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ABSTRACT 

Two-Tank Indirect Thermal Storage Designs for  
Solar Parabolic Trough Power Plants 

 
by 

Joseph Kopp 

Dr. Robert F. Boehm, Examination Committee Chair 
Professor of Mechanical Engineering 

University of Nevada, Las Vegas  

The performance of a solar thermal parabolic trough plant with thermal 

storage is dependent upon the arrangement of the heat exchangers that 

ultimately transfer energy from the sun into steam.  The steam is utilized in a 

traditional Rankine cycle power plant.  The most commercially accepted thermal 

storage design is an indirect two-tank molten salt storage system where molten 

salt interacts with the solar field heat transfer fluid (HTF) through a heat 

exchanger.  The molten salt remains in a closed loop with the HTF and the HTF 

is the heat source for steam generation.  An alternate indirect two tank molten 

salt storage system was proposed where the molten salt was utilized as the heat 

source for steam generation.  A quasi-steady state simulation code was written to 

analyze the key environmental inputs and operational parameters: solar 

radiation, solar field size, thermal storage system, heat exchangers, and power 

block.  A base case with no thermal storage was modeled using design 

parameters from the SEGS VI plant and the effects of solar field size were 

analyzed.  The two differing indirect two-tank molten salt storage designs were 

modeled and their solar field size and thermal storage capacity were treated as 

parameters.  Results present three days of distinct weather conditions for Las 

 iii



Vegas, Nevada.  Annual and monthly electricity generation was analyzed and the 

results favor the thermal storage case with the solar field HTF interacting with 

steam.  Additionally, the economic trade offs for the three arrangements and 

speculation of operating strategies that may favor the alternate storage design is 

discussed. 
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NOMENCLATURE 

iA ,     = Heat exchanger surface area [m²] oA
cp , ,   = Specific heat capacity [J/kgK] 1cp 2cp
D  ,  ,  = Diameter of tube inside shell and tube heat exchanger [m] oD iD
dT    = Incremental change in temperature [°C] 
DNI     = Direct normal irradiance [W/m²] 
ε , decreaseε , refε  = Isentropic efficiency 
EndLoss   = Amount of sunlight reflected off the end of an SCA unit 

fieldη     = Thermal efficiency of the solar field 

HCEη    = Thermal efficiency of the heat collection element 
h , ,    = Fluid heat transfer coefficient [W/m²K] ih oh

inh , ,  = Fluid enthalpy [J/kg] outh mixh
IAM  = Incidence angle modifier  
k      = Thermal conductivity [W/m²K] 
L      = Length of heat exchanger tubes [m] 

kM tan    = Mass [kg] 
m&     = Mass flow rate [kg/s] 
μ      = Dynamic viscosity [Pa s] 
Nu     = Nusselt Number 
P     = Pressure [bar] 
Pr     = Prandtl number 

absQ&    = Energy rate absorbed by solar field [W] 

collectedQ&    = Heat rate collected by solar field [W] 

losspipeQ _
&   = Heat loss rate in pipes through solar field to power block [W] 

lossreceiverQ _
&   = Heat loss rate in heat collection element [W] 

Q     = Energy [J]   

fiR"  ,  = Fouling resistance inside heat exchanger [m2K/W] foR"

DRe     = Reynolds number  
RowShadow  = Fraction of solar radiation not blocked by neighboring SCA units 
SFAvail   = Fraction of year the solar field is in operation 
T ,   = Temperature [°C] kTtan

θ  = the elevation angle between the sun and zenith 
UA     = Heat exchanger overall heat transfer coefficient [W/K] 
 
Subscript Terms 

oi,     = ‘i’ indicates within tube, ‘o’ indicates outside of tube 
ref      = Value at reference/design conditions 
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CHAPTER 1 

INTRODUCTION 

Background 

Concentrating solar thermal power for utility-scale electricity generation is 

experiencing unprecedented growth.  The three major divisions within 

concentrating solar thermal power are parabolic troughs, solar towers, and dish 

Stirling technology.  Parabolic trough power plants are considered to be the most 

commercially ready technology.   

Groundwork for commercial parabolic trough power plants was developed by 

the Luz International Limited from 1984 to 1990.  A total of nine solar plants, 

ranging from 30-80 megawatts electric (MWe) were constructed in California and 

continue to operate today.  The sixth solar electric generating systems (SEGS) 

plant, SEGS VI, included in Figure 1, has become the focal point of published 

research on parabolic trough power plants.  The design conditions for this study 

were based on information provided for the 35 MWe SEGS VI plant. 

 

 
Figure 1: SEGS III to SEGS VII in Kramer Junction, California [1] 
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In 2007, Nevada Solar One, a 64 MWe parabolic trough power plant, began 

operations near Las Vegas, Nevada.  Acciona Solar Power operates the plant, 

shown in Figure 2, and it was the first utility-scale parabolic trough power plant 

built in the new millennium.  This plant has been operating well for the past two 

years.  

 

 

 

Figure 2: Nevada Solar One [2] 
 

 

Construction finished on Andasol 1, shown in Figure 3, in November 2008.   

This plant is designed with a molten salt storage system capable of 7 hours of 

full-capacity power production.  This is the first commercial parabolic trough plant 

to implement a molten salt two tank storage system.  Thermal storage was 

utilized in SEGS I but the storage medium was the synthetic oil solar field heat 
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transfer fluid, or HTF.  Synthetic oils are no longer considered for a storage 

medium in part due to their higher cost [3].   

 

 

 

Figure 3: Thermal storage tanks at Andasol 1 [4] 
 

 

The future of parabolic trough technology is bright as there are over 1000 MW 

of plants under construction and even more have been announced [5].  Many of 

these plants claim thermal storage will be integrated into their plant design. 

The principle advantages of thermal energy storage in a solar parabolic 

trough power plant are the ability to control the time and quantity of power 

production.  Herrmann [6] asserts thermal storage can be applied for: buffering 
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during transient weather conditions, dispatchability, increased annual capacity 

factor, and more even distribution of electricity production.  Thermal storage can 

provide the stability necessary for base load operation and it also can have the 

economic advantage to discharge surplus power during peak demand hours.  

Additionally, the annual solar-to-electric efficiency can improve as a result of 

thermal storage.  Price [7] showed that the improvements to turbine start-up, 

excess heat from the field, improved parasitic losses, and negligible energy loss 

from “below turbine minimum” outweigh the storage thermal losses and reduced 

power plant steam cycle efficiency due to storage.    

 

Review of Plant Modeling 

In 1995, Frank Lippke [8] published results from a model of the SEGS VI plant 

that used EASY simulation software.  His work included reference design values 

for the power block and several equations he presented were utilized in the 

current study.  One objective of his work was to examine how to optimize the 

HTF’s solar field outlet temperature and flow rate.  His results suggest the 

highest allowed HTF temperature is optimum for a summer day; however during 

fall and winter conditions the superheating temperature should not greatly 

exceed the design value.     

The Solar Advisor Model, SAM [9], is modeling software developed by the 

National Renewable Energy Laboratory.  The publicly available source code is 

written in FORTRAN, is, and runs off software called TRNSYS.  SAM is a work in 

progress and its current state does not represent a complete thermophysical 
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model of a solar parabolic trough power plant.  As a result, it could not be used to 

perform the desired parametric studies.  Among the benefits of this program, 

however, are rapid computations and calculations of levelized cost of energy. 

TRNSYS has a large set of solar parabolic trough power plant components.  

The solar thermal electric component library, STEC, is organized by the 

international organization SolarPACES.  A model of SEGS VI was available that 

utilized STEC components; however the complex model had convergence 

issues. 

Numerous private parabolic trough power plant models exist, such as 

PCTrough™ by Solar Millennium, but they are not accessible in the public 

domain.  Patnode [10] performed a detailed simulation of SEGS VI using 

Engineering Equation Solver, EES, and TRNSYS.  Equations and design values 

presented by Patnode were also used utilized in this work. 

A new solar parabolic trough power plant model was built for this study using 

Matlab™.  The code reflects the design considerations of the 35 MWe SEGS VI 

plant, though modeling the precise performance of the plant was out of the scope 

of this project.  Absolute precision was not necessary when the objective was to 

consider the behavioral differences of competing storage designs applied to the 

same solar field and weather conditions.  The code was written to calculate the 

gross electrical power but not parasitic losses.  For each power plant design the 

solar field size and the storage tank sizes were treated as parameters. 

Data from the Typical Meteorological Year 3, TMY3, was utilized for local 

weather conditions.  Component calculations were performed for a one second 
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interval to maintain scientific units.  Values for power were calculated hourly.  

This model will allow smaller time increments than hourly values given by TMY3.  

Hourly energy totals were found with ease since the MW produced in one second 

integrated over an hour equal the accepted energy unit of mega-watt hours 

(MWh).   

 

Solar Parabolic Trough Plant 

 The cornerstone of solar parabolic trough plant is the solar field.  The solar 

field consists of parabolic trough collectors and piping.  Parabolic trough 

collectors can be divided into two subsystems: the solar collection assembly 

(SCA) and the heat collection element (HCE).   

A highly reflective material covers the parabolic surface area of the SCA.  The 

SCA also includes the single-axis tracking equipment and support structure for 

the HCEs.  Typically the SCA units are aligned along the North-South axis and 

track the sun from East to West.  During operation, solar radiation is reflected 

from the SCA onto the parabolic trough’s focal line, where the HCE resides.   

 The outer glass shell of the HCE receives approximately 75 times the 

amount of direct normal irradiation (DNI) as a non-concentrated surface.  When 

radiation is transmitted through the glass shell it passes through a vacuum and 

arrives at the absorber tube.  Vacuum conditions prevent conduction and 

convection heat losses from the absorber tube to the environment.  The absorber 

tube’s outer surface is covered in a ceramic metal (cermet) coating designed to 

minimize radiation losses in the infrared region of the electromagnetic spectrum.  
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The absorber tube conducts thermal energy to its inner surface and provides the 

heat source for the HTF flowing within the tube.  The HTF receives heat from the 

inner surface through convection, conduction, and radiation.   

The solar field depicted in Figure 4 heats the HTF (red line) that travels 

through piping to the power block.  The flow is separated in the power block into 

two parallel heat exchanger elements: the steam train and the reheater.   

 

 

Figure 4:  General solar parabolic trough plant design [11] 
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The steam train is a term used to describe the heat exchangers that heat the 

working fluid, highly pressurized water, from a compressed liquid state into a 

superheated vapor state.  The preheater warms the working fluid from 

compressed liquid to saturated liquid.  Water boils in the steam generator and 

exits as a saturated vapor.  Due to the latent heat of evaporation the steam 

generator is the most energy intensive heat exchanger.  The superheater utilizes 

the highest temperature HTF to heat the saturated vapor into superheated 

steam.   

The superheated steam performs work on a high pressure turbine and 

typically loses enough heat to enter the saturation region.  An abbreviated 

temperature-entropy (Ts) diagram for power cycle design conditions for SEGS VI 

[8] is shown in Figure 5.  The design conditions illustrate the ideal case where the 

working fluid reaches the saturated vapor state.  The reheater serves to 

superheat the steam a second time.  The pressure of the steam exiting the 

reheater has been reduced and is utilized to perform work on a low pressure 

turbine.  There are two high pressure turbine stages and five low pressure 

turbine stages for a total of seven turbine stages.  

The quantity and size of each type of heat exchanger will vary given the size 

of a plant.  Heat exchangers can only reach a functional length before the 

surface area demands require additional units.  For modeling purposes a control 

volume approach eliminates the need for actual heat exchanger dimensions. 
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Ts Diagram of Power Cycle
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Figure 5: Abbreviated Ts Diagram for design points of SEGS VI Power Cycle 
 

 

 

Steam exiting the low pressure turbine undergoes a phase change in the 

cooling process so water can be pumped to the preheater and the cycle can 

repeat.  Cycle completion for the HTF includes passing through the expansion 

vessel, which among several functions, serves as a mixing unit. 

 The mass flow rate and HTF outlet temperature from the solar field are 

important values.  Generally, a higher mass flow rate from the field will translate 

into a higher mass flow rate of steam but at the cost of lower temperature.  The 

highest field outlet temperature can provide the highest steam enthalpy into the 

turbine but at a cost of lower water flow rate.  It has been suggested by another 

 9



author that neither strategy displays a significant improvement in overall plant 

performance [10].  Some models treat both values as outputs while this model 

treats the HTF outlet temperature as a parameter.  The operating strategy in this 

model was chosen to maximize outlet temperature since the highest quality of 

thermal storage is desirable. 

 The solar multiple is defined as the solar collector area divided by the solar 

collector area necessary for nominal power generation.  The solar collector area 

necessary to generate nominal power is considered to be a fundamental design 

condition for a plant.  The design condition may be chosen for a direct normal 

irradiation level (DNI) of 800 W/m2 or the typical solar radiation value at noon on 

the spring equinox [3].  The design of SEGS VI was assumed have a solar 

multiple (SM) equal to one.  A plant optimized at SM 1 has the potential to collect 

a surplus of solar energy under high solar radiation periods.  The amount of 

surplus energy, however, does not justify the costs of implementing thermal 

storage.  An increase in SM will increase the collector area in the solar field and 

will lead to more thermal energy available for storage.  If solar energy cannot be 

collected or stored, parasitic losses are reduced by moving SCA units to stow 

and maintaining design flow rate conditions.  

 

 Storage Design Oil-Water: Synthetic Oil Steam Generation 

 Indirect two-tank thermal storage can be integrated into a parabolic trough 

plant, as shown in Figure 6.  This is the most commercially ready thermal storage 

design and may be referred to as Storage Oil-Water because the synthetic oil 
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HTF is the heat source in steam generation.  While actual operational schemes 

may be quite complex, the addition of thermal storage does not have to 

significantly affect the overall operating strategy.   

 

 

 

Figure 6: Plant design with thermal storage [11] 

 

 

The basic operating strategy is to charge thermal storage when the HTF flow 

rate exceeds the design flow rate for steam generation.  Surplus flow travels 

through the oil-to-salt shell and tube heat exchanger to charge molten salt then 
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exits to the expansion vessel.  During charging, molten salt leaves the cold tank 

extracts heat from the HTF, and then enters the hot tank.   

Ideally the design flow rate of HTF is maintained during operating hours so 

discharging from the hot tank should be performed to maintain the maximum 

HTF flow rate through the steam train and reheater.  Discharging salt from the 

hot tank to reheat the HTF occurs in the same heat exchanger except flow is 

reversed.  Salt is always maintained on the shell side of the heat exchangers 

[12].  

 The first law of thermodynamics requires a temperature drop across a heat 

exchanger.  The temperature of the HTF heated by discharging salt will be lower 

than the HTF temperature directly from the solar field because the heat has 

passed through two heat exchangers and an associated heat loss inside the hot 

tank.  This decrease in temperature will result in a decrease in power generation. 

  The required volume of molten salt is considered to be the volume required 

to completely fill one tank.  Consequently, if one tank is completely filled the other 

tank is empty.  This is a simplification of the actual system, where a minimum 

volume of salt must be maintained within each tank [13].  When fully charged all 

the molten salt resides in the hot salt tank at maximum temperature of 386 °C.  

The design temperature of the cold salt tank is 293°C.  The tanks are considered 

to be fully mixed thermally and have a heat loss correlation based on surface 

area of tank.   

The oil-to-salt heat exchanger must be sized for the discharging capacity of 

the HTF at the design flow rate for steam generation.  Therefore the size of the 
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heat exchangers must be optimized to transfer heat to the design HTF flow rate.  

If a solar field was designed for 800 W/m2, then a solar multiple of 1.6 with DNI of 

1,000 W/m2 would provide double the HTF design flow rate.  For any larger solar 

multiple, the oil-to-salt heat exchanger area must increase and subsequently its 

cost will increase.   

To charge the HTF, the necessary flow rate is withdrawn from the expansion 

vessel and is mixed with HTF flow from the solar field, if there is any.  If there is 

not enough heat in storage to bring the mass flow rate up to design flow, but 

enough hot molten salt to generate the minimum amount of power, the hot 

molten salt is discharged completely.  Four MWe was the minimum amount of 

power assumed necessary for electricity generation.  This corresponded to an oil 

mass flow rate of 40 kg/s.  If the HTF flow rate could not reach 40 kg/s, even 

after thermal storage discharge, the hot salt would dwell in the hot tank and 

power would not be generated.     

 

Storage Salt-Water: Molten Salt Steam Generation 

The indirect two-tank molten salt storage proposed in Figure 7 is referred to 

as Storage Salt-Water.  This is because molten salt is the heat transfer fluid in 

the steam train and reheater.  The synthetic oil is contained in a closed loop 

around the solar field and the oil-salt heat exchangers.  Although not illustrated, 

an expansion vessel will still be needed for the solar field.   

 

 13



 

 

Figure 7: Storage Salt-Water design for indirect two tank thermal storage [11] 

 

 

A significant difference between thermal storage plant designs is the number 

of heat exchangers encountered before transferring heat to the working fluid.  No 

additional heat exchangers are required between the HTF and the working fluid 

during normal operating conditions for Storage Oil-Water.  However, when heat 

is needed from storage, two additional heat exchangers are utilized.  Heat is first 

transferred from oil to salt, then from salt back to oil, and finally from oil to the 
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working fluid.  The Storage Salt-Water design utilizes two heat exchangers 

between the synthetic oil and the working fluid for all operations.  

Storage Salt-Water requires a larger oil-salt heat exchanger area than the 

Storage Oil-Water case because all of the solar field HTF flow rate must transfer 

heat to the salt.  While the heat exchanger area for Storage Oil-Water does not 

have to increase until SM 1.6, any increase in solar multiple for Storage Salt-

Water will result in a larger oil-salt heat exchanger area.  Based on the cost of oil-

salt heat exchangers, Storage Oil-Water is heavily favored.   

Integration of thermal energy storage decreases a plant’s efficiency for the 

time period of thermal discharging.  This is due to inevitable heat transfer losses 

to charge the thermal storage medium and also to discharge it.  Molten salt is a 

leading medium for thermal storage and there is discussion it may be circulated 

through the solar field [14], thus reducing thermal losses through heat exchange.  

The description of the molten salt steam generation is also crucial to the 

analysis of the Storage Salt-Water design.  The behavior of molten salt as a heat 

transfer fluid is discussed in Chapter 2 and its design values compared to oil-

water heat exchanger design values are presented in Chapter 3.    
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CHAPTER 2 

HEAT TRANSFER RELATIONS 

Solar Field Heat Transfer Fluid 

The synthetic oil used as the solar field heat transfer fluid is a eutectic mixture 

of diphenyl oxide and biphenyl.   Two commercial names for this product are 

Therminol VP-1™ and Dithers A™.  It is stable up to 399 °C.   The thermal 

properties of this mixture were selected from the SAM [9] source code and 

equations 1-4 describe them as functions of temperature.  Included also as 

equation 5 is a relationship for temperature as a function of enthalpy.   

 

Therminol VP-1™: 
 

 )0000007888.0002496.0509.1(1000)( 2TTTcp ⋅+⋅+⋅=  
[J/kg/K] 

  (1)

  
 20000001729.000008708.01381.0)( TTTk ⋅−⋅−=  

[W/m/K] 
(2)

  
 )10(001.0)( ))(2877.0(8703.0 3638.0−+⋅⋅= TLogTTμ  

[Pa s] 

(3)

  
 )001377.0498.134.18(1000)( 2TTTh ⋅+⋅+−⋅=  

[J/kg] 
(4)

  
 37.130006072.0580000000001.0)( 2 +⋅+⋅−= hhhT  

[°C] 
(5)
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Nitrate Salt 

The molten salt chosen was a nitrate salt that is composed of 60% KNO3 and 

40% NaNO3.  Thermal properties for solar salt were found in SAM [9] and listed 

in equations 6-9.  Among the benefits of the nitrate salt is its stability up around 

600 °C.  However, a disadvantage is its high melting point; Schulte-Fischedick 

[13] report that local solidification can occur at 239 °C.     

Nitrate Salt: 

 
TTcp ⋅+= 172.01443)(  

[J/kg/K] (6)

  
 TTk ⋅+= 00019.0443.0)(  

[W/m/K] 
(7)

  
 )0000001474.00002281.012.0714.22(001.0)( 32 TTTT ⋅−⋅+⋅−⋅=μ  

[Pa s] 
(8)

  
 )0000001474.00002881.012.0714.22(001.0)( 32 TTThT ⋅−⋅+⋅−⋅=  

[°C] 
(9)

 

The temperature of the cold tank is of concern because long periods without 

charging may lead to freezing conditions.  Freezing is a distinct possibility if the 

salt is not heated by auxiliary heaters and a study showed the cold tank dropped 

from 293 °C to 239 °C in 50 days (without auxiliary heating) [13].  For a plant with 

a solar multiple close to one, there will be concerns of salt solidification in the 

winter months, when the flow rate of the field does not exceed design conditions.  

Freezing would not occur in the normal operations of the Storage Salt-Water 

case.   
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Despite freezing concerns, nitrate salt has been proven reliable and Relloso 

[4] states it was chosen as the storage media for Andasol 1.  Auxiliary heaters 

were not included in this analysis, and the salt was allowed to drop below the 

freezing point (phase change was neglected).  During charging the HTF had to 

supply additional heat to overcome the lower temperatures.  This thermal energy 

requirement can be related to an internal parasitic loss.   

 Nitrate salt has a lower heat capacity than Therminol VP-1™ as shown in 

Figure 8.  This is particularly important in the development of the molten salt 

steam train because it determines how much heat can be provided to each heat 

exchanger stage.  In particular, the steam generator requires a larger 

temperature difference of molten salt.  It is also important in the development of 

the oil-salt heat exchangers, as the salt flow rate must be higher than the oil flow 

rate to match the heat exchanged.  Higher mass flow rate also represents higher 

pumping power losses.  Pumping power losses are further augmented by nitrate 

salt’s higher viscosity. 
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Specific Heat Capacity vs Temperature
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Figure 8: Specific heat of nitrate salt and Therminol VP-1™ 

 

 

Overall Heat Transfer Coefficient 

 The thermal properties of the two heat transfer fluids are further analyzed by 

their capabilities of transferring heat.  The overall heat transfer coefficient 

applicable to shell and tube heat exchangers is determined by  

 
ooo

foio

i

fi

ii AhA
R

kL
DD

A
R

AhUA
1"

2
/ln"11 ++++=

π
,  (10)

 
from Incropera and Dewitt [15].  UA can be found for design conditions, however 

with an energy source as variable as the sun, off-design conditions occur often.  
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According to solar literature, the approximation for modeling the UA during off-

design conditions is 

 
8.0

⎟
⎟
⎠

⎞
⎜
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⎛
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where the mass flow rate has been determined to be the dominant variable in 

UA.  Patnode [10] provides a thorough derivation of this term and certain aspects 

are highlighted here.  By neglecting the thermal resistance through the metal 

tubes and the resistance due to fouling is negligible, equation (10) becomes 

 
ooii AhAhUA

111 += .  (12)

 

Equation (12) implies that the behavior of UA is dominated by convective heat 

transfer.  The contact surface area for each fluid and the heat transfer coefficient 

of the fluids on the inside and the outside of the tubes are the only values 

considered.  Surface area will not change during off-design conditions so further 

a relative UA approximation can be performed by 

 
oi hhUA

111 +∝ . (13)

 

The heat transfer coefficient is defined as 

 
D

kNuh ⋅=   (14)

 

where the Nusselt number for fully developed (hydrodynamically and thermally) 

turbulent flow in smooth circular tubes is 
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 n
DDNu PrRe023.0 8.0 ⋅⋅=  . (15)

 

For a cooling fluid where n = 0.3 and for a heating fluid n = 0.4.  The Reynolds 

number is solved by 

 μπ ⋅⋅
⋅=
D
m

D
&4Re ,   (16)

 

and the Prandtl number in equation (15) is  

 
k
cp⋅= μPr   . (17)

 

Solving the Nusselt number for the heating fluid (n=3) gives 
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After incorporation of all the terms the heat transfer coefficient becomes 
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Once the physical dimensions of a heat exchanger have been established, h will 

only vary based on fluctuations in the mass flow rate and the temperature.  This 

is shown by 

 5.0

7.03.08.0

)(
)()(

T
TkTcpmh

μ
⋅⋅∝

&
 .  (20)

 

On a per kilogram basis Figure 9 shows the heat transfer coefficient’s 

temperature dependence.  The y-axis value is the product of the thermal 
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properties that are a function of temperature.  The current operating temperature 

of parabolic trough plants is below 400 °C due to the stability of the HTF.  This 

happens to be near the point of intersection where nitrate salt performs better 

than Therminol VP-1™. 
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Figure 9: Heat transfer dependency on temperature per kg of fluid 

 

 

Changes in the mass flow rate contribute significantly more to the heat 

transfer coefficient.  Figure 10 illustrates the h values for salt and oil at their 

design flow rates.  Nitrate salt is much larger due to the much higher flow rate, a 

result of its lower specific heat.  The mass flow rate approximation is a good first 
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order perturbation for the off-design conditions of the overall heat transfer 

coefficient.   

 

 

Heat transfer dependency on temperature and design flow rate
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Figure 10: Heat transfer coefficients as products of variable components 

 

 

If the heat transfer coefficient increases for a fluid then the overall heat 

transfer coefficient, U will become larger.  Assuming identical UA values for the 

two fluids in a specific heat exchanger, a higher U value for one fluid implies a 

smaller area.   
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CHAPTER 3 

MODEL COMPONENTS 
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Figure 11: Flow chart for power plant components 

 

 

Weather Reader and Solar Field 

The Weather Reader component, shown in Figure 11, is called first to 

process weather conditions.  Duffie & Beckman [16] describe the geometry of 
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tracking and sun angles based on local coordinates and Patnode [10] explicitly 

solves them for a parabolic trough plant.  Values were calculated for Las Vegas, 

Nevada: 

Longitude: - 115.08°  

Latitude: 36.06 °N. 

SCA length, spacing, focal length, and HCE values were used from Patnode 

[10].  A solar field row is formed by a series of 4 SCA units and the heat transfer 

fluid temperature increases incrementally over each SCA.   Two rows are 

connected in series to form a loop in the solar field.  Increases in solar multiple 

were calculated by increasing the number of loops in the solar field.   

  The total heat absorbed from the solar field is found by the calculation 

 SFAvailEndLossRowShadowIAMDNIQ HCEfieldabs ⋅⋅⋅⋅⋅⋅⋅= ηηθ )cos(&  (21)
 

The absorber tubes and HTF are hundreds of degrees Celsius above ambient 

weather conditions and thermal losses are significant.  The amount of energy 

that can be actually be transferred from the solar field is called  and is 

found by 

collectedQ&

 lossreceiverlosspipeabscollected QQQQ __
&&&& −−=   (22)

 

The outlet temperature of the solar field, ,  was assumed to be fixed at  

390.56 °C.  Inlet temperature, , varied based on the last iteration and the mass 

flow rate was solved; 

outT

inT

 )( inoutp

collected

TTc
Qm

−
=

&
&  . (23)
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Further details on the solar field can be found in the Matlab™ code in Appendix 

A. 

 

Heat Exchangers 

A total of 10 distinct counter-flow shell and tube heat exchangers were 

characterized and simulated in the three models.  The method for solving the 

unknowns in each heat exchanger differed depending on its position in the cycle.  

With the exception of the preheater, every heat exchanger required solving the 

heat transfer rate according to an energy balance and the effectiveness-NTU 

method.  The preheater calculation was simplified to only require an energy 

balance. 

The energy balance performed across the heat exchanger was solved using 

 222111 TcpmTcpm Δ⋅⋅=Δ⋅⋅ && .  (24)

Patnode [10] found inaccuracies by assuming an adiabatic heat exchanger 

model.  Heat loss through the heat exchangers was examined from adiabatic to 

3% heat loss.  At nominal power generation 3% heat loss in the heat exchangers 

led to a 1 MW difference in power generation.  Three percent heat loss was 

chosen for all heat exchangers.   

Design conditions for each heat exchanger not specified by the SEGS VI 

design were established and an overall heat transfer coefficient, UA, was derived 

to provide the necessary heat transfer.  For each individual fluid, an energy 

balance was used where 
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 TcpmQ Δ⋅⋅= & ,  (25)
 

and a mass balances for each fluid was  

 outin mm && =  . (26)
 

Once the heat transfer was determined, the design UA was solved by 

 
lmT

QUA
Δ

= .  (27)

 

The log mean temperature difference, , for a heat exchanger lmTΔ [17] is 

expressed as  

 )/ln(/)()( IIIIIIlm TTTTT ΔΔΔ−Δ=Δ  , (28)
 

where for counterflow 

 icihI TTT ,, −=Δ  (29)
       

and 

 ocohII TTT ,, −=Δ .  (30)
 

The inlet temperature and outlet temperature of the hot fluid and the inlet 

temperature and outlet temperature of the cold fluid in the heat exchanger are 

expressed by , , , , respectively.   ihT , ohT , icT , ocT ,
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Oil-Water Heat Exchangers 
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Figure 12: Temperature assignments for the steam train 
 

 

The mass flow rate of the HTF and T1, the HTF temperature entering the 

steam train, shown in Figure 12, were known values.  An optimization routine that 

solved the state points for the steam generator and superheater was also written 

to establish the mass flow rate of water across the steam generator.  The water 

mass flow rate set the pressure for the turbine entrance and pressure drop on the 

working fluid side of the heat exchangers was neglected.  Temperatures T6 and 
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T7 were assumed to be the saturation temperature set by the steam pressure.  

The optimization routine minimized the energy difference between values 

calculated for the energy balance and the effectiveness-NTU method.  The UA 

values shown in Table 1 were used as the design UA values for both the oil-

water and the salt-water heat exchangers.   

 

 

Table 1: UA values for steam train 

Heat Exchanger  UA  
  kW/°C 

Superheater 298 
Steam Generator 2051 

Reheater 653 
 

 

Table 2 shows the design values for temperatures, pressures, and mass flow 

rates presented by Lippke [8] and the results from this study.  Temperatures refer 

to the locations specified in Figure 12. 

 

 

Table 2: Heat transfer design conditions for steam train heat exchangers 
      P initial P final m oil m water     
      bar bar kg/s kg/s     
    Kearney 103.42 100 345.5 38.8     
    Results 100 100 345.5 39.2     
                  
  T1 T2 T3 T4 T5 T6 T7 T8 
  °C °C °C °C °C °C °C °C 
Kearney 390.56 377.22 317.78 297.78 371 313.89 313.89 234.83 
Results 390.56 380.78 318.48 300.03 377.4 311.61 311.61 241.56 
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 Once the mass flow rate of steam was determined, the design values for the 

reheater, shown in Table 3, were solved by simultaneously solving the two heat 

transfer equations.  The flow rate for oil in the steam train was 87.2% of the total 

HTF flow rate and 12.8% went to the reheater during all power generating 

conditions.   

 

 

Table 3: Reference conditions for reheater temperatures 

  T1 T2 T3 T4 P initial P final m oil m water
  °C °C °C °C bar bar kg/s kg/s 
Kearney 390.56 297.78 208.67 371 18.58 17.099 50.9 33.04 
Results 390.56 287.4 205.17 367.89 17.3 17.3 50.68 33.28 

 

 

Oil-Salt and Salt-Oil Heat Exchangers 

The design flow rate for salt during charging and discharging was determined 

by an energy balance that calculated enthalpy values for the temperature profile 

shown in Table 4.  Ts and To are the temperatures for the salt and oil, 

respectively.  The design charging flow rate for salt is equivalent to 2,350,800 

kg/hr.  The density of solar salt was calculated at 386°C to be 1844.5 m3/kg, so 

the volumetric flow rate was found to be 1274.5 m3/hr.  The amount of salt 

needed for the Storage Oil-Water case will be equal to the number of hours of 

storage times the hourly volumetric flow rate.  Storage Salt-Water, however, 

requires the number of hours of storage plus additional salt for operating the 
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plant.  The amount of additional salt will depend on the cycle time through the 

power block.     

 

 

Table 4: Design conditions for oil-salt heat exchangers 

  Ts Hot  Ts Cold  To hot To cold flow rate 
  °C °C °C °C kg/s 
Charging 386.00 293.00 393.00 299.00 396.00 
Discharging 386.00 293.00 379.00 287.00 396.00 
            
  Q oil flow rate salt LMTD UA flow rate ratio 
  kJ/s kg/s °C kW/°C Salt/Oil 
Charging 91231.71 653.38 6.49 14063.43 1.65 
Discharging 87986.27 630.14 6.49 13563.14 1.59 

 

 

 
Less heat can be transferred back to the oil due the temperature constraints.  An 

interesting consequence is that less salt is needed for discharging.  The 

difference in salt results in an extended discharging period for Storage Oil-Water 

compared to Storage Salt-Water.   

 

Salt-Water Heat Exchangers 

The optimization code that was applied to the oil-water steam train was 

applied to the salt-water steam train, where nitrate salt thermal properties 

replaced oil thermal properties.  Table 5 shows the design flow rate for steam is 

36.23 kg/s, 3 kg/s less than the oil-water steam train.  This decrease in flow rate 
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is reflected in the operating pressure which drops to 93.3 bar from 101 bar.  Less 

power is expected to be generated from the salt steam train.  Additionally, the 

turbine will experience more time in the saturation region due to the lower 

pressure.   

 
 
 

Table 5: Design conditions for molten salt steam train 
  T1 T2 T3 T4 T5 T6 
  °C °C °C °C °C °C 
Salt 386 375.74 314 298.47 372.83 305.8 
Oil 390.56 380.78 318.48 300.03 377.4 311.61 
              
  T7 T8 P initial P final m oil m water 
  °C °C bar bar kg/s kg/s 
Salt 305.8 237.05 93.1 93.1 569.4 36.2 
Oil 311.61 241.56 100 100 345.5 39.2 

  

 

 

Replacing synthetic oil with molten salt in the steam train heat exchangers 

significantly affects the power block.  A real plant with a molten salt steam train 

may be designed differently than assuming the same arrangement.  Nexant Inc. 

[18] resolved this issue by modifying the design of the molten salt steam 

generation system and their work is shown in Figure 13.  The molten salt used in 

the superheater and the reheater mix and together go to the steam generator.  

Salt temperatures were higher than 390 °C, which is greater than the upper limit 

of present HTF.  Therefore their design values could not be extrapolated for this 
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study.  In addition, their design cannot be readily compared to the SEGS VI 

design because the power block would require modification. 
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Figure 13: Representation of Nexant [17] molten salt steam train 

 

 

Turbine 

For all three power plant designs the turbine parameters were assumed to be 

identical.  The only variables that would change were the input values of inlet 

temperature, pressure, water flow rate, and reheat inlet temperature.  The salt 
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steam train is disadvantageous as a result because the turbine stages were built 

for a higher pressure. 

The steam enthalpy at the high pressure turbine inlet was determined by the 

temperature and pressure solved in the superheater component.  The enthalpy 

for the low pressure turbine inlet was determined by the same method for the 

reheater component.  The inlet enthalpy for every other turbine stage was equal 

to the enthalpy exiting the prior turbine stage.  The outlet enthalpy was calculated 

using the reference turbine stage efficiency and the isentropic relationship, 

 )( _ isentropicoutininout hhhh −⋅−= ε   (31)
 
A perturbation was included by Patnode [10] where efficiency reduces as a 

function of steam mass flow rate. 
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Adjusted design values for SEGS VI’s power block components can be found in 

Lippke [8] and Patnode [10].  In solar literature, the mass flow rate and pressure 

drop through a turbine stage can be expressed in a relationship with their 

reference values.  This is shown by  
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(34)

 
Accordingly, once the back pressure from the condenser is known, the pressure 

through the turbine can be back-calculated.  However, Table 6 was tabulated by 
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equation 34 and shows the outlet pressure from the low pressure turbine does 

not affect the inlet pressure to the high pressure turbine. 

 

 

Table 6: Correlation of turbine inlet pressure and water mass flow rate 

T amb = 0 °C 
m water Pin HP1 Pin LP5  Pin HP1/m water 

kg/s bar bar bar s / kg 
5 12.853 0.037 2.5705 
10 25.705 0.073 2.5705 
15 38.558 0.108 2.5705 
20 51.410 0.144 2.5705 
25 64.263 0.180 2.5705 
30 77.115 0.216 2.5705 
35 89.968 0.252 2.5705 
40 102.820 0.288 2.5705 

 T amb = 25 °C 
m water Pin HP1 Pin LP5  Pin HP1/m water 

kg/s bar bar bar s / kg 
5 12.853 0.060 2.5705 
10 25.705 0.086 2.5705 
15 38.558 0.118 2.5705 
20 51.410 0.151 2.5705 
25 64.263 0.186 2.5705 
30 77.115 0.221 2.5705 
35 89.968 0.256 2.5705 
40 102.820 0.291 2.5705 

 
 

Variance in the lowest pressure turbine stage due to ambient weather conditions 

does not affect the behavior of the high pressure turbine.  Instead, the 

relationship used in this model was 

 mP &⋅= 57.2 , (35)
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where  is the mass flow rate entering the high pressure turbine.  This 

relationship was also useful in the optimization code for the mass flow rate of 

water in the steam train.   

m&

The power block model is a simplified version of the actual SEGS VI power 

cycle.  Heat exchangers and turbine stages were described individually however 

models for the feedwater heaters, condensers, and cooling tower were not 

implemented in to the full cycle.  The work of the cooling tower and condenser 

were assumed to cool the steam exiting the last stage of the turbine down to 

seven degrees above ambient temperature.  This was considered acceptable for 

a dry cooling power plant.  Further, the outlet pressure of the low pressure 

turbine was determined to be the saturation pressure at this temperature 

approximation.   

 

 Mixer and Power Plant Simplification 

Two mixing units are utilized in both thermal storage designs.  For the 

Storage Oil-Water one unit mixes oil from the solar field with oil heated from 

thermal storage.  The second unit combines oil exiting the preheater, reheater, 

and the oil used to charge the thermal storage tanks.  The Storage Salt-Water 

design utilizes a mixing unit with thermal storage discharge and another for 

mixing the salt after cycling through the power block.  The total mass in the mixer 

is found by, 
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where i is the number of streams entering the mixer.  The resultant enthalpy of 

the mixture is 

 

tot
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mix m

hm
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= 1 . 

(37)

 

The cooling towers, condenser, feedwater heaters, and pumps were not 

included in this model.  The second assumption made was the preheater inlet 

water temperature was a fixed the outlet water temperature.  This value would be 

found by modeling the series of 5 closed feedwater heaters, a pump, and the 

open feedwater heater.  Accurate parasitic calculations should be included in the 

next modeling generation.   This will include the modeling the missing 

components and the power required to propagate the cycle.    

 

 Storage Tanks and Storage Controls Logic 

The hot and cold storage tanks for Storage Oil-Water were identical with only 

the temperature of salt varying.  The Storage Salt-Water case required a cold 

tank with an increased volume of one extra hour of salt.  Each tank was assumed 

to be fully mixed thermally.  The fluid volume in the tank had the capability to 

completely fill and discharge for every tank.  The real limitations clarify that the 

salt cannot fully discharge nor does it completely fill the tank [13].  For a desired 

increase in thermal storage, the tank volume and area must increase. 

The dimensions of the storage tank were meant to mimic the aspect ratio of 

the Andasol One storage tanks [4].  Those dimensions were a 39 meter diameter 

and a 19 meter tall tank.  Above 11.7 meters the tank became conical, so the 
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height was approximated to be 11.7 meters. Power losses were reported 239 kW 

and 259 kW lost for the cold tank and hot tank respectively.  Given an area of 

3823 m2, the heat loss terms can be expressed as 63 W/m2 and 67.7 W/m2.  The 

aspect ratio of the storage tanks diameter to height was preserved for resizing 

the storage tanks to fit a 35 MWe plant.  Table 7 displays the sizing requirements 

for the storage tanks for the amount of hours in storage.  The amount of mass is 

the value calculated for the iteration interval of one second. 

 

 

Table 7: Physical properties of thermal storage tanks 
Salt Flow 
Rate 

Discharge 
Time Volume Diameter Height Area 

Q Cold 
Tank Mass

m3/hr Hours m3 m m m2 MJ kg 
1274.5 2 2549 22.045 6.68 1226.03 1138.62 1306 
1274.5 4 5098 27.77 8.42 1945.51 2277.24 2612 
1274.5 6 7647 31.79 9.63 2549.55 3415.87 3918 
1274.5 8 10196 34.99 10.60 3088.66 4554.49 5224 
1274.5 10 12745 37.7 11.42 3585.62 5693.11 6530 

 

 

The energy balance for the mass of the tank was 

 dtmdtmMM outinkk && −+= 'tantan  (38)
 

where is the mass of the tank from the previous iteration.  Heat into the 

tank, , and out of the tank, , were solved by 

'tan kM

inQ outQ

 TcpmQ ⋅⋅= &  (39)
 

with T in absolute temperature in Kelvin.  The heat in the tank was found by 
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 lossoutink QQQQ −−=tan  (40)
 

A 100 °C difference in Nitrate salt only affects its specific heat by one percent.  

This error was considered negligible and the specific heat was treated as a 

constant.   

The temperature in the storage tank was found by determining the 

temperature drop in the tank due to heat loss, 

 
cpM

Q
dT

k

loss

⋅
=

tan

 
(41)

 

and tank temperature was thus calculated at the end of the time step 

 dTTT kk −= 'tantan . (42)
 

Heat loss and the associated temperature drop for an isolated 6 hour tank of 

molten salt initially at 293 °C is shown in Figure 14.  The heat loss term is based 

on area of the tank and not the volume of salt so the linear behavior is expected.  

Schulte-Fischedick [13] report the local solidification temperature for nitrate salt, 

239 °C, is reached after 46 days for a half full tank with the capability of 7 hours 

of storage.  Local solidification was reached in the tank in Figure 14 after 42 

days, which is within a reasonable range of the published study.    
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Figure 14: Temperature loss in 6 Hour Cold Tank, half full 

 

 

 When the tank is only 20% full, local solidification occurs after 17 days.  A 

decreasing salt volume in one tank will yield more rapid temperature drop.  A 

more detailed model of the tanks will examine the heating requirements needed 

for the hot tank and the cold tank because a minimum volume of salt must 

remain in both tanks.  Another concern is how much temperature decrease is 

acceptable in the hot tank.   

Other tank heat loss relations exist and could be explored.  Discharging 

molten salt from the hot tank is known to cause a decrease in temperature for the 

remaining fluid in the hot tank to decrease.  This is not only due to heat loss but 

also of thermal stratification in the tank.  Though not as extreme as a thermocline 
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storage system, stratification within each tank could be modeled in the next 

generation of the code. 

 The basic thermal storage operating strategies for Storage Oil-Water and 

Storage Salt-Water are shown in Figure 15 and Figure 16.  Advanced thermal 

storage controls will be valuable when parasitic calculations are analyzed.  For 

example, the minimum amount of hot salt discharge necessary to produce net 

power could be determined. 
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Figure 15: Storage Controls for Storage Oil-Water case 
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flow 

Greater Than: 
Is salt in Cold 
Tank greater than, 
less than, or equal 
to Field Flow? 

Greater or Equal: 
Cold Tank discharges 
design flow to PB and 
sends Field Flow minus 
design flow to Hot Tank 

Less: 
Cold Tank discharges 
design flow to PB, sends 
Cold Tank minus design 
flow to Hot Tank, and 
Field Flow is recalculated 

Yes: Does Hot 
Tank have 
greater, less, or 
equal to design 
flow minus Field 
Flow? 

No: 
Is Field 
Flow 
above 
min?

Equal: 
Hot Tank fully 
discharges, design 
flow is sent to PB, 
mixed temp 

Less: 
Is Hot Tank plus 
Field Flow 
greater than min? 

Calculate Field 
Flow of salt in 
oil-salt HX 

No: 
Field Flow 
charges Hot 
Tank 

Yes: 
Hot Tank fully 
discharges and 
mixes with Field 
Flow 

Greater: Hot 
Tank discharges 
difference from 
design flow, 
design flow is 
sent to PB at 
mixed T 

Yes: 
Cold Tank 
discharges 
Field Flow to 
PB

No:  
Field flow is 
added to Hot 
Tank 

Figure 16: Storage controls for Salt-Water Storage 
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CHAPTER 4  

RESULTS 

No Storage 

 Three days were chosen to illustrate the behavior of the No Storage power 

plant under varying weather and climactic conditions.  The summer day chosen 

was July 7th and it represents the ideal conditions for a solar parabolic trough 

power plant.  The Southwestern deserts are known for afternoon stormy 

conditions in late summer.  August 6th was chosen to represent a summer day 

with typical cloud cover in the early afternoon.  This day is particularly important 

because of low solar radiation yet still a high demand for electricity, primarily due 

to air conditioning.  Winter conditions in Las Vegas are sunny, but the low 

elevation of the sun increases reflection losses and will decrease the amount of 

energy that can be absorbed by a parabolic trough power plant because it is a 

single axis tracking technology. 
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July 7: Power Generation 

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20
Time [Hour of Day]

G
ro

ss
 P

ow
er

 [M
W

]
Q DNI
Q Absorbed
Q Collected
Gross Power

 
Figure 17: Hourly power totals for July 7, a typical sunny day 

 

 

 Figure 17 shows that energy generation on a clear summer day remains 

steady through out the day.  Power generation is delayed in the morning and 

evening partially due to the troughs not tracking within ten degrees above the 

horizon.  The difference between the energy absorbed and the energy collected 

is due to thermal losses in the solar field. 
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August 6: Power Generation 
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Figure 18: Hourly power totals for August 6, a day with afternoon clouds 

 

 

 The model demonstrates accurate reflection of the ambient weather 

conditions in Figure 18, when clouds arise at noon.  Power generation is 

significantly reduced by low DNI in the early afternoon, yet the slope of gross 

power is not as steep as the slope of the solar field outputs.   
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December 1: Power Generation 
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Figure 19: Hourly power totals for December 1st, a clear winter day. 

 

 

 Despite the high solar radiation, Figure 19 shows less energy is absorbed by 

the solar field in winter due to reflection losses due of the incidence angle. 

Two acceptable methods of increasing annual energy generation for a given 

power block size are to increase the solar multiple or to add thermal storage.  An 

actual plant is not likely to incorporate thermal storage after it is built but it is 

possible for a plant to increase the size of its solar field.  

 An increase in solar multiple is not beneficial for the entire year.  Figure 20 

illustrates that all solar multiple values reach maximum power generation on July 
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7th.  Potential thermal energy is wasted during the summer months even for a 

solar multiple of one.  However, the revenue lost by wasting potential power must 

be compared to the cost of implementing thermal storage.  A solar multiple of 

one will not waste enough potential power to justify thermal storage.  The solar 

multiple has to increase for thermal storage to be a significant contributing factor 

to the plant.   

 

 

July 7: No Storage, Varying Solar Multiple
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Figure 20: Gross power generation for July 7 with several solar field sizes 
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 Additionally, the simulation confirmed that at SM 1.6 the mass flow rate 

exceeded double the design flow rate.  This signifies more oil-salt heat 

exchanger area is needed for solar multiples greater than 1.6. 

 

 

August 6: No Storage, Varying Solar Multiple
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Figure 21: Gross power generation for August 6 with several solar field sizes 
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 The solar field size becomes more relevant for a summer day that becomes 

cloudy, such as August 6th, presented in Figure 21.  The solar multiples greater 

than one waste more potential thermal energy in the morning but aid in 

maintaining higher power generation during the cloudy period.  

 

 

December 1: No Storage, Varying Solar Multiple

0

5

10

15

20

25

30

35

40

0 5 10 15 20

Time [Hour of Day]

G
ro

ss
 P

ow
er

 [M
W

]

SM 2
SM 1.8
SM 1.6
SM 1.4
SM 1.2
SM 1

 

Figure 22: Gross power generation for Dec 1 with several solar field sizes 
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The overall trend in Figure 22 shows significant improvement in power 

generation by augmenting the solar field size. The data point at 1 PM for the SM1 

curve in is inconsistent with the other solar field sizes.  The discrepancy is due to 

a sensitivity issue in the steam generation optimization routine that only occurs 

when the oil mass flow rate is in the range of 40-80 kg/s.  A secondary 

convergence criterion should be explored for the optimization routine.   

 

 

Power versus Water Mass Flow Rate
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Figure 23: Power versus water mass flow rate for the No Storage case 
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According to Figure 23, for SM 1 without storage, power generation appears 

to be linearly related to water mass flow rate.  A linear regression could be 

developed to simplify the calculations for the power block.  However, the heat 

exchanger equations would still have to be calculated for the balance of the 

plant.  Or, the regression would have to include the inlet temperature of the hot 

fluid in steam generation as an input and the hot fluid outlet temperature as an 

output.   

The optimization code written to determine the mass flow rate of the water is 

dependent on the inlet heat transfer fluid temperature.  A decrease in the quality 

of the heat transfer fluid temperature will decrease the water flow rate.  Therefore 

the temperature exiting thermal storage will contribute to the amount power 

generated.  
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Storage Oil-Water Results 

 

 

Storage Oil-Water: July 7, 4 hours
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Figure 24: July 7th with four hours of thermal storage, varying solar multiple 

 

 

 The power generated after 6 PM in Figure 24 represents the expected 

behavior of the power generated from thermal storage.  The decrease in power is 

due to the HTF temperature drop from the increased number of heat exchangers. 
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Storage Oil-Water: August 6, 4 hours
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Figure 25: Aug 6th with four hours of storage, varying solar multiple 

 

 

Four hours of thermal storage and SM 1.4 or greater will provide enough 

thermal energy in Figure 25 to overcome the cloudy weather for August 6th.  At 1 

PM thermal storage is discharged and the solar multiples of 1 and 1.2 did not 

have enough thermal storage to generate power at full capacity during the 

transient period.  The increase in power generation at 5 PM is due to DNI 

returning to high values.  The larger the solar multiple the longer into the evening 
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storage can provide power.  Both SM 1.8 and SM 2 are able to full charge the 

four hour tanks.   

 

 

Storage Oil-Water: December 1, 4 hours
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Figure 26: Dec 1st with four hours of storage, varying solar multiple 

 

 

Despite doubling the solar field size, Figure 26 illustrates that some winter 

days will not be able to utilize thermal storage.  Too many consecutive days with 

similar conditions will require the use of auxiliary heating for the storage tanks. 
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There are clear differences between power generated by No Storage and 

Storage Oil-Water.  While the increase in solar multiple aids the No Storage 

case, the value of an increase is more evident when thermal storage is 

implemented.  The balance between the amount of storage and the size of the 

solar field is critical for cost analysis and power generation.  The most cost 

effective solution will also depend on the location.   

As the solar multiple and amount of storage increases the ability to produce 

power for longer hours continues to rise.  The longest amount of thermal storage 

explored was 10 hours and Figure 27 demonstrates the results for July 7th.  At 

SM 1.6 and above 24 hour power generation is achievable. 
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Storage Oil-Water: July 7, 10 hours
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Figure 27: July 6th with ten hours of storage, varying solar multiple 

This is realistic because SM 1 can collect 120% of the design thermal energy 

from the solar field when DNI reaches 1000 W/m².  At SM 1.6 the thermal energy 

from the solar field will double design conditions, so for every hour of high solar 

insolation an hour of thermal storage can also be harvested.   Power generation 

without thermal storage ceases at 8 PM.  Thermal storage begins is fully utilized 

from 8 PM until 6 AM, a total of 10 hours.  Due to some thermal storage utilized 

at 7 PM, the amount of thermal storage at 6 AM is less than full capacity.  The 10 

hours of thermal storage was found to be the minimum amount of storage to 

provide 24 hour electricity production. 
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Storage Oil-Water: August 6, 10 hours
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Figure 28: Aug 6th with ten hours of storage, varying solar multiple 

 

 

The results for ten hours of thermal storage during a cloudy summer day, 

depicted in Figure 28, are similar to those of four hours of thermal storage.  

However, the total energy generation for the day is highly dependent on the solar 

field size. 

 
 

 57



Monthly Gross Energy Output: No Storage 
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Figure 29:  Monthly gross energy output for the No Storage Case 

 

 

The trends of gross energy generation by month are shown in Figure 29.  An 

increase in solar field area improves generation all year but is most important for 

a plant without storage during the non-summer months. 
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Monthly Gross Energy Output: 8 hours 
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Figure 30: Monthly gross energy output for Storage Oil-Water with 8 hour tank. 

 

 

The appreciable amount of energy that can be generated when storage is 

incorporated into the plant is evident in Figure 30.  There is an increase of 1,000 

MWh even for the SM 1 case during the summer months.  For the SM 2 case, 

the increase is 7,000 MWh above the No Storage design. 
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Monthly Gross Energy Output: SM 1.4 
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Figure 31: Monthly gross energy output for solar multiple of 1.4 

 

 

Winter conditions clearly level the benefit of thermal storage, as seen in 

Figure 31.  For a 1.4 solar multiple the differences in energy production from 

varied storage tanks size are only appreciable from May to August.   
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Comparison of Storage Designs 

 

Comparing Storage Cases: July 7, SM 1.6, 4 hours
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Figure 32: Storage designs for July 7, SM 1.6 and 4 hours of storage 

 

 

The differences between the two thermal storage designs, shown by Figure 

32, are very evident.  The lower design flow rate for steam in the Storage Salt-

Water case results in less power generation during normal operating hours.  

Also, the Storage Salt-Water case generates more power when the thermal 

storage provides the only heat source and the amount of power does not 
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decrease during discharging because the number of heat exchangers remains 

constant.  However, this increase in power production from storage discharging 

is less than the power not produced during normal operating hours.   

Additionally, the Storage Oil-Water design produces more power at the end of 

the day for two reasons.  Less salt is needed for thermal discharging, which will 

extend hours of operation.  However the more dominant cause is the amount of 

heat loss in the oil-salt heat exchangers.   The three percent heat loss becomes 

a much larger amount when all HTF from the solar field transfers thermal energy 

into the molten salt.  
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Comparing Storage Cases: July 7, SM 2, 10 hours
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Figure 33: Storage designs for July 7, SM 2 and 10 hours of storage 

 

 

The trend of longer power generation by Storage Oil-Water is more obvious in 

Figure 33, where the solar multiple increased to 2 and the storage tanks contain 

10 hours of thermal storage.  While Storage Oil-Water can provide 24 hours of 

power, Storage Salt-Water cannot.  Increasing the solar multiple and the number 

of hours of storage will not favor Storage Salt-Water for this operating strategy.   
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Comparing Storage Cases: August 6, SM 1.6, 4 hours
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Figure 34: Storage designs for August 6, SM 1.6 and 4 hours of storage 

 

 

Storage designs are compared for August 6th in Figure 34 and the power 

plants have enough thermal energy smooth over the transient afternoon weather 

conditions.  At 1 PM thermal storage is discharged and Storage Oil-Water 

displays a decrease in power generation.  However, because of a moderate level 

of DNI thermal storage is not needed to discharge at full capacity.  During the 

afternoon transient hours, power production from Storage Oil-Water does not 

decrease below Storage Salt-Water power production levels.   
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Comparing Storage Cases: Dec 1, SM 1.6, 4 hours
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Figure 35: Storage designs for Dec 1, SM 1.6 and 4 hours of storage 

 

 

The two curves in Figure 35 display the same trend for the winter conditions.  

Storage Salt-Water generates less power than Storage Oil-Water during off-

design conditions.  However, the molten salt is continuously cycled in Storage 

Salt-Water.  This reduces the concern for solidification of the molten salt and will 

also reduce the amount of auxiliary heating needed, especially for low solar 

multiples.   
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 The annual energy totals for the solar field and gross power generation are 

presented for the No Storage case in Table 8.  An increase in solar multiple is 

followed by an increase in gross energy production, however the increase is non-

linear.   

 

 
Table 8: Annual energy totals for No Storage 

No Storage Incident Absorbed Collected Gross Energy Production 

SM MWhth MWhth MWhth MWhe (factor of SM1) 
1 471721 256398 215960 81044 1.00 

1.2 566065 307678 258510 90572 1.12 
1.4 660409 358958 301038 97046 1.20 
1.6 754753 410237 343574 101904 1.26 
1.8 849097 461517 386079 105649 1.30 
2 943441 512797 428614 108586 1.34 

 

 

Table 9 shows the annual energy generation for each storage case examined 

divided by the annually energy of the No Storage case at solar multiple of one.  

This normalization neutralizes most operating assumptions and allows all annual 

energy totals to be compared to the relative performance of the bases case.  

When a plant incorporates thermal storage the rate of gross annual energy 

production is accelerated.   Storage sizes greater than 4 hours are not useful for 

Storage Oil-Water at SM lower than 1.4 and for Storage Salt-Water at SM lower 

than 1.6.  Tank heat loss even neutralizes the benefits of additional power 

production in some of these cases. 
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 The same amount of energy is produced for Storage Oil-Water cases of SM 

1.8 with 4 hours of storage and SM 1.6 with 6 hours of storage.  Net power 

produced and an economic analysis of the cases would determine which 

condition will provide a better solution. 

 Accurate parasitic calculations will require several calculations not performed 

in the No Storage plant.  The Storage Oil-Water design will need additional HTF 

pumping, salt pumping power between tanks, and auxiliary heating requirements.  

The storage Salt-Water design will require the pumping power for molten salt 

through the steam train and reheater, and auxiliary heating.   

 According to Table 9, Storage Salt-Water never produces the power that can 

be obtained from Storage Oil-Water.  However, there are alternative operating 

strategies that highlight the advantages of Storage Salt-Water such as shifting 

power generation [19]. 
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Table 9: Normalized annual energy generation  
 Storage Oil-Water  

SM No Store 2 h  4 h 6 h  8 h  10 h 
1 1.00 1.04 1.04 1.05 1.04 1.04 

1.2 1.12 1.22 1.27 1.28 1.27 1.27 
1.4 1.20 1.33 1.43 1.49 1.50 1.50 
1.6 1.26 1.42 1.55 1.64 1.70 1.73 
1.8 1.30 1.49 1.64 1.75 1.85 1.91 
2 1.34 1.54 1.71 1.85 1.96 2.05 

 
Storage Salt-Water 

SM No Store 2 h  4 h 6 h  8 h 10 h 
1 1.00 0.96 0.96 0.96 0.96 0.96 

1.2 1.12 1.13 1.17 1.17 1.17 1.17 
1.4 1.20 1.24 1.32 1.37 1.38 1.38 
1.6 1.26 1.32 1.43 1.52 1.57 1.59 
1.8 1.30 1.38 1.52 1.63 1.71 1.76 
2 1.34 1.43 1.58 1.71 1.82 1.90 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

 

Matlab™ code was successfully written to simulate the gross power output for 

three solar parabolic trough power plant designs: No Storage, Storage Oil-Water, 

and Storage Salt-Water.  The primary design parameters were extrapolated from 

SEGS VI, when applicable.  The model behaves as expected to weather and 

seasonal changes.  It deviates from SEGS VI’s power output due to 

simplifications and differing operating strategies.  The analysis of the competing 

thermal storage designs is valid as all three plant designs are compared on equal 

footing. 

Several performance distinctions were identified between the two tank indirect 

thermal storage systems.  Storage Oil-Water displayed a lower power output 

when thermal storage was the primary heat source.  However, Storage Salt-

Water did not produce as much power during normal operating conditions.  This 

was due to a lower design temperature of salt at the power block heat 

exchangers entrance and also because nitrate salt has a lower heat capacity 

than synthetic oil.  For the basic operating strategy examined, to maximize the 

amount of time operating at full-capacity, Storage Oil-Water showed better 

annual gross energy generation for all solar multiples and storage tank sizes. 

A significant cost increase to Storage Salt-Water is the size of the oil-salt heat 

exchanger.  Additionally, this increase in size led to greater heat loss when 

transferring thermal energy from oil to salt.  However, the assumption that both 
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heat transfer fluids maintained identical UA values for the steam generation heat 

exchangers implies the Storage Salt-Water heat exchanger area will decrease.  

This will reduce the cost of the Storage Salt-Water unit.  Auxiliary heating 

equipment will be necessary for both storage designs; however their presence in 

the Storage Salt-Water case is only a safety precaution because the salt is 

cycled daily.   

The size of the storage tanks and the quantity of molten salt were identified.  

It was also determined that the volume of salt needed in Storage Salt-Water will 

increase to include the amount needed for the power block loop.  Further 

analysis can also include component cost analysis, such as size of solar field and 

hours of thermal storage, that will help determine the most cost-effective plant for 

a desired annual energy generation total.   

Parasitic calculations can be performed in the future to calculate the net 

annual power and to provide clear annual solar-to-electric efficiency values.  

Several parasitic relationships need to be identified including salt pumping 

requirements for both storage designs and auxiliary heating requirements.  

Pumping power will increase with the molten salt steam train due to a higher flow 

rate and a higher viscosity.   

The optimization scheme used to solve the mass flow rate of the cooling fluid 

in the heat exchanger problems could use improvement, as evidence in the 

variability at low mass flow rates.  Secondary convergence criteria could be 

explored.  The alternate design for molten salt steam generation performed by 
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Nexant [18] would lead to a new power block optimization.  This may improve the 

power generating capabilities of the Storage Salt-Water design. 

Further operating strategies could modify storage controls to shift power 

generation to match peak demand hours.  This would be desired by utility 

companies and they are likely to pay more for power produced during peak load 

demand.  Shifting power generation may favor Storage Salt-Water because 

thermal storage will be utilized as the primary heat source for a greater amount of 

time.    
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APPENDIX A 

MATLAB CODE 
 

 
 

%Storage Salt-Water: SM 1, 4 hours storage  
% JK 2009 
     
 
    %Inputs 
 
        Data=xlsread('Las_Vegas_TMY3.xls'); 
        Day=Data(:,1); 
        Hour=Data(:,2); 
        DNI=Data(:,3); 
        Tamb=Data(:,4); 
        WindSpeed=Data(:,5); 
 
    %Location Parameters 
 
        Long_L=115.08;                      %Local Longtitude 
        Long_St=120;                         %Standard Longitude, GMT -8 
        Lat=36.06;                            %Local Latitude 
        phi=Lat*pi/180;                      %Latitude in radians 
        beta=0;                                %Slope from horizontal 

  gamma=0; gamma_s=1;             %Surface azimuth angle... sine(0)=0 
         
         
    %Solar Field Parameters 
    %Units are m and m^2 
     
        L_SCA_loop=753.6;                   %Length of Solar Collector Assembly         
    L_SCA=50;                            %Length of single collector 
        L_spacing=15;                         %Spacing between troughs  
        Num_SCA=50*1;                        %Number of SCAs 
        W_SCA=4.83;                             %Width of Luz2 SCA 
        SolarArea=L_SCA_loop*W_SCA*Num_SCA; %Solar Area 
        Loops=Num_SCA/2;                   %Loops treat hot and cold row 
        FocalLength = 5;                     %Focal Length of Trough 
        T_f_o = 390.56; 
        h_field_out=1000*(-18.34+1.498*T_f_o+0.001377*T_f_o^2);  %[J/kg] 
        mdotField_ref = 396; 
         
    %Heat Collection Element Parameters 
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etaField=0.994*0.98*0.935*0.95;  %Eta Field = TrkTwstErr * GeoAcc *… 
 MirRef * MirCln  

      etaHCE=0.98*0.99*0.963*0.95*0.96;       %Eta HCE = HCEdues *… 
        BelShad*…EnvTrans * HCE abs * HCEEmics 
 
      SolarAvailability=0.99; 
     
        %Coefficients for receiver heat loss 
             
            A0=-9.463; 
            A1=3.030e-1; 
            A2=-1.387e-3; 
            A3=6.929e-6; 
            B0=7.650e-2; 
            B1=1.129e-7; 
         
         
    %Heat Exchanger Parameters 
     
        UA_SH=298000; 
        UA_SG=2051000; 
        UA_pre = 752000; 
              
    %Storage Parameters 
     
        TankAreaC = 2121.67; 
        TankAreaH = TankAreaC; 
        MassStorageC_initial = 3265; 
        Q_ColdTank_initial = 2846555093; 
        T_ColdTank_initial = 293; 
        MassStorageH_initial = 0; 
        Q_HotTank_initial = 0; 
        T_HotTank_initial = 0;     
         
for i=1:8760 
     
    %Solar Field inlet temperature 
 
    if i==1 
        T_f_i(i,1)=297; 
    else 
        T_f_i(i,1)=T_o_out(i-1); 
    end 
     
    %Weather Reader -- Reads weather and serves as Solar Field part I 
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[Q_abs(i,1)] = WeatherReader(Long_St,Long_L,phi,L_spacing, 
W_SCA,FocalLength,L_SCA_loop,L_SCA,etaField, 
etaHCE,SolarAvailability,SolarArea,Day(i), Hour(i), DNI(i), Tamb(i), 
WindSpeed(i),i); 
     
    %Solar Field Calculations 
     
    if Q_abs(i)<=0   
        mdot_field(i,1)=0; 
        Qdot_collected(i,1)=0; 
        Qdot_collected_MW(i,1)=0; 
        Qdot_absorbed_MW(i,1)=0; 
    else 

[mdot_field(i,1), Qdot_collected(i,1), Qdot_collected_MW(i,1), 
Qdot_absorbed_MW(i,1)] = SolarField… 
(T_f_i(i),T_f_o,A0,A1,A2,A3,B0,B1,DNI(i),Tamb(i),Q_abs(i),SolarArea,… 
h_field_out ); 

    end 
     
    %Solar Field cumulative values 
     
    FieldRatio(i,1)=mdot_field(i)/mdotField_ref; 
    Q_Total_Incidence_MW(i,1)=DNI(i)*SolarArea/1000000; 
     
    %Initiate Thermal Storage 
     
    if i ==1 
         
        MassStorageC(i,1) = MassStorageC_initial; 
        Q_ColdTank(i,1) = Q_ColdTank_initial; 
        T_ColdTank(i,1) = T_ColdTank_initial; 
        MassStorageH(i,1) = 0; 
        Q_HotTank(i,1) = 0; 
        T_HotTank(i,1) = 0; 
         
    else 
         
        MassStorageC(i,1) = MassStorageC(i-1); 
        Q_ColdTank(i,1) = Q_ColdTank(i-1); 
        T_ColdTank(i,1) = T_ColdTank(i-1); 
        MassStorageH(i,1) = MassStorageH(i-1); 
        Q_HotTank(i,1) = Q_HotTank(i-1); 
        T_HotTank(i,1) = T_HotTank(i-1); 
         
    end 
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[T_o_out(i,1),mdot_s(i,1), T_salt_to_PB(i,1), mdot_to_PB(i,1), T_HotTank(i,1), 
MassStorageH(i,1),Q_HotTank(i,1),T_HotTank_toHX(i,1),dT(i,1)] = 
StorageControlsSalt(mdot_field(i),T_ColdTank(i),TankAreaH, MassStorageH(i), 
Q_HotTank(i), T_HotTank(i),MassStorageC(i)); 
     
    %Divide Field Flow into steam train and reheat 
     
        mdot_h_sh(i,1) = 0.872*mdot_to_PB(i); 
        mdot_h_rh(i,1) = 0.128*mdot_to_PB(i); 
     
    %Turn power plant on if power is greater than 3 MW -->66kg/s Field Flow 
     
    if mdot_to_PB(i)<66 
        T2(i,1)=0; 
        T3(i,1)=0; 
        T4(i,1)=0; 
        T5(i,1)=0; 
        T6(i,1)=0; 
        T8(i,1)=0; 
        Qpre(i,1)=0; 
        Qsh(i,1)=0;  
        Qsg(i,1)=0;  
        P(i,1)=0;  
        mdot_w(i,1)=0; 
        T_out_HP2(i,1)=0; 
        h_out_HP2(i,1)=0; 
        Pout_HP2(i,1)=0; 
        T_w_rh_out(i,1)=0; 
        T_htf_rh_out(i,1)=0; 
        h_rh_diff(i,1)=0; 
        W_HP1(i,1)=0; 
        W_HP2(i,1)=0; 
        W_LP1(i,1)=0; 
        W_LP2(i,1)=0; 
        W_LP3(i,1)=0; 
        W_LP4(i,1)=0; 
        W_LP5(i,1)=0; 
        T_to_exp(i,1)=0; 
        T_to_ColdTank(i,1)=0; 
        mdot_to_ColdTank(i,1)=0; 
    else 
         
        %Heat Exchanger Steam Train 
         
            [T2(i,1), T3(i,1), T5(i,1), T6(i,1), Qsh(i,1), Qsg(i,1), P(i,1), mdot_w(i,1)] = 
… 
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f_main_search_salt(T_salt_to_PB(i),mdot_h_sh(i),UA_SH, UA_SG); 
            [T4(i,1), T8(i,1), Qpre(i,1)] = Preheater_salt(mdot_h_sh(i),mdot_w(i),… 

 P(i),T3(i),T6(i)); 
             
        % Calculate turbine pressures from mass flow rate 
         
            [Pout_LP5 Pout_LP4 Pout_LP3 Pout_LP2 Pin_LP1 Pout_LP1      
 Pout_HP2(i,1) Pin_HP1 Pout_HP1... 
 mdot_LP5,mdot_LP4,mdot_LP3,mdot_LP2,mdot_LP1,mdot_HP2,… 
 mdot_HP1]…= TurbinePressure (mdot_w(i),Tamb(i)); 
         
        % High Pressure Turbine  
         
            [W_HP1(i,1) W_HP2(i,1) T_out_HP2(i,1) h_out_HP2(i,1)] =… 
        Turbine_HP… 

 (T5(i), Pin_HP1, Pout_HP1, mdot_HP2, mdot_HP1, Pout_HP2(i)); 
         
        % Reheater Calculations 
             
            [T_htf_rh_out(i,1), T_w_rh_out(i,1)]= Reheater_salt(mdot_LP1,… 

Pout_HP2(i), T_salt_to_PB(i),mdot_h_rh(i),h_out_HP2(i)); 
             
        % Low Pressure Turbine 
            [W_LP1(i,1) W_LP2(i,1) W_LP3(i,1) W_LP4(i,1) W_LP5(i,1)] =… 

Turbine_LP (T_w_rh_out(i), Pin_LP1, Pout_LP1, Pout_LP2, … 
Pout_LP3, Pout_LP4, Pout_LP5, 
mdot_LP5,mdot_LP4,mdot_LP3,mdot_LP2,mdot_LP1); 

            %h_rh_diff(i,1) = h_out_HP2(i) - XSteam('h_px',Pout_HP2(i),1); 
             
        % Salt Mixer 
            [T_to_ColdTank(i,1),mdot_to_ColdTank(i,1)] = Mixer_salt… 

(mdot_h_sh(i), mdot_h_rh(i),T4(i),T_htf_rh_out(i)); 
     
    end 
     
    %Mass and Energy Balance on Cold Tank 
     
      
 [Q_ColdTank(i,1),T_ColdTank_toHX(i,1),T_ColdTank(i,1),MassStorageC(i,1)] 

= ColdTank2(TankAreaC, MassStorageC(i),Q_ColdTank(i), T_ColdTank(i), 
mdot_to_ColdTank(i), mdot_s(i),T_to_ColdTank(i)); 

 
    %Calculate Power 
     
        [WelectricMW(i,1), Welectric(i,1)] = Generator(W_LP1(i), W_LP2(i),… 

  W_LP3(i), W_LP4(i), W_LP5(i), W_HP1(i), W_HP2(i));      
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end 
 
Storage_Mass_Balance =[MassStorageC+MassStorageH]; 
KeyParameters=[Q_Total_Incidence_MW,Qdot_absorbed_MW,Qdot_collected_
MW,WelectricMW,mdot_w,MassStorageH,T_HotTank,Q_HotTank,MassStorage
C,T_ColdTank,Q_ColdTank,mdot_to_PB,a]; 
xlswrite('Results_StoreSalt_4h_SM1_', KeyParameters, 'sheet1','A1'); 
 
 
function [T_o_out,mdot_s, 
T_salt_to_PB,mdot_to_PB,T_HotTank,MassStorageH,… 
Q_HotTank,T_HotTank_toHX,dT ] = StorageControlsSalt(mdot_field,… 
T_ColdTank,TankAreaH, MassStorageH,Q_HotTank, 
T_HotTank,MassStorageC) 
 
% StorageControlSalt dictates how to charge, discharge, and dwell storage 
tanks. 
% JK 2009 
 
% mdot_s exits MassStorageC 
% mdot_to_PB goes to PB; 
 
%Calculate salt flow rate from solar field ~ Field Flow 
 
[T_o_out, mdot_s]= f_Storage_Charger_salt(mdot_field,T_ColdTank); 
mdot_s = round(mdot_s); 
T_salt_to_PB = 386; 
mdot_o = mdot_field; 
 
if mdot_s == 653 
    mdot_s_in_H = 0; 
    mdot_s_out_H = 0; 
    mdot_to_PB = 653; 
    [T_HotTank,MassStorageH,Q_HotTank,T_HotTank_toHX,dT] = HotTank… 
    (TankAreaH, MassStorageH, Q_HotTank, T_HotTank, mdot_s_in_H, 
mdot_s_out_H); 
 
elseif mdot_s > 653 
 
    %Does Cold Tank have enough to discharge entire flow? 
 
    if MassStorageC >= mdot_s 
 
        mdot_charge = mdot_s - 653; 
        mdot_to_PB = 653; 
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        mdot_s_in_H = mdot_charge; 
        mdot_s_out_H = 0; 
        [T_HotTank,MassStorageH,Q_HotTank,T_HotTank_toHX,dT] = HotTank… 
    (TankAreaH, MassStorageH, Q_HotTank, T_HotTank, mdot_s_in_H,… 
   mdot_s_out_H); 
 
    else 
 
        mdot_charge = MassStorageC - 653; 
        mdot_to_PB = 653; 
        mdot_s = MassStorageC; 
        T_salt_in=T_ColdTank; 
        [T_o_out mdot_o] = f_Storage_Charger_salt2oil(mdot_s,T_salt_in); 
        mdot_s_in_H = mdot_charge; 
        mdot_s_out_H = 0; 
        [T_HotTank,MassStorageH,Q_HotTank,T_HotTank_toHX,dT] = HotTank… 
    (TankAreaH, MassStorageH, Q_HotTank, T_HotTank, mdot_s_in_H,… 
    mdot_s_out_H); 
 end 
 
else 
     
 if MassStorageH <=0 
 
        if mdot_s <= 66 
 
            mdot_charge = mdot_s; 
            mdot_s_in_H = mdot_charge; 
            mdot_s_out_H = 0; 
            mdot_to_PB = 0; 
            [T_HotTank,MassStorageH,Q_HotTank,T_HotTank_toHX,dT] = 
HotTank… 
   (TankAreaH, MassStorageH, Q_HotTank, T_HotTank, mdot_s_in_H,… 
  mdot_s_out_H); 
 
        else 
            mdot_to_PB = mdot_s; 
            mdot_s_in_H = 0; 
            mdot_s_out_H = 0; 
            [T_HotTank,MassStorageH,Q_HotTank,T_HotTank_toHX,dT] = 
HotTank… 
  (TankAreaH, MassStorageH, Q_HotTank, T_HotTank, mdot_s_in_H,… 
  mdot_s_out_H); 
        end 
 
    else  
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        mdot_needed = 653 - mdot_s; 
 
         if MassStorageH == mdot_needed 
 
            mdot_discharge = mdot_needed;  
            mdot_s_in_H = 0; 
            mdot_s_out_H = mdot_discharge; 
            [T_HotTank,MassStorageH,Q_HotTank,T_HotTank_toHX,dT] = 
HotTank… 
  (TankAreaH, MassStorageH, Q_HotTank, T_HotTank, mdot_s_in_H,… 
   mdot_s_out_H); 
            %mix field plus storage 
            [T_salt_to_PB,mdot_to_PB] = Mixer_salt2(mdot_s,mdot_discharge,… 
  T_HotTank_toHX); 
 
         elseif MassStorageH > mdot_needed 
            mdot_discharge = mdot_needed; 
            mdot_s_in_H = 0; 
            mdot_s_out_H = mdot_discharge; 
            [T_HotTank,MassStorageH,Q_HotTank,T_HotTank_toHX,dT] = 
HotTank… 
  (TankAreaH, MassStorageH, Q_HotTank, T_HotTank, mdot_s_in_H,… 
  mdot_s_out_H); 
            %mix field plus storage 
            [T_salt_to_PB,mdot_to_PB] = Mixer_salt2(mdot_s,mdot_discharge,… 
  T_HotTank_toHX); 
         else 
            mdot_capable = MassStorageH + mdot_s; 
 
            if mdot_capable >= 66 
 
                mdot_discharge = MassStorageH; 
                mdot_s_in_H = 0; 
                mdot_s_out_H = mdot_discharge; 
                [T_HotTank,MassStorageH,Q_HotTank,T_HotTank_toHX,dT] = 
HotTank… 
      (TankAreaH, MassStorageH, Q_HotTank, T_HotTank, mdot_s_in_H,… 
      mdot_s_out_H); 
                %mix field plus storage 
                [T_salt_to_PB,mdot_to_PB] = Mixer_salt2(mdot_s,mdot_discharge,… 
      T_HotTank_toHX); 
            else 
                mdot_charge = mdot_s; 
                mdot_s_in_H = mdot_charge; 
                mdot_s_out_H = 0; 
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                [T_HotTank,MassStorageH,Q_HotTank,T_HotTank_toHX,dT] = 
HotTank (TankAreaH, MassStorageH, Q_HotTank, T_HotTank, mdot_s_in_H, 
mdot_s_out_H); 
                %mix field plus storage 
                mdot_to_PB = 0; 
            end 
         end 
    end 
end 
             
 
 
function [T_o_out mdot_s] = f_Storage_Charger_salt(mdot_surplus,T_salt_in) 
 
% f_Storage_Charger_salt calls the optimization routine Oil-Salt HX 
% JK 2009 
 
mdot_o = mdot_surplus; 
if mdot_o < 4 
    mdot_s = mdot_o*1.6; 
    if mdot_s ==0 
    T_o_out = 0; 
    else 
    %oil temp is  
    T_o_out = 390.56 - mdot_s*(1443 + 0.172 * 339.5)*(386-T_salt_in)/(mdot_o*… 
    1000*(1.509 + 0.002496 * 330.56 + 0.0000007888 * 330.56^2)); 
    end 
     
else 
 
UA_OtoS = 14063000; 
 
%This function calls the optimization for the charger 
 
warning off 
%options = 
optimset('LargeScale','on','Display','iter','TolX',.0000005,'TolFun',.00001,… 
'MaxIter',10^6,'MaxFunEval',10^6); 
 
options = 
optimset('LargeScale','on','Display','off','TolX',.00000001,'TolFun',.0000005,… 
'MaxIter',10^6,'MaxFunEval',10^6); 
 
X=[mdot_o UA_OtoS,T_salt_in]; 
 
%call optimiztion routine 
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[mdot_s,Q_diff]=fminsearch(@Storage_Charger,mdot_o*1.6,options,X);  
 
[Q_diff Sol]=Storage_Charger(mdot_s,X);  
 
T_o_out=Sol(1);  Q_o=Sol(2);  Q_salt_in=Sol(3); mdot_s=Sol(4); eps=Sol(5); 
 
end 
 
 
function [Q_diff,Sol]=Storage_Charger(mdot_s,X) 
 
% Storage_Charger converges energy balance and eps-NTU 
% JK 2009 
 
mdot_o=X(1); 
UA_OtoS=X(2); 
T4=X(3); 
 
X=[mdot_o UA_OtoS,T4]; 
 
T1=393; 
T3=386; 
dh_salt = 1443 * (T3-T4) + 0.086 * (T3-T4)^2;       %[J/kg] 
 
 
cps = 1443 + 0.172 * 339.5; 
cpo=1000 * (1.509 + 0.002496 * (T1-60) + 0.0000007888 * (T1-60)^2); 
 
 
%_______________________________________________Oil to Salt 
 
Cmin = min(cpo*mdot_o,cps*mdot_s); 
Cmax = max(cpo*mdot_o,cps*mdot_s); 
Cr = Cmin/Cmax; 
UA_OtoS = UA_OtoS*(mdot_o/396)^0.8; 
NTU=UA_OtoS/Cmin; 
 
eps=(1-exp(NTU*(Cr-1)))/(1-Cr*exp(NTU*(Cr-1))); 
Q = Cmin*eps*(T1-T4); 
 
T_o_out=T1-((mdot_s*dh_salt*1.03)/(mdot_o*cpo)); 
 
Q1=mdot_o*cpo*(T1-T_o_out); 
 
Q_diff=abs(Q-Q1); 
Q_salt_in = Q1/1.03; 
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Sol=[T_o_out Q Q_salt_in mdot_s eps]; 
 
 
 
function [T_HotTank,MassStorageH,Q_HotTank,T_HotTank_toHX,dT] = 
HotTank(TankAreaH, MassStorageH,Q_HotTank, T_HotTank, mdot_s_in_H, 
mdot_s_out_H) 
 
%Hot Tank calculates the temperature, mass, and energy in the hot storage tank 
%JK 2009 
 
%Assumptions 
%cp stays constant 
%Heat loss is f(TankArea) not f(TankArea,T_Tank) 
 
dMstorage_in = mdot_s_in_H;                             %[kg] 
dMstorage_out = mdot_s_out_H; 
T_last = T_HotTank;                               
T_in =386+273;                                      %[K] 
 
if Q_HotTank ==0 
    T_last = T_in; 
else 
    T_last = T_last+273; 
end 
   
Q_loss = 68 * TankAreaH;                           %[W] 
MassStorageH = MassStorageH + dMstorage_in - dMstorage_out; 
cp = 1443 + 0.172*(380+273);                        %[J/kgK] 
Q_in = dMstorage_in*cp*T_in;                        %[J] 
Q_out = dMstorage_out*cp*T_last;                    %Tank_Last  
Q_tank = Q_HotTank+Q_in-Q_out;                      %[J] 
 
if MassStorageH == 0 
    T_tank = 0;                                      
    dT = 0;                                          
else 
    T_tank = Q_tank/(MassStorageH*cp); 
    dT = Q_loss/(MassStorageH*cp);                   
end 
 
 
if MassStorageH <=0 
    if dMstorage_out>0 
        T_HotTank_toHX =T_last-273; 
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        T_HotTank = 0;                                   
        Q_HotTank = 0; 
    else 
        T_HotTank = 0;                                  
        Q_HotTank = 0; 
        T_HotTank_toHX = 0 ; 
        Percent_loss = 0; 
    end 
else 
    T_HotTank = T_tank - dT-273;                    
    Q_HotTank = Q_tank - Q_loss; 
    T_HotTank_toHX = T_last-273; 
    Percent_loss = Q_loss/Q_tank; 
end 
 
 
function [Pout_LP5 Pout_LP4 Pout_LP3 Pout_LP2 Pin_LP1 Pout_LP1 
Pout_HP2 Pin_HP1 Pout_HP1... 
 %   
mdot_LP5,mdot_LP4,mdot_LP3,mdot_LP2,mdot_LP1,mdot_HP2,mdot_HP1] = 
TurbinePressure (mdot_w,Tamb)        
 
    %mdot_w = 38.8; 
    %Tamb = 20; 
    %This function returns the mass flow rates and pressures for the turbine 
stages 
    Pin_HP1_ref = 100;  
    Pout_HP1_ref = 33.61;  
    Pin_HP2_ref = 33.61;  
    Pout_HP2_ref = 18.58; 
    %Pressure drop from High Pressure out to Low Pressure in 
    Pin_LP1_ref = 17.10; 
    Pout_LP1_ref = 7.98; 
    Pin_LP2_ref = Pout_LP1_ref;  
    Pout_LP2_ref = 2.73; 
    Pin_LP3_ref = Pout_LP2_ref;  
    Pout_LP3_ref = 0.96; 
    Pin_LP4_ref = Pout_LP3_ref;  
    Pout_LP4_ref = 0.29; 
    Pin_LP5_ref = Pout_LP4_ref;  
    Pout_LP5_ref = 0.08; 
    mdot_LP5_ref=0.689*38.8;  
    mdot_LP4_ref=0.709*38.8;  
    mdot_LP3_ref=0.751*38.8;  
    mdot_LP2_ref=0.797*38.8; 
    mdot_LP1_ref=0.849*38.8;  
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    mdot_HP2_ref=0.925*38.8; 
    mdot_HP1_ref=38.8; 
     
     
    mdot_LP5=0.689*mdot_w;  
    mdot_LP4=0.709*mdot_w;  
    mdot_LP3=0.751*mdot_w;  
    mdot_LP2=0.797*mdot_w; 
    mdot_LP1=0.849*mdot_w;  
    mdot_HP2=0.925*mdot_w; 
    mdot_HP1=mdot_w; 
     
    %Pressure at lowest turbine exit is function of condensing pressure, 
    %Psat@Tamb 
    Pout_LP5=XSteam('psat_T',Tamb+7); 
 

Pin_LP5=((mdot_LP5/mdot_LP5_ref)^2*(Pin_LP5_ref^2-
Pout_LP5_ref^2)+Pout_LP5^2)^0.5; 

    Pout_LP4=Pin_LP5; 
    Pin_LP4=((mdot_LP4/mdot_LP4_ref)^2*(Pin_LP4_ref^2- 

 Pout_LP4_ref^2)+Pout_LP4^2)^0.5; 
    Pout_LP3=Pin_LP4; 
    Pin_LP3=((mdot_LP3/mdot_LP3_ref)^2*(Pin_LP3_ref^2-… 
 Pout_LP3_ref^2)+Pout_LP3^2)^0.5; 
    Pout_LP2=Pin_LP3; 
    Pin_LP2=((mdot_LP2/mdot_LP2_ref)^2*(Pin_LP2_ref^2-
Pout_LP2_ref^2)+Pout_LP2^2)^0.5; 
    Pout_LP1=Pin_LP2; 
    Pin_LP1=((mdot_LP1/mdot_LP1_ref)^2*(Pin_LP1_ref^2-
Pout_LP1_ref^2)+Pout_LP1^2)^0.5; 
    %Can make a correction for pressure loss in the reheater stage 
    Pout_HP2=Pin_LP1; 
    Pin_HP2=((mdot_HP2/mdot_HP2_ref)^2*(Pin_HP2_ref^2-
Pout_HP2_ref^2)+Pout_HP2^2)^0.5; 
    Pout_HP1=Pin_HP2; 
    Pin_HP1=((mdot_HP1/mdot_HP1_ref)^2*(Pin_HP1_ref^2-
Pout_HP1_ref^2)+Pout_HP1^2)^0.5; 
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