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ABSTRACT 
 

Analyzing the Impact of Reactive Transport on the Repository  
Performance of TRISO Fuel 

 
by 

Gregory Schmidt 

 
Dr. William Culbreth, Examination Committee Chair 

Professor of Mechanical Engineering 
University of Nevada, Las Vegas 

 
 

 One of the largest determiners of the amount of electricity generated by 

current nuclear reactors is the efficiency of the thermodynamic cycle used for 

power generation. Current light water reactors (LWR) have an efficiency of 35% 

or less for the conversion of heat energy generated by the reactor to electrical 

energy. If this efficiency could be improved, more power could be generated from 

equivalent volumes of nuclear fuel. One method of improving this efficiency is to 

use a coolant flow that operates at a much higher temperature for electricity 

production. A reactor design that is currently proposed to take advantage of this 

efficiency is a graphite-moderated, helium-cooled reactor known as a High 

Temperature Gas Reactor (HTGR). There are significant differences between 

current LWR’s and the proposed HTGR’s but most especially in the composition 

of the nuclear fuel. For LWR’s, the fuel elements consist of pellets of uranium 

dioxide or plutonium dioxide that are placed in long tubes made of zirconium 

metal alloys . For HTGR’s, the fuel, known as TRISO (TRIstructural-ISOtropic) 

fuel, consists of an inner sphere of fissile material, a layer of dense pyrolytic 

carbon (PyC), a ceramic layer of silicon carbide (SiC) and a final dense outer 
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layer of PyC. These TRISO particles are then compacted with graphite into fuel 

rods that are then placed in channels in graphite blocks. The blocks are then 

arranged in an annular fashion to form a reactor core.  

 However, this new fuel form has unanswered questions on the 

environmental post-burn-up behavior. The key question for current once-through 

fuel operations is how these large irradiated graphite blocks with spent fuel inside 

will behave in a repository environment. Data in the literature to answer this 

question is lacking, but nevertheless this is an important question that must be 

answered before wide-spread adoption of HTGR’s could be considered. 

 This research has focused on answering the question of how the large 

quantity of graphite surrounding the spent HTGR fuel will impact the release of 

aqueous uranium from the TRISO fuel. In order to answer this question, the 

sorption and partitioning behavior of uranium to graphite under a variety of 

conditions was investigated. Key systematic variables that were analyzed include 

solution pH, dissolved carbonate concentration, uranium metal concentration and 

ionic strength. The kinetics and desorption characteristics of uranium/graphite 

partitioning were studied as well. The graphite used in these experiments was 

also characterized by a variety of techniques and conclusions are drawn about 

the relevant surface chemistry of graphite. This data was then used to generate a 

model for the reactive transport of uranium in a graphite matrix. This model was 

implemented with the software code CXTFIT and validated through the use of 

column studies mirroring the predicted system. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 Problem Statement and Research Objectives 
  

With the growing interest in the further development of nuclear power both 

within the United States and throughout the world, there has been an increased 

focus on new and improved reactor designs. One of the designs currently 

proposed as a Generation IV nuclear reactor is a graphite-moderated and 

helium-cooled design known as a High-Temperature Reactor (HTR). The basics 

of this design were first proposed by Oak Ridge National Laboratory in 1947 and 

since that time several HTR’s have been built and operated (Morris and Bauer, 

2005). The main utility of these reactors and why they continue to generate 

significant interest is their increased efficiency in power generation over current 

light-water reactors (LWR). Independent studies of efficiency by Oak Ridge 

National Laboratory, the Massachusetts Institute of Technology and General 

Atomics have indicated that a high efficiency of 47.7% is achievable for power 

generation (General Atomics, 1996). When contrasted with the approximately 

32% efficiency currently achieved in light water reactors, this fact makes a 

compelling argument for the adoption of HTR (Bodansky, 2004). 

 While HTR do have many theoretical marks in their favor, there are 

several areas of basic research that need to be completed before wide-spread 

adoption could be contemplated. In particular, the HTR fuel elements are so 

different from standard spent nuclear fuel (SNF) that significant research remains 

to be done on the repository performance of HTR fuel. HTR fuel is composed of 
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microspheres of fuel material surrounded by a porous carbon buffer to permit 

space for fission products and gases followed by a layer of SiC squeezed 

between two layers of pyrolytic carbon (PyC). These particles are known as 

TRISO particles (TRIstructural-ISOtropic). These particles are then embedded in 

a graphite compact which is itself inserted into a fuel channel drilled into a much 

larger graphite fuel element. These elements are then arranged in an annular 

fashion to form a reactor core (General Atomics, 1996). Dimensions of these 

system components are included in Table 1.1 and images are included in Figure 

1.1.  

 

Fuel Particles 

Kernel Radius, μm 175 

Buffer Thickness, μm 100 

Inner Pyrocarbon Coating Thickness, μm 35 

SiC Coating Thickness, μm 35 

Outer Pyrocarbon Coating Thickness, μm 40 

Fuel Compacts 

Diameter, mm 12.45 

Height, mm 49.3 

Hexagonal Fuel Assembly Blocks (Elements) 

Flat to Flat, mm 360 

Height, mm 790 

Graphite Thickness Between Fuel and Coolant Channels, mm 4.5 

 
Table 1.1:  Dimensions for TRISO particles and fuel elements (Morris and Bauer, 

2005) 
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Figure 1.1:  Images of TRISO particles, compacts and assemblies (Morris and 
Bauer, 2005) 

 
 
 These extreme differences between SNF and TRISO fuel render current 

models for the release of radionuclides from SNF inappropriate to the calculation 

of radionuclide release from TRISO fuels.  

While some modeling research suggests that the radionuclide release from 

TRISO fuel could be several orders of magnitude better than SNF (Morris and 

Bauer, 2005), basic questions remain to be answered before a quantitative 

understanding of the rate and amount of release of radionuclides from TRISO 

fuel can be accomplished. Accordingly, this research has the following goals: 

 Evaluation through batch experiments of uranium sorption and distribution 

coefficients (Kd) to graphite  

 Determination of the rate and kinetics of uranium sorption to graphite 
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 Determination of uranium desorption rates from graphite using batch 

experiments to measure rates and column experiments to measure the 

distribution of rates 

 Determination of the significance of uranium transport retardation through 

a graphite matrix by column studies 

 Deriving a mass balance for the desorption of uranium from graphite to 

evaluate the possibilities of longer-term more irreversible sorption between 

uranium and graphite 

 Evaluate the key parameters governing rates and magnitude of uranium 

sorption and desorption to graphite 

 Evaluating the effects of diffusion and water velocity in the matrix on 

uranium release and sorption 

 Creating a valid model that incorporates the knowledge gained through 

experimental work and then validating it using the program CXTFIT 

1.2   Background and Theory 

1.2.1 Theory of Sorption 

 Sorption is a term that includes several different mechanisms, such as 

electrostatic attraction, surface complexation and precipitation, for the removal of 

an aqueous ion from solution by a reacting surface (Essington, 2003). In 

discussion of heavy metals such as uranium, electrostatic adsorption and surface 

complexation generally refer to the formation of so-called “outer-sphere” and 

“inner-sphere” complexes respectively in solution. The sphere that is referenced 

in this nomenclature is the six waters of hydration that generally surround any ion 



5 
 

in solution in an octahedral shape. These waters are usually strongly coordinated 

by the ion in solution however; the ion in solution does have an influence that can 

extend out beyond the primary coordination sphere represented by the waters. 

This attraction beyond the inner hydration sphere is electrostatic in nature and in 

a pure solution can lead to rough polarization of the local water molecules or in 

the case of sorption, an electrostatic attraction to a surface. As this attraction 

does not involve primary coordination of the ion in solution, it is referred to as 

outer-sphere and is generally of a weaker nature than inner-sphere complexation 

(Essington, 2003 and Langmuir, 1997). Due to the stronger coordination between 

the water molecules in the inner hydration sphere and the aqueous ion, the 

replacement of one of those water molecules by a sorbing surface yields a much 

stronger interaction than outer-sphere complexation. It should be noted that 

these sorptive mechanisms are not exclusive and can occur simultaneously 

between a reactive surface and ions in solution.   

 There are several models used to quantitatively describe sorption by 

surface complexation and electrostatic adsorption in solution by a surface 

including Constant Capacitance (CC) Models, Diffuse Layer (DL) Models and 

Triple Layer (TL) Models. These models and their characteristics and 

requirements will be summarized in Section 1.2.4.  

 Due to previous uranium studies, it is not expected that sorption could be 

well-described by a precipitation model and accordingly investigative efforts will 

focus on surface complexation reactions and electrostatic interactions as the 

dominant solution reactions.  
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1.2.2  Previous Uranium Sorption Studies and Reactive Transport 

 Uranium is a radionuclide of great importance due to its position as the 

bulk of the heavy metal in spent fuel and its toxicity. For these reasons, many 

studies of uranium sorption have been completed on different geological media. 

Materials such as alpha-alumina, sediments from mill tailings, soil, granite, 

hematite and magnetite have all been investigated due to their geologic 

importance and prominence (Ackay, 1998, Baik et al., 2003, Hyun et al., 2009). 

While these studies are informative in their detailing of several important 

parameters for uranium sorption and their experimental methodology, the variety 

and complexity of the systems used makes extrapolation from that work to 

uranium behavior with graphite inappropriate. For instance, there has been 

strong research into the effect of microbial activity and normal organic matter on 

the sorption of uranium in geological media (Francis, 1999, Murphy et al., 1998). 

Due to the extreme radioactivity of spent TRISO fuel and its isolation before 

emplacement in a repository environment, neither of these factors is believed to 

play a significant role in uranium sorption under repository conditions. However, 

their potential influences on other studies of uranium transport cannot be ignored. 

For this reason, the literature apparently lacking in any study of uranium 

sorption/desorption to graphite, experimentally generated numbers are a 

necessity.   

 Batch experiments are one of the most common methods of measuring 

sorption to different media and in this case, it is believed will also provide a valid 

method of measuring uranium sorption to graphite. Measurements will be taken 
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of uranium sorbed per mass graphite and distribution coefficient (Kd) values 

through a basic experimental model of allowing known quantities of uranium in 

solution to equilibrate with graphite of a known surface area and mass and then 

measuring the change in solution concentration. Equation 1.1 expresses the 

relationship between the initial concentrations, final concentrations, volume of 

solution, graphite mass and uranium mass sorbed to the graphite. 

 

 

 
Where,  
q = Mass uranium sorbed per mass graphite, µg/g 
Cin = Initial conc. of uranium solution, µg/ml 
Cfi = Conc. of solution after equilibration, µg/ml 
Vsol = Volume of uranium solution in batch experiment, ml 
Mg = Mass of graphite, g 

 
For this thesis, sorption for a range of uranium concentrations ranging 

from 500 ppb to 50 ppm U in solution will be measured under various aqueous 

conditions. The advantage of employing these ranges is that it is possible to 

develop an understanding of the adsorption isotherm, which is a graphical or 

mathematical way of expressing the amount of sorbate on a sorbing surface at a 

constant temperature or pressure, for given sorbate/surface interactions. In this 

case, the two most common types of curves for sorption are the L-curve and S-

curve isotherms (Essington, 2003), which are shown as Figure 1.2.  
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Figure 1.2: L-curve and S-curve isotherms respectively 

 

Each of which would imply different facts about the mechanism of uranium 

sorption to graphite. If an L-curve is found, this indicates that the sorbate has a 

higher affinity for the sorbing surface when surface coverage is incomplete. An S-

curve would be indicative of the opposite i.e. Low affinity between sorbate and 

surface at low surface coverage (Essington, 2003). An S-type isotherm is most 

commonly found for trace elements in the environment where complexing 

competition between other dissolved species can be found. The competitive 

species limit sorption until the concentration of the element of interest in solution 

becomes sufficient to satisfy all competing complexation demands. For a 

homogenous experimental set-up like the one proposed in this case, this type of 

isotherm would be of interest due the limited number of possibilities for other 

elements to complex the uranium in solution. It could potentially be indicative of 

carbonate interference at certain pH values. However, this is not the only 

possibility as ionic interferences can also cause this type of isotherm but it would 

provide further avenues of investigation (Essington, 2003). It should be noted 
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that while the proposed concentrations of uranium in solution are far above what 

could be reasonably expected from the groundwater in even the most 

contaminated of sites, they are eminently reasonable concentrations for water 

moving through a TRISO fuel compact with its large load of uranium.  

Once the values for q are established, this data can then be used to 

calculate the bulk distribution coefficient.  The bulk distribution coefficient is 

measure of material sorbed to the soil compared to material still in solution and 

can be calculated by Equation 1.2. 

 

 

 
Where, terms are described above in Equation 1.1 
Kd = Distribution coefficient, ml/g 

 
 

 The study of uranium desorption is unfortunately not as thorough as the 

study of sorption but the existing literature does have several examples of 

desorption experiments with uranium. Many of the studies involved use material 

loaded with uranium in previous sorption experiments and then the uranium 

solution is exchanged for a blank solution which has its solution concentration of 

uranium measured over time to quantify uranium desorption. This provides a 

quantitative way of measuring the release from materials loaded with known 

amounts of material over known surface areas. Unfortunately, as described 

above, mechanisms of sorption and desorption are difficult to determine with 

certainty due to the many variables affecting the interactions and the fact there 

are potentially many different mechanisms of reaction occurring simultaneously. 
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So while there might be many different mechanisms of interaction all occurring at 

a different rate, the bulk behavior is simply grouped into one effective Kd value 

that might be composed of many other Kd values acting in concert. For instance, 

one simplification that is commonly used is reducing the interactions to a 

combination of sorption through a fast acting sorption/desorption process 

combined with a slower more irreversible sorption. While in this case, the fast 

acting kinetics would govern the speed of transport the slower more permanent 

sorption would have a great effect on restricting the mass of metal being 

transported which is obviously of great importance for the modeling of 

contaminants in the environment. For this reason, the data gathered from batch 

sorption/desorption experiments will then be compared with kinetics and column 

experiments to validate the data gathered and to determine the retardation factor 

associated with uranium transport through graphite. The retardation factor is the 

ratio of distance traveled by a non-reactive substance (usually water) to a 

reactive substance (uranium, in this case). Equation 1.3 expresses the 

relationship between distribution coefficient, graphite bulk density, porosity and 

retardation. 

 

 

Where, 
R = Retardation factor 
ρ = dry bulk density of graphite in column 
θ = porosity of graphite when fully saturated 
Kd = distribution coefficient 
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This equation has also been expressed in a conservative manner as 

follows in Equation 1.4 (Bodansky, 2004) 

 

 

 

 This simplification results from the empirical observation that values of ρ 

are usually greater than 2 g/ml and the value of θ is usually less than 0.2. To 

generalize results obtained from batch experiments, this conservative equation 

will be used to produce estimated retardation factors for uranium moving through 

graphite.   

By examining the differences between calculated retardation using the Kd 

from the batch experiments and the measured retardation from column 

experiments, deviations from the single ideal Kd value will be assessed.  This 

information will be combined with kinetics and desorption data to produce a 

transport model.  

1.2.3  Environmental Effects on Uranium Speciation and Sorption 
 
 Previous research has indicated that the systematic parameters of 

greatest interest for uranium sorption and speciation are uranium concentration, 

carbonate concentration, pH and surface area of the adsorbing surface (Prikryl et 

al., 1994). Other research has found that sorption is most prominent at or near 

neutral pH (pH = 5.5-8.8) with an expectation that different pH effects are limiting 

at low and high pH (Echevarria et al., 2001). For low pH systems, where the 

UO2
2+ species dominates, sorption is inhibited; whereas for higher pH systems, 

the formation of carbonate complexes inhibits sorption (Prikryl et al., 1994). 
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These conclusions are in broad agreement with other studies of uranium sorption 

(Baik et al., 2003 and Waite et al., 1994). They also indicate the degree to which 

pH influences the sorption behavior of uranium. As can be seen in the speciation 

curve for uranium under the experimental conditions included as Figure 1.3, 

generated using the EQ3/6 geochemical modeling software (Wolery & Daveler, 

1992) with the database developed for the Yucca Mountain Project, uranium 

forms many species in solution and small changes in pH can lead to large 

changes in the relative concentrations of uranium species in solution. 

 For this reason, a range of pH values will be investigated ranging from 

2.0-9.5. Points will also be selected to ensure the lack of pH effects on the 

graphite itself. Experiments will be carried out under both highly acidic and highly 

alkaline conditions where the expected speciation of uranium is the same 

because if sorption behavior is only a function of uranium speciation and there 

are no changes in graphite composition then the sorption characteristics should 

be uniform across pH ranges that consist of identical uranium species.
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Figure 1.3: Uranium speciation under experimental batch sorption conditions [U] = 500 ppm
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The surface area of the sorbing surface has also been identified as a key 

factor in the quantity of sorption occurring. Prikryl et al. (1994), noted that 

sorption increases as surface area to volume ratios are increased. In this case, 

surface areas for graphite from fuel elements have been observed to have a BET 

(BET details described in Section 2.3) surface area of 2.1-5.5 m2 / g of BET 

surface area (Fachinger, et al. 2003). For this reason, high purity graphite with a 

well characterized BET surface area will be used in solution. The ratio of graphite 

surface area to uranium solution mass will also be held as constant as possible 

over the experimental process. 

1.2.4 Summary and Analysis of Quantitative Adsorption Models  

 The first model mentioned above was the CC model. This model makes 

the assumption that all complexation amongst adsorbed species is of an inner-

sphere nature with outer-sphere complexes being ignored. Surface charge is 

created by the specific adsorption of protons and solution ions with the surface 

charge density being related to the potential at the surface. An intrinsic 

equilibrium constant for the complexation reaction is identified and can be 

thought of as a stability constant for the surface-ion complex that is formed.  

 The second model mentioned is the DL model. This model accounts for 

solution sorption by the formation of a strong inner-sphere complex with constant 

surface potential to a specific radius with the complexation of counter-ions and 

other aqueous species occurring outside that radius due to electrostatic effects 

that fade at a distance. This model allows for consideration of inner-sphere 

complexation and outer-sphere complexation through electrostatic attraction. 
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 The TL model is an elaboration of the DL model with, as its name 

suggests, a third layer of sorbing charge surrounding the surface. In contrast to 

the DL model which holds surface potential constant to a certain radius and then 

linearly decays away, the TL model includes two proximate regions of linear 

decay of surface charge followed by a region of exponential decay of surface 

charge. This allows for the consideration of differently bound inner-sphere 

complexes while also including outer-sphere complexed ions.  

 The above descriptions are simplistic and more detail can be found in 

Davis & Kent, 1990, Langmuir, 1997 and Essington, 2003. It should also be 

noted that the application details of each of these models can be changed and 

adapted to relevant conditions but many specific applications are highly 

dependent on ion-surface interactions and broad conclusions about the models 

can be difficult to make. However, the models do have some characteristics in 

common (Langmuir, 1997): 

 

1) The sorbing surface is composed of functional groups that form immobile 

complexes in a similar manner to ion speciation in solution 

2) These reactions can be described by bulk equations and modified by the 

inclusion of electrostatic effects 

3) Surface charge and potential are the result of chemical surface reactions 

A goal of this research is to determine the general and specific applicability of 

these surface complexation models to graphite-uranium solution interactions and, 



16 
 

if possible from the experimental data generated, implement an appropriate 

surface complexation model.  

1.2.5   Previous Modeling Studies on TRISO Fuel 

 There have been few specific studies in the literature that attempt to 

completely model the failure and release of TRISO fuel. Because the 

microparticles are the location of the majority of TRISO fuel’s inventory of 

material, more research has been dedicated to the microparticles themselves. 

Fachinger et al. (2006) investigated many of the individual components of a 

TRISO fuel system and their data provides valuable information on modeling the 

failure of the TRISO particle. It is recognized that the source term for release 

from a TRISO fuel form in a repository is governed by the failure rates of the 

coating after which the dissolution of the fuel kernel will be of the most 

importance.  Of course, this leaching will only occur after the outer TRISO 

coatings have failed. The same study also examined the rates and mechanisms 

of failure of TRISO coatings. Information from this study on the dissolution of 

TRISO coatings and kernels under selected conditions is contained within Table 

1.2  (more complete data can be found in the reference). This data on dissolution 

can be combined with particle lifetime to generate an expected lifetime for each 

TRISO particle.  
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Material Solution Atmosphere Leaching rate 

Pyrocarbon DI Water Oxygen 4.70 X 10-7  (g/ (m2·day)) 

SiC DI Water Oxygen 5.05 X 10-6  (g/ (m2·day)) 

Kernel DI Water Oxygen 1.40 X 10-6 (mol/ (m2·day)) 

 

Table 1.2: Selected data on TRISO leaching in deionized water (Fachinger et al., 

2006) 

 

However, this gradual dissolution of the particle is not the only method of 

release. The other major method is induced failure from heat or radiation during 

burn-up or defects in the manufacturing process which would lead to immediate 

dissolution of the kernel upon emplacement and contact with groundwater. For 

very high quality fuel elements, failure fractions have been observed as 6 X 10-5 

or better (Nickel et al., 2002 and Petti et al., 2003). This information on failure 

fractions combined with the leaching data cited above and dimensions of TRISO 

particles will provide an estimate of the changing source term for uranium release 

over time. 

It should be noted at this point that the study cited above is a study of 

German TRISO particles which to this point have out-performed American fuel 

particles in release and manufacturing defects by a thousand fold (Petti et al., 

2003). However, the Germans have a longer history and more experience 

manufacturing TRISO fuels than the US and their success rate should be 

obtainable by US-manufactured TRISO fuel.  

This discussion has so far only focused on the TRISO kernel itself and 

ignored the large quantity of graphite that it is embedded in. There has been as 
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yet no research found in the literature discussing the effects of this large quantity 

of graphite if the fuel element is directly disposed of in a repository environment. 

The difficulty of separating the TRISO kernels from the compact has been noted 

by several authors (Lifang et al., 2009 and Fachinger et al., 2008). If it is decided 

that these difficulties are too significant to support the separation of the TRISO 

kernels from the compact, it will be necessary to incorporate reactive transport 

through this graphite matrix into a repository performance model. It will be a 

primary goal of this thesis to develop a reactive transport model of uranium in a 

graphite matrix and then examine the conditions under which the incorporation of 

reactive transport could be of significance to repository performance.  

The model for TRISO performance developed as part of this thesis will be 

validated by the reactive transport modeling software CXTFIT. The program is 

versatile and will allow for not only validation of any proposed model but 

adaptation of that model to different flow conditions and a sensitivity analysis of 

the relative importance of parameters controlling release.  

1.3  Scope of Work 

 The primary objective of this study is to develop a quantitative 

understanding of how the large quantities of graphite in a directly deposited 

TRISO fuel compact would impact uranium release. To develop this model, 

experimental data on uranium sorption and transport through a graphite matrix 

will be developed along with an understanding of what systematic effects have 

the largest influence on uranium sorption and transport. Simulations will be run 

with the software CXTFIT (described in Section 2) to validate the model 
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generated and aid in understanding its implications for different environmental 

conditions. This will help provide information about when reactive transport 

between graphite and uranium should be included in the model of repository 

performance for TRISO fuel.  
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CHAPTER 2 
 

MATERIALS AND METHODS 
 

2.1  General Approach 

To achieve the primary goal of this research as outlined above, it is 

necessary to have knowledge of how uranium in solution is partitioned between 

immobile (solid) phases and mobile (liquid) phases when exposed to graphite 

and the kinetics of that partitioning. As information in the literature is lacking on 

the subject of uranium/graphite chemical interactions, experimental studies were 

necessary to obtain this information. In addition, to be certain that it was indeed 

graphite/uranium interactions that were being examined the physical and 

electronic properties of the graphite used in these experiments was studied as 

well. Equilibrium uranium sorption and desorption to graphite was analyzed using 

batch experiments. The impact of water chemistry on uranium sorption to 

graphite was also examined during these batch experiments by changing 

solution conditions such as pH, dissolved CO2 and ionic strength. Non-linearity in 

uranium partitioning to graphite was analyzed by changing the uranium metal 

concentration in solution and the kinetics of both the sorption and desorption 

reactions were studied by varying sample time. A model was developed from this 

data which was then applied to column studies incorporating reactive transport of 

uranium through a graphite matrix. Computer assisted methods, specifically the 

program CXTFIT, were used to validate and generalize the model that was 

developed from the experimental work.  

 



21 
 

2.2 Materials 

Graphite 

 Initial experiments were conducted with the smallest particle diameter 

ground flake graphite available from Alfa Aesar. At this point it was noted that 

graphite has several characteristics which make aqueous experimentation 

difficult including an extreme hydrophobicity as well as a resistance to separation 

by centrifugation. Centrifugation was chosen as the desired separative technique 

to minimize the amount of contaminated radioactive waste generated during 

batch experiments. Next, coarser graphite was obtained from Alfa Aesar Lot 

#A12U026 with a mesh size -20+100 (0.853 mm > diameter > 0.152 mm) to 

permit more thorough mixing and facilitate separation by centrifugation. 

Experimental work also was done to confirm that centrifugation for 10 minutes at 

4,000G achieved an indistinguishable separative effect from using a 0.45 μm 

syringe filter. This was the primary graphite used experimentally and unless 

otherwise indicated results refer to batch experiments performed with this 

graphite.  

Water 

 All experiments were carried out with deionized water (DI) with a resistivity 

of 18 MΩ-cm that had been allowed to come to equilibrium with atmospheric CO2 

through either more than two hours of static equilibration in unsealed 1 L 

Nalgene containers or at least 15 minutes of active bubbling with an aquarium 

pump in an identical container. Solution ionic strength was controlled by the 

addition of sodium chloride (NaCl) to set ionic strength at 0.01 M for most 
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experiments. The effect of ionic strength on uranium partitioning was examined 

through a series of experiments that varied the ionic strength from 0.01 M 

through 4 M.  The NaCl was obtained from Spectrum Lot #: RF1546. This was 

done to standardize any effects due to ionic strength on uranium speciation and 

sorption as those effects have been described in the literature as having an effect 

on uranium solution chemistry (Langmuir, 1997). This was necessary as 

otherwise small differences in ionic strength would have resulted from the use of 

variable amounts of HCl and NaOH in pH adjustment of contacting uranium 

solutions. 

Radionuclides 

For reasons that will be detailed in Section 2.5 under solution analysis, 

solutions with a uranium mass concentration fixed by a depleted uranium salt 

and activity fixed by addition of 233U were used for batch experiments.  

Uranium mass was controlled by use of a depleted uranium UO2(NO3)2 

salt that was prepared into an acidified (pH < 2) 1000 ppm working stock solution 

and diluted to reach desired uranium mass concentrations. Uranyl nitrate is 

known to be hygroscopic and before use the uranyl nitrate was baked at 50 °C 

for greater than 48 hours and was stored in a dessicator thereafter. 

Uranium activity in solution was controlled by addition of spikes of a 

concentrated acidified 233U solution prepared from a UO2Cl2 solid. Activity and 

233U concentration was verified by liquid scintillation counting (LSC) comparison 

to a known NIST traceable standard from Eckert & Ziegler. Ultima GOLD 

biodegradable organic scintillant from PerkinElmer with never less than a 10:1 
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scintillant to solution ratio was used as the scintillation cocktail for all LSC 

analysis. 

Chemical Reagents 

Sodium hydroxide (NaOH) and hydrochloric acid (HCl) were used for pH 

adjustment for all experiments..  Solutions of 0.01 M, 0.1 M and 1 M of each were 

prepared and used to adjust solution pH to the desired point and accounting for 

the dilution on the uranium mass. 

Sodium tetraborate decahydrate (Borax) was used as a buffer for 

experiments with pH between 7 and 10 as dissociation of dissolved bicarbonate 

was resulting in changing pH over the experimental equilibration time.  

2.3  Characterization of Graphite 

Surface Area 

Graphite surface area was characterized by using a multi-point adaptation 

of the the Brunauer-Emmett-Teller (BET, 1938)  method of N2 adsorption onto a 

surface using a Quantachrome NOVA 1100 high-speed gas sorption analyzer. 

Samples were thermally degassed at 300° C under a vacuum for greater than 48 

hours to purge any initial adsorbed gas on the analyte surface. Multiple replicates 

of graphite were run with a calibrated silicon nitride standard (Specific Surface 

Area = 0.507 ± 0.085 m2/g) from Quantachrome (Cat #: 2003 - Lot #: 2909) in 

order to determine the experimental error.  Additionally, repeated measurements 

were taken of the same Quantachrome sample to measure machine precision. 
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Proton Exchange Capacity 

 Proton Exchange Capacity (PEC) of the graphite was measured by 

potentiometric titration in a well-mixed DI solution. A titration system from 

Metrohm USA consisting of a Titrino 799, a 685 Dosimat and an 801 Magnetic 

stirrer was used to dose 50 μl increments of 0.1 M NaOH and HCl into a graphite 

containing solution while measuring the change in pH. This was performed in a 

0.01 M NaCl solution that had been purged with argon before titration. PEC was 

measured by comparing differences between theoretical changes in pH and 

measured changes in pH to quantitatively measure the number of hydrogen ions 

that are sorbed to the graphite surface (ie. The proton exchange capacity). 

Multiple replicates were used to estimate experimental uncertainty and titrations 

ranged across the entire pH of interest for these experiments (pH = 2-9).  

Point of Zero Charge 

The pH point of zero charge (PZC), the point at which below a surface has 

a net positive charge solution dependant charge and above has a negative 

solution dependant charge (Essington, 2003), was also measured using the 

same titration system as described above. As material surface charge is the 

product of both pH dependent and intrinsic surface factors, multiple 

potentiometric titrations of a material under different conditions of ionic strength 

will cross at the PZC due to variance in pH dependent surface charge with to 

ionic strength and no variance in the instrinsic surface charge (Essington, 2004). 

Titrations were done with 0.01 M NaOH and HCl solution into 0.01 M and 0.1 M 
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NaCl graphite containing solutions that had been well-purged with argon before 

titration.  

Phase and Contaminant Analysis 

 A Bruker D8 Advance Powder X-Ray Diffraction (XRD) analyzer was used 

to characterize the experimental graphite used. XRD analysis consists of 

measuring the intensity of an X-ray beam that has diffracted off the sample. This 

intensity is then plotted as signal (in the form of counts) as a function of the 

incident X-ray angle. This diffraction pattern of X-ray strength vs. incident X-ray 

angle then shows information about the solid structure. Using Bruker’s Topas 

software and EVA database, the diffraction data was analyzed to characterize 

the graphite and the potential existence of other contaminants. 

Functionalization Analysis 

 Information from the literature suggests that graphite oxide and other 

compounds formed by the functionalization of graphite, which refers to the 

addition of chemical functional groups such as carboxyls, ether, alcohols, etc. to 

a surface, are strongly sorbing species that could potentially dominate the effects 

of graphite sorption. This functionalization increases the sorption behavior by 

providing additional surface sites for charge exchange which is the mechanism of 

both surface complexation and electrostatic adsorption as discussed in Section 

1.2.1. Infrared spectroscopy using KBr pellet pressing was used to examine the 

graphite for any surface functional groups that might be the result of oxidation 

reactions on the graphite surface or otherwise have activated the graphite. This 
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information was compared to data available from the literature on the intrinsic IR 

spectra of graphite and graphite oxide. 

2.4 Experimental Method 

2.4.1  Batch Sorption 

Batch sorption techniques were employed both to measure sorption 

kinetics and equilibrium partitioning of uranium and graphite but also to load 

graphite with uranium for use in multi-step desorption studies. Uranium tracer 

solutions of varied mass (50 ppb – 50 ppm) were loaded in an approximately 

10:1 solution to solid mass ratio in polypropylene (PP) or fluorinated ethylene 

propylene (FEP) centrifuge tubes. 15 ml PP tubes were used for all experiments 

except when solution pH was between 6-8. At these pH’s, 10 ml FEP containers 

were found to be necessary to reduce the strong sorption to the PP containers 

that occurred between those pH’s.  These loaded tubes were then placed onto 

hematology mixers and allowed to mix. Information on a period of time to permit 

sufficient equilibration was determined by repeated sampling of graphite 

contacting with uranium until changes in solution uranium concentration were 

undetectable. To study the time-dependence of sorption, both repeated sampling 

of batch containers and fast-flow column experiments were performed. Pictures 

of FEP tubes equilibrating on a hematology mixer are included on the following 

page as Figure 2.1. A picture of the PP centrifuge tubes used as well as sample 

Flex column of the type used in the column experiments described in 2.6 are 

shown as Figure 2.2.  
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Figure 2.1: Uranium contacting with graphite on a hematology mixer in FEP 

containers 

 

 

 

Figure 2.2: PP Centrifuge Tube with Flex Column described in Section 2.6 
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Changing CO2 Partial Pressure 

As discussed in section 1.2.3, many authors have previously noted the 

apparent suppressive effect of uranyl carbonate species on uranium sorption 

(Waite et al., 1994, Ackay, H. 1998, Prikryl & Pabalan 1999). This effect was 

investigated by changing relevant atmospheric concentrations of CO2 using an 

MBRAUN glovebox and then performing batch experiments with water well-

equilibrated to the local atmosphere. Experiments to measure sorption under an 

inert argon atmosphere with [CO2] < 1 ppm were performed to confirm the 

inhibitory effect of dissolved carbonate and uranyl carbonate species on sorption. 

These experiments were performed in the alkaline region using a Borax buffer to 

keep pH constant. Additionally, experiments were performed under an 

atmosphere of >99.99% CO2. These experiments were performed at neutral pH 

to attempt to suppress sorption and at acidic pH to aid in drawing conclusions 

about the sorbing species. 

Changing Ionic Strength 

The effects of ionic strength were examined by changing solution 

concentrations of NaCl before uranium equilibration with graphite occurred. 

Three experiments were performed with ionic strength equal to 0.01 molal, 0.05 

molal and 0.1 molal for which no additional preparatory steps were required 

beyond increasing the amount of dissolved NaCl in solution. Two additional 

experiments were performed in 1 and 4 molal NaCl to examine the effects of a 

concentrated salt solution on sorption. As non-ideal effects in solution make the 

analysis of pH impossible using a standard non-equilibrated glass probe and pH 
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meter, a different method was necessary to ensure that pH was measured and 

adjusted properly. The Metrohm titration system described above for the PEC 

measurements was used to standardize the glass electrode used for pH 

measurement by the titration of known amounts of standardized base and acid in 

solutions of elevated ionic strength. These results were inputted into the GLass 

Electrode Evaluation (GLEE) program developed and distributed by Hyperquad. 

This allowed the calculation of theoretical Nernstian slope and intercept in the 

elevated salt conditions which are shown below in Table 2.1. 

 

Salt Concentration (NaCl) Nernstian Slope Nernstian Intercept 

1 molal 59.3 ± 0.4 mV / pH - 442.8 ± 4 mV 

4 molal 60.0 ± 0.4 mV / pH - 461.9 ± 3 mV 

 

Table 2.1: Nernstian slope calculations for elevated salt concentrations 

 

After the electrode was calibrated, the conductance was directly read off 

the solution in mV and pH was solved for using the data given in the table above. 

2.4.2  Multiple Step Batch Desorption 

Graphite was allowed to come to contact with the uranium in solution for a 

period of time sufficient to permit equilibration. The samples were centrifuged to 

separate the graphite from the supernatant which was then decanted. Ionic 

strength controlled and pH tuned uranium-free solution was added to the graphite 

which was then shaken and allowed to re-equilibrate with the solution. Aliquots 

were taken after a period of time identical to the initial equilibration time and 
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uranium concentration in solution was measured. This procedure continued until 

the activity in solution was no longer measureable by LSC. 

2.5  Solution/Concentration Analysis 

Initial experiments to measure uranium concentration in solution used 

Inductively Coupled Plasma – Atomic Emission Spectroscopy (ICP-AES) 

techniques to measure initial and final uranium solution concentration directly. As 

the ICP-AES used was most sensitive to concentrations in the 25-200 ppm 

region, initial scoping experiments focused on this area. Results indicated that 

this concentration region was well above any equilibrium point for 

graphite/uranium sorption and that high experimental error due to the dilutions 

required for this technique was inhibiting proper analysis of the data and that a 

new technique was necessary. As the area of experimental interest appeared to 

lie in the 500 ppb to 50 ppm region, an analytical technique using a TriCarb LSC 

was devised. This required controlling uranium mass in solution by addition of 

concentrated DU spikes and activity by addition of concentrated 233U spikes as 

described in the radionuclide section. Aliquots were taken after solutions were pH 

adjusted and prepared immediately before contacting with graphite and after a 

five-day equilibration time (unless otherwise indicated) with the solution in 

contact with graphite. Sorption to both the graphite and container was analyzed 

by measuring the change in solution activity via LSC. Samples were counted for 

at least 30 minutes or until a 2% error in experimental counts was achieved. 

Aliquots were sampled from each sample container and the final activity was 
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compared to the initial activity to determine the percentage of uranium in solution 

that sorbed for each experiment.  

2.6 Column Studies 

 Initial column studies were performed in Synthware chromatography 

columns with an internal diameter of 13.4 mm and a reservoir capacity of 250 ml. 

Spikes of tritium, as a conservative tracer, were injected along with spikes of 

233U, as a reactive tracer, to assess fast-acting kinetics and compare the results 

for retardation generated in batch studies to those generated in column studies. 

Full elution time for the tritium injected in these columns was approximately 150 

seconds. 

 Column studies were also performed to assess the accuracy of the 

multisite non-equilibrium reactive transport model developed. The columns were 

chromatography Flex Columns from KONTES. For kinetics reasons discussed in 

Section 3.3, a small volume column was used and can be seen adjacent to the 

purple-capped PP centrifuge tube in Figure 2.2. The column was connected to an 

NE-300 Syringe pump to permit a constant injection of solution. The syringe 

pump was used as initial experiments used gravity fed column flow but the flow 

rate, even in a small diameter column, was still too fast to adequately measure 

retardation in the uranium flow. Tritium was used as both a conservative tracer 

during the validation experiment and was used to measure the effective 

dispersion coefficient (D) of the column. Conclusions about the retardation 

behavior of uranium were then generated by comparison to the tritium flow data. 

A picture of the experimental set-up is shown as Figure 4.4. 
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2.7 Computer Assisted Methods 

CXTFIT 

 CXTFIT is a code included in the STudio of ANalytial MODels 

(STANMOD) public domain software originally developed by researchers at the 

Colorado School of Mines. It solves the differential convection-dispersion 

equation shown below in equation 2.1. This version neglects both production and 

decay. As the half-life of uranium is extremely long relative to our modeling time 

period, decay was neglected as a conservative assumption. Production was 

neglected due to the ability to superimpose transportation curves with each other. 

 

 

Where, 
Jw = Solution Flux 
D = Dispersion Coefficient, L

2
/T 

ρ = dry bulk density of graphite in column M/L
3
 

θ  = volumetric water content L
3
/L

3
 

X= distance, L 
t = Time, T 
cr = resident concentration, M/L

3
 

s = concentration sorbed phase, M/M 
Note, s = Kdcr 

 

If steady-state flow is assumed Equation 2.1 reduces to Equation 2.2 

 

Where, 
R = retardation factor, dimensionless 
v = pore-water velocity, L/T 

 

 As differences in retardation for heavy metals have been noted when 

comparing results generated from batch studies and column studies, this 

program can be used to examine the validity of applying batch results to column 
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results. In addition, the eventual model proposed for reactive transport of 

uranium through a graphite matrix was validated by predicting the results from 

column experiments detailed above and then comparing the predicted results to 

the actual measured results. 
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CHAPTER 3 

RESULTS 

3.1  Characterization of Graphite 

3.1.1 Physical Properties 

Phase 

 The Alfa Aesar graphite used experimentally was characterized without 

difficulty by Powder X-Ray Diffraction. Results of the XRD analysis are shown 

below in Figure 3.1.  

 

 
 

Figure 3.1: Powder X-ray Diffraction Analysis of experimental graphite with 
Topas comparison 

 
 

 Bruker’s Topas software with the EVA database was used to compare the 

experimental results with known XRD spectra for graphite. (The theoretical 

pattern is the red color shown in Figure 3.1 and the blue color underneath is the 

experimental data. The gray line underneath indicates the differences between 
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the theoretical expected pattern and the measured pattern.) As discussed in 

Section 2.3, the presence of other graphite species could potentially prejudice 

batch sorption results in an unpredictable fashion. The results indicate pure 

phase graphite to the detection limits of the Bruker XRD device used in this 

analysis and are a strong indication that the graphite used was monophasic.  

Functionalization 

Surface functionalization of the experimental graphite was examined using 

infrared spectroscopy as outlined in Section 2.3. Graphite has been previously 

studied using this technique and data in the literature is available on the intrinsic 

infrared spectra of graphite. Results of the IR analysis are shown below in Figure 

3.2.  

 

 
 

Figure 3.2: Infrared Spectra of Experimental Graphite 
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The IR results (wavenumbers of stretches) are shown below compared to 

expected data from the literature (Friedel & Carlson, 1971) in Table 3.1. 

 

Expected Peaks, cm-1 Measured Peaks, cm-1 

1587 1631 

1362 1384 

830 (weak) 817 

2200 (weak) 2362 

N/A 3477 

N/A 2923 

 
Table 3.1: Experimental IR peak comparison to literature data 

 
 

 For the four expected peaks from a spectra of pure graphite, there is good 

experimental agreement with expected results. There are also two additional 

peaks in the experimental spectra that were investigated. The stretch at a 

wavenumber of 3477 has been identified in the literature as a combination peak 

of hydroxyl groups on the graphite surface and water molecules that are most 

likely from the air (Mermoux et al., 1991). The weakest stretch that could be 

reasonably isolated occurred at a wavenumber of 2923 and could potentially be 

indicative of methyl group formation on the graphite surface as C-H groups would 

be expected at an approximate wavenumber of 3000 (Stuart, 2004). The source 

of these methyl groups remains unknown. Implications of this IR structure of 

graphite with regards to surface chemistry and complexation models will be 

discussed in Section 4.1. 

Surface Area 

The experimental graphite was characterized by BET Surface Analysis as 

well with the results being shown below in Table 3.2. The results from the 
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Quantachrome Silicon Nitride standard (Nominal SSA = 0.507 ± 0.085 m2/g) run 

to assess experimental error are also shown.  

 

 Specific Surface Area (m2/g) 

 Graphite Quantachrome standard 

Sample Run 1 0.5310 0.5204 

Sample Run 2 0.5335 0.5341 

Sample Run 3 0.5987 0.5208 

 
Table 3.2: Specific Surface Area measurements of Graphite and Quantachrome 

Standard 
 
 

To quantify repeatability of the experiment the same Quantachrome 

Standard was run consecutively five times to determine experimental consistency 

and this data is shown below in Table 3.3. 

 

Sample Run Specific Surface Area (m2/g) 

#1 0.5204 

#2 0.5057 

#3 0.3668 

#4 0.4945 

#5 0.5225 

 
Table 3.3: Repeated Surface Area Measurements of Same Quantachrome 

Standard 
 

The average of the specific surface area measurements taken of the 

experimental graphite was 0.5544 ± 0.0274 m2/g with an error obtained from 

comparing the measured results from the Quantachrome standard to its 

calibrated surface area.  
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3.1.2  Electronic Properties 
 
Proton Exchange Capacity 

The PEC of the experimental graphite was measured by potentiometric 

titration as described in section 2.3. A typical titration is shown below in Figure 

3.3. The difference used to calculate the PEC is most pronounced on the upward 

titration on the right side of Figure 3.3. The shape of the curve does not indicate 

any discontinuities over the titration range indicating that PEC stays relatively 

constant with changing pH. The largest experimental variability was noted in the 

near-neutral region due to the sensitivity of the measuring system to small 

changes in pH so the average PEC was calculated in the pH region between 2.5 

and 4.0 with a result of 0.25 ± 0.15 millieq /100 g of graphite. Combined with the 

specific surface area measurements of graphite this yields a specific exchange of 

451 ± 91 μmoles H+ / m2 of graphite surface.  



39 
 

 

 
Figure 3.3: Sample Potentiometric titration of graphite (Color change indicates change from acid to base addition)
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Point of Zero Charge   

The net results of titrations performed to establish the point of zero surface 

charge for the graphite are shown below in Figure 3.4.  

 

 

 
Figure 3.4: Titrations of graphite under different ionic strength 
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surface charge concentrations are also affected. The literature has reported data 

for the PZC of graphite with a significant variance ranging from acidic to alkaline 

values for graphite electrodes and treated graphite powders respectively (Golub 

et al., 1989, Sunwoo et al., 2000). This data is in agreement with the range of 

PZC values discussed in the literature and it appears that the PZC of graphite is 

both sensitive to the treatment method of the graphite as well as the electrolyte 

composition (Golub et al., 1989).    

3.2  Equilibrium Uranium Sorption 
 
Initial Kinetics Results 

The first experiments performed were designed to determine an 

appropriate contacting time for the equilibrium uranium/graphite sorption batch 

experiments. The first sorption experiment was performed at pH = 5 and 0.5, 5, 

25 and 50 ppm uranium solution concentrations. Samples were taken at a period 

starting after five days equilibration and continuing to 60 days of equilibration. 

Initial and final results are shown below in Table 3.4.    

 

 Mass % Uranium in Solution Sorbed 

Sample Conc. (ppm) 5 Day 60 Day 

50 6.74% ± 1.1% 6.97% ± 2.5% 

25 10.4% ± 2.5% 11.8% ± 2.6% 

5 35.5% ± 5.4% 42.1% ± 4.8% 

0.5 82.0% ± 5.0% 85.1% ± 3.3%  

 
Table 3.4: Kinetics data for change in uranium solution concentration over time 

  

All changes over the additional contacting time were within the margins of 

error and intermediate sampling showed no deviations. As a result, for all batch 
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experiments where an equilibrium measurement was desired contacting time 

was fixed to at least 5 days.  

Equilibrium Uranium Sorption 

Scoping work was begun at mass levels of uranium as high as 1000 ppm 

but preliminary results suggested that the range of interest for uranium sorption 

was significantly lower. The lowest mass concentration used at all pH points for 

uranium sorption was 500 ppb uranium ([U] = 2.1 X 10-6 M). This point was 

chosen to represent an elevated uranium concentration that would be high for a 

groundwater plume but within the expected region for a TRISO fuel compact. 

Batch equilibration experiments were performed systematically at mass levels as 

high as 50 ppm to represent an upper boundary of a uranium plume.  A graph of 

uranium sorption to graphite as a function of pH with [U] = 500 ppb under 

atmospheric CO2 and ionic strength = 0.01 M NaCl is shown below in Figure 3.5.   
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Figure 3.5: Uranium sorption (Initial [U] = 500 ppb) to graphite as a function of pH 

Ionic Strength = 0.01 M, pCO2 = 390 ppm  
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variation with pH which is shown below in Figure 3.6.  
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Figure 3.6: Variation in Kd with pH (Initial [U] = 500ppb) 
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pH Kd (ml/g) Retardation factor 

3.00 1.5 ± 0.13 16.3 ± 2.32 

4.00 8.2 ± 0.68 83.3 ± 7.79 

4.40 15.0 ± 1.39 151.3 ± 14.91 

5.00 51.4 ± 0.54 515.3 ± 6.40 

6.00 69.3 ± 4.98 694.1 ± 50.78 

7.30 126.4 ± 7.03 1264.6 ± 71.29 

8.17 11.2 ± 1.18 112.8 ± 12.76 

8.67 4.9 ± 0.45 49.9 ± 5.48 

9.27 2.5 ± 0.25 25.8 ± 3.47 

 

Table 3.5: Sample retardation coefficients for aqueous uranium in graphite 

 

Effects of CO2 Partial Pressure on Sorption 

With pH held constant at approximately 9.3 by a Borax buffer as described 

in Section 2.2, uranium sorption to graphite was evaluated under different partial 

pressures of CO2 ranging from less than 1 ppm to a saturated CO2 atmosphere. 

The results from the experiments are shown below in Table 3.6. 

 

[CO2], ppm pH Mass % Sorbed Kd (ml/g) 

Atmospheric 9.27 21.0% ± 2.27% 2.48 ± 0.25 

< 1 9.30 36.7% ± 2.11% 5.48 ± 0.28 

~1,000,000 9.28 ~0% N/A 

~1,000,000 7.5 ~0% N/A 

  

Table 3.6: pH Results for sorption experiments under varying CO2 
 

  

The results from experiments performed under acidic conditions with 

normal acid/base pH adjustment under varying partial pressures of CO2 are 

shown below in Table 3.7. 
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[CO2], ppm pH Mass % Sorbed Kd (ml/g) 

Atmospheric 4.85 75.3% ± 3.03% 39.3 ± 4.9 

~1,000,000 4.75 28.78% ± 6.59% 4.43 ± 1.6 

 

Table 3.7: pH Results for sorption experiments under varying CO2 

 

 

Implications arising from these results will be discussed in Section 4. 

Effects of Ionic Strength on Uranium Sorption to Graphite 

The experimental methodology used for the elevated salt concentrations 

([NaCl] > 0.1 molal) was described in Section 2. The effect of increased ionic 

strength through the addition of NaCl is shown below in Table 3.8. These results 

all used a uranium concentration of 2.1 μmolal under atmospheric CO2.  

 

pH [NaCl] (molal) Kd (ml/g) 

4.03 0.01 8.23 ± 0.08 

4.06 0.05 8.58 ± 0.04 

4.07 0.1 7.73 ± 0.05 

5.07 0.01  51.43 ± 6.84 

5.14 1 58.74 ± 15.5 

5.16 4 59.84 ± 19.5 

 

Table 3.8: Kd variation with ionic strength 

 

Effect of Uranium metal concentration on sorption 

Uranium metal concentration in solution strongly affects equilibrium 

uranium partitioning to graphite (as shown by variance in Kd). Sorption isotherms 

are shown below in Figure 3.7. 
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Figure 3.7: Equilibrium sorption isotherms for uranium sorption to graphite
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These data indicate a strong relationship between equilibrium uranium 

solution concentration and concentration of uranium on the graphite surface. It 

was also noted that a precipitate was formed at pH 6 for both the 25 and 50 ppm 

uranium solutions used in these experiments. This precipitate is why the pH = 6 

curve shown above is not identical to the other sorption isotherms shown. 

Speciation results from EQ 3/6 suggest that at this mass concentration the 

equilibrium solid species precipitating should be schoepite 

[(UO2)4O(OH)6·6(H2O)]. This precipitate was analyzed by powder XRD. The 

results of the XRD analysis are shown below in Figure 3.8.  

 

 
 

Figure 3.8: 50 ppm pH = 6 Precipitate XRD Analysis 
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participating in aqueous reactions above a certain uranium concentration. 

Additionally, it indicates that in the experimental time frame used, kinetic effects 

are more important for solid precipitation from solution than the calculated results 

at equilibrium. For the neutral and alkaline pH region, mass concentrations of 

uranium in solution were reduced to avoid the formation of precipitates. 

 The sorption isotherms appear to follow L-shaped isotherms as described 

in Section 1.2.2. The two most common adsorption isotherms used for evaluating 

L-shaped sorption isotherms are the Langmuir isotherm and the Freundlich 

isotherm. The equations are shown below as Equations 3.1 and 3.2, respectively. 

 

 

Where,  
q = Mass uranium sorbed per mass graphite, µg/g 
ceq = Conc. of solution after equilibration, µg/ml 
KL = Empirical Langmuir parameter, ml/g 
b = Empirical parameter, usually indicated as adsorption maxima, µg/g 
 

 

 

Where,  
q = Mass uranium sorbed per mass graphite, µg/g 
ceq = Conc. of solution after equilibration, µg/ml 
KF = Empirical Freundlich parameter, ml/g 
N  = Empirical Freundlich parameter, dimensionless 

 

Both Langmuir and Freundlich isotherms were evaluated for their fit to the 

experimental data using pH = 5 data as a representative data set. These data are 

shown below in Table 3.9. (Note: This requires several trivial linear 

transformations. Details can be found in Essington, 2003) 
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Initial Uranium Conc. (ppm) Eq. Uranium Conc. (ppm) q (μg/g) 

0.1 0.0033 0.83 

0.5 0.09 4.48 

5 3.23 16.13 

25 22.40 24.27 

50 46.63 30.79 

 
Table 3.9: pH = 5 Data used for isotherm fitting 

 

The results of the Langmuir fit and a plot of the statistical residuals are 

shown below in Figures 3.9 and 3.10, respectively. There is a high correlation 

coefficient between the transformed Langmuir equation and the experimental 

data at pH = 5 with an R2 value of 0.984. This is a high R2 value indicating that a 

Langmuir fit does describe the data well. However, the plot of the statistical 

residuals for the Langmuir fit shows a strong curvature indicating that while there 

is a high R2 value it is perhaps not the best method of describing the 

experimental data. The Langmuir method also requires certain assumptions 

about sorption behavior to be justified which are not necessarily so in this case. 

This will be discussed in further detail in Section 4. 

 A Freundlich isotherm was fit to the data next. This fit was also successful 

in describing the data with an R2 value of 0.98. In addition, the residuals plot of 

the Freundlich transformed data shows residuals that are evenly spaced about 

the prediction equation without the marked increase and decrease apparent in 

the Langmuir data. This indicates that a Freundlich fit, shown as Equation 3.3, is 

appropriate for the data.  

 

 
 
Where, terms are as defined above 
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Figure 3.9: Langmuir fit of sorption data for pH = 5 with regression equation (slope = 1/b, intercept = 1/bKL) 

y = 0.032x + 0.060
R² = 0.984

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40 45 50C
o

n
c.

 E
q

. /
 q

 (
g/

m
l)

Conc. Eq (μg/ml)



52 
 

 

 
Figure 3.10: Residuals for Langmuir fit of Sorption data at pH = 5 
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Figure 3.11: Freundlich Fit to pH = 5 sorption data (slope = N, intercept = KF) 
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Figure 3.12: Statistical Residuals of Freundlich fit to data
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3.3  Kinetics Results 

Batch Kinetics Results 

 The initial kinetics experiments that were performed to measure an 

appropriate equilibration time for uranium/graphite mixing were then performed 

with a shorter initial sampling interval to examine the linearity of the kinetic phase 

of uranium sorption to graphite. Data from these experiments are shown below 

as Figure 3.13. 

 

 

 
Figure 3.13: Sorption data with an initial sampling time of one hour, [U] = 500 

ppb, pH = 5 
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The rapid sorption during the first hour of contacting necessitated 

experiments with even shorter sampling intervals in the minute range. After 

vigorous shaking with a solution contacting time of one minute, 49.9% ± 5.5% of 

the aqueous uranium was observed to be sorbed to the graphite. There is no 

significant difference between this value and the observed value shown above for 

sorption after one hour of contact time of 51.1% ± 4.8%. This indicates that at the 

500 ppb level at pH = 5 approximately 50% of the uranium in solution 

immediately sorbs to the graphite. Batch results indicate that 82.0% ± 4.96% of 

the uranium in solution should sorb at this mass and pH. This indicates a strong 

non-linearity in kinetic response. After, the large initial fraction of uranium sorbs, 

approximately 72 hours were required before further changes in solution uranium 

concentration could not be noticed. 

Fast Flow Column Experiments 

Fast flow column experiments were performed with expected uranium 

contact times below that necessary for full equilibration between graphite and 

uranium in solution. The initial experiment injected 2 μg of 233U along with an 

equivalent activity of tritium. Results are shown below in Figure 3.14. 
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Figure 3.14: Initial Fast Flow Column Experiment (pH = 6.5) 2 μg U-233 
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Figure 3.15: Fast Flow Column Experiment (pH = 6.5), 16 μg U-233 
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Figure 3.16: Batch Desorption Results for pH = 5 samples 

   

The results indicate incomplete recovery of uranium in all the initial mass 
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Initial [U] (ppm) Percentage of U Desorbed Mass U Remaining Sorbed (μg) 

50 79.1% ± 8.1% 6.89 ± 0.55 

25 64.7% ± 6.4% 7.96 ± 0.51 

5 44.3% ± 7.8% 9.59 ± 0.75 

0.5 12.0% ± 3.0% 3.14 ± 0.09 

 

Table 3.10: Comparison of Desorbed U with Remaining Sorbed U Mass 

after Batch Desorption 

 

 These data indicate that, with the exception of the 500 ppb uranium level 

where relatively very little desorbed at all, there is good agreement to the mass of 

uranium that remains sorbed after batch desorption experiments were performed.  
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CHAPTER 4 

 DISCUSSION  

4.1 Graphite Properties and Surface Chemistry 

Electronic Structure 

The graphite used experimentally in this work shows the ability to 

exchange charge in solution with a value of 0.25 ± 0.15 millieq /100 g of graphite. 

This value is shown compared to several other geologic materials of interest, as 

well as activated carbon, below in Table 4.1 along with a selected comparison of 

PZC for graphite as well (Activated carbon data from Kandah et al., 2006, 

mineral and resin data from Langmuir, 1997). 

 

Material Exchange Capacity (meq/100 g) 

Graphite 0.25 ± 0.15 

Activated Carbon 154.5 - 191.2  

Kaolinite 3 - 15 

Zeolites 100-400 

Synthetic Exchange Resins 290 – 1020 

 

Table 4.1: Exchange Capacity Comparison  

 

 These results suggest that the graphite examined has a lower exchange 

capacity than most geological media as well as typical synthetic exchange resins. 

This is to be expected as in natural media such as soils the exchange capacity of 

the physical soil can be dominated by the presence of organic matter which has 

a significantly higher exchange capacity (Essington, 2003) and a resin 

manufactured for an exchange process would be expected to have significantly 
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higher performance than a natural material. The value for PEC reported is also 

several orders of magnitude lower than that reported for activated carbon in the 

literature. This also is not unexpected as activated carbon is known for being 

very reactive in solution and having a large capacity to exchange materials in 

solution (Langmuir, 1997). However, it should also be noted that the exchange 

capacity of the graphite used was higher than the amount of uranium present in 

solution so the exchange capacity does not appear to be a limiting factor in 

sorption. 

 The PZC reported for activated carbon in the literature is variable like that 

of graphite. However, the literature does indicate that during the process of 

activation through chemical and electrical means, the PZC will decrease in value 

(Kandah et al., 2006). In a typical experiment in this work carbon activation 

lowered the PZC from pH = 4.2 to pH = 2.89. As this experimental work has 

shown that the PZC of the graphite used has a value of ~9.3, it is indicative that a 

large degree of activation has not taken place. However, as the IR work to be 

discussed below will indicate, the current graphite does show signs of activation. 

For future work, perhaps a measurement of PZC would be a way to quantify the 

degree of activation in a carbonaceous material. This would be of interest for pre 

and post irradiated nuclear graphite as a way to potentially analyze the activation 

that occurred during burn-up while requiring only small amounts of material for 

measurement.  

 Having established that graphite has the ability to both exchange charge 

in solution and that it will adsorb ions in solution, the question then becomes 
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what is the nature of this charge exchange? This requires further analysis of the 

physical characteristics and structure of the graphite 

Physical Structure 

The surface area measurements indicate that the graphite used has a 

lower surface area than many common geologic media as shown in Table 4.2 

below. 

Material Specific Surface Area (m2/g) 

Graphite 0.507 ± 0.027 

Activated Carbon 2217 

Kaolinite 10 - 38 

Montmorillonite 600 – 800 

SiO2 (Quartz) 0.14 

 

Table 4.2: Comparison of Selected Surface Areas (AC data from Kandah et al., 

2006 other data from Langmuir, 1997) 

 

 As can be seen above, the specific surface area measured for the 

experimental graphite is significantly below that of activated carbon and other 

representative geologic media and is more on the order of the crystalline quartz. 

Additionally, it can be noted that the specific surface area of activated carbon is 

four orders of magnitude above that for the experimental graphite. This suggests 

that both the large increase in surface area and exchange capacity during the 

activation process of carbon to activated carbon are at least partly responsible for 

the large increase in sorptive capacity observed between graphite and activated 

carbon.  
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 The IR analysis of graphite has proven the most informative for 

understanding the mechanisms of surface adsorption between uranium in 

solution and the graphite surface. As most surface chemical adsorption reactions 

require the existence of a charge exchanging site and the capacity to exchange 

charge has been determined for the experimental graphite, it would be 

informative to be able to identify the mechanisms of that exchange. In Figure 3.2, 

the IR spectra of the experimental graphite was examined and obtained good 

agreement with the work of Friedel & Carlson in 1971 with the exceptions of 

peaks centered at wavenumbesr of 3477 and 2923. The peak located at a 

wavenumber of 2923 in the analysis is most likely indicative of methyl stretching 

(C-H bonds). It is unknown if these groups contribute to the ability of graphite to 

exchange charge but it is believed that they do not as the ability of a methyl 

group to protonate and deprotonate to exchange charge is limited. The peak 

centered at 3477 has been characterized in the study of graphite oxide as a 

combination peak of free hydroxyl groups (3544 cm-1), hydrogen bonded 

hydroxyl groups on the surface (3400 cm-1 ) and water molecules (3152 cm-1) 

(Janowska et al., 2010). The interpretation of the other four peaks observed and 

previously ascribed to graphite in the literature is summarized in Table 4.3 below. 
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Peak   Interpretation 

1631 Stretching of C=C bonds 

1384 Vibration of C-OH bonds 

817 (weak) Unknown 

2362 (weak) Unknown 

 

Table 4.3: Interpretation of IR Data (Janowska et al., 2010) 

  

It should be noted that while the nature of the two weak peaks at 817 cm-1 

and 2362 cm-1 is unknown they have been previously identified in other IR 

spectra of graphite oxide (Bissessur et al., 2006). This analysis combined with 

later work appears to suggest that the work of Friedel & Carlson on the 

characteristic IR spectra of graphite is incomplete and that what was actually 

measured in that case and in this case as well is a mixture of graphite and 

graphite oxide. As the structure of graphite consists of sp2 hybridized bonds 

between carbon atoms, the characteristic stretch of graphite would appear to be 

the peak located at 1631 cm-1. The peak at 1384 cm-1 is indicative of some C-OH 

bonds which would suggest that the protonation of these sites on the graphite 

surface are the sites of interest with regards to surface reactions. This is not 

unexpected as generally the presence of surface oxygen is the determining 

factor in adsorption (Essington, 2003). It is unknown at this point whether these 

groups are located internal to the structure of graphite or are merely located at 

the edge of each plane of C=C bound atoms.   

 This result of a potentially mixed substance between graphite and graphite 

oxide is informative as XRD analysis of the experimental graphite showed a very 

clear graphite spectrum. Spectra of graphite oxide have been made and they 
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show significant differences when compared to the spectra measured of the 

experimental graphite. This, combined with the initial work by Friedel & Carlson, 

suggests that the existence of these groups is characteristic to natural graphite to 

a certain degree. As the presence of these groups did not result in a shift of the 

XRD spectra, it is believed that they represent a small fraction of the available 

surface. It should be noted that this could also be due to a lack of coordinated far 

ordering in the sample. This possibility cannot be ruled out but it is unlikely that if 

the graphite was significantly oxidized no far ordered graphite oxide would result. 

In either case, this does suggest that a measurement of this functionalization is 

important for an analysis of the sorbing behavior of graphite.  

 Additional implications to the chemistry of the adsorption reaction from the 

above analysis and the PZC measurement will be discussed in the following 

sections. 

4.2  Chemistry of Adsorption 

 One of the primary requirements for being able to calculate stability 

constants for the formation of a surface-ion complex is the identification of the 

sorbing species and surface site. Uranium chemistry is complex in solution and 

the identification of a sorbing species was one of the primary goals of this 

research. The data suggests the existence of more than one sorbing species of 

interest for uranium in solution with graphite. Shown below in Figure 4.1 is an 

overlay of uranium speciation under experimental conditions with the mass 

percentage sorbed. 
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Figure 4.1: Uranium Speciation from EQ3/6 overlaid with mass percentage uranium sorbed 
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 As can be seen in Figure 4.1 above, there is no easy map between any 

one uranium species in solution and sorption behavior with graphite which 

suggests that one solution species does not dominate the sorption behavior. It 

can also be noted that sorption remains at a maximum and continues to occur 

even when the dominant ions in solution change from positive to negative 

species. One hypothesis that has been proposed in the literature to explain 

uranium sorption to other materials is that UO2OH+ and (UO2)2(CO3)OH3
- are the 

species primarily responsible for uranium sorption (Ho & Miller, 1986 and Sagert 

et al., 1989). This idea was proposed as there appears to be good experimental 

agreement between the relative concentrations of UO2OH+ and (UO2)2(CO3)OH3
- 

and the relative mass sorption. While those species may be contributory in 

nature to the sorption, this research suggests that they cannot be the only 

species of interest in solution. Closer examination of sorption data taken at pH = 

3 suggests that that hypothesis cannot explain all the experimental data 

produced in this work. Relevant speciation data are summarized in Table 4.4 

below: 

 

Species Concentration (Molality) Mass % U 

UO2
++ 2.07 X 10-6 98.1043% 

UO2Cl+ 1.90 X 10-8 0.9005% 

UO2OH+ 9.14 X 10-10 0.0433% 

UO2
+ 8.02 X 10-11 0.0038% 

(UO2)2OH+++ 8.75 X 10-12 0.0004% 

 

Table 4.4: Detailed Uranium Speciation at pH = 3 under experimental conditions 

using EQ3/6 
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 As can be seen in the data above for uranium speciation under the 500 

ppb experimental concentration level, UO2
++ is the dominant solution species and 

UO2OH+ represents only 0.0433% of all uranium in solution. When this fact is 

considered with the fact that under these conditions 14.3% of uranium mass in 

solution sorbs to the graphite, it appears unlikely that the presence of this 

species is a determining factor. If that were the case, that such a small solution 

concentration could give rise to that level of sorption, when the concentration of 

UO2OH+ rises to 4.21% by mass at pH = 4 a significantly stronger increase in 

sorption would be expected than merely the rise from 14.3% to 42.1% of uranium 

in solution sorbed. It would seem strange that a 2000% increase in solution 

concentration of the primary sorbing species would yield a not even 300% 

increase in mass sorbed. This suggests that at a minimum the pure UO2
++ ion 

can form a complex with graphite as this species dominates the solution at pH = 

3 and remains in solution at significant levels until pH = 6.5.  

However, this cannot provide a complete understanding of the 

complexation on the graphite surface as strong sorption (~25% U mass in 

solution) can still be seen in the alkaline region (pH = 9) where UO2
++ has a mass 

concentration of 5.82 X 10-18 M (EQ3/6). At this pH, the two dominant uranium 

species in solution are UO2(CO3)3
4- (97.61% U by mass) and UO2(CO3)2

2- (2.37% 

by mass) with no other uranium species having a mass concentration greater 

than 0.001% (EQ3/6). This is indicative of a carbonate species participating in a 

surface complexation reaction with graphite which is an interesting result. 

Previous research has noted that uranium sorption to various media is inhibited 
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when uranyl carbonate species become the dominant solution species (Waite et 

al., 1994, Hyun et al., 2009, Prikryl et al., 1994). This research suggests that for 

graphite this answer is not sufficient to explain behavior at alkaline pH. At pH = 

9.27, the concentration of UO2(CO3)3
4- is 99.41% and UO2(CO3)2

2- is 0.58% of 

uranium in solution and mass sorption of 21.0% of uranium in solution was still 

observed at this point. No other uranium mass species in solution has a mass 

concentration greater than 0.00005%. This would seem to suggest that for 

graphite the presence of dissolved CO3
2- is more important than the presence of 

uranyl carbonate species. It is interesting to note that at approximately the same 

pH where sorption is reduced to negligible in the alkaline region (pH=9.5), the 

concentration of dissolved CO3
2- under atmospheric conditions is almost the 

exact concentration of uranium used in those experiments at 2.1 X 10-6 M. It is 

unknown if this is a coincidence or indicative of some other feature of the system.  

At this point, it would seem reasonable to conclude that the sorbing 

species of interest are, at the minimum, the UO2
2+ ion at acidic pH and some 

form of complexed carbonate ion at alkaline pH. If the UO2
2+ ion is indeed 

complexing with the uranium, that would suggest that a positively charged ion is 

sorbing to a positively charged surface as indicated by the pH being below the 

PZC of 9.3. This suggests that one of the reasons why sorption begins to 

significantly rise after pH = 3 is that, as can be seen from Figure 3.4,  the surface 

is becoming, while still net positively charged, more negatively charged as 

surface sites are deprotonated. If this is true, a surface complex would be formed 

between the UO2
2+ ion in solution and the surface at one or more deprotonated 
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C-OH sites and more of these sites are available as pH approaches the PZC. 

That fact counteracts the decrease in solution concentration of UO2+ that is 

simultaneously occurring. A prospective reaction for this complex is shown below 

as Equation 4.1. 

 

  

 

A bidentate structure is proposed to achieve an overall electrical neutrality 

of the surface complex formed. However, this one complex is not sufficient able 

to explain sorption behavior over the entire experimental region. 

At pH=9.27, the concentration of the free uranyl in solution is 

approximately 2.5 X 10-19 M or approximately 0.00000000012% of the total 

uranium mass in solution (EQ3/6) at a point where 21.0% of the mass in solution 

sorbs. As discussed above, a surface complex between some uranyl carbonate 

species and the graphite surface is proposed. Two potential reactions that would 

explain the data are listed as Equations 4.2 and 4.3. 

 

 

 

 

 

While these complexes would be negatively charged, the available data 

does not have the ability to suggest anything beyond the formation of a uranyl 

carbonate surface complex. There are many potential complexes that could 
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satisfy this requirement and further investigation would have to be performed to 

distinguish between them. 

More evidence for the existence of multiple sites is provided by Sposito 

(1980), in a mathematical derivation for the Freundlich adsorption isotherm as a 

sum of series of sorption sites that are each governed by independent Langmuir 

isotherm equations. A single Langmuir description of the data was rejected 

because of the curved residuals and several assumptions which would be 

mutually exclusive when applied to this data. The Langmuir model requires that 

all adsorption sites are identical and requires that adsorbed species do not 

interact. These assumptions when considered together are unable to account for 

the large initial sorption observed and the slower phase that then occurs and the 

incomplete recovery of sorbed uranium. If sites were homogenous and species 

were not interacting, kinetics would be expected to be identical and identical 

fractions of uranium would be expected to desorb regardless of initial uranium 

concentration in solution. Below is the Freundlich equation that was produced for 

the experimental work at pH = 5 (Equation 3.3). 

 

 

 
In the mathematical derivation of the Freundlich isotherm by Sposito, it 

was shown that the value of the exponent N is a measure of the heterogeneity of 

the site surface. As N varies closer to 0, the number of sites that the sorbing 

species of interest is complexed with increases. The exponent calculated for the 

experimental work in this case has a value of 0.37 which indicates that surface 
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heterogeneity is a good assumption which fits with the experimental data. This 

data provides evidence for a multi-species model complex. 

At this point, the exact complexation reaction that is occurring cannot be 

determined with precision beyond being able to state that this work suggests the 

sorption of the pure UO2
2+ ion and a uranyl carbonate species. Unfortunately, 

detailed knowledge of the complexation reaction is required for application of any 

of the surface complexation models described in Section 1 but conclusions can 

still be reached about the type of model that would be appropriate for this type of 

reaction.  

4.3 Surface Complexation Models 

For the three different types of surface complexation models discussed in 

Section 1, attempts were made to determine which model would fit the 

experimental data most precisely.  

4.3.1 Constant Capacitance Model 

 It is not believed that the development of a CCM would fit the 

experimental results. As the CCM is unequipped to model the formation of 

anything beyond strong inner-sphere complexes, a CCM would have difficulty 

explaining the incomplete desorption and kinetics results shown in Sections 3.3 

and 3.4. In the higher concentration uranium samples measured, the fact that the 

amount kinetically sorbed at equilibrium and available to desorb is significantly 

larger than the immediately sorbed, slow desorbing fraction suggests that a 

model that cannot consider outer-sphere weak complexes is inappropriate. 

Accordingly, this model was not used to evaluate the data. 
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4.3.2 Diffuse Layer Model 

The DLM has several advantages over the CCM for modeling the 

interaction of uranium and graphite with the most important being the ability to 

consider weak electrostatically adsorbed species as well as strong inner-sphere 

complexes. This ability to consider both strong and weak attractions between the 

uranium ions and the graphite surface is believed to be vital to any model 

attempting to explain the experimental results. The electrostatic attraction felt be 

an ion in solution has been expressed as shown in Equation 4.4 (Langmuir, 

1997). 

 

 

Where, 

 = Surface Charge 

 = Ionic Strength of Solution 

 = Electrical potential 

 = Charge of solution electrolyte 

F = Faraday Constant 
R = Ideal Gas Constant 
T = Temperature 

 

 This equation gives the surface charge of the adsorbing species. This 

surface charge is combined with a mass balance of the sorbed species to 

determine intrinsic complexation constants for the formed surface-ion complex. 

As can be noted in Equation 4.5 below, this relationship is proportional to solution 

ionic strength. In the experimental work described in Section 3.2, there was 

found to be no influence on uranium sorption by varying ionic strength under 

below neutral conditions. This indicates that the application of a DLM to explain 

uranium sorption to graphite is inappropriate.  
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4.3.3 Modified Triple Layer Model 

 The modified TLM describes the surface charge by Equation 4.5 below 

(Essington, 2003). 

 

 

Where, 

 = Surface charge contributed from inner-sphere complexes 
= Surface charge from adsorbed hydrogen ions 

 = Surface charge from outer-sphere cation-anion complexation 

 = Charge density of counter-ions 

 

This equation is solved simultaneously along with mass balance equations 

for the surface sites and mass balances for each different contributor to charge. 

The  term above can be determined by the capacitance differences between 

the three layers of charge surrounding the surface. This yields a charge density 

that can be represented by Figure 4.2 below. 
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Figure 4.2: Schematic of system charge variance from surface (Adapted from 

Langmuir, 1997) 

Where, 

Ψ0  = Potential at surface 
Ψos = Potential at outer sphere 
Ψd  = Potential at counter ion layer 
C1  = Integral capacitance of inner-sphere layer 

C2  = Integral capacitance of outer-sphere layer 

 

 By altering the intrinsic capacitance of the inner-sphere and outer-sphere 

layer, this can be fit to experimental data. While it is the most complex of the 

three models explicitly considered in this work, it appears to have the required 

level of complexity to represent the uranium-graphite system. Additionally, it 

would be possible, based on experimental work and solution potential 

measurements, to explicitly calculate the complexation constants. A sample for 

the complexation reaction listed in Equation 4.1 is shown below as Equation 4.6 

(representing the surface sites as initially unprotonated). 
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Where,  

Terms are as defined above in Equation 4.4 

 

 A complete calculation of these stability constants would involve the 

simultaneous solving of multiple differential equations and is beyond the scope of 

this work. However, it is sufficient to say that a TLM would be proper for modeling 

the interaction of uranium and graphite. 

4.4  Transport Model 

 At the beginning of this work, it was stated that in order to understand the 

reactive transport of uranium through a graphite matrix an understanding of 

partitioning and kinetics would have to be obtained. The above described work 

has provided the data necessary to model the uranium-graphite interaction and 

now the only question is that if that is sufficient to allow a predictive model to be 

developed that would be able to establish under what conditions the impact of 

reactive transport in a TRISO fuel element would be important.  

   The first thing that must be noticed is that a simple calculation of the R 

factor based on the equilibrium Kd values measured would be inappropriate. As 

shown in Section 3.3, there is a kinetic factor in the sorption of uranium to 

graphite. In those results, there is a fraction of uranium in solution that sorbs 

immediately to the graphite and then a fraction that sorbs in a manner such that 

kinetics cannot be discounted. When this is combined with the fast flow column 

experiments, also shown in Section 3.3, it is manifestly obvious that the 
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application of a retardation coefficient calculated from an equilibrium Kd would be 

highly inappropriate to modeling uranium transport through graphite.  

 Next attention must be drawn to the incomplete recovery in the fast flow 

column experiments and the incomplete desorption measured in the batch 

desorption experiments. During the batch desorption each sample container had 

approximately 0.8 g of graphite and each (excluding the 500 ppb concentration) 

failed to desorb approximately the same amount of uranium. This seems to 

suggest that a given mass of the experimental graphite has an ability to attach in 

a strong inner-sphere complex a set mass of uranium without regard to total 

solution concentration. Beyond this mass amount, a linear relationship between 

solution concentration and Kd can be derived for uranium concentrations 

sufficient to exceed the amount that can be complexed by the fast sorbing 

fraction. It can also be seen that below this mass amount in solution, a linear 

relationship between solution concentration and Kd can be derived as well. This 

is shown graphically for the pH 5 isotherm below in Figure 4.3.  
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Figure 4.3: Linear Isotherm Fitting for pH = 5 data 
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 Figure 4.3 indicates that for modeling purposes a double linear model 

would be an appropriate assumption to make to use this data. The very high 

values for R2 (0.943 and 0.983, for low and high concentration regions 

respectively) suggest that each linearization is successful at explaining sample 

variation in that region. The information contained in the figure can be used to 

calculate the required number and value of partition coefficients needed for 

modeling purposes. In this case, equilibrium concentrations of uranium greater 

than 3.23 ppm would require the use of both equations. It should be noted at this 

point that no conclusions are made about partitioning and retardation at mass 

concentrations in the concentration region beyond the batch experiments 

performed for this work and further investigation would have to be performed to 

integrate that information into this model. Similarly it must be noted that the linear 

equations above were calculated using the measured equilibrium concentrations 

of uranium in solution and on the graphite which is information that is unlikely to 

be available. However, information about the initial concentration of uranium in 

solution can be obtained by using the degradation information of the TRISO 

particles given in Section 1 and by making assumptions about the behavior of the 

TRISO particles in a repository environment. This would permit the calculation of 

different source terms for uranium release which would permit calculation of 

initial mass concentrations in solution. This calculated initial concentration would 

always be above the equilibrium concentration of uranium which means that it 

could still be used in the linear equations above as a conservative assumption. 
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 However, as was noted in Section 3.3, there is non-linear kinetic 

component of uranium sorption to graphite that cannot be ignored in modeling 

reactive transport of uranium through a graphite matrix since the actual water 

velocity through a TRISO fuel compact after irradiation is presently unknown.  As 

a point of comparison, shown below in Table 4.5 are typical values for pore 

velocity for various geological media as well as the time water moving at that 

speed would require to move half the length (0.395 m) of a TRISO fuel compact. 

 

Material Groundwater Velocity (m/s) Travel Time (hrs) 

Sand 10-2 – 10-6 0.01 – 109 

Basalt 10-2 – 10-7 0.01 – 1010 

Silty Sands 10-5 – 10-7 11 – 1010 

Glacial Till 10-6 – 10-12 1.01 X104 – 1.01 X108 

Shale 10-9 – 10-13 1.01 X 105 – 1.01 X 109 

Dense Igneous Rock 10-10 – 10-14 1.01 X 106 – 1.01 X 1010 

 

Table 4.5: Typical groundwater velocities (From Langmuir, 1997) and calculated 

time to move 395 mm 

  

As the long kinetic component is on the order of hours, it can be noted 

that, depending on flow characteristics through the TRISO element, the kinetic 

component could either be of significance or not. In this work, kinetics had to be 

considered due to the experimental conditions. The non-linearity in the kinetic 

response was dealt with by partitioning the response into an equilibrium fraction 

and a kinetic fraction.  
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 The value of any theory is in its ability to provide verifiable hypotheses 

about physical events. In this case, now that an understanding of the 

uranium/graphite sorption system has been experimentally reached, the question 

must be: Can an accurate prediction of uranium transport behavior through a 

graphite matrix be made? The theoretical understanding was tested by inputting 

theoretical and experimentally generated parameters into CXTFIT to generate a 

theoretical model. A solution concentration of 10 ppm was selected as no 

experimental data had been taken at that specific point and the mass 

concentration appears to be above the limits of the equilibrium fraction as 

discussed below. The general details of the model used are as follows: 

 Transport behavior has an equilibrium fraction and a kinetic fraction 

 The equilibrium fraction has a significantly higher partition coefficient than 

the kinetic fraction and the Kd is modeled by the low mass relationship 

between solution/solid concentration shown above 

 The equilibrium fraction must be completely filled before the kinetic 

fraction becomes involved in partitioning. 

 The kinetic fraction was modeled by using a first-order rate constant 

equivalent to α = 0.01925 hr-1 (Calculated from high mass partitioning half-

time of 36 hours) 

 The kinetic fraction has a lower partition coefficient that can be modeled 

by the high mass relationship between solution/solid concentration shown 

above. 
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 The equilibrium fraction maximum loading for the experimental graphite 

used corresponds to 1.7 μg U / g graphite (From kinetics results).  

The 10 ppm solution was then flowed through a Flex Column from KONTES 

as described in Section 2.6. The specific details of the column are shown in 

Table 4.6 below. 

 

Dispersion Coefficient 0.903 cm2/hr 

Column Area 0.3845 cm2 

Elution Rate 0.25 cm3 / min 

Column Length 9 cm 

Graphite Mass 2.27 g 

Graphite Bulk Density 1.794 g/cm3 

Porosity 0.365 

 

Table 4.6: Experimental conditions for model validation 

 

A picture of the experimental set-up is shown as Figure 4.4 below. A 

graph of the model predictions is shown after as Figure 4.5 (Note: CXTFIT 

results for uranium are sum of two computational calculations due to program 

restrictions). 
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Figure 4.4: Model Validation Experiment  
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Figure 4.5: CXTFIT Predicted Response using the reactive transport model developed
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 The CXTFIT results reflect the fact that a fraction of the uranium 

immediately partitions to the graphite surface. This fraction, according to the 

retardation factor calculated, will be delayed beyond the time scale of the 

experiment. It should be noted at this point that the interactions between low 

concentration uranium solutions and graphite have been modeled as an 

equilibrium process on the basis of the fast kinetics in this region. It is possible 

that this is an inaccurate assumption with evidence being the incomplete 

recovery of uranium during desorption experiments. This is evidence, at 

minimum, of hysteresis in the forward and backward partitioning reactions 

between uranium and graphite in solution and potential evidence of irreversibility 

in the uranium/graphite partitioning reaction. In this case, it appears that the 

backward reaction is significantly slower than the forward reaction (which is 

effectively immediate). However, the time scale that would be required to 

investigate the influence of this hysteresis renders it experimentally unfeasible for 

this work. For the validation study performed, it is irrelevant as the time scale is 

insufficient to see an increase in eluted uranium concentration that could be 

attributed to the breakthrough of the retarded low-mass fraction. In any case, the 

assumption of equilibrium instead of hysteresis or irreversibility provides 

additional conservatism to the model.  

 Additionally, it should be noted that the shape of both the predicted 

uranium and tritium breakthrough curves do not follow a traditional sigmoid curve 

that would be expected for breakthrough of either a reactive or non-reactive 

tracer. The shape does in fact more closely resemble a limiting systematic case 
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where mechanical dispersion is of much higher significance than fluid flow 

velocity. This can be explained as the dispersion coefficient used in the model 

implementation was obtained through a separate experiment where tritium alone 

was run through a column and the effective dispersion coefficient was calculated 

from that using CXTFIT and the measured breakthrough curve. This effective 

dispersion coefficient also includes non-ideal deviations from the perfectly ideal 

case of a parabolic flow profile within it. In this case, it seems likely that the 

existence of a boundary layer of significant thickness, relative to the area of flow, 

has resulted in an apparent dispersion that is larger than what should be 

expected leading to the non-traditional breakthrough shape. In this case, an 

estimate of the non-ideality can be obtained by using Equation 4.7 to generate a 

theoretical estimated dispersion coefficient and comparing that to the 

experimentally calculated coefficient. 

 

Where, 
D = Mechanical Dispersion Coefficient, cm

2
/hr 

α = Dispersivity, can be approximated by median particle diameter, cm 
ν = Water velocity, cm/hr 

 
 Using the known qualities of the graphite and the column with Equation 

4.7, an estimate of the mechanical dispersion is 0.59 cm2/hr for the column 

system. It can thus be seen that the dispersion coefficient used is roughly half 

again higher than would be expected indicating that significant non-ideal factors 

are included in the effective dispersion coefficient. However, as these non-

idealities will affect both tritium transport and uranium transport equally, the 
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CXTFIT calculations remain a valid way of comparing model predictions to 

empirical data. 

 For a 10 ppm U solution, the calculated retardation of the low mass 

equilibrium fraction is a factor of 25.65 (corresponding to a Kd of 5.02 ml/g). The 

calculated maximum retardation factor for the high mass kinetic fraction is 10.33 

(corresponding to a Kd of 1.9 ml/g). Accounting for travel time through the 

graphite with the kinetic factor, the effective retardation factor that should be 

observed during the validation study should be 1.11. As the study performed will 

not be sufficiently long to see the elution of the retarded kinetic fraction, the 

apparent retardation provides a method of quantifying the accuracy of the 

estimates of α and R.  Figure 4.6 below shows the actual breakthrough curves 

measured during the study with the CXTFIT predicted curves.  
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Figure 4.6: Comparison of CXTFIT Predicted Results with Actual Results Uranium and Tritium Breakthrough
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 As can be seen above there is good general agreement between the 

predicted breakthrough curves and the actual breakthrough curves. As the 

predicted breakthrough curves were generated at a point that lacked 

experimental data, this provides evidence that the model can be generalized to 

the experimental mass region (0.5 – 50 ppm).  The effective retardation factor 

can be estimated as a first approximation from the ratio of the experimental 

slopes as shown below in Equation 4.7. 

 

 

 

  As the predicted effective retardation factor was 1.11, the error can be 

estimated as .  This indicates that the model over-predicted 

the release of uranium by 35% for the kinetic fraction. Additionally, the model 

underestimated the amount of uranium that would partition to the highly retarding 

high-mass site. This was quantified by comparing the predicted fast fraction 

retained mass to the actual fast fraction mass retained          

( . This indicates that 55% more 

uranium was retained in the fast fraction than was predicted by the model in this 

case. This means that for both the equilibrium fraction and the kinetic fraction the 

model was accurate to within an order of magnitude of experimental results. The 

fact that for both fractions the model underestimated release can most likely be 

attributed to the conservative assumptions that were incorporated into the 
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model’s structure. However, this is not necessarily a negative from a safety point 

of view.  

 This shows that the model has good agreement with experimental data for 

a point at which experimental data was not used in the creation of the model. The 

basic assumptions that were used could be adapted to different environments 

and by varying values of α, [U] and the fraction of kinetic and immediate sorbing 

sites, this model could then be adapted to provide an estimate of the necessity of 

incorporating reactive transport in a TRISO fuel element into repository 

performance. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK  

 If HTR reactors are to see wide spread adoption, decisions will have to be 

made about the final disposition of TRISO fuel and if an informed decision is to 

be made, the potential consequences of each decision must be examined. The 

options for disposal must include the most obvious option which is direct disposal 

of the spent TRISO fuel element in a geologic repository. To properly evaluate 

the consequences of this decision, the large mass of graphite in a TRISO fuel 

element would have to be incorporated into a repository performance 

assessment.  

This research has shown that the uranium/graphite system is complex due 

to the innate complexity of both uranium solution chemistry and the complexity 

and variability in the composition of graphite. Nevertheless, several important 

conclusions about the potential repository performance of TRISO fuel can be 

drawn from the experimental work in this research as well as in the model 

developed. The first is that to explain uranium transport through graphite by 

means of a single Kd and its associated retardation factor would be inappropriate 

due to a measured kinetic response and non-linearity in partitioning with mass. 

Second, graphite has shown the ability to strongly complex and significantly 

retard uranium in solution under environmentally relevant conditions (5 < pH < 8, 

[CO2] = 350 ppm) up to a mass concentration of 50 ppm with some evidence 

existing of irreversibility of this complexation. Third, this partitioning is insensitive 

to ionic strength below neutral pH but is sensitive to pH and to the concentration 
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of dissolved carbonate. Fourth and finally, while neglecting uranium retardation 

by graphite would always be a conservative assumption, it could in some 

instances significantly underestimate the repository performance of TRISO fuel. 

This could be important in the near time frame on geological time scales as the 

TRISO particles themselves fail and release low concentrations of uranium that 

this work indicates would be strongly complexed by the graphite matrix. 

 While this work provides for several conclusions relevant to the chemistry 

of the graphite/uranium interaction and the effect on repository performance by 

incorporating the graphite surrounding directly disposed of TRISO fuel, it has 

also suggested several areas where additional knowledge would be desirable. 

Accordingly, a proposal for future work would include the following items: 

 Experiments with different graphite and graphite oxide to attempt to 

understand what role graphite oxide functional groups play in uranium 

sorption 

 Investigation into whether incomplete desorption suggests actual 

irreversibility or hysteresis 

 Investigation of graphite with complexed uranium by Extended X-Ray 

Absorption Fine Structure (EXAFS) or some other technique that would 

allow the direct analysis of the formed uranium-graphite complexes 

 Completion of a Triple Layer Model to estimate stability constants for 

uranium/graphite complexes 

 Expand partitioning research to other radionuclides of interest such as Np-

237, Pu-239, Tc-99 and others 
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 Examination of nuclear graphite by the same physical and electronic 

methods performed here to permit the adaptation of the model for reactive 

transport proposed here to nuclear graphite 

 Combining the transport model developed here with a source term 

developed from the corrosion and flawed manufacture of TRISO particles 

to permit actual performance estimates for the fuel 

This work has provided data on what parameters partitioning in the 

uranium/graphite system is sensitive too. It has shown that even under fast flow 

conditions retardation of uranium can be significant to a mass level that is over 

30 times the current EPA drinking water standard and that for common 

groundwater flow speeds, retardation of uranium in graphite can be significant to 

several orders of magnitude beyond that. This work indicates that under a wide 

variety of conditions, studies should be done to quantify the delay in release from 

any repository accepting large quantities of TRISO fuel due to the presence of 

graphite and this work also indicates the relative importance of various 

systematic conditions. 
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