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Abstract 

 NUCu-140 is a copper-precipitation strengthened steel that is a candidate material for 

many new structural applications, including naval ship hulls.  It has a simple chemistry and is 

manufactured using basic techniques.  Before this new alloy can be fully utilized, its mechanical 

behavior following welding must be determined.  Previous research has been conducted by 

Farren et. al.1 to correlate the microstructure and evolution of copper precipitates in the heat 

affected zone (HAZ) to the mechanical behavior seen in those locations.  This research builds on 

that previous work by extending the study to include fracture toughness and fractography of the 

base metal along with the four major regions of the HAZ.  Microhardness and grain size 

measurements were also performed.  Results show that a reduction in hardness, increase in 

fracture toughness, and failure mode of microvoid coalescence is seen from the base metal up 

to and including the fully recrystallized HAZ, followed by an increase in hardness, decrease in 

fracture toughness, and regions of cleavage failure in the coarse grained HAZ (CGHAZ).  These 

observations are primarily a result of the evolution of the copper precipitates in those regions, 

with a contribution from the overall microstructure.  Grain size does not change significantly, 

except in the CGHAZ where a 6 fold increase was seen. 
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1.  Introduction 

1.1 NUCu-140 Base Material 

NUCu-140 is a type of high strength low carbon (HSLC) steel that shows promise as a 

new candidate material for fabrication of naval ship hulls.  This alloy shows a reduction in cost in 

three ways.  First, expensive alloying elements, such as chromium, have been minimized or 

eliminated.  Second, it is manufactured using simple and inexpensive processing methods, and 

third, its increased strength and toughness allows for structural designs which use less of the 

material.  Elimination of chromium is also beneficial for protection of welders due to the 

removal of the carcinogenic hexavalent chromium from the welding fume.  During arc welding 

of precipitation strengthened materials, a locally softened region can form within the heat 

affected zone (HAZ), which is a result of a change in the morphology of the precipitates in that 

region.2  The various regions of the heat-affected zone, the sub-critical region, inter-critical 

region, fully recrystallized region, and the coarse-grained HAZ3, are expected to exhibit different 

properties based upon the differing thermal cycles experienced throughout the material.   

 

1.2 K Fracture Toughness Background 

 Typically, tensile testing is the method chosen to get baseline information about varying 

properties within a material.  This may not be the best, or most informative, test to perform 

because tensile testing assumes a perfect material (i.e. no cracks, voids, etc.), but this is very 

rarely the case for an engineering material.  Instead, fracture toughness is chosen in order to 

correlate the largest defect present in the material to an applied stress in order to determine a 

stress intensity factor, K, given by Equation 1. 
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Equation 1: Stress Intensity Factor 

        

where σ is the applied stress, and a is the maximum defect size.  The most common way to see a 

value reported is referred to as the plane-strain fracture toughness, KIC, a worst case scenario in 

which the material would fail at the lowest possible K value.   

 

1.2.1 K Fracture Toughness Assumptions 

 K fracture toughness is not the most ideal fracture toughness parameter because of the 

assumptions it required for calculations, most notably, the criteria of small-scale yielding.  For 

use of linear-elastic fracture mechanics (K fracture toughness) as a one parameter failure 

criterion, Begley and Landes stated that the plastic region at the crack tip must be at least one 

order of magnitude smaller than the physical dimensions of the sample being tested.4  

Hutchinson extended this criterion even further to say that the uncracked ligament and the 

crack itself must be greater than 25rp, where rp is the radius of the plastic zone, once failure has 

occurred.  The plastic zone size is altered depending on whether plane stress or plane strain 

conditions are seen, and the equations and contour describing the two can be seen in Equation 

2 and Figure 1, respectively.5 

Equation 2: Radius of the plastic zone during fracture toughness testing 
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Figure 1: Plastic zone sizes during fracture toughness testing in plane stress and plane strain conditions
5
 

The requirements described by Hutchinson require that for plane strain conditions to exist, 

which have a plastic zone size 1/3 that of plane stress conditions, and a sample with a plastic 

zone of 10mm such as for an intermediate-strength steel, the sample would have to be over 

250mm thick.  This makes testing on a lab scale nearly impossible.   

 

1.3 Introduction to the J-Integral 

 The J-integral was developed as a way to try to account for the problem of large plastic 

zone sizes at the crack tip in highly ductile samples.  The idea was first proposed by Rice as a way 

to determine the fracture toughness of a sample that displayed such characteristics.6  The 

significance of the J-integral is that the crack tip area can be characterized without focusing 

attention directly at the tip itself, but by analyzing a path integral around, and including, the 

crack tip.  An example of the path integral can be seen in Figure 2 and Equation 3, 
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Figure 2: Example of line contour used for calculation of J-integral
7
 

 

Equation 3: J-integral 

           
  

  
    

where x and y are coordinates normal to the crack front, ds is an increment along the contour, T 

is a stress vector acting along the contour, u is the displacement vector, and W is the strain 

energy density.  In order for this integral to be a viable solution for characterizing the behavior 

at the crack tip, path independence of the contour must be maintained, as explained by 

Hertzberg.7  Rice also states that the J-integral can be thought of as the change in potential 

energy of the material as a crack is propagated.6 

 

1.3.1 Unloading Compliance Testing Method 

 Originally, J fracture toughness tests were conducted in such a way that one sample was 

used for one test only, but the work of Clarke et al. has shown that one sample can be used for 

conducting multiple tests.8  This was achieved by repeatedly loading and unloading the material 
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in order to determine the J fracture toughness according to the compliance change of the 

material.  However, unloading the material should not be allowed because it violates the 

deformation theory of plasticity.  Although the deformation theory of plasticity is essentially a 

nonlinear elastic theory, it still does not allow for unloading due to the irreversibility of plastic 

deformation.  Clarke et al. found that some unloading may be permitted due to the difference 

between the size of the plastic zone on unloading versus loading.  Equation 4 shows the size of 

the plastic zone during unloading, which when compared to Equation 2 reveals that the plastic 

zone during unloading is 1/8 and 1/24 the size of the plastic zone during plane strain and plane 

stress loading, respectively. 

Equation 4: Radius of the plastic zone during unloading portion of a J fracture toughness test 

    
 

  
  

 

   
 

 

 

The final proof that small amounts of unloading are allowable came from the calculation of the 

parameter α, which is a ratio of the plastic zone size ry (Equation 4) to process zone size Zp, 

where Zp = J/σy.  In order for unloading to be allowed, α << 1, with a suitable value being 0.01.  

Clarke et al. found that for 10% (from peak load) unloading resulted in α≈0.002.  This verification 

allows the J integral to be calculated multiple times from a single sample, saving time and 

money during testing. 

 

1.3.2 JIC Failure Criterion 

 It was desired to have a failure criterion similar to KIC but using the J-integral, which is 

referred to as JIC, where JIC is the plane strain J fracture toughness.  In order for JIC to be a 

relevant single fracture toughness parameter, it needed to be independent of sample size and 
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geometry.  The difficulty in this, however, is that when plastic behavior is present ahead of a 

crack tip, the geometry plays an integral part in the response of the sample.  Plastic slip line 

theory shows that constraint, caused by changes in sample geometry, and/or loading conditions 

can cause changes in the flow fields ahead of the crack.9 

 

1.4 Changes in J-Integral Values 

 In order for a constant J value to be determined, the contour of the integral must 

enclose the entire plastic zone around the crack tip, as well as the crack tip itself.  If this is not 

satisfied, J will fluctuate within the plastic zone due to changes in potential energy.  This was 

also shown by Kuang and Chen during their finite element studies on HY-130 steel.10  The 

schematic in Figure 3 shows how the contour (r1) cuts through the plastic zone.  By varying the 

radius of the contour, Kuang and Chen were able to show that J only changes within the region 

of the plastic zone as seen in Figure 3 and Figure 4. 

 

Figure 3: Schematic showing the relation between integration contour and radius of the plastic zone
10
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Figure 4: (a) Comparison of plastic zone to J-integral contours, (b) Normalized J-integral values versus normalization 
of contour radius

10
 

 

It can be seen in Figure 4 that, the value of J is constantly changing when r1<rmax and once r1>rmax 

(signifying the integration contour completely surrounds the plastic zone) J remains constant. 

 Kudari et al.11 have performed similar work, but have shown how the size of the plastic 

zone changes with increasing J.  Figure 5 shows a single edge notched bend (SENB) bar that was 

used for finite element calculations.   
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Figure 5: Elastic plastic boundary (plastic zone size) in SENB bar for increasing J integral values
11

 

 

As the J-integral is increased, the size and shape of the plastic zone size contours change with it.  

When J is less than 5 the plastic zone was elliptical in nature, but as it is continually increased 

the zone takes on a bell shape.  The shapes of the contours were controlled by the applied load 

as well as the neutral axis within the bend bar.  There is a region of tensile stress and one of 

compressive stress, and when the edge of the compressive stress region meets with the plastic 

zone ahead of the crack tip, the compressive zone impedes the growth of the plastic zone. 

 Koko and Matthews12 have shown the influence of increased loading on the size of the 

plastic zone in SENB specimens.   

 

Figure 6: Schematic showing increasing plastic zone size with increasing load in SENB
12

 

 

It is important to note the differences between the work of Kudari and Koko in order to fully 

understand the calculations.  The calculations performed by Kudari et al. were done using plane 
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stress conditions, whereas the work by Koko and Matthews was done using plane strain 

conditions.  This link is made even clearer when compared to the shape of the plastic zones 

proposed by Hutchinson (Figure 1). 

 

1.5 Plastic Zone Size and J-Integral Changes During Testing 

1.5.1 Sample Geometry Influences 

 Landes and Begley9 performed the initial work to determine if a value, JIC, could be 

determined that was independent of sample geometry and configuration, which is a difficult 

task considering the different types of specimens all yield in different ways, as shown by Figure 

7. 

 

Figure 7: Slip line fields for three different sample configurations
9
 

 



11 
 

McClintock suggested that differences in hydrostatic stress (controlled by sample thickness) 

should alter the mode of crack extension in samples.  Under conditions of high hydrostatic 

stress, initiation and growth of internal voids would be the controlling factor, and under 

conditions of low hydrostatic stress, slipping off on shear planes would take over.13 

 

1.5.2 Sample Thickness Influences 

 When a sample is not thick enough, plane stress conditions prevail, and this leads to 

changes in the J-integral because it is only when plane strain conditions are reached that the 

fracture toughness value is constant, whether that is KIC or JIC.  Typically, when a test specimen is 

thin in comparison to the other dimensions, plane stress conditions are applied.  The work of 

Kulkarni et al.14 proves this point.  They performed J-fracture toughness tests on deep drawn 

sheet steel, with thickness less than 2mm.  The results of J versus specimen thickness are found 

in Figure 8. 

 

Figure 8: Variation of J fracture toughness with specimen thickness
14
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The change in J with respect to thickness shows that plane stress conditions prevail, and that the 

thickness influences the hydrostatic stress state and plastic zone within the material.  

Furthermore, in order for JIC to be a single parameter for fracture toughness, plane strain 

conditions must be in use. 

 

1.5.3 Crack Length Influences 

 Another influence on the fracture toughness of the sample is the crack length, or more 

specifically the ratio a/W, which is the ratio of the crack length (a) to the total height of the 

sample (W).  Lereim and Embury15 have shown that a/W causes fluctuations of J only up to a 

certain a/W ratio, after which, the J value remains constant. 

 

Figure 9: Influence of a/W ratio on J fracture toughness for HSLA steels
15

 

 

The data in Figure 9 plateaus after a certain a/W value because as the crack length increases, 

the effective thickness of the sample increases as well, getting closer to plane strain conditions, 

and a single JIC value independent of geometry. 
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 Maiti and Keshbat16 performed finite element calculations in order to show how the size 

and shape of the plastic zone changes during crack extension as well as during unloading.  Figure 

10 shows the progression of the three cycles of loading and unloading and the changes to the 

plastic zone. 

 

Figure 10: Plastic zones computed during three loading and unloading cycles undergoing fracture toughness finite 
element calculations

16
 

 

As the crack propagates from point A at stage 1 to point D at stage 3, the spread of the plastic 

zone ahead of the crack tip is approximately 0.066ao at initiation and 0.11ao at unstable crack 

growth.  The size of the plastic zone nearly doubles during the test simulation.  The calculated J-

integrals from the various FE tests of Maiti and Keshbat can be seen in Table 1. 
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Table 1: Calculated J-integrals at various cycles of crack extension
16

 

 

The data in the table shows four separate J-integral contours calculated for different initial a/W 

values and at different crack extensions.  It is important to note that the J-integrals calculated 

are more or less the same along all contours, which should be the case because, as mentioned 

earlier, path independence is one of the requirements of the J-integral. 

 Although it has been shown that sample configuration and geometry, thickness, and 

crack length all affect the J integral, it can still be used as a single parameter criterion for 

fracture toughness when the sample is tested under plane strain conditions.  Landes and Begley9 

have stated that the size of the remaining ligament must be sufficiently large in comparison to 

the plastic zone that resulted during the test, and as was shown in Figure 1 and Equation 2, the 

size of the plastic zone under plane stress conditions is three times larger than plane strain.  

They have also concluded that the local crack tip singularity due to plasticity and blunting of the 

crack tip overrides the effect of slip line fields in determining JIC. 

 

1.6 Fracture Toughness of Copper Precipitation Strengthened Steels 

 The history behind the development of copper precipitation strengthened steels and 

their use in naval ship hulls has been covered extensively by Czyryca.17  According to Czyryca, 
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welding is the greatest cost driver and the largest single contributor to shipyard labor.  

Fabrication of the hull, which includes materials, welding, and nondestructive evaluation, can be 

as high as 20% of the total cost of the entire ship.  With this is mind, it is crucial to understand 

the behavior of the various regions of the HAZ in the weld in order to prevent failures from 

occurring. 

 

1.6.1 Dislocation Motion Effects on Fracture Toughness 

 Much of the J fracture toughness work occurs on the ‘upper shelf’ of impact energy 

versus temperature curves.  This is the region in which the material exhibits fully ductile 

behavior and where plastic deformation ahead of a crack tip will be the highest.  Ericksonkirk et 

al.18 have said that there are two major contributions to deformation due to dislocation motion.  

The dislocation motion due to temperature change constitutes the thermal effects, and the 

influence of second-phase particles on the ability of the matrix to allow dislocation motion 

constitutes the non-thermal effects.  These two effects alter the fracture toughness of a 

material.  The thermal effects control the dislocation motion through the crystal lattice by 

altering the vibration of the atoms and as the temperature increases, the vibration increases, 

thus providing greater space for the dislocations to move.  As these dislocations move through 

the lattice they will inevitably interact with microstructural inhomogeneities, namely second-

phase particles and the nature of this interaction will also contribute to the fracture toughness 

of the material.  Cleavage fracture occurs when ductile behavior is no longer exhibited by the 

material, and the fracture toughness is a measure of the energy absorbed by the motion of 

dislocations before they pile up at a second phase particle leading to unstable cleavage fracture.  

The opposite mode of failure occurs when there is sufficient pile up of dislocations at a second 
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phase particle such that voids are able to nucleate and link up leading to ductile failure of the 

material.  This ductile fracture is the mode typically seen in the ‘upper shelf’ region of impact 

toughness curves. 

 

1.6.2 Effect of Copper Additions 

 The effect on fracture toughness of copper additions to HSLA steels has been shown to 

have a positive correlation in most cases.  Lis et al.19 took HSLA-100 and altered the composition 

such that the copper composition was raised from 1.6wt% to 2.0wt% at the expense of iron.  As 

seen in Figure 11 the HSLA-100 with 2wt% copper exhibited higher fracture toughness at all 

yield strength levels, up to approximately 1000MPa.   

 

Figure 11: Fracture toughness as a function of strength level for HSLA-100 steels with varying copper content.  The 
numbers on the plot indicate the ageing temperatures in °C following water quenching.

19
 

 

Lis attributes this increase to the nature of the copper precipitates and their influence on 

formation of austenite.  HSLA-100 in the overaged condition results in incoherent ε-Cu 

precipitates, and these precipitates allow for easier formation of new stable austenite, which 
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can provide a strong barrier to growth of cleavage cracks in the ferrite matrix.  The influence of 

carbon equivalent within these stable austenite structures was also observed and is shown in 

Figure 12. 

 

Figure 12: Fracture toughness as a function of carbon equivalent within stable austenite phases compared to data 
seen for a variety of steels.

19
 

 

The increase in fracture toughness at lower carbon equivalents is hypothesized to come 

from enhanced ductility caused by a strain induced phase transformation from γ – α’ and the 

energy dissipated by the austenite at the crack tip.  

For copper precipitation steels, the morphology of the copper precipitates plays a strong 

role in how the steel is strengthened, and its importance within the HAZ cannot be overlooked.  

Reports have shown that copper acts as a solid solution strengthener when its content is lower 

than 0.5wt% and as a precipitation strengthener at levels above this value.  The results of 

Tomita et al.20 show that, for an alloy with 0.9wt% Cu, 5°C/min is the critical cooling rate for the 

precipitation of copper to occur.  Figure 13 shows the hardness change as a function of cooling 

time from 800°C to 500°C.  The hardness change remains constant for cooling times up to 
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3.6x103 sec, which is a cooling rate of approximately 5°C/min.  At longer cooling times, the 

hardness change is less.  This suggests that precipitation of copper does not occur at cooling 

rates above 5°C/min in this particular alloy system.     

 

Figure 13: Relationship between hardness change (before and after tempering) to the cooling time (T8-5)
20

 

 

 Das et al.21 performed J fracture toughness tests on HSLA-100, which has low amounts 

of carbon (0.04wt%) and higher amounts of copper (1.6wt%).  The carbon content is 

intentionally kept low in order to improve weldability, and due to this reduction the copper 

content is increased in order to regain some of the strength by increasing the amount of 

precipitation strengthening.  The copper precipitates initially form as coherent nanoscale 

particles at approximately 500°C, then coarsen and become incoherent at higher and higher 

temperatures.  Figure 14 shows the influence of different processing conditions on the 

microstructure of the HSLA-100 steel. 



19 
 

 

Figure 14: SEM micrographs showing the influence of processing conditions on the microstructure of HSLA-100 (a) 
water quenched (WQ), (b) WQ and aged at 400°C, (c) WQ and aged at 500°C, (d) WQ and aged at 600°C, (e) WQ and 

aged at 650°C, (f) WQ and aged at 700°C
21

 

 

The structure is acicular in all cases with some gradual coarsening as the ageing temperature 

increases.  The changes in microstructure do not give the full picture of what is happening in the 

material as the nanoscale precipitates are also a factor in the fracture toughness.  The J fracture 

toughness for a variety of ageing temperatures can be seen in Figure 15. 
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Figure 15: (a) JR Curves for differing ageing temperatures in HSLA-100 steel, (b) Fracture toughness as a function of 
ageing temperature in HSLA-100 steel

21
 

 

The fracture toughness is a minimum in the WQ condition and also at the 550°C ageing 

temperature.  The minimum in the WQ condition is due to the presence of untempered 

martensite, whereas the minimum at the 550°C peak temperature is due to the fact that the 

copper precipitates are coherent with the matrix.  The increase in fracture toughness at higher 

ageing temperatures is partly due to tempering of the martensite, but mostly due to the copper 

precipitates losing coherency with the matrix.  Copper precipitate coherency, as implied by 
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mechanical property variations seen by Das21, restricts plastic deformation which, in turn, limits 

the formation and growth of microvoids leading to a decrease in ductile fracture. 

 

1.6.3 Fracture Toughness of Thermally Simulated Heat Affected Zones 

 Shi and Han22 have performed work similar to the scope of this study, but on a different 

type of HSLA steel.  They used a Gleeble to simulate various regions within the HAZ of a weld, 

and then performed J fracture toughness tests in order to correlate the HAZ microstructure to 

the toughness properties.  Their results (Figure 16) showed that a cooling time (T8-5) of 

approximately 18s yielded the highest fracture toughness, and times of over 45s significantly 

reduced the fracture toughness of the material. 

 

Figure 16: Effect of cooling time on the fracture toughness in the (a) T-L orientation and (b) L-T orientation
22
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Their work also showed the influence of different peak temperatures which correspond to 

different areas within the HAZ.  The results are shown in Figure 17. 

 

Figure 17: Effect of peak temperature on the fracture toughness in the (a) T-L orientation and (b) L-T orientation
22

 

 

The mixed microstructure of martensite and austenite (MA constituent) formed at the 800°C 

peak temperature showed the lowest fracture toughness of all the peak temperatures.  Shi and 

Han proposed that this was due to the dissolution of carbides at the grain boundary and partial 

transformation to austenite.  The austenite formed in this region of the HAZ is only partly 

transformed due to the 800°C peak temperature.  The low temperature makes diffusion of 
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carbon very difficult, thus, the grain boundaries are rich in carbon and the MA constituent 

creating an easy path for fracture.  

 

1.7 Role of Second Phase Particles on Fracture Toughness 

 The initiation of ductile fracture is caused by the nucleation and growth of voids at 

second phase particles.  In steels, the second phase particles are either carbides or sulfide or 

silicate inclusions.  In the case of nonmetallic inclusions, there are two possible influences:  they 

can provide an inert surface, which can aid in the nucleation of acicular ferrite, increasing the 

strength and toughness of the material or can they can be initiation sites for ductile and 

cleavage fracture.  The mode in which these nonmetallic inclusions act is dependent on their 

chemistry and their size.23 

 Once a void is nucleated at a second phase particle the void will pass through the 

boundary between the particle and the surrounding matrix, and then propagate through the 

grain and to the next grain boundary where it could link up with other such cracks.24  These 

cracks will elongate in the direction of an applied tensile stress, but will need a shear component 

if they are to move laterally within the material and link up with other cracks to form a 

microneck.  The micronecks will eventually grow apart from each other leading to ductile 

fracture with highly dimpled fracture surfaces.  This link up of voids can be seen in Figure 18.3 
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Figure 18: Growth and link up of microvoids to form a ductile crack in a free-cutting mild steel.
3  

  

1.7.1 Influence of Stress Triaxiality 

Chae et al.25 performed studies on the failure behavior of HAZ in HSLA-100 and HY-100 

steels, and found that the failure mode was influenced by the triaxial stress state in the material.  

For low stress triaxialities the failure was dominated by microvoid coalescence (equiaxed voids 

grow to impingement) seen in Figure 19a, whereas for high stress triaxialities the void sheet 

mode (links elongated inclusion initiated voids by a shear instability) seen in Figure 19b and a 

small amount of cleavage fracture seen in Figure 19c were the dominant modes of failure. 
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Figure 19: SEM micrographs of the fracture surfaces the coarse grained HAZ of HY-100 with stress triaxiality 
increasing from A to C.

25 
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1.7.2 Influence of Manganese Sulfide (MnS) Inclusions  

Kiessling3 has divided steel inclusions into five separate categories based upon the 

deformation behavior of the inclusions, but only manganese sulfide (MnS) inclusions will be 

discussed here.  These inclusions are separated into three types based upon differences in their 

morphology as seen in Figure 20.  A type I MnS inclusion is globular and is only formed when 

oxygen is present in the melt of the material.  Type II inclusions are of the interdendritic eutectic 

form, and Type III are random angular particles.3  

 

Figure 20: SEM micrographs showing the various morphologies of MnS inclusions (a) Type I (b) Type II (c) Type III
3 
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MnS inclusions can play a critical role in the failure of some steels.  Chae et al.26 have 

linked the void sheet mode of failure to the presence of MnS inclusions, which are preferentially 

located in granular ferrite layers of a banded HY-100 steel.  The inclusions provide easy initiation 

sites for large elongated voids that trigger localized deformation between the banded layers of 

granular ferrite.  The inclusions also influence cleavage fracture as well because they contract 

more than the surrounding matrix during cooling from hot working temperatures.  This over 

contraction creates a stress concentration at the particle matrix interface making it a prime site 

for debonding and void nucleation.27 

 

1.7.3. Particle Size Effects on Fracture Toughness 

 Bhadeshia states that an inclusion’s effectiveness at initiating ductile cracks increases 

above a critical size range.  A larger (coarser) particle will create a higher stress concentration at 

its boundary, which will lead to localized rupture and microcracking.  This is supported by the 

work of Chae25 and also Ishikawa28.  The results of Chae showed that the inclusion content of the 

HY-100 steel and its 100S weld metal control the ductile fracture behavior, and Ishikawa 

demonstrated that the fracture toughness of a specific type of steel was lowered by increasing 

initiation site size (Figure 21).   



28 
 

 

Figure 21: Relationship between initiation fracture toughness and the size of the initiation site.
28 

  

1.7.4 Influence of Carbides 

MnS inclusions are not the only second phase particles present in steels and various 

morphologies of carbides are also of importance.  A cementite sphere of similar size to a MnS 

particle was shown to be stronger, and does not crack or debond at small strains.3  This result 

lends itself to the understanding that these carbides can appreciably deform without nucleating 

any voids which leads to good ductility and toughness.  In comparison, lamellar cementite also 

does not crack at small strains, but exhibits lower ductility than spheroidal cementite, as seen in 

Figure 22.  This is because when the lamellar cementite cracks, the crack is able to quickly run 

the length of the lamella leading to well defined cracks in the pearlite colony.3  
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Figure 22: Effect of second phase particles on the ductility of steel
3 

  

1.7.5 Influence of Second-Phase Microstructure 

Second-phase within the microstructure also plays an important role in the ductility and 

toughness of a material, being influenced by hard constituents along grain boundaries, harder 

phases next to softer ones, etc.  The work of Chae et. al.26 looked at the banded microstructure 

within HY-100 steel, which had bands of granular ferrite and bands of equiaxed ferrite.  The 

failure mode of the material shows that slip accommodation occurs within the equiaxed ferrite 

layer in order to accommodate the deformation characteristics of the harder neighboring 

granular ferrite layer (Figure 23).  These results show that plasticity is constrained by the 

granular ferrite along the long dimension of the band. 
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Figure 23: Plastic deformation within neighboring bands of granular ferrite and equiaxed ferrite in HY-100 steel
26

 

 

 Many HSLA steels have compositions and microstructures that are susceptible to 

forming hard brittle constituents at the grain boundaries in the CGHAZ.   Depending on alloy 

composition and weld thermal cycle, the first pass of a welding operation may yield upper 

bainite with a large prior austenite grain size.  A second pass will further heat this area to the 

intercritical region, where the austenite will nucleate and grow along the bainite lath boundaries 

and the prior austenite grain boundaries.  After nucleation it will become enriched with carbon, 

which when cooled will transform into a hard and brittle constituent.  This can be seen in Figure 

24 for an HSLA type steel containing 0.083wt% C after a multipass thermal cycle.  The material 

was heated to 1350°C at a rate of 200°C/s, with a t8-5 of 30s, and an interpass temperature of 

200°C.  The peak temperature of the second pass varied, leading to the different 

microstructures seen in Figure 24. 
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Figure 24: Microstructure of HSLA steel showing increasing amounts of blocky MA constituent at the grain 
boundaries after intercritical heating on the second pass to (a) 764°C (b) 778°C (c) 785°C and (d) 804°C

27
 

 

The formation of this hard MA constituent caused a drop in the toughness of the material 

because of the lack of ductility at the grain boundary (Figure 25). 

 

Figure 25: Impact energy as a function of temperature showing low toughness in the intercritically heated region
27 
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The fracture surface of this material (Figure 26) shows that the cracks run along the prior 

austenite grain boundaries and can originate at a region where a blocky MA particle has become 

debonded from the surrounding matrix. 

 

Figure 26: Cross section of charpy fracture surface in which the failure runs along the prior austenite grain 
boundaries after originating at debonded MA constituent (dark spot in A).

27
 

 

To further illustrate the conclusion that the MA constituent is the cause of failure, Davis and 

King27 also slowed the cooling rate after the second weld pass in order to suppress its formation, 

instead forming upper bainite and pearlite regions.  The results (Figure 27) show that no 

reduction in toughness is observed, whereas for higher cooling rates (formation of the MA 

constituent) a drop in toughness is seen at the intercritically heated region. 
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Figure 27: Impact energy as a function of temperature for various cooling times after the second weld pass
27

 

 

 A proposed mechanism for the toughening of a high-strength low alloy steel via bainite 

formation was given by Tomita.29  When a ductile second phase appears in acicular form, such 

as lower bainite, it can partition the prior austenite grains of the matrix martensite, and if this 

partition occurs the strength can be improved due to the refinement of the martensitic 

substructure as well as plastic restraining of the bainite by the martensite.  In contrast, however, 

when the second phase appears as a mass and fills the prior austenite grain boundaries of the 

matrix, such as upper bainite, strength is decreased.   This is caused by a non-uniform strain 

between the bainite and the martensite during earlier deformation. 

 

1.8 Experimental Objective 

 It is unknown how the fracture toughness of NUCu-140 is altered in the HAZ following 

an arc welding process.  It is the goal of this research to simulate four different regions in the 

HAZ, each corresponding to a different peak temperature, and perform J fracture toughness 

tests.  The trend in fracture toughness needs to be correlated to the microstructural changes as 

well as the changes in copper precipitate morphology.   
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2. Experimental Procedure 

 The chemical composition of NUCu-140 can be seen in Table 2.  The alloy was given an 

initial homogenization heat treatment at 1150°C for 3 hours.  The alloy was then hot cross-rolled 

at 950°C and air cooled.  Next, the plates were solutionized at 900°C for 1 hour, water 

quenched, and then aged at 550°C for 2 hours and air cooled.  The chemical composition of 

NUCu-140 can be seen in. 

Table 2: Chemical composition of NUCu-140 (all values in wt%). 

Element NUCu-

140 

Al 0.65 

C 0.04 

Cu 1.35 

Fe Bal. 

Mn 0.47 

Nb 0.07 

Ni 2.75 

P 0.009 

S 0.002 

Si 0.47 

 

Thermal simulations were conducted on a Gleeble 3500 series thermo-mechanical simulator.  

The thermal cycles were derived from calculations done using Sandia Optimization and Analysis 

and Routine (SOAR)30 representative of a 750J/mm heat input, and were controlled using the 
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Gleeble QuikSim software package.  The specific peak temperatures were chosen in order to 

obtain samples heated to the subcritical (675°C), intercritical (800°C), fully recrystallized (900°C), 

and coarse-grained (1350°C) heat affected zone regions.  These peak temperatures were 

determined by dilatometry experiments by Farren et al.1 in order to establish the Ac1 and Ac3 

temperatures. Samples examined under a light optical microscope were prepared using 

standard metallographic techniques and etched using 3% nital.  Microhardness was performed 

on a LECO M400-FT tester using a Vickers indenter, 300g load, 15s dwell time, and 

measurements were done using NewAge CAMSWin program.  Grain size was conducted 

according to ASTM E-11231 standards using the three circle method, and 5 fields were measured 

for each sample.  Fracture toughness testing using the J-integral was performed according to 

ASTME-182032, with a single edge notched bend (SENB) sample of size 8x16x80mm (Figure 28), 

with a machined notch of 4mm.  An average and standard deviation were calculated from five 

tests for each material condition. 

 

Figure 28: Dimension of fracture toughness bar used for testing.  All dimensions are in mm, and the sample is 8mm 
thick. 

 

Pre-cracking was conducted on a servo-hydraulic Instron frame, with a clip gage attached to the 

sample and interfaced with the machine.  The pre-crack was induced at a frequency of 10Hz 

until the a/W ratio was 0.5.  Fracture toughness testing was performed in displacement control 

on an Instron 5567 load frame using a resistance curve test method with a span of 65mm.  Each 
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cycle was as follows: load 0.075mm then unload 0.025mm at a rate of 0.25mm/min.  Fracture 

surfaces were observed on an FEI XL-30 SEM using an accelerating voltage of 15kV, and energy 

dispersive spectroscopy (EDS) analysis and imaging of particles was performed on a Hitachi 

4300SE/N SEM using an accelerating voltage of 15kV. 

3. Results and Discussion 

3.1 Microstructure of Gleeble Thermal Simulations 

The microstructures associated with each thermal cycle can be seen in Figure 29.  Figure 

29(a)-(d) shows a microstructure consisting of equiaxed ferrite, while the microstructure 

produced from the 1350°C peak temperature (Figure 29(e)), exhibits a more complex 

microstructure with regions of acicular ferrite, bainite, and possibly martensite. 
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Figure 29: Light optical micrographs of NUCu-140 showing an equiaxed ferrite microstructure for peak 
temperatures of (a) base metal, (b) 675°C, (c) 800°C, and (d) 900°C.  (e) The 1350°C peak temperature 

microstructure consists of acicular ferrite, bainite, and martensite.  Etched with 3% nital. 

 



38 
 

3.2 Grain Size of Simulated HAZ Samples 

Figure 30 shows the results of the grain size measurements for the base metal and the 

four thermally simulated regions.  There is very little difference between the base metal and the 

peak temperatures of 675, 800, and 900°C, but there is a large increase in grain size for the 

1350°C sample. The grain size of the 1350°C samples are a prior austenite grain size, whereas 

the other samples were equiaxed ferrite. 

 

Figure 30: Grain size measurements for NUCu-140 HAZ thermal simulations. 
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3.3 Microhardness of Simulated HAZ Samples 

The Vickers microhardness, seen in Figure 31, shows a decrease from the base metal 

(295HV) to the minimum hardness of 228HV seen in the 900°C peak temperature, followed by 

an increase to the peak hardness of 305HV seen in the 1350°C peak temperature sample. 

 

Figure 31: Vickers microhardness of NUCu-140 HAZ thermal simulations. 

 

3.4 Fracture Toughness of Simulated HAZ Samples 

The results of the fracture toughness tests are shown in Figure 32 and Figure 33.  Figure 

32 shows representative J-R curves for each of the thermal cycles and the base metal plotted as 
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data points along with the ASTM required exclusion lines.  The results of all of the fracture 

toughness tests are plotted in Figure 33 as averages with error bars.  These results show that the 

base metal has the lowest fracture toughness (JQ) of 224kJ/m2 increasing up to the maximum of 

425kJ/m2 at the 900°C peak temperature, followed by a decrease to 255kJ/m2 at the 1350°C 

peak temperature.  According to ASTM standard E1820, these JQ values meet the criteria to be 

classified as JIC. 

 

Figure 32: Crack growth resistance curves (J-R curves) for NUCu-140 thermal simulations. 
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Figure 33: Average fracture toughness values (JQ) of NUCu-140 thermal simulations showing a maximum at the 
900°C peak temperature. 

 

3.5 Fractography of Simulated HAZ Samples 

The fracture surfaces of each of the samples are presented in Figure 34 and Figure 35.  

Figure 34 shows low magnification SEM images of the entire fracture surface of each sample 

displaying microcracks oriented in the direction of primary crack growth.  The higher 

magnification images seen in Figure 35 show a failure mode of microvoid coalescence for the 

base metal, 675°C, 800°C, and 900°C peak temperatures (Figure 35(a)-(d), respectively).  The 
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1350°C peak temperature samples (Figure 35(e)) displayed a mixed more of microvoid 

coalescence and cleavage fracture.   

 

Figure 34: Low magnification SEM images of fracture surfaces for (a) NUCu-140 base metal, and thermal 
simulations with peak temperatures of (b) 675°C, (c) 800°C, (d) 900°C, and (e) 1350°C.  Note that the fracture 

surface above the white line was induced following testing. 
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Figure 35: Fracture surfaces of NUCu-140 thermal simulations showing ductile failure via microvoid coalescence for 
peak temperatures of (a) base metal, (b) 675°C, (c) 800°C, and (d) 900°C.  Areas of cleavage fracture are seen in (e) 

the 1350°C peak temperature specimen. 
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3.6 EDS Analysis of Particles at Microvoids 

 

The ridges observed in the direction of primary crack growth were investigated further 

in order to determine the cause, specifically in the base metal sample where a larger number of 

smaller ridges were seen and also in the 900°C peak temperature sample where the ridges were 

much larger and deeper (Figure 34 (a) and (d)).  Figure 36a and Figure 37a show the line of 

linked microvoids ahead of the ridges for the base metal and 900°C peak temperature samples, 

respectively.  These voids were commonly observed to form by particle/matrix decohesion.  

Figure 36c shows an EDS spectra corresponding to a typical particle (denoted by an arrow) 

shown in Figure 36b for the base metal sample, and Figure 37c and Figure 37b detail the same 

information for the 900°C peak temperature sample.  The EDS spectra show large peaks of Fe 

along with high Al content and smaller peaks of Ni and Cu.  Further research is required in order 

to determine the exact nature of these particles.  
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Figure 36: SEM micrographs and EDS spectra showing (a) line of microcracks ahead of a ridge in base metal sample, 
(b-c) particle at the edge of a microcrack shown to be an aluminum rich particle. 
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Figure 37: SEM micrographs and EDS spectra showing (a) line of microcracks ahead of a ridge in 900°C peak 
temperature sample, (b-c) particle at the edge of a microcrack shown to be an aluminum rich particle. 

 

3.7 MatCalc Results 

 

MatCalc modeling was performed in order to characterize the evolution of the 

precipitates in various regions of the HAZ.1  The unaffected base metal is predicted to contain a 
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Cu precipitate phase fraction of 0.01.  According to the modeling results, when subjected to the 

675°C peak temperature, partial dissolution of the copper precipitates occurs followed by a 

small amount of precipitation of new smaller Cu precipitates. This leads to an overall decrease in 

the phase fraction to approximately 0.006. The excess copper is trapped in a solid solution with 

the iron matrix.  The results of the 900°C and 1350°C peak temperature simulations predicts full 

dissolution of the copper precipitates.  In comparison to the 675°C peak temperature, a higher 

number of new precipitates are predicted to form during the 900°C and 1350°C peak 

temperature thermal cycles. The final predicted phase fraction for the 900°C  and 1350°C  peak 

temperatures is approximately 0.004.  The 800°C peak temperature is expected to fall in 

between the results for the 675°C and 900°C thermal cycles.   

3.8 Discussion 

Previous work by Farren et al.1 has shown that the copper precipitates undergo 

considerable change in the HAZ during exposure to the weld thermal cycle.  Figure 38 shows 

local electrode atom probe (LEAP) data for an NUCu-140 GMA weld describing the average 

radius, number density, and phase fraction of copper precipitates in the HAZ of NUCu-140, with 

HAZ 1 and HAZ 2 corresponding to the 675°C and 900°C peak temperatures, respectively.  These 

results show that following their respective thermal cycles, the phase fraction of copper 

precipitates is significantly lower than the unaffected base metal.  There is also an increase in 

number density, but a decrease in average precipitate radius for the HAZ 1 and HAZ 2 regions. 
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Figure 38: LEAP tomography data from NUCu-140 showing radius, number density, and phase fraction of copper 
precipitates in the base metal, heat affected zone, and fusion zone.

1  

 

The slight decrease in grain size observed in the sample exposed to a 900°C peak temperature 

can be attributed to grain refinement from the α  γ transformation during heating and 
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cooling.  By heating to 900°C the material entered the fully recrystallized region where it was 

fully transformed to austenite, but there was not enough time at this elevated temperature to 

cause grain growth, resulting in a smaller grain size.  The comparatively large prior austenite 

grain size seen in the sample heated to 1350°C is due to the material being heated well above 

the Ac3 temperature, and being at this elevated temperature long enough for grain growth to 

occur. 

Although there appears to be a minor change in grain size, much of the difference in 

hardness and fracture toughness can be attributed to the evolution of copper precipitates in the 

HAZ, which can be seen in the MatCalc simulations and LEAP results.  The decrease in hardness, 

and conversely, the increase in fracture toughness from the base metal through the 900°C peak 

temperature sample are due to the decrease in phase fraction of copper precipitates found 

within the material.  It can be seen that there is an increase in fracture toughness from the 

675°C peak temperature to 800°C and a further increase at 900°C, even though the phase 

fraction of precipitates is the same.  This further increase is due to plastic deformation occurring 

at the crack tip in the 800°C and 900°C samples.  A comparison between the 675°C and 900°C 

peak temperature samples is seen in Figure 39 where the 900°C sample follows the blunting line 

until higher crack extensions in comparison to the 675°C sample.  
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Figure 39: Close-up view of crack tip blunting region of NUCu-140 JR curves 

 

 This means that there is more energy absorbed by the 900°C sample because of the 

plastic deformation occurring in the form of crack tip blunting.   There is a similar drop in phase 

fraction of copper precipitates for the 1350°C peak temperature, but its increased hardness and 

reduced fracture toughness is a result of the microstructure present.  Although acicular ferrite, 

typically a tough microstructure3, is present, there is also evidence of bainite and martensite, 

which results in a higher hardness but reduced fracture toughness.  Further support a brittle 

microstructure being present in the microstructure is seen in the SEM fractographs which show 

regions of cleavage failure only in the 1350°C peak temperature samples.   
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4. Conclusions 

 

 The reduction in hardness and the increase in fracture toughness from the base metal 

through the 900°C peak temperature sample are due to a decrease in the phase fraction 

of copper precipitates in the samples caused by coarsening and dissolution of the 

particles during the thermal cycles. 

 Although the phase fraction of copper precipitates is the same between the 675°C, 

800°C, and 900°C peak temperature samples, further increases in fracture toughness are 

due to increased amounts of plastic deformation are present at the crack tip because of 

the reduction in grain size and phase fraction of copper precipitates, which results in 

blunting and absorption of energy prior to crack extension. 

 The increase in hardness and decrease in fracture toughness seen in the 1350°C peak 

temperature sample is a result of the microstructure (acicular ferrite, bainite, and 

martensite) that is produced from the thermal cycle. 

 Microvoid coalescence is the primary failure mode for the base metal, 675°C, 800°C, and 

900°C peak temperature samples, indicating ductile failure. 

 Cleavage failure is seen in the 1350°C peak temperature sample indicating regions of a 

brittle microstructure are present, supporting observations of bainite and martensite in 

the microstructure. 

 The fracture toughness throughout any region of the HAZ is higher than that of the 

unaffected base metal, meaning that the properties of the base metal can be used for 

design of the structure. 
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