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ABSTRACT

Quantification of Stochastic Uncertainty Propagation for Monte Carlo Depletion
Methodsin Reactor Analysis

by
Quentin Thomas Newell
Dr. Robert Boehm, Examination Committee Chair
Professor of Mechanical Engineering
University of Nevada, Las Vegas

The Monte Carlo method provides powerful geometric modeling capabilitiesrder |
problem domains in 3-D; therefore, the Monte Carlo method is becoming popular for 3-D
fuel depletion analyses to compute quantities of interest in spent nuclear fueingcl
isotopic compositions. The Monte Carlo approach has not been fully embraced due to
unresolved issues concerning the effect of Monte Carlo uncertainties on théepredic
results.

Use of the Monte Carlo method to solve the neutron transport equation introduces
stochastic uncertainty in the computed fluxes. These fluxes are used to colbggse c
sections, estimate power distributions, and deplete the fuel within depletioratattul
therefore, the predicted number densities contain random uncertainties from tiee Mont
Carlo solution. These uncertainties can be compounded in time because of the
extrapolative nature of depletion and decay calculations.

The objective of this research was to quantify the stochastic uncertaintgatiopa
of the flux uncertainty, introduced by the Monte Carlo method, to the number densities
for the different isotopes in spent nuclear fuel due to multiple depletion tipwe Stae

research derived a formula that calculates the standard deviation in tlokee muchiber



densities based on propagating the statistical uncertainty introduced whenousilegl c
Monte Carlo depletion computer codes. The research was developed with the use of the
TRITON/KENO sequence of the SCALE computer code.

The linear uncertainty nuclide group approximation (LUNGA) method developed in
this research approximated the varianceferm, which is the variance in the flux
shape due to uncertainty in the calculated nuclide number densities.

Three different example problems were used in this research to calculate of t
standard deviation in the nuclide number densities using the LUNGA method. The
example problems showed that the LUNGA method is capable of calculatisitigard
deviation of the nuclide number densities apd EExample 2 and Example 3
demonstrated a percent difference of much less than 1 percent betweeiNtBA Bnd
the exact methods for calculating the standard deviation in the nuclide numb&eslensi

The LUNGA method was capable of calculating the variance afgtierm in
Example 2, but unfortunately not in Example 3. However, both Example 2 and 3 showed
the contribution from they term to the variance in the number densities is minute
compared to the contribution from tipe term and the variance and covariances of the
number densities themselves.

This research concluded with validation and verification of the LUNGA metlhbd.
research demonstrated that the LUNGA method and the statistics of 10htifleree
Carlo simulations agreed with 99 percent confidence in calculating trdastiasteviation
in the number densities angilbased on propagating the statistical uncertainty in the flux
introduced by using the Monte Carlo method in coupled Monte Carlo depletion

calculations.
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CHAPTER 1

INTRODUCTION

The increasing complexity in reactor designs suggests a need to nreexaethods

applied to spent fuel characterization. The ability to accurately ptediauclide
composition of depleted reactor fuel is important in a wide variety of applhsati
including, but not limited to, design, licensing, operation of commercial/research
reactors, and spent fuel transport/storage systems. Some of the newkaesga
projects like the Generation IV power reactors [5] or space reantghg also require
calculational methods that provide accurate prediction of the isotopic inventory [17, 1].
Coupled depletion calculations are typically applied in characterization of fuel
performance, lattice design, and spent fuel source terms for high-figetior analysis
[15]. Such methods apply a detailed neutron transport solution for a core or assembly
lattice as a function of burnup, while changes in isotopic inventories are testiosng a
numerical approximation for the Bateman equations for radioactive transmuib,
19, 1]. Coupled Monte Carlo (MC) depletion calculations use a Monte Carlo computer
code to solve the transport equation and another computer code to perform the depletion
of the isotopic inventories. These depletion calculations are solved in an iteratiegsproc
(over the depletion period) where the flux (solved with the Monte Carlo method}is use
as input to the depletion program that solves and updates the isotopic inventories for the
next transport calculation [19].

Deterministic solutions are generally favored over Monte Carlo sokifor the

transport phase of such depletion analyses because of their ability to genecateate a

17



spatial distribution of fluxes over a complete problem domain. The Monte Caftoanet
however, can provide powerful geometric modeling capabilities for largegonobl

domains in three dimensions (3-D) and usually involve less approximation of emergy
geometry than deterministic solutions [22]; therefore, the Monte Carlamoheth

becoming more popular for 3-D fuel depletion analyses to compute various quantities
interest including isotopic compositions of spent nuclear fuel. Such approaches have not
yet been fully embraced due to unresolved issues relative to the effect of Géolute
uncertainties on predicted results.

Use of the Monte Carlo method to solve the transport equation introduces stochastic
uncertainty in computed fluxes. These fluxes are used to collapse crossssestiomate
power distributions, and deplete the fuel within depletion calculations; therefere, th
predicted number densities contain random uncertainties from the Monte Carlo solution.
These uncertainties can be compounded in time because of the extrapolative nature of
depletion and decay calculations. Additionally, such errors are known to have a spatial
component. The flux errors will be smallest in the most reactive regions aietdhe f
(where greater sampling occurs) and will be larger in the lower fluarme@f the fuel.

There is a need to determine and understand statistical uncertainties angagapon
in Monte Carlo depletion calculations.

According to a 2006 workshop on simulation and modeling for advanced nuclear
energy systems, co-sponsored by the Department of Energy (DOE), one of tieeédsy
of the Global Nuclear Energy Partnership (GNEP) program is to have agalablictive
simulation tools that include a sound and credible prediction of uncertainties and biases

[17]. These are particularly important for the design of new technologies arteefac

18



based on novel processes. The attendees at the workshop discussed uncertainty
propagation for systems as one of three primary research challengesubjtat of
predictive estimation for application in GNEP [17]. Also, in a presentation atdhéeM
Carlo user’'s group meeting in the UK, the Monte Carlo N-Particleredtd (MCNPX)

team from Los Alamos National Laboratory (LANL) discussed a newrea MCNPX

for burnup and depletion calculations. In this meeting, they also acknowledged, as part
of future work, the need for calculating number density error and error progagat

during the depletion process. The MCNPX team also discussed the need for
benchmarking Monte Carlo depletion calculations [10].

Monte Carlo methods are a powerful and proven tool for the nuclear engineering
community. Coupled Monte Carlo depletion methods add the power of the Monte Carlo
method with a depletion code. This allows for the analysis of isotopic inventories, fuel
performance, lattice design and spent fuel source terms [15]. Monte Canludsate
based on probabilities and therefore have stochastic uncertainties and propagated
uncertainties in the results of a Monte Carlo depletion calculation. However, these
propagated uncertainties are not reported to the user. Understanding and quamtificat
of the stochastic uncertainty propagation in Monte Carlo depletion methods will give
users more confidence in the results of this method and will also give users tyaabili
use this method in addition to deterministic depletion methods. Quantification of the
stochastic uncertainty propagation in Monte Carlo depletion methods will produce better
predictions of isotopic compositions, which are essential to optimize transmutat

recycling and waste disposal.
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CHAPTER 2

LITERATURE REVIEW

Monte Carlo calculations work well for eigenvalues because theseoasd gl
guantities that converge much faster than local spatial quantities [15, 13xaRqple,
the average flux over the entire problem domain is a relatively easy quardgirhate
because every particle history contributes to this value [13]. However, if thetgudnti
interest is the flux in a particular region (volume), then only the particksngathrough
that region will contribute to the estimate of the flux in that region [15, 27]. Fewer
particles mean less sampling in that region, which leads to higher uncestagtiell as
slower convergence [15, 27]. The flux is a quantity that is not directly calcuteded i
Monte Carlo calculation but is rather computed based on some form of estimator. For
example, Monte Carlo N-Particle (MCNP), MCNPX, and KENO V.a use a teackh
estimator to compute the fluxes in a Monte Carlo simulation [15, 27]. The tradk-leng
estimator is favored over the collision estimator for the flux because witinaitk length
estimator every particle that passes through the volume contributes to thetféuras
with the collision estimator only those particles that collide in the volumeantribute
to the flux [13]. The track-length estimator is usually reliable because dhe
frequently many tracks in a volume (compared to the number of collisions), which leads
to many contributions to the estimator [27]. The flux in a given volume (cell) is

estimated by summing the product of track lengths and weight of each parti@é in t

volume and then dividing by the given volume gor=WT, /V where W is the weight of
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the particlesT, is the track lengths, V is the volume, aﬁvdis the average flux in the

given volume [15, 27].

The nature of Monte Carlo simulations makes it extremely difficult to obtaurate
fluxes in locations that are far removed from the most reactive region of lgeisna
domain. Since the accuracy of the neutron flux is therefore a function of position in
Monte Carlo simulations, the accuracy of the depletion solution (isotopic joedjcis
also spatially distributed [4]. For axially long rods, such as those used in caalmer
light water reactors (LWR), the axial variation in the neutron flux produces a non-
uniform burnup distribution along the axial length of nuclear reactor fuel asssmbili
The axial distribution is typically characterized by the end regions dtighewhich have
a significantly lower burnup value with respect to the assembly-average burnup value
Figure 1 shows an example of the axial burnup distribution of a fuel assembly [24]. The
under-burned regions are dominant in terms of reactivity and must be represented
correctly to ensure subcritical margins for fuels that have a moderaghtburinup
(beyond 20 gigawatt-days/metric ton uranium — GWd/MTU). Numerous studies have
been done to quantify the reactivity effect associated with axial burnup distni&{@i4].

In general, the authors of these studies have shown that assuming a unifobmraxigl

is conservative for fuels with low burnups but becomes increasingly non-catnserfor
fuels as the burnup increases [24]. This means that for moderate to high burnups, the
uniform axial burnup distribution assumption underestimates the reactive in @ syst
and as an approximate rule-of-thumb the effect is on the order A/1%GWd/MTU

[25].
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Figure 1. Example of a PWR fuel assembly axial burnup distribution [24].

Like the burnup, the neutron flux has an axially distribution along the fuel assemblie
in a reactor, which produces a neutron flux that is not spatially uniform for typaetior
systems. This results in non-uniform statistical uncertainties in the cedhpaction
rates in Monte Carlo simulations. For regions where the flux is low @xis of LWR
fuel assemblies), computed quantities like isotopic compositions may have large
statistical uncertainties. However, in currently available Montéo@apletion codes

these statistical uncertainties are not calculated or reported to theQasesequently,
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users have no indication of the reliability of their results in such regions. This @an be
significant obstacle to the effective use of Monte Carlo methods for design an
optimization studies of advanced fuel designs. Additionally, for applications like
criticality safety for spent nuclear fuel, the under-depleted end regione tfdl tend to
dominate [2] the reactivity (negatively — meaning a higher readtiaitg must be
accurately represented [2, 24, 25].

Coupled Monte Carlo point-depletion methods have been developed to varying
degrees. An early implementation was the MOCUP package that was based on MCNP
and the Oak Ridge Isotope GENeration 2 (ORIGENZ2) computer code. This paakage h
never been fully coupled and automated, thereby requiring limited user intervention in
completing a sequence of calculations. An improved implementation of this code
coupling was accomplished with MONTEBURN, which uses scripts to couple MCNP
calculations with ORIGENZ2. Both of these codes suffer from limitations direto t
selection of codes they use. ORIGEN2 has a more significant limitatandeit uses
fixed cross section libraries selected based on user selection approptileeifbended
application. MONTEBURN provides for cross section updates of the ORIGEN2 data,
but it is limited to nuclides and temperatures in MCNP and cannot propagate
uncertainties. KENOREST is another package (developed in Germany) based on a
coupled arrangement between KENO V.a from the modular code system fompegfo
Standardized Computer Analyses for Licensing Evaluations (SCALE) andREe G
OREST package. KENOREST has been developed for LWR lattice analysisiesl m
geometric assumptions that limit its general applicability, and has showrfaonpevell

relative to other codes for OECD computational depletion benchmarks [4]. ThORNRIT
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control module, part of the SCALE 5.1 package, can perform 3-D depletion calcslati
using the KENO Monte Carlo transport code and can also perform 2-D detaominist
depletion calculations using the NEWT discrete ordinates code [15]. Some other Monte
Carlo depletion codes include: MCNPX/CINDER90, ALEPH, MCB1C, SWAT2,
McCARD and MVP-BURN. MCNPX/CINDER90 is the MCNPX team’s version of a
Monte Carlo depletion code and couples MCNPX with CINDER90, which is used to
perform the isotopic depletion with a “burn card” added to the MCNPX input deck [9].
ALEPH is a Monte Carlo burnup code that couples any version of MCNP or MCNPX
(neutron transport) to ORIGENZ2.2 (depletion) [18]. MCBL1C is a code that integrates
MCNPA4C (transport) to a novel Transmutation Trajectory Analysis (TTA) code
(depletion) for Monte Carlo depletion analysis [14]. SWAT2 couples the Monte Carlo
code MVP with ORIGEN2.1 to perform depletion analysis by the Monte Carloochet
[11]. However, none of the above code packages address the issues that are most
relevant for Monte Carlo driven depletion, which are determination of propagated
uncertainties in ORIGEN results (depletion calculation) or improved perfoemanc
resolving fluxes in low-importance regions [4].

Calculating and quantifying the uncertainty propagation in Monte Carlo methibds wi
not be a simple task. There have been few studies that have considered theoretical
formulations developed to quantify the uncertainties of the Monte Carlo tallieglenucl
number density estimates, and their propagation behavior with the iterative aduwainceme
of a depletion calculation. A burnup matrix method (by Takeda) was developed and
aimed at estimating the effect of uncertainty propagation on the nuclide ndemsgties

in Monte Carlo burnup calculations. Since then, an equation that can predict the variance
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(var) of nuclide number densities after burnup calculations was presented [19]. The
method was used to examine effects of uncertainty propagation of nuclide number
densities on Monte Carlo burnup calculations [19].

Takeda et al. [21] derived a formula that evaluates the variance of nuclidernumbe
densities at the end of a burnup period. This is accomplished using the burnup matrix
method [19] which considers the change in number densities with burnup for a given time
step. The derived formula evaluated the error propagation in the number densities of
individual nuclides over a burnup period. The equation considered the uncertainties in
cross sections and the statistical error in the Monte Carlo calculatiomasairces.

The method used a burnup matrix which was composed of reaction rates and decay
constants. The reaction rates were calculated using the Monte Carlo ntle¢nefdre,
error in the reaction rates came from the following three terms: erromssis ections,
errors in number densities, and the Monte Carlo statistical error. The dothgsd on

a simplified fast reactor core and concluded that the error in the numberesethsd to
the statistical error was very small in comparison to the error in thesgossns [21].

Tohjoh [22] investigated the effects of error propagation on Monte Carlo burnup
calculations of an 8x8 boiling water reactor (BWR) fuel assembly. The authmygad
a rather simplified equation that predicted the variance of the nuclide ndermties
after burnup calculations and verified the equation with numerous separate Mdate Ca
simulations. The formula used in the article was set up as a ratio in the numbégensit
between the'l burnup point and the previous burnup poifitXipoint). The equation
focused on the number densities of nuclides after the burnup calculation when the

variation of the nuclides was dominated by absorption reactions. The fornwla als
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evaluated the changes in errors in the number densities with a change in theafumber
burnup calculation points (steps) in a simulation. The method demonstrated that the
effects of error propagation on Monte Carlo burnup calculations of an 8x8 BWR fuel
assembly were low up to 60 GWd/MTU [22].

Shim et al. [19] researched the development of a formula for uncertaintyatiopa
in Monte Carlo depletion analysis and examined quantitatively the propagatidrofre
uncertainties in Monte Carlo tallies for important reactor parametaishwncluded
reaction rates and nuclide number density estimates from solutions to the depletion
equation as a function of depletion time steps [19]. The authors expressed the
uncertainties involved in Monte Carlo estimates on reaction rates (od {@irameters)
and the nuclide number density estimates in terms of the covariance (cov) of random
parameters that contribute to the uncertainties [19]. The method by Shim [19] was more
general than the method by Tohjoh [22] in that it did not limit the variation in number
densities to when they were dominated by absorption reactions, but included aoy react
that lead to the number density of the nuclide of interest and also the déeaynatlide.
In this sense the methodology developed by Shim [19] was like a compilation of the
journal articles by Tohjoh [22] and Takeda [21]. To verify the formula presented, the
authors conducted a Monte Carlo depletion analysis for a simplified 7x7 fuelbdgsem
and a 17x17 PWR fuel assembly, and found that the formula produced results in good
agreement with those from the McCARD routine, which is a Monte Carlo depletion
analysis computer code [19].

Garcia-Herranz et al. [7] developed a hybrid method for uncertainty propagation i

Monte Carlo depletion calculations. The authors based the method on combining aspects
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of two different methodologies to propagate the uncertainties of the nuclide invientory
combined Monte Carlo and burnup calculations: one methodology based on
sensitivity/uncertainty analysis and the other methodology based on raadguling
techniques (uncertainty Monte Carlo method). The authors investigated the influence of
uncertainties in the activation cross section and statistical errorsnett®n flux

spectrum on the calculated actinide inventory along consecutive spectrumedepleti
steps. The authors focused on examining a benchmark problem of a high temperature
gas-cooled reactor (HTGR) for plutonium burning applications, and the results showed
that there are large uncertainties found at high burnup (80 GWd/MTU). The authors
noted that the statistical errors are negligible compared to the eftbet @foss section
uncertainties but state that if the flux relative errors are higher ¢ngmetcent, then the
impact of the statistical errors is not negligible on some isotopes evercdritréoution

is mainly due to the cross section errors [7].

The methods developed different formulas to investigate the propagation of
uncertainty in the nuclide number densities in Monte Carlo depletion calculations.
However, the equations in the articles used the same techniques in order to do so, namely
developing covariance matrixes by applying some kind of sensitivity methoght ¢lxee
equation by Tohjoh, which looked at ratios in the nuclide concentration between time
steps [77, 19, 21, and 22]. The authors of the articles took into account other sources of
uncertainty besides the statistical uncertainty from using the Monte iGatihmd.

Therefore, the methods can not develop a complete understanding of the propagation of

the statistical uncertainty in the fluxes calculated by the Monte Catloau.
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CHAPTER 3

METHODOLOGY

The objective of this research is to develop an understanding and expresdien for t
guantification of stochastic uncertainty propagation of the flux uncertainodunted by
the Monte Carlo method in the number densities for the different isotopes in spent
nuclear fuel due to multiple time steps. The research derives a formulkatzdche
standard deviation (sd) in the nuclide number densities based on propagating the
statistical uncertainty introduced when using the Monte Carlo method to solve the
neutron transport equations in coupled Monte Carlo depletion computer codes. The
research was developed with the use of the TRITON/KENO sequence of th&SCA
computer code. After the methodology is proven, it could possibly be adopted and
integrated into the TRITON/KENO sequence of the SCALE computer code by th
SCALE development team at Oak Ridge National Laboratory (ORNL). rticylar, the
work focuses on development of an approach to determine the uncertainty in isotopic
predictions based on the compounded effects of multiple calculations (depletion time
steps) with stochastic uncertainties in each time step from the fluxetatadcby the
Monte Carlo method. To help validate uncertainty estimates for isotopic coticentra
predictions from Monte Carlo depletion calculations, results can be comparetbfnds
concentrations from a deterministic calculation. Note that both Monte Carlo and
deterministic methods are subject to biases and uncertainties in data andgnodel
approximations. This research seeks only to estimate the stochastiainfyceart

present in deterministic methods. The statistical development for propatatistical
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uncertainties in the isotopic concentrations involves developing a formula thanideter
the uncertainties in the isotopic concentrations and presents these unesrtaitite user
in the output of the computer code.

This research investigated the propagation of the stochastic uncertainty by
propagating the uncertainty of the flux to the uncertainty in the cross se oo
distribution, and nuclide number densities. The uncertainty was also propagates in ti
by using multiple time steps during the calculation. The research involvediladiet
tracking and calculation of the uncertainty in the different quantitiesukesffects
through the flow of the program. In doing so, this work should develop an understanding
of the propagation of the stochastic uncertainties with the effects of power deydligy
length, and number of libraries per cycle.

The approach pursued in this research was to develop a complete mathematical
expression for the standard deviation of the nuclide number densities based on the
stochastic uncertainty in the fluxes. The study involved a very detailéghtyaaf how
and where any information in the fluxes was used for the calculation of the number
densities. The method propagated the uncertainty of the flux to the number densities
considering that the flux will produce uncertainties in the cross sections and power
distribution. Since uncertainties in the flux cause uncertainties in the potdyutisns,
which were used to balance the power distribution between different mixtures (when
depleting more than one mixture), the expression developed needed to account for
uncertainty in the power distribution. The research first focused on only oneertixtur
develop an understanding of the phenomena that govern uncertainties in the isotopics.

Then the research added in the effect of the uncertainties calculategovwdie
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distribution caused by the uncertainties in the flux. These topics were bebeved t
represent the primary issues to be resolved in the propagation of stochasticnipcerta

The initial step was to develop a clear understanding of how the TRITON sequence
operates and more specifically how information was transferred &etive different
SCALE modules in the TRITON sequence. The output quantities and the algorithms tha
calculate those quantities from the individual modules were also requiredxaraple,
how the program collapses the cross sections and determines the readiorate
essential to propagating the stochastic uncertainty to the number densities.

The next step in this process was to calculate the standard deviation in the number
densities for one time step, which gave the standard deviation at the end of tisa¢pime
Next a study of sequential time steps was performed to determine if andomedations
existed in the standard deviations of the number densities from one time step td.the nex
This lead to being able to calculate the standard deviation in the numbereddosiéiny
number of time steps in a calculation. Calculating and understanding the standard
deviation in the number densities at each time step could also lead to the ipos§ibil
being able to fit the standard deviation in the number densities to some kind of
mathematical expression (linear or polynomial). It was anticipatednatandard
deviation in the number densities will increase with each time step becahse eac
sequential time step will have the stochastic uncertainty plus the unceinaimgy
nuclide number densities. The uncertainty in the nuclide number densities was caused by
the standard deviation of the nuclide number densities from the previous time step.
However, the rate of increase could be small, which means that each praddte

uncertainty but only a small amount of uncertainty.
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The formulas developed in this research are based on first order pestuthabry.
Therefore, the effects of using first order perturbation theory weretigat to
determine if it was appropriate for the equations that were derived irgieigrch. Three
example problems were used in this research to investigate the approxiimativag
developed in the research and to examine the use of first order perturbation thveory. T
analytical examples, adopted from an ORNL paper by Williams [26], arféxdple 1
which is a one-group, single nuclide infinite medium system, and 2) Example 2 which is
a two-group, two nuclide infinite medium system. Additionally, Example 3, which is
developed herein, is a three-group, four nuclide infinite fuel pin lattice syStbentime-
dependent behavior of the nuclides is found with the equations given in chapter 4.

Linear algebra and a suite of mathematical techniques are used to develop the
expressions. Variances and covariances are determined using standamalistatist
methods and definitions. Chapter 5 discusses the results of this research, andancludes
section on the effects of first order perturbation theory, which confirms tsiabfder
perturbation theory is appropriate for this application and is capable of abcurate
describing changes in the quantities of interest. Nuclide number densaregrst
deviation and variance values are reported with two to three decimal pldtes. A
calculations in SCALE and MathCad are conducted with double precision, thevedore t
to three decimal places are considered accurate in this research. dfad@lss the
convention used in the SCALE computer code [15]. The fluxes calculated with SCALE
also generally have a percent deviation of under 0.5 percent, thus making the vglues ver

reliable.
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3.1SCALE Computer Code Package

The research was conducted with the SCALE computer code, which is made up of
many different code modules (or sequences). The control modules used in thehresea
are the T5-DEPL and CSAS modules for the Monte Carlo simulations and the T-DEPL
module for the deterministic calculations. These control modules call other mtwlules
perform specific calculations and are briefly discussed in the next sectiadeBean
refer to the SCALE manual for an in-depth discussion of the SCALE computer cdde [15
section 3.1.1 gives readers a general overview of the flow of information in th&Fb-D

sequence.

3.1.1 Simplified View of How SCALE Operates

This research was based on the T5-DEPL sequence of the TRITON module in
SCALE, which uses the Monte Carlo method to solve the neutron transport equation via
KENO V.a. In the calculational sequence, TRITON first reads the problem inpciksche
geometries and problem parameters, and prepares input information for theioalcula
Cross section processing is then performed using either CENTRM, WORK&ERMC,
or NITAWL. The KENO V.a module then solves the transport equation using the
isotopic concentrations at the beginning of the time step, either the time zero
concentrations or the concentrations from the previous time step after teeahepl
calculation. KMART reads the KENO restart file and creates thregpgrross sections
within each mixture in the problem that are averaged over each mixture. The COUPLE
module then uses those cross sections, creates one-group effective cross sadtions, a

uses them to update burnup dependent cross sections in the ORIGEN-S library.
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ORIGEN-S performs point depletion/decay calculations for each mixture. Tuies r@fs

the post-processing by KMART also provide power distributions that are noechalyz
TRITON to match a specified local power. ORIGEN-S uses the updated crass sect
library to predict the isotopic inventory in the future (next depletion time sté@g. T
isotopic inventory is then passed back, as an input, to the beginning of the program flow
(cross section processing program), and the process is iterated for all depretisteps.
TRITON uses a predictor-corrector approach in which cross sections estifoaa mid-
step (predictor phase) are used in a full step depletion (corrector phase). IOnce al
depletion steps have been completed, the OPUS module is invoked to extract specific
information requested by the user. Figure 2 illustrates the execution path éotte M
Carlo depletion calculation using the TRITON/KENO sequence of the SCALButem

code.

33



TRITON
BONAM| (e
J Repeated
for each
NITAWL depletion
fime siep
TRITON COUPLE o
J I
KENO V.3 ORIGEN-S Repeated
for each
depletion
b 7
KMART TRITON LT
TRITON 2
I OPUS Repeated
for each
matenal to be
TRITON pasEmoLCEssed

Figure 2. Execution path for the TRITON/KENO sequence in SCALE.

3.1.2 Verification of SCALE Computer Code

The research was conducted with the release version of SCALE 6.0 (RSICC code
number CO0750MNYCPO00). The SCALE computer code was installed and was verified
on a personal computer according to the SCALE manual. All computer simulatians we

preformed on the same computer.
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3.2Assumptions Used in Research
There is no uncertainty in the initial nuclide concentrations. Knowledge of the
isotopes in fresh nuclear fuel assemblies is considered very accurate.
There is no uncertainty in the nuclide decay constantsThe half-lives of
nuclides are considered well known; therefore, their decay constantslare w
known.
There is no uncertainty in the fission yields. These are accepted as ovetl kn
values.
There is no uncertainty in the multi-group cross section vattjesKor the
purpose of this study, the multi-group cross sections have no uncertainty. The
uncertainty in the cross sections caused by the uncertainty in the fllwoiséed
for, but no uncertainty is considered in the multi-group cross section values
themselves.
There are no correlations between energy groups. For this to be done, it would
require massive tracking in the Monte Carlo code. Since neutrons gefesally
most of their energy in a couple of collisions before being absorbed, this is not an
unrealistic assumption.
There are no correlations between the statistical uncertainty in tieaictime
step and the statistical uncertainty in the previous time step, because @ach tim
step is an independent Monte Carlo simulation [21].
The statistical uncertainty is independent of the nuclide number density. This

assumption was also used by the authors of previous literature [19].
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e The parameters (cross sections, flux, etc.) are constant during a tim®stem
a given time step, parameters are constant but can be updated afteneasthi

e Depletion is done under constant power which means the power does not change
during a time stepAP = 0 during any time step). Reactors operate at nearly a
constant power; thereby making this reasonable.

e There is no uncertainty considered in the number densities 6thand®**Np
isotopes, when these isotopes are included in the extended equations of Example
3. The isotopes decay quickly®5Pu, compared to the 30 day time step used in
this research; therefore there is no accumulation of these isotopes in the
calculations performed with this research. The half-livés of and®**Np are

23.47 minutes and 2.355 days, respectively.

3.3 General Equations and Variance Terms

The general equations are presented for a change in variables and thewarianc
these variables. The general equations were developed with first ortdebaton
theory. The equations are used to investigate how a change in the flux shaperaffects a
propagates to the other parameters affected by the flux shape; namelgsthseections,
the power distribution, and the nuclide number densities of the system. These are the
terms that are affected by the propagation of the statistical uncertathtyflux from
the Monte Carlo simulation. The discussion starts with the uncertainty inxhehthpe,
which is the source of uncertainty in Monte Carlo calculations and contintrethei

terms affected by the flux shape.
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In this research the uncertainty in the flux shape is made up of two terms: the
statistical uncertainty in the flux shapgs)( and the uncertainty in the flux shape due to
uncertainty in the number densitigs,. The change in the flux shape is

Ay = Ay, + Ay, whereAysis a change in the statistical uncertainty in the flux shape

andAyy is a change in the uncertainty in the flux shape due to a change in the number

density. The\yy term can be evaluated layy , = Z—%AN where N is a vector of all

nuclides in the system. The variance of Alyg term isvar(y ) = E[(Ay/S)ZJ where E

is the expectation operator aff(AX)?* is]the expected value ¢AX)?. The variance
! 10
of the Ay term isvar(y, ) = E[(Ay/N )2]: (%j coV[N, NTI%j where

COV|N, N is the nuclide covariance matrix. The variante @ then

varly ) = E[(Az//)zjz var(y,) + var(y,) where correlations between energy groups are

assumed equal to zero and the statistical uncgrtigimdependent of the uncertainty due
to a change in the number density.
The effective cross sectiosef) is defined by

;O-gl//g ZO'gl//g

, or with thermal normalization of the cross sauio, =

:_gl/jg ZV/g'

O-eff

where g’ is the first thermal group of the flux. The charig the effective cross section

] oo . . . .
is Ao, = —= Ay, and the variance in the effective cross section is

oy,
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2
var(aeff ): E[(Aaeff )Z]z 2!(2076“] * var(wg)] where covariances between groups are
g g

neglected.

The power of the system is defined By= f®>Q,N,o; wherep equals 1.610"° (a
i

constant conversion factor), and is obtained froe@\3CALE manual [15]. The change
in the flux normalization that results from the gvweonstraint defined above is:

AP:EA(D-F op AN, + op Ao

oD oN, ' Odo, '

i ij

constanpower= nochangen P= AP=0
0= a—PAd) +6—PANi +8—PAoi.
oD ON, oo, :

A= LN+ F g, [
oN, 6o, ') P

oD
The variance in the flux normalization is

2

oP oP 1
var(®) = E|(A®)? |= _(aN_ AN+ A, ]*5

i ij -
oD

The equation for the change in the nuclide nundeesity is

. i i j _
AN/ :ZaNf AN{ + N AAJFZONFAV/g where N/} is the final number density
oN} oA ~ oy,

of the /" nuclide (at end of time step) amd}, is the initial number density of th@ i

nuclide (at beginning of time step), akd s the transition matrix containing rate
coefficients for radioactive decay and neutron gitsan [15]. The equation for the

variance of the] nuclide number density is given by the followirguation
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. . . . . . T
| el [oNg oNi o oNg ON. oN.  oN|
varty) = Efany ) ]{aﬁFi A o F}[CN]LNF‘ A o F}
0 V/g 0 l//g

whereC,, is the covariance matrix f,, A, andy .

3.4 Problem Formulated

The uncertainties in the isotopic number densdresproduced by the statistical
uncertainty in the flux shape from the Monte Cailoulation, and the propagation of the
statistical uncertainty in the flux shape to thessrsections, flux normalization (the
power constraint), and finally the number densitiesnselves. These effects are also
propagated in time as the simulation progresses &nee time step to the next time step.

The preceding section showed that one sourceagrtainty in the isotopic number
densities comes from the uncertainty in the fluapgh A change in the flux shape comes
from a change in the statistical uncertainty atiange in the nuclide number densities.
A change in the flux shape due to a change in titéde number densities can be
evaluated by taking the derivate of the flux shaph respect to the nuclide number

densities times a change in the nuclide numberitiiensr mathematically

Ay =Ay + Ay, whereAy, = %AN. The variance ofy is

;
var(y, ) = o COV[N, NT] 2% | where N is a vector of all the nuclides in the
"loN oN

system, which is the exact equation for a changledrlux shape. As seen in the
eqguation, one must know or calculate the derivativihe flux shape with respect to the
nuclide number density for each nuclide in theeysto exactly calculate the uncertainty

in the isotopic number densities. The research hses the Monte Carlo method, which
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means running separate Monte Carlo simulationsdch nuclide in the system to
accurately describe the change in the flux shapaa@a change of the nuclides in the
system, or thyy term. This is not very practical when the numitdfenuclides in the
system is large. If needed, ORIGEN can track dlosz000 different isotopes;
therefore, calculating these derivates can quibkiyjome extremely time consuming and
computationally inefficient. A method that couktiuce the number of Monte Carlo
simulations needed to describe theterm would be desirable and could solve these
issues. The next section describes an approaeh thkt evaluates thg, term while

reducing the computational load needed to desthndey term.

3.5The Linear Uncertainty Nuclide Group ApproximatittyNGA) Method
The previous section showed a few problems arfsnvirying to accurately describe
theyn term. The LUNGA method is developed to approxertheyy term in this
research. The LUNGA method appears to approxithat&yy term in a way that
reduces the number of Monte Carlo simulations neé¢alelescribe thgy term and only
requires one additional simulation per area ofregeor material being depleted. The
equation being used to approximate ygerm in the LUNGA method is

o,, ~Ayy =y'—y wherey' andy are the fluxes of the perturbed and unperturbed

systems, and the solutions for the fluxes come fusing the Monte Carlo method to

solve the neutron transport equation. The neuteorsport equation is
1 8 " A * " r * r * 3
——y(p)+Q* Vy(p)+ N t)* o (FE)* w(p)

Vv ot
= N(F,t)* [Js(f, E.Q - EQp(p)+ Zif)wf (E')W(ﬁ)}

E.Q
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wherey(p) = 1//(?, E,f),t). Defining the Boltzman operator as B by
B = B[N(F,t),5(f, E)] whereN is a vector of all the nuclides in the systefjs the

cross section vector with entries correspondinipécelements o , and the notation is
adopted from Williams [26]; the neutron transpaytiation becomes
10 (5

=Y 5)=B(N,o)y(5) [26]. The steady state neutron transport equasion
v

B(N + AN}y’ = 0 for the perturbed system amB{N }y = 0 for the unperturbed system.

The results of initial calculations showed that UNGA method will over predict
the standard deviation in the isotopic number dessihowever, this would be a
bounding value for the standard deviations, andrtieestandard deviations would be
smaller than the values calculated with the LUNGétmod. The results of these
calculations also demonstrate that the LUNGA methitidncorporate some of the
covariance terms present in the exact equatior LLINGA method was initially
investigated with a simple pin cell model in XSDRNd KENO V.a for a system
containing either 2 or 15 nuclides. Table 1 otigwss the standard deviation of the
term, so the value calculated using the LUNGA sotutould be compared directly to
the value calculated using the exact solution. rEselts in Table 1 indicate that the
approximation of they term using the LUNGA method can calculate thedsash

deviation of theyy term accurately and therefore should be investdyairther.
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Table 1. Preliminary comparison of ggj between exact and LUNGA methods.

Standard deviation in the total flux (n/cmz*s)
XSDRN
Exact Percent difference |Exact solution|Percent difference
LUNGA solution (no |(LUNGA and exac - |(with COV (LUNGA and exact
solution CQOV terms) |no COV) terms) with COV)

2 nuclide system 1.09E+00 8.18E-01 3.3E+01 1.09E+00 -1.2E-01
15 nuclide system 6.80E-01 4.27E-01 5.9E+01 6.86E-01 -9.2E-01
KENO

Exact Percent difference [Exact solution]Percent difference
LUNGA solution (no |(LUNGA and exac - |(with COV (LUNGA and exact
solution COV terms) |no COV) terms) with COV)
2 nuclide system 1.92E-03 1.45E-03 3.2E+01 1.94E-03 -1.4E+00
15 nuclide system 1.20E-03 7.49E-04 6.0E+01 1.22E-03 -1.5E+00

There was an interesting side discovery when cctittiyithe research to examine the
differences between the LUNGA and exact methodsgusie pin cell model. Some of
the derivatives of the flux shape with respecti®ruclides (found using the central
difference method) are equal to zero, which meastgage in a particular isotopic
number density does not affect the flux shape. dédravatives of the flux shape with
respect to the nuclides are shown in Table 2 &yrséem containing 15 nuclides. This is
an interesting discovery because it means thatribauof the covariance terms in the

dw /N covariance matrix will be equal to zero. This eblglad to being able to group

some nuclides together and take the derivativheflux shape with respect to that
group, which could lead to a more accurate ansinaar the LUNGA method developed
in this research. There is also the potential$bpairate Monte Carlo simulations only
have to be executed for the nuclides where theatare of the flux shape with respect to
number density is not equal to zero, which woulehgjly reduce the number of separate

Monte Carlo runs needed to calculate the solutginguthe exact method.
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Table 2. Derivatives of the flux shape with resgemumber density.

Change of flux shape

Change in flux from with respect to change

perturbation (n/cm?s) |in number density
Nuclide |pert. up pert. down |dW/dN
u-235 3.48E+01| 3.50E+01 -7.0E+03
u-238 3.47E+01| 3.52E+01 -2.6E+02
zr-93 3.49E+01| 3.49E+01 0.0E+00
sr-90 3.49E+01| 3.49E+01 0.0E+00
tc-99 3.49E+01| 3.49E+01 0.0E+00
xe-135 3.49E+01| 3.49E+01 -3.0E+07
sm-149 | 3.49E+01| 3.49E+01 0.0E+00
pu-239 | 3.49E+01| 3.50E+01 -1.5E+04
pu-240 | 3.49E+01| 3.50E+01 -1.1E+04
pu-241 | 3.49E+01]| 3.49E+01 -1.2E+04
pu-242 | 3.49E+01| 3.49E+01 0.0E+00
am-241| 3.49E+01| 3.49E+01 0.0E+00
cm-244| 3.49E+01| 3.49E+01 0.0E+00
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CHAPTER 4

EXAMPLE PROBLEMS

The research uses two analytic example probleatsatie described in the following
sections and are adopted from a report by Willifge$. Example 1 is a single group,
single nuclide infinite medium system, and Exanle a two-group, two nuclide
infinite medium system. These example problemsideotwo different systems in
which equations for the variance in the number diesscan be derived for each system.
Since both of these example problems have anagtidions, the examples allow for the
equations for a change in the number densitieg tchiecked and compared with the
direct perturbation of the analytic equations fa two systems in order to determine if
using first order perturbation theory is acceptaldf@ample 2 allows for the derived
equations of the LUNGA method (method developeithis research) to be compared to
the exact equations (the exact method) for findmegchange in the number densities.

A final example system, Example 3, is developa@ihgo further compare the
LUNGA and exact methods. Example 3 is a threeqgréaur nuclide infinite fuel pin
lattice system that contains an isotope from neutapture and a fission product.
Example 3 is a semi-analytic example, which casddeed analytically with the aid of
mathematical software or with using the flux shealkeies calculated with the Monte
Carlo method (SCALE computer code). This meandvibete Carlo solution can be
compared to the analytic solution for the exact AdBIGA methods for finding the

standard deviation in the number densities. Exar8p$ also used to further investigate
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the use of first order perturbation theory in tl@search and could serve as a benchmark

problem for the SCALE computer code.

4.1 Governing Equations
The governing equations for Example 1, Exampkn®, Example 3 are presented
next. The equations for a change in the variadshesthe variance of the variables for the

example problems are derived from these govermjogtons.

4.1.1 Single Group, Single Nuclide Infinite Medium Systéaxample 1)

Example 1 provides an analytical example to ingas the variance of a single
nuclide and to investigate the use of first ordettyrbation theory.

The equations for this example [26] include: ftbg shape equation, the flux
normalization equation, the transmutation equatowl, the initial condition. Those
equations are:

0= No(aa —Avo }1/

W Oo; =P
dN
P —o, PN,

The initial condition of the system is N(0)=2.232B+atoms/cth The equations can be

solved analytically and yield the following solut®[26]

A=t _ %
k, vo,

D= P
yNyo g

N = N(t) = N,g "

wherel can be found independently of Bindyo, andyyg is taken to be unity.
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4.1.2 Two-group, Two Nuclide Infinite Medium System (Expia 2)

Example 2 still considers an infinite medium, the system is expanded to include
two nuclides and two energy groups. The exampdevalfor some additional effects to
be investigated in the system, such as having pheltiuclides and multiple energy
groups. The example is also used to investiga&teisle of first order perturbation theory
and the acceptability of using the LUNGA methodheBolution is slightly more
involved than the previous example but can stilbblwred analytically [26]. The

equations for the flux shape [26] are:

{ N, (0o} 0 } {m} {o Nl(t)uaiz} {zﬂ o
- Nl(t)o-il—z Nl(t)o';z + Nz(t)ofz & 0 0 &

The flux normalization equation B = N,o},w,® [26]. The nuclide transmutation

equations ar%_ (021% Tl )* @ 0 } { Nl} d { N1:|

YooY @ _(O_csz/zq)+A) N, :a N,

wherey is the yield of N from fission, and\ is the decay constant o%[\26]. The initial
conditions of the system include(8)=1.00E+24 atoms/cfrand N(0)=0.00E+24

atoms/cm. The solutions to the above equations after ione $tep are

N, (t) = N, (Q)e ™!

N, (t) =N, (O)e—azzt n M [e‘au‘ e ]

22 ~ &4y
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where @ are the coefficients of the matrix in the nuclicensmutation equations [26].

After substitution of the coefficients, the nuclicl@ansmutation equations vyield
Nl(t) — Nl(O)e—(O';ﬂ//l*'o';z'//z)@t

N, (t) = N, (0)e ez}
N, (0)70'1 WP

+ *z
2 1 1
(Gcz';qu) + A)_ (Gall/ll T oLV, )CD
Whel’e 7= [e—(aéll//ﬁaizll/z )(Dt _ e—(U§2W2©+A)t ]

4.1.3 Three-group, Four Nuclide Infinite Fuel Pin Latti8gstem (Example 3)

Example 3 expands on Example 2 to include foulides and three energy groups.
The example allows for additional effects to beastigated in the system, like having
multiple energy groups and multiple nuclides. Epén8 examines how the system
behaves with an isotope from neutron capture drssi@n product. The example is
developed to further examine how the approximagperiorms and could be used as a
benchmark problem for testing the SCALE computelecoThe example is also used to
further examine the use of first order perturbatioeory.

The system considef&U (N;), 22U (N,), a capture reaction produétPu (Ns), and
a fission product™Eu (Ny). In the example, N N,, and N are fissionable nuclides. 3N
is an isotope produced from the neutron captuid,@nd it can decay. ANs a fission
product produced from the fission of,NN,, and N that can also decay and has a large
neutron capture cross section. The solution issnmwolved than the previous example,
but can be solved semi-analytically with the aigr@thematical software. The flux

shape equations are:
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_levllNl(t)O-:fll
+ ¥V N, (o2,
+ yavaNs (D)o,
ZivuNi (o,
—A + 2N, ()o?,

+ 132V31N3(t)o-?1
0

The cross sections in the above equations cometfie following definitions of the

N, (t)or + N, (o

+ N, (1o + Ny (Do

N, (Dogy s + Ny (Do, N,(t)or, + N, (D)o
B [+ N, ()o?,, + N4(t)aglj

Nl(t)o'il-s + Nz(t)o'szl-a Nl(t)ai,Z—S + Nz(t)o'sz,z-a N, ()05 + Nz(t)o'za
_L Na(B)o3, 5 + N4<t)a;‘1_3] _{ ]

0

+ N3(t)(7r32 + N4(t)(7r42

+ Ns(t)o'g,z-a + N4(t)0's42_3

ZviNi (D07, Z1v1sNi (D075
O L + XN, (D0 (s
+ Xavs:N3 (D)o 7, + ZavssNa(t)o T

XN (Do, ZiV1sN: (Dt
+ 2oV uNo (D07, + 2oVasN, (Do s

+132V32N3(t)0'?2 +132V33N3(t)0'?3
0 0

+ N3(I)O':3 + N4(t)0':3

0
¥V,
0 ¥y,
Vs

cross sectionso, =0, +0, ando,, = o, — 0, Whereosyy is the in-group scattering

E E,
cross section. The fission spectrum for the system = j;((E)dE. X2 = I;{(E)dE,
E, E,

s
and y, = j;{(E)dE: 0. The flux normalization equation is, followirlyget ORIGENS

E,

manual [15],

P=16x10"d) Q;N,
j

= P=16x10"d

gt

+ Q3¢ Ny + st N3o-3;/ + Q47 N40'47

Q¢ Nyoyp + Ql;/ Nlo-ly +Qy Nyoy + QZ;/ N20_27

where Q is the recoverable energy released from fissiahcapture [15].
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The nuclide transmutation equations are:

— Dol 0 0 0

0 -do? 0 0

0 @02 —(Poi+A,) 0
ool piwot ploot (0ol +A,)

whereA; andA, are the decay constants of &hd N, respectively. y;, yZ, andy; are
the fission product yields of Nrom Ny, Np, and N respectively. The initial condition of
the system is fresh fuel with an enrichment of Sgivepercent>U. The cross sections

are the effective one-group cross sections andacelated using the following formula:

gagwg
_ gwg

O-ef'f

With substitution of the one-group effective cresstions, the nuclide transmutation

eguations are written as shown on the followingepag
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+ 033
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(O-clel + O'czzy/zj
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(V1 +ys+ys)
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O+ 0.0,

2
+ 033

0

(O-agly/1 + USzV/zJ
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-

|
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The solutions to the nuclide transmutation equstiare:

N, (t) = N, (0)e *
N,(t) =N, (0)e**

N;(t) = N, (0)e™ + M [e_asst — g ]

22 ~ Qg3
N4(t) — N4 (O)e—aMt + a'41N1 (O) I:efa44t _ efant ]_+_ 42N (O) [e t _ 7a22t:|
17 844 82 ~ 8y
a-43N ©) [e at 7a33t:|
a@ —Qy
+ 3,385, 2(0) *Z
e—a44t e—a33t e—azzt
where z= + +
{(aaa — 3y, )(azz - a44) (a44 — A5 )(azz - 3-33) (3-44 — a8y )(aas - a22)

where g refers to elements in the matrix of the nuclid@msmutation equations. After

substitution of the elements in the matrix, thaiBohs to the nuclide transmutation

eguations become:

N, () = N, Q) *"*
N, (t) = N, (0)e """

(1)O-CZN2 ) W e
(1)65—((130'2+A3)[e © ]

}/1(1)0% Nl (O) —(®U§+A4)I N ~Doit
q)O';—((DO':+A4)[e © ]
. y2do?N, (0) [e (Doteak e7®6§t]

Do’ - (CDG + A )

74(D0f ( ) (@odiak  a-{woiagk

+@m$ﬂ)(¢ﬁ+AJk o heint

+yid’cio’N, (O)Fe(%é”“)‘ += ! grloatensk +1eq’“ﬂ
X z

N (1) = Ny Qe )

N, () = N, e 7ok 4

y
wherex:[(d)a§+A) (CDG +A )] [((1) j) (d)a +A )]
y=[@ol +A)- (@0 + A, ) (00 s)) (@07 + A, )

2=[0o!+a,)- (@02l [00? + As)- (@07

51



4.1.4 Three-group, Four Nuclide Infinite Fuel Pin Latti8gstem (Example 3) with
Multiple Materials

Example 3 with multiple materials is an extensabixample 3 that includes having
different fuel pin types (multiple materials) iretsystem. The equations presented here
are a continuation of the equations for Examplengl show how multiple materials are
incorporated into the equations. Most of the eiguatfor Example 3 apply to multiple
materials; however, there are a few changes tteat toebe made to some of the
equations.

The equations for the flux shape stay the sanmehleypower of the system is now

defined by multiple materials, so changes are rebedthe power normalization

equation. The power of the system is definedby 8> @ > Q. N, 0y, , Wherep

]
equals 1.810™ (constant conversion factor) and the summatiom ovis over the pin
types (different materials) in the system. Theadiqus for the cross sections and the
nuclide transmutation equations remain unchangexp that the materials are depleted

with their respective flux values; flux used for material 1 and, flux used for

material 2, etc.).

4.2 Derived Variance Equations
The equations presented in this section are theetkequations of the LUNGA
method that are used to calculate the variandeemumber densities and are derived
from the governing equations that are shown imptlegious section. The equations for
the variance in the number densities are repredémigeneral form for each example

problem.
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4.2.1 Example 1 Variance Equations

The equations for the variance in the number defwi Example 1 are simplistic in
nature. Since Example 1 is a single nuclide, K@ ple is well suited for showing the
approach taken in this research.

A change in the flux shape comes from the stasistincertainty in the flux shape as

Ay =Ay,. A change in the flux comes from a change infilne normalization

eqguation as followsy(is fixed to be unity):

D = P = P=N,®oy
yNyo
AP=0= op ANO+8—PACD+ op Ao, +a—PAy/
oN, odb 0o, oy

= AD =- a—PANO Jra—PAaf + op Ay * 1
oN, 0o, oy oP
oD

Transmutation is done under a constant power iesttherefore, there is no change in

the power during a time step (i&P = 0). The equation for the change in the nuclide

number density is given by the following equation:

AN = N ANO+@ACD+—8P Ao, = N AN, + op Ao,
ON, oD oo, oN, oo,
N (PP, R, ) L
od oN, 0o oy

j
oD
N,Oto,e 7

= AN = (e"l"’at + Do, te )AN0 +
74

Ay

N,®to, e "7
;098 Ag, 4 (- Nydte Ao
O

a

The variance of the nuclide is given lagr(N) = E[(AN)? . ]
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4.2.2 Example 2 Variance Equations

The equations for the variance in the number desdor Example 2 are slightly
more complicated than the equations for Exampl@&Hte equations are awkward because
there are numerous terms in the equations; theretloe equations are presented here in a
condensed form. Readers can refer to the Appdadike expanded equations for
Example 2.

A change in the flux shape comes from the sta#istincertainty in the flux shape

and the uncertainty in the flux shape due to uagdst in the number densities given by

the equatiomy = Ay, + Ay, = Ay, +2—%AN. A change in the flux comes from a

change in the flux normalization equation as fokow

@:——fl—czpzh%a;wﬂ>

NlOO-]f.ZI//Z
op Ay, +6—PAN10 +8—PACD
oy, ON,, od

oP oP j* 1

AP=0=

There is no uncertainty iar;, since the parameter is a group cross section \edeot

Ay, +——AN;,

= AD = —(
oy, ONy,

an effective cross section value (see assumptiddalying for the change in the number

densities after a time step is a very time consgrtask.
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The equations for the change in the nuclide nurdbasities are given by the
following equations (shown with the derivatives feadability):

oN, oN oN oN

AN, = —L Ay, +—L Ay, + —2 AN + —LAD
1 ov, L1 ow, v, N, 10" 50
N
= aNl AW1+ﬂAW2+ﬂAN10+L _[ i AW2+£AN10J*L
oy, oy, 0Ny, oD oy, 0Ny, (apj
oo
AN =6N1A +ﬂA +%AN +%AN +%A®
2 L4 ¥, 20 10
oy, oy, 0N, Ny, oD
= aNl AWl"‘ﬂsz +%ANZO+%AN10+% _(ﬁsz +£AN10J*L
oy, oy, 0N ONy, oD oy, 0Ny, (apj
00

The variances for the number density are slighilylsersome to show and are given by

var(N,) = E[(AN,)?*]andvar(N,) = E[(AN,)?].

4.2.3 Example 3 Variance Equations

The equations for the variance in the number desdor Example 3 are more
complicated than the variance equations for ExarBpl&he equations are also very
awkward because of numerous terms; therefore,areepresented here in simplified
form (readers can refer to the appendix for motail$eof the equations for Example 3).
The equations presented for the variance in thebeubensities for Example 3 closely
resemble the general variance equations shownapt€h3.

A change in the flux shape comes from the stasistincertainty in the flux shape,

and the uncertainty in the number densities. Thuagon for a change in the flux shape

IS Ay =Ay + Ay, =Ay, +Z—%AN. The variance in the flux shape is
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.
var(y ) = E[(A z,y)z]z var(yfs)+2—g CoVN, N™ ]Z—% where the covariances between

energy groups are neglected, and the statisticartainty is taken to be independent of
the flux shape uncertainty due to the number dgnsitertainties.

The effective cross sections are found using tjuaon

+ +
oL = Calts + Tao + Cadts , which is demonstrated for the effective absorptimss
Wity +Ys;

section of N. The following notation is used for the energgugr cross section values

aijk where j is the type of cross section for nuclide group k, and for the effective

cross section valuasij where j is the type of cross section for nucliddhe change and

the variance in the effective cross section is

oot oo oo
Ao, = Ta Ay, + %2 Al// —2 Ay
oy, ' oy, ’ oy, ’

vafor ) ot ]2 | +vat) o 22| +vat) o[22 vt

2 3
where covariances between groups are neglectedaﬁ,dl) is the variance of the flux

shape in the first energy group. A change in kine domes from a change in the flux

normalization equation (the power constraint) dieves:
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P=16x10"®) QN0
ij
Q% NlOG% + chNloUc1 + sz Nzoo'f2 + ch Nzoo'c2
_ 19
= P=16x10"d® . . . . . .
+ Q¢ Nyyo ¢ +Q: Nygo, + QN0

ap=Lpp+ P AN, + op Ao
oD ON,, oloy
= AP=P rp 4+ P AN, +£AN20 +iAN30 +£AN4O +a—PlAa% +
oD ON,, 0N, ONg, ON 4 00
a—PlAai + 6P2 Ac?+ 8P2 Ac?+ 8P3 Ac? + 8P3 Ao+ 8P4 Ao
oo, 007y 0o oo 0o, oo,

constant power = no changeinP = AP =0

P AN+ AN+ AN+ AN+ gy, + P AGt
1 | N N, N, N, oo oo
=AP="75 oP oP oP oP
—— |+ ——=Ac? + Ac?+ Ao + Acl+——Ac!
a(D 80_2 2 803 3 04

f c f c c

where the equation for the power is taken fromSBALE manual [15]. The notation in

the above equation follows the form ?&ﬂ where j is the type of cross section for nuclide

i, and Np is the number density of nuclide i for the predaime step. The variance in

the flux normalization becomes:

P AN+ AN TP AN, TP AN,
ONy, ONy, ONg, ONy,
1 oP oP oP
va(®)=E|(AD) |=| -—=| + —Act +— Aot +—Ac?
I’( ) [( ) ] aj 80‘% f i c 8 fz f
oD
8P2 Ac?+ 8P3 Ao + 8P3 Ao+ 8P4 Ac?
0o oo, oo, o,
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A change in the nuclide transmutation equations is

oN, oN

N
AN, = AN, +—2AD + a L Ao,
ON,, oD o,
N N N
AN, = N, AN20+8 2 A+ 2 L Ao}
ON,, oD o
N N N
AN, = N, AN, +&AN20 + N jp s aN; Acd+ aN; Aol + aN; Ao’
ONg, ON,, oD oo, 0o 0o}
N N N N N N
AN, = N, AN4O+8—4AN10+8—4ACD +8—1Aa;‘+ 0 LAocy + 0 L Ao,
ON,, oN,, oD o oo} .
N N N N N N
+ N AN30+&AN20+8—§A0? 2 Ao+ 2 > Ao+ 2 > Ao’
ONg, ON,, oo oo, 00 0o,

whereA® and Aoij are defined by previous equations and must beitutiesl into the

eqguations for a change in the number densities fwisolving for the variance in the

number densities. The variance in the number tdesss given with the following
equations: var(N,) = E[(AN,)? ] var(N,) = E[(AN,)?], var(N,) = E[(AN,)?], and

var(N,) = E[(AN,)?].

4.2.4 Example 3 with Multiple Materials Variance Equaton

The variance equations presented here are a gatibn of the variance equations for
Example 3, and show how multiple materials arenpemted into the equations. Most
of the variance equations for Example 3 apply tdtigia materials; however, there are a
few changes that need to be made to some of thraiens.

The equations for the flux shape stay the samehleuypower of the system is now

defined by multiple materials and is defined by éo@ationP = £> @ > Q, N;.ojn »
m ij

58



wherep equals 1.810"° (constant conversion factor) and the summatiom ovis over
the pin types (different materials) in the system.

The change in the flux normalization that comesifia change in the power
constraint previously defined is:

sP=L po, +- AN, +- T Ao
0D, ON, OCjm

m

ijim

constant power = no changeinP = AP =0
Oza—PAd)m +8—PANim + op
oD, 0

Ao

ijm
im aO'ijm

Ad, = P AN 4P pe L
N, oc, "] P
oD,

ijm

The equations for the cross sections and thedeitlansmutation equations remain
unchanged. The equations for a change in andnaiaf the nuclide transmutation
equations are the same, except for the substitofitthe change in the flux normalization
(defined above). The other difference in the &igna for Example 3 with multiple
materials and Example 3 is the addition of covanaterms between the different
materials (i.e., the covariances between matergddlmaterial 2).

The equations presented in this section show hewariance in the number
densities is derived for each example problem. p&héb and chapter 6 show the results

and verification, respectively, of the research.
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CHAPTER 5

RESULTS AND ANALYSIS

The results of this research are presented nergalith an analysis of those results.
Validation studies are demonstrated in the nexpigta Shown first are the results of the
acceptability of using first order perturbationdhgefor calculating the variances in the
number densities. This is done for each of thegt@xample problems (Example 1,
Example 2, and Example 3). Example 2 and Example 3hen analyzed in depth. The
number density can be found independently of tine $hape with Example 1; therefore,

Example 1 is only used for investigating first ar@derturbation theory.

5.1 Acceptability of Using First Order Perturbation Ding

The effects of using first order perturbation thyein the equations for the variance in
the number densities needed to be examined tondi@eif first order perturbation
theory was acceptable for the application of calitng the standard deviation in the
nuclide number densities. Example 1, Example & EBrample 3 are used to investigate
if this theory was appropriate for the derived amues used in the LUNGA method. To
examine this effect, the change in nuclide numleeisdy was calculated by directly
perturbing only the number density in the analgtjcations by 2, 5, 7, 10 and 15 percent,
and compared to the change in nuclide number decalitulated from the equations
used in the LUNGA method for Example 1 and Exan2plé-or Example 1 and Example
2, the equations examine the variance of the neiclidnber densities in the nonlinear

region with large time steps to fully test the aecy of using a first order approximation.
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The time regions used to investigate the usesifdrder perturbation theory in this
research are shown in Figure 3 for Example 1, agdr€& 4 and Figure 5 for Example 2.
These regions were investigated because that iseviihe most nonlinear behavior of the
nuclides occurs in Example 1 and Example 2. Theegarocess is done with Example 3,
except that the number density was perturbed bylQ 5, and 10 percent for 12 time
steps of 30 days per step.

The effects of using first order perturbation thyetm calculate the variance and thus
the standard deviation in the number densitietsts iavestigated with Example 2 by
directly perturbing the flux shape by 1 to 30 petceThe change in the flux shape and
number densities calculated with direct perturbatbthe flux shape is then compared to

the change in the flux shape and number densitieslated using the LUNGA method.

Nuclide in Example 1

2.50E+00

2.00E+00 +
Area investigated.

1.50E+00 -

1.00E+00 &/
5.00E-01 b
0.00E+00 \ \ \ \ \

0.0E+00 2.0E+05 4.0E+05 6.0E+05 8.0E+05 1.0E+06 1.2E+06
Time (days)

Number Density
(atoms/b*cm)

Figure 3. Plot of where the nuclide was examimeBxample 1 (analytic solution).
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N, in Example 2

1.20E+00
1.00E+00
2 Area investigated.
% E 8.00E-01 -
S £ 6.00-01
o o 6.00E-
8 £ 4.00E-01 —
§ & 200801 \Q/
0.00E+00 e
'2.00E'01 T T T T T T
0.0E+00 1.0E+04 2.0E+04 3.0E+04 4.0E+04 5.0E+04 6.0E+04 7.0E+04 8.0E+04
Time (days)
Figure 4. Plot of where \Nwas examined in Example 2 (analytic solution).
N, in Example 2
1.20E-02
1.00E-02
2> Area investigated.
% € 8.00E-03
g 2
&8 & 6.00E-03 \
- 0
S £ 4.00E-03
o)
S 8 X\ N
0.00E+00
-2.00E-03 : : : : ‘ :

0.0E+00 1.0E+04 2.0E+04 3.0E+04 4.0E+04 5.0E+04 6.0E+04 7.0E+04 8.0E+04
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Figure 5. Plot of where Nwvas examined in Example 2 (analytic solution).
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5.1.1 Perturbation of Number Density with Example 1

Table 3 specifies the parameters used in Examalellhose parameters are constant
during a time step. For simplification, the paréeng are the same in each time step.
This will not affect the method being used, as agye during a time step is taken as a
constant during that time step, and parameter®ohrbe updated after a time step. A
comparison of changes in the number densitiesvrengn Table 4. Table 5 shows the

variances calculated for this example.

Table 3. Parameters for Example 1.

or (cm?) 1.00E-24
0, (cm?) 2.00E-24
t (s) 2.16E+09
P (fission/s*cm?®) | 2.00E+14
sd(y) 1.00E-05
y flux shape 1.00E+00

Table 4 shows that the derived equation predmgschange in nuclide number
density very accurately, generally under a 5 perdéference, compared to directly
perturbing the nuclide number density for a givieretstep and also after multiple time
steps. Only in the last time step for a 7, 10 Baghercent perturbation do the two
methods differ by more than 5 percent. The catmiria are preformed using large time
steps of 2,500 days; however, the use of large sieyes like these would probably not
occur in a real simulated problem because bettwrracy would be achieved with
smaller time steps. Large time steps are usegbstdtie bounds of a first order
approximation and to examine the differences imilm@ber densities where the curve

was not very linear (see Figure 3). The use g@ddime steps might not be very
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accurate, since the approximation is linear; howevable 4 illustrates that the derived
equation is very close to the actual change (dpedurbation) in the number density.
Table 4 further illustrates the equation is faabcurate up to at least a 15 percent
perturbation in the number density. The equatimhdirect perturbation only differ by
more than 10 percent on the last time step with petcent perturbation in the number
density. Finally, Table 4 shows the equation idasrpredicting the change in the
number density compared to direct perturbationis fight not be a very desirable

attribute, but the values are also very close wamother.
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Table 4. Comparison @N in Example 1.

Time Step 1 Time Step 2

Time/

Cumulative

Time (days) |2500/2500 2500/5000

No

(atoms/cm?) |2.23E+24 1.51E+24

Change in number density=AN Change in number density=AN
(atoms/cm?) (atoms/cm?)

Perturbation [Direct LUNGA Percent |Direct LUNGA Percent

Amount (%) |perturbation |solution Difference|perturbation |solution Difference
2.0/ 4.21E+22| 4.20E+22| -1.1E-01| 2.70E+22| 2.69E+22| -2.0E-01
5.0 1.05E+23| 1.05E+23| -2.6E-01| 6.76E+22| 6.72E+22| -5.0E-01
7.0 1.48E+23| 1.47E+23| -3.6E-01| 9.48E+22| 9.41E+22| -6.8E-01
10.0f 2.11E+23| 2.10E+23| -4.9E-01| 1.36E+23| 1.34E+23| -9.5E-01
15.0 3.17E+23| 3.15E+23| -7.1E-01| 2.05E+23| 2.02E+23| -1.4E+00

Time Step 3 Time Step 4

Time/

Cumulative

Time (days) [2500/7500 2500/10000

No

(atoms/cm?®) |8.56E+23 3.12E+23

Change in number density=AN
(atoms/cm?)

Change in number density=AN
(atoms/cm?)

Perturbation [Direct LUNGA Percent |Direct LUNGA Percent

Amount (%) |perturbation |solution Difference|perturbation |solution Difference
2.0 1.26E+22| 1.25E+22| -5.0E-01| 1.51E+21| 1.48E+21| -2.0E+00
5.0 3.18E+22| 3.14E+22| -1.2E+00| 3.89E+21| 3.70E+21| -4.8E+00
7.0 4.47E+22| 4.39E+22| -1.7E+00| 5.55E+21| 5.18E+21| -6.6E+00
10.0| 6.42E+22| 6.27E+22| -2.3E+00| 8.14E+21| 7.40E+21| -9.1E+00
15.0| 9.74E+22| 9.41E+22|-3.3E+00| 1.28E+22| 1.11E+22| -1.3E+01

Table 5 presents the variance and the standardtmevof the nuclide for this
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example. Note that the table for the variancesaaddard deviation of the nuclide only
takes into account a change in the nuclide numéesitl, which was investigated at this
time to examine first order perturbation theoryable 5 demonstrates that the relative
uncertainty increases with each time step, andtti@aabsolute uncertainty is increasing

with time which was seen in other literature sosrd® and 21].




Table 5. Relative sd(N) for Example 1.

Time Step 1|Time Step 2|Time Step 3|Time Step 4
No (atoms/cm?) 2.23E+24| 1.51E+24| 8.56E+23| 3.12E+23
flux (n/cm?*s) 8.96E+13| 1.32E+14| 2.34E+14| 6.40E+14
N=N(t) (atoms/cm?) 1.51E+24| 8.56E+23| 3.12E+23| 1.96E+22
var(N) (atoms/cm?)? 1.59E+37| 2.01E+37| 1.21E+37| 6.81E+35
sd(N) (atoms/cm?)|absolute uncertainty| 3.98E+18| 4.49E+18| 3.48E+18| 8.25E+17
sd(N)/N(t) relative uncertainty 2.63E-06 5.24E-06 1.11E-05 4.20E-05

5.1.2 Perturbation of Number Density with Example 2

Table 6 specifies the parameters used in Examitiatzre obtained from a report by

Williams [26]. Like Example 1, the parameters tfois example are constant through a

time step and for simplification are the same ichetame step. The comparison of

changes in the number densities for a change ntbelnumber density is given in Table
7 and Table 8. Table 9 and Table 10 present thance in the number densities based

only on a change in the number densities. Tablghbivs the comparison of changes in

the flux shape and number densities for a changalinthe flux shape.

Table 6. Parameters for Example 2.

O huclide i; cross section type j; in

group k

04,4 nuclide 1 (cm?) 9.00E-24|X, 1.00E+00
0441 NUclide 1 (cm?) 3.00E-24|X; 0.00E+00
015,12 Nuclide 1 (cm?) 6.00E-24|y 5.00E-01
04¢, Nuclide 1 (cm?) 1.00E-24|P (fission/s*cm®) | 2.00E+14
014 Nuclide 1 (cm?) 2.00E-24[A (s7) 4.00E-09
04, Nuclide 1 (cm?) 1.00E-24|sd(y,) 1.00E-05
O, NUClide 2 (cm?) 1.00E-23|sd(w,) 1.00E-05
N1, (atoms/cm®) 1.00E+24|N2, (atoms/cm®) | 0.00E+00
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Table 7 and Table 8 illustrate that the equatioriee LUNGA method predict the
change in nuclide number density very accuratetgpared to directly perturbing the
nuclide number density for a given time step asd after multiple time steps. The only
time the derived equations and the direct pertiwwbateem to vary greatly is il the
first time step, but the difference is only slighthrger than 5 percent with a 15 percent
perturbation in the number densities in that tineps As with Example 1, the
calculations are preformed using large time st2@s00 days), and would probably not
occur in a real simulated problem, but are usezktomine the differences in the number
densities where the curves were not very lineadigdayed in Figure 4 and Figure 5.
Again the use of large time steps might not be @aegurate since the equation is linear,
however, Table 7 and Table 8 demonstrate thatghat®ns used in the LUNGA method
are very close to the actual change (direct peatiob) in the number density. This
example also shows that the derived equationscatgate up to at least a 15 percent
perturbation in the number density, which is coesd good since the change in the
number densities are much smaller than the amdyperturbation in the number
densities. Finally, Table 7 and Table 8 revead the derived equations of the LUNGA
method are under predicting the change in the nunrgsity compared to direct
perturbation for Nand over predicting for Nl\which might not be a good trait; however,

the values are very close to one another.
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Table 7. Comparison @N by direct perturbation of nuclides for time stepnd time
step 2 for Example 2.

Time Step 1

Time/Cummulative
Time (days)

20000/20000

N,(0) (atoms/cm3)

1.000E+24

N,(0) (atoms/cm®)

0.000E+00

Change in number density=AN; Change in number density=AN,
(atoms/cms) (atoms/cms)
Direct Direct
Perturbation perturbation |LUNGA Percent perturbation [LUNGA Percent
Amount (%) in N1(0) solution Difference |in N»(0) solution Difference
2.0 1.45E+22| 1.44E+22 -5.2E-01] 1.69E+20| 1.70E+20 6.6E-01
5.0 3.66E+22] 3.61E+22| -1.3E+00{ 4.18E+20| 4.25E+20| 1.7E+00
7.0l 5.14E+22|] 5.06E+22| -1.7E+00{ 5.82E+20| 5.96E+20| 2.3E+00
10.0] 7.40E+22| 7.22E+22| -2.4E+00| 8.23E+20| 8.51E+20| 3.4E+00
15.0] 1.12E+23| 1.08E+23| -3.5E+00| 1.21E+21| 1.28E+21| 5.2E+00
Time Step 2
Time/Cummulative
Time (days) 2500/22500
N;(0) (atoms/cm®) 3.546E+23
N,(0) (atoms/cm®) 6.566E+21

Change in number density=AN,

Change in number density=AN,

(atoms/cms) (atoms/cms)
Direct Direct
Perturbation perturbation [LUNGA Percent perturbation |LUNGA Percent
Amount (%) in N1(0) solution Difference |in N,(0) solution Difference
20 6.71E+21| 6.70E+21| -1.0E-01] 1.33E+20{ 1.33E+20 7.2E-01
5.0 168E+22| 1.67E+22| -2.5E-01] 3.28E+20| 3.34E+20| 1.8E+00
7.0] 235E+22| 2.34E+22| -3.4E-01] 4.56E+20[ 4.67E+20| 2.5E+00
10.0 3.37E+22| 3.35E+22] -4.7E-01| 6.45E+20| 6.67E+20[ 3.5E+00
1500 5.06E+22] 5.02E+22| -6.8E-01] 9.51E+20{ 1.00E+21| 5.3E+00
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Table 8. Comparison @N by direct perturbation of nuclides for time spnd time
step 4 for Example 2.

Time Step 3

Time/Cummulative
Time (days)

2500/25000

N,(0) (atoms/cm3) 2.433E+23
N,(0) (atoms/cm®) 7.929E+21
Change in number density=AN; Change in number density=AN,
(atoms/cms) atoms/cms)
Direct Direct
Perturbation perturbation |LUNGA Percent perturbation |LUNGA Percent
Amount (%) in N1(0) solution Difference |in N,(0) solution Difference
2.0 4.34E+21| 4.33E+21 -2.0E-01 1.32E+20| 1.32E+20 4.3E-01
5.00 1.09E+22| 1.08E+22 -4.8E-01 3.27E+20| 3.31E+20[ 1.1E+00
7.0 1.53E+22| 1.52E+22 -6.6E-01| 4.56E+20[ 4.63E+20| 1.5E+00
10.0] 2.19E+22| 2.17E+22 -9.3E-01 6.47E+20| 6.61E+20| 2.2E+00
15.0 3.29E+22| 3.25E+22 -1.3E+00 9.61E+20] 9.92E+20 3.2E+00
Time Step 4
Time/Cummulative
Time (days) 2500/27500
N;(0) (atoms/cm®) 1.387E+23
N»(0) (atoms/cm3) 5.751E+21

Change in number density=AN; Change in number density=AN,
(atoms/cms) atoms/cm3)
Direct Direct
Perturbation perturbation [LUNGA Percent perturbation [LUNGA Percent
Amount (%) in N41(0) solution Difference |in N,(0) solution Difference

2.0 2.05E+21]| 2.04E+21 -4.9E-01 8.97E+19]| 8.97E+19| -3.7E-03
5.00 5.17E+21| 5.11E+21| -1.2E+00 2.24E+20{ 2.24E+20 1.4E-02
7.0 7.27E+21| 7.15E+21| -1.6E+00 3.14E+20| 3.14E+20 4.0E-02
10.0] 1.05E+22| 1.02E+22| -2.3E+00| 4.48E+20| 4.49E+20 9.9E-02
15.00 1.58E+22| 1.53E+22| -3.3E+00 6.71E+20{ 6.73E+20 2.4E-01

The behavior of Wis interesting in this example. The derived equatare over

predicting the change in number density forddmpared to direct perturbation and the
eguation seems to better predict the change in auddnsity for N as more time steps
pass. Coincidentally, this is indicating that tlezived equations in the LUNGA method
can more accurately predict a change in the nuahéesity as the calculation progress in

time (with more passing time steps). Examininthattrend of Min time, it looks like
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the derived equations could start under predidtieghumber density after some number
of time steps, but more steps would be neededetd #ais is the case. This is interesting
because then the equations would under predictih®er densities for both;Mnd N,
which is beneficial as both number density valugghirthen be under predicted.
However, it would not be favorable to havedéing over predicted and then start being
under predicted as it would be difficult to knovithe exact value is more or less than the
value calculated using the derived equations oL thGA method.

Table 9 shows the variance and the standard d@viist the number densities for
Example 2. Note that the variance and standarthtiew in the number densities in the
table only take into account a change in the naalidmber density, which is used at this

time to investigate the affects of first order pesation theory.

Table 9. Relative sd(N) with 2,500-day time stEpsExample 2.

Time Step 1 |Time Step 2 |Time Step 3|Time Step 4
Time/Cummulative Time (days) 20000/20000|2500/22500 [2500/25000 |2500/27500
N, (0) (atoms/cm®) beginning of time 1.00E+24| 3.55E+23| 2.43E+23| 1.39E+23
N,(0) (atoms/cm®) step 0.00E+00| 6.57E+21| 7.93E+21| 5.75E+21
® (n/cm™s) flux 2.00E+14| 5.64E+14| 8.22E+14| 1.44E+15
N;=N;,(t) (atoms/cm®) 3.55E+23| 2.43E+23| 1.39E+23| 5.11E+22
N2=Ny(t) (atoms/cm3) end of time step 6.57E+21| 7.93E+21| b5.75E+21| 2.64E+21
var(N,) (atoms/cm®)* |variance 1.50E+37| 1.43E+37| 1.20E+37| 6.75E+36
sd(N,) (atoms/cmS) absolute uncertainty 3.88E+18| 3.78E+18| 3.46E+18| 2.60E+18
sd(N1)/N4(t) relative uncertainty 1.09E-05 1.55E-05 2.49E-05 5.08E-05
var(N,) (atoms/cm®)* |variance 4.11E+33| 3.71E+33| 1.12E+34| 3.57E+34
sd(Ny,) (atoms/cm3) absolute uncertainty 6.41E+16| 6.09E+16| 1.06E+17| 1.89E+17
sd(N,)/N(t) relative uncertainty 9.76E-06 7.68E-06 1.84E-05 7.15E-05
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Table 9 shows that the absolute error in the numessity for each nuclide decreases
with each time step, which is opposite of what a@en in the previous example and
other references [19 and 21]. However, the tadohges from 20,000 to 27,500 days,
which is very far in time during the calculatiomable 10 gives the variance and standard
deviation in the number densities with time stejp$,200 days and the table shows that
the absolute error in the number density feidt¢reases with time up to time step 14,
where it then starts to decrease with time. Inld4ab, the absolute uncertainty of N
continues to increase with time even after timp 4#& Table 9 and Table 10 show that
the relative uncertainty in the number densitiebath nuclides increases with time,

which was found in the previous example.
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Table 10. Relative sd(N) with 1,200-day time stiepExample 2.

Time step size of 1200 days per time step

Time Step 1 |Time Step 2 |Time Step 3 |Time Step4 |Time Step5 |Time Step 6 |[Time Step 7 |Time Step 8
N1, (atoms/cm®) beginning of time 1.00E+24 9.40E+23 8.79E+23 8.17E+23 7.56E+23 6.94E+23 6.33E+23 5.72E+23
N2, (atoms/cm®) step 0.00E+00 7.46E+21 1.13E+22 1.32E+22 1.40E+22 1.42E+22 1.40E+22 1.36E+22
® (n/cm™*s) flux 2.00E+14 2.13E+14 2.28E+14 2.45E+14 2.65E+14 2.88E+14 3.16E+14 3.50E+14
N,=N;,(t) (atoms/cm®) 9.40E+23 8.79E+23 8.17E+23 7.56E+23 6.94E+23 6.33E+23 5.72E+23 5.11E+23
N,=N,(t) (atoms/cm®) |end of time step 7.46E+21 1.13E+22 1.32E+22 1.40E+22 1.42E+22 1.40E+22 1.36E+22 1.30E+22
var(N,) (atoms/cms)2 variance 3.80E+35 7.57E+35 1.13E+36 1.50E+36 1.86E+36 2.21E+36 2.55E+36 2.87E+36
sd(N,) (atoms/cm®) absolute uncertainty 6.16E+17 8.70E+17 1.06E+18 1.22E+18 1.36E+18 1.49E+18 1.60E+18 1.69E+18
sd(N1)/N(t) relative uncertainty 6.56E-07 9.90E-07 1.30E-06 1.62E-06 1.96E-06 2.35E-06 2.79E-06 3.32E-06
var(N,) (atoms/cm®)” |variance 7.15E+30(  1.10E+31| 1.64E+31| 2.553E+31| 3.87E+31| 5.82E+31| 8.66E+31|  1.29E+32
sd(N,) (atoms/cms) absolute uncertainty 2.67E+15 3.32E+15 4.05E+15 5.03E+15 6.22E+15 7.63E+15 9.31E+15 1.13E+16
sd(N,)/N,(t) relative uncertainty 3.58E-07 2.92E-07 3.06E-07 3.58E-07 4.38E-07 5.45E-07 6.85E-07 8.72E-07

Time Step 9 |Time Step 10 |Time Step 11 |Time Step 12 [Time Step 13 |Time Step 14 |Time Step 15 |Time Step 16
N1, (atoms/cm®) beginning of time 5.11E+23 4.50E+23 3.89E+23 3.29E+23 2.70E+23 2.11E+23 1.54E+23 1.00E+23
N2, (atoms/cm®) step 1.30E+22 1.23E+22 1.15E+22 1.05E+22 9.44E+21 8.16E+21 6.65E+21 4.87E+21
[0} (n/cmz*s) flux 3.92E+14 4 45E+14 5.14E+14 6.08E+14 7.42E+14 9.47E+14 1.30E+15 2.00E+15
N;=Nj(t) (atoms/cm®) 4.50E+23 3.89E+23 3.29E+23 2.70E+23 2.11E+23 1.54E+23 1.00E+23 5.12E+22
N,=N,(t) (atoms/cm®) |end of time step 1.23E+22 1.15E+22 1.05E+22 9.44E+21 8.16E+21 6.65E+21 4.87E+21 2.85E+21
var(N;) (atoms/cm®)*  [variance 3.17E+36 3.44E+36 3.67E+36 3.84E+36 3.92E+36 3.85E+36 3.52E+36 2.69E+36
sd(N,) (atoms/cms) absolute uncertainty 1.78E+18 1.85E+18 1.92E+18 1.96E+18 1.98E+18 1.96E+18 1.88E+18 1.64E+18
sd(N1)/Ny(t) relative uncertainty 3.96E-06 4.77E-06 5.82E-06 7.27E-06 9.38E-06 1.27E-05 1.87E-05 3.20E-05
var(N,) (atoms/cm®)® |variance 1.92E+32 2.91E+32 4.50E+32 7.20E+32 1.20E+33 2.12E+33 4.03E+33 8.57E+33
sd(N,) (atoms/cm®) absolute uncertainty 1.39E+16 1.70E+16 2.12E+16 2.68E+16 3.47E+16 4.60E+16 6.35E+16 9.26E+16
sd(N2)/N(t) relative uncertainty 1.13E-06 1.48E-06 2.01E-06 2.84E-06 4.25E-06 6.93E-06 1.30E-05 3.25E-05




5.1.3 Perturbation of Statistical Component in the Flirvage with Example 2

A change in the number densities and the flux shfixample 2 are examined due
to perturbations in the statistical component effthx shape. Table 11 exhibits the
change in the number densities and the flux shapaifferent perturbations in the
statistical component of the flux shape for oneetstep. Figure 6 to Figure 8 show
different perturbations in the statistical compdnaithe flux shape for multiple time
steps of varying sizes. Figure 9 to Figure 11gmeperturbations in the statistical
component of the flux shape for time steps of 1,88¢s.

Table 11 shows the change in the flux shape andhhnge in the nuclide number
densities due to a change in only the flux shapa &ingle time step of two days. Table
11 reveals that the equations used in the LUNG/Aoteto calculate the flux shape and
nuclide number densities, predict the change irfltheshape and change in the nuclide
number densities very accurately compared to dyreetrturbing the flux shape. Table
11 also shows that a 30 percent perturbation iffltixeshape yields only a 10 percent
difference between the equations used in the LUN@@2od and the direct perturbation
results. Table 11 further demonstrates that tibatans used in the LUNGA method are
over predicting the change in both the number diessand the flux shape. Also, Table
11 indicates that the percent difference fey Np, and theyy term are approximately the
same and increase about the same amount for edanopéion. The effects of multiple

time steps are described next.
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Table 11. Comparison afy andAN for perturbation in thes component of the flux
shape for Example 2.

Flux Perturbation Comparison
The change in the number density and the flux shape due to a perturbation in the statistical component of
the flux shape.

Equations of LUNGA method Direct Perturbation Percent Difference (%)

Perturbation
Amount (%) (AN, AN, AW AN, AN, AW AN, AN, AV

1.00) 2.30E-07[ 1.99E-12| 2.98E-11( 2.30E-07| 1.98E-12| 2.97E-11] -3.3E-01| -3.3E-01| -3.7E-01
1.50| 3.46E-07( 2.98E-12| 4.48E-11( 3.44E-07| 2.97E-12| 4.45E-11| -5.0E-01| -5.0E-01| -5.4E-01
1.75| 4.03E-07( 3.48E-12| 5.22E-11| 4.01E-07| 3.46E-12| 5.19E-11| -5.8E-01| -5.8E-01 -6.2E-01
2.00] 4.61E-07( 3.98E-12| 5.97E-11| 4.58E-07| 3.95E-12| 5.93E-11| -6.7E-01| -6.7E-01| -7.0E-01
3.00] 6.91E-07( 5.97E-12] 8.95E-11{ 6.84E-07| 5.91E-12| 8.86E-11| -1.0E+00{ -1.0E+00| -1.0E+00
5.00] 1.15E-06( 9.95E-12] 1.49E-10 1.13E-06] 9.79E-12| 1.47E-10| -1.7E+00{ -1.7E+00| -1.7E+00
10.00| 2.30E-06] 1.99E-11( 2.98E-10| 2.23E-06{ 1.93E-11| 2.89E-10] -3.3E+00| -3.3E+00{ -3.4E+00
15.00| 3.46E-06| 2.98E-11 4.48E-10| 3.29E-06{ 2.84E-11| 4.26E-10]| -5.0E+00| -5.0E+00{ -5.0E+00
30.00{ 6.91E-06) 5.97E-11| 8.95E-10( 6.28E-06] 5.43E-11{ 8.14E-10| -1.0E+01{ -1.0E+01) -1.0E+01

Figure 6 to Figure 8 display the change in the Inemntdensities and thg, term due to
perturbations of different sizes in the statistmanponent of the flux and multiple time
steps. The perturbation of the statistical compbpéthe flux is the same for each time
step and includes perturbations of 1, 5, 10, ande2Bent in the statistical component of
the flux. The time steps include: 100-days farteaf the first 5 steps, 250-days for the

next 2 steps, and 1,000-days for the last step.
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Percent Difference (%)

Percent Difference of AN; vs. Time
with perturbations in W5 component of the flux shape
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Figure 6. Percent difference &N, for perturbation of thes term for Example 2.
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Figure 7. Percent difference AN, for perturbation of thes term for Example 2.
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Percent Difference of AWy vs. Time
with perturbations in W5 component of the flux shape
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Figure 8. Percent difference &y for perturbation of thes term for Example 2.

The negative numbers in Figure 6 to Figure 8 iatdiche uncertainties calculated by
the equations in the LUNGA method are greater tharuncertainties calculated by
direct perturbation. As expected, Figure 6 to Fegdidemonstrate that with increasing
uncertainty in theys component of the flux shape the percent differdreteeen the
equations in the LUNGA method and direct pertudratncreases, and also show that a
change in the nuclides and the flux shape stayssiloonstant with time for each
perturbation of the statistical component of thex $hape. Also in Figure 6 to Figure 8,
the trend of the differences between a changeamticlides and the flux shape is the
same regardless of the amount of the perturbatidima statistical component of the flux
shape. With a time step of 1,000 days, somethiffigreint happens to the curve for a
change in the flux shape due to a perturbatioh@fstatistical component of the flux
shape; the curve suddenly increases in the othectatin, and the approximation starts to
under predict a change in the flux shape comparelte¢ct perturbation. The behavior

with longer time steps is examined at more closelyigure 9 to Figure 11.
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Figure 9 to Figure 11 show the change in the nurdbesities and they term due to
perturbations in the statistical component of the {1, 5, 10 and 25 percent) for multiple
time steps (1,000 days per step) to further ingastithe behavior that is seen in Figure
8. Again the perturbation of the statistical comgat of the flux is the same for each
time step. Figure 9 and Figure 10 illustrate thperturbation of the statistical
component of the flux shape with large time stepsschot impact a change in the
number densities. This means a perturbation otdestical component of the flux

shape does not have much of an affect on a chartge nuclides.

Percent Difference of AN; vs. Time
with perturbations in W5 component of the flux shape
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Figure 9. Percent difference &N, for perturbation of the&ss component of the flux
shape with 1,000 day time steps for Example 2.
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Percent Difference of AN, vs. Time
with perturbations in W5 component of the flux shape
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Figure 10. Percent difference AN, for perturbation ofys component of the flux shape
with 1,000 days time steps for Example 2.

Percent Difference of AW, vs. Time
with perturbations in W5 component of the flux shape
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Figure 11. Percent difference & for perturbation ofys component of the flux shape
with 1,000 days time steps for Example 2.
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A perturbation of the statistical component of fllae shape with large time steps
does have a large impact on a change in the flageshs seen in Figure 11. With a
perturbation of 1 or 5 percent, the approximatenalculating uncertainties less than
direct perturbation. With a perturbation of 1®&rpercent, the approximation is
calculating uncertainties greater than direct pbetion. Figure 11 reveals that with
large time steps the equations in the LUNGA metietdwvorse in time compared to
direct perturbation; that means the difference betwthe LUNGA method and the direct
perturbation becomes larger with time, and candee $est with the curve of a 25
percent perturbation in the statistical componénhe flux shape. All of the curves in
Figure 11 show signs of this behavior, but adddlame steps would be needed to
confirm this behavior for the different perturbatsoin the statistical component of the
flux shape. The Analysis of Example 2 section @nésa general analysis to find the
variance and standard deviation, which takes intoant changes in flux shape, flux

normalization, and nuclide number density.
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5.1.4 Perturbation with Example 3

Table 12 specifies an example of the initial pagters used in Example 3. Like

Example 1 and Example 2, the parameters for trasngle are constant through a time

step; however, unlike Example 1 and Example 2 #drampeters in Example 3 are updated

after every time step.

Table 12. Parameters for Example 3.

Oj - nuclide i cross section type j in group k; v; - nuclide i in group k

Oy, (€M?) 1.27589E-24|05.; (cm”) 4.43E-25|03,; (cm?) 1.86475E-24|0,,, (cm?) | 1.28E-25
0102 (CM?) 9.09803E-24|05., (cm?) 3.94E-25(03., (cm?) 1.46996E-23|04., (cm?) | 1.80E-22
O1a3 (CM?) 3.99381E-22[05.5 (cm?) 2.06E-24(03,5 (cm®) 1.13315E-21|04,5 (cm?) | 4.67E-21
01c1 (€M) 5.79903E-26 |05, (cm?) 5.43E-26|03¢ (cm?) 1.05721E-26|04¢; (cm®) | 1.28E-25
Oycr (CcM?) 2.79283E-24|0,c, (cm?) 3.93E-25|03, (cm?) 5.39522E-24|0,, (cm?) | 1.80E-22
Oyc3 (cm?) 5.84617E-23|0,3 (cm?) 2.06E-24[05e5 (cm? 3.58844E-22|0,4.5 (cm?) | 4.67E-21
0411 (€M) 1.2179E-24|0, (cm?) 3.89E-25|041; (cm?) 1.85418E-24

041, (cM?) 6.3052E-24|05, (cm?) 7.22E-28|04p, (cm?) 9.30437E-24

013 (CM?) 3.40919E-22|02 (cm?) 8.88E-30]031; (cm”?) 7.74307E-22

01612 (cM?) 1.1276E-24|051, (cm?) 1.26E-24(0361, (cm?) 7.2388E-25|0412 (cm?) | 1.22E-24
01613 (CM?) 5.7502E-36 05515 (cM?) 9.58E-38| 03415 (cm?) 2.16E-36|04s15 (cm?) | 2.94E-32
01503 (CM?) 6.2071E-27|02¢25 (cM?) 4.17E-27|03525 (cM?) 5.002E-27|04503 (cm?) | 8.45E-25
vy1 (n/fission) 2.73368(v,; (nffission) | 2.83086|vs; (n/fission) 3.25224

vy, (n/fission) 2.43776(vy, (nffission) |  2.53597|vs, (n/fission) 2.87545

V13 (n/fission) 2.4367]|va3 (nffission) |  2.49209]va3 (n/fission) 2.87247

As (s 9.12E-13|Q1f (MeV) 194.02

N 4.63E-09[Q1c (MeV) 6.545

As (s 4.81E-04|Q2f (MeV) 198.12

A (s 3.34E-06(Q2c (MeV) 4.804

Yarom1 2.63E-08|Q3f (MeV) 200.05

Yatrom2 2.11E-09(Q3c (MeV) 6.533

Yafrom3 1.93E-06 Q4C (MEV) 6.49

For direct perturbation in Example 3, the charigghe number densities are

examined two different ways. One way is by dingpeerturbing the governing equations

for Example 3, and the other way is by directlytpdring the number densities in

SCALE. The comparison for the changes in the nurdbesities between using the
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LUNGA method and direct perturbation is presentedable 13, and the comparison for
the changes in the number densities between thatiegs in the LUNGA method and

SCALE is shown in Figure 12 to Figure 15.

Table 13. Percent difference of the relathi for direct perturbation and the LUNGA
method for Example 3.

Percent difference of relative change in number density between direct perturbation and derived
equations in the LUNGA method

Time (days)

Perturbation
Nuclide [(%) 30 60 90 120 150 180
0.5 6.5E-05 6.4E-05 6.4E-05 6.4E-05 6.4E-05 6.3E-05
1 1.3E-04 1.3E-04 1.3E-04 1.3E-04 1.3E-04 1.3E-04
5 6.2E-04 6.2E-04 6.1E-04 6.1E-04 6.1E-04 6.1E-04
N, 10 1.2E-03 1.2E-03 1.2E-03 1.2E-03 1.2E-03 1.2E-03
0.5 2.5E-07 2.4E-07 2.4E-07 2.4E-07 2.4E-07 2.4E-07
1 4.9E-07 4.9E-07 4.8E-07 4.8E-07 4.8E-07 4.8E-07
5 2.4E-06 2.3E-06 2.3E-06 2.3E-06 2.3E-06 2.3E-06
N, 10 4.5E-06 4.5E-06 4.5E-06 4.4E-06 4.4E-06 4.4E-06
0.5 -5.0E-01] -2.5E-03] -1.2E-03] -8.1E-04] -6.1E-04] -4.8E-04
1| -1.0E+00| -4.9-03] -2.4E-03] -1.6E-03|] -1.2E-03| -9.6E-04
5/ -5.0e+00| -2.4E-02| -1.2E-02| -7.86-03] -5.86-03] -4.6E-03
N 10 -1.0e+01| -45E-02| -2.2E-02| -1.5E-02| -1.1E-02| -8.8E-03
0.5 -45E-01] -3.1E-02| -1.3E-02| -7.6E-03|] -4.8E-03] -3.3E-03
1 -9.0E-01] -6.2E-02| -2.7E-02| -1.5E-02|] -9.6E-03] -6.6E-03
5/ -45E+00| -3.0E-01| -1.36-01| -7.3E-02| -4.6E-02| -3.2E-02

Ny 10 -9.0E+00| -5.7E-01| -2.5E-01] -1.4E-01| -8.9E-02| -6.1E-02
Time (days)
Perturbation
Nuclide |(%) 210 240 270 300 330 360

0.5 6.3E-05 6.3E-05 6.2E-05 6.2E-05 6.2E-05 6.2E-05
1 1.3E-04 1.2E-04 1.2E-04 1.2E-04 1.2E-04 1.2E-04
5 6.0E-04 6.0E-04 6.0E-04 5.9E-04 5.9E-04 5.9E-04

N, 10 1.2E-03 1.1E-03 1.1E-03 1.1E-03 1.1E-03 1.1E-03

0.5 2.4E-07 2.4E-07 2.4E-07 2.4E-07 2.3E-07 2.3E-07
1 4.8E-07 4.7E-07 4.7E-07 4.7E-07 4.7E-07 4.7E-07
5 2.3E-06 2.3E-06 2.3E-06 2.3E-06 2.2E-06 2.2E-06

N, 10 4.4E-06 4.4E-06 4.3E-06 4.3E-06 4.3E-06 4.3E-06

0.5 -4.0E-04] -3.4E-04| -2.9E-04| -2.6E-04| -2.3E-04| -2.1E-04

1 -7.9E-04] -6.7E-04] -5.8E-04| -5.2E-04| -4.6E-04| -4.2E-04

5 -3.8E-03] -3.2E-03] -2.8E-03] -2.5E-03f -2.2E-03] -2.0E-03

N3 10 -7.3E-03] -6.2E-03] -5.4E-03] -4.7E-03f -4.2E-03] -3.8E-03

0.5 -2.4E-03| -1.8E-03] -1.5E-03| -1.2E-03] -1.1E-03] -9.6E-04
1 -4.8E-03] -3.7E-03] -2.9E-03] -2.5E-03f -2.1E-03] -1.9E-03
5 -2.3E-02| -1.8E-02] -1.4E-02| -1.2E-02| -1.0E-02| -9.2E-03

N, 10 -4.4E-02| -3.4E-02] -2.7E-02| -2.3E-02| -2.0E-02] -1.8E-02
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Table 13 indicates that the equations used ihtHe¢GA method predict a change in
the number densities very well compared with tliealiperturbation of the number
densities in the LUNGA equations. Generally tHéedences are very small, with the
differences much less than 1 percent. The onlgeplehere the percent differences are
not consistent with the other values in the tabla ithe first time step (from t=0 to
t=30d) where the equations and the perturbatiois snd N, vary up to 10 percent;
however, the equations are over estimating thegegnanthe number densities, therefore
the true uncertainty is smaller than what the equoatare predicting. After investigation,
this happens because of the number density gooamg & concentration of zero to a given
concentration in a non-linear manner. Since th&l(G4 equations are based on a linear
method, it is reasonable that the equations mightwork correctly in a non-linear
region.

Next, Figure 12 to Figure 15 illustrate the petadifierence between the LUNGA
equations and SCALE. In the figures a negativelvemmeans that the equations are
over predicting changes in the number densitiespaoad to the direct perturbation in

SCALE.
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Percent Difference of AN; vs. Time
between derived equations and SCALE
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Figure 12. Percent difference of relativid; between LUNGA method and direct
perturbation in SCALE for Example 3.
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Figure 13. Percent difference of relativid, between LUNGA method and direct
perturbation in SCALE for Example 3.
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Percent Difference of AN; vs. Time
between derived equations and SCALE
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Figure 14. Percent difference of relativid; between LUNGA method and direct
perturbation in SCALE for Example 3.
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Figure 15. Percent difference of relativid, between LUNGA method and direct
perturbation in SCALE for Example 3.
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Figure 12 to Figure 15 display the changes imtimaber densities between the
equations in the LUNGA method and direct pertudyatn SCALE. Figure 12 shows
that the LUNGA equations predict a change in®U) very well compared to the direct
perturbation in SCALE. Generally the differencévieen the two methods is much less
than 1 percent (essentially zero). Figure 13 ashthat the equations also predict a
change in N (**®) very well compared to SCALE and generally thecpat difference is
less than 1 percent between the two methods (&gaioally zero). Figure 14 and Figure
15 indicate that the equations used in the LUNGAha are very capable of predicting

23%u) and N (***Eu) compared to SCALE. Generally the percent

a change in Bl(
difference between the two methods is less thagrdept for both Bland N.
Interestingly, N and N, appear to behave better with a larger perturbatidhe number
density as depicted with the 5 and 10 percent geation curves in Figure 14 and Figure
15. lronically, the bigger differences betweentine methods come with the smaller
perturbations of 0.5 and 1 percent, where the péi&erence between the two methods
can be up to 16 percent fog &hd 25 percent for N

Some of the differences are a little bigger th&ratvs expected, but there are a few
reasons that can explain the differences. Therkeson is because TRITON uses a
predictor/corrector process that depletes the mextinthe midpoint of the cycle then
does another transport calculation with these nuréesities to calculate the flux and to
weight the cross sections, which are then uselddribal depletion calculation. This
difference yields slightly different flux shapesdamne-group cross sections from the

LUNGA equations, which has an impact on the outpuhber densities. The other

reason is rounding errors in both MathCad and SCAEHminating the effects of the
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differences in fluxes and cross sections, anddhading errors should make the
equations match much closer to the direct pertiobhatn SCALE, which is what happens

between the equations and the direct perturbatidng equations, as seen in Table 13.

5.2 Analysis of Example 2

In this section, Example 2 is analyzed further énredequations for the standard
deviation in the number densities take into accaucttange in the flux shape, flux
normalization, and number densities. A few diffeéreariations of Example 2 are
investigated to study the effect on the varianalénnumber densities including different
values of the statistical component in the fluxpehfys values) and different size time
steps.

MathCad is used to solve for the flux shape inripie 2. The eigenvectors output
by MathCad are normalized, and the flux shape efggngroup 2y,) is taken as 1. The
variance for the flux shape of energy group 2 dua thange in the number densities (the
yn2 term) and the percent difference between the LUNBA exact methods is then
equal to zero. This would not happen in a reaesygsbut is not seen as a problem since
the flux shape is a ratio between energy groupdleswergy group 2 in Example 2.

One variation of Example 2 investigated is diffengs values in the flux shape. The
analysis is done with 250-day time steps, and edainty in the initial number
densities. The differents values in the flux shape used in the analysianed 25
percent. As expected the larger the variancedrstatistical component of the flux shape
becomes, the more uncertainty it introduces indonthimber densities and therefore the

larger the standard deviation in the number desssliecome, which is shown in Figure
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16 for Ny and N. Figure 16 shows that the LUNGA method agreeg wall with the
exact method. Figure 17 presents the differentedssn the LUNGA and exact methods
for the standard deviation of the number densdies shows that the two methods
calculate very similar results. The percent défere between the standard deviation of
the number densities between the LUNGA and exathads increases with increasing
variance of the statistical component in the flogme. That is logical because larger
values in the variance of the statistical compoietite flux shape introduce more

uncertainty into the calculation.

Relative sd(N,) and sd(N,) for Exact and LUNGA Methods vs.
Time
with different yg uncertainty values
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Figure 16. Relative sd{iand sd(N) with different magnitudes affs uncertainty for
Example 2.
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Percent Difference of sd(N,) and sd(N,) vs. Time
with different yg uncertainty values
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Figure 17. Percent difference of relative sg(&hd sd(N) with varying magnitudes of
Vs uncertainty for Example 2.

The relative standard deviation of tg term for energy group 1yf,) for the exact
and LUNGA methods is shown in Figure 18, which stdmat the two methods agree
very well and that the standard deviationyf increases as the statistical uncertainty
increases. The differencegf; between the LUNGA and exact methods also increases
with increasing values of the variance of the statl component in the flux shape. This
means the greater the statistical uncertaintyaaleulation the less accurate the
approximation becomes, as can be seen in Figurdfi8refore, in a calculation, the

statistical uncertainty should be kept as smathascalculation allows.
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Relative sd(yy;) vs. Time
with different yg uncertainty values
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Figure 18. Relative sgf;) with varying magnitudes afs uncertainty for Example 2.

Percent Difference in sd(yy,) vs. Time
with different yg uncertainty values
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Figure 19. Percent difference of gg{) with varying magnitudes afs uncertainty for
Example 2.
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Another variation of Example 2 investigated isgdime steps. The analysis is done
with 250-day time steps with 0.11 percent uncetyaimys; and 1.10 percent uncertainty
in ys2 and no uncertainty in the initial number densiti€ggure 20 to Figure 23 present
the results of the 250-day time step variant. FEq0 shows that the LUNGA method
agrees very well with the exact method in calcoathe standard deviation of the
number densities. Figure 21 reveals the diffezsrietween the two methods are
essential equal to zero. Figure 22 illustratesttimatwo methods also agree very well in
calculating the standard deviation of th@ term, and Figure 23 shows that the
differences between the two methods are much hessk percent. Figure 20 to Figure
23 indicate that the LUNGA method is capable o€gk#ting the standard deviations in

the number densities and thg term with a large time step.

Relative sd(N,) and sd(N,) vs. Time
250-day time step

1.00E-03

——sd(N1) exact
—m—sd(N2) exact
1.00E-04 -
‘/t‘/"———_—‘—/. — -o— - sd(N1) LUNGA

— %= - sd(N2) LUNGA
— e = -

relative sd

1.00E-05
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Figure 20. Relative sd@Nand sd(N) with 250-day time steps for Example 2.
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Percent difference in relative sd(N;) and sd(N,) vs. Time
250-day time step
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Figure 21. Percent difference of relative sg(&hd sd(N) with 250-day time steps for
Example 2.

Relative sd(gy;) vs. Time
250-day time step
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Figure 22. Relative sgf;) with 250-day time steps for Example 2.
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Percent Difference sd(gy;) vs. Time
250-day time step
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Figure 23. Percent difference of g¢g{) with 250-day time steps for Example 2.

Figure 20 to Figure 23 demonstrate that the exadtLUNGA methods agree well
with large time steps; therefore, it is expecteat the exact and LUNGA methods would
agree very well with short time steps. The lasiaten of Example 2 investigated is
with small time steps. This analysis is done ittiay time steps with 0.11 percent
uncertainty inys; and 1.10 percent uncertaintyysg, and no uncertainty in the initial
number densities like the 250-day variant. Smi@létsteps are used to investigate the
behavior of the standard deviations with multifheet steps and a more realistic size time
step that might be used in a calculation. Figuréo2Figure 27 show the results of the 2-
day time step variant.

Figure 24 reveals that the LUNGA method agreeg well with the exact method in
calculating the standard deviation of the numbeasdes. The differences between the
two methods are basically zero as seen in FigureFure 26 shows that the two
methods also agree very well in calculating thaddad deviation of they; term. The

percent difference in the standard deviation ofytiieterm hovers around zero (much
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less than 1 percent) as seen in Figure 27. Asctegbesmaller time steps should and do
produce smaller standard deviations in both thebmrrdensities and thg, term.

Some interesting observations come from the pedi#farences between the exact
and LUNGA methods for both the standard deviatiartte number densities and in the
ynterm, as seen in Figure 25 and Figure 27. Figbndustrates for a small time step
that the percent difference of the standard dendbr N; and N shows at times the
LUNGA method is over and under predicting the staiddleviation of the number
densities compared to the exact method, whichtiseen with the larger time steps.
What is also interesting is that the over and umpdedicting of the standard deviation of
the number densities bounce around the value offeetboth nuclides (see Figure 25).
Figure 27 shows that the percent difference betwleerxact and LUNGA methods for
calculating the standard deviation of th@ term is very small and fluctuates around a

value of zero, which is not really seen with thegé time steps.

Relative sd(N,) and sd(N,) vs. Time
2-day time step
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Figure 24. Relative sd@and sd(N) with 2-day time steps for Example 2.
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Percent difference in relative sd(N;) and sd(N,) vs. Time

2-day time step
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Figure 25. Percent difference of relative sg(&hd sd(Y) with 2-day time steps for

Example 2.
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Figure 26. Relative sgf;) with 2-day time steps for Example 2.
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Percent Difference sd(yy;) vs. Time
2-day time step
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Figure 27. Percent difference of relativeygd] with 2-day time steps for Example 2.

As expected a smaller time step produces a snsiiadard deviation in the number
densities (Figure 20 and Figure 24) and a smaiderdsird deviation in they; term
(Figure 22 and Figure 26). The analysis demoresridiat larger (longer) time steps can
be used without sacrificing much accuracy. Thisinsethat smaller (shorter) time steps
could be used to calculate the standard deviatidhe number densities when the system
requires small time steps or greater refinement,larger time steps could be used when

nothing of interest is happening in the system quiak calculation is desired.

5.3 Analysis of Example 3
In this section, Example 3 (the benchmark problsnanalyzed in depth. The
example can be solved semi-analytically, meaniregyakiing is solved analytically with
the aid of computer software (MathCad) to calcuth&eflux shape. The example can
also be solved with KENO and the results can treeadmpared to those from the

analytic solution.
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A few different variations are studied to inveatigthe differences between the exact
and LUNGA methods, and the behavior of the systenuolides in this example. The
different variations include: the analytic solutiand the KENO solution with different
ys values, different power levels, different normatian of the cross sections, and fast
and thermal neutron spectrums (i.e. fast and theneaator systems).

Example 3 is investigated with a fast neutron spet with total normalization of the
Cross sections (cross sections are normalized adliegergy groups). Figure 28 presents
the relative standard deviation of the number dmssior the exact and LUNGA
methods. Figure 30 displays the relative standaxdation of theyy term for the exact
and LUNGA methods. Figure 29 and Figure 31 shaprcent difference between the
exact and LUNGA methods for standard deviatiorhefriumber densities and standard
deviation of theyy term respectively. Figure 28 indicates that thtNIGA method
agrees very well with the exact method in calcoathe standard deviation of the
nuclide number densities. Figure 29 reveals il UNGA method differs from the
exact method by much less than 1 percent. Fighien8 Figure 31 show that the
LUNGA and exact methods for calculating the stadakaviation of theyy term are
considerable different. At times the trends appedollow one another and at times they
do not as seen in Figure 30. However, the figwesdndicate that at times the two
methods can agree to some degree as seen wittatftas] deviation of thgys term

curve in Figure 30.
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Relative sd(N) vs. Time
for Exact and LUNGA Methods
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Figure 28. Relative sd(N) with total normalizatioincross sections for Example 3.

Percent Difference of sd(N) vs Time
between Exact and LUNGA Methods
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Figure 29. Percent difference of sd(N) with tatatmalization of cross sections for
Example 3.
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Relative sd(yy) vs. Time
for Exact and LUNGA Methods
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Figure 30. Relative sgt) with total normalization of cross sections forafxple 3.

Percent Difference of sd(yy) vs Time
between Exact and LUNGA Methods
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Figure 31. Percent difference of gd) with total normalization of cross sections for
Example 3.
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Example 3 is also investigated with a fast neusie&ctrum with total normalization
of the cross sections solved analytically. Herdh@ad is used to solve for the flux
shape of the system. Figure 32 presents thevelstandard deviation of the number
densities for the exact and LUNGA methods and shbatsthe two methods agree very
well with one another. Figure 33 depicts the petrrcdéference between the exact and
LUNGA methods. Figure 33 illustrates that the LUN@ethod agrees well with the
exact method with under a 1 percent difference betwthe two methods. However,
Figure 33 also shows that the percent differengeasing in time, but that the LUNGA
method is over predicting the standard deviatiothéxnumber densities compared to the
exact method. Figure 34 displays the relativedaeshdeviation of theyy term and
shows that the exact and LUNGA methods exhibitstimae trends even though the
percent difference between the two methods is lasggeen in Figure 35. In Figure 35
the difference in then, term is equal to zero; however, this is becaud®of MathCad
solves the system for the flux shape and not becthesdifference is actually equal to

Zero.
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Relative sd(N) vs. Time
for Exact and LUNGA Methods
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Figure 32. Relative sd(N) with total normalizatioincross sections for Example 3
solved analytically.

Percent Difference of sd(N) vs Time
between Exact and LUNGA Methods
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Figure 33. Percent difference of relative sd(Nhwviotal normalization of cross sections
for Example 3 solved analytically.
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Relative sd(yy) vs. Time
for Exact and LUNGA Methods
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Figure 34. Relative sg) with total normalization of cross sections foraxple 3
solved analytically.

Percent Difference of sd(yy) vs Time
between Exact and LUNGA Methods
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Figure 35. Percent difference of relativeygd) with total normalization of cross
sections for Example 3 solved analytically.
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Solving Example 3 analytically allows for the coamigon and initial check of the
standard deviations of the nuclide number densiti¢sose calculated with the Monte
Carlo calculations. Figure 36 and Figure 37 shosvgercent difference between the
Monte Carlo and analytic solutions for the exaat BWNGA methods for Example 3.
As seen in the figures, the Monte Carlo calculatatidard deviations of the nuclide
number densities agreed very well with those catedl analytically for both the exact

and LUNGA methods, with less than a 1 percent diffee for both methods.

Percent Difference in sd(N) vs. Time Between MC and Analytic

Methods
for Exact Method
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& -5.0E-02 — \
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Figure 36. Percent difference between the MC aradlyic solutions with the exact
method for Example 3.
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Percent Difference in sd(N) vs. Time Between MC and Analytic

Methods
for LUNGA Method
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Figure 37. Percent difference between the MC aradlyic solutions with the LUNGA
method for Example 3.

Example 3 is examined with a fast neutron spectritim thermal normalization of
the cross sections (cross sections are normaliied the only thermal energy groups).
Figure 38 displays the relative standard deviatibthe number densities and Figure 39
shows the percent difference in the relative stathdaviation of the number densities for
the exact and LUNGA methods. Figure 40 presemrtsdlative standard deviation of the
yn term and Figure 41 shows the percent differendlanelative standard deviation of
theyy term for the exact and LUNGA methods. As with pinevious investigation of
Example 3, Figure 38 and Figure 39 reveal thatthGA method agrees very well
with the exact method in calculating the standadations in the nuclide number
densities. Figure 40 and Figure 41 illustrate thatLUNGA method does not calculate
the standard deviation of thg term very well, as seen in the previous invesiogabdf

Example 3.
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Relative sd(N) vs. Time
for Exact and LUNGA Methods
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Figure 38. Relative sd(N) with thermal cross settiormalization for Example 3.
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Figure 39. Percent difference of relative sd(Njhwihermal cross section normalization
for Example 3.
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Relative sd(yy) vs. Time
for Exact and LUNGA Methods
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Figure 40. Relative sgt) with thermal cross section normalization for Exden3.
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Figure 41. Percent difference of relativeygg(with thermal cross section normalization
for Example 3.
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Example 3 is also examined with a fast neutrorctspen, thermal normalization of
the cross sections, and extended equations. Thaded equations includ&U and
233N, which are introduced to more closely model wiggipens in SCALE. Siné&U
and®**Np decay quickly in comparison to the time stepytare taken to have no
uncertainty associated with them. Figure 42 prssie relative standard deviation of
the number densities and Figure 43 expresses themaifference for the relative
standard deviation of the number densities forettect and LUNGA methods. Figure 44
displays the relative standard deviation ofyiygerm and Figure 45 shows the percent
difference in the relative standard deviation @y term for the exact and LUNGA
methods. As seen with other iterations of Exar8pleigure 42 and Figure 43 illustrate
that the LUNGA method agrees very well with theaaethod in calculating the
standard deviations in the nuclide number densitiesdoes not agree in calculating the
standard deviation of thgy term which can be seen in Figure 44 and Figure 4
variation was anticipated to resemble the previ@rstion, which it did as seen in
Figure 38 to Figure 41 and Figure 42 to Figure #&luding®*°U and®**Np was not
expected to and did not change the results oftdralard deviation of the number
densities or standard deviation of tagterm, but made the calculated number densities
match more closely to those calculated by SCALEnduthe verification stage of the

research.

106



Relative sd(N) vs. Time
for Exact and LUNGA Methods
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Figure 42. Relative sd(N) with extended equationdgExample 3.
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Figure 43. Percent difference of relative sd(Nthvaxtended equations for Example 3.
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Relative sd(yy) vs. Time
for Exact and LUNGA Methods
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Figure 44. Relative sgf) with extended equations for Example 3.
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Figure 45. Percent difference of relativeygg(with extended equations for Example 3.
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Example 3 is investigated with a thermal neutqpecsrum, thermal normalization of
the cross sections, and the extended equatiogsire=16 shows the relative standard
deviation in the number densities and Figure 48gnts the percent difference in the
relative standard deviation in the number densfoeshe exact and LUNGA methods.
Figure 48 displays the relative standard deviatiatheyy term and Figure 49 depicts
the percent difference in the relative standardad®n in theyy term for the exact and
LUNGA methods. As seen in the other variationExdmple 3, Figure 46 and Figure 47
illustrate that the LUNGA method agrees very wathwihe exact method in calculating
the standard deviations in the nuclide number dessbut does not agree well when

calculating the standard deviation of thgterm as seen in Figure 48 and Figure 49.

Relative sd(N) vs. Time
for Exact and LUNGA Methods
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Figure 46. Relative sd(N) with thermal neutroncipen and thermal cross section
normalization for Example 3.
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Percent Difference of sd(N) vs Time
between Exact and LUNGA Methods
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Figure 47. Percent difference of relative sd(Njhwihermal neutron spectrum and
thermal cross section normalization for Example 3.

Relative sd(yy) vs. Time
for Exact and LUNGA Methods
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Figure 48. Relative sgf) with thermal neutron spectrum and thermal cressien
normalization for Example 3.

110



Percent Difference of sd(yy) vs Time
between Exact and LUNGA Methods
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Figure 49. Percent difference of relativeygg(with thermal neutron spectrum and
thermal cross section normalization for Example 3.

Example 3 is further investigated with a highexater power level with a thermal
neutron spectrum, thermal normalization of the €isEctions, and the extended
equations. The reactor power level is set at 55 fdkthis variation. A higher reactor
power is used to see if the LUNGA method holdshaspower level is increased, and to
see if the standard deviation in the number dessiiehaves as seen in previous literature
[22]. Figure 50 show the relative standard deorabf the number densities and Figure
51 depicts the percent difference of the relatta@dard deviation of the number
densities. Figure 50 and Figure 51 demonstratelteaexact and LUNGA methods
agree very well with each other with much less th@ercent difference between the two
methods in calculating the standard deviation efrttmber densities. Figure 52 presents
the relative standard deviation of thg term and Figure 53 shows the percent difference
in the relative standard deviation of theterm. As seen in Figure 52 and Figure 53, like

the other variations of Example 3, the percened#ihce between the two methods for
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calculating the relative standard deviation of\fineerm is large, but the LUNGA
method exhibits the same trends as the exact method

Figure 46 (power level of 27.39MW) and Figure pOwer level of 55MW) indicate
that as burnup increases so does the standardidewsdthe number densities. Larger
standard deviations in the number densities witheiasing burnup values are also seen in
previous literature [22]. Figure 47 and Figurelaistrate that the percent difference

between the LUNGA and exact methods is about threedar the two different reactor

power levels.
Relative sd(N) vs. Time
for Exact and LUNGA Methods
1.000E-02
—~ 1.000E-03 - ;l—: % ——sd(N1) - exact
% —l—sd(N2) - exact
o 1.000E-04 1 ——sd(N3) - exact
>
< 1.000E-05 - —H— e ——————K —>—sd(N4) - exact
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@ 06{ p—8—@8—8 -——n
1.000E-06 — - - sd(N2) - LUNGA
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Figure 50. Relative sd(N) with a power level o8& for Example 3.

112



Percent Difference of sd(N) vs Time
between Exact and LUNGA Methods
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Figure 51. Percent deviation of relative sd(N)watpower level of 55MW for
Example 3.
Relative sd(yy) vs. Time
for Exact and LUNGA Methods
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Figure 52. Relative sgf) with a power level of 55MW for Example 3.
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Percent Difference of sd(y,) vs Time
between Exact and LUNGA Methods
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Figure 53. Percent difference of relativeygg(with a power level of 55MW for
Example 3.

Example 3 is briefly investigated using the cdrdiierence method instead of the
forward difference method to calculate the derixegiof the flux shape with respect to a
nuclide (theyy term). The variation is examined with a thermalitnon spectrum with
thermal normalization of the cross sections ancettiended equations. The
investigation shows there is little to gain by gsthe central difference method instead of
the forward difference method. The central diffee method should yield a more
accurate answer but also requires twice as manylaiions as the forward difference
method. Table 14 and Table 15 present a compaoistire relative standard deviation in
the nuclide number densities and the relative stahdeviation in they term
respectively. As seen in Table 14, there is raadlyoenefit of using the central difference
method compared to the forward difference metHdoth difference schemes calculate
basically the same standard deviation in the nacaligmber densities, and the differences

between the exact and LUNGA methods are nearlgdhee for each difference scheme
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(much less than 1 percent difference between tbalifierence schemes). Table 15
shows no real benefit for using the central diffieescheme compared to the forward
difference scheme to calculate the standard dewiati theyy term, as both schemes
produce on order the same percent difference betiieeexact and LUNGA methods in

calculating the standard deviation of theterm.

Table 14. Comparison of forward and central défexe schemes of the relative sd(N)
for Example 3.

Example 3: relative sd(N) comparison for forward and central difference scheme

time (days) 30 60 90 120 150 180

sd(N;) 2.810E-06 3.938E-06 4.837E-06 5.717E-06 6.501E-06| 7.248E-06

sd(Ny) 4.630E-07| 6.382E-07| 7.619E-07| 8.838E-07| 9.847E-07| 1.075E-06

forward sd(N3) 1.092E-03| 7.092E-04| 5.557E-04| 4.828E-04| 4.293E-04| 3.908E-04
difference [sd(Ng) 2.280E-04| 3.255E-04| 3.267E-04| 3.135E-04| 2.969E-04| 2.818E-04

sd(N;) 2.810E-06 3.937E-06 4.837E-06( 5.717E-06( 6.501E-06| 7.248E-06

sd(N,) 4.630E-07| 6.382E-07| 7.619E-07| 8.838E-07| 9.847E-07| 1.075E-06

central sd(N3) 1.092E-03| 7.092E-04| 5.557E-04| 4.828E-04| 4.293E-04| 3.908E-04

real difference [sd(N,) 2.280E-04| 3.255E-04| 3.267E-04| 3.135E-04| 2.969E-04| 2.818E-04
sd(N;) 2.810E-06( 3.937E-06 4.837E-06 5.717E-06 6.501E-06| 7.248E-06

sd(Ny,) 4.630E-07| 6.382E-07| 7.619E-07| 8.838E-07| 9.847E-07| 1.075E-06

sd(N3) 1.092E-03| 7.092E-04| 5.557E-04| 4.828E-04| 4.293E-04| 3.908E-04

approximate sd(Na) 2.280E-04| 3.255E-04| 3.267E-04| 3.135E-04| 2.969E-04| 2.818E-04
sd(N;) 0.0E+00 3.5E-03 2.5E-03 2.1E-03 1.9E-03 1.8E-03

percent difference sd(N,) 0.0E+00 -4.8E-04 3.7E-04 4.6E-04 1.4E-03 1.6E-03
with forward and sd(N3) 0.0E+00 -4.4E-04 5.3E-04 5.5E-04 1.6E-03 1.8E-03
approximate (%) sd(Nyg) 0.0E+00 4.2E-04 7.8E-05 5.6E-05 4.1E-04 4.6E-04
sd(N;) 0.0E+00 -7.6E-04 -7.8E-04 -8.5E-04 -3.6E-04 -2.1E-04

percent difference sd(Ny) 0.0E+00 -7.3E-04 -3.4E-04 -1.6E-04 -3.0E-04 -1.2E-04
with central and sd(N3) 0.0E+00 -7.1E-04 -2.6E-04 -7.5E-05 -3.5E-04 -1.6E-04
approximate (%) sd(Ng) 0.0E+00 -9.4E-05 -2.9E-04 -3.8E-04 -3.5E-04 -2.1E-04
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Table 15. Comparison of forward and central défere schemes of the relativegg)
for Example 3.

Example 3: relative sd(yy) comparison for forward and central difference scheme

time (days) 30 60 90 120 150 180

sd(wna) 0.000E+00| 3.208E-05| 8.797E-06| 1.556E-05| 8.418E-06| 1.372E-05

forward  [SA(Wn2) 0.000E+00| 5.739E-06| 8.273E-06| 2.896E-06| 1.212E-05| 7.113E-06
difference |sd(yns) 0.000E+00| 3.342E-06 1.013E-05| 6.658E-06| 1.606E-05| 1.401E-05

sd(wna) 0.000E+00| 1.809E-05| 3.606E-06| 6.306E-06| 1.435E-05| 1.175E-05

central sd(wno) 0.000E+00| 1.277E-06| 4.637E-06| 3.860E-06| 3.717E-07| 8.338E-07

real difference |sd(yna) 0.000E+00| 3.807E-06| 6.397E-06| 4.134E-06| 2.410E-06| 1.059E-05
sd(Wn) 0.000E+00| 2.112E-05| 9.373E-06| 1.172E-05| 4.675E-06| 9.334E-06

sd(wno) 0.000E+00| 4.235E-06| 2.535E-06| 2.528E-06| 8.431E-06| 4.202E-06

approximate sd(wns) 0.000E+00| 9.835E-06| 4.365E-06| 1.083E-06| 3.238E-06| 7.500E-06
percent difference sd(Wni) 0.0E+00|  3.4E+01| -6.6E+00| 25E+01| 4.4E+01| 3.2E+01
with forward and sd(ne) 0.0E+00[ 2.6E+01| 6.9E+01 1.3E+01| 3.0E+01| 4.1E+01
approximate (%) Sd(Wna) 0.0E+00| -1.9E+02 5.7E+01 8.4E+01| 8.0E+01| 4.6E+01
percent difference sd(Wni) 0.0E+00| -1.7E+01| -1.6E+02| -8.6E+01| 6.7E+01| 2.1E+01
with central and sd(Wny) 0.0E+00[ -2.3E+02| 4.5E+01| 3.5E+01| -2.2E+03| -4.0E+02
approximate (%)  |sd(Wna) 0.0E+00| -1.6E+02| 3.2E+01|  7.4E+01| -3.4E+01| 2.9E+01
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5.4Example 3 with Multiple Materials

Example 3 with multiple materials is an extensabiExample 3, and is examined to

investigate the effects of multiple materials (eli#int fuel pins types) in the system.

Example 3 with multiple materials is investigateidwa thermal neutron spectrum,

thermal normalization of the cross sections, aedetttended equations. Table 16

displays the number densities and the relativedstahdeviation of the number densities

calculated using the LUNGA method.

Table 16. Relative sd(N) calculated with the LUN@®&thod for Example 3 with
multiple materials.

Example 3 with multiple materials with 30 day time steps for material 1; solved with MC method

Time step |Stepl Step2 Step3 Step4 Step5 Step6
Ny 2.374E+23| 2.278E+23| 2.184E+23| 2.093E+23| 2.004E+23| 1.917E+23
N> 4.634E+24| 4.630E+24| 4.626E+24| 4.622E+24| 4.618E+24| 4.614E+24
N3 2.794E+21| 5.728E+21| 8.438E+21| 1.094E+22| 1.323E+22| 1.534E+22
Ny 2.971E+14| 7.595E+14| 1.307E+15| 1.886E+15| 2.466E+15( 3.029E+15
sd(N;) 7.916E-05| 1.147E-04| 1.423E-04| 1.650E-04| 1.869E-04| 2.064E-04
sd(N,) 2.006E-06| 2.877E-06| 3.518E-06| 4.059E-06| 4.567E-06| 5.014E-06
sd(Ns) 2.382E-03| 1.547E-03| 1.194E-03| 9.890E-04| 8.574E-04| 7.574E-04
Approximate |Relative [sd(N) 2.457E-03| 1.849E-03| 1.479E-03| 1.215E-03| 1.032E-03| 8.875E-04
Var(yni) 0.000E+00| 4.143E-12| 7.366E-12 4.597E-13| 1.483E-10| 2.426E-10
Var(yn2) 0.000E+00| 1.632E-11| 1.625E-11| 1.620E-11| 1.609E-09| 2.574E-10
Var(yns) 0.000E+00| 3.042E-11| 3.200E-10( 1.862E-10| 9.075E-11| 4.556E-11
Example 3 with multiple materials with 30 day time steps for material 2; solved with MC method
Time step |Stepl Step2 Step3 Step4 Step5 Step6
N¢ 1.412E+23( 1.344E+23| 1.278E+23| 1.214E+23| 1.153E+23| 1.094E+23
N> 4.732E+24| 4.727TE+24( 4.723E+24| 4.719E+24| 4.715E+24( 4.711E+24
N3 2.946E+21| 5.986E+21| 8.740E+21| 1.124E+22| 1.351E+22| 1.556E+22
Ny 2.786E+14| 7.748E+14| 1.365E+15| 1.983E+15| 2.589E+15( 3.164E+15
sd(N;) 1.207E-04| 1.707E-04| 2.107E-04| 2.443E-04| 2.769E-04| 3.065E-04
sd(N,) 2.313E-06| 3.269E-06| 4.018E-06| 4.637E-06( 5.226E-06| 5.747E-06
sd(Ns) 2.640E-03| 1.674E-03| 1.285E-03| 1.054E-03| 9.037E-04| 7.876E-04
Approximate |Relative [sd(N4) 3.330E-03| 2.333E-03| 1.794E-03| 1.436E-03| 1.194E-03| 1.009E-03
Var(yni) 0.000E+00| 4.771E-13| 2.970E-10( 1.221E-10| 2.976E-10| 4.741E-11
Var(ynz) 0.000E+00| 0.000E+00| 2.610E-10| 6.487E-11| 0.000E+00| 6.443E-11
Var(yns) 0.000E+00| 1.267E-10| 3.898E-11| 1.255E-10| 6.175E-12| 6.119E-12
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Figure 54 and Figure 55 display a comparison efréhative standard deviation of the
number densities for Example 3 and Example 3 witiftiple materials. Since Example
3 with multiple materials is an extension of Exaenlthe trends should be similar to one
another. Figure 54 and Figure 55 illustrate thatttend of the relative standard
deviation of the nuclides in material 1 and matetitor Example 3 with multiple

materials are very similar to the trends for Exaartpl

Relative sd(N;) and sd(N,) vs. Time
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Figure 54. Relative sd{and sd(N) calculated with the LUNGA method for Example
3 and Example 3 with multiple materials.
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Relative sd(N3) ans sd(Ng) vs. Time
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Figure 55. Relative sd@land sd(l¥) calculated with the LUNGA method for Example
3 and Example 3 with multiple materials.
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5.5Discussion of they Term
The variance in the flux shape)(is composed of two terms, the statistical
componentys — from the Monte Carlo simulation) and the nuclkdenponent\yy —
from the changes in the number densities). Thewee of theyy term contributes to

part of the variance in the flux shape and is aefiby

T
var(y,, ) = E[(Ay/N )2]2 (Z_%j COV[N,N™ IZ—%) whereCOV|N, N | is the nuclide
covariance matrix. They term comes from the uncertainty in the flux shdpe to the

uncertainty in the number densities and is defined v, = %AN whereN is a

vector of all nuclides in the system. In ordestdve for theyy term, the change in the
flux shape must be found for a change in each de@h the system. That means finding
the derivatives of the flux shape with respectaohenuclide in the system which takes
time, or tabulating the derivatives in some kindilef

The LUNGA method presented in this research catealthe\yy term in a way that
reduces the number of Monte Carlo simulations ne¢alelescribe the term, and requires
only one additional Monte Carlo simulation per me being depleted (area of interest).
The following equation used in the LUNGA methodthris research, to approximately

calculate the\yy term iso, ~ Ay =y'—y . The solutions for the flux shape come

from the equation®(N + AN )}y’ = 0andB(N }y = 0 where N is a vector of all the

nuclides in the system and B is the Boltzman operaExample 2 and Example 3 show
how theyy term behaved in two different systems. The twanegxles provide different

insights about approximating the variance ofithgerm.
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Example 2 shows that the LUNGA method worked weel in calculating the
variance of theyy term. The percent difference between the LUNGA exact methods
is less than 1 percent for a time step of 250-dsgs Figure 23) and less than one half of
1 percent for a time step of 2-days (see Figure EXample 2 also shows the
approximation agreeing very well with the exact moek for a statistical uncertainty up to
25 percent; the percent difference in {heterm for that case is under 2 percent as seen
in Figure 19. However, Example 3 reveals thatLtiBlGA method did not work well in
calculating the variance of thg, term compared to the exact method. The percent
difference between the LUNGA method and the exathod is generally around 100
percent as seen in Figure 31 and Figure 41.

In Example 2 the LUNGA method works very well maulating the variance of the
yn term, but in Example 3 the LUNGA method did notrlkvevell in calculating the
variance of theyy term. This appears to be a problem; however sinyating theyy
term more closely reveals that the variance ofjilpéerm makes a very small
contribution to the variances of the number deesitiThe contributions to the variance
of the number densities are calculated using batniple 2 and Example 3. Table 17
for Example 2, and Table 18 and Table 19 for Exan3pbresent the percent

contributions of the different terms to the variaic the number densities.
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Table 17. Percent contribution of terms in var(lagl var(N2) for Example 2.

Contribution of yy, W, and var(N) and COV(N,N") terms in var(N)
Time step |Stepl Step2 Step3 Step4
Time (days) 2.5E+02| 5.0E+02 7.5E+02 1.0E+03
Percent var(N,) 0.0E+00| 2.4E-08| 2.6E-07| 7.3E-07
contribution of
var(yy) in var(N) |var(Ny) 0.0E+00| 2.4E-08| 2.4E-07| 5.8E-07
percent var(Ny) 1.0E+02| 5.0E+01| 3.3E+01| 2.5E+01
contribution of
var(ys) in var(N) [var(N,) 1.0E+02| 5.0E+01 3.1E+01 2.0E+01
Percent
contribution of 1, ) 0.0E+00| 5.0E+01| 6.7E+01| 7.5E+01
var(N) and
COV(N,N") in
var(N) var(N,) 0.0E+00| 5.0E+01| 6.9E+01| 8.0E+01

Table 18. Percent contribution of terms in vaniith fast neutron spectrum for
Example 3.

Contribution of yy, ws, and var(N) and COV(N,N') in var(N) for Fast Spectrum

Time (days) 30 60 90 120 150
var(N,) (U™) 1.0E+02| 4.8E+01| 2.7E+01| 2.4E+01| 2.0E+01
var(N,) (U 1.0E+02| 5.1E+01| 3.2E+01| 2.2E+01| 2.5E+01
Percent contribution [Var(Na) (Pu™) [ 1.0E+02| 4.9E+01] 28E+01| 24E+01| 2.1E+01
of var(yy) in var(N) [var(Ng) (Eu™)| 1.0E+02| 5.7E+01| 3.8E+01| 3.1E+01| 3.4E+01
var(N,) (U™) 0.0E+00| 7.8E-04| 9.1E-05| 7.1E-04| 3.9E-05
var(N,) (U 0.0E+00| 8.7E-03| 1.2E-03| 2.0E-03| 1.1E-03
Percent contribution [Var(Na) (Pu™) | 0.0E+00| 2.0E-03| 2.9-04| 9.4E-04| 25E-04
of var(yy) in var(N) [var(Ny) (Eu™)| 0.0E+00| 4.8E-03| 8.9E-04| 2.0E-03| 1.2E-03
var(N;) (U*) 0.0E+00| 5.2E+01| 7.3E+01| 7.6E+01| 8.0E+01
Percent contribution | & (N2) (U™ 0.0E+00| 4.96+01| 6.8E+01| 7.8E+01| 7.5E+01
of var(N) and var(Ng) (Pu”®)|  0.0E+00| 5.1E+01| 7.2E+01| 7.6E+01| 7.9E+01
COV(N,N') in var(N) [var(N,) (Eu™)| 0.0E+00| 4.3E+01| 6.2E+01| 6.9E+01| 6.6E+01
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Table 19. Percent contribution of terms in varfhth thermal neutron spectrum for

Example 3.

Contribution of yy, Ws, and var(N) and COV(N,N") in var(N) for Thermal Spectrum
Time (days) 30 60 90 120
var(N,) (U™) 1.0E+02| 4.8E+01| 3.2E+01| 2.6E+01
var(N,) (U®) 1.0E+02| 4.9+01| 3.1E+01| 2.7E+01

Percent contribution [var(Na) (Pu*)|  1.0E+02| 5.1E+01| 3.5E+01| 3.2E+01
of var(ys) in var(N) |var(N,) (Eu™)| 1.0E+02| 5.8E+00| 3.98+00|] 5.0E+00
var(N,) (U™?) 0.0E+00| 5.4E-03| 7.3E-04| 8.1E-04
var(N,) (U%®) 0.0E+00| 1.8E-03| 2.7E-04| 7.0E-05
Percent contribution [var(Na) (Pu*)|  0.0E+00| 1.7E-03| 2.8E-04| 7.6E-05
of var(yy) in var(N) |var(N,) (Eu™)| 0.0E+00[ 6.6E-04| 7.4E-05| 5.7E-05
var(N;) (U™ 0.0E+00| 5.2E+01| 6.8E+01| 7.4E+01
percent contribution [V2"(N2) ) 0.0E+00[ 5.1E+01| 6.9E+01| 7.3E+01
of var(N) and var(Ng) (Pu”®)|  0.0E+00| 4.98+01| 6.5E+01| 6.8E+01
COV(N,N") in var(N) [var(N,) (Eu™)| 0.0E+00| 9.4E+01| 9.6E+01| 9.5E+01
Time (days) 150 180 210 240
var(N,) (U™) 2.0E+01| 1.7E+01| 1.4E+01| 1.3E+01
var(N,) (U®) 2.1E+01| 1.8E+01| 1.6E+01| 1.5E+01
Percent contribution [var(Na) (Pu*)|  2.5E+01| 2.2E+01| 2.0E+01| 2.0E+01
of var(y,) in var(N) |var(N,) (Eu™)| 5.8E+00[ 6.5E+00| 7.3E+00|] 8.8E+00
var(N,) (U™) 3.0E-04| 3.8E-04| 1.7E-04| 4.8E-04
var(N,) (U®) 4.2E-04| 4.0E-04| 4.4E-04| 6.7E-04
Percent contribution [Var(Na) (Pu”)|  6.4E-04| 4.7E-04| 6.0E-04] 9.0E-04
of var(yy) in var(N) |var(N,) (Eu™)| 7.2E-05| 1.56-04| 1.98-04| 3.9E-04
var(N;) (U™ 8.0E+01| 8.3E+01| 8.6E+01| 8.7E+01
percent contribution [V2"(N2) (U=®) 7.9+01| 8.2E+01| 8.4E+01| 8.5E+01
of var(N) and var(Ny) (Pu”®)|  7.5E+01| 7.8E+01| 8.0E+01| 8.0E+01
COV(N,N) invar(N) [var(N,) (Eu™)| 9.4E+01| 9.3e+01| 9.3E+01| 9.1E+01

As an additional investigation into thg term, Example 3 is analyzed by omitting
theyy term in the LUNGA method. Table 20 reveals tHatree standard deviation and
the percent difference in the relative standardadien of the nuclide number densities

with and without including they term in the LUNGA method. As seen in Table 2@, th
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relative standard deviation in the number densisiedout the same regardless of

whether or not they term is included. Not including thyg term yields slightly less

accurate results than including thhg term as compared to the exact method which is also

noticed in Table 20. This helps reinforce how draaontributor theyy term is to the

standard deviation of the number densities.

Table 20. Relative sd(N) and percent differenced§N) with noyy term in
method for Example 3.

LUNGA

Example 3: relative sd(N) and percent difference in relative sd(N) with UO, fuel

time (days) 30 60 90 120 150 180

sd(N,) 2.810E-06| 3.938E-06| 4.837E-06] 5.717E-06| 6.501E-06| 7.248E-06

sd(Np) 4.630E-07| 6.382E-07| 7.619E-07| 8.838E-07| 9.847E-07| 1.075E-06

real method sd(N3) 1.092E-03| 7.092E-04| 5.557E-04| 4.828E-04| 4.293E-04| 3.908E-04

(atoms/cm®) sd(NJ) 2.280E-04| 3.255E-04| 3.267E-04| 3.135E-04| 2.969E-04| 2.818E-04

sd(Ny) 2.810E-06| 3.937E-06| 4.837E-06| 5.717E-06| 6.501E-06| 7.248E-06

approximate sd(Np) 4.630E-07| 6.382E-07| 7.619E-07| 8.838E-07| 9.847E-07| 1.075E-06

method with yy  [sd(N3) 1.092E-03| 7.092E-04| 5.557E-04| 4.828E-04| 4.293E-04| 3.908E-04

(atoms/cm®) sd(Na) 2.280E-04| 3.255E-04| 3.267E-04| 3.135E-04| 2.969E-04| 2.818E-04

sd(Ny) 2.810E-06| 3.937E-06| 4.837E-06| 5.717E-06| 6.501E-06| 7.247E-06

approximate sd(Np) 4.630E-07| 6.382E-07| 7.619E-07| 8.838E-07| 9.847E-07| 1.075E-06

method without wy [sd(N3) 1.092E-03| 7.092E-04| 5.556E-04| 4.828E-04| 4.293E-04| 3.908E-04

(atoms/cm®) sd(NJ) 2.280E-04| 3.255E-04| 3.267E-04| 3.135E-04| 2.969E-04| 2.818E-04

_ sd(Ny) 00E+00| 35603 25603 =21E-03] 19603 1.8E-03

percent difference req Sy 0.0E+00| -4.8E-04] 3.7E-04] 46E-04] 14E-03] 1.6E-03
between real and

approximate with |SI(Na) 0.0E+00| -4.4E-04] 53E-04] 55€E-04] 16E-03] 1.8E-03

W (%) sd(N) 0.0E+00| 4.2E-04] 7.8E-05] 56E-05| 4.1E-04] 4.6E-04

_ sd(Ny) 0.0E+00| 6.2E-03| 4.7E-03| 4.1E-03] 36E-03] 34E03

Eiivcfe?ndr'giiﬂﬁe sd(Np) 0.0E+00| 4.3E-04] 1.1E-03] 10E03] 20E-03] 23E-03

approximate sd(Ny) 00E+00| 4.1E-04] 12E-03] 11E-03] 23E-03] 25E03

without wy (%) |SA(Ny) 0.0E+00| 7.5E-04| 53E-04] 6.3E-04] 10E-03] 1.1E-03

Table 17 to Table 20 show that the main contrdnsito the variance in the number
densities come from the variance of thegterm (statistical component of the flux shape)
and the variance and covariances of the numbeitesnthemselves. For Example 2, the

contribution from these terms are 6 to 7 ordemnafinitude greater than the contribution
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from theyy term (nuclide component of the flux shape). Faarfple 3, the contribution
from these terms are 3 to 5 orders of magnitudatgrehan the contribution from thye
term. The contribution from thgy term to the variance in the number densities ig,ve
very small. Therefore, thgy term is not as significant a contributor to theiaace in

the number densities as thgterm or the variance and covariances of the number

densities themselves.
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CHAPTER 6

VALIDATION OF THE LUNGA METHOD

Validation of the LUNGA method for calculating teandard deviation in the
nuclide number densities is not an easy task. efaer limited journal articles to
compare the research to, and the authors of tlodeartio not give an in-depth discussion
about the operating conditions of their system &atmn. Therefore, replication of the
system in the journal articles was attempted witle knowledge of those systems. A
large number of Monte Carlo simulations could he and the results compared, but this
takes time and computing resources.

Validation was accomplished by comparing the tesafl 100 different Monte Carlo
simulations to the results of both Example 3 andripgle 3 with multiple materials using
the LUNGA method. Verification was done by inditgcomparing the results of
Example 3 to the results found in previous jouaréicles. An indirect comparison to the
journal articles is judged as a good method to kaljate the research, since the
simulations in the journal articles could not bprogluced exactly, because of the limited

amount of information presented in the journalcée about the setup of the simulations.

6.1 Validation of Example 3
Validation of the LUNGA method for calculating teandard deviation in the
nuclide number densities is done by running 10f2dsht Monte Carlo simulations each
with a different starting random number. Each sanon consisted of 250 generations

(skipped 50 generations) with 2,000 neutrons peegsion for a total of 400,000
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particles. This is selected for two reasons:t,fitss the number of particles used in the
article by Shim and second, it shows convergendaefioite medium multiplication
factor (kns) and the nuclide number densities, and creatééesemce in the fluxes that is
seen in the number densities. A higher particlentavould lead to less statistical
uncertainty in the flux and, therefore, less uraaty in the nuclide number densities.
The nuclide number densities using the derivecdops are verified with the
nuclide number densities from the Monte Carlo sofu{T5-DEPL sequence) and
deterministic solution (T-DEPL sequence) from SCAditfl are presented in Table 22
and Table 23. Table 22 and Table 23 indicate stiseeepancy in the number densities
between the derived equations and SCALE. Wittherrinvestigation it was found that
the main discrepancy in the number densities istdwenitting®% and®**Np in nuclide
chain equations. Therefore, the original equatfon&xample 3 were expanded to
include®%U and®**Np. To help limit differences between the origirgliations and the
expanded equations, no uncertainty was includéeif*®U and®**Np isotopes. As seen
in Table 22 and Table 23, these extended equatieady duplicate the nuclide number
densities calculated by the SCALE computer codanéof the difference between the
derived expanded equations and SCALE was contdiotéhe exclusion of other
nuclides in the decay and capture chains [15].0 e difference in how the nuclide
transmutation equations were solved, SCALE usingee rigorous solution method,
contributed to some of the differences in the valud®]. Some of the differences
between the derived expanded equations and SCALE& also contributed to the small
differences in some of the constants used in tleeiledions that are specified in Table

21.
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Table 21. Differences of internal constants betw®EALE and the derived equations.

Differences between derived equations and SCALE
Derived equations SCALE Percent difference (%)
Power conversion constant
(MW/(MeV/s)) 1.60E-13 1.60219E-13 1.4E-01
Recoverable energy (MeV) [fission capture |fission capture [fission capture
u*® 194.02 6.545 194.02]  6.5451] 0.0E+00| 1.5E-03
u>* 198.12 4.804 198.122 4.804| 1.0E-03| 0.0E+00
Nuclide Pui:: 200.05 6.533 200.05 6.533| 0.0E+00| 0.0E+00
Eu 0 6.49 0 6.49] 0.0E+00| 0.0E+00
0" 0 4.143 0 4.143| 0.0E+00| 0.0E+00
H! 0 2.225 0 2.2246] 0.0E+00| -1.8E-02
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Table 22. Percent difference of the number dersslietween MC solution of SCALE and derived equatio

Percent difference in the number densities between SCALE with MC solution and derived equations

Time (days) | 30| 60| 90| 120| 150] 180| 210| 240 270| 300 330 360
Original equations with fast spectrum and total cross section normalization
N4 (U235) 1.2E-02] 1.6E-02| 1.4E-02| 6.5E-03|] 1.5E-02| 1.7E-03| 8.0E-03] -8.7E-03| -5.2E-03| 2.1E-03| -1.4E-02| -2.4E-03
N, (U™ 1.0E-02| 1.6E-03| 3.2E-03| 4.4E-03| -5.4E-03| -4.7E-03| -4.1E-03| -3.6E-03| -1.4E-02| -1.4E-02| -1.4E-02| -1.4E-02
N3 (Pu239) -1.3E+01] -6.5E+00| -4.4E+00| -3.3E+00| -2.7E+00] -2.3E+00| -2.0E+00] -1.8E+00| -1.6E+00| -1.5E+00| -1.3E+00| -1.2E+00
N, (Eu155) -9.7E+00| -7.1E+00| -5.7E+00| -4.7E+00| -3.9E+00| -3.4E+00| -3.0E+00| -2.7E+00| -2.4E+00| -2.2E+00| -2.0E+00| -1.8E+00
Original equations with fast spectrum and thermal cross section normalization
Ny (U235) 1.2E-02] 1.6E-02| 1.4E-02| 6.5E-03| 1.5E-02| 1.7E-03| 8.0E-03] -8.7E-03| -5.2E-03| 2.1E-03| -1.4E-02| -2.4E-03
N, (U238) 1.0E-02] 1.6E-03| 3.2E-03| 4.4E-03| -5.4E-03| -4.7E-03| -4.1E-03| -3.6E-03| -1.4E-02| -1.4E-02| -1.4E-02| -1.4E-02
N3 (Pu239) -1.3E+01] -6.5E+00| -4.4E+00| -3.3E+00| -2.7E+00] -2.3E+00| -2.0E+00| -1.8E+00| -1.6E+00| -1.5E+00| -1.3E+00| -1.2E+00
N, (Eu155) -9.7E+00] -7.1E+00| -5.7E+00| -4.7E+00| -3.9E+00| -3.4E+00| -3.0E+00] -2.7E+00| -2.4E+00| -2.2E+00| -2.0E+00| -1.8E+00
Extended equations with fast spectrum and thermal cross section normalization
N\ (U235) 1.2E-02] 2.0E-02| 2.1E-02| 1.7E-02] 2.9E-02| 1.7E-02| 2.6E-02| 1.0E-02] 1.9E-02| 2.7E-02| 1.6E-02| 2.8E-02
N, (U™ 1.0E-02| 1.8E-03| 3.5E-03| 4.9E-03| -4.8E-03| -3.9E-03| -3.2E-03| -2.7E-03| -1.3E-02| -1.3E-02| -1.2E-02| -1.2E-02
N3 (Puzag) -1.2E-01] -3.5E-01| -3.9E-01| -3.5E-01| -3.2E-01| -2.8E-01| -2.6E-01] -2.6E-01| -2.7E-01| -2.6E-01| -2.5E-01] -2.4E-01
N, (Eu155) -4.9E-01] -8.4E-01| -1.0E+00| -1.1E+00| -1.1E+00| -1.1E+00| -1.1E+00| -9.6E-01| -9.0E-01] -8.2E-01| -7.9E-01| -7.4E-01
Extended equations thermal spectrum and thermal cross section normalization
N; (U™) -2.3E-03| -3.4E-03| -1.0E-02| -8.7E-04| -1.8E-02| -1.8E-02| -2.1E-02| -2.8E-02| -3.7E-02| -4.9E-02| -3.8E-02| -5.4E-02
N, (U238) 5.8E-03| 6.5E-03| 7.5E-03] 8.5E-03| -1.0E-03| 4.2E-04| 2.0E-03] 3.7E-03| 5.7E-03| -2.7E-03| -2.1E-04| 2.5E-03
N; (Pu”™) 2.1E-01| 1.1E-03| -6.8E-02| -4.5E-02| -1.0E-01| -1.1E-01| -4.6E-02| -2.5E-02| 2.0E-02| -5.4E-02| -6.8E-02| -6.2E-02
N, (Eu155) 3.0E-01| 2.0E-01| 1.3E-01] 7.6E-03| 1.9E-02| -2.5E-02| -6.0E-02| -9.7E-02| -7.6E-02( -3.0E-02| -4.3E-02| -6.1E-02
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Table 23. Percent difference of the number dersslietween deterministic solution of SCALE andwgtiequations.

Percent difference in the number densities between SCALE with deterministic solution and derived equations

Time (days) | 30| 60| 90| 120| 150] 180| 210| 240 270| 300 330 360
Original equations with fast spectrum and total cross section normalization
N4 (U235) 1.2E-02] 1.6E-02| 1.4E-02| 6.5E-03] 1.5E-02| 1.7E-03| 8.0E-03| 1.4E-02| -5.2E-03| 2.1E-03| -1.4E-02| -2.4E-03
N, (U™ 1.0E-02| 1.6E-03| 3.2E-03| 4.4E-03| -5.4E-03| -4.7E-03| -4.1E-03| -3.6E-03| -1.4E-02| -1.4E-02| -1.4E-02| -1.4E-02
N3 (Pu239) -1.3E+01] -6.4E+00| -4.3E+00| -3.3E+00| -2.6E+00| -2.2E+00| -1.9E+00( -1.7E+00| -1.5E+00| -1.4E+00| -1.3E+00| -1.2E+00
N, (Eu155) -9.7E+00| -7.2E+00| -5.7E+00| -4.7E+00| -3.9E+00| -3.4E+00| -3.0E+00| -2.7E+00| -2.4E+00( -2.2E+00{| -2.0E+00]| -1.9E+00
Original equations with fast spectrum and thermal cross section normalization
Ny (U235) 1.2E-02] 1.6E-02| 1.4E-02| 6.5E-03| 1.5E-02| 1.7E-03| 8.0E-03| 1.4E-02| -5.2E-03| 2.1E-03| -1.4E-02| -2.4E-03
N, (U238) 1.0E-02] 1.6E-03| 3.2E-03| 4.4E-03| -5.4E-03| -4.7E-03| -4.1E-03]| -3.6E-03| -1.4E-02| -1.4E-02| -1.4E-02| -1.4E-02
N3 (Pu239) -1.3E+01] -6.4E+00| -4.3E+00| -3.3E+00| -2.6E+00| -2.2E+00| -1.9E+00| -1.7E+00| -1.5E+00( -1.4E+00| -1.3E+00| -1.2E+00
N, (Eu155) -9.7E+00| -7.2E+00] -5.7E+00| -4.7E+00| -3.9E+00] -3.4E+00| -3.0E+00| -2.7E+00| -2.4E+00| -2.2E+00| -2.0E+00| -1.9E+00
Extended equations with fast spectrum and thermal cross section normalization
N4 (U235) 1.2E-02] 2.0E-02| 2.1E-02| 1.7E-02] 2.9E-02| 1.7E-02| 2.6E-02| 3.3E-02| 1.9E-02| 2.7E-02| 1.6E-02| 2.8E-02
N, (U™ 1.0E-02| 1.8€-03| 3.5E-03| 4.9E-03| -4.8E-03| -3.9E-03| -3.2E-03| -2.7E-03| -1.3E-02| -1.3E-02| -1.2E-02| -1.2E-02
N3 (Puzag) -6.5E-02| -2.7E-01| -2.7E-01| -3.0E-01| -2.9E-01| -2.5E-01| -2.4E-01| -2.1E-01| -2.1E-01| -1.9E-01| -1.9E-01| -1.7E-01
N, (Eu155) -5.4E-01] -8.8E-01| -1.0E+00| -1.1E+00| -1.1E+00| -1.1E+00| -1.1E+00| -9.9E-01| -9.3E-01| -8.7E-01| -8.1E-01| -7.8E-0O1
Extended equations thermal spectrum and thermal cross section normalization
N; (U™) -2.3E-03| -3.4E-03| -1.0E-02| -8.7E-04| -1.8E-02| -1.8E-02| -2.1E-02| -2.8E-02| -3.7E-02| -4.9E-02| -6.4E-02| -5.4E-02
N, (U238) 5.8E-03| 6.5E-03| 7.5E-03|] 8.5E-03| -1.0E-03( 4.2E-04| 2.0E-03] 3.7E-03| 5.7E-03| -2.7E-03| -2.1E-04| 2.5E-03
N; (Pu”™) 2.8E-01| 1.4E-01| 9.0E-02| 1.1E-01| 9.0E-02| 5.2E-02| 9.8E-02| 1.5E-01| 1.4E-01| 8.7E-02| 6.3E-02| 6.0E-02
N, (Eu155) 3.4E-01| 2.2E-01| 1.3E-01] 1.3E-01| 1.1E-01| 8.5E-02| 6.0E-02] 3.1E-02| 5.7E-02 8.7E-02| 8.0E-02| 8.3E-02




Verification continues with investigating the ardlity (kiys) of the system in Example
3, which is calculated with both Monte Carlo antedainistic solutions from SCALE.
Figure 56 and Figure 57 show the criticality constar both the fast and thermal
neutron spectrums and illustrate that the derivpehBons can calculate the criticality of

the system very accurately, generally with arou@dlé percent difference.

Kins VS. Time for Fast Spectrum
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Figure 56. Criticality constant of a fast reactgstem in Example 3.
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Kint VS. Time for Thermal Spectrum
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Figure 57. Criticality constant of a thermal remctystem in Example 3.

This part of the verification concludes with atistizcal analysis of the 100 Monte
Carlo simulations and the LUNGA method (1 simulalioThe means and standard
deviations are found for the 100 Monte Carlo siriafes that are then compared to the
LUNGA method. The number densities are observéi onormal distribution, which
was seen in previous literature [7]. There isabpbility of 95 percent that a random
variable takes a value within two standard devretiof its mean with a normal
distribution and that is observed in this researthe statistical analysis is done using a
two-sample t-test with a two-sided 99 percent aterice interval. In the analysis, the
null hypothesis is that the means are equal andltemate hypothesis is that the means
are not equal. The null hypothesis is acceptechwithe absolute value of the t-statistic is
less than or equal to the critical point and rejddhe rest of the time.

The two methods agree with 99 percent confideackf and the nuclide number

densities when the neutron spectrum was dominatédth the fast and thermal energy
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ranges. Table 24 to Table 29 present a summahedtatistical analysis conducted in
this research. Table 24 and Table 25 show thdtsasithe analysis for the standard
deviation in the number densities and Table 28layspthe results of the analysis for the
standard deviation in when the energy spectrum is dominated by therniastron
spectrum. Table 26 and Table 27 specify the residilthe analysis for the standard
deviation in the number densities and Table 29ketehihe results of the analysis for the
standard deviation in when the energy spectrum is dominated by the thlemeutron
spectrum.

Table 30 to Table 33 present the relative standawhtions in both the number
densities and in the criticality constant for Exden®. Table 30 shows the relative
standard deviation in the number densities anderabldisplays the relative standard
deviation in k; when the energy spectrum is dominated by thenfastron spectrum.
Table 31 expresses the relative standard deviatitme number densities and Table 33
shows the relative standard deviation jjp\When the energy spectrum is dominated by
the thermal neutron spectrum.

Differences between the two methods result fromydhfferent factors including:
slight differences in the flux shape and crossigest the limitation of LUNGA method,
and rounding errors. The T5-DEPL sequence usesdicpor/corrector process that
depletes the mixture to the midpoint of the cyblentdoes another transport calculation
with these number densities to calculate the fhuk @ weight the cross sections, which
are then used in the final depletion calculatidhis difference yields slightly different
flux shapes and one-group effective cross sectishgh has an impact on the output

number densities. It is illustrated in Table 22 diable 23 that the LUNGA method does
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not duplicate the SCALE results exactly. Precisiothe data handling and the rounding
of the data also affect the output number densitied where and when data is rounded

has been seen to affect the statistics of the nuddesities.

134



aET

Table 24. Summary of statistical analysis e@fadd N with fast neutron spectrum for Example 3.

Statistical analysis for verification of the approximate method (base simulation) and 100 MC simulations for fast neutron spectrum

Time (days) 30 60 90 120 150 180

mean (100 simulations) 4.864E+23 4.786E+23 4.709E+23 4.633E+23 4.559E+23 4.485E+23

mean (base simulation) 4.864E+23 4.786E+23 4.709E+23 4.633E+23 4.559E+23 4.485E+23
N pooled var 2.539E+37 7.111E+37 1.171E+38 1.701E+38 2.203E+38 2.848E+38
o |t-stat -2.120E-01 3.896E-02 -9.571E-03 -5.902E-02 1.625E-01 1.357E-01

accept/reject accept accept accept accept accept accept

99% CI (Mpase-M100) (-1.44E+19,1.226E+19) |(-2.198E+19,2.264E+19) |(-2.873E+19,2.853E+19) |(-3.527E+19,3.372E+19) |(-3.684E+19,4.169E+19) |(-4.234E+19,4.694E+19)

mean (100 simulations) 9.266E+24 9.257E+24 9.248E+24 9.239E+24 9.229E+24 9.220E+24

mean (base simulation) 9.266E+24 9.257E+24 9.248E+24 9.239E+24 9.229E+24 9.220E+24
N pooled var 8.153E+36 1.560E+37 2.861E+37 3.532E+37 4.266E+37 5.296E+37
2 |t-stat -3.069E-01 -1.536E+00 -1.449E+00 -1.267E+00 -1.230E+00 -5.438E-01

accept/reject accept accept accept accept accept accept

99% Cl (Mpase-H100) (-8.434E+18,6.672E+18) |(-1.655E+19,4.35E+18) |(-2.194E+19,6.358E+18) |(-2.329E+19,8.154E+18) |(-2.535E+19,9.203E+18) |(-2.323E+19,1.527E+19)

Time (days) 210 240 270 300 330 360

mean (100 simulations) 4.413E+23 4.342E+23 4.271E+23 4.202E+23 4.133E+23 4.066E+23

mean (base simulation) 4.413E+23 4.342E+23 4.271E+23 4.202E+23 4.133E+23 4.066E+23
N pooled var 3.407E+38 3.709E+38 4.374E+38 5.408E+38 5.924E+38 6.640E+38
o |t-stat -2.600E-02 8.618E-02 -1.861E-01 3.390E-02 -3.206E-01 -2.721E-01

accept/reject accept accept accept accept accept accept

99% CI (Mpase-H100) (-4.931E+19,4.834E+19) |(-4.927E+19,5.261E+19) |(-5.924E+19,5.141E+19) |(-6.072E+19,6.231E+19) |(-7.222E+19,5.654E+19) |(-7.521E+19,6.112E+19)

mean (100 simulations) 9.211E+24 9.202E+24 9.193E+24 9.184E+24 9.175E+24 9.166E+24

mean (base simulation) 9.211E+24 9.202E+24 9.193E+24 9.184E+24 9.175E+24 9.166E+24
N pooled var 6.907E+37 8.458E+37 9.786E+37 1.073E+38 1.172E+38 1.293E+38
2 |t-stat -1.007E-01 -2.292E-01 -1.496E-01 -1.775E-01 -4.364E-01 -2.876E-01

accept/reject accept accept accept accept accept accept

99% CI (Mpase-M100)

(-2.283E+19,2.114E+19)

(-2.644E+19,2.221E+19)

(-2.765E+19,2.468E+19)

(-2.925E+19,2.556E+19)

(-3.338E+19,2.389E+19)

(-3.337E+19,2.679E+19)
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Table 25. Summary of statistical analysis g@fadd N, with fast neutron spection for Example 3.

Statistical analysis for verification of the approximate method (base simulation) and 100 MC simulations for fast neutron spectrum

Time (days) 30 60 90 120 150 180

mean (100 simulations) 5.583E+21 1.173E+22 1.769E+22 2.349E+22 2.915E+22 3.466E+22

mean (base simulation) 5.585E+21 1.173E+22 1.770E+22 2.350E+22 2.915E+22 3.467E+22
N pooled var 1.591E+37 4.179E+37 7.282E+37 1.017E+38 1.282E+38 1.635E+38
3 |t-stat 3.262E-01 7.012E-01 7.492E-01 6.671E-01 4.664E-01 1.455E-01

accept/reject accept accept accept accept accept accept

99% CI (Mpase-M100) (-9.242E+18,1.186E+19) |(-1.254E+19,2.165E+19) |(-1.615E+19,2.9E+19)  |(-1.992E+19,3.344E+19) |(-2.464E+19,3.526E+19) |(-3.195E+19,3.569E+19)

mean (100 simulations) 2.100E+14 5.327E+14 9.284E+14 1.368E+15 1.830E+15 2.303E+15

mean (base simulation) 2.100E+14 5.325E+14 9.284E+14 1.368E+15 1.830E+15 2.304E+15
N pooled var 2.104E+22 1.389E+23 3.479E+23 6.388E+23 9.253E+23 1.105E+24
4 |t-stat 1.847E-01 -4.240E-01 -1.091E-01 2.135E-01 6.702E-02 6.729E-01

accept/reject accept accept accept accept accept accept

99% Cl (Hpase-H100) (-3.567E+11,4.106E+11) |(-1.144E+12,8.269E+11) |(-1.625E+12,1.496E+12) |(-1.943E+12,2.286E+12) |(-2.48E+12,2.609E+12) |(-2.069E+12,3.491E+12)

Time (days) 210 240 270 300 330 360

mean (100 simulations) 4.005E+22 4.533E+22 5.048E+22 5.554E+22 6.048E+22 6.534E+22

mean (base simulation) 4.006E+22 4.533E+22 5.049E+22 5.554E+22 6.049E+22 6.534E+22
N pooled var 2.107E+38 2.426E+38 2.920E+38 3.380E+38 3.608E+38 3.878E+38
3 |t-stat 3.652E-02 2.228E-02 1.603E-01 5.294E-02 3.921E-01 3.456E-01

accept/reject accept accept accept accept accept accept

99% CI (Mpase-H100) (-3.787E+19,3.893E+19) |(-4.085E+19,4.155E+19) |(-4.245E+19,4.796E+19) |(-4.765E+19,4.961E+19) |(-4.276E+19,5.773E+19) |(-4.525E+19,5.893E+19)

mean (100 simulations) 2.777E+15 3.246E+15 3.708E+15 4.160E+15 4.602E+15 5.032E+15

mean (base simulation) 2.778E+15 3.247E+15 3.709E+15 4.161E+15 4.602E+15 5.033E+15
N pooled var 1.274E+24 1.566E+24 1.594E+24 2.267E+24 2.629E+24 2.876E+24
4 |t-stat 1.045E+00 4.383E-01 6.180E-01 2.531E-01 -5.928E-02 2.847E-01

accept/reject accept accept accept accept accept accept

99% CI (Mpase-M100)

(-1.801E+12,4.171E+12)

(-2.759E+12,3.861E+12)

(-2.556E+12,4.124E+12)

(-3.6E+12,4.366E+12)

(-4.386E+12,4.192E+12)

(-4.001E+12,4.971E+12)
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Table 26. Summary of statistical analysis e@fadd N with thermal neutron spectrum for Example 3.

Statistical analysis for verification of the approximate method (base simulation) and 100 MC simulations for thermal neutron spectrum

Time (days) 30 60 90 120 150 180
mean (100 simulations) 4.845E+23 4.747E+23 4.650E+23 4.555E+23 4.461E+23 4.368E+23
mean (base simulation) 4.845E+23 4.747E+23 4.650E+23 4.555E+23 4.461E+23 4.368E+23
N pooled var 1.696E+36 2.700E+36 3.978E+36 4.485E+36 6.451E+36 8.787E+36
1 t-stat -9.026E-01 1.535E+00 1.805E+00 2.075E+00 1.750E+00 1.437E+00
accept/reject accept accept accept accept accept accept
99% CI (Mpase-H100) (-4.626E+18,2.264E+18) |(-1.812E+18,6.881E+18) [(-1.657E+18,8.894E+18) [(-1.186E+18,1.002E+19) |(-2.251E+18,1.119E+19) |(-3.562E+18,1.212E+19)
mean (100 simulations) 9.271E+24 9.267E+24 9.263E+24 9.259E+24 9.255E+24 9.251E+24
mean (base simulation) 9.271E+24 9.267E+24 9.263E+24 9.259E+24 9.255E+24 9.251E+24
N pooled var 1.864E+37 4.750E+37 7.174E+37 9.799E+37 1.375E+38 1.756E+38
2 t-stat 5.307E-03 -3.704E-01 -7.752E-01 -2.003E-01 -2.449E-01 -1.657E-01
accept/reject accept accept accept accept accept accept
99% CI (Mpase-H100) (-1.14E+19,1.144E+19)  |(-2.08E+19,1.566E+19) [(-2.9E+19,1.581E+19) (-2.818E+19,2.419E+19) |(-3.39E+19,2.813E+19) |(-3.726E+19,3.284E+19)
Time (days) 210 240 270 300 330 360
mean (100 simulations) 4.276E+23 4.185E+23 4.095E+23 4.007E+23 3.919E+23 3.833E+23
mean (base simulation) 4.276E+23 4.185E+23 4.096E+23 4.007E+23 3.919E+23 3.833E+23
N pooled var 1.100E+37 1.344E+37 1.400E+37 1.664E+37 1.966E+37 2.383E+37
1 t-stat 1.190E+00 1.065E+00 2.957E-01 -1.291E-01 1.129E-01 3.432E-01
accept/reject accept accept accept accept accept accept
99% CI (Mbase"H100) (-4.806E+18,1.274E+19) |(-5.774E+18,1.362E+19) [(-8.785E+18,1.101E+19) |(-1.132E+19,1.026E+19) [(-1.123E+19,1.223E+19) |(-1.123E+19,1.46E+19)
mean (100 simulations) 9.247E+24 9.243E+24 9.238E+24 9.234E+24 9.230E+24 9.226E+24
mean (base simulation) 9.247E+24 9.243E+24 9.238E+24 9.234E+24 9.230E+24 9.226E+24
N pooled var 2.078E+38 2.611E+38 3.264E+38 3.832E+38 4.163E+38 4.481E+38
2 |t-stat 2.948E-01 1.068E+00 1.239E+00 6.895E-01 5.949E-01 4.645E-01
accept/reject accept accept accept accept accept accept

99% ClI (pbase'uloo)

(-3.386E+19,4.24E+19)

(-2.541E+19,6.008E+19)

(-2.529E+19,7.029E+19)

(-3.822E+19,6.534E+19)

(-4.177E+19,6.617E+19)

(-4.611E+19,6.588E+19)
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Table 27. Summary of statistical analysis g@fadd N, with thermal neutron spectrum for Example 3.

Statistical analysis for verification of the approximate method (base simulation) and 100 MC simulations for thermal neutron spectrum

Time (days) 30 60 90 120 150 180
mean (100 simulations) 3.017E+21 6.306E+21 9.468E+21 1.251E+22 1.543E+22 1.823E+22
mean (base simulation) 3.018E+21 6.307E+21 9.470E+21 1.251E+22 1.543E+22 1.823E+22
N pooled var 1.221E+37 3.295E+37 5.277E+37 6.953E+37 9.440E+37 1.165E+38
3 |tstat 2.082E-01 7.981E-02 3.879E-01 -1.190E-01 -8.396E-02 -1.054E-01
accept/reject accept accept accept accept accept accept
99% CI (Mpase-M100) (-8.513E+18,9.976E+18) |(-1.472E+19,1.565E+19) |(-1.638E+19,2.205E+19) |[(-2.305E+19,2.106E+19) |(-2.652E+19,2.488E+19) [(-2.969E+19,2.74E+19)
mean (100 simulations) 2.612E+14 6.332E+14 1.088E+15 1.601E+15 2.154E+15 2.732E+15
mean (base simulation) 2.612E+14 6.331E+14 1.088E+15 1.601E+15 2.154E+15 2.732E+15
N pooled var 4.275E+21 5.924E+22 2.120E+23 4.737E+23 7.325E+23 1.124E+24
4 t-stat 5.812E-01 -2.669E-01 -2.601E-01 1.930E-01 -6.516E-03 -9.641E-03
accept/reject accept accept accept accept accept accept
99% CI (Mpase-H100) (-1.348E+11,2.111E+11) |(-7.091E+11,5.785E+11) |(-1.338E+12,1.098E+12) |[(-1.687E+12,1.954E+12) |(-2.269E+12,2.258E+12) |(-2.814E+12,2.794E+12)
Time (days) 210 240 270 300 330 360
mean (100 simulations) 2.093E+22 2.351E+22 2.599E+22 2.838E+22 3.066E+22 3.285E+22
mean (base simulation) 2.092E+22 2.350E+22 2.597E+22 2.837E+22 3.065E+22 3.284E+22
N pooled var 1.300E+38 1.589E+38 1.983E+38 2.285E+38 2.449E+38 2.526E+38
8 t-stat -5.318E-01 -1.335E+00 -1.432E+00 -7.905E-01 -6.572E-01 -5.606E-01
accept/reject accept accept accept accept accept accept
99% CI (Mbase"H100) (-3.626E+19,2.407E+19) |(-5.025E+19,1.643E+19) |(-5.751E+19,1.699E+19) |(-5.199E+19,2.797E+19) |(-5.173E+19,3.106E+19) |(-5.099E+19,3.308E+19)
mean (100 simulations) 3.324E+15 3.921E+15 4.517E+15 5.107E+15 5.687E+15 6.255E+15
mean (base simulation) 3.324E+15 3.922E+15 4.517E+15 5.106E+15 5.685E+15 6.253E+15
N pooled var 1.625E+24 2.049E+24 2.523E+24 3.114E+24 3.978E+24 4.886E+24
4 |t-stat 2.312E-01 5.315E-01 7.899E-02 -9.359E-01 -9.656E-01 -9.960E-01
accept/reject accept accept accept accept accept accept

99% ClI (pbase'uloo)

(-3.076E+12,3.668E+12)

(-3.022E+12,4.551E+12)

(-4.076E+12,4.328E+12)

(-6.328E+12,3.008E+12)

(-7.211E+12,3.34E+12)

(-8.059E+12,3.634E+12)
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Table 28. Summary of statistical analysis of thicality constant of a fast reactor system in e 3.

Statistical analysis for verification of the approximate method (base simulation) and 100 MC simulations for ke for fast neutron specturm

Time (days) 30 60 90 120 150 180

mean (100 simulations)

mean (base simulation) 1.292E+00 1.296E+00 1.300E+00 1.303E+00 1.307E+00 1.309E+00
pooled var 5.794E-07 6.305E-07 4.099E-07 6.727E-07 5.686E-07 5.158E-07
t-stat -2.394E+00 -9.392E-01 -1.454E+00 -1.061E+00 -1.455E+00 -1.418E+00
accept/reject accept accept accept accept accept accept

99% ClI (Ubase'ploo)

-3.845E-03,1.821E-04

-2.85E-03,1.351E-03

-2.629E-03,7.58E-04

-3.044E-03,1.295E-03

-3.097E-03,8.922E-04

-2.923E-03,8.762E-04

Time (days) 210 240 270 300 330 360

mean (100 simulations)

mean (base simulation) 1.312E+00 1.314E+00 1.317E+00 1.319E+00 1.321E+00 1.322E+00
pooled var 5.733E-07 5.782E-07 5.227E-07 6.241E-07 4.990E-07 6.336E-07
t-stat -1.543E+00 -1.496E+00 -1.577E+00 -1.586E+00 -1.695E+00 -1.548E+00
accept/reject accept accept accept accept accept accept

99% CI (“base'ploo)

-3.177E-03,8.285E-04

-3.155E-03,8.681E-04

-3.058E-03,7.669E-04

-3.349E-03,8.302E-04

-3.072E-03,6.653E-04

-3.344E-03,8.672E-04
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Table 29. Summary of statistical analysis of thicality constant of a thermal reactor systenkExample 3.

Statistical analysis for verification of the approximate method (base simulation) and 100 MC simulations for ke for thermal neutron spectrum

Time (days) 30 60 90 120 150 180

mean (100 simulations) 1.47697E+00 1.47577E+00 1.47434E+00 1.47320E+00 1.47170E+00 1.47023E+00
mean (base simulation) 1.477E+00 1.476E+00 1.474E+00 1.473E+00 1.471E+00 1.470E+00
pooled var 6.043E-07 6.580E-07 7.300E-07 9.010E-07 5.762E-07 7.754E-07
t-stat -6.782E-02 -1.099E-01 -3.528E-01 2.291E-01 -3.575E-01 7.822E-02
accept/reject accept accept accept accept accept accept

99% CI (Ubase'”lOO)

(-2.109E-03,2.003E-03)

(-2.235E-03,2.056E-03)

(-2.563E-03,1.957E-03)

(-2.292E-03,2.729E-03)

(-2.281E-03,1.735E-03)

(-2.26E-03,2.398E-03)

Time (days) 210 240 270 300 330 360

mean (100 simulations) 1.46887E+00 1.46743E+00 1.46577E+00 1.46422E+00 1.46281E+00 1.46113E+00
mean (base simulation) 1.469E+00 1.469E+00 1.466E+00 1.463E+00 1.463E+00 1.461E+00
pooled var 6.060E-07 7.934E-07 9.489E-07 6.545E-07 7.622E-07 7.389E-07
t-stat 5.725E-01 1.215E+00 2.882E-01 -1.227E+00 2.151E-02 4.810E-02
accept/reject accept accept accept accept accept accept

99% Cl (“base‘“loo)

(-1.611E-03,2.507E-03)

(-1.268E-03,3.444E-03)

(-2.295E-03,2.859E-03)

(-3.138E-03,1.142E-03)

(-2.29E-03,2.328E-03)

(-2.232E-03,2.315E-03)
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Table 30. Relative sd(N) with fast neutron speutfar Example 3.

Relative standard deviation of N for fast neutron specturm

Time (days) 30 60 90 120 150 180 210 240 270 300 330 360

100 simulations 1.036E-05| 1.762E-05| 2.298E-05| 2.815E-05| 3.256E-05| 3.762E-05| 4.183E-05| 4.436E-05| 4.897E-05| 5.534E-05| 5.888E-05| 6.338E-05
N, approximate method 1.065E-05| 1.818E-05| 2.076E-05| 2.669E-05| 2.875E-05| 3.504E-05| 3.861E-05| 4.029E-05| 4.198E-05| 4.585E-05| 6.712E-05| 6.918E-05

100 simulations 3.082E-07| 4.267E-07| 5.784E-07| 6.433E-07| 7.076E-07| 7.893E-07| 9.023E-07| 9.994E-07 1.076E-06[ 1.128E-06{ 1.180E-06{ 1.241E-06
N, approximate method 2.091E-07| 7.679E-07| 8.446E-07| 9.634E-07| 1.045E-06| 1.261E-06| 1.474E-06| 1.482E-06| 1.480E-06| 1.592E-06| 1.602E-06| 1.617E-06

100 simulations 7.143E-04| 5.513E-04| 4.823E-04| 4.293E-04| 3.884E-04| 3.688E-04| 3.624E-04| 3.437E-04| 3.385E-04| 3.310E-04| 3.140E-04| 3.014E-04
N approximate method 6.888E-04| 6.806E-04| 4.959E-04| 4.493E-04| 3.849E-04| 3.892E-04| 3.792E-04| 3.369E-04| 3.031E-04| 2.967E-04| 3.371E-04| 3.140E-04

100 simulations 6.907E-04| 6.995E-04| 6.353E-04| 5.844E-04| 5.256E-04| 4.564E-04| 4.065E-04| 3.855E-04| 3.405E-04| 3.619E-04| 3.523E-04| 3.370E-04
N4 approximate method 8.886E-04| 1.277E-03| 7.184E-04| 6.527E-04| 5.605E-04| 6.738E-04| 7.029E-04| 4.852E-04 3.671E-04 4.771E-04 3.593E-04| 3.412E-04

Table 31. Relative sd(N) with thermal neutron $peu for Example 3.
Relative standard deviation of N for thermal neutron spectrum

Time (days) 30 60 90 120 150 180 210 240 270 300 330 360

100 simulations 2.688E-06] 3.461E-06{ 4.289E-06| 4.650E-06| 5.694E-06| 6.787E-06| 7.757E-06| 8.760E-06] 9.136E-06{ 1.018E-05| 1.131E-05| 1.274E-05
Ny approximate method 2.810E-06| 8.484E-06{ 9.642E-06] 1.105E-05| 1.196E-05| 1.298E-05| 1.377E-05| 1.517E-05| 1.603E-05[ 1.845E-05| 1.963E-05| 2.053E-05

100 simulations 4.657E-07| 7.437E-07| 9.144E-07| 1.069E-06{ 1.267E-06| 1.432E-06| 1.559E-06 1.748E-06| 1.956E-06| 2.120E-06| 2.211E-06 2.295E-06
N, approximate method 4.630E-07 9.499E-07| 1.082E-06] 1.182E-06{ 1.358E-06| 1.523E-06| 1.695E-06( 1.933E-06 2.073E-06] 2.196E-06| 2.236E-06[ 2.275E-06

100 simulations 1.158E-03| 9.103E-04| 7.673E-04| 6.667E-04| 6.298E-04| 5.919E-04| 5.449E-04| 5.360E-04| 5.417E-04| 5.327E-04| 5.104E-04| 4.838E-04
N3 approximate method 1.092E-03| 1.036E-03| 7.707E-04 6.260E-04| 5.973E-04| 5.589E-04| 5.404E-04| 5.492E-04| 5.310E-04| 5.022E-04 4.593E-04| 4.251E-04

100 simulations 2.504E-04| 3.844E-04| 4.233E-04| 4.299E-04| 3.974E-04| 3.880E-04| 3.835E-04| 3.651E-04| 3.517E-04| 3.455E-04| 3.507E-04| 3.534E-04
Ny approximate method 2.280E-04| 3.909E-04| 4.134E-04| 4.176E-04| 4.033E-04| 3.862E-04| 3.719E-04| 3.701E-04| 3.508E-04| 3.439E-04| 3.302E-04| 3.264E-04
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Table 32. Relative sdfk of a fast reactor system in Example 3.

Relative standard deviation of ke for fast neutron specturm

Time (days) 30 60 90 120 150 180 210 240 270 300 330 360
100 simulations 5.883E-04| 6.122E-04| 4.921E-04| 6.288E-04| 5.766E-04| 5.480E-04| 5.766E-04| 5.780E-04| 5.486E-04| 5.985E-04| 5.344E-04| 6.013E-04
approximate method | 4.235E-04( 4.041E-04| 3.576E-04| 3.816E-04| 3.926E-04| 3.640E-04| 3.971E-04| 3.539E-04| 3.441E-04| 3.969E-04| 3.766E-04| 3.604E-04
Table 33. Relative sdfk of a thermal reactor system Example 3.
Relative standard deviation of k. for thermal neutron spectrum
Time (days) 30 60 90 120 150 180 210 240 270 300 330 360
100 simulations 5.263E-04| 5.497E-04| 5.795E-04| 6.443E-04| 5.158E-04| 5.989E-04| 5.300E-04| 6.070E-04| 6.646E-04| 5.525E-04| 5.968E-04| 5.883E-04
approximate method | 3.311E-04| 3.178E-04| 3.056E-04| 3.297E-04| 3.198E-04| 3.202E-04| 3.204E-04| 3.344E-04| 3.355E-04| 3.361E-04| 3.135E-04| 3.236E-04




6.2 Verification of Example 3

Validation of Example 3 concludes with indirectigrifying results of Example 3
using the LUNGA method and comparing them withregsults found in previous
literature. Verification with previous literatui® based on trends found in journal articles
with the majority of the verification coming frorhe article by Shim [19].

Since there are limited amounts of data and reswtilable in the Shim article,
indirect verification means inspecting the trenti$®@ in Example 3 and comparing
them to the trends in the article [19]. First flystem in the Shim article is recreated with
the information given, and KENO V.a is used to agkdte fluxes. The derived equations
from Example 3 using the LUNGA method are then usqatopagate the uncertainties
from the fluxes. The system in the Shim articledsiposed of U@fuel with a?**U
weight percent of 4.95 [19]. Table 34 shows thatequations correctly predict tfaU

number density with less than a 1 percent diffezdmetween them.

Table 34. Comparison 86U number density between Shim article and derived
equations from Example 3.

Comparison of U?* number density between Shim article and derived equations
Research by Shim Derived equations (Example 3)
Number density Number density
Effective full |of UZ® sd of U*® relative sd [of y#*° Percent
power days  [(atoms/b*cm) [(atoms/b*cm) [of U°  [(atoms/b*cm) [difference (%)
0 1.131E-03 1.131E-03
1 1.128E-03 3.042E-08| 2.697E-05 1.128E-03 -2.8E-02
10 1.104E-03 3.171E-07|2.872E-04 1.104E-03 -3.6E-02
30 1.050E-03 7.599E-07|7.237E-04 1.052E-03 -2.4E-01
60 9.751E-04 1.349E-06|1.383E-03 9.778E-04 -2.8E-01
90 9.025E-04 1.774E-06]|1.966E-03 9.064E-04 -4.3E-01
120 8.358E-04 2.059E-06|2.464E-03 8.380E-04 -2.6E-01
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Next, it is shown that the calculated contribusio the standard deviation GfU
using the equations in the LUNGA method for thenskimulation follow the same
trends presented in the Shim article [19]. FidguBeresents the standard deviation of
23 calculated with the LUNGA equations from Exam@lexnd Figure 59 exhibits the
standard deviation 6f°U given in the Shim article [19]. Figure 58 angtiiie 59
illustrate that the trends for the standard demiatf>>*U are the same. Figure 58 and
Figure 59 also indicate that the behavior of teeds in the figures is also the same (even
the time at which the contribution from tfi8U number density becomes greater than the
contribution from the flux is the same — aroundda®s) [19]. The magnitudes of the
standard deviation in tHfé°U number density will be different because the Saititle
included uncertainty in the group cross sectiorstars research did not include any

uncertainty in the group cross sections.

Contribution of Terms to sd(U235) vs. Time
2.000E-08
= 1.800E-08 - /A
S 1.600E-08
£ 1.400E-08
£ 1.200E-08 - —o—sd(ys)
% 1.000E-08 - —m—sd(N)
— 8.000E-09 1 —A— total
8  6.000E-09 *
2 4.000E-09 o —
kel /
®» 2.000E-09
0.000E+00 — "
1 10 30 60 90 120
Time (days)

Figure 58. Contribution of terms in $fU) calculated with LUNGA equations from
Example 3 for the simulation in the Shim article.
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Figure 59. Contribution of terms in $8U) from Shim article [19].

Finally, it is demonstrated that the trends of lapée 3 also follow the trends shown

in the Shim article. The trends of Example 3 @@ in Figure 60 and can be

compared to the trends in Figure 59 from the a&rtoglt Shim [19]. Since Example 3 is a

system composed of YQuel like the Shim article, we expect the trends nesemble

each other but not necessarily be the same siedsvthsystems are different. Figure 60

indicates that the trends in the standard deviatfdsf>° are very similar to the trends

illustrated in Figure 59. The contribution fronetfiux is the dominating term in the

initial time steps, and then the contribution frdre > number density becomes the

dominating term in later time steps which is seethe Shim article [19]. The

contribution from the flux also flattens out aséiigoes on which was also seen in the

Shim article, while the contribution from thé®number density increases steadily with

time [19].
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Contribution of Terms in sd(U*®) vs. Time for Thermal
Spectrum
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Figure 60. Contribution of terms in $tiU) for Example 3.

In the journal article by Tohjoh, the relativersdard deviation of**U and*%U
increased with increasing values of the reactontgpifor a BWR fuel assembly [22]. In
this research, the calculated relative standardhtiem of 2**U and?3*U also increased
with increasing values of reactor burnup for bdih fast and thermal neutron systems.

In the article by Garcia-Herranz, the authors destrate that the calculated
uncertainty in the nuclide concentrations from 1nvoCarlo simulation is very similar
to the calculated uncertainty in the nuclide cotegions from multiple Monte Carlo
simulations, which is also seen in this resear¢h Table 30, Table 31, Table 39, and
Table 40 show that the calculated uncertainty énrnthmber densities from 1 Monte Carlo

simulation is similar to the calculated uncertaimyhe number densities from 100

Monte Carlo simulations.
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6.3 Validation of Example 3 with Multiple Materials
The nuclide number densities of Example 3 withtipld materials using the derived
equations are verified with the nuclide number dessfrom the Monte Carlo solution
and the deterministic solution from SCALE. Thegeert difference between the derived
equations and the SCALE solutions is given in T&ale Like Example 3, there is some
discrepancy in the number densities between theatkequations and SCALE;

however, the difference is generally less tharp&i@ent.

Table 35. Percent difference of nuclide numbessdies between derived equations and
SCALE for Example 3 with multiple materials.

Percent difference in number densities between SCALE solutions and derived equations
Time (days)| 30| 60| 90| 120 150| 180
SCALE with MC solution and derived equations
material 1
N, (UZ%) -3.1E-02| -2.7E-02| -1.3E-01| -7.3E-02| -1.3E-01| -2.1E-01
N, (UZ%8) 5.5E-03 2.2E-03| -1.9E-04| -1.8E-03| -2.8E-03| -3.1E-03
N3 (Pu?®) 7.9E-01 5.6E-01 5.1E-01 4.3E-01 3.5E-01 3.8E-01
N4 (Eu'®®) 1.1E+00 8.3E-01 6.0E-01 5.8E-01 5.9E-01 4.9E-01
material 2
N, (UZ) -9.5E-03| -1.8E-02| -3.1E-02| -5.6E-02| -7.4E-02| -1.1E-01
N, (UZ%8) 1.2E-02 1.3E-02 1.4E-02 1.7E-02 2.0E-02| -1.9E-02
N3 (Pu?®) 4.1E-01 1.7E-01 1.5E-01 1.2E-01 8.1E-02 7.1E-02
N4 (Eut®®) 3.7E-01 5.4E-02 9.3E-02 1.1E-01 5.7E-02 5.0E-02
SCALE with deterministic solution and derived equations
material 1
N; (U?%9) -3.1E-02| -1.1E-01| -2.2E-01| -2.6E-01| -3.8E-01| -4.7E-01
N, (UZ%8) 5.5E-03 2.2E-03| -1.9-04| -1.8E-03| -2.8E-03| -3.1E-03
N3 (Pu?3®) 3.6E-01 1.1E-01| -3.0E-02| -1.7E-01| -2.4E-01| -2.7E-01
N4 (Eu'®®) 1.9e+00| 1.4E+00| 1.1E+00 9.7E-01 8.3E-01 6.9E-01
material 2
N; (U?%®) 4.7E-02 8.6E-02 1.1E-01 1.4E-01 1.7E-01 1.8E-01
N, (UZ%8) 1.2E-02 1.3E-02 1.4E-02 1.7E-02 2.0E-02 2.4E-02
N3 (Pu?3®) -6.8E-01| -7.7E-01| -7.3E-01| -7.2E-01| -6.9E-01| -6.9E-01
N, (Eul®®) -1.1E+00| -1.4E+00| -1.2E+00| -1.1E+00| -1.0E+00| -9.1E-01

147



Validation continues with investigating the crality constant (k) of the system in
Example 3 with multiple materials, which is caldel&with both Monte Carlo and
deterministic solutions from SCALE. Figure 61, aelhpresents the criticality constant
for Example 3 with multiple materials, shows thag tlerived equations can calculate the
criticality of the system very accurately with geally less than a 0.10 percent difference

in the criticality value.

Ketf VS. Time for Example 3 with Multiple Materials

1.445E+00
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—a— SCALE - deterministic

Keff

1.420E+00 +

1.415E+00

1.410E+00
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Time (days)

Figure 61. Criticality constant for Example 3 withultiple materials.

Validation of Example 3 with multiple materialsnradudes, as is done in Example 3,
with a statistical analysis of 100 Monte Carlo siations and the LUNGA method. The
statistical analysis of Example 3 with multiple evéls is the same as the analysis for
Example 3. All of the parameters from the validatof Example 3 apply here; the only
difference is that now Example 3 has multiple mateiin the simulation consisting of

two different fuel pins (multiple materials) witlamying initial enrichments. Table 36 to
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Table 38 present a summary of the statistical amatyf Example 3 with multiple
materials conducted in this research. Table 36Tafde 37 show the results of the
analysis for the standard deviation in the numlesisdies for material 1 and material 2
respectively, and Table 38 displays the resultt@fanalysis for the standard deviation in
kint. The two methods, the LUNGA method and the amalys100 Monte Carlo
simulations, agreed with 99 percent confidencalfemumber densities angikas seen
in Table 36 to Table 38.

Table 39 and Table 40 depict the relative standaxdations in the number densities
for material 1 and material 2 for Example 3 withlaple materials for the LUNGA
method and the 100 Monte Carlo simulations. T4hlspecifies the relative standard

deviation in ks for Example 3 with multiple materials.
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Table 36. Statistical analysis of nuclides in matel for Example 3 with multiple materials.

Statistical analysis for verification of the approximate method (base simulation) and 100 MC simulations for material 1 for thermal neutron spectrum

Time (days) 30 60 90 120 150 180

mean (100 simulations) 2.374E+23 2.278E+23 2.184E+23 2.093E+23 2.004E+23 1.917E+23

mean (base simulation) 2.374E+23 2.278E+23 2.184E+23 2.093E+23 2.004E+23 1.917E+23
N pooled var 1.132E+38 2.301E+38 2.960E+38 3.981E+38 4.369E+38 5.169E+38
' t-stat 3.503E-01 4.562E-01 -7.783E-01 -9.259E-01 -1.010E+00 -1.209E+00

accept/reject accept accept accept accept accept accept

99% CI (Mpase-H100) (-2.44E+19,3.189E+19)  [(-3.317E+19,4.708E+19) |[(-5.897E+19,3.205E+19) |[(-7.134E+19,3.421E+19) |(-7.65E+19,3.408E+19) |(-8.777E+19,3.251E+19)

mean (100 simulations) 4.634E+24 4.630E+24 4.626E+24 4.622E+24 4.618E+24 4.614E+24

mean (base simulation) 4.634E+24 4.630E+24 4.626E+24 4.622E+24 4.618E+24 4.614E+24
N pooled var 2.979E+37 6.612E+37 9.099E+37 1.256E+38 1.689E+38 2.099E+38
2 |t-stat 1.303E+00 1.591E+00 1.248E+00 8.163E-01 9.302E-01 1.503E+00

accept/reject accept accept accept accept accept accept

99% CI (Mpase-H100) (-7.291E+18,2.158E+19) |(-8.506E+18,3.451E+19) |[(-1.327E+19,3.72E+19) [(-2.045E+19,3.883E+19) |(-2.223E+19,4.653E+19) |(-1.644E+19,6.021E+19)

mean (100 simulations) 2.793E+21 5.730E+21 8.441E+21 1.094E+22 1.324E+22 1.535E+22

mean (base simulation) 2.788E+21 5.721E+21 8.432E+21 1.093E+22 1.323E+22 1.533E+22
N pooled var 1.580E+37 3.903E+37 4.903E+37 6.292E+37 7.676E+37 9.332E+37
3 |tstat -1.229E+00 -1.435E+00 -1.238E+00 -8.095E-01 -1.032E+00 -1.779E+00

accept/reject accept accept accept accept accept accept

99% CI (Mbase"H100) (-1.543E+19,5.605E+18) |(-2.554E+19,7.514E+18) [(-2.723E+19,9.812E+18) |(-2.743E+19,1.453E+19) [(-3.226E+19,1.409E+19) |(-4.283E+19,8.278E+18)

mean (100 simulations) 2.964E+14 7.590E+14 1.306E+15 1.885E+15 2.465E+15 3.028E+15

mean (base simulation) 2.961E+14 7.582E+14 1.306E+15 1.885E+15 2.465E+15 3.028E+15
N pooled var 1.415E+23 6.897E+23 1.424E+24 2.243E+24 2.533E+24 3.173E+24
4 |t-stat -6.914E-01 -1.016E+00 -8.079E-02 -3.150E-01 -2.297E-01 9.977E-02

accept/reject accept accept accept accept accept accept

99% Cl (pbase'uloo)

(-1.257E+12,7.337E+11)

(-3.045E+12,1.349E+12)

(-3.253E+12,3.059E+12)

(-4.436E+12,3.488E+12)

(-4.577E+12,3.842E+12)

(-4.533E+12,4.89E+12)
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Table 37. Statistical analysis of nuclides in mat& for Example 3 with multiple materials.

Statistical analysis for verification of the approximate method (base simulation) and 100 MC simulations for material 2 for thermal neutron spectrum

Time (days) 30 60 90 120 150 180

mean (100 simulations) 1.412E+23 1.344E+23 1.278E+23 1.214E+23 1.153E+23 1.094E+23

mean (base simulation) 1.412E+23 1.344E+23 1.278E+23 1.214E+23 1.153E+23 1.094E+23
N pooled var 1.034E+38 2.021E+38 2.684E+38 3.494E+38 3.700E+38 4.197E+38
' t-stat -4.664E-01 -7.243E-01 3.868E-01 5.191E-01 6.122E-01 7.593E-01

accept/reject accept accept accept accept accept accept

99% CI (Mpase-H100) (-3.167E+19,2.214E+19) |(-4.795E+19,2.725E+19) [(-3.697E+19,4.971E+19) [(-3.969E+19,5.919E+19) |(-3.905E+19,6.272E+19) |(-3.856E+19,6.982E+19)

mean (100 simulations) 4.732E+24 4.727E+24 4.723E+24 4.719E+24 4.715E+24 4.711E+24

mean (base simulation) 4.732E+24 4.727E+24 4.723E+24 4.719E+24 4.715E+24 4.711E+24
N pooled var 3.639E+37 6.931E+37 1.242E+38 1.578E+38 1.763E+38 2.245E+38
2 |t-stat 3.128E-01 7.824E-01 1.407E+00 1.538E+00 1.714E+00 1.609E+00

accept/reject accept accept accept accept accept accept

99% CI (Mpase-H100) (-1.406E+19,1.785E+19) [(-1.548E+19,2.857E+19) |(-1.372E+19,4.524E+19) |[(-1.382E+19,5.265E+19) |(-1.225E+19,5.8E+19) (-1.541E+19,6.385E+19)

mean (100 simulations) 2.941E+21 5.984E+21 8.743E+21 1.125E+22 1.351E+22 1.557E+22

mean (base simulation) 2.940E+21 5.979E+21 8.734E+21 1.124E+22 1.350E+22 1.556E+22
N pooled var 1.893E+37 3.683E+37 6.101E+37 6.923E+37 7.118E+37 8.235E+37
3 |tstat -2.907E-01 -7.113E-01 -1.114E+00 -1.250E+00 -1.393E+00 -1.135E+00

accept/reject accept accept accept accept accept accept

99% CI (Mbase"H100) (-1.278E+19,1.024E+19) |(-2.039E+19,1.172E+19) |(-2.941E+19,1.192E+19) |(-3.246E+19,1.156E+19) |(-3.413E+19,1.05E+19) |(-3.435E+19,1.366E+19)

mean (100 simulations) 2.771E+14 7.730E+14 1.366E+15 1.984E+15 2.591E+15 3.167E+15

mean (base simulation) 2.772E+14 7.733E+14 1.364E+15 1.981E+15 2.588E+15 3.163E+15
N pooled var 2.449E+23 1.177E+24 2.200E+24 3.663E+24 4.074E+24 4.174E+24
4 |t-stat 2.572E-01 2.688E-01 -1.210E+00 -1.219E+00 -1.281E+00 -1.590E+00

accept/reject accept accept accept accept accept accept

99% Cl (pbase'uloo)

(-1.181E+12,1.437E+12)

(-2.577E+12,3.163E+12)

(-5.726E+12,2.12E+12)

(-7.407E+12,2.718E+12)

(-7.938E+12,2.74E+12)

(-8.668E+12,2.141E+12)




ZGT

Table 38. Statistical analysis of criticality ctarst for Example 3 with multiple materials.

Statistical analysis for verification of the approximate method (base simulation) and 100 MC simulations for k¢ of Example 3 with multiple materials

Time (days) 30 60 90 120 150 180

mean (100 simulations)

mean (base simulation) 1.436E+00 1.433E+00 1.430E+00 1.427E+00 1.425E+00 1.422E+00
pooled var 8.195E-07 7.804E-07 4.797E-07 6.023E-07 6.891E-07 6.844E-07
t-stat -4.080E-01 -4.962E-01 -7.724E-01 -9.649E-01 -4.857E-01 -2.091E-01
accept/reject accept accept accept accept accept accept

99% ClI (“base'ploo)

-2.766E-03,2.023E-03

-2.777E-03,1.896E-03

-2.37E-03,1.294E-03

-2.805E-03,1.3E-03

-2.601E-03,1.791E-03

-2.362E-03,2.014E-03




Table 39. Relative sd(N) in material 1 for Exampleith multiple materials.

Relative standard deviation of N for material 1 for thermal neutron spectrum

Time (days) 30 60 90 120 150 180

100 simulations 4.482E-05| 6.660E-05| 7.877E-05| 9.532E-05( 1.043E-04| 1.186E-04
Ny approximate method 7.916E-05| 1.147E-04( 1.423E-04| 1.650E-04| 1.869E-04| 2.064E-04

100 simulations 1.178E-06| 1.756E-06| 2.062E-06| 2.424E-06| 2.814E-06| 3.140E-06
N3 approximate method 2.006E-06| 2.877E-06( 3.518E-06| 4.059E-06| 4.567E-06( 5.014E-06

100 simulations 1.424E-03| 1.090E-03| 8.296E-04| 7.252E-04| 6.618E-04| 6.293E-04
N3 approximate method 2.382E-03| 1.547E-03| 1.194E-03| 9.890E-04| 8.574E-04| 7.574E-04

100 simulations 1.269E-03| 1.094E-03| 9.135E-04| 7.944E-04| 6.456E-04| 5.883E-04
Ny approximate method 2.457E-03| 1.849E-03| 1.479E-03| 1.215E-03| 1.032E-03| 8.875E-04

=
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Table 40. Relative sd(N) in material 2 for Exampleith multiple materials.
Relative standard deviation of N for material 2 for thermal neutron spectrum

Time (days) 30 60 90 120 150 180

100 simulations 7.202E-05| 1.058E-04( 1.282E-04| 1.539E-04| 1.668E-04| 1.873E-04
Ny approximate method 1.207E-04| 1.707E-04| 2.107E-04| 2.443E-04| 2.769E-04| 3.065E-04

100 simulations 1.275E-06| 1.761E-06| 2.360E-06| 2.662E-06| 2.816E-06| 3.180E-06
N approximate method 2.313E-06| 3.269E-06( 4.018E-06| 4.637E-06| 5.226E-06| 5.747E-06

100 simulations 1.479E-03| 1.014E-03| 8.934E-04| 7.399E-04| 6.243E-04| 5.830E-04
N3 approximate method 2.640E-03| 1.674E-03| 1.285E-03| 1.054E-03| 9.037E-04( 7.876E-04

100 simulations 1.786E-03| 1.404E-03| 1.086E-03| 9.648E-04| 7.792E-04| 6.452E-04
Ny approximate method 3.330E-03| 2.333E-03| 1.794E-03| 1.436E-03| 1.194E-03| 1.009E-03




Table 41. Relative sdfk for Example 3 with multiple materials.

Relative standard deviation of ks of Example 3 with multiple materials

Time (days) 30 60 90 120 150 180

100 simulations 6.304E-04| 6.164E-04| 4.841E-04| 5.435E-04| 5.826E-04| 5.819E-04

yGT

approximate method | 3.174E-04| 3.203E-04| 3.109E-04| 3.080E-04| 3.126E-04| 3.034E-04




CHAPTER 7

SUMMARY AND CONCLUSIONS

This research derives a formula that calculatesthndard deviation in the nuclide
number densities based on propagating the stalisticertainty introduced when using
the Monte Carlo method to solve the neutron trariggmpations in coupled Monte Carlo
depletion computer codes. The formula derivedutates the standard deviation in the
nuclide number densities with the aid of the LUN@&thod, which is also derived in
this research.

The variance in the flux shape)(is composed of two terms, the statistical
componentys — from the Monte Carlo simulation) and the nuclkdenponentyyy —
from the changes in the number densities). Inraexactly solve for they term, the
change in the flux shape must be found for a chamgach nuclide in the system, which
means calculating the derivatives of the flux shajik respect to each nuclide in the
system. A method that could reduce the number arfti®l Carlo simulations needed to
describe theyy term would help save time and computing resourddss resulted in the
development of the LUNGA method to approximateveance in theyy term.

The LUNGA method developed in this research apprated the variance of thg,
term in a way that drastically decreases the comguime and resources needed to
perform the simulations needed to calculate thedstal deviation in the nuclide number
densities. Use of the LUNGA method, allows userfirtd the standard deviation in the
nuclide number densities by performing only oneitamithl simulation per area of

interest instead of one additional simulation feery nuclide (forward difference

155



method) or two additional simulations for every e (central difference method),
which would be needed for the exact method. Asxample, when the system of
interest contains 1,000 nuclides using the exathade users would have to run the
1,000 base simulations plus 1,000 simulationsnd fihe derivatives of each nuclide for
the Ayn term for a total of 2,000 simulations. Using tHeNGA method users would
run the same 1,000 base simulations in additidndimulation to find the approximate
variance of theyy term for a total of 1,001 simulations, which effeety reduces the
number of Monte Carlo simulations by half.

The example problems (Example 2 and Example 3) umsthis research demonstrate
that the LUNGA method is valid for computing tharsdard deviation in the nuclide
number densities anghk The LUNGA method exhibits a percent differentéess than
1 percent compared to the exact method in calcgjdkie standard deviation in the
nuclide number densities angsk

The LUNGA method is not as capable at calculatiregvariance of they term as
wanted, which was seen as a problem until furtinegstigation of theyy term revealed
that its contribution to the standard deviatiothi@ number densities was small compared
to other terms in the equations for the standawhatien in the number densities.
Example 2 illustrates that the LUNGA method agreexy well with the exact method in
calculating the variance of thg, term with generally only a 2 percent difference
between the two methods. Example 3 on the othedt,ldemonstrates that the LUNGA
method did not agree well with the exact methodalculating the variance of thg,
term with around 100 percent difference in the m&thods for most of the time steps.

However, both Example 2 and Example 3 indicatetti@tontribution from they term
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to the variance in the number densities is minategared to the contribution from the
ys term and the variance and covariances of the nuddesities themselves. Further
investigation of theyy term revealed that its contribution to the varen€tthe number
densities was anywhere from 3 to 7 orders of magdaitess than the contribution from
theys term or the variance and covariance of the nurdbasities. Therefore, thg,
term is not as significant a contributor to theiaace in the number densities as the
term or the variance and covariances of the numesities themselves.

The LUNGA method and the statistics of 100 Mon&l& simulations agree with 99
percent confidence in calculating the standardat®n in the nuclide number densities
and ki with neutron energies in both the fast and thentiaéenergy spectrums using the
examples problems (Example 3 and Example 3 withipt@lmaterials) in this research.
The trends of the standard deviation in the nundeesities for Example 3 also match the
trends published in previous literature, which pded an indirect verification of the
LUNGA method.

Monte Carlo methods are a powerful and provenftmaihe nuclear engineering
community. Coupled Monte Carlo depletion methadi$ the power of the Monte Carlo
method with a depletion code. Monte Carlo methardsbased on probabilities and
therefore have stochastic uncertainties and prapdgancertainties in the results of a
Monte Carlo depletion calculation. However, thpegpagated uncertainties are not
reported to the user. The LUNGA method and théhodilogy described in this
research provides users a way to calculate theatdmeviation in the nuclide number
densities andik based on the statistical uncertainty, introducedigg the Monte Carlo

method, and the propagation of the statistical uac#y in coupled Monte Carlo

157



depletion calculations. The knowledge of the staddleviation in the nuclide number
densities and;l will give users more confidence in the resultsrfrasing coupled Monte
Carlo depletion calculations and will also givengste ability to use this method in

addition to deterministic depletion methods.
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CHAPTER 8

FUTURE RECOMMENDATIONS

The LUNGA method can calculate the variance ofythéerm. However, since the
LUNGA method was generally around 100 percent aifiefrom the exact method in
calculating the variance of thg, term, the first recommendation for this researciula
be to investigate if there is an approach that dpubvide better agreement between the
LUNGA method and the exact method when calculatmegvariance of they term.

This could possibly be done by grouping certainlides together and finding the
derivates of the flux shape with respect to alllicles in a given group, instead of all
nuclides at once (LUNGA method presented in thegaech) or all individual nuclides
(exact method). Grouping some nuclides togethplaigsible because some of the
derivates have the potential to go to zero, whedouched on in this research. This
requires finding the derivates of the flux shapthwespect to a group of nuclides, but
since some nuclides are grouped together, as ibUMNGA method, it could drastically
reduce the number of required simulations comptoréde exact method. This could
provide better accuracy for theg term than with the LUNGA method.

The next recommendation for this research woultblexpand the system of multiple
materials to a larger lattice of fuel pins, whicbhudd more correctly represent a real
reactor core. This system would need to be tdstetbke sure the LUNGA method is
still capable of calculating the standard deviaiohthe number densities angt.k The
research done in this paper has been with an tefiaitice of a single pin type (Example

3), and with two fuel pins with different enrichnterfExample 3 with multiple
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materials). The equations derived in this resetocExample 3 with multiple materials
should be valid for any number of different fuehgithe difference is that the power
normalization would have to be calculated for egichtype, which would then be used to
normalize the flux shape for each pin type.

Another recommendation for this research woultbbgrogram the equations in
FORTRAN so that the LUNGA method could be used whth SCALE computer code.
This would allow for the LUNGA method to be testeith a complete problem domain,
and then the results could possibly be comparédetoesults from computer codes
developed in other countries.

The final improvement to this research would bent@stigate using the method
coupled with a segmented fuel pin in the axialaios. This could possibly create a
mapping of the variance in the nuclide number dessin the system. The equations
derived in this work would serve as a starting pdiat would need to be modified to

take into account the segmentation of the fuel pin.
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BWR

Ccov

DOE
GNEP
GWd/MTU
HTGR

Kint

LANL
LUNGA
LWR

MC

MCNP
MCNPX
ORIGEN-S
ORNL
PWR
SCALE

SD

VAR

APPENDIX 1

LIST OF ABBREVIATIONS

Boiling Water Reactor

Covariance

Department of Energy

Global Nuclear Energy Partnership
Gigawatt-days/Metric Ton Uranium

High Temperature Gas-cooled Reactor

Infinite Medium Multiplication Factor

Los Alamos National Laboratory

Linear Uncertainty Nuclide Group Approximaio
Light Water Reactor

Monte Carlo

Monte Carlo N-Particle

Monte Carlo N-Particle eXtended

Oak Ridge Isotope GENeration

Oak Ridge National Laboratory

Pressurized Water Reactor

Standardized Computer Analyses for Licen&imgluations
Standard Deviation

Variance
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Ys

YN

WNg

AX
E[(AX)?]

sd(X)

APPENDIX 2

LIST OF SYMBOLS AND NOTATION

flux shape
statistical uncertainty in the flux shape

number density uncertainty in the flux shape;itheertainty in the flux shape
due to a change in the number densities

number density uncertainty in the flux shape inrgpgroup g
neutron flux
Cross section

effective one-group cross sections as in the SChlalBual where x is the
type of cross section for nuclide k

effective one-group cross sections where x igythe of cross section for
nuclide k

group cross sections where x is the type of csestion for nuclide k and
group |

initial number density of nuclide i

number density of nuclide i

a change in the variable X

expectation of4X)? where E is the expectation operator

standard deviation of variable X

cov(X,X’) covariance between X and X’

var(X)

variance of variable X
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APPENDIX 3

EXPANDED EQUATIONS FORAN FOR EXAMPLE 2

Shown here are the expanded equations for a chiatige number densities for

Example 2. The variance of the number densitiésusd by taking the expected value

of the square of the change in the number densgigsvar(N, ) = E[(ANI)ZJ and

var(N,) = E|(aN, )’ ].
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APPENDIX 4
DETAILED EQUATIONS FOR FIRST ORDER PERTURBATION THERY FOR

EXAMPLE 1 AND EXAMPLE 2

The following equations are used to investigageabceptability of using first order
perturbation theory in determining the variancéhef number densities by perturbing
only the number densities; therefore, the followaggiations only include a change in the

number density values.

Equations for Example 1

A change in the flux comes from a change in the formalization equation as

follows:
D= =>P=y,N,Do;
Noyo;
ap=0=-F Aw0+£ANO+EACD+ op Ao,
ow, oN, oD oo,
()

N

0

oP
where
0o

Ao, is equal to zero because this research did netite& account

. . : P .
uncertainty in the cross section values themselmelsaa—Ay/O equals zero because in
Vo

investigating the use of first order perturbatibadry we are only interested in a change
in the number density. Transmutation is done uadsnstant power restraint; therefore,
there is no change in the power during a time &dp=0). The equation for the change

in the nuclide number density is given by the failog:
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an =N ANO+%A<D: oN ANO+@ —EANO :[e*”a‘“f +o, 0t e ]ANO
N, oD N, oo N,

The variance of the nuclide is given by

var(N) = E[(AN)?] = [e’”a(mf +o, Dt e ]2 var(N,) .

Equations for Example 2

A change in the flux comes from a change in tbhe flormalization equation as

follows:
P 1
O =—7—=P=Nyoi,p,P
et 788
wP=0=Lap,+ P AN+ Pao+-P ast,
ov, N, oD oo,
()

= AD = ———AN,,
NlO

oP , , : :
wherea—lAa%2 equals zero because this research did not tak@atbunt uncertainty
Ot2

. . oP i L
in the cross section values themselves%mdsz equals zero because in investigating
2

the use of first order perturbation theory we arky interested in a change in the number
density. There is no uncertainty in the group sisections; however, uncertainty in the
effective cross sections comes from the uncertamtiye flux when the group cross

sections are collapsed to the effective group csestions.
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The equation for the change in the nuclide nundleesity is given by the following

AN, = NN, P pg o Ny (TP
N, oD N, 8D | Ny

N N N N N N
AN, = Nz gy N2 gy Ne g Ny Ny oM P
N, N, oD N, Ny, oD

10

After taking the derivatives, rearranging termgj amplifying, the equations for a

change in the nuclide number density become:

2 1 1 1 N3 1
0aNio,  04,01,N; o

{N O~ [prt]}mz@
Oa ZO-fZNl

N (O)e—ut ﬂ
’ o1,Ny

f2' %1

1 1 1 2 1
ANl(t) — {eg + N]_ (O)e§|: ?-alo-az Pt n 20—310-02 PtN2 n (o Pt i|}ANl (0)

AN, (f) = Pl Po’, N cnoL,P 20';1N20'022P O'aZP [e ]AN 0
2 - 2 2 1 2 1 1 3 1
g 0Ny 09,01,Ny  0g,0¢,N; O-f2
(Pl i x| TaTaPt | 204N,0GPt 0Pt | [ oGPt
4 O'il—zo_%lez 0_11—20'%2N13 O_%lez O'%lez
1 2
P
e
¢ og,N;oy,
+ AN, (0)
12 2
P -~ 0,05,Pt
¢ O-il—ZNlZO-%Z
11 1 2 1 o2
Pt PtN Pt P
wheref = (:alaNaz - +0i10c21 N§+ 0321 andu =| 22 4 A
O 2MN10¢y  Ogq 504Ny 102 1O-f2

The variances in the number densities are givenuay(N,) = E[(AN,)? and]

var(N,) = E[(AN,)?].
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APPENDIX 5

TRANSMUTATION EQUATIONS FOR EXAMPLE 3
The following two sets of equations are the nuclide transmutation equations used for
Example 3. The original equations are presented first, and the extended equatns, whi

are the equations used to more closely resemble SCALE are presented second.

Example 3 nuclide transmutation equations.
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B="13 }:1 = 31& B i
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! 2a |."l T3a '1":
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Expanded nuclide transmutation equations Wit and***Np included in Example 3.
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7.1

This is the equation fdPEu including the terms on the following page.
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APPENDIX 6

SAMPLE OF MONTE CARLO SIMULATION DECK

The following is an example of an input deck used to run SCALE with the Monte
Carlo method being called to calculate the flux shape. The deck is amtibrsfor

Example 3 in this research.

=shell

copy c:\scale6\data\xn238v6 ft88f001

end

=malocs

0%$$ 88 89

1$$2383a51let

4$$ 27r1 172r2 39r3

t

end

=csas25 parm=nitawl

Test problem

‘example 3 with KENO

'3 group 4 nuclide example

'5.0 wt% U-235

ft89f001

read comp

fuel

u-2351 0 0.494374214307702097132 end

u-238 1 0 9.27519969625904808055 end

np-239 1 0 0.000028747811392092781691048 end ‘caprection
pm-149 1 0 2.4439437849901783552196e-7 end 'fp
h2o0 3 1.0 end

end comp

read celldata

latticecell squarepitch pitch=1.25984 3 fuelr=0.47483 1 end
end celldata

Vhkkkkkkkkkhkkhkkik

* begining of KENO model input

Vhkkkkkkkkkhkkhkkk

read parm
cfx=yes gen=1100 nsk=100 npg=1000 flx=yes plt=yes
xsl=yes xs2=yes
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rnd=3BAF0299538C6FEQ
end parm
read geom
global unit 1
com="fuel rod'
cylinder 1 1 0.47483 365.8 0.0
cuboid 31 0.62992 -0.62992 0.62992 -0.62992 365.8 0.0
end geom
read bounds all=refl end bounds
end data
end model

Vkkkkkkkkkkkkhkkk

* end of KENO model input
Tkkkkkkkkkkkkkkk

end

=paleale

0$$89 0

1$$ 4

2$$1000000000

7$$ 1 18 27 101 102 2 3 452 459 191r0
t

11$$ 92235 92238 93239 61149

t

end

=paleale

0%$$ 0 04

1$$ 4

2$$1000000000

4%$$ 1 99r0

7$$1 18 27 101 102 2 3 452 459 191r0
t

11$%$ 1092235 1092238 1093239 1061149
t

end
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APPENDIX 7

CUSTOM BUILT LIBRARIES FOR SCALE SIMULATIONS

Custom decay and nuclear reaction libraries are built to use in SCALlefor
validation part of this research. The libraries include only the nuclides ofsnfere,
238, 2%y, and®Eu) and any needed supporting nuclides (like hydrogen and oxygen
isotopes) for this research. The libraries are made in order to elimmnyalasis between

SCALE and the equations derived in this research.
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APPENDIX 8

INFORMATIONAL FLOW CHARTS

The following flow charts are provided to help visualize the flow of information in
the equations. Figure 62 shows the types of uncertainty and how the uncertainty is
passed from one term to another. Figure 63 shows how the information advances in the

calculation.

Flux shape
VAR(ys) and

A 4

Ays

All time steps

Cross
sections

Iterated Ao X
n time steps

Flux
normalization

AN AD

A 4

Number densities
VAR(N) and

Figure 62. Uncertainty flow chart.
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equations
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variances number
and covariances densities

Figure 63. Calculational flow chart.
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APPENDIX 9

NUMBER OF LIBRARIES PER CYCLE

The number of libraries per cycle was not fully discussed in this paper. Thechese
focused on the methodology for the statistical uncertainty propagation. As the number of
libraries per cycle can be very important in the reactor calculation, like properties
change rapidly, it is not as important in the statistical uncertainty propagetd is
discussed here. In TRITON users can set the number of cross section liboahieegr
per cycle that can be used to force more cross section and concentration updates per
cycle. This allows for greater refinement of the cross sections and the caticesat
during the cycle depletion time step size by allowing more intermedégis within each
cycle, which results in more transport and depletion steps in each cycle [15jumber
of libraries per cycle will affect both Monte Carlo and deterministicutatons [22].

In this research, the statistical uncertainty propagation is caldw@atits each
depletion time step. If the number of depletion calculations is increased deynkpa
then the statistical uncertainty propagation calculation is increastdtoyame number
of calculations.

Table 42 shows the comparison of one 30-day time step (step4 at 120 days) and three
10-day time steps (from step3 at 90 days to step4 at 120 days). Table 42 shows that the
calculated number densities are very close to each other and that ikie ugleértainty
in the number densities is of the same order of magnitude. Differences in tive rela

uncertainty of the nuclide number densities can be attributed to differences in thernum
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density distribution, changes in the mean of the distribution, and any shifts in the

distribution [22].

Table 42. Different libraries per cycle.

Example 3 with different size time steps

With 10 day time steps going from step 3 to step 4 With 30 time steps

Time (days) 100 110 120 120
Time step Step3.1 Step3.2 Step4d Step4d

N, 4.618E+23| 4.587E+23| 4.555E+23 4.555E+23

N, 9.262E+24| 9.261E+24| 9.259E+24 9.259E+24

N3 1.050E+22| 1.151E+22| 1.251E+22 1.251E+22

N, 1.254E+15| 1.425E+15| 1.602E+15 1.601E+15

sd(N,) [ 4.954E-06| 5.088E-06| 5.197E-06 5.717E-06

sd(Ny) [ 7.746E-07| 7.872E-07| 7.974E-07 8.838E-07

sd(Nz) [ 4.999E-04| 4.546E-04| 4.164E-04 4.828E-04

Approximate |Relative|sd(N,) 3.202E-04| 3.153E-04| 3.096E-04 3.135E-04
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