_d*H_t(i,j); 

                         ChgDsgLoss(i,j)=(1-eff_d)*H_t(i,j); 

                         DsgLoss(i,j)=(1-eff_d)*H_t(i,j); 

                         Eout_deficit_str(i,j) = Load_net_str(i,j); 

                         Eout_dmf_OnPk_str(i,j) = Load_net_str(i,j); 
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                Eusable_RE_str(i,j)=Eout_RE(i,j)+H_t(i,j)-ChgDsgLoss(i,j); 

                         H_new = H_old - H_t(i,j); 

                         % 

                         if H_t(i,j)>H_t_max                    

                            H_t(i,j)=H_t_max; 

                          Load_net_str(i,j)=abs(E_ms(i,j))-eff_d*H_t(i,j); 

                            Eout_deficit_str(i,j) =  Load_net_str(i,j); 

                            ChgDsgLoss(i,j) = (1-eff_d)*H_t(i,j); 

                            DsgLoss(i,j) = (1-eff_d)*H_t(i,j); 

                            Eout_dmf_OnPk_str(i,j) = Load_net_str(i,j);   

                Eusable_RE_str(i,j)=Eout_RE(i,j)+H_t(i,j)-ChgDsgLoss(i,j); 

                            H_new = H_old - H_t(i,j); 

                          end  

                      % 

                     else  %no discharge/contribution from storage 

                     end 

              %            

              else 

              end           

        %          

        end  

     H_new =(1-selfdschg)*H_new; %applying self-discharge losses 

    % 

    h_t(k,1) = H_t(i,j); h_o(k,1) = H_old; h_n(k,1) = H_new; 

    l(k,1)=Load(i,j); l_n(k,1)=Load_net(i,j);    

    l_n_str(k,1)=Load_net_str(i,j); bse(k,1) = Eout_bse(i,j); 

    dmf_OnPk(k,1) = Eout_dmf_OnPk(i,j);         

    dmf_OnPk_str(k,1) = Eout_dmf_OnPk_str(i,j); 

    dmf_OffPk(k,1) = Eout_dmf_OffPk(i,j); 

    dmf_OffPk_str(k,1) = Eout_dmf_OffPk_str(i,j); 

    dmf(k,1) = Eout_dmf_OnPk(i,j)+Eout_dmf_OffPk(i,j); 

    dmf_str(k,1) = Eout_dmf_OnPk_str(i,j)+Eout_dmf_OffPk_str(i,j); 

    s(k,1) = Eout_RE(i,j);  m(k,1) = E_mb(i,j); u(k,1) = E_ms(i,j); 

    v(k,1) = Edump_RE(i,j); v_str(k,1) = Edump_RE_str(i,j); 

    w(k,1) = Eout_deficit(i,j); w_str(k,1) = Eout_deficit_str(i,j);    

    eloss(k,1)=ChgDsgLoss(i,j); soc_hr(k,1) = h_n(k,1)./H_max; 

    eREuse(k,1) = Eout_RE(i,j)-Edump_RE(i,j); 

    eREuse_str(k,1) = Eusable_RE_str(i,j); 

    strshr_pk(k,1) = StrShare_Pk; 

    %end 

    %   

    if j==24 

       ChgLevel(i,1)=(H_new/H_max)*100;   %end of day storage energy 

capacity 

       DailyStrCap(i,1) = H_new; 

    end    

    % 

    StrShare_Pk = 0; 

    H_old = H_new;  

    %                    

     end 

  end 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%OUTPUT 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

StrEngCap = max(h_n);   %evaluates max. storage energy capacity 

StrPwrCap = max(h_t);   %evaluates max. storage power capacity 

StrCapRat = StrEngCap/StrPwrCap; 

PkLdRed=(1-(max(dmf)+BaseGen_Annual)/max(l))*100; 
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PkLdRed_str=(1-(max(dmf_str)+BaseGen_Annual)/max(l))*100; 

%  

Total_Load = sum(l); Total_Eout_RE = sum(s); 

Total_ChgDsgLoss = sum(eloss); Total_ChgLoss = sum(sum(ChgLoss)); 

Total_DsgLoss = sum(sum(DsgLoss)); Total_Eout_bse = sum(bse); 

Total_Eout_dmf_Offpk = sum(dmf_OffPk); 

Total_Eout_dmf_Offpk_str = sum(dmf_OffPk_str); 

Total_Eout_dmf_OnPk = sum(dmf_OnPk); 

Total_Eout_dmf_OnPk_str = sum(dmf_OnPk_str); 

Total_Eout_dmf = sum(dmf); Total_Eout_dmf_str = sum(dmf_str); 

Total_Edump_RE = sum(v); 

Total_Edump_RE_str = sum(v_str); 

Total_Eout_deficit = sum(w); 

Total_Eout_deficit_str = sum(w_str); 

Total_losses = (Total_Edump_RE/Total_Eout_RE)*100; 

Total_losses_str= 

((Total_Epv_dump_str+Total_ChgDsgLoss)/Total_Eout_slr)*100; 

Total_Eusable_RE = Total_Eout_RE-Total_Edump_RE;    %without storage 

Total_Eusable_RE_str1 = sum(eREuse_str); 

% 

Deficit = (Total_Eout_deficit/Total_Load)*100; 

Deficit_str = (Total_Eout_deficit_str/Total_Load)*100; 

%  

%Average Energy Penetration (based on usable RE output) 

Avg_energy_pen = (Total_Eusable_RE/Total_Load)*100;     % 

Avg_energy_pen_str = (Total_Eusable_RE_str/Total_Load)*100;     

% 

Data_out1 = [Avg_energy_pen;PkLdRed;Total_losses;Deficit]; 

Data_out2 = [Avg_energy_pen_str;PkLdRed_str;Total_losses_str;Deficit_str]; 

Data_out3 = [l,s,dmf,dmf_str]; 

Data_out4 = [Data_out1,Data_out2]; 

% 

disp('done !!!') 

toc 
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