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ABSTRACT 

DYNAMICS AND CONTROL OF TWO DEGREE-OF-FREEDOM 

SUSPENSION SYSTEM WITH APPLICATION TO REHABILITATIO N 

Chi-Hung Cheng 

Lehigh University, 2011 

Director: Dr. M. Chew 

 

 A two degree-of-freedom suspension system for gravity compensation is presented. The 

system utilizes a parallelogram linkage plus one extra link with two springs to support the test 

article to insure that it can move freely in a planar working space. Lagrange’s equation is 

employed in the analysis of dynamics of the system. The motion deviation of the system due 

to the inertia of the links is presented. The characteristics of system response to forces applied 

in different directions are also discussed. 

   To overcome these issues, feed-forward adaptive control is introduced and exhibits an 

outstanding performance in trajectory control. The new application of the system in 

rehabilitation is considered. The variation of suspension force with respect to vertical 

displacement of center of mass of human body is also analyzed. The assumption based on the 

analysis is used in a later simulation. The simulation shows excellent performance of the 

system. 
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Chapter1 

Introduction 

  The design of suspension system for gravity compensation purpose is not a new topic of 

research. Decades before, the engineers have used different methods to try to remove the 

gravitational effect on the suspended mass. The mechanism includes band wheel drives, 

counter weights, linkage with springs. A major application of these kinds of the gravity 

compensation devices is to attempt to create a zero gravity environment for lab experiments 

to simulate the environment in space and this is indeed what the devices are built for at 

first[1].    

Recently many researchers are starting to look for new possibilities in the applications of 

these devices. The idea is inspired by the wearable robot, so called “exoskeleton”. The most 

general definition of a wearable robot is the device which can amplify human power, so that 

people who wear it is capable doing something beyond human capabilities, such as 

maneuvering hundreds of kilogram weight easily [6]. If it is worn by a senior or someone 

handicapped, the device can also allow them to do something that is simple for normal people, 

like taking a walk, grabbing a drink. The idea: apply a suspension system design for 

rehabilitation and orthotics.  

Unfortunately, when people speak of exoskeletons, the impression of countless power lines 

connected to the back along with giant actuators at the joints pops up in their mind. In fact, 
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with a sophisticated mechanism design, the burden of huge power source could be eased. In 

2003, the team of the Mechanical Systems Lab in University of Delaware creates a gravity 

balancing mechanism to directly ease the load on the lower limb while walking without the 

use of a power source [8,9].   

In the following chapters, the new application of a two degree-of-freedom suspension 

system will be presented and the control method will be introduced. Details of the design and 

the characteristics of system response well be discussed in Chapter 2. In Chapter 3, the 

feed-forward adaptive control is presented and its effectiveness will be demonstrated [2~5]. 

The final part, Chapter 4, deals with application in the area of rehabilitation [7,10]. The 

advantage and the most special place of the device compared with robotic manipulator are 

springs carry the load as well as gravitational effect of the linkage while the linkage inertia is 

the only part that needs to be taken care by motors. This means the power consumption will 

be much lower and the maintenance costs will be much smaller. All in all, the combination of 

sophisticated mechanism design integrated to a simple control method can bring a more 

useful invention.  
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Chapter 2 

Two Degree-of- Freedom Suspension System 

The objective of the two degree-of-freedom suspension system is to eliminate the 

gravitational effects on a suspended mass. However, the inertia of the linkage causes a 

delayed system response to the applied force or impulse and its capacity to remove the 

gravitational effect on the test article is compromised. In this chapter, the system dynamics is 

present using Lagrange equation for both impulse and force cases and then compared with the 

real trajectories of an ideal massless suspension system to see how the inertia of the links 

compromises the performance of the device. 

 

2.1 Concept of the Suspension System 

As shown in the Fig. 2.1, the system consists of a parallelogram linkage. The links 1l , 2l , 

3l , and one extra link, 4l , provide a two degree-of-freedom system to insure the suspended 

mass can be moved freely in a planar work space. Each part is supported by one zero 

free-length spring. For link #4, the length from the end C to the pivot B and from pivot B to 

point A are the same (41 42l l= ). The positions of the spring attachment point, F and D, are 

chosen base on the weight of suspended mass. The point �� on the lower left corner of the 

parallelogram linkage is the origin of the coordinate system. The suspended mass is attached 

on the upper end C of link #4. In the following derivation, we assume that the link is uniform, 
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the test article is attached right on the end of link #4, and the joints are frictionless. In our 

case, we assume the lengths, AB and BC, are the same.(41 42l l= ) 

  Since the mass is suspended at point C of the link #4, the length, 2kl , from pivot B to the 

spring attachment point D can be determined by the static equilibrium of the mass (the total 

moment acting on the link #4 equals to zero).  

( )42 2 2 2 20 2 41 0a s sw l Sin K l l Sin lθ ϕ− − =                                         (2.1) 

Where aw  is the weight of the article attached at point C. 

Assuming the spring has zero free-length, the length of the spring #2 before extension, 20sl , 

is zero. From the geometry, it can be deduced: 

2 2
2

2

k
s

l Sin
l

Sin

θ
ϕ

=
                                                  

         (2.2) 

Therefore, equation (2.1) becomes: 

2 2
42 2 2 2 2 41 2 2 41 2 41 2 2

2

k
a s k

l Sin
w l Sin K l Sin l K Sin l K l l Sin

Sin

θθ ϕ ϕ θ
ϕ

= = =                    (2.3) 

In the design, the lengths 41 42l l= of link #4. Therefore equation (2.3) can then be simplified 

to: 

2
2

a
k

w
l

K
=

                                                               (2.4) 

The length 1kl  from ground pivot �� to the attachment point F of spring #1 can be 

obtained through a similar procedure. For the parallelogram linkage, the static equilibrium 

equation can then be written as: 
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( ) ( ) 1 2
1 1 10 1 1 4 1 1 1 2 3 1 1 0

2 2s s a

m m
K l l l Sin w m g l Cos l l m l gCosϕ θ θ − − + − + + = 

 
          (2.5) 

From geometry, it can be shown that: 

1 1
1

1

k
s

l Cos
l

Sin

θ
ϕ

=
                                                           

(2.6) 

If spring #1 is zero free-length, and the length of 1l  and 2l  are equal, then equation (2.5) 

becomes: 

1 1 1 2
1 1 1 1 1 1 1 3 4 1 1

1 2 2
k

k a

l Cos m m
K l Sin K l l Cos m m m gl Cos

Sin

θ ϕ θ θ
ϕ

 = = + + + + + 
             

 (2.7) 

After simplification, the length, 1kl , can be expressed as: 

1 2
3 4

1
1

2 2a

k

m m
m m m g

l
K

 + + + + + 
 =                                           (2.8) 

For the case where the inertia of the linkage is zero, we can find: 

1
1

a
k

w
l

K
=                                                                 (2.9) 

Equations (2.4) and (2.8) show that the force supported by the device can be readily 

adjusted by changing the lengths 1kl  and 2kl  for given spring constants 1K  and 2K . 
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Fig. 2.1: Concept of the Two Degree-of-freedom Suspension System. 
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Fig. 2.2(a)                         Fig. 2.2(b) 

Fig. 2.2(a): The Angle of the Force Applied on The Test Article. 

Fig. 2.2(b): The Initial Angle of Motion of the Test Article. 
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2.2 Dynamics of the System under Impulsive Force Applications 

  In this section, the system dynamic equation for impulsive force case will be fully 

discussed. Then the initial condition of the system will be determined. Figure 2.2(a) shows 

the force applied on the test article and Figure 2.2(b) presents the angle of motion of the test 

article. 

 

2.2.1 Lagrange’s Equation for Impulsive force 

Friction at the joints is neglected. The whole system is conservative and Lagrange’s 

equation is applied to determine the motion of the system. Figure 2.2 shows the generalized 

coordinates, 1θ  and 2θ . For an Impulsive system, kinetic and the potential energies are 

considered in Lagrange’s equation.  

The motion of the links includes both translation and rotation. The total kinetic energy of the 

system is: 

2 2 2 2 2 24 4

1 2

1 1

1 1 1
. .

2 2 2
i i i ai i ai a

i i

K E m x y I m x yθ θ
• • • • • •

= =

     
= + + + + +     

     
∑ ∑                      

(2.10) 

 

Now consider the kinetic energy of links #1 and #2 in pure rotation. 

2 2 2 2 2
1 2 1 1 1 1 1 1 1 1

1 1 1 1

2 2 3 6
T T I m l m lω θ θ= = = =ɺ ɺi i

                                    
(2.11) 
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The kinetic energy of link #3 in pure translation is given by: 

ɵ

ɵ

3 1 1 1 1 3

3 1 1 1 1 1 1

2 2 2
3 3 3 3 1 1

1

2

1 1

2 2

R l Cos i l Sin l j

V l Sin i l Cos j

T m V m l

θ θ

θ θ θ θ

θ

 = + + 
 

= − +

= =

��
ɵ

��
ɵɺ ɺ

ɺ

                                            

(2.12) 

The kinetic energy of link # 4 can be shown to be: (Translation and Rotation) 

( )4 1 1 1 1 3

4 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2
4 4 4 4 4 4 1 1 4 4 2 4 1 1 4 41 2

ˆ ˆ

ˆ ˆ

1 1 1 1 1 1 1

2 2 2 2 12 2 6

R l Cos i l Sin l j

V l Sin i l Cos j

T m V I m l m l m l m l

θ θ

θ θ θ θ

ω θ θ θ θ

= + +

= − +

= + = + × = +

���

���
ɺ ɺ

ɺ ɺ ɺ ɺ

          

(2.13)

 

Finally, is the kinetic energy of the test article in pure translation is given by: 

( ) ( )
( ) ( )

( )

1 1 42 2 1 1 3 42 2

1 1 1 42 2 2 1 1 1 42 2 2

2 2 2 2 2
1 1 42 2 1 42 1 2 1 2 1 2

2 2 2 2
1 1 42 2 1 4

ˆ ˆ

ˆ ˆ

1
2

2 2
1

   2
2

a

a

a
a a a

a

R l Cos l Cos i l Sin l l Sin j

V l Sin l Sin i l Cos l Cos j

m
T m V l l l l Cos Cos Sin Sin

m l l l l

θ θ θ θ

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

θ θ

= + + + +

= − − + +

 = = + + + 

= + +

���

���
ɺ ɺ ɺ ɺ

ɺ ɺ ɺ ɺ

ɺ ɺ ( )2 1 2 1 2Cosθ θ θ θ − 
ɺ ɺ

          

(2.14) 

The total kinetic energy with test article can be shown as: 

( )2 2 2 2
1 1 42 2 1 42 1 2 1 2

2 2 2 2 2 2 2 2 2 2
1 1 1 2 1 1 3 1 1 4 1 1 4 41 2

2 2
1 2 3 4 1 1

2 2
4 42 2 1 42 1 2

1
2

2
1 1 1 1 1

      
6 6 2 2 6
1 1 1 1 1

   
2 6 6 2 2

1 1
      

2 6

a

a

a a

T m l l l l Cos

m l m l m l m l m l

m m m m m l

m m l m l l C

θ θ θ θ θ θ

θ θ θ θ θ

θ

θ θ θ

 = + + − 

+ + + + +

 = + + + + 
 

 + + + 
 

ɺ ɺ ɺ ɺ

ɺ ɺ ɺ ɺ ɺ

ɺ

ɺ ɺ ɺ ( )

( )

1 2

2 2 2 2
1 3 4 1 1 4 42 2

1 41 1 2 1 2

1 1 1 1 1 1
   

2 3 2 2 2 6

      

a a

a

os

m m m m l m m l

m l l Cos

θ θ

θ θ

θ θ θ θ

−

   = + + + + +   
   

+ −

ɺ ɺ

ɺ ɺ

                (2.15) 
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There are two kinds of potential energy considered here, gravitational potential energy and 

elastic potential energy due to the spring. The total potential energy is as follows:  

( )
4 2

2

0
1 1

1
. . . . . .

2grav spring i yi n n n
i n

P E P E P E m gh K x x
= =

= + = + −∑ ∑
                      

(2.16) 

Where yih  
is the height of the center of mass of link # i, nK is the spring constant is spring 

# n, nx  is the length of the spring # n after elongation and 0nx  is the original length of the 

spring # n. 

The total gravitational potential energy of the links and test article is given: 

1 2 3 4 1 1 2 3 4 3 42 2

1 1 1
. .

2 2 2grav a a aP E w w w w w l Sin w w w w l w l Sinθ θ   = + + + + + + + + +   
     

(2.17) 

 

The elastic potential energy of the elastic spring is given by: 

( ) ( )2 2

1 1 10 2 2 20

1 1
. .

2 2springP E K x x K x x= − + −
                                  

(2.18) 

Since all the springs have zero free-length, 0nx  equals to zero, so that 1x and 2x  equal 1sl , 

2sl respectively. From the law of cosines: 

1/2 1/22 2 2 2
1 1 1 1 1 1 2 2 41 2 41 22 , 2s k k s k kl l l l l Sin l l l l l Sinθ θ   = + − = + −                         

(2.19) 

Equation (2.18) can be shown to be: 

2 2 2 2
1 1 1 1 1 1 2 2 41 2 41 2

1 1
. . 2 2

2 2spring k k k kP E K l l l l Sin K l l l l Sinθ θ   = + − + + −   
 
             (2.20) 
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Lagrange equation without force and moment takes the form: 

0
i i

d L L

dt q q

 ∂ ∂− = ∂ ∂ ɺ   
1 1q θ= , 2 2q θ=   L T V= −

 

                            (2.21) 

Where T is the total kinetic energy of the system, V is the total potential energy which 

includes the gravitational and elastic contributions. 

( )

2 2 2 2
1 2 3 4 1 1 4 42 2

1 41 1 2 1 2 1 2 3 4 1 1

2 2
2 3 4 3 42 2 1 1 1 1 1

. . . .

1 1 1 1 1 1 1
  

2 6 6 2 2 2 6

1 1
      

2 2

1 1
      2

2 2

a A

A a

a a k k

L T V K E P E

m m m m m l m m l

m l l Cos w w w w w l Sin

w w w w l w l Sin k l l l l Si

θ θ

θ θ θ θ θ

θ

= − = −

   = + + + + + +   
   

 + − − + + + + 
 

 − + + + − − + − 
 

ɺ ɺ

ɺ ɺ

1

2 2
2 2 41 2 41 2

 

1
      2

2 k k

n

k l l l l Sin

θ

θ

  

 − + − 

          (2.22) 

For generalized coordinates1θ , Lagrange’s equation is as follows: 

( )

( )

2
1 2 3 4 1 1 1 42 2 1 2

11

2
1 42 2 1 2 1 2 3 4 1 1

1 1 1 1

1 1

3 3

1 1
                           +

2 2

                           

a a

a a

k

d L L
m m m m m l m l l Cos

dt

m l l Sin w w w w w l Cos

k l l Cos

θ θ θ θ
θθ

θ θ θ θ

θ

 ∂ ∂  − = + + + + + −   ∂∂   

 + − + + + + 
 

−

ɺɺ ɺɺ
ɺ

ɺ       (2.23)  

For generalized coordinates2θ , Lagrange’s equation can be shown as: 

( )

( )

2
4 42 2 1 42 1 1 2

2 2

2
1 42 1 1 2 42 2 2 2 42 2

1

3

                         

a a

a A k

d L L
m m l m l l Cos

dt

m l l Sin w l Cos k l l Cos

θ θ θ θ
θ θ

θ θ θ θ θ

 ∂ ∂  − = + + −   ∂ ∂   

− − + −

ɺɺ ɺɺ
ɺ

ɺ

                (2.24) 
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Equations (2.23) and (2.24) can be expressed in the state space form: 

11 12 12 12 1 1

21 22 21 2 2 2

0 B
            

B 0

A A D
X X X X

A A D

θ θ
θ θ
        

= + = =        
         

ɺ ɺɺ
ɺ ɺ

ɺ ɺɺ

                 

(2.25)

 

Where: 

( )
( )

( )
( )

2
11 1 2 3 4 1

12 1 41 1 2

21 1 41 1 2

2
22 4 41

12 1 41 1 2

21 1 41 1 2

1 1 2 3 4 1 1 1 1 1 1

2 42 2 2 2 42

1 1

3 3

1

3

B

B

1 1

2 2

a

a

a

a

a

a

a k

a k

A m m m m m l

A m l l Cos

A m l l Cos

A m m l

m l l Sin

m l l Sin

D w w w w w l Cos k l l Cos

D w l Cos k l l

θ θ
θ θ

θ θ
θ θ

θ θ

θ

 = + + + + 
 

= −

= −

 = + 
 

= − −

= −

 = − + + + + + 
 

= − + 2Cosθ

 

If the linkage is massless, the whole equations can be simplified as: 

11 12 12 12

21 22 21 2

0 B

B 0

A A D
X X

A A D

     
= +     

     
ɺ

   

1

2

X
θ
θ
 

=  
 

ɺ

ɺ
  

1

2

X
θ
θ
 

=  
 

ɺɺ
ɺ

ɺɺ

                 

(2.26)

 

Where: 

( )
( )

( )
( )

2
11 1

12 1 42 1 2

21 1 42 1 2

2
22 42

12 1 41 1 2

21 1 41 1 2

1 1 1 1 1 1 1

2 42 2 2 2 42 2

B

B

a

a

a

a

a

a

a k

a k

A m l

A m l l Cos

A m l l Cos

A m l

m l l Sin

m l l Sin

D w l Cos k l l Cos

D w l Cos k l l Cos

θ θ
θ θ

θ θ
θ θ

θ θ
θ θ

=
= −

= −

=
= − −

= −
= − +
= − +  
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The matrix equation (2.25) is the dynamic equation for a real system, where the mass of 

the linkage is considered. For the ideal case where in the mass of the links are neglected, the 

governing equations of system dynamics are given by the matrix equation (2.26). In the 

following simulation, the system dynamics described by Eq. (2.25) is called in dynamic 

condition” and the dynamics described by Eq. (2.26) is referred to as in kinematic condition. 

 

2.2.2 Initial Condition for Impulsive Force 

  Impulsive force just exists for a very short time and the mass of linkage also absorbs part 

of that impulsive force, so that there should be noticeable difference between the real (with 

linkage inertia), and the ideal case (without linkage inertia) in the collision angle of the 

impulse and the initial moving angle of the test article. In the following discussion, the initial 

condition of the real case (linkage has mass) will be called the kinetic initial condition, and 

the initial condition of the ideal case (linkage is massless) will be called the kinematic initial 

condition. 

  First, the kinetic initial condition is determined by Lagrange’s impulsive equation. It is a 

special form of Lagrange’s equation which the derivative of momentum is reduced to 

momentum itself and force is reduced to impulse. It takes the form: 

1

n
j

j
j i

i

RT
P

qq
•

=

∂∂ = •
∂∂

∑
�

�

 
  

1 1q θ= , 2 2q θ=                                        (2.27) 
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Here the P
�

 denotes the impulsive force applied to the test article with P F t= ∆
� �

i .  

Where: 

ˆ ˆ
P PP P Cos i P Sin jα α= +

�
i i                                                 (2.28) 

aR
�

is the position vector of the test article and is given by Eq. (2.14): 

( ) ( )1 1 42 2 1 1 3 42 2
ˆ ˆ

aR l Cos l Cos i l Sin l l Sin jθ θ θ θ= + + + +
�

 

î  and ĵ  are the unit vectors in X and Y directions respectively. 

 

The LHS of Eq. (2.27) is given by: 

( )

( )

2
1 2 3 4 1 1 1 41 2 1 2

1

2
4 42 2 1 42 1 1 2

2

1 1

3 3

1

3

a a

a a

T
m m m m m l m l l Cos

T
m m l m l l Cos

θ θ θ θ
θ

θ θ θ θ
θ

∂  = + + + + + − ∂  

∂  = + + − ∂  

ɺ ɺ
ɺ

ɺ ɺ
ɺ

                  (2.29) 

 

The second terms on the RHS of the Eq. (2.27) is given by: 

1 1 1 1
1

42 2 42 2
2

ˆ ˆ

ˆ ˆ

a

a

R
l Sin i l Cos j

R
l Sin i l Cos j

θ θ
θ

θ θ
θ

∂
= − +

∂

∂
= − +

∂

�

�

                                              
(2.30) 

 

The RHS of Eq. (2.27) can be shown to be: 

1 1 1 1
1

42 2 42 2
2

a
P P

a
P P

R
P Pl Cos Sin Pl Sin Cos

R
P Pl Cos Sin Pl Sin Cos

α θ α θ
θ

α θ α θ
θ

∂
= − +

∂

∂
= − +

∂

�
�
i

�
�
i

                                 (2.31) 
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Using Eq. (2.29) and Eq. (2.31), Lagrange’s Impulsive equation is given by: 

( )2
1 2 3 4 1 1 1 41 2 1 2 1 1

1 1

2
4 42 2 1

1 1

3 3

                                                                                                 

1

3

a a P

P

a a

m m m m m l m l l Cos Pl Cos Sin

Pl Sin Cos

m m l m l

θ θ θ θ α θ

α θ

θ

 + + + + + − = − 
 

+

 + + 
 

ɺ ɺ

ɺ ( )42 1 1 2 42 2 42 2P Pl Cos Pl Cos Sin Pl Sin Cosθ θ θ α θ α θ− = − +ɺ
     

(2.32) 

Let Eq. (2.32) be expressed as: 

1 1 2 2 1C C Qθ θ+ =ɺ ɺ  

3 1 4 2 2C C Qθ θ+ =ɺ ɺ  

Thus, the initial angular velocity, 1θɺ and 2θɺ , can be determined and represent in the form: 

4 1 2 2
1

1 4 2 3

3 1 1 2
2

2 3 1 4

C Q C Q

C C C C

C Q C Q

C C C C

θ

θ

−
=

−
−

=
−

ɺ

ɺ

                                                       (2.33) 

Then the direction of motion of the test article can be found by the Eq. (2.14): 

1 1 1 1 42 2 2

1 1 1 42 2 2

tanVimpact

l Cos l Cos

l Sin l Sin

θ θ θ θα
θ θ θ θ

−  +
=  − − 

ɺ ɺ

ɺ ɺ
                                     

(2.34) 

Though the value of arctan is between 
2

π± , the appropriate value of the angle can be 

selected by the impact angle. 

Next, the kinematic initial condition is considered. If the linkage has no mass, the angle of 

the impulse applied, Pα ,  is the same as the angle of the motion of the test article, Vα . The 

velocity vector of the test article in generalized coordinates, 1θ  and 2θ , is given by Eq. 

(2.14) : 

( ) ( )1 1 1 42 2 2 1 1 1 42 2 2
ˆ ˆ

aV l Sin l Sin i l Cos l Cos jθ θ θ θ θ θ θ θ= − − + +
�

ɺ ɺ ɺ ɺ   
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Since a aP m V=
� �

, the kinematic initial condition, 1θɺ  and 2θɺ , can be determined by solving 

the following equations: 

1 1 1 42 2 2

1 1 1 42 2 2

P

a

P

a

P Cos
l Sin l Sin

m

P Sin
l Cos l Cos

m

α θ θ θ θ

α θ θ θ θ

= − −

= +

i
ɺ ɺ

i
ɺ ɺ

                                          (2.35) 

Then the kinematic initial condition is obtained by solving Eq. (2.35): 

2
1

1 1 2

1
2

42 1 2

( )

( )

( )

( )

P

a

P

a

PCos

m l Sin

PCos

m l Sin

α θθ
θ θ

α θθ
θ θ

−
= −

−
−

=
−

ɺ

ɺ                                                    
(2.36) 

 

2.2.3 Simulation under Impulsive Force Applications 

The simulation time, st , starts from zero and is stopped when any of the links hits the 

boundaries of the working space in the kinematic condition. The stopping criteria are:  

1 2 1   and   
2 2 2

π π πθ θ π θ− ≤ ≤ ≤ ≤ +                                         (2.37) 

Aluminium alloy 6063-T52 rectangular tube is chosen as the material of the linkage and 

the dimension is 2”x2” (width & height) and 1/4” in thickness. In the simulation, the 

impulsive force, 10 (kgm/s) in magnitude, is applied in various angles, Pα  , from 90 degree 

to 270 degree in steps of 45 degree. More details of the system parameters setup for 

simulation are listed in the Table A.1. The working space of the device and the initial position 

of the test article are shown in Fig. 2.3 
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Fig. 2.3: The Boundary of the Working Space and the Initial Position of the Test Article 
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( )1
2P

πα =  

 
Fig. 2.4(a): Trajectories of the Test Article Due to an Impulsive Force Applied at  

90 Degrees in Kinematic and Dynamic Condition 

 

 
Fig. 2.4(b): Displacements of the Test Article in �� Due to an Impulsive Force  

Applied at 90 Degrees in Kinematic and Dynamic Condition 

-0.3 -0.25 -0.2 -0.15 -0.1

1.25

1.3

1.35

1.4

1.45

X(m)

Y
(m

)
Trajectories

 

 

Kinematic Condition

Dynamic Condition

0 0.5 1 1.5 2 2.5
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Time(s)

A
ng

ul
ar

 D
is

pl
ac

em
en

t(
ra

d)

Angular Displacements in θ1

 

 

Kinematic Condition

Dynamic Condition



20 

 

 
Fig. 2.4(c): Displacements of the Test Article in �� Due to an Impulsive Force  

Applied at 90 Degrees in Kinematic and Dynamic Condition 
 

 
Fig. 2.4(d): Velocities of the Test Article in �� Due to an Impulsive Force  

Applied at 90 Degrees in Kinematic and Dynamic Condition 
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Fig. 2.4(e): Velocities of the Test Article in �� Due to an Impulsive Force  

Applied at 90 Degrees in Kinematic and Dynamic Condition 
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Link #1 in kinematic mode hits the upper boundary, 1 2

πθ = ,  after 2.29 seconds and the 

angle of motion in kinetic mode is 87.63 degree instead of 90 degree. In Fig. 2.4(d), it can be 

seen the small difference in the initial velocity of 1θ  which is due to the inertia of the 

parallelogram linkage absorbing some part of kinetic energy which is large enough to be 

reflected on the plot. In all the plots, it can be shown that how the inertia of the links 

compromises the performance of the device. 
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( ) 3
2

4P

πα =  

 
Fig. 2.5(a): Trajectories of the Test Article Due to an Impulsive Force Applied at  

135 Degrees in Kinematic and Dynamic Condition 
 

 
Fig. 2.5(b): Displacements of the Test Article in �� Due to an Impulsive Force  

Applied at 135 Degrees in Kinematic and Dynamic Condition 
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Fig. 2.5(c): Displacements of the Test Article in �� Due to an Impulsive Force  

Applied at 135 Degrees in Kinematic and Dynamic Condition 

 

 
Fig. 2.5(d): Velocities of the Test Article in �� Due to an Impulsive Force  

Applied at135 Degrees in Kinematic and Dynamic Condition 
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Fig. 2.5(e): Velocities of the Test Article in �� Due to an Impulsive Force  

Applied at 135 Degrees in Kinematic and Dynamic Condition 
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Link #1 in kinematic mode hits the upper boundary, 1 2

πθ = ,  after 2.10 seconds and the 

angle of motion in both modes are almost the same. In Fig. 2.5(d), the difference in the initial 

velocity of 1θ  gets larger compared with Fig 2.4(d). The reason is that applied impulse 

inclines with the parallelogram linkage at 45 degree and this makes more energy is absorbed.  
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( )3 Pα π=  

 
Fig. 2.6(a): Trajectories of the Test Article Due to an Impulsive Force Applied at  

180 Degrees in Kinematic and Dynamic Condition 
 

 
Fig. 2.6(b): Displacements of the Test Article in �� Due to an Impulsive Force  

Applied at 180 Degrees in Kinematic and Dynamic Condition 
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Fig. 2.6(c): Displacements of the Test Article in �� Due to an Impulsive Force  

Applied at 180 Degrees in Kinematic and Dynamic Condition 
 

 
Fig. 2.6(d): Velocities of the Test Article in �� Due to an Impulsive Force  

Applied at180 Degrees in Kinematic and Dynamic Condition 
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Fig. 2.6(e): Velocities of the Test Article in �� Due to an Impulsive Force  

Applied at 180 Degrees in Kinematic and Dynamic Condition 
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Link #1 in kinematic mode hits the upper boundary, 1 2

πθ = ,  after 2.90 seconds and the 

angle of motion in kinetic modes is 182.37 degree. In Fig. 2.6(d), the difference in the initial 

angular velocity can easily been seen. The motion in kinetic mode is slower then it in 

kinematic mode. 
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( ) 5
4

4P

πα =  

 
Fig. 2.7(a): Trajectories of the Test Article Due to an Impulsive Force Applied at  

225 Degrees in Kinematic and Dynamic Condition 
 

 
Fig. 2.7(b): Displacements of the Test article in �� Due to an Impulsive Force  

Applied at 225 Degrees in Kinematic and Dynamic Condition 
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Fig. 2.7(c): Displacements of the Test Article in �� Due to an Impulsive Force  

Applied at 225 Degrees in Kinematic and Dynamic Condition 
 

 
Fig. 2.7(d): Velocities of the Test Article in �� Due to an Impulsive Force  

Applied at 225 Degrees in Kinematic and Dynamic Condition 
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Fig. 2.7(e): Velocities of the Test Article in �� Due to an Impulsive Force  

Applied at 225 Degrees in Kinematic and Dynamic Condition 
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Link #1 in kinematic mode hits the upper boundary, 1 2

πθ = ,  after 5.56 seconds and the 

angle of motion after impact in both modes are almost the same. It is the longest stroke in the 

simulation that is why the position shift at the end is much more than the impulsive force 

applied in 135 degree. Considering the test article travels two times longer than in case #3, 

the position error at the end is half when compared with case #3. 

 

 

 

  



35 

 

( ) 3
5

2P

πα =  

 
Fig. 2.8(a): Trajectories of the Test Article Due to an Impulsive Force Applied at  

270 Degrees in Kinematic and Dynamic Condition 
 

 
Fig. 2.8(b): Displacements of the Test Article in �� Due to an Impulsive Force  

Applied at 270 Degrees in Kinematic and Dynamic Condition 
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Fig. 2.8(c): Displacements of the Test Article in �� Due to an Impulsive Force  

Applied at 270 dDegrees in Kinematic and Dynamic Condition 
 

 
Fig. 2.8(d): Velocities of the Test Article in �� Due to an Impulsive Force  

Applied at 270 Degrees in Kinematic and Dynamic Condition 
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Fig. 2.8(e): Velocities of the Test Article in �� Due to an Impulsive Force  

Applied at 270 Degrees in Kinematic and Dynamic Condition 
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Link #4 in kinetic mode hits the lower boundary, collision with link #2, after 4.21 seconds 

and the angle of motion in kinetic modes is 267.63 degree.  

 

 

It can be seen that the trajectories shift more noticeably when the force is applied in 

vertical and horizontal directions. The angle of motion of the test article after impact, Vimpactα , 

and the angle of applied force are 2 to 3 degrees in difference. The reason is that linkage 

inertia takes away some part of kinetic energy for translation and rotation and how much is 

absorbed is dependent upon on the angle between the force and the links. When the force is 

vertical, it is inclined at an angle is 45 degree to every link except for link # 3. It means the 

rotations of links #1, #2, and #4 and the translation of link #3 absorb that energy of impact. 

When the impulsive force is in the direction parallel with any of the links, the links don’t 

move and that means less kinetic energy is absorbed by them. For example, Fig. 2.7, the 

impulsive force is parallel with the links #1 and #2 and it means that they do not move after 

impact, since there is no moment acting on them. Link #3 does not move, either. Only the 

rotation of link #4 takes up that kinetic energy. That is the reason why the angle of the motion 

and the angle of the impact are almost identical in the simulations #2, #5.  
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2.3 Dynamics of the System under Force Applications 

In this section, the system dynamics is going to be extended to a force system. The 

dynamic equations are derived from the Lagrange’s equation. A constant force is applied in 

different direction on the test article instead of an impulsive force. 

 

2.3.1 Lagrange’s Equation for Force 

Lagrange’s equation for force system is given as: 

1 1

q r
n m

n m
n mi i i i

Vd L L
F M

dt q q q q

ω
= =

  ∂ ∂∂ ∂− = + ∂ ∂ ∂ ∂ 
∑ ∑

� �
� �
i

ɺ ɺ ɺ
  

1 1q θ= , 2 2q θ=   L T V= −

  

         (2.38) 

F
�

is the applied force and M
�

is the applied moment. V
�

 is the velocity  and ω� is the 

angular velocity. 

The LHS of Eq. (2.38) is the same as the LHS of Eq. (2.16), so only the RHS of the equation 

need to be derived. In the simulation, there is only one force, F
�
, acting on the test article 

which can be denote as:  

ˆ ˆ ˆ ˆ
F F x yF F Cos i F Sin j F i F jα α= + = +

�
i i

 
                                     (2.39) 

Here the Fα  is the angle of the force applied, similar to the Pα  in impulse system. 

From Eq. (2.14), the velocity of the test article is given as: 

( ) ( )1 1 1 42 2 2 1 1 1 42 2 2
ˆ ˆ

aV l Sin l Sin i l Cos l Cos jθ θ θ θ θ θ θ θ== − − + +
�

ɺ ɺ ɺ ɺ  
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 Since the applied torque, M
�

, is zero, the terms on the RHS of Eq. (2.38) can be shown as: 

1 1 1 1

1

42 2 42 2

2

a
a x y

a
a x y

V
F F l Sin F l Cos

V
F F l Sin F l Cos

θ θ
θ

θ θ
θ

∂
= − +

∂

∂
= − +

∂

�
�
i
ɺ

�
�
i
ɺ

                                         (2.40) 

Using Eq. (2.23), (2.24), and (2.40), Lagrange’s equation describing dynamics of the force 

system can be shown to be: 

 

( )

( )

( ) ( )

2
1 2 3 4 1 1 1 42 2 1 2

2
1 42 2 1 2 1 2 3 4 1 1 1 1 1 1

1 1 1 1

2 2
4 42 2 1 41 1 1 2 1 42 1 1 2

1 1

3 3

1 1

2 2

1

3

a a

a a k

x y

a a a

m m m m m l m l l Cos

m l l Sin w w w w w l Cos k l l Cos

F l Sin F l Cos

m m l m l l Cos m l l Sin

w

θ θ θ θ

θ θ θ θ θ

θ θ

θ θ θ θ θ θ θ

 + + + + + − 
 

 + − + + + + + − 
 

= − +

 + + − − − 
 

+

ɺɺ ɺɺ

ɺ

ɺɺ ɺɺ ɺ

42 2 2 2 42 2 42 2 42 2a k x yl Cos k l l Cos F l Sin F l Cosθ θ θ θ− = − +

        

(2.41)

 

The equations can be expressed in the state space form: 

11 12 12 12

21 22 21 2

0 B

B 0

A A D
X X

A A D

     
= +     

     
ɺ

  ,  

1

2

X
θ
θ
 

=  
 

ɺ

ɺ
 ,

 
1

2

X
θ
θ
 

=  
 

ɺɺ
ɺ

ɺɺ
               

(2.42) 

Where: 

( )
( )

( )
( )

2
11 1 2 3 4 1

12 1 41 1 2

21 1 41 1 2

2
22 4 41

12 1 41 1 2

21 1 41 1 2

1 1

3 3

1

3

B

B

a

a

a

a

a

a

A m m m m m l

A m l l Cos

A m l l Cos

A m m l

m l l Sin

m l l Sin

θ θ
θ θ

θ θ
θ θ

 = + + + + 
 

= −

= −

 = + 
 

= − −

= −
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1 1 2 3 4 1 1 1 1 1 1 1 1 1 1

2 42 2 2 2 42 2 42 2 41 2

1 1

2 2 a k x y

a k x y

D w w w w w l Cos k l l Cos F l Sin F l Cos

D w l Cos k l l Cos F l Sin F l Cos

θ θ θ θ

θ θ θ θ

 = − + + + + + − + 
 

= − + − +

      

 

If the links have no mass, the entries can be simplified into: 

11 12 12 12

21 22 21 2

0 B

B 0

A A D
X X

A A D

     
= +     

     
ɺ

  ,  

1

2

X
θ
θ
 

=  
 

ɺ

ɺ
 ,

 
1

2

X
θ
θ
 

=  
 

ɺɺ
ɺ

ɺɺ
               

(2.43) 

Where: 

( )
( )

( )
( )

2
11 1

12 1 41 1 2

21 1 41 1 2

2
22 41

12 1 41 1 2

21 1 41 1 2

1 1 1 1 1 1 1 1 1 1 1

2 42 2 2 2 42 2 42 2 41 2

B

B

a

a

a

a

a

a

a k x y

a k x y

A m l

A m l l Cos

A m l l Cos

A m l

m l l Sin

m l l Sin

D w l Cos k l l Cos F l Sin F l Cos

D w l Cos k l l Cos F l Sin F l Cos

θ θ
θ θ

θ θ
θ θ

θ θ θ θ
θ θ θ θ

=
= −

= −

=
= − −

= −
= − + − +

= − + − +

 The matrix in Eq. (2.42) is referred to as the kinematic equations of the test article. When 

the mass of the linkage is introduced, the matrix equation (2.43) is used and will be referred 

to as kinetic equations. 

 

2.3.2 Simulation under Force Applications 

In the simulation, st indicates the simulation time as was used in a previous simulation. 

The criteria of stopping and the parameters setting remain the same, except that the 

magnitude of the applied force is 10 newton. The force is applied in various angles, Fα  , 

from 90 degree to 270 degree in steps of 45 degree. More details of the system parameters 

setup for simulation are listed in the Table A.2. 
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( )1
2F

πα =  

  
Fig. 2.9(a): Trajectories of the test article due to a force applied at  

90 degrees in kinematic and dynamic condition 

 

  
Fig. 2.9(b): Displacements of the Test Article in �� Due to a Force Applied at  

90 Degrees in Kinematic and Dynamic Condition 
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 Fig. 2.9(c): Displacements of the Test Article in �� Due to a Force Applied at  

90 Degrees in Kinematic and Dynamic Condition 

 

  
Fig. 2.9(d): Velocities of the Test Article in �� Due to a Force Applied at  

90 Degrees in Kinematic and Dynamic Condition 
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Fig. 2.9(e): Velocities of the Test Article in �� Due to a Force Applied at  

90 Degrees in Kinematic and Dynamic Condition 
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Link #1 in kinematic mode hits the upper boundary, 1 2

πθ = ,  after 2.14 seconds. Since 

it’s a force system, there is no difference in initial velocity, but the slower system response no 

matter in angular displacement or velocity to the applied force is obviously can be told in the 

figures. 
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( ) 3
2

4F

πα =
 

  
Fig. 2.10(a): Trajectories of the Test Article Due to a Force Applied at  

135 Degrees in Kinematic and Dynamic Condition 
 

  
Fig. 2.10(b): Displacements of the Test Article in �� Due to a Force Applied at  

135 Degrees in Kinematic and Dynamic Condition 
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Fig. 2.10(c): Displacements of the Test Article in �� Due to a Force Applied at  

135 Degrees in Kinematic and Dynamic Condition 
 

  
Fig. 2.10(d): Velocities of the Test Article in �� Due to a Force Applied at  

135 Degrees in Kinematic and Dynamic Condition 
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Fig. 2.10(e): Velocities of the Test Article in �� Due to a Force Applied at  

135 Degrees in Kinematic and Dynamic Condition 
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Link #1 in kinematic mode hits the upper boundary, 1 2

πθ = ,  after 2.05 seconds. The 

difference becomes more obvious when the test article is closer to the boundary of working 

space. 
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( )3 Fα π=  

  
Fig. 2.11(a): Trajectories of the Test Article Due to a Force Applied at  

180 Degrees in Kinematic and Dynamic Condition 

 

  
Fig. 2.11(b): Displacements of the Test Article in �� Due to a Force Applied at  

180 Degrees in Kinematic and Dynamic Condition 
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Fig. 2.11(c): Displacements of the Test Article in �� Due to a Force Applied at  

180 Degrees in Kinematic and Dynamic Condition 
 

  
Fig. 2.11(d): Velocities of the Test Article in �� Due to a Force Applied at 

180 Degrees in Kinematic and Dynamic Condition 
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Fig. 2.11(e): Velocities of the Test Article in �� Due to a Force Applied at  

180 Degrees in Kinematic and Dynamic Condition 
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Link #1 in kinematic mode hits the upper boundary, 1 2

πθ = ,  after 2.41 seconds. The 

way system reacted to the applied force is the same as to impulsive force. 
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( ) 5
4

4F

πα =  

  
Fig. 2.12(a): Trajectories of the Test Article Due to a Force Applied at  

225 Degrees in Kinematic and Dynamic Condition 
 

  
Fig. 2.12(b): Displacements of the Test Article in �� Due to a Force Applied at  

225 Degrees in Kinematic and Dynamic Condition 
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Fig. 2.12(c): Displacements of the Test Article in �� Due to a Force Applied at  

225 Degrees in Kinematic and Dynamic Condition 
 

  
Fig. 2.12(d): Velocities of the Test Article in �� Due to a Force Applied at  

225 Degrees in Kinematic and Dynamic Condition 
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Fig. 2.12(e): Velocities of the Test Article in �� Due to a Force Applied at  

225 Degrees in Kinematic and Dynamic Condition 

 

  

0 0.5 1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time(s)

A
ng

ul
ar

 V
el

oc
ity

(r
ad

/s
)

Angular Velocities in θ2

 

 

Kinematic Condition

Dynamic Condition



57 

 

Link #1 in kinematic mode hits the upper boundary, 1 2

πθ = ,  after 3.34 seconds. 

Because of the direction of the force applied, the trajectory shift is relatively small compared 

with other cases. 
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( ) 3
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πα =  

  
Fig. 2.13(a): Trajectories of the Test Article Due to a Force Applied at  

270 Degrees in Kinematic and Dynamic Condition 
 

  
Fig. 2.13(b): Displacements of the Test Article in �� Due to a Force Applied at  

270 Degrees in Kinematic and Dynamic Condition 
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Fig. 2.13(c): Displacements of the Test Article in �� due to a Force Applied at  

270 Degrees in Kinematic and Dynamic Condition 
 

   
Fig. 2.13(d): Velocities of the Test Article in �� Due to a Force Applied at  

270 Degrees in Kinematic and Dynamic Condition 
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Fig. 2.13(e): Velocities of the Test Article in �� Due to a Force Applied at  

270 Degrees in Kinematic and Dynamic Condition 
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The simulation lasts for 2.94 seconds and is terminated by the program due to the value of 

the velocities increasing drastically when the test article gets really close to the boundary of 

working space. Since the linear motion on the device is in fact a combination of rotation of 

links, the sudden angular acceleration near the boundary can be anticipated. 

 

 

The same tendency of system response to the force applied in different direction can be 

observed in Fig. (2.10) to the Fig. (2.16). The trajectory shifts directions is are explained and 

discussed in subsection 2.2.2. The trajectory shift due to the inertia of the links is even larger 

than it in the previous simulation.  
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Chapter 3 

Adaptive Control Method 

In previous chapter, how the inertia of the links limit the performance of the suspension 

system has already been demonstrated. It is can be shown that removing the gravitational 

effect would significantly decrease the actuator power requirement when the ratio of the total 

mass of the linkage and the mass of suspended object gets smaller. To deal with this situation, 

control methods need to be applied. Since the dynamic equations of the system, Eq. (2.25) 

and Eq. (2.42) are nonlinear, the traditional linear control methods, such as PID control and 

state space control, are not applicable. The linearization of the equations at certain operating 

points is not practical either. Based on these considerations, adaptive control is introduced to 

compensate the undesirable effect due to the inertia of the links. 

  Adaptive control is widely used in nonlinear control, especially when the system is highly 

nonlinear or the parameters of the system are too many or even unknown. For instance, when 

guided missile is flying, the weight of missile is decreasing because of fuel consumption and 

the surrounding air flow field is almost unpredictable. In old days, to deal with this kind of 

problem needs to build a huge data base after a lot of experiments and to install many sensors 

on the controlled object, so the controller can process the data measured by the sensor, refer 

them to the data base, and then adjust the controllable parameters. However, adaptive control 

provides an easy way to achieve this. By using adaptive control, all the parameters are not 
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necessary to be known a priori, only the measurement of the desired output is needed. This 

means that such a control method is more feasible and efficient for nonlinear systems. In 

particular feed-forward adaptive control method is well known as being very effective in 

tracking time-varying signal as long as the output signal can be correctly measured. In the 

following, feed-forward adaptive control method will be introduced and applied to the 

suspension system to see how it works. 

 

3.1 Concept of Adaptive Control Method 

The original idea to eliminate the inertia effect of the links is forcing the motion of the 

kinetic system to track the motion of the kinematic system. The method is to install one 

electric motor, assigned #1, at the joint of link#1 and ground link and one at the joint located 

at the middle of link#4, assigned #2, and use those motors to offset the deviation in 

displacement and velocity. The controller must be capable of handling different weights of 

the suspended mass and be robust enough to adapt to highly nonlinear system. Therefore, 

feed-forward model reference adaptive control is particularly well suited to serve for this 

purpose. The whole steps can be simplified as follows:  

1. Choosing the reference model.  

2. Setting up adjustment mechanism.  

3. Generating output for compensation based on the reference model against the 
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measurement performance of the system by the controller.  

The overall control scheme is shown in Fig. 3.1 

The more specific procedure scheme for each motor is shown in the Fig. 3.2.   is the 

voltage output from the controller to drive the motor for the torque, !, which compensate the 

inertia effect of the linkage. �" is the desired angular displacement from reference model 

against � which is the angular displacement of the device in practical application. #(%) and 

#(%)'  are the difference between �" and �, �'
" and �' , respectively. Once #(%) and #(%)'  

are determined, the adjustment mechanism will find out how much torque is needed for 

compensation. 
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Fig. 3.1: Scheme of Feed-Forward Model Reference Adaptive Control 

 

 

 

 

 

 

 

 

Fig. 3.2: The Control Scheme for Each Motor 

  

Input 

+ 

+ 

- + 

Plant 

Reference Model 

Adjustment 
Mechanism Controller 

Output 

+ 

+ 

- + 

Plant 

Reference Model 

Adjustment 
Mechanism 

Motor 

Controller 

�(%)  

�, �'  �" , �'
" 

#, #' 

 (%) 

!(%) 

�(%), �'(%) 



66 

 

3.2 Dynamic Equations with Motors 

Before deriving the dynamic equations with motors, the behavior of the motors needs to be 

considered first. For an armature-controlled DC motor, the torque, mT , is directly 

proportional to the armature current, ai , so that: 

m m aT K i=                                                               (3.1) 

mK  is the motor torque constant. 

The armature-controlled DC motor is driven by the armature voltage, ae . The voltage 

equation of the motor is given as: 

a a a a b aL i i R e e+ + =ɺ                                                        (3.2) 

The induced voltage, be , is proportional to the angular velocity, mθɺ . It takes the form: 

b b me K θ= ɺ
                                                               (3.3) 

bK  is the induced voltage constant. 

Since the armature-winding inductance, aL , can be negligible. From Eq. (3.3) and Eq. (3.4), 

the armature current, ai , can be written as: 

a b m
a

a a

e K
i

R R

θ
= −

ɺ

                                                          (3.4) 

Thus, the relation between the motor torque and the armature voltage can be found 

substituting Eq. (3.5) into Eq. (3.1): 

a b m
m m

a a

e K
T K

R R

θ 
= − 

 

ɺ

                                                    (3.5) 
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The torque equilibrium equation of the motor is given as: 

m m V m L mI c T Tθ θ+ + =ɺɺ ɺ                                                      (3.6) 

LT  is the loading torque to the motor. 

Substitute Eq. (3.5) into Eq. (3.6) and rearrange the equation: 

m b a
m m V m L m

a a

K K e
I c T K

R R
θ θ

 
+ + + = 
 

ɺɺ ɺ                                         (3.7) 

There is a reduction gear which step-down ratio is gN  between the motor and the link and 

the torque output applied on the link is OT  , so that: 

g L ON T T=  and g mN θ θ=                                                  (3.8) 

With Eq. (3.7) and Eq. (3.8), the equation can be shown as: 

2 2

m b
V

m a m
O m a

a gg g

K K
c

I R K
T e

R NN N
θ θ

 + 
 = + +
 
 
 

ɺɺ ɺ                                       (3.9) 

Recalled the dynamic equation for force system, Eq. (2.38), the second term, 
iq

ωω ∂•
∂

�
�

, on the 

RHS now is considered. The angular velocities are given as: 

1 1

2 2

ˆ

ˆ

k

k

ω θ

ω θ

=

=

� ɺ

� ɺ                                                               
(3.10)

 

The output torque, 1τ
�

 and 2τ
�

, are from the controlling motors, so the term, 
iq

ωω ∂•
∂

�
�

, is 

given as: 

1 1
1

2 2
2

ωτ τ
θ
ωτ τ
θ

∂• =
∂
∂• =
∂

�
�

ɺ

�
�

ɺ
                                                            

(3.11)
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Combined Eq. (3.11) and Eq. (2.42), the dynamic equation for the system now becomes: 

11 12 12 12

21 22 21 2

0 B

B 0

A A D
X X

A A D

     
= +     

     
ɺ

  ,  

1

2

X
θ
θ
 

=  
 

ɺ

ɺ
 ,

 
1

2

X
θ
θ
 

=  
 

ɺɺ
ɺ

ɺɺ
                

(3.12) 

Where: 

( )
( )

( )
( )

2
11 1 2 3 4 1

12 1 41 1 2

21 1 41 1 2

2
22 4 41

12 1 41 1 2

21 1 41 1 2

1 1 2 3 4 1 1 1 1 1 1 1 1 1 1 1

1 1

3 3

1

3

B

B

1 1

2 2

a

a

a

a

a

a

a k x y

A m m m m m l

A m l l Cos

A m l l Cos

A m m l

m l l Sin

m l l Sin

D w w w w w l Cos k l l Cos F l Sin F l Cos

θ θ
θ θ

θ θ
θ θ

θ θ θ θ τ

 = + + + + 
 

= −

= −

 = + 
 

= − −

= −

 = − + + + + + − + + 
 

2 42 2 2 2 42 2 42 2 41 2 2a k x yD w l Cos k l l Cos F l Sin F l Cosθ θ θ θ τ= − + − + +
 

 

Substitute applied torque shown in Eq. (3.9) and rearrange into state space form. The 

dynamic equation is now given as: 

111 12 11 12 1 12

221 22 22 21 2 2

0 0 B 0

0 B 0 0
a

a

eA A C D E
X X X

eA A C D E

          
= + + +           

           
ɺ

           
(3.13)

 

( )
( )

( )
( )

2 1
11 1 2 3 4 1 2

1

12 1 42 1 2

21 1 42 1 2

2 2
22 4 42 2

2

12 1 41 1 2

21 1 41 1 2

1 1

3 3

1

3

B

B

m
a

g

a

a

m
a

g

a

a

I
A m m m m m l

N

A m l l Cos

A m l l Cos

I
A m m l

N

m l l Sin

m l l Sin

θ θ
θ θ

θ θ
θ θ

 = + + + + + 
 

= −

= −

 = + + 
 

= − −

= −

 



69 

 

1 1
1

1
11 2

1

2 2
2

2
22 2

2

1 1 2 3 4 1 1 1 1 1 1 1 1 1 1

2 41 2 2 2 42 2 42 2 42 2

1
1

1 1

2
2

2 2

1 1

2 2

t b
v

a

g

t b
v

a

g

A k x y

A k x y

t

a g

t

a g

k k
c

R
C

N

k k
c

R
C

N

D w w w w w l Cos k l l Cos F l Sin F l Cos

D w l Cos k l l Cos F l Sin F l Cos

k
E

R N

k
E

R N

θ θ θ θ

θ θ θ θ

+
=

+
=

 = − + + + + + − + 
 

= − + − +

=

=
 

 

3.3Establishment of a Reference Model 

Since the goal is let the device act as if the links have no mass, the kinematic equations for 

impulsive force and force, Eq. (2.26) and Eq. (2.43) respectively, are the best choice for use 

as a reference model. In the following subsection, the reference model for impulsive force 

and force system is going to be derived. 

 

3.3.1 Reference Model of Impulsive Force System 

From Eq. (2.26), the matrices equation is given as: 

11 12 12 12

21 22 21 2

0 B

B 0

A A D
X X

A A D

     
= +     

     
ɺ

  ,  

1

2

X
θ
θ
 

=  
 

ɺ

ɺ
 ,

 
1

2

X
θ
θ
 

=  
 

ɺɺ
ɺ

ɺɺ
                

(3.14) 
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Where: 

( )
( )

( )
( )

2
11 1

12 1 42 1 2

21 1 42 1 2

2
22 42

12 1 41 1 2

21 1 41 1 2

1 1 1 1 1 1 1

2 42 2 2 2 42 2

B

B

a

a

a

a

a

a

a k

a k

A m l

A m l l Cos

A m l l Cos

A m l

m l l Sin

m l l Sin

D w l Cos k l l Cos

D w l Cos k l l Cos

θ θ
θ θ

θ θ
θ θ

θ θ
θ θ

=
= −

= −

=
= − −

= −
= − +
= − +

 

The equation can be more simplified by substituting Eq. (2.4) and Eq. (2.9), 

1 1 2 2A k kw k l k l= = , into the entries 1D and 2D . The entries become zero, so the equations can 

be shown as: 

( ) ( )
( ) ( )

2 2
1 1 1 42 2 1 2 1 42 2 1 2

2 2
41 2 1 42 1 1 2 1 42 1 1 2

0

0

a a a

a a a

m l m l l Cos m l l Sin

m l m l l Cos m l l Sin

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

+ − + − =

+ − − − =

ɺɺ ɺɺ ɺ

ɺɺ ɺɺ ɺ
  

                     (3.15) 

After simplification, they become: 

( ) ( )
( ) ( )

2
1 1 42 2 1 2 42 2 1 2

2
42 2 1 1 1 2 1 1 1 2

0

0

l l Cos l Sin

l l Cos l Sin

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

+ − + − =

+ − − − =

ɺɺ ɺɺ ɺ

ɺɺ ɺɺ ɺ
                                  (3.16) 

Express in state space form: 

( )
( )

( )
( )

2
1 42 1 2 42 1 21 1

2
1 1 2 42 1 1 22 2

0

0

l l Cos l Sin

l Cos l l Sin

θ θ θ θθ θ
θ θ θ θθ θ

− − −      
=      − −      

ɺɺ ɺ

ɺɺ ɺ
 

      (3.17) 

Considering the dimension of link #1 and #4, 1 422l l= , the equation (3.3) is shown as: 

( )
( )

( )
( )

2
1 2 1 21 1

2
1 2 1 22 2

1 2 0 2

2 0

Cos Sin

Cos Sin

θ θ θ θθ θ
θ θ θ θθ θ

− − −      
=      − −      

ɺɺ ɺ

ɺɺ ɺ
           (3.18) 
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The Eq. (3.18) is the reference model for impulsive force system. It is noticeable there is 

only variables of generalized coordinates in the equation which means the equation kinematic 

equation. The �(%) here is the angle of motion that is desired. To prevent being confusing to 

the reader with the angle of kinetic motion, the angle of the reference model is referred to as 

�"(%). Thus, equation (3.18) is expressed as: 

( )
( )

( )
( )

2
1 2 1 21 1

2
1 2 1 22 2

1 2 0 2

2 0
d d d dd d

d d d dd d

Cos Sin

Cos Sin

θ θ θ θθ θ
θ θ θ θθ θ

− − −      
=      − −      

ɺɺ ɺ

ɺɺ ɺ
  

(3.19) 

 

3.3.2 Reference Model of Force System 

Next, the reference model of force system is concerned. It can be found through similar 

procedure. From Eq. (2.43), the matrices equation is given as: 

11 12 12 12

21 22 21 2

0 B

B 0

A A D
X X

A A D

     
= +     

     
ɺ

  ,  

1

2

X
θ
θ
 

=  
 

ɺ

ɺ
 ,

 
1

2

X
θ
θ
 

=  
 

ɺɺ
ɺ

ɺɺ
                

(3.20)
 

( )
( )

( )
( )

2
11 1

12 1 42 1 2

21 1 42 1 2

2
22 42

12 1 42 1 2

21 1 42 1 2

1 1 1 1 1 1 1 1 1 1 1

2 42 2 2 2 42 2 42 2 42 2

B

B

a

a

a

a

a

a

a k x y

a k x y

A m l

A m l l Cos

A m l l Cos

A m l

m l l Sin

m l l Sin

D w l Cos k l l Cos F l Sin F l Cos

D w l Cos k l l Cos F l Sin F l Cos

θ θ
θ θ

θ θ
θ θ

θ θ θ θ
θ θ θ θ

=
= −

= −

=
= − −

= −
= − + − +

= − + − +

 

The equation can be more simplified by substituting Eq. (2.4) and Eq. (2.9), 

1 1 2 2A k kw k l k l= = , into the entries 1D and 2D . The entries become:
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1 1 1 1 1

2 42 2 42 2

x y

x y

D F l Sin F l Cos

D F l Sin F l Cos

θ θ
θ θ

= − +

= − +
                                             (3.21) 

Thus, the equations can be shown as: 

( ) ( )
( ) ( )

2 2
1 1 1 42 2 1 2 1 42 2 1 2 1 1 1 1

2 2
42 2 1 42 1 1 2 1 42 1 1 2 42 2 42 2

0

0

a a a x y

a a a x y

m l m l l Cos m l l Sin F l Sin F l Cos

m l m l l Cos m l l Sin F l Sin F l Cos

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

+ − + − + − =

+ − − − + − =

ɺɺ ɺɺ ɺ

ɺɺ ɺɺ ɺ
  (3.22) 

After simplification, they become: 

( ) ( )

( ) ( )

1 12
1 1 42 2 1 2 42 2 1 2

2 22
42 2 1 1 1 2 1 1 1 2

0

0

x y

a

x y

a

F Sin F Cos
l l Cos l Sin

m

F Sin F Cos
l l Cos l Sin

m

θ θ
θ θ θ θ θ θ θ

θ θ
θ θ θ θ θ θ θ

−
+ − + − + =

−
+ − − − + =

ɺɺ ɺɺ ɺ

ɺɺ ɺɺ ɺ

                 (3.23) 

Recall that 1 422l l=  and expressed in the state space form: 

( )
( )

( )
( )

2
1 2 1 21 1

2
1 2 1 22 2

1 1

1

2 2

1

1 2 0 2

2 0

                                                          +

x y

a

x y

a

Cos Sin

Cos Sin

F Sin F Cos

m l

F Sin F Cos

m l

θ θ θ θθ θ
θ θ θ θθ θ

θ θ

θ θ

− − −      
=      − −      

− + 
 
 
 − +
 
  

ɺɺ ɺ

ɺɺ ɺ

         (3.24) 

For the same reason, denote kinematic angle as�"(%). The equation (3.24) can be shown as: 

( )
( )

( )
( )

2
1 2 1 21 1

2
1 2 1 22 2

1 1

1

2 2

1 2 0 2

2 0

                                                                  +

d d d dd d

d d d dd d

x d y d

a

x d y d

Cos Sin

Cos Sin

F Sin F Cos

m l

F Sin F Cos

m

θ θ θ θθ θ
θ θ θ θθ θ

θ θ

θ θ

− − −      
=      − −      

− +

− +

ɺɺ ɺ

ɺɺ ɺ

1al

 
 
 
 
 
  

  (3.25) 
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3.4 Adjustment Mechanism 

The adjustment mechanism takes the form: 

11 1 1

22 2 2

fa s
a

fa v

ee g
e

ee g

ε ε
ε ε

     
= = +      

      

ɺ

ɺ
   

                                       (3.26) 

The number in the subscript indicates the variables related to the number of motors and the 

sg  and vg  are the selected gain for the error in angular displacements and angular 

velocities respectively. 

It is a combination of a regulator and an adaptation tuner. The first term is the regulator 

which is a vector product of the selected fixed gain and #(%), #(%)' . The function of the 

regulator is let the output voltage converge to a certain value which is zero in this case. The 

second term is the adaptation tuner which is derived from the gradient of the deviation 

function, ( )2 21

2
J ε ε= + ɺ , and it tends to adjust the chosen parameter, w , which is 

proportional to the gradient of the error, #(%)  or #(%)' , but in opposite direction and 

minimize the deviation function. The method is so called MIT rule. The adaptation tuner for 

each motor takes the form: 

[ ] ( ) [ ] ( ) [ ] ( )1 2 1 2 1 2f s s d v v d a a de w w t w w t w w tθ θ θ= + + + + +ɺ ɺɺ
 
                     (3.27)

 

The parameter, w, can be regarded as the sensitivity of the system error to itself and its 

derivative, wɺ , represents the sensitivity derivative of the system error which shows how 

error is influenced by the parameter. The s, v, and a in the subscript is corresponding todθ , 

dθɺ , and dθɺɺ . For 1sw , it is given as: 
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1
1

s
s

w
w

εγ ε∂= −
∂

ɺ                                                          (3.28) 

γ  is the selected fixed gain. According to MIT rule, the gradient of the error with respect to 

the adjusting parameters is given as: 

sn
dw

ε θ∂− =
∂

,  d
vnw

ε θ∂− =
∂
ɺ

ɺ , d
anw

ε θ∂− =
∂
ɺɺ

ɺɺ ,  n=1,2                             (3.29) 

Then the equation becomes:  

1
1

s d
s

w
w

εγ ε γθ ε∂= − =
∂

ɺ                                                     (3.30) 

For all the parameters, they can be shown as: 

1 2

1 2

1 2

 ;  

 ;  

 ;  

s d s d

v d s d

a d a d

w w

w w

w w

γθ ε γθ ε
γθ ε γθ ε
γθ ε γθ ε

= =

= =

= =

ɺɺ ɺ

ɺ ɺ ɺɺ ɺ

ɺɺ ɺɺ ɺɺ ɺ  

                                                 (3.31)

 

The number in the subscript indicates it is related to the error of angular displacements or 

angular velocities. Since there are two motors in the system, one more number is added in the 

subscript at the front to specify the number of motors.  

[ ] ( ) [ ] ( ) [ ] ( )
[ ] ( ) [ ] ( ) [ ] ( )

1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1

2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2

f s s d v v d a a d

f s s d v v d a a d

e w w t w w t w w t

e w w t w w t w w t

θ θ θ

θ θ θ

= + + + + +

= + + + + +

ɺ ɺɺ

ɺ ɺɺ
               (3.32)

 

 

3.5 Simulation of System Dynamics with Adaptive Control 

The effectiveness of the feed-forward adaptive control will be shown in the following 

simulation, so the most deviated cases are chosen: the impulsive force or force applied in 

vertical and horizontal direction. Pα and Fα denote the angle which impulsive force and 

force is applied with respect to the horizontal line. The initial condition is the same for each 



75 

 

case in same force applied direction with or without adaptive control. The system parameters 

setup is listed in the Table B.1 for impulsive force system and Table B.2 for force system. To 

generalize the simulation and let the result could be more instinctively perceived by the 

reader. The output shown in the results is the torque directly exerting on the links instead of 

the output voltage to motors. 
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3.5.1 Trajectory of Impulsive Force System 

( )1
2P

πα =  

  
Fig. 3.3(a): Trajectories of the Test Article with and without Feed-Forward Adaptive  

Control Due to an Impulsive Force Applied at 90 Degrees 
 

 
Fig. 3.3(b): Displacements of the Test Article with and without Feed-Forward Adaptive  

Control in �� Due to an Impulsive Force Applied at 90 Degrees 
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Fig. 3.3(c): Displacements of the Test Article with and without Feed-Forward Adaptive  

Control in �� Due to an Impulsive Force Applied at 90 Degrees 
 

  
Fig. 3.3(d): Velocities of the Test Article with and without Feed-Forward Adaptive  

Control in �� Due to an Impulsive Force Applied at 90 Degrees 
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Fig. 3.3(e): Velocities of the Test Article with and without Feed-Forward Adaptive  

Control in �� Due to an Impulsive Force Applied at 90 Degrees 
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Considering the Fig. 3.3(a), the test article moves upward and it is obvious that the 

trajectory with adaptive control is almost overlapping with the kinematic trajectory near the 

end of simulation. Fig. 3.3(b) and Fig. 3.3(c) demonstrate the error in angular displacements 

and velocities converge to zero. Then check it with Fig. 3.3(d), both the displacement error in 

X, Y direction are successfully reduced to less than 510−  m. Compared to the diameter of 

hair, 0.1 mm, this means the control method nearly eliminated the downgrade effect of the 

inertia of the links. Furthermore, the output torque for both motors, Fig. 3.3(e), is continuous 

and the maximum value of output is 8 Nm. These all show the control method and the 

mechanism design is applicable and practical. The two springs support the weight of the 

whole device and the motors just need to take care of the inertia of the links while moving. 
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( )2 Pα π=  

  
Fig. 3.4(a): Trajectories of the Test Article with and without Feed-Forward Adaptive 

Control Due to an Impulsive Force Applied at180 Degrees 
 

  
 Fig. 3.4(b): Displacements of the Test Article with and without Feed-Forward Adaptive 

Control in θ� Due to an Impulsive Force Applied at 180 Degrees 
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Fig. 3.4(c): Displacements of the Test Article with and without Feed-Forward Adaptive 

Control in �� Due to an Impulsive Force Applied at 180 Degrees 
 

  
Fig. 3.4(d): Velocities of the Test Article with and without Feed-Forward Adaptive  

Control in �� Due to an Impulsive Force Applied at 180 Degrees 
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Fig. 3.4(e): Velocities of the Test Article with and without Feed-Forward Adaptive  

Control in �� Due to an Impulsive Force Applied at 180 Degrees 
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In the Fig. 3.4(a) and Fig. 3.4(d), the error of the displacement is well controlled and 

converges to zero. It has been shown in Fig. 3.4(b) and Fig. 3.4(c) that both the error of 

angular displacement and velocity decrease to zero. The maximum output is nearly 8.5 Nm 

which is applicable. 
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3.5.2 Trajectory of Force System 

( )1
2F

πα =  

  
Fig. 3.5(a): Trajectories of the Test Article with and without Feed-Forward Adaptive  

Control Due to a Force Applied at 90 Degrees 
 

  
Fig. 3.5(b): Displacements of the Test Article with and without Feed-Forward Adaptive 

Control in �� Due to a Force Applied at 90 Degrees 

-0.24 -0.23 -0.22 -0.21 -0.2 -0.19

1.24

1.245

1.25

1.255

1.26

1.265

1.27

1.275

1.28

1.285

X(m)

Y
(m

)
Trajectories

 

 

Kinematic Condition

Dynamic Condition with Control

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

4

6

8

10

12
x 10

-5

Time(s)

E
rr

or
(r

ad
)

Error in Angular Displacements with Aaptive Control

 

 
Error in Θ1

Error in Θ2



85 

 

  
Fig. 3.5(c): Displacements of the Test Article with and without Feed-Forward Adaptive  

Control in �� Due to a Force Applied at 90 Degrees 
 

  
Fig. 3.5(d) : Velocities of the Test Article with and without Feed-Forward Adaptive 

Control in �� Due to a Force Applied at 90 Degrees 
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Fig. 3.5(e): Velocities of the Test Article with and without Feed-Forward Adaptive  

Control in �� Due to a Force Applied at 90 Degrees 
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It is shown in Fig. 3.5(a) the trajectory is well controlled. Even though the error in Fig.  

3.4(b) and Fig. 3.5(c) do not converge to zero, the errors approach to a fixed value which is 

less than 410−  in unit. The results have already proven the control method still works pretty 

well in the force system, even the angular acceleration is disregarded in the adjustment 

mechanism setup which helps reduce the torque needed in control to avoid the needed torque  

becomes too large to be applicable. It is also noticeable the torque needed in force system is 

much more less than the one in impulsive force system. It results in the initial angular 

velocity of impulsive system is different from the kinematic one. Though the difference is 

small, the motors still have to drive the links with larger torque to make the compensation in 

a short period of time. 
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( )2 Fα π=
 

  
Fig. 3.6(a): Trajectories of the Test Article with and without Feed-Forward Adaptive  

Control Due to a Force Applied at 180 Degrees 
 

  
Fig. 3.6(b): Displacements of the Test Article with and without Feed-Forward Adaptive 

Control in �� Due to a Force Applied at 180 Degrees 
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Fig. 3.6(c): Displacements of the Test Article with and without Feed-Forward Adaptive  

Control in �� Due to a Force Applied at 180 Degrees 
 

  
Fig. 3.6(d): Velocities of the Test Article with and without Feed-Forward Adaptive  

Control in �� Due to a Force Applied at 180 Degrees 
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Fig. 3.6(e): Velocities of the Test Article with and without Feed-Forward Adaptive  

Control in �� Due to a Force Applied at 180 Degrees 

 

   

  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time(s)

T
or

qu
e(

N
m

)

Output Torque

 

 

Motor#1 Output

Motor#2 Output



91 

 

In the Fig. 3.6(a) and Fig. 3.6(d), the error of the displacement is negligible and the system 

response is nearly identical to the kinematic trajectory. Although it has been shown in Fig. 

3.4(b) and Fig. 3.4(d) that the error don’t decrease to zero, the error do converge to a fixed 

value less than 410−  in unit which is still an outstanding performance for the controller. The 

maximum output is nearly 2.75 Nm which is applicable. 
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Chapter 4 

Application to Lower-limb Rehabilitation 

  The major application of this kind of the gravity compensation devices is just creating a 

zero gravity environment for lab experiments to simulate the environment in space and this is 

indeed what the devices are built for at first. However, people now start looking for new 

possibility on the devices. It is not news that the system is used as a rehabilitation device. In 

2004, the team in the Mechanical Systems Lab in University of Delaware created a gravity 

balancing mechanism to directly reduce the load on the lower limb while walking [8,9].  

Here the function of the device is providing constant support to ease the load on the lower 

limb for those who need to train their weakened muscle after injury. The traditional solution 

is hooked patient on one side of the leverage and adding the counter-weight on the other side. 

Imaging that if a 90 kg man was suspended, there are 180kg actually loading on the machine! 

The device is definitely bulky and heavy. Besides, the patients can only be allowed walking 

on the treadmill. The only advantage is the supporting force is always constant without any 

control. 

In our design, to avoid the complicated and various from person to person leg motion 

analysis, the patient is suspended on the waist and hip, near the center of mass(CoM) of the 

body. Through this method, only the CoM of human gait is need to be concerned and the 

device won’t interfere the leg motion and the support is valid for both legs. Since the spring 
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takes the load, the device will be much lighter than the counter-weight design and can let 

patient walk around like walking aid. If the trajectory shift was the major issues, the control 

method discussed before is handy to cope with. 

 

4.1 Walking Pattern Analysis 

  The most tricky point is, unlike an applied force in previous system, the system is actually 

constrained by the displacement of CoM of the body. The force can still be used to achieve an 

approximation result of control in simulation. More details will be discussed later in this 

section. However, according to the paper published by Alan Crowe [7] in1995, the motion of 

CoM while walking in Z direction can be nearly described by trigonometric function, sine or 

cosine with phase shift and the amplitude is varied from person to person. The trajectory of 

CoM versus gait phase is given as: 

5
2

6yd A Cos ftπ π = + 
 

i                                             (4.1) 

yd d is the vertical displacement of CoM. A denotes the maximum amplitude of the shift and 

the f represents the frequency of walking pace. Now assuming the maximum CoM shift is 

0.02 m, the trajectory versus gait phase can be shown in Fig. (4.1) 
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Fig. (4.1): The Vertical Displacement of CoM of a Human Body While Walking 
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One should notice that this turns out to be a simple harmonic motion. Therefore, the 

velocity and acceleration can be given as: 

5
2 2

6yv f A Sin ftπ π π = − + 
 

i i                                              (4.2) 

( )2 5
2 os 2

6ya f A C ftπ π π = − + 
 

i i                                           (4.3) 

Since the system is constrained by the displacement of CoM, the force becomes an 

unknown variable. For the system which links are massless (kinematic mode), the force can 

be found directly by: 

leg d a yF F m a= + i  ,  d a LFF w F= −                                           (4.4) 

Where legF  is the force supported by the leg and LFF  is the lifting force provided by the 

device.  

Eq. (4.4) does not work for the case which links has mass (kinetic mode). It is also need to be 

clarified that the force discuss here and in simulation is the force provided by the leg to drive 

the mass moving on the assigned trajectory instead of suspension force. 

 To find out how the force varies through time, it is need to convert the generalized 

coordinates from x, y to 1θ , 2θ . Using Eq. (2.14), three sets of equations derived from 

displacement, velocity, and acceleration is shown to be:  

1 1 42 2

1 1 3 42 2

0

5
2

6

l Cos l Cos

l Sin l l Sin A Cos ft

θ θ

θ θ π π

+ =

  + + = + 

 
i

                                  (4.5) 
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1 1 1 42 2 2

1 1 1 42 2 2

0

5
2 2

6

l Sin l Sin

l Cos l Cos f A Sin ft

θ θ θ θ

θ θ θ θ π π π

− − =

  + = − + 

 

ɺ ɺ

ɺ ɺ i i
                            (4.6) 

( )

2 2
1 1 1 42 2 2 1 1 1 42 2 2

22 2
1 1 1 42 2 2 1 1 1 42 2 2

0

5
2 os 2

6

l Sin l Sin l Cos l Cos

l Cos l Cos l Sin l Sin f A C ft

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ π π π

− − − − =

  + − − = − + 

 

ɺɺ ɺɺ ɺ ɺ

ɺɺ ɺɺ ɺ ɺ i i

      

(4.7) 

Because of the nonlinearity of the first set of equation, it is impossible to find unique 

solution for conversion. Only thing can be done is converting the numerical value of motion 

from x, y coordinates to 1θ , 2θ  coordinates. To solve these sets of equations, the first set of 

equation, Eq. (4.5), needs to be solved by the nonlinear solver in Matlab to find the angular 

displacements. Then substitute them back in to Eq. (4.6), the Eq. (4.6) become linear 

equations and can be solved by linear solver. Repeating the same procedure in solving Eq. 

(4.7), all the value of variables can be found. Then substitute all the value of variables into Eq. 

(2.42) and Eq. (2.43). The force needed in both kinetic mode and kinematic mode can be 

found.  

To exam the accuracy of this method, the force directly derived from Eq. (4.4) in kinematic 

mode is compared with the results. In the simulation, the suspended mass is 100 kg and 

supporting force by the device is 800 newton. Consult Table C.1 for more details in parameter 

setup. In Fig. 4.2 and Fig. 4.3, it is can be seen that the error in x direction is negligible and 

the force in y direction is overlapping with each other. All of these prove the method is 

correct and feasible.  
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Next, the force needed in x, y directions in kinetic mode is concerned. In Fig. 4.4, it is 

noticeable that the force in x direction is not zero anymore due to the influence of the inertia 

of the links. On the other hand, it shows the force in y direction in kinetic mode in dash line 

comparing with the force in kinematic mode in solid line in Fig. 4.5. One could find the force 

in kinetic mode is larger which can be anticipated, since there is an effect of inertia of the 

links. To be more insightful, the error shows in Fig. 4.6 indicates that the upper part and the 

lower part divided by the center line, F=200 N in Fig. 4.5, of the force in the kinetic mode is 

not symmetric which also contributes to the inertia effect. However, considering the 

magnitude of the differences, it is one fiftieth less than the total force supported by the leg no 

matter in which direction. This means the device works pretty well even without control. If 

the force in the y direction is real concerned, the adaptive control method is readily to be 

applied. 
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Fig. 4.2: The Force in X Direction Derived from the Vertical  

Displacement of CoM in Kinematic Condition 

 

 
Fig. 4.3: The Force in Y Direction Derived from the Vertical  

Displacement of CoM in Kinematic Condition 
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Fig. 4.4: The Force in X Direction Derived from the Vertical  

Displacement of CoM in Dynamic Condition  
 

 
Fig. 4.5: The Force in Y Direction Derived from the Vertical  

Displacement of CoM in Dynamic Condition  
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Fig. 4.6: The Difference in the Forces in Kinematic and Dynamic Condition 
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4.2 Trajectory Simulation 

  In the real application, it is not practical to ask the embedded system installed on the 

device which is in charge of control to compute the equations in real time basis. Since the 

force differences in both direction, it is reasonable to be simplified the applied force into:  

( )2 5
2 os 2

6leg d a y d aF F m a F m f A C ftπ π π = + = + − + 
 

i i i i                        (4.8) 

Using the same parameter setup in previous simulation, Eq. (4.7) is given as: 

2 5
200 8 (2 )

6legF Cos tπ π π= + +                                              (4.9) 

Since the initial position is designated, the initial condition of angular displacement and 

velocity be found through Eq. (4.5) and (4.6). Consult Table C.2 for more details about the 

controller setup. 

Comparing both the kinematic and the kinetic trajectories in Fig. 4.6 and 4.7, it is almost 

identical. Although there are small displacements in both directions in Fig. 4.8 and 4.9 due to 

disregard the force difference, the shift less than 0.01 m is acceptable after 60 seconds 

simulation. It can be shown in Fig. 4.12 that the error converge and oscillate around zero in 

10 seconds. Despite the error is oscillating instead of decreasing to zero, the amplitude of the 

oscillation is less than 510−  in radius which is small enough. The output torque of motor #1 

and #2 are shown in Fig. 4.13. The output torque is continuous and around 2 Nm in 

maximum which means the control method is doable. 
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Fig. 4.7: The kinematic Trajectory in Walking Pattern Simulation 

 

 
Fig. 4.8: The Dynamic Trajectory in Walking Pattern Simulation 
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Fig. 4.9: The Dynamic Displacement in X Direction in Walking Pattern Simulation 

 

 
Fig. 4.10: The Dynamic Displacement in Y Direction in Walking Pattern Simulation 
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Fig. 4.11: The Dynamic Displacement in �� in Walking Pattern Simulation 

 

 
Fig. 4.12: The Dynamic Displacement in �� in Walking Pattern Simulation 
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Fig. 4.13: The Error in ���� with Feed-Forward Adaptive Control 

 

 
Fig. 4.14: The Output Torque from Motors 
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Chapter 5 

Conclusion 

A novel design of a two degree-of-freedom suspension system for gravity compensation 

purpose and its new application in rehabilitation has been presented. There are many 

mechanical designs trying to eliminate the gravitational effect on objects: the band wheel, the 

counter weight, and the linkage with springs. No matter how they work, it is inevitable that 

the devices all increase the inertia of the whole system. The influence of the inertia of linkage 

in dynamic has already been shown. All the system response to external impulse or force 

becomes slow and the rate of trajectories shifting with respect to time even keeps increasing. 

All of these compromise the performance and limits the loading weight.  

To solve the issue, feed-forward adaptive control is introduced and it achieves excellent 

results. Although the error is not converge to zero, either oscillating around zero or asymptote 

to a certain value, the error in trajectory is still less than 0.1 mm. Since the goal is to use the 

device as a lower-limb rehabilitation machine the lifting force to the patient can be adjusted 

depending on the weight of the patient and keeps the suspension force constant no matter 

how patient moves. From the analysis and simulation, the suspension system has been shown 

to be a fully feasible design and it is lightweight and compact. This shows that by utilizing a 

novel mechanism in conjunction with controls, a significant improvement on such suspension 

systems can be achieved. 
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APPENDIX A 

Table A.1: Values of the design system parameters for the two degree-of-freedom  

suspension system for applied impulsive force. 

Parameter Value 

1l  0.3 m 

2l  0.3 m 

3l  0.6 m 

4l  1.2 m 

41 l  0.6 m 

42 l  0.6 m 

1m  1.6891 kg 

2m  1.6891 kg 

3m  3.3782 kg 

4m  6.7564 kg 

aw  1000 N 

Initial �� 
)

4
 

Initial �� 
3)

4
 

g 9.81 ,/.� 

1K  2500 //, 

2K  2500  //, 

P 10  01,/. 
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Table A.2: Values of the design system parameters for the two degree-of-freedom 

 suspension system for applied force. 
Parameters Value 

1l  0.3 m 

2l  0.3 m 

3l  0.6 m 

4l  1.2 m 

41 l  0.6 m 

42 l  0.6 m 

1m  1.6891 kg 

2m  1.6891 kg 

3m  3.3782 kg 

4m  6.7564 kg 

aw  1000 N 

Initial �� 
)

4
 

Initial �� 
3)

4
 

g 9.81 ,/.� 

1K  2500 //, 

2K  2500  //, 

F 10 N 
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APPENDIX B 
Table B.1: Values of the parameters of the design system and the controller for  

the two degree-of-freedom suspension system for applied force. 

Parameters Value 

1l  0.3 m 

2l  0.3 m 

3l  0.6 m 

4l  1.2 m 

41 l  0.6 m 

42 l  0.6 m 

1m  1.6891 kg 

2m  1.6891 kg 

3m  3.3782 kg 

4m  6.7564 kg 

aw  1000 N 

Initial �� )/4 

Initial �� 3)/4 

g 9.81 ,/.� 

1K  2500 //, 

2K  2500  //, 
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P 10  01,/. 

dg  600 

vg  400 

γ  500 
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Table B.2: Values of the parameters of the design system and the controller for the two  

degree-of-freedom suspension system for applied force. 

Parameters Value 

1l  0.3 m 

2l  0.3 m 

3l  0.6 m 

4l  1.2 m 

41 l  0.6 m 

42 l  0.6 m 

1m  1.6891 kg 

2m  1.6891 kg 

3m  3.3782 kg 

4m  6.7564 kg 

aw  1000 N 

Initial �� )/4 

Initial �� 3)/4 

g 9.81 ,/.� 

1K  2500 //, 

2K  2500  //, 

F 10 N 

dg  1200 

vg  800 

γ  1000 
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APPENDIX C 
Table C.1: Values of the parameters of the design system and the walking pattern for  

motion analysis on two degree-of-freedom suspension system 

Parameters Value 

1l  0.3 m 

2l  0.3 m 

3l  0.6 m 

4l  1.2 m 

41 l  0.6 m 

42 l  0.6 m 

1m  1.6891 kg 

2m  1.6891 kg 

3m  3.3782 kg 

4m  6.7564 kg 

aw  1000 N 

Initial �� )/4 

Initial �� 3)/4 

g 10 ,/.� 

1K  2500 //, 

2K  2500  //, 

Lifting Force 800 N 

f 1 Hz 
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Table C.2: Values of the parameters of the design system and the controller for  

the two degree-of-freedom suspension system in walking simulation 

Parameter Value 

1l  0.3 m 

2l  0.3 m 

3l  0.6 m 

4l  1.2 m 

41 l  0.6 m 

42 l  0.6 m 

1m  1.6891 kg 

2m  1.6891 kg 

3m  3.3782 kg 

4m  6.7564 kg 

aw  1000 N 

Initial �� )/4 

Initial �� 3)/4 

g 10 ,/.� 

1K  2500 //, 

2K  2500  //, 

Lifting Force 800 N 

f 1 Hz 

F 200 + 8)��6.(2)% + 5)/6) N 

dg  1200 

vg  600 

γ  800 
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