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Abstract

A model derivation is presented for the effect of current drive on the saturated width

of magnetic islands driven by the neoclassical tearing mode (NTM) instability in ax­

isymmetric plasmas. The derivation is carried out for pulsed current that is driven at

the same angle as the island O-point, as well as continuous current drive. The results of

the derivation are implemented in the ISLAND module to compute saturated magnetic

island widths. It is found that the greatest stabilizing effect of both pulsed and contin­

uous current drive on the island width is achieved when current is driven at the radius

of the island center. In addition, narrow current drive is more effective at stabilizing

the magnetic islands than wide current drive for which more current falls outside the

island. When pulsed and continuous current drives are compared for equal total driven

current, the pulsed current is shown to be more effective, particularly as the offset from

the island center increases.



Chapter 1

Introduction

1.1 Nuclear Fusion and the Tokamak

As fossil fuels begin to run out and world energy demand continues to increase, al­

ternative energy sources will have to meet the predicted energy shortfall. The options

include renewable sources such as solar, wind, or geothermal energy, which are attrac­

tive from an ecological viewpoint. However, none of these options provides sufficient

energy density to realistically supply an increasingly urbanized world. Nuclear fission

and fusion do provide sufficient energy density to meet world demands. Nuclear fis­

sion is widely used in nuclear power plants today, while fusion is not yet commercially

available. The main problems with Widespread nuclear fission facilities are the risk of

nuclear accident and the problem of nuclear waste. These difficulties are avoided with

nuclear fusion, which poses relatively little risk of nuclear accident and produces mini­

mal radioactive waste. An additional advantage of nuclear fusion is its use of abundant
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hydrogen isotopes from water for fuel.

Controlled fusion is extremely technologically challenging. Fusion occurs when

the nuclei of two light atoms such as isotopes of hydrogen are fused together to form

a heavier (helium) nucleus, producing energy as a by-product. Fusion is the reaction

that fuels the sun and stars, where intense pr~ssure causes the hydrogen and other light

nuclei to fuse, producing heavier elements.

The tokamak (a Russian acronym for toroidal chamber with magnetic coils) is the

most widely studied controlled fusion device today. In tokamaks, hydrogen plasma is

confined magnetically. The pressure and temperature inside the device must be raised

to extremely high levels for fusion to occur. Active control is necessary to produce and

regulate plasmas with sufficient density, temperature, and confinement. Under these

conditions, there are several instabilities that can lead to plasma disruption if they are

not controlled. This thesis focuses on the neoclassical tearing mode instability and its

control via localized current drive.

1.2 Control of the NTM Instability

The neoclassical tearing mode (NTM) instability produces magnetic islands which can

degrade confinement and lead to plasma disruptions in tokamak plasmas. The central

physical process that drives NTMs is the bootstrap current density, which is driven by

the plasma pressure gradient outside of magnetic islands and is nearly absent inside

magnetic islands, where the pressure profile is locally flattened. The lack of bootstrap

current within each island produces a helical perturbation in the total current density,
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which enhances the NTM instability and increases the resulting magnetic island widths.

NTMs can be stabilized by driving current locally within each magnetic island in order

to replace the missing bootstrap current density. A model for the stabilization of NTMs

by localized current drive is derived in this thesis.

The magnetic islands produced by NTMs have been observed in tokamak experi­

ments [1, 2, 3]. As tokamaks operate with higher pressure and longer pulse lengths,

NTMs become more deleterious. The most damaging magnetic islands are those with

low poloidal and toroidal mode numbers, e.g. min = 2/1, 3/2, where m is the

poloidal mode number (the short way around the tokamak) and n is the toroidal mode

number (the long way around the tokamak). Since NTMs are stable for sufficiently

small magnetic island widths, a "seed" perturbation is required in order to start NTM

island growth. Hence, in general, NTMs are linearly stable and nonlinearly unstable.

For stabilization it is therefore sufficient to shrink the islands to a critical width below

which they continue to shrink on their own.

In recent years, considerable progress has been made in the physics [2] and con­

trol of NTMs [4], and today several techniques are available to suppress NTMs and

maintain stability. Strategies to avoid and suppress NTMs [3] include: (1) reducing or

eliminating noise from other instabilities in order to keep the NTM seed islands suffi­

ciently small, (2) using helical fields from other, benign, modes or externally applied

fields to inhibit the perturbed bootstrap currents of modes of concern, or (3) applying

radio frequency (rf) power current drive (e.g. electron cyclotron current drive, ECCD

[5]) parallel to the equilibrium plasma current at mode rational surfaces in order to in­

crease the linear stability and replace the "missing" bootstrap current within magnetic
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islands. The last of these stabilization methods - current drive within each magnetic

- is the focus of this paper. The effect of localized current drive is modeled and imple­

mented in the ISLAND module [7, 8] to compute the saturated magnetic island widths.

The theory of tearing mode stabilization in toroidal plasmas by RF driven currents that

are modulated in phase with the island rotation has been previously studied in [6]. In

that paper, transient effects such as finite time response of the driven current are con­

sidered, and a dynamical model is developed. This paper considers only the steady

state solution.

The IS!-AND module in the National Transport Code Collaboration Module Li­

brary (http://w3.pppJ.govINTCC) is an implementation of a quasi-linear model to com­

pute magnetic island widths driven by saturated neoclassical tearing modes. The IS­

LAND module is intended to be used in axisymmetric toroidal plasmas with arbit~ary

aspect ratio, cross-sectional shape, and plasma beta. An adaptive ODE solver is used

in a shooting method to integrate a coupled system of ODEs for harmonics of the mag­

netic perturbation, which are derived from the three-dimensional scalar plasma pres­

sure force balance equations. An additional term representing the effects of localized

current drive in the coupled system of ODEs in the ISLAND module is derived in this

thesis.

In this thesis, the effect of localized current drive on the saturated widths of mag­

netic islands is investigated. In Chapter 2, the procedure for finding saturated magnetic

island widths without current drive is outlined. In Chapter 3, a Gaussian current drive

term is "introduced, and the derivation of Chapter 2 is repeated for the resulting total

current profile including the current drive. In Chapter 4, the mathematical differences
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between pulsed current driven at the island O-point and continuously driven current

are presented. In Chapter 5, the nonnalization procedure for the differential flux sur­

face areas is explained. Chapter 6 illustrates the computation of total driven current in

Amperes. Chapter 7 shows the results of implementation of localized current drive in

the ISLAND module for both pulsed and continuous current drive profiles. Chapter 8

concludes the work.
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Chapter 2

Finding Saturated Magnetic

Island Widths

Following the derivation presented in [9], a system of ordinary differential equations

can be derived for the solution of the three-dimensional, scalar pressure plasma equi­

librium force-balance equations

J x B = \lp

\l x B = /-LoJ

\l·B=Q

(2.1)

(2.2)

(2.3)

where J is the current density, B is the magnetic field, p is the scalar pressure, and /-Lo

is the permeability of free space. These equations are expressed in Hamada-like coor­

dinates [9], where V is a flux surface label, eis a poloidal angle-like variable, and ( is

a toroidal angle-like variable. A small perturbation about an axisymmetric equilibrium
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field is applied (B = BO + BI, where the "0" superscript denotes the unperturbed

axisymmetric field, "1" represents the first order perturbation) and corresponding per-

turbations are made to the current density J and the plasma pressure p. Equations

(I )-(3) are expressed in terms of a combination of contravariant and covariant compo-

nents. All perturbed variables Xl are written as a series of Fourier harmonics of eand

( with the form,

(2.4)
m,n

The divergence-free property of the perturbation component of the magnetic field,

v .B I = 0, can then be written in terms of the contravariant components of B I as [9]

d (. Iv) _ I( 10dV -zJB mn - nJBmn - rnJEntn (2.5)

where J = (VV· ve x V0- 1 is the Jacobian of the axisymmetric coordinates, and the

superscripts of V, (, () indicate contravariance. After combining the other perturbation

equations it can be shown that

(2.6)

_ ( O( _ JOo) EI( _ . IVBO(!£/-LoJO( I _1_!£EO(
-/-Lo nJ rn J mn zJB mn dV BO( + rn/-LoPmn EO( dV

where the subscripts of V and () indicate covariant components of the perturbed field.

Equations (2.5) and (2.6) form a coupled pair of ODEs for each helical harmonic of

the variables [-iJB;Yn, EJmnJ. Additional algebraic equations can be derived to close

the set [9]. A flat spot in the normalized current density /-LoJO( / BO( and the plasma

pressure p is produced by the presence of a magnetic island at each mode rational

surface which prevents the ODEs from being singular at mode rational surfaces, where
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nBO( - mBO( = O. An iterative algorithm is used for the determination of saturated

tearing mode island widths as eigenvalues for the differential boundary value equations.

Such an algorithm has been implemented in the iSLAND module [9]. The normalized.

current density term MoJO( / BO( in Equation (2.6) is modified in this thesis to account

for the effects of current drive.

Adetailed derivation of the effect of magnetic islands on the axisymmetric averaged

current density profile without current drive is presented first. A similar derivation

applies to the pressure profile. The result of this derivation is given in [9].

Along a cut through the widest part of the island (where 0: == me - n( 0),

assume that the current density profile has the form

Ko+K 1(-1- u) u < -1

MoJ( = K(u) = "
Ko lui ::; 1 (2.7)B( -

Ko +I<1(1 - u) u > 1

where Ko and K 1 are constants determined by the local current profile, Hmn is the

island half-width, and u == (V - Vmn )/Hmn is the normalized radial coordinate,

measured from the island center (since Vmn is the V-location of the mode-rational

surface).

When current density is driven at some point (u, 0:), the resulting current at any

other point (u', 0:') can be found by exploiting the fact that current density is spread

over surfaces of constant magnetic flux, as illustrated in Figure 2.1. Consider a function

'lj; which is uniform along magnetic field lines, so that

B· 'V'lj; = O.

9
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3 U

2 ,/ 't/J = constant

~E.------bf---e-t-.......-J~----~Ct

-2

-3

Figure 2.1: Surfaces of constant magnetic flux 'l/J

This function is expanded in a Taylor series in the neighborhood of the mode-

rational surface, as in [10],

Equation (2.9) is solved for u in terms of'l/J.

(2.9)

u=± 'l/J~n + 'l/JAm coso: - 'l/J
2'l/J;"n

(2.10)

which is then used in Equation (2.9) again (as 'l/J = 1/J~n - 2'l/J:nnu'2 +... + 'l/J~n cos 0:')

to determine the mapping from any point (u', 0:') to any other point (u, 0:) along a

magnetic surface

Jcos 0: - cos 0:' +2u,2
u-±- 2

10
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-1f

u'

o4o~------+.f-------+--'-;~ ex'
1f

-1.5

Figure 2.2: Sketch of Integration Path

In Equation (2.11), a represents the current drive location, and a' is the coordinate

over which the axisymmetric average is computed. If the current is driven only at the

widest part of the island, a = 0, this expression simplifies to

I
)1 -cos a' + 2u,2

u =±
<:>=0 2 (2.12)

One can then find the axisymmetric average current density J{o == /.LoJO
( / BO

(,

which is used in Equation (2.6)

J{°(u') = 2-1" J{(u',a')da'
27r _"

1 1" (' ')d'=- !{u,a a.
7r 0

(2.13)

In Figure 2.2, it can be seen that the integration must be divided into two different

regions - one region inside the island and one outside. Note also that the function
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K(u', 0:') being integrated in Equation (2.13) changes with the sign of u': at the out-

board side of the island, u' is positive (corresponding to the (+) sign in Equations

(2.10)-(2.12», while at the inboard side u' is negative (corresponding to the (-) sign).

Nonetheless the derivative dKo/ dV is expected to be symmetric in u' when there is no

current drive.

The value of a' at the separatrix is found by setting lula=ol = 1 in Equation (2.12)

and solving for a'

= 7T - 2 sin- 1 [min(l, lu'I)]. (2.14)

Expression (2.12) is used in Equation (2.7) and the integration (2.13) is carried out to

obtain

where

{

Ko +~ [-as - 2Jl + u,2 E(¢m, I+~r2)]

Ko+~ [as - 2Jl +u,2 E(¢m, I+1UI2)]

¢m = sin- 1 [min(l, lui!)]

u' > 0

u' < 0

(2.15)

(2.16)

and E(¢, Tn) is the incomplete elliptic integral of the second kind. (Note that in [9], the

notation E(¢, k) is used, where k2
::::::: Tn.)

,
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The derivative of this axisymmetric average current density results in

dKO __~ { 2 _ 21u
/

l E( _1_ _ 2
dV - 7fHmn J1 - U/2 J1 + U/2 cPm, 1 + u/2 ) J1=U'2

+h [E(cPm, 1 +lU/2 ) -F(cPm, 1 +lU/2 )]}

2K1 lu'l F( 1)
7fHmn J1 +U/2 cPm, 1 +U/2 (2.17)

where F(cP, m) is the incomplete elliptic integral of the first kind. This result is used in

Equation (2.6), which is then used to compute the saturated magnetic island widths.

13



Chapter 3

Current Drive with Gaussian

Profile

If a localized current drive is added to the current profile through the widest part of the

island given in Equation (2.7), there is an additional term for the current drive density,

KEc, which has components both inside and outside the island

Ko+K1(-1-u)+KEc(U) U <-1

fL;~( == K(u) = Ko+KEc(U)

Ko+ K 1 (1 - u) + KEc(u)

lui < 1

U > 1

(3.1)

Here, the driven current density profile K EC is assumed to have a Gaussian form

as shown in Figure 3.1,

where a is the offset, K m is the maximum height, and a is the variance.

14
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a u

Figure 3.1: Sketch of current density KEdu), where K m is the maximum height, a is

the offset, and (J is the variance

Since the terms in the current profile, Equation (3.1), are linear, and the first two

terms in Equation (3.1) are the same as those in Equation (2.7), it is possible to consider

the current drive term separately since all other terms will be unaffected. The shape of

surfaces of constant magnetic flux 'l/J is shown in Figure 3.2. A Taylor series expansion

is used for'l/J near the mode rational surface as in Equation (2.9), and the expression

can be solved for u as in (2.12).

Note that the height, width, and offset of the current drive are free parameters in

Equation (3.2). For a centered Gaussian with a width on the order of the island width,

this current drive shape is qualitatively similar to the parabolic current peaking factor

introduced in [9], so the results for the Gaussian shape can be compared with results

from the parabolic peaking factor model.

Although the CUITent drive is limited to a narrow region near a = 0, the current

15



spreads over the flux surfaces, and using Equation (2.11), Equation (3.2) becomes

Kec(,p) = K m cxp [;,,; (±Vcoso - 00;0' + 2." _ a) '] (~;) (3.3)

The factor dA/dS results from the fact that the current applied to an area dA in

u-coordinates is spread over an area dS in 1/J-coordinates, as illustrated in Figure 3.2.

In this expression, the angle a represents the current drive location and a' represents

the angle over which the current density is spread. Note that current can be driven over

any range of a, but in Chapte~ 4.1 it will be assumed that current is driven at a = 0

only for pulsed current drive. Equation (3.3) is plotted in Figure 3.3 for a = 0, an

arbitrary peak value Km , (J" = 0.2, and dA/dS = 1.

3
U

rIA

~E------f--f--e-+-~--+---_---=:~O

-2

·3

Figure 3.2: Shape of magnetic flux surfaces

Now the goal is to integrate Equation (3.3) over both a and a' to find the axisym-

metric averaged current drive density. Then the derivative of this averaged current

drive density, in addition to the derivative of the background current density, is used to

16



(3.4)

produce the d(p,oJO
( / BO

() / dV term required in Equation (2.6), which is used in the

ISLAND module.

Direct integration of this current drive profile produces the expression

1111"111"K~c = - KEc('l/J)da'da
7r 0 u

_Km{lU1US

[-1 ~ Vcosa-cosa'+2u'2 ~2] (dA) ,-- exp - ± - a - da da
7r 0 u 2a2 2 dS in

{[exp [~~ (±jCOSQ -CO;Q' + 2u" -a)'](~~t~'dQ}
where the separatrix value as is defined in Equation (2.14), and (dA/dS)in and (dA/dS)01Lt

are the ratios of the area of the current drive relative to the area over which the current

density spreads inside and outside the island. These differential area ratios will be dis-

cussed in detail in Chapter 5. Even if dA/dS is taken to be constant, the integrals of

Equation (3.4) cannot be carried out analytically.

17



a == 1.0

'if

a == 0.5

a == 1.5

'if

K EC 'if

Figure 3.3: Current density after spreading over flux surfaces for various offsets
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Chapter 4

Pulsed vs. Continuous Current

Drive

As the magnetic islands rotate about the tokamak, it is possible to either pulse the

current drive, ideally hitting the islands directly at their center, or "O-point", or leave

the current drive on steadily resulting in continuous current drive. First, the somewhat

idealized case of current driven entirely at the O-point will be considered, which results

in a simplification of the integral (3.4). Then we will consider the continuous drive

case, which is experimentally more straightforward.

4.1 Pulsed Current Driven at the O-Point

The integral in Equation (3.4) is complicated because the effects of current spreading

over flux surfaces (corresponding to the 0:' integral) and the effect of island rotation

19



(which spreads the current drive over angle 0: at the value of u at which it is driven),

are both taken into consideration.

The first simplifying approximation is to assume that the current is driven only near

the widest part of the island, near 0: = O. This makes it possible to set cos 0: = 1 in

Equation (3.4), leaving only the single integral over 0:'

Ko _ Km {iUS [-1 ( J1-cos 0: + 2u2
) 2] (dA) dEC - - exp - ± - a - 0:

7r ° 20"2 2 dB in

111" [~( J1-COSO:+2U
2

_ )2] (dA) d}+ exp 20"2 ± 2 a dB a
Us out

(4.1)

where the prime on the dummy integration variable has been dropped, as well as the

prime on the u' of Equation (3.4). The trapezoid rule for computing these integrals

numerically is

where n can be increased to give a more accurate approximation.

When performing the integration, it is important to note that inside the island (corre-

sponding to the integration from 0 to as), the results will be symmetric in u. Mathemat-

ically, this requires taking half the sum of the integrals along positive u, corresponding

to the (+) sign in Equation (4.1), and the integral along negative u, corresponding to

the (-) sign. Outside the island, the upper (+) sign of Equation (4.1) is used for the

outboard island edge and the lower (- ) sign is used for the inboard edge.

20



4.2 Continuous Current Drive

While current drive pulsed at the island O-point is expected to be the most effective

technique for shrinking saturated magnetic island widths, it is also useful to consider

continuous current drive. Experimentally, it is often easier to implement continuously

driven current since magnetic islands rotate helically about the tokamak, making their

location difficult to determine in real time.

For continuously driven current, we return to the general double integral of Equa­

tion (3.4), without setting 0: = 0 as in the previous section. This double integral is

performed numerically by using the trapezoid rule, Equation (4.2), twice. The discus­

sion of the previous section for the sign choice in Equation (3.4) for the outboard (+)

and inboard (-) island edges still holds.
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Chapter 5

Differential Flux Surface Areas

In the following sections, two different (but related) methods will be presented for find­

ing the differential area term, dA/dB in the integrals (4.1) for pulsed current drive and

(3.4) for continuous drive, which will be called "method I" and "method 2". Another

normalization method closely related to method 2 will be referred to as "method 2 ­

arclengths".

5.1 Method 1

This first differential area approximation is based on the idea that although the Gaus­

sian current is driven at all u-locations, it will have a maximum at a, where it is cen­

tered. It also has a characteristic width, given by the variance (T. Outside a width of

approximately 2(T, the magnitude of the current drive will be negligible. Therefore, for

this method, the differential area in which the current is driven is computed only in a

22



rectangle of area

dA = 20" x 280: (5.1 )

where 280: is some small extension of the current drive in the angular coordinate, as

shown in Figure 5.1. This current, which is applied in the differential area dA, is spread

over the region between flux surfaces with area dB. The differential flux surface area

dB inside the island can be approximated by the difference of two ellipses, whose

semiminor axes differ by 20", where 0" again is the variance of the Gaussian current

drive. The notation al is used for the semiminor axis of the smaller ellipse and a2 for

the semiminor axis of larger ellipse, where a = (al + a2) /2 is the offset of the current

drive. Similarly, b1 denotes the semimajor axis of the smaller ellipse and b2 that of the

larger ellipse. We also define the average b = (b1 + b2 )/2. It is assumed that all the

ellipses have the same elongation 7f, found from the ratio of the angular length of the

island (= 27f) to the width of the island at its widest point (= 2). For the ellipses, then

b b1 b2
- ~ - ~ - ~7r.

a al a2
(5.2)

Noting that the area of the i-th ellipse is given by 7faibi, the differential area be-

tween ellipses 1 and 2, dB, is simply

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)
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Figure 5.1: Normalization methods 1 and 2

where the absolute value was used since the normalization is independent of the sign of

a, and the area element is always positive. Equations (5.1) and (5.7) lead to the result

for lal > CT. A simple way to generalize this result is to use

(
dA) 80:
dS in ~ 7f2Max [Ial, CT] •

(5.8)

(5.9)

Outside the island, it is assumed that flux lines are approximately straight. The

applied current area is the same, dAout = 2CT x 280:, and dSout = 2CT(27f). This leads

to the approximation

(5.10)

But dSout will be somewhat larger near the island edge, since the flux surfaces are

not straight there but slightly curved. To make the results continuous at lal = 1, the
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K~c

- - - a= 1.5

a= l.O

---------- a = 0.5

---a=().O

Figure 5.2: Method 1, (J = .1,80: = 0.1, arbitrary peak value

following approximation is used

(5.1l)

Using these approximations for the normalization produces the results for the ax-

isymmetric averaged current drive, J(~c' shown in Figure 5.2 for pulsed current drive

with (J = 0.1 and 80: = 0.1. The scale on the vertical axis of Figures 5.2, 5.4, 5.5,

5.6, 5.7, and 5.8 is arbitrary and therefore not shown - but this scale is kept equal

throughout so results are comparable.

To use these ratios of differential flux surface areas for continuous current drive the

width of the drive is set to 80: = 7[,
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S.2 Method 2

The second method uses the entire current drive profile instead of using only the portion

of the current drive near the peak of the Gaussian to compute dA/dS. As before, it is

assumed that current is driven over a finite angular range 280:. The current that is

deposited sufficiently close to the a-point of the magnetic island, over flux surfaces

with a "major axis" smaller than 280: has dA/dS = 1. The boundaries of this region

that has dA/dS = 1 will be discussed further below. Outside this region, but still

within the island, taking a difference in areas of ellipses as in method 1, but using u

instead of a as the semiminor axis in Equation (5.8),

(
dA) 80:
dS in - 7f2 Iul' (5.12)

For continuity at the island edge (at lui = 1) the following normalization is chosen

outside the island

7f(1 +~)
(5.13)

In Equations (5.12) and (5.13), u is the radial coordinate of a given flux surface at

0: = O. At any other location on the flux surfaces over which the current is spread,

u has to be replaced by the expression given in Equation (2.12), which results in the

following expressions

(5.14)

(5.15)

[
2(1r-I)]

7f 1 + 1+2u2-cosa

where the prime on u has been dropped for consistency with the dummy integration

variable of equations (3.4) and (4.1).

26



The region that is sufficiently close to the island O-point and therefore has dAjdS =

1 is bounded by the flux surface 8a(u) shown in Figure 5.3. The "X-point" of this flux

surface is given by 8a(u = 0) == 8a, i.e. the extension of the current drive in the

angular coordinate. At a = 0, the flux surface 8a(u) crosses the u-axis at two points

±u* in Figure 5.3. Expressions for 8a(u) and u* can be found from the relationship

between u, u', and a' when a = 0, Equation (2.12). Since 8a(u' = 0) = 8a, the point

u* is found by setting u' = 0, a' = 8a in Equation (2.12),

(5.16)

where 8a is a constant. Now, since 8a(u) = u* at a = 0, Equation (2.12) can also be

used to show that

u* =
1 + 2u2 - cos[8a(u)]

2
(5.17)

Rearranging, and generalizing the expression, the flux surface 8a(u) can be described

by

(5.18)

Inside this flux surface, the area ratio dAIdS = 1.

The averaged current drive density can be found separately in the region where u is

close to zero and outside this region. All the current driven near the island center, in the

region near u = 0, a = 0, will remain there, and dAjdS = 1. But outside this region

dAjdS =/= 1, and the normalization terms from Equations (5.12) and (5.13) must be
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u*

Figure 5.3: Integration paths for normalization method 2

used. As shown in Figure 5.3, the axisymmetric averaged current drive is found as

where

lui < u*

lui> u*

(5.19)

(5.20)

1 re' (dA)
11 = ;: Jo dB in I<Ec('ljJ)da

11oa
(U)

11A = - I<JJ;c('ljJ)da
1f 0

lias (dA)118 = - dB . I<Ec('ljJ)da
1f oa(u) m

1171' (dA)12 = - - I<Ec('ljJ)da
1f as dB out

(5.21 )

(5.22)

(5.23)

(5.24)

Recall that in Equation (4.1), (+) denotes integration along positive u, and (-)
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(5.25)

is along negative u. Similar to the discussion of method 1, the integration inside the

island (integrals h, hA, and hE), should be independent of the sign of u. Outside

the island (h), the (+) sign denotes the region outboard of the island, and the (- ) sign

denotes the inboard region. Taking all this into consideration, and assuming pulsed CD

at the island O-point, the integrals 1 are given by

Km 18a
(U) { [-1 ( Jl +2u2

- coso: ) 2]hA = - exp - + - lal
71" 0 2a2 2

+exp [~; (-p + 2U'2- coso -lair]} 00 (-u' < U < u')

11B=Km;o:r
s (1+2U2_COSO:)-1/2{exp[-~ (+ /1+2U

2
-coso:_lal)2]

71" J8a(u) 2a Y 2

""XP[~; (_}1+ 2U'2- COS a -lair] }da (-u' < U < u') (5.26)

Km(kt r s -1/2 { [-1 (/1+2U2-COSO: )2]h = /271"3 Jo (1 +2u2- coso:) exp 2a2 +y 2 -Ial

_p[~; (_}1+ 2U'2- COSa-Ialr]}da (-1 < u <-u' and u'< u < 1)

(5.27)

Km80:1~( 2(71"-1) )-1 [-1 (Vl+2U2-COSO: )2]d12 =-- 1 + exp - + - a 0:
+ 71"2 1+2u2-coso: 2a2 2as

(u > 0)
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Figure 5.4: Method 2, a = .1, 00: = 0.1, same scale and peak value as Figure 5.2

I _Km OO:17l" (1 2(7[-1) )-1 [-1 (v1+2U2-COSO: )2]
2- - + exp - - - a do:7[2 Us 1 + 2u2- coso: 2a2 2

(u < 0) (5.29)

These integrals can be computed numerically, and then combined for the total ax-

isymmetric averaged current drive. The results are illustrated in Figure 5.4 for a narrow

pulsed current drive with a = 0.1 and 00: = 0.1.

5.3 Comparing Methods 1 and 2

For the parameters presented above, a = 0.1 and 00: = 0.1, the two normalization

methods produce very similar results, which can be seen by comparing Figure 5.2 with

Figure 5.4. The results are not as similar for wider current drives, i.e. for larger values

of a. With a = .5 we have the results shown in Figure 5.5.
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Figure 5.5: Comparing methods 1 (left) and 2 (right), (J = .5, 80: = 0.1, same peak

value

It is important to mention that the first normalization method, "Method I" is much

simpler to implement and produces satisfactory, physically reasonable results. The sec-

ond method is more rigorous in its derivation, but the results have discontinuities in the

derivative of the axisymmetric averaged current drive density. Consequently, normal-

ization "Method 2" is not necessarily an improvement upon the simpler "Method I".

In fact, Method 2 produces a current density peak near u = awhere none should exist

for wider current drive «(J = 0.5), as seen in Figure 5.5.

With any choice of approximation for dAjdS, an important check is whether total

current is conserved. The total current applied [tot is proportional to [, where

[= 80:I: KECdu (5.30)
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For I to be conserved,

Oni: KECdu = i: I: KEC(7P)dndu

= 27fI: K~du)du (5.31)

The results for the right-hand side of Equation (5.31) are presented in Table 5.1

for pulsed current drive with On = 0.1, (T = 0.1, Km = 1/((Tv'27f) = 3.99. Since

the original Gaussian current drive is normalized, the left-hand side of Equation (5.31)

is equal to On = 0.1. From this table, it can be seen that current is not conserved

in the derivation for either normalization method. This discrepancy has to do with

the approximations made in both cases, namely, the assumption that all the closed

flux surfaces are ellipses and flux surfaces outside islands are straight lines. These

approximations do not hold near the island edge. Further approximations were made

for current driven near the island center. These approximations lead to discrepancies

of up to a factor of 2 from the expected value in Table 5.1.

Method 1

Method 2

a=O

.051

.051

a=0.5

.069

.069

a=1

.102

.110

a=1.5

.074

.118

Table 5.1: Total current integrals for On = 0.1, (T = 0.1, K m = 3.99

To ensure that the total current is in fact conserved, a "renormalization" factor

(simply a constant) is implemented in the ISLAND module.

Methods I and 2 have also been compared for other choices of On. Figure 5.6

shows the results for (T = 0.5, on = 0.4.
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Figure 5.6: Comparing methods 1 and 2, (J = .5, oa = 0.4, same total current

5.4 Method 2 - Arclengths

Revisiting method 2, an alternative to using the ratio of areas dAjdS would be to use

the ratio of arc lengths. This leads to

dA
dS arc.in 27l"J! (arccos2 ( - 2u2 +cos a) + 1t2u

2

2
-cos Q)

V50a
(5.32)

Outside of the island, the normalization has a form similar to that used in method 2

but with a multiplier that is adjusted to produce continuity at u = 1

dA
dB arc.Qut

50a
(5.33)

Results for this normalization method are shown in Figure 5.7 and 5.8 for narrow and

wide current drive shapes, respectively.

Since the results for normalization method's 1, 2, and 2 - arclengths are all quite
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Figure 5.7: Method 2 using arclengths, (J = .1,60: = .1, same scale and peak value as

Figures 5.2 and 5.4
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Figure 5.8: Method 2 using arclengths, (J = .5,60: = .1, same scale and peak value as

Figure 5.5
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similar, as can be seen by comparing Figures 5.2, 5.4, and 5.7, or by comparing Figure

5.5 with 5.8, only method 1 was implemented in the ISLAND module.
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Chapter 6

Computing the Total Driven

Current in Amperes

6.1 Conversion to Real, Physical Units

In practice, the physical current drive parameters (offset area), width area), and magni­

tude [{m,reai) are given in units of length (m) and current density (A/m2), respectively.

Therefore it is important to show how to convert from the real, physically relevant

units to the more convenient normalized units used in previous sections. As defined

previously, a and a are in u-units (i.e. they are dimensionless), where u is the normal­

ized radial coordinate defined in Equation (2.12). From this, the conversion from the
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unitless a to areal in meters is given by

1
a = --areal

Hmn

1
(J = --(Jreal

Hmn

where Hmn is the half-width of the magnetic island in meters.

(6.1)

(6.2)

For the current density peak K m, the conversion depends on the input current.

Since the NTCC ISLAND module comes with two test input files, inpuLJET and in-

putJ)IIID [7], only these will be considered here. The units of K m as used by the code

are 11m. This is equivalent to the "current peaking factor" in [9]. This current peaking

factor and K m have units of /Lo]/ B, where] and B are the toroidal current density

and magnetic field, respectively. Since, for a given input, the magnetic field is constant,

Km,real in Alm2 is converted to K m using the average input current. The input current

profiles are shown in Figure 6.1, and the conversion is summarized in Table 6.1.

Km,real

JET

DIIID

1 (11m)

1 (11m)

2.336 X 106 (Alm 2
)

1.59155 x 106 (Alm2
)

Table 6.1: Conversion of K m to real units
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6.2 Current Peaking Factor Method - Applied Cur-

rent

It is of interest to compare results obtained by the procedure outlined in this paper

to those obtained from implementation of a "current peaking factor" presented in ref-

erence [9]. The current peaking factor method allows for parabolic current peaking

through the widest part of the island. It is centered at the island center in the radial

direction, with zero current outside the island. The current is driven entirely ,at a = 0

in this case, so the driven cun'ent density is represented by

(6.3)

where 5(a) is the Dirac delta function and C is the current peaking factor (Note: C has

units of l/rad. The code uses K = J-LoJ/ B, which is in units of l/rad, and J has units

of Nm*rad). To convert to physical units of (Nm*rad), multiply by 1/J-LoB, i.e.

KC,real = C(I- u
2
)5(a) (J-L~B) (6.4)

The total current in Amperes is then found by integrating over u (the normalized radial

coordinate) and a (the normalized angular coordinate). To undo the radial normaliza-

tion, also multiply by the halfwidth Hmn

f tot = HmnC ( I
B

) Joo /00 (1 - u2)8(a)duda
J-Lo -00-00

= HmnC ( I
B

) Joo (1 - u2)du. (6.5)
J-Lo -00
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6.3 Gaussian Current Drive - Applied Current

The current drive in the ISLAND module code is given by Equation (3.2). The units of

KEC are l/rad, as are the units of Kc. To convert to real units for the applied current

drive density, multiplication by 1//-LoB is necessary

[
-(u - a)2] ( 1 )

KEC,real = K m exp 2a2 /-LoB' (6.6)

For the total current in Amperes the expression is integrated over u and 0: times

the halfwidth Hmn. The integral over 0: is just a constant 80:, since the same current is

applied over this small angular region. The result is

(
1 ) 100 [-(u:.- a)2]

I tot = Hmn80:Km /-LoB -00 exp 2a2 duo (6.7)

6.4 Current After Spreading - Current Peaking Fac-

tor

After spreading over flux surfaces, the average current drive is given by the integral
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For the parabolic current peaking factor method the current density and total current

are given by

Kc(1jJ) = C [1 - u2 (1jJ)]

KC,reaJ(1jJ) = C (fL:B ) [1 - u
2

(1jJ)]

Itot = HmnC ( I
B

) JIT JOO [1 - u2 (1jJ)] duda
flo -IT-OO

271'Hmn joo. 0 d
= B K c u.

flo -00

6.5 Current After Spreading - Gaussian

Similarly, for the Gaussian drive, the current density and total current are

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

- 271'Hmn JOO K O d- B EC U.
flo -00
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Figure 6.1: Sample input current profiles
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Chapter 7

Results from the ISLAND

Module

7.1 Results for Pulsed Current Drive

Results for the change in the island width produced by current drive computed using

the ISLAND module are shown in Figures 7.1-7.4. These results are for 2/1 islands

only. In each plot, the island width is normalized by the plasma minor radius.

In Figure 7.1, the island width as a function of driven current is shown for a pulsed

Gaussian current drive profile with (j = 0.3, a = 0, and for parabolic current peaking.

The maximum driven current corresponds to about 20% of the background plasma

current. In both cases, higher levels of total driven current shrink the island to lower

saturated widths. The curves for the pulsed Gaussian and the parabolic current drive

42



profiles are similar, as is to be expected for a centered Gaussian of equal current. This

figure also shows a slight leveling off of the island width for large current drive. As

mentioned in Section 1.2, the neoclassical tearing mode is linearly stable, which means

that below a certain critical width, magnetic islands will continue to shrink on their

own. The ISLAND module is not valid for these small island widths, which helps to

explain the leveling of the curves in Figure 7.1.

Figure 7.2 shows the effect of changing the width of the pulsed Gaussian current

drive with zero offset, or equivalently, changing the variance of the Gaussian, (J, while

fixing the offset at a = O. It can be seen that narrow current drive (small (J) is more

effective at shrinking the island, as the slope is more negative in this case. For large

current drive width «(J = 1), much of the driven current falls outside the island, and

this portion can have a destabilizing effect, leading to the small slope of the curve with

large (J seen in Figure 7.2.

Figure 7.3 shows the effect of changing the current drive center relative to the island
~''' .. ~ .. ,.

center. Here the width ofthe Gaussian is fixed at (J = 0.4, and the offset a is varied. The

centered current drive is most effective at shrinking the island, and off-center current

drive eventually becomes destabilizing. The destabilizing effect is greater for current

driven on the inboard side of the island (for negative a) than on the outboard side

(positive a).

The island width is plotted as a function of pulsed driven current for a choice of

different offsets in Figure 7.4, and the results are as expected. The slope of the saturated

island width curve is most negative f(lf centered (a = 0) drive, and flattest for a = 1.
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Figure 7.5: Saturated island width vs. total drive current for continuous Gaussian

current drive with a = 0, 0" = 1

7.2 Results for Continuous Current Drive in ISLAND

When the continuously driven current is implemented in the ISLAND module, many

expected relationships between the current drive shape and the saturated island widths

-are obtained. Qualitatively, the results are similar to those presented in the previous

section for pulsed cun'ent drive.

In the case of zero offset current (a = 0), for example, with a width on the order of

the island width (0" = 1), it is found that the saturated island width shrinks as the total

driven current (as governed by the peak K m ) increases. This relationship is shown in

Figrue 7.5.

When the total driven current is held constant, along with zero offset (a = 0), a

narrower current drive profile is expected to be more effective in shrinking the islands.
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Figure 7.6: Saturated island width vs. continuous Gaussian current drive width 0',

a = 0, I tot ::::: 1.5 x 105 A

This behavior is found, although the relationship is not linear, as shown in Figure 7.6.

For a constant level of driven current where both the peak K m and the width 0' are

held fixed, a centered current drive is most effective at shrinking the islands. This is

shown for different levels of total continuously driven current in Figure 7.7. Figure

7.7 also shows that outboard current drive (positive a) is more stabilizing than inboard

drive, as we have seen before. Also, for large offsets, current drive is destabilizing for

continuous current drive, as it was for pulsed current drive.

Similarly to Figure 7.4, the island width is plotted as a function of continuous driven

current for various offsets in Figure 7.8. Again, the slope of the curve is most negative

for centered (a = 0) Gaussian current drive, indicating that this current drive profile is

most stabilizing. When the offset of the continuous current drive is on the order of the
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Figure 7.7: Saturated island width vs, offset a for continuous Gaussian current drive,

a = 1, I tot varies

island width, positive current drive becomes destabilizing, as indicated by the positive

slope of the a = 1 curve in the positive current region of Figure 7.8.

7.3 Comparing Pulsed and Continuous Current Drive

The previous two sections illustrated many of the qualitative similarities between cur-

rent drive that is pulsed at the angle of the island O-point and current drive that is on

continuously. More quantitative comparisons are presented in this section.

Perhaps the most relevant question to experimentalists is which type of current

drive profile is more efficient at shrinking the islands. For a given amount of total

current, is it better to pulse the current drive entirely at the angle of the island O-point,

or to to leave it on continuously as the islands rotate about the tokamak?
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drive

The island width computed by the ISLAND module is plotted as a function of the

driven current in Figure 7.9 for pulsed Gaussian current drive and continuous Gaussian

current drive. This figure also shows the results for the original current peaking factor,

which represents a pulsed parabolic current drive entirely within the island. As shown

before, this parabolic pulsed current drive is quite similar to the Gaussian pulsed current

drive. It can be seen in Figure 7.9 that the effect of the continuous Gaussian current

drive is nearly the same as the effect of pulsed current drive when both current drive

profiles are centered.

Considering a Gaussian current drive that is offset from the island center by half

the island width, a = 0.5, with the same width (J = 0.3, produces the results of Figure

7.10. Now the results are very different for pulsed and continuous current drives. It can
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Figure 7.9: Saturated island width vs. total driven current for parabolic, pulsed (a = 0,

(J = 0.3), and continuous (a = 0, (J = 0.3) current drive profiles

be seen that the pulsed current drive is much more effective at shrinking the island for

this case, as the slope of the curve is more negative.

Increasing the offset of both drives to a = 1 exaggerates this effect further, as

shown in Figure 7.11. Here, for the same width (J = 0.3, the pulsed current drive

still stabilizes the magnetic island for positive current, while the continuous drive is

destabilizing.
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Figure 7.10: Saturated island width vs. total driven current for pulsed and continuous

current drive profiles, a = 0.5, (J = 0.3
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Figure 7.11: Saturated island width vs. total driven current for pulsed and continuous

current drive, a = 1, (J = 0.3
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Chapter 8

Conclusions

A model for localized current drive for stabilization of the neoclassical tearing mode

instability has been developed and implemented in the ISLAND module as a pulsed

current drive (driven at the angle of the island O-point), and as a continuously driven

current. Simulations with various pulsed current drive profiles have demonstrated that

the current drive model produces results similar to those obtained from a centered

parabolic current peaking when the total current and current drive shape were simi­

lar. For both pulsed and continuous current drive, it was shown that when the current

drive is radially centered on the island, narrow current drive profiles are more efficient

at shrinking the magnetic islands than wide current drive profiles in which much of the

driven current falls outside the island. It was also shown that when the current drive

width is held fixed, current drive profiles that are radially centered at the island center

shrink the islands more than current drive profiles that are offset from the island cen­

ter. For current drive offsets from the island center that are large relative to the island
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width, the effect of positive current drive is destabilizing. For both pulsed and contin­

uous current drive, this destabilizing effect is stronger for current driven at the inboard

island edge rather than the outboard edge.

Comparing the pulsed current drive with the continuous drive, results indicate that

the pulsed CD is more effective at shrinking the island for equal amounts of total cur­

rent. This result is expected, since current pulsed at the island O-point injects far more

current into the island, and less outside.

Implementation of current drive in the ISLAND module provides the foundation

for future work studying the stabilization of the neoclassical tearing mode instability

computationally. These simulation results are consistent with experimental results.

Results indicate that a radially centered current drive will have the strongest stabilizing

effect, represented by a local minimum on a plot of saturated magnetic island width

as a function of current drive offset. This minimum lends itself particularly well to

extremum seeking control, for which the location of the island need not necessarily

be known. Such a control algorithm would represent an improvement over current

"search-and suppress" algorithms.

53

L



Bibliography

[1] C. Hegna and 1. Callen, "On the stabilization of neQclassical magnetohydrody­

namic tearing modes using localized current drive or heating," Physics of Plas-

mas, vol. 4, pp. 2940-2946,1997.

[2] R. Buttery, S. Gunter, G. Giruzzi, T. Hender, et al., "Neoclassical Tearing Modes,"

Plasma Phys. Control. Fusion, vol. 42, pp. B61-B73, 2000.

[3] R. La Haye, "Neoclassical tearing modes and their control," Physics of Plasmas,

vol. 13, p. 055501, 2006.

[4] D. Humphreys, 1. Ferron, R. La Haye, et al., "Active control for stabilization of

neoclassical tearing modes," Physics ofPlasmas, vol. 13, p. 056113, 2006.

[5] N. Hayashi, T. Ozeki, K. Hamamatsu, et al., "ECCD power necessary for the neo­

classical tearing mode stabilization in ITER," Nuclear Fusion, vol. 44, pp. 477-

487,2004.

[6] G. Giruzzi, M. Zabiego, T. Gianakon, et at., "Dynamical modelling of tearing

mode stabilization by RF current drive," Nuclear Fusion, vol. 39, pp. 107-125,

1999.

54



[7] F. Halpern, G. Bateman, A. Kritz, and A. Pankin, "The ISLAND module for com­

puting magnetic island widths in tokamaks," J. Plasma Physics, vol. 72, pp. 1153­

1157,2006.

[8] F. Halpern, G. Bateman, and A. Kritz, "Integrated simulations of saturated neo­

classical tearing modes in DIII-D, JET, and ITER plasmas," Physics of Plasmas,

vol. 13, p. 062510, 2006.

[9] G. Bateman and R. Morris, "Saturated tearing modes in toroidal geometry,"

Physics of Fluids, vol. 29, pp. 753-761, 1986.

[10] R. Morris, "Ph.D. ~hesis," Georgia Inst. ofTechnology, 1984.

[I I] C. Nguyen, G. Bateman, and A. Kritz, "Simulation of saturated tearing modes in

tokamaks," Physics ofPlasmas, vol. 1I, pp. 3460-3471,2004.

55



Vita

Jennifer Woodby was born in Landstuhl, Germany on August 3, 1982. She completed

the Abitur at St. Franziskus Gymnasium in Kaiserslautern, Germany in 2002. Later

that year she entered Princeton University and earned a Bachelor of Arts degree with

honors in Physics in 2006. She began work toward a Master of Science degree in

Mechanical Engineering at Lehigh University in the fall of 2006.

56



END OF
TITLE


	Lehigh University
	Lehigh Preserve
	2008

	Model for current drive stabilization of neoclassical tearing modes
	Jennifer Woodby
	Recommended Citation


	00439
	00440
	00442
	00443
	00444
	00445
	00446
	00447
	00448
	00449
	00450
	00451
	00452
	00453
	00454
	00455
	00456
	00457
	00458
	00459
	00460
	00461
	00462
	00463
	00464
	00465
	00466
	00467
	00468
	00469
	00470
	00471
	00472
	00473
	00474
	00475
	00476
	00477
	00478
	00479
	00480
	00481
	00482
	00483
	00484
	00485
	00486
	00487
	00488
	00489
	00490
	00491
	00492
	00493
	00494
	00495
	00496
	00497
	00498
	00499
	00500
	00501
	00502
	00503

