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Abstract 

 In order to maintain healthy structures, it is important to find means of Structural 

Health Monitoring (SHM) that are effective, economical, and easy to implement. In this 

thesis, a promising localized damage detection method is proposed. This output-only 

method uses structural responses collected from densely instrumenting a structure. It then 

applies linear regression analysis to relate responses of pair-wise nodes within the sensor 

network. The resulting influence coefficients become damage indicators when they 

reflect a deviation from the baseline healthy-state coefficients. Two parameters, 

evaluation accuracy and normalized estimation error, are introduced to assess the 

reliability of each coefficient to identify the most effective damage indicators. 

Furthermore, a statistical framework is adopted to monitor the change point of the 

influence coefficients over time in order to identify damage to a 95% confidence level. 

Performance evaluation of the proposed method is achieved through application 

to two simulated models and three experimental specimens tested at Lehigh University’s 

ATLSS Center. The first experimental prototype consists of a simple beam-column 

connection that represents a local joint in a structure. Experimental results are collected 

using parallel wired and wireless sensor networks to verify not only the performance of 

the detection algorithm, but also the effectiveness of the wireless sensor network. 

Damage is identified statistically by applying the hypothesis testing framework to the 

influence coefficients. 

The second model is designed for representation of either a building frame or a 

bridge girder, taking the form of a two-bay, uneven span frame. The frame is densely 
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instrumented with 21 wired accelerometers for dynamic testing and 6 linear variable 

displacement transducers (LVDTs) for static testing. Both simulations and preliminary 

experimental results show the effectiveness of the method for damage detection in a more 

complex structure. 

A third model demonstrates damage detection of a large-scale earthquake moment 

connection that is cyclically loaded to failure. It shows the ability of the algorithm to 

capture increasing degrees of damage severity. In this case, the subassembly is 

instrumented with a network of strain gauges, which points to the widespread 

applicability of the proposed method to various response types. 
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Chapter 1   Introduction 

1.1 Overview 

Structural health monitoring (SHM) plays an integral role in maintaining the integrity of 

important civil, mechanical, and aerospace engineering systems. Structures experience a 

number of dynamic influences on a daily basis ranging from typical ambient vibrations to 

more extreme wind and earthquake loadings. Whether the damaging effects of these load 

cases are visible immediately or appear more gradually in time, it is important to be able 

to detect the damage before it propagates and becomes detrimental to the entire structure 

and its surroundings. With renewed interest in the deteriorating state of the nation’s 

infrastructure, the need for effective, efficient, and affordable damage detection methods 

is becoming more and more apparent. In its 2009 Report Card for American 

Infrastructure, the American Society of Civil Engineers reported that ―more than 26%, or 

one in four, of the nation’s bridges are either structurally deficient or functionally 

obsolete,‖ and estimated a need for a $2.2 trillion dollar investment to bring the nation’s 

infrastructure up to an acceptable conditions (ASCE 2010). Maintenance of these 

structures is crucial for preventing catastrophic failures and ensuring public safety. Local 

damage detection can help reduce the cost of these repairs by identifying the exact parts 

of structures that need to be repaired, instead of conservatively retrofitting an entire 

structure. Additionally, continuous or semi-continuous monitoring of these structures 

over time will help ensure that they do not fall to serious states of disrepair in the future, 

which will save on the cost of maintenance in the long term. 
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Some of the traditional non-destructive evaluation (NDE) techniques include but 

are not limited to visual inspection, liquid penetrant, magnetic particle, radiography, eddy 

currents, ultrasonic waves, acoustic emission, and infrared thermography (Trimm 2007). 

While these methods can be useful in certain circumstances, they require a priori 

knowledge of the location of damage. Also, in order to implement these techniques one 

must have direct access to the location of damage, which may be difficult to reach, 

especially after an event such as an earthquake. Furthermore, NDE techniques are costly, 

difficult to use with complex equipment, and provide only a temporary means of SHM.  

Advancements in wireless sensing technology have allowed for the development 

of new SHM methods that can be applied on a temporary or semi-permanent basis for 

continual monitoring of structures (Straser and Kiremijian 1998; Lynch and Loh 2006; 

Farrar et al. 2005; Crossbow Technology Inc. 2007; Intel Corporation 2005). These 

sensor networks are especially applicable for the implementation of vibration based SHM 

methods, which rely on changes in modal properties—natural frequencies, mode shapes, 

and modal damping—to reveal changes in the physical properties of the structure—mass, 

stiffness, and damping, i.e. structural damage (Doebling et al. 1998; Alvandi and 

Cremona 2006).  

While this concept may be intuitive, its application is not without obstacles. A 

major issue is the shear amount of data involved with vibration-based damage 

identification. Time domain histories can include thousands or more data points, which 

must be condensed to a manageable amount of data in order for it to be useful. In 

choosing which data to use, it is important for a method to be able to identify and select 

the most significant information. Additionally, many methods require a priori knowledge 



5 

 

of damage locations, which can limit the application of the method to certain locations in 

a structure. Finally, the effect of ambient influences on the vibration data can contribute 

to estimation errors, larger than the influence of the actual structural damage. (Doebling 

et al. 1998) 

Furthermore, modal properties only reflect global state of the structure, requiring 

a great amount of damage before detection is feasible. Current SHM practices involving 

global-based damage detection also require knowledge of specific structural properties, 

including mass, stiffness, or damping ratio, for which it is often difficult to determine 

correct values (Koh et al. 1995; Morassi and Rovere 1997; Sohn and Law 1997; and 

Ratcliffe 1997). Additionally, global detection techniques, which are based on global 

properties of the structure, are not sensitive to local damage and, therefore, cannot 

identify damage or determine its locations damage (Farrar et al. 1994; Chang et al. 2003). 

Other proposed local damage detection methods, for example the damage locating vector 

(DLV) method (Bernal 2002), also require the knowledge of structural properties, or 

require homogeneity of the structural properties as in the two-dimensional gapped 

smoothing method (Yoon et al. 2005). 

This study explores an effective damage detection method that uses vibration 

responses collected via densely clustered sensors to achieve localized damage detection 

without the need for exact knowledge of structural properties. Influence coefficients, 

obtained from linear regression between every two node responses, are used as the index 

for determining the existence of damage. The change point of time-variant influence 

coefficients can also be determined using a Bayesian statistical framework (Pakzad 

2008). 
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The effectiveness of the proposed local damage detection method is demonstrated 

and verified through a variety of applications including simulated and experimental 

results as well as a number of small-scale and full-scale structures.  

1.2 Research Objectives 

The purposes of this research are to develop an effective local damage detection 

algorithm considering both ease of implementation and cost-effectiveness, as well as to 

verify the proposed method for application in SHM of real world structures. The 

following objectives are established: 

1. To develop a damage detection algorithm that utilizes the linear behavior 

of a structure via linear regression. 

2. To create a statistical framework by which to monitor damage indicating 

parameters to determine when a statistically significant amount of damage 

has been incurred. 

3. To compare simulated and experimental results of a beam-column 

connection and a two-bay frame for validation of the proposed method. 

4. To validate the damage localization method for use with sensor networks 

comprised of tethered and wireless piezoelectric accelerometers as well as 

strain gauges.  

5. To instrument a full-scale moment connection during failure testing to 

verify the proposed method for full-scale application and to determine the 

point of earliest detection. 
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1.3  Scope of Research 

In order to accomplish these research objectives, the following work was completed. A 

damage detection algorithm was developed based on linear regression and Bayesian 

statistics. A small-scale beam-column connection, representing a local joint, was 

constructed in the laboratory and instrumented with two densely clustered sensor 

networks, one comprised of wired accelerometers and one of wireless accelerometers. 

Additionally, an experimental two-bay moment frame was developed and instrumented 

with a dense network of wired accelerometers, in addition to a network of linear variable 

displacement transducers (LVDTs). Both sets of experimental models were compared 

with simulated finite element models for performance verification. Finally, a full-scale 

beam-column moment connection was instrumented with a network of strain gauges and 

the damage detection algorithm was applied to better understand the effectiveness of the 

method. 

1.4 Organization of Thesis 

This thesis consists of six chapters as follows. 

Chapter 1 introduces the study providing a general overview, research objectives, 

and organization of the thesis. 

Chapter 2 presents background information related to SHM methods and more 

specifically local damage detection methods. The proposed localized damage detection 

method and the statistical framework are developed. 
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Chapter 3 presents the application of the proposed method to both simulated and 

experimental models of a local beam-column joint. The experimental model is 

instrumented with both wired and wireless accelerometers for a side-by-side comparison 

of both networks. 

Chapter 4 discusses the development and application of a two-bay plane frame in 

both simulated and prototype form. The application demonstrates the proposed method 

with respect to a more complex structure with a variety of damage scenarios. 

Chapter 5 presents the implementation of the proposed method for a large-scale 

earthquake moment connection as it is cyclically loaded to failure. The performance of 

the method is assessed within the scope of progressive unknown damage. 

Chapter 6 presents a summary of the thesis work, conclusions, and possible future 

work.   
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Chapter 2   Development of the Localized Damage Detection 

Algorithm and Statistical Framework 

2.1 Introduction 

This chapter pertains to the development of the damage detection algorithm and the 

statistical framework. Damage identification methods can achieve various levels of 

identification from merely determining the existence of damage, to identifying the 

location of said damage, to quantifying the extent of said damage, to the ultimate goal of 

predicting the remaining service life of the structure, levels 1 through 4 respectively 

(Doebling et al. 1998). The proposed method, which was originally introduced in Pakzad 

2008, is classified as level 2, with potential to reach level 3.  

This algorithm bases its damage detecting capabilities on the premise that a 

structure’s response changes when physical properties change, i.e., due to damage. The 

response of the structure is monitored at various locations via a spatially dense sensor 

network, and linear regression influence coefficients are extracted. When damage is 

incurred the linear relationship changes, which is reflected in the influence coefficients 

indicating the existence of damage. In addition to identifying that damage has occurred, 

considering the locations of sensors associated with changing coefficients allows for 

localization of the damage as well. Furthermore, a statistical framework that utilizes 

hypothesis testing can be implemented to determine damage exists at a significant 

confidence level. 
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2.2 Structural Theory 

Damage detection methods can be classified in a number of ways. One common 

classification is as linear or nonlinear damage. The definition of linear damage is ―the 

case when the initially linear-elastic structure remains linear-elastic after damage‖ 

(Doebling et al. 1998). One advantage of having a linear damage state is that the linear 

equations of motion still apply. Additionally, a linear damage method can utilize finite 

element models to predict the structure’s response to certain damage states. The proposed 

method relies on this assumption of linearity. The following sections show why this 

assumption is reasonable for the structures to which the proposed method will be applied. 

2.2.1.1 Linear Behavior of System 

In order to demonstrate the linear-elastic assumptions of this method, a rigid beam-

column joint is considered, as shown Figure 2.1. The general free body diagram has 9 

unknowns (xi, yi, ri, xj, yj, rj, xk, yk, and rk) considering the joint to be restrained out-of-

plane. The displacement at any point along the structure, un, can then be defined as a 

function of each of these unknowns as follows: 

                                .       (2.1) 

This number of degrees of freedom (DOFs) can be reduced with the practical assumption 

of inextensibility of the beam and column members, leaving a structure with 6 

independent DOFs (xi, ri, xj, rj, yk, and rk). A structure that is being monitored will 

experience excitations of the ambient type for a majority of its useful life. Other more 

extreme excitations should be considered as occurring during the damaging event, in 
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which case the linearity assumption does not hold true. Because this method involves the 

comparison of the structural state pre- and post-event, as opposed to during the damaging 

event, it is reasonable to consider only ambient responses of the structure. Ambient 

excitations are generally considered as falling within the linear-elastic range, in which 

small angle theory applies. Small angles correspond to negligible rotations further 

reducing the number of DOFs by a count of 3 to xi, xj, and yk. With 3 unknowns, 3 

relationships are required to define any displacement. If four displacements are defined in 

terms of the boundary conditions, the relationships can be combined and the unknown 

boundary conditions factored out such that any one of the displacements can be defined 

by three other measured displacements: 

       (                   )   ∑     
              (2.2) 

Γn are the influence coefficients relating each of the four displacements throughout the 

structure. 

2.2.1.2 Assumption of Negligible Mass Effect 

Another important assumption for the application of this method is that the mass of the 

structure is negligible. This assumption allows dynamic effects to be neglected such that 

the structure can be considered in its linear static state. Pakzad 2008 and Chang 2010 

have presented numerous simulated examples that support neglecting mass. Both found 

that because the stiffness of a structure is much larger in comparison to the mass when 

considering a local portion of the structure, the contribution of the mass term becomes 

negligible and the dynamic equation of motion can be reduced to a static relationship. 

However, it is important to note that this assumption only applies to a local joint where 
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nodes are close to each other. Therefore, only nodes that are within the same local joint 

and share a relatively stiff portion of the structure should be regressed. This may translate 

to small clusters of dense sensor networks within a larger-scale instrumentation network.  

If the structure can be considered as a linear static system, all three displacements 

can be defined in terms of one, as shown in Figure 2.2. With only one unknown 

displacement, only one equation is needed to solve for the unknown. This in turn 

translates to a requirement of only one other measured displacement to define the 

displacement at any point along the structure, un, reducing the influence functions to a 

single influence coefficient, αij. The linear relationship between any two locations along 

the structure, nodes i and j, is defined by 

                                                          (2.3) 

where, 

ui(tk) , uj(tk) = structure’s response at nodes i and j, respectively,  

βij = intercept value of regression line between nodes i and j, 

αij = influence coefficient of regression line between nodes i and j, 

and εij = error of the regression model. 

2.3 Influence coefficients as damage indicators 

The algorithm employed in this thesis, which is outlined in Figure 2.2, takes vibration 

responses of the structure, in the form of acceleration data in this particular case, and uses 

the assumed linear relationship between different nodes, or sensor locations, with one 

another. This pair-wise relationship between node responses is defined by utilizing 

regression analysis. By calculating influence coefficients, αij, between two nodes i and j, 
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based on vibration-induced acceleration response data, one can determine the correlation 

between these responses according to equation (2.3).  

The comparison of the resulting influence coefficients from the initial undamaged 

state with that of the damaged state of the structure serves as a ―damage indicator‖ when 

it yields a significant change in the value of the coefficients from state to state. More 

specifically, the influence coefficients exhibit a much more significant change when 

nodes i and j are located on opposing sides of the damaged segment versus when they are 

on the same side. As shown in Figure 2.4, when damage occurs in the beam, between 

nodes i and j, the beam becomes more flexible increasing ui disproportionately to uj. 

From linear regression, this translates to a smaller value of αij than that of the original 

undamaged case. This characteristic allows for the identification of the damage location 

by inspection of the pattern in which influence coefficients exhibit significant changes.  

2.3.1 Data Pre-Processing 

It is important to note that before the influence coefficients are estimated, the data may 

require pre-processing. The main forms of pre-processing used are filtering of the data 

and linearly detrending the data. The filtering step serves to filter out high frequency 

noise, such as those from unwanted environmental vibrations, so as to allow for the data 

to focus on the lower frequency content of the signals that correspond to the direct 

response of the structure to excitation. Similarly, data may exhibit a trend, a systematic 

increase or decrease over time, due to sensor drift. The data can be detrended by 

subtracting the mean from the entire dataset to set the mean at zero. This can also be 

resolved by including an intercept term, βij, when fitting the regression model.  
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2.3.2 Influence Coefficient Accuracy and Normalized Estimation Error 

Once the data is pre-processed and the coefficients are estimated, the accuracy of the data 

must be assessed and verified before damage detection can be performed. This is done 

through consideration of both the accuracy of the pair-wise coefficients and the 

estimation error. The product of influence coefficients αij and αji, yields the evaluation 

accuracy, EAij, of these coefficients, indicating which node responses are linearly related 

to one another with the least amount of error, εij, and thus are more accurate predictors. 

An evaluation accuracy of 1.0 signifies a strong accuracy of estimation, while a product 

of less than 1.0 corresponds to progressively higher values of noise and nonlinear 

behavior of the physical structure. 

The second parameter that is used for data verification is normalized estimation 

error, which is calculated by 

      
    

   
                                                                     (2.4) 

where, 

αij = influence coefficient between nodes i and j  

 and      
 = standard deviation of the influence coefficient estimates, αij. 

Normalized estimation error allows for a direct comparison of the amount of error 

associated with the estimation of each influence coefficient as a damage indicator. This 

parameter is used to determine which influence coefficients should be used for damage 

detection. A low estimation error, resulting from a low standard deviation of the 

estimated influence coefficient, will correspond to a more accurate predictor. Once the 
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accuracy and error have been assessed for each coefficient, post-processing of the best 

influence coefficients can be performed for damage identification and localization. 

2.3.3 Post-Processing Using Significant Damage Indicators 

Once the influence coefficients have been assessed for accuracy and error, the most 

reliable of these are chosen for use in damage detection. As was previously discussed, 

changes in the physical properties of the structure, such as loss of material stiffness or 

section size due to damage, are reflected in changes in the modal properties of the 

structure. These changes can also be seen directly in the influence coefficients; the linear 

relationship between certain locations of the structure will change to differing degrees 

depending on the location of the damage. A high change in the coefficient indicates that 

the structural response is different in one or both of the locations, i and j, from that of the 

original healthy state. The degree to which certain coefficients change can indicate the 

location of the damage. 

2.4 Statistical Framework 

In order to determine what defines a ―significant change‖ in the influence coefficients, a 

statistical framework is applied. A Bayesian statistic is used to determine the change 

point, the point at which the data indicates damage, at a 95% confidence level (Chen and 

Gupta 2000). This statistical inference method tests the hypothesis that the mean of the 

influence coefficients for each successive test is equal to the mean of the influence 

coefficients from the initial undamaged state,  

                ̅                                                                    (2.5) 
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against the one-sided alternative hypothesis that the values of the influence coefficients 

beyond the change point, denoted as r, are greater than that of those prior to this point by 

a significant amount,  

                                                               (2.6) 

The change point r, mean μ, and standard deviation σ are all unknown. N represents the 

number of tests. Because the standard deviation is unknown, it is estimated as the 

standard error,  ̂. The statistic that is used to test the aforementioned hypothesis is 

     
  

 ̂√            

 

                                                                                           (2.7) 

where SN is the Bayesian statistic 

   ∑         ̅    
   .                                       (2.8) 

The test statistic, t, has a t-distribution with N-2 degrees of freedom (Sen and Srivastava 

1975). The hypotheses are tested at a 95% confidence level. The physical significance of 

this hypothesis testing is such that the alternative hypothesis, HA, indicates that the 

structure has incurred damage, while the null hypothesis, H0, means that there is not 

adequate evidence to establish that damage exists. These hypotheses are tested for those 

node pairs that have been identified as significant damage indicators in the assessment 

and verification stage of the method.  
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Figure 2.1. Free body diagram of a rigid beam-column joint 

 

  

: location of sensor node

x

y

   

   

   

   

   

   

         

  

  

  

  

  

  

    



18 

 

 

Figure 2.2. Behavior of a linear static system 
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Figure 2.3: Methodology for damage detection 
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Figure 2.4. Damage in structure changes relationship between nodes i and j 
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Chapter 3   Application to Beam-Column Connection 

3.1 Introduction 

This chapter presents the application of the local damage detection algorithm, which was 

developed in Chapter 2, to both simulated and experimental data. For the purpose of this 

initial application, a small-scale beam-column connection was chosen. The purpose of 

this model is to represent the portion of a connection closest to the joint, with the beam 

and column member representing only a small portion of the actual beam and column. 

Additionally, the damage is idealized as a uniform reduction in cross-sectional area along 

the entire portion of the beam. Using a case of known damage severity and location 

serves to verify that the damage detection method performs as expected. Furthermore, 

this application is useful for identifying trends in the results of the method that can be 

used for localizing damage in unknown cases, which more closely resemble real-world 

scenarios. 

The experimental specimen is instrumented with both a wired and a wireless sensor 

network to collect acceleration responses. By collecting from both networks at the same 

time during testing, a direct comparison of the performance of the newer WSN to that of 

the traditional wired network is achieved. 

3.2 Simulated Model 

The proposed localized damage detection algorithm was first validated using a simulated 

model of a beam-column connection. The simulation was created using SAP2000 

software (Computer and Structures, Inc. 2009). The beam-column represents a localized 
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portion of a larger structure, for example a single joint in a larger building frame as 

demonstrated in Figure 3.1. A local joint is a location in a structure that is prone to 

damage due to high stress concentrations at the connections. The ability to determine not 

only the joint, but the location within the joint where damage has occurred can lead to 

more efficient and cost-effective repair solutions in a structure. The simulation was 

designed not only to confirm the applicability of this method for a beam-column, but also 

to verify the experimental prototype that was later implemented.  

3.2.1 Properties of the Simulated Model 

The computer model consists of 13 nodes and 12 elastic beam finite elements. Each 

element node has three degrees of freedom, ux, uy, and θz, which allows for translational 

and bending behavior. The structure is considered a ―plane‖ structure, which disallows 

out-of-plane and torsional degrees of freedom. The elements are arranged to comprise 

two legs of a column and a beam member, all of equal length, as shown in Figure 3.2.  

Each element has a uniform, hollow, square cross-section with 0.125 in wall 

thickness, 0.4375 in
2
 area, and a moment of inertia of 0.057 in

4
. The steel is assigned an 

elastic modulus of 29,000 ksi. Damage was simulated by reducing the beam stiffness 

uniformly along the member by 40%. The damaged properties of the beam include a wall 

thickness of 0.0625 in, a cross-sectional area of 0.2344 in
2
, and a moment of inertia of 

0.0345 in
4
. The geometric properties for both the undamaged and damaged cases are 

summarized in Table 3.1. The mass of this small portion of the connection is assumed 

negligible, as per the assumption stated in Section 2.2.1.2. The boundary conditions of 
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the column are fixed on either end, while the beam cantilevers from the centerline of the 

column.  

3.2.2 Simulation Procedure 

For both the undamaged and damaged cases, a white noise excitation was simulated at 

the free end of the beam. The resulting displacement responses were generated at each of 

the nine nodes labeled u1 through u9 to represent sensor node locations along the beam 

and column members. Measurement noise was also accounted for by adding a Gaussian 

noise with a standard deviation equal to 5% of the root mean square of each response 

signal. 

3.2.3 Results of Simulated Model 

The damage detection algorithm was then applied to the simulated data and the 

parameters were extracted. The relative change in the influence coefficients between the 

undamaged and damaged states is shown for each pair-wise node relationship in Table 

3.2. The influence coefficients                 all experience very small (less than 

1%) changes between the undamaged and damaged states. This implies that the physical 

properties between these nodes have not changed. However, the coefficients of nodes 1 

through 6 paired with nodes 7, 8, and 9 show relative changes of between 30-40%. When 

nodes are on opposite sides of the damage, i.e. nodes 1 through 6 are located on the 

undamaged column, while nodes 7, 8 and 9 are located on the damaged beam, the 

physical properties between the paired nodes changes. This physical change is reflected 

in a more significant relative change in the value of influence coefficients. Furthermore, 
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the influence coefficients                 also experience a noticeable change in 

coefficients (about 3-10%). This signifies that the physical properties of the structure 

between the nodes associated with α78, α79, and α89 have changed. Therefore, damage 

must exist between these nodes. This is consistent with the simulated damage: a 40% 

stiffness reduction of the beam. 

3.3 Experimental Model 

The algorithm was further verified through laboratory experiments on a specimen similar 

to that of the simulated model. These experiments were conducted at the Center for 

Advanced Technology for Large Structural Systems (ATLSS) at Lehigh University. 

Again, the prototype represents a portion of the beam and column members as they come 

to a local joint. The structure was instrumented with two sensor networks; one of 9 wired 

accelerometers and another of 9 wireless accelerometers. The structure’s responses were 

collected at each node for 50 undamaged tests and 50 damaged tests, and the algorithm 

was employed. This experiment serves as both a validation of the method on a non-

simulated structure as well as a comparison of a wireless sensor network to that of a 

reliable wired system. 

3.3.1 Properties of the Experimental Specimen 

The small-scale experimental prototype was constructed using two square steel tube 

members—6-ft length for the column member and 3-ft length for the beam member—

attached with two bolted steel angles to create a T-shaped fixed joint of equal length 

members. Figure 3.3 shows that the angles are stiffened with two welded triangular plates 
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to ensure a moment connection. The two ends of the column have fixed supports with 

angles through-bolted on either side of the member, as shown in Figure 3.4, while the 

beam cantilevers from the centerline of the column. The column member, which remains 

constant throughout the entire experiment, is a one-inch square hollow tube with a wall 

thickness of 0.125 in. The beam portion of the joint consists of two interchangeable 

members. The first member exhibits the same cross-sectional properties as the column. 

The second member, which replaces the first to represent structural damage to the joint, is 

also a one-inch square hollow tube but with a 0.0625-in wall thickness. The geometric 

properties are the same as those for the simulated models summarized in Table 3.1. A 

photograph of the overall experimental test setup is shown in Figure 3.5.  

3.3.2 Experimental Procedure 

The free end of the cantilever was attached to an actuator and excited by harmonic force 

at a 15 Hz frequency and the acceleration responses were collected at each of the nine 

sensor nodes. The influence coefficients were then computed using linear regression. 

This portion of the experiment served to establish a baseline response for the undamaged 

structure.  

For the second portion of the experiment, the beam member was replaced by the 

member with reduced wall thickness in order to simulate damage to the structure. The 

excitations were repeated, and the damaged state influence coefficients were computed. 

The resulting data was then compared between the damaged and undamaged states to 

verify the detection of damage.  
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3.3.2.1 Specifications of the Actuator 

The actuator used to excite the structure is a MODAL 50A actuator produced by MB 

Dynamics shown in Figure 3.6 (1990). The actuator has a peak force capability of 25 lbs 

without a cooling system and can apply up to 50 lbs with cooling. Table 3.3 presents 

more specifications for the MODAL 50A. The applied excitation type and amplitude was 

controlled by a combination of the SigLab S2022D1/A signal controller, SigLab software 

for MATLAB, and the SL500VCF Power Amplifier shown in Figure 3.7 (Spectral 

Dynamics, Inc. 2001; MB Dynamics 2001). The SL500VCF Power Amplifier has an 

analog jog for gain, which was set to a given level prior to testing and remained constant 

throughout. The SigLab controller allows digital control of the force magnitude by 

varying the input voltage peak. In this experiment, a voltage peak of 0.2 V was used for a 

15 Hz sinusoidal force, yielding a peak acceleration of about 0.3 g at node 9 (the location 

of the largest recorded response). 

3.3.2.2 Sensing Systems 

The specimen was instrumented with two sensor networks located at 9-inch intervals 

along the beam and column to collect the structures response to the applied excitation. 

The merits of the two systems were then compared via both pre-processing of the data 

and performance with the local damage detection method. 

3.3.2.2.1 Wired Capacitive Accelerometers 

The first is a network of 9 wired accelerometer sensors. The accelerometers used in this 

experiment are model number 3701G3FA3G manufactured by PCB Piezotronics, Inc 
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(2004). The 3701G3FA3G is a capacitive accelerometer, which incorporates an air-

damped, opposed-plate capacitor to sense accelerations in terms of a change in 

capacitance (PCB Piezotronics, Inc 2004). An analog-to-digital converter (ADC) reads 

the change in capacitance and translates this to a voltage that corresponds to a specific 

acceleration. This model can detect accelerations within the range of ± 3 g with a 

broadband resolution of 30 µg RMS (equivalent to 2 µg/Hz output noise). Other 

specifications for these sensors are summarized in Table 3.4. Figure 3.8 shows one of 

these sensors mounted on the test specimen.  

3.3.2.2.2 Wireless MEMS Accelerometers 

The second network consists of 9 wireless accelerometers. The accelerometers used 

consist of the Imote2 processor board produced by Intel (2005) combined with the SHM-

A sensor board developed by Rice and Spencer in the Smart Structures Technology 

Laboratory at the University of Illinois at Urbana-Champaign (2008; 2009). One of the 

wireless sensors is shown mounted on the experimental structure in Figure 3.9. The 

processor board operates via the TinyOS operating system, a software framework 

developed by The Illinois Structural Health Monitoring Project (ISHMP) (Spencer and 

Gul 2009). The TinyOS framework allows the Imote2 to be programmed with features 

that can improve wireless data collection, such as time synchronization of the sensor 

network and reliable data transfer. The Remote Sensing application of the ISHMP 

package provides both of these features, and is used as the primary application for this 

experiment.   
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The sensor board incorporates a low-cost, highly-sensitive 3-axis micro-electro-

mechanical systems (MEMS) accelerometer, LIS3L02AS4,
 

manufactured by ST 

Microelectronics (2005). A MEMS accelerometer operates on similar principles as a 

capacitive sensor only on a micro scale. The accelerometer has a noise density of 50 

µg/√Hz and a measurement range of ± 2 g. The sensor board also features a low-pass 

filter, a gain difference amplifier, and the Quickfilter QF4A512, a programmable 4-

channel, 16-bit ADC (Quickfilter Technologies, Inc. 2007). Each of these features 

contributes to the ability to measure small increments of accelerations, appropriate for 

sensing ambient vibrations. Table 3.5 presents the specifications for both the Imote2 

platform and the MEMS accelerometer. 

3.3.2.2.3 Data Acquisition System 

Acceleration responses were collected from the wired sensors using the CR9000, a 

modular, multiprocessor data acquisition (DAQ) system and PC9000 support software by 

Campbell Scientific, Inc. (2005; 2009).  Figure 3.10 shows the DAQ system. The 

CR9000 has a 16-bit analog-to-digital converter and a peak sampling rate of 100 kHz. 

For this experiment, the wired data was collected at a 250 Hz sampling rate (0.004 sec 

sampling interval), with each test lasting 40 seconds. 

The wireless data was collected at a sampling rate of 280 Hz (0.0036 sec sampling 

interval), with each collecting lasting approximately 36 seconds. Data collection using 

both systems was performed simultaneously for direct comparison.  

Both the undamaged and damaged structures were tested 50 times; however, two of 

the datasets were unusable leaving a total of 96 tests, each containing 20,000 data points 
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(10,000 wired and 10,000 wireless)  per sensor location. These 17.3 million data samples 

were then processed through the algorithm to detect the occurrence of damage. 

3.3.3 Results of Experimental Model using Wired Accelerometers 

The experiments were conducted with the undamaged and damaged states experiencing 

15 Hz harmonic vibrations. While the application of this algorithm is not limited to a 

certain frequency, previous experiments involving this test specimen showed that the 15 

Hz data exhibited the least amount of actuator noise, and thus was chosen for these 

experiments (Chang 2010).  

The wired capacitive accerlerometers, with their high resolution and reliable wired 

data transmission, provide a reliable network. Therefore, the wired data was initially used 

for assessing the performance of the proposed damage detection method. This data was 

then used as a reference for the performance of the WSN that was simultaneously 

implemented on the structure.  

3.3.3.1 Accuracy Assessment and Verification 

Once the 72 influence coefficients have been calculated from the acceleration data, the 

estimates must be assessed to identify the most significant indicators, which can then be 

used for damage detection. Evaluation accuracy, EA, and normalized estimation error, γ, 

which are previously defined in Section 2.3.2 are integral for this accuracy assessment. 

By inspection of these parameters, eight different trends can be identified in the 

undamaged and damaged parameters, with lower estimation errors coinciding with 

greater evaluation accuracies and vice versa. These trends have been designated as eight 
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different regions, whose mean values are presented in Table 3.6. Region 1 in the table 

corresponds to the least estimation error and highest accuracy, and region 8 corresponds 

to the greatest estimation error and lowest accuracy. Therefore, parameters in region 1, 

consisting of                , are the most accurate and have the least error. This is a 

reasonable outcome as the actuator applies a force at the end of the beam, closest to 

nodes 7, 8, and 9. This proximity results in a larger amplitude of excitation at these nodes 

compared with that of the column nodes, thus, corresponding to a higher signal-to-noise 

ratio (SNR) of the data at these nodes. A higher SNR correlates to better quality data. 

On the contrary, region 8, which consists of parameter α16, exhibits the poorest 

accuracy and the greatest estimation error. This can be accounted for by the fact that each 

of these nodes is located at either end of the column near the fixed ends. These boundary 

conditions restrict the column from movement closest to the support, greatly reducing the 

magnitude of the acceleration signal and, thus, the SNRs of these nodes. The low SNR 

values contribute to the fact that α12 or α56 exhibit lower accuracy than α78 or α89 despite 

the similar configuration of the nodes with respect to one another. Figure 3.11 through 

Figure 3.12 show an example of α, and its corresponding EA and γ results from regions 1, 

3, and 8, respectively. Figure 3.11 shows that the EA is almost equal to unity and the γ is 

almost equal to 0 for region 1. The EA and γ values for a region 3 pair, shown in Figure 

3.12, also exhibit accurate values, although not quite as accurate as region 1. Figure 3.13, 

however, shows a much lower EA and a noticeably higher γ associated with region 8. 

Based on similar data for all 8 regions, it can be concluded that regions 1 through 3 

contain the most useful damage indicators. On average, these influence coefficients 

exhibit accuracy greater than 98% and estimation error less than .0012.  



31 

 

3.3.3.2 Post-Processing and Damage Detection 

The results of the relative changes in the average influence coefficients, αij, from the 

undamaged and damaged tests are shown in Table 3.7. Observing these coefficient 

changes is the first step in post-processing the data. The changes associated with α78, α79, 

and α89, which are 9%, 13%, and 4% respectively, are indicators of a property change 

between nodes 7 and 9. This is consistent with the damage, or stiffness reduction, that 

was simulated along the full length of the beam portion of the test structure. 

The coefficients of region 2, α23 and α45, experienced 1% and 6% changes. This is 

less consistent with what would be expected in comparison to the very low (less than 1%) 

changes that were seen in the simulated results. The likely cause of this is noise, which is 

typically higher in an experimental setting, but even more so in a real structure.  

The influence coefficients from region 3 were in line with the prediction of the 

simulated results,                            , with noticeable fluctuations (12-

39%) from the undamaged state to the damaged state, with the exception of α47 which 

had only a 5% change. These changes, along with the simulated results, show that nodes 

on opposite sides of the damage location experience the largest changes. This is because 

as damage occurs, the relationship of two points in the actual physical structure deviates 

slightly from linear behavior. Figure 3.14 shows the percent changes for select pair-wise 

coefficients from regions 1, 2, and 3, respectively. This further supports the theory that 

nodes on opposite sides of damage show the greatest change, while nodes with no 

damage between them show a significantly smaller change. Pairs with nodes within the 

damage location show some change, but not as large as that of nodes on opposite sides. 
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The reason for this is that when both nodes are within the damage, both nodes experience 

similar increases in flexibility, resulting in a less severe differential. Therefore, inspection 

of the pattern of changes in pair-wise coefficients points to the location of damage within 

the structure (i.e. damage between nodes 2 and 7, 3 and 8, and so forth). 

While the results for the first three regions were mostly consistent with the 

expectations set out by the simulated structure, the remaining regions were not as 

consistent. A prime example is region 6, consisting of parameters α24, α25, α34, and α35. 

According to the model, these coefficients, whose nodes are all located on the same side 

of the damage, should experience very little fluctuation from the undamaged to damaged 

states. However, their experimental changes range from 7-14%. Recall that in the 

previous verification stage, region 6 showed the third lowest accuracy and the third 

highest error. Thus, this example shows the importance of using parameters EA and γ to 

identify accurate damage indicators. 

3.3.3.3 Hypothesis Testing for Significant Damage 

As is evident, the difference between undamaged and damaged coefficients can be 

indicative of the existence and location of the damage in a structure. However, in an 

actual structure, one will not necessarily know when damage has occurred, or if in fact 

damage has occurred at all. Therefore, another element must be added for complete 

damage detection: the statistical framework, which is presented in Section 2.4. 

The hypothesis testing plot graphically shows the change point of damage, the 

point at which damage is identified at a certain confidence level, by plotting the test 

statistic against the test run number. A graph in which the data crosses the confidence 
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bounds, either positive or negative, corresponds to a positive hypothesis, previously 

defined as HA in equation (2.6), indicating the detection of damage. If the accuracy and 

estimation error associated with the nodes being considered are high and low 

respectively, the prediction of the hypothesis test will be more exact and will cross the 

confidence bounds closer to the occurrence of damage. In order to demonstrate this 

behavior, the test statistic from the 50 damaged state tests were plotted against their run 

number. Because damage exists for all of the plotted data, the most accurate damage 

indicators will yield a plot in which the confidence bounds are crossed closest to the 

occurrence of damage. This can be seen in comparing Figure 3.16, Figure 3.17, and 

Figure 3.18 to Figure 3.19, the hypothesis test results for region 1, 2, and 3 coefficients, 

accurate indicators, versus that of a region 8 coefficient, a poor indicator. The first three 

plots show a decisive cross of the 95% confidence bound in fewer than 8 test runs, while 

the region 8 coefficient never actually crosses the bound. Figure 3.20 shows another 

region 8 coefficient, the reciprocal of that shown in Figure 3.19, in which the statistic 

does cross the confidence bound. This discrepancy is likely due to the high error and low 

accuracy associated with these coefficients. Therefore, this demonstrates the importance 

of using the EA and γ parameters for first determining which coefficients to monitor for 

effective damage detection. 

Additionally, by comparing the first three figures, Figure 3.16, Figure 3.17, and 

Figure 3.18, among themselves, it can be determined that a coefficient with a larger 

change between the damaged and undamaged states tends to show damage earlier than a 

coefficient of comparable accuracy with a smaller change. It was shown previously that 

the region 1 and region 3 coefficients saw 13% and 22% changes, respectively. These 
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cross the bound after only 4 and 5 runs, respectively, whereas, the region 2 coefficient, 

with only a 1% changed, took until the 7
th

 run to confidently show damage. This suggests 

that when a statistic crosses the bound first, compared to coefficients of similar accuracy, 

it is most likely more integral to the damage location. Therefore, these plots demonstrate 

that damage is detected by hypothesis testing, making this method a reliable means of 

damage detection. 

3.3.4 Comparison of WSN to Wired Accelerometers 

In order to consider realistic application of the proposed damage detection method, there 

must be a reliable and affordable sensor network with which to instrument the structure. 

Continued advancements in wireless sensor technology strive to fulfill that role. These 

WSN need to be validated in experimental settings in order to be confidently applied in 

the field. Because the wired sensors used are considered as a reliable network, the wired 

results were used as a direct comparison point for the WSN that also instrumented the test 

specimen. Both the wired and WSN datasets were compared for noise and damage 

detection performance.  

During data collection, an attempt was made to collect from both sensor networks 

simultaneously, although complete synchronization between the two systems was not 

realistic. By collecting the data at the same time, differences in results due to varied 

environmental noise between the two datasets are avoided. Therefore, any differences 

that appear between the two sets can be accounted to network performance and 

reliability. Figure 3.21 shows a comparison of the data collected at node 9, the node with 

the largest recorded amplitude, in both the time and frequency domains where the time 
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histories appear to be consistent. Both histories show the harmonic response due to the 

harmonic excitation clearly with no visible noise. The amplitudes differ slightly, with the 

wireless sensors showing a larger value. This difference is explained by a difference in 

sensor locations, as it was difficult to align the wired and wireless sensors exactly.  

Similarly, the frequency content of each sensor type is similar. Both show a 

dominant peak at the forcing frequency of 15 Hz. The main difference between the two 

power spectra is that the wireless data contains more noise at high frequencies as well as 

at very low frequencies.  

One anomaly in the power spectra that was observed throughout tests using the 

MODAL 50 actuator was the existence of recurring peaks at intervals equal to the forcing 

frequency, which can be seen in the power spectra of Figure 3.21. For example, for the 15 

Hz forcing frequency, peaks were observed at 15 Hz, 30 Hz, 45 Hz, 60 Hz and so forth. 

This shows that the excitation that the actuator produces is not a pure harmonic, but 

rather a sum of harmonics. 

3.3.4.1 Accuracy Assessment and Verification 

Assessment of the accuracy of estimating the influence coefficients is another means for 

comparing the wired and WSN performance. Figure 3.22 shows the α, EA, and γ values 

for nodal pair 5-8 using the wireless data. This figure, considering a region 3 coefficient, 

shows that for certain datasets the WSN data experienced large errors and very low 

accuracy values. This points to unreliable results for these datasets. Identification of this 

type of unreliable data is the exact purpose of these two accuracy parameters, so the 

results for these outlier runs were regenerated excluding any datasets that showed erratic 
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accuracy values. Parallel wired and WSN datasets were removed, despite good wired 

accuracies, in order to maintain the benefits of the side-by-side data collection and 

comparison. 

Figure 3.23 to 3.25 show the α, EA, and γ values estimated without the outlier 

datasets, for nodal pairs from beam-beam, beam-column, and column-column, 

respectively. In each case, the EA and γ for the wired network are better on a whole than 

that of the WSN. Even after the high error/low accuracy datasets removal, there are still 

certain datasets in which a drop in accuracy and an increase in error occur for both 

networks; however, the accuracy is distinctively more compromised for the WSN. 

Because these fluctuations in performance occur across both the wired and WSN datasets 

and the values are within a reasonable range, these datasets were included. It can also be 

reasonably assumed that there was a spike in environmental noise during these particular 

collections. This suggests that the accuracy of the wireless sensors, with their higher 

noise floor, is more greatly affected by environmental noise than the wireless sensors. 

Overall, the α, EA and γ values are comparable for the WSN and wired network, with the 

wired performing slightly better.  

3.3.4.2 Damage Detection 

Local damage detection was performed using data from each sensor network as a third 

comparison point. The influence coefficient plots of Figure 3.23 to Figure 3.25 show the 

coefficients side by side for the network. Inspection of these plots demonstrates that the 

WSN coefficient estimates show a smaller change in the line. However, a change is seen, 

which points to the occurrence of damage. Additionally, the coefficient values estimated 
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using WSN data are offset from that of the wired data. These differences are accounted to 

the slight variation in the location of the wired and wireless sensor nodes. If the sensors 

are not perfectly aligned, then the values would reflect slightly different node locations. 

Figure 3.26 also shows the relative change for select nodal pairs of the WSN and 

wired datasets. The changes at α28, α58, and α25 of the WSN are comparable to the 

changes expected from the wired results. The change at α89 is a little larger than that of 

the wired, but still on par with other nodal pairs of its type (beam-beam within damage). 

On the other hand, a notable inconsistency is seen in two of the column-column nodal 

pairs, α12 and α56. The WSN shows significantly larger changes, almost 10 times larger 

than those seen in the wired results. This drastic variation can be explained by the EA and 

γ values shown in Figure 3.27. These two coefficients have lower accuracies (less than 

0.9) associated with them compared to the other four WSN values and the wired values. 

Lower accuracy correlates to lower reliability. Consequently, these coefficients would not 

be considered as trusted damage indicators.  

Based on the three presented comparison points it can be seen that the WSN, 

while not as effective as the wired network, is useful in localizing the onset of damage. 

3.3.4.3 Hypothesis Testing 

The fourth and final comparison for the WSN and wired network performance was the 

statistical framework for damage detection. Again, the same three coefficients, α79, α58, 

and α52 were chosen as the comparison points for this test to consider the three types of 

nodal relationships. Figure 3.28 to Figure 3.30 show the test statistic for each pair with 

the WSN and wired plotted side by side. In the first two plots, both the wired and WSN 
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test statistics cross the 95% confidence bound. In both cases, the WSN statistic crossed 

after the wired; a difference of about 10 test runs was seen for α79, while it took only 

about one or two more tests to detect damage in α58. This variation in detection is 

justified by the difference in percent changes experienced by each of these coefficients. 

The relative change for α79 was only about 6.5% for the WSN (13.1% for the wired), 

compared to α58’s change of 23.8% for the WSN (22.7% for the wired). A larger changed 

corresponds to more decisive damage detection.  

In Figure 3.30 it can be seen that the WSN statistic for α52, due to higher 

disturbance of noise in data, does not present qualified results for identifying the damage 

with 95% confidence level after 33 damaged datasets. The wired test statistic for this 

same coefficient indicates significant damage after approximately 5 damaged tests. 

However, it should be noted that this node pair is a region 6 parameter, corresponding to 

the third lowest average accuracy and the third highest average error. Therefore, this 

parameter is not considered to be a reliable damage indicator, and other more reliable 

parameters, such as α79 and α58, would instead be monitored in practical application of 

this method.  
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Table 3.1. Properties of beam-column elements for undamaged and damaged states 

 Column Beam (Undamaged) Beam (Damaged) 

Total Length [ft] 6 3 3 

Wall Thickness [in] 0.125 0.125 0.0625 

Cross-Sectional Area [in
2
] 0.4375 0.4375 0.2344 

Moment of Inertia [in
4
] 0.057 0.057 0.0345 

 

Table 3.2: Relative change in influence coefficients, αij, from undamaged to 

damaged states for simulated structure 

 1 2 3 4 5 6 7 8 9 

1  0.08% 0.08% 0.08% 0.08% 0.08% 31.2% 40.8% 45.2% 

2 0.08%  0.08% 0.08% 0.07% 0.09% 31.2% 40.8% 45.1% 

3 0.08% 0.08%  0.07% 0.08% 0.08% 31.2% 40.8% 45.2% 

4 0.08% 0.08% 0.08%  0.08% 0.08% 31.2% 40.7% 45.1% 

5 0.08% 0.07% 0.08% 0.08%  0.07% 31.2% 40.8% 45.1% 

6 0.08% 0.09% 0.07% 0.08% 0.07%  31.2% 40.8% 45.1% 

7 23.8% 23.8% 23.8% 23.8% 23.8% 23.8%  7.29% 10.6% 

8 29.0% 29.0% 29.0% 29.0% 29.0% 29.0% 6.79%  3.11% 

9 31.1% 31.1% 31.1% 31.1% 31.1% 31.1% 9.60% 3.01%  
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Table 3.3. Specifications of MODAL 50A actuator 

Stroke 1" peak-peak (continuous), 1.1" between stops 

Force Output 25 lbs (without cooling), 50 lbs (with cooling) 

Stinger 

attachments 

Chuck and assortment of collets handles wire sizes from 0.020" to 

0.125" 

Actuator 

attachments 
Floor: adjustable trunnion base and screw feet 

Weight Shaker with trunnion base: 55 lbs 

Dimensions 11.5" (height) x 7.5" x 9.25" (footprint) 

 

Table 3.4. Specifications of PCB 3701G3FA3G accelerometers 

Measurement Range ± 3 g 

Voltage Sensitivity 1000 mV/g 

Transverse Sensitivity ≤ 3% 

Resonant Frequency ≥ 400 Hz 

Temperature Range -40 to +185 °F 

 

Table 3.5. Specifications of Imote2 and LIS3L02AS4 on SHM-A sensor board 

Imote2 LIS3L02AS4 

Processor Intel PXA271 Acceleration ±2 g 

SRAM Memory 256 kB Avg. Noise Floor (X&Y) 0.3 mg 

Memory 
32 MB 

(SDRAM/FLASH) 
Avg. Noise Floor (Z) 0.7 mg 

Power 

Consumption 

44 mW at 13 MHz Resolution 0.66 v/g 

570 mW at 416 MHz Temperature Range -40 to 85ºC 

Radio Frequency 

Band 
2400.0 – 2483.5 MHz   

Dimensions 36 mm×48 mm×9 mm   
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Table 3.6: Trend regions according to average estimation error (γ) and evaluation 

accuracy (EA) 

Region Influence Coefficients 
γij 

Average 

EAij 

Average 

1 α78, α79, and α89 0.0001 1.000 

2 α23 and α45 0.0005 0.998 

3 α27, α28, α29, α37, α38, α39, α47, α48, α49, α57, α58, and α59 0.0012 0.985 

4 α12, α13, α46, and α56 0.0015 0.975 

5 α17, α18, α19, α67, α68, and α69 0.0018 0.967 

6 α24, α25, α34, and α35 0.0022 0.947 

7 α14, α15, α26, and α36 0.0025 0.937 

8 α16 0.0161 0.889 

 

Table 3.7. Relative change in influence coefficients, αij, for experimental structure 

 1 2 3 4 5 6 7 8 9 

1  4.17% 5.55% 9.58% 3.40% 4.05% 17.1% 27.5% 31.7% 

2 3.12%  1.26% 13.3% 6.68% 6.65% 21.6% 32.8% 37.4% 

3 4.11% 1.16%  14.0% 7.52% 7.72% 22.9% 34.2% 38.9% 

4 12.1% 14.9% 16.5%  6.31% 6.83% 5.27% 14.9% 18.8% 

5 5.72% 8.48% 10.0% 6.58%  0.59% 12.5% 22.9% 27.0% 

6 7.78% 9.33% 10.6% 5.91% 1.72%  12.0% 21.9% 25.9% 

7 15.6% 18.1% 19.2% 6.38% 12.0% 12.1%  9.28% 13.1% 

8 22.8% 25.1% 26.1% 14.4% 19.6% 19.6% 8.52%  3.48% 

9 25.5% 27.7% 28.6% 17.4% 22.3% 22.5% 11.6% 3.38%  
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Figure 3.1. Beam-column represents a local joint within a larger structure 
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Figure 3.2. Simulated model of beam-column connection with nine node locations 
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Figure 3.3. Beam and column connected by bolted angles with triangle stiffeners 

 

 

Figure 3.4. Fixed connection of column on either end using two angles and through-

bolts 
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Figure 3.5. Experimental test bed for beam-column prototype instrumented with 

wired and wireless accelerometers 
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Figure 3.6. MODAL 50A by MB Dynamics actuator attached to free end of beam 

 

 

Figure 3.7. Signal controller by SigLab and power amplifier by MB Dynamics 
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Figure 3.8. PCB 3701G3FA3G accelerometer mounted on beam at node 8 

 

 

Figure 3.9. Wireless sensor consisting of the SHM-A sensor board attached the an 

Imote2 processor board, shown mounted on beam at node 8 
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Figure 3.10. CR9000 data acquisition system 
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Figure 3.11. α, EA, and γ results for Region 1 pair 
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Figure 3.12. α, EA, and γ results for Region 3 pair 
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Figure 3.13. α, EA, and γ results for Region 8 pair 
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Figure 3.14. Comparison of % change for region 1, 2, and 3 pairs 
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Figure 3.15. Comparison of relative change of coefficients between simulated and 

experimental structures 
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Figure 3.16. Hypothesis testing results for a region 1 coefficient 

 

 

Figure 3.17. Hypothesis testing results for a region 2 coefficient 
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Figure 3.18. Hypothesis testing results for a region 3 coefficient 

 

 

Figure 3.19. Hypothesis testing results for a region 8 coefficient 
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Figure 3.20. Hypothesis testing results for reciprocal of region 8 coefficient 
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Figure 3.21. Comparison of wired versus wireless data in both the time and 

frequency domains for node 9 
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Figure 3.22. α, EA, and γ results for region 3 pair collected with the WSN 
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Figure 3.23. α, EA, and γ for a beam-beam node pair with inaccurate datasets 
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Figure 3.24. α, EA, and γ for a beam-column node pair with inaccurate datasets 
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Figure 3.25. α, EA, and γ for a column-column node pair with inaccurate datasets 

removed 
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Figure 3.26. Comparison of relative change of coefficients between WSN and wired 

data 

 

 

Figure 3.27. Comparison of average EA and γ for WSN and wired data 
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Figure 3.28. Hypothesis testing comparison of WSN and wired performance: beam-

beam nodal pair 

 

 

Figure 3.29. Hypothesis testing comparison of WSN and wired performance: beam-

column nodal pair 
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Figure 3.30. Hypothesis testing comparison of WSN and wired performance: 

column-column nodal pair 
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Chapter 4   Scaled Uneven Two-Bay Frame Testbed 

4.1 Introduction 

While Chapter 3 demonstrated the successful application of the proposed localized 

damage detection method on an experimental local beam-column joint, the model was 

simple and only allowed for one damage scenario. This chapter presents a more complex 

model, a shallow two-bay frame, that can emulate either a building frame or a bridge 

girder. The model allows for nine unique damage locations, to verify the robustness of 

the method by detecting different damage scenarios. The method is applied to both a 

simulated and an experimental frame. In addition to the dynamic testing implemented for 

collecting acceleration responses, static displacement data is used to compare the 

performance of the experimental prototype with that of the computer model and to update 

the model. The application presented further demonstrates the trends identified in Chapter 

3 for effective damage detection. 

4.2 Simulated Model 

A simulated model was first developed to verify the performance of the damage detection 

method prior to constructing an experimental frame. The simulated structure is a two-bay 

plane frame with fixed connections, uneven spans, and short columns. The intent of this 

particular structure is to represent either a two-bay building frame or a two-span girder, 

as shown in Figure 4.1. The finite element software SAP2000 was use for creation of the 

model. 
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4.2.1 Properties of the Simulated Model 

A mathematical model, consisting of 45 nodes and 44 elastic beam finite elements, has 

been developed and is shown in Figure 4.2. Elastic beam elements were chosen because 

the structure consists of beams and columns. Each element node has three degrees of 

freedom, ux, uy, and θz, which allows for translational and bending behavior. The frame is 

considered a ―plane frame,‖ which disallows out-of-plane and torsional degrees of 

freedom. Displacements, directly relating to accelerations, are observed at 21 nodes along 

the structure (labeled L1 through L6 at the left joint, C1 through C9 at the center joint, 

and R1 through R6 at the right joint) shown in Figure 4.2. Figure 4.3 shows the general 

location and direction of the displacement nodes along with the 9 designated damage 

scenarios. Each damage location was chosen to represent locations of potential damage: 

in the beams and columns near each joint and at the midspans of the beams. 

For the baseline state, each element is a uniform hollow 2-inch tubing, with 0.083 

in wall thickness, 0.6364 in
2
 area, and a moment of inertia of 0.3905 in

4
. The undamaged 

cross-section is shown in Figure 4.4(i). The steel is assigned an elastic modulus of 29,000 

ksi.  

Damage is simulated by switching the geometric properties of corresponding 

elements to that of a member with approximately a 20% stiffness reduction. For the 

damaged portions, the 2-inch square tube cross-section has a wall thickness of 0.065 in, a 

cross-sectional area of 0.5031 in
2
, and a moment of inertia of 0.3143 in

4
. The damaged 

cross-section is shown in Figure 4.4(ii). Damaged sections are 7.5 inches long, after 

accounting for plate connection thicknesses in the experimental structure. Sensor nodes 

are oriented around each damage section, with one sensor located at the midpoint of the 
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damage. All sensor nodes are organized 8 inches center to center measured from the 

centerline of the local joint. For both the baseline and damaged states, the boundary 

conditions are defined as fixed supports at the base of each column. Similar to the 

previous simulation in Chapter 3, mass of the structure is assumed negligible, as per the 

assumption stated in Section 2.2.1.2. 

The frame elements were designed based on both the actual available sizes 

(McMaster-Carr 2010) and the desired acceleration values. An iterative process was used 

to determine the best combination of cross-sections, member lengths, and acceleration 

responses, preferred to be of similar order of magnitude in columns and beams. The spans 

were chosen to be of differing lengths to create more complexity in the structure. 

4.2.2 Simulation Procedure 

For both the undamaged and each of the 9 unique damaged cases, a white noise excitation 

was simulated at the far left joint in the x-direction. The resulting displacement responses 

were generated at each of the 21 nodes to represent sensor node locations along the beam 

and column members. Displacements of the beam members were simulated in the y-

direction, while the column displacements were taken in the x-direction. Measurement 

noise was also accounted for by adding a Gaussian noise with a standard deviation equal 

to 5% of the root mean square of each response signal. Simulated results were generated 

for the undamaged case as well as for each of the 9 unique damage scenarios.  

A tenth damage scenario was also simulated, called Dexp, which is a combination 

of cases D8 and D9, involving a 20% stiffness reduction at both the right beam and the 

right column simultaneously. The purpose of this simulation was to check a case in which 
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larger damage occurs. The Dexp scenario is the damage scenario that was later used in 

experimental testing that will be discussed later. The results of all eleven simulations 

(undamaged and damaged) were then processed through the proposed localized damaged 

detection method to monitor the change between each damaged case compared to the 

undamaged baseline. 

4.2.3 Damage Detection of Simulated Frame 

Eleven simulation conditions were considered which include an undamaged baseline 

condition and 10 different damaged conditions, each characterized by a 20% reduction in 

the stiffness of a 7.5-inch portion of the structure at the locations indicated in Figure 4.3. 

It is important to note that this corresponds to only a 0.5% decrease in stiffness or less of 

the frame as a whole, as shown in Table 4.1. The rest of the structure maintains the same 

stiffness properties as the undamaged structure. 

Damage detection was performed for each of the 10 damage simulations. As a 

means of inspecting the percentage changes for each node pair, the changes were 

averaged at each node within its respective joint. For example, all of the percent changes 

from each influence coefficient involving node L1 regressed with L2 through L6 were 

averaged for the nodal percent change value at node L1. The values are only averaged on 

a joint level instead of throughout the whole structure because the nodes at the left joint 

are far removed from the nodes at the right joint. In a real structure, this will only become 

truer with longer spans. The nodal percent changes are shown for each simulated damage 

scenario in Figure 4.5 through Figure 4.14. 
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In 8 out of 10 cases (D1, D2, D4, D5, D6, D8, D9, and Dexp), the damage was 

accurately detected, with nodal percent changes near the damage location on the order of 

2 to 10 times larger than those at the undamaged joints. The damage is not only localized 

to the correct joint with noticeable changes in the influence coefficients, but inspection of 

the changes at nodal level points even more locally to the damage. For example, in Figure 

4.13, which shows the averaged percent changes for damage case D9, the largest changes 

at the right joint are in the column nodes. This is consistent with the 20% localized 

stiffness reduction at the right column. Therefore, the algorithm is sufficient in 

identifying the general location of damage within the structure as a whole, even though 

the overall stiffness reduction of the structure was negligible. 

 Furthermore, modal properties were simulated by adding a realistic level of mass 

for a typical structure to the simulated frame. Based on the first three modes, the modal 

properties of the structure change insignificantly with the occurrence of each damage 

scenario. This can be seen in Table 4.1, which shows the percentage change for modal 

frequencies of the first three modes from the undamaged to the damaged conditions. The 

percent changes range from approximately 0.0% to 1.4%. These minor changes would be 

undetectable in any modal-based global detection method with consideration of 

reasonable error. However, the proposed localized method detects the damage effectively 

despite the minimal changes in global properties.  

4.3 Experimental Model 

The algorithm was further verified through laboratory experiments on a specimen similar 

to that of the simulated model. These experiments were conducted at the Center for 
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Advanced Technology for Large Structural Systems (ATLSS) at Lehigh University. 

Again, the experimental frame, designed with short columns, can represent either a two-

span bridge girder or a two-bay single-story building frame. The structure was 

instrumented with two sensor networks; one consisting of 21 wired accelerometers and 

another of 6 linear variable displacement transducers (LVDTs). The structure’s responses 

were collected for both static tests and dynamic tests. For static testing, LVDT readings 

were taken for 20 undamaged and 20 damaged tests. This data was then used to compare 

the boundary conditions of the simulation in order to update the finite element model. For 

dynamic testing, acceleration and displacement responses were collected at each sensor 

node for 30 undamaged tests and 30 damaged tests. These tests were repeated for various 

excitation types. Using the acceleration data, the damage detection algorithm was 

employed. This experiment serves as a validation of the method on a more complex 

structure with more variety of damage and a larger sensor network. 

4.3.1 Properties of the Experimental Specimen 

Because ambient vibrations are the most common excitations experienced by a structure 

on a daily basis, this excitation type was the basis for the design of the experimental 

structure. As was mentioned in the discussion of simulated frame, the frame was 

iteratively designed with a specific range of desired excitations in mind. The frame was 

constructed using two-inch square steel tube sections, with overall span lengths of 7 feet 

6 inches and 12 feet center to center, for the left and right spans, respectively. The three 

columns are of the same steel tube cross-sections with matching heights of 2 feet 9 

inches. 
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 An overall view of the experimental structure is shown in Figure 4.16. Identical 

to the simulated frame, the undamaged and damaged cross-sections were of 0.083-inch 

and 0.065-inch wall thicknesses, creating a 20% reduction in section stiffness for the 

damaged case. These damage sections were created by switching out a 7.5-inch long 

―member switchout‖ constructed with the 0.065-in tube section. End plates were welded 

on either end of the member switchouts as well as on the ends of the permanently 

undamaged portions of the structure for each through-bolt attachment. Figure 4.17 shows 

the member switchouts both unattached and attached to the structure. The end plate 

connections were designed for the moment capacity of the frame, so that these 

connections would not be a limiting point in the stiffness of a structure. For example, the 

stiffnesses can be considered as two springs in series, with the stiffness of the plate 

connection denoted as k1 and the stiffness of the tube section denoted as k2. The overall 

stiffness is then defined by the following equation: 

 

 
  

 

  
  

 

  
           (4.1) 

From equation (4.1) it is obvious that as k1 becomes large compared to k2 the overall 

stiffness k depends only on k2, the stiffness of the structural member itself. For ease of 

construction, these end plates were also designed with a cutout the size of the 2‖x2‖ tube. 

However, in retrospect this created difficulty when welding in creating perfectly square 

and aligned members.  

 The support structure of the frame was designed as a continuous angle channel 

from which the columns of the specimen cantilevered out. The frame was oriented on its 

side in an attempt to address lateral stability concerns associated with a vertically-
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oriented plane frame. Additionally, long rectangular plates stemmed orthogonally from 

the channel underneath each column to carry three adjustable ―roller‖ supports at each of 

the beam-column joints. The support structure is shown in Figure 4.18. The adjustable 

supports at each joint were designed to keep the structure level. Adjustability of these 

supports was a major consideration as too much contact pressure could prevent the frame 

from deflecting as expected. Additionally, a layer of Teflon was applied to the plate 

between the support and the frame to reduce friction. The entire support structure was 

then placed on adjustable footings to allow for flexibility with leveling the structure. 

Figure 4.19 shows a close-up of the adjustable support on an adjustable footing.   

4.3.1.1 Specifications of the Actuator and Load Cell 

The actuator used for the dynamic testing in these experiments is the MODAL 50A 

actuator previously described in Section 3.3.2.1. Additionally, a load cell, model LC101-

50, by Omega Engineering, Inc. was employed in these tests to measure the amplitude of 

the force applied by the actuator (2005). This load cell was also used to apply a static 

force for the static testing portion of these experiments. The load cell has a peak force of 

50 lbs. Both the actuator and load cell are shown attached inline to the left joint of the 

experimental frame in Figure 4.20. 

4.3.1.2 Sensing Systems 

The specimen was instrumented with two sensing systems. The first is a network of 21 

wired accelerometers located at 8-inch intervals around each of the three local joints (6 

each at the left and right joints and 9 at the central joint). The second system is a network 
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of 6 LVDTs for collecting displacement responses at each of the 3 columns, at each of 

the 2 midspans, and the overall lateral displacement of the frame.  

4.3.1.2.1 Wired MEMS Capacitive Accelerometers 

The network of 21 accelerometers uses model number 2210-002 manufactured by Silicon 

Design, Inc (2010). The 2210-002 is a sensor that incorporates a 1210L micromachined 

capacitive accelerometer. This model can detect accelerations within the range of ± 2 g 

with an output noise of 13 µg/Hz output noise. Other specifications for these sensors are 

summarized in Table 3.4. Figure 4.21 shows one of these sensors mounted on the test 

specimen.  

4.3.1.2.2 Wired Linear Variable Displacement Transducers 

In order to measure displacements, 6 LVDTs were implemented. The model of the 

LVDTs is GHSD 750-250 produced by Macro Sensors (2010). The measurement range 

of the LVDTs was  0.25 inch with a resolution of 7x10
-6

 in. These particular sensors 

consist of a spring-loaded shaft connected to the core of the LVDT. When the shaft 

position changes due to positive or negative displacement changes, the LVDT operates 

on a DC input and generates a precalibrated DC output. Figure 4.22 shows an LVDT 

attached to the test specimen.  

4.3.1.2.3 Data Acquisition System 

Both acceleration and displacement responses, in addition to the load cell reading, were 

collected using the CR9000 DAQ system and PC9000 support software presented in 

Section 3.3.2.2.3. For this experiment, the data was collected at a 500 Hz sampling rate 
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(0.002 sec sampling interval). Dynamic testing was conducted for a total of 10,000 

samples per node per test, while static tests were performed for a total of 50,000 samples 

per node per test. 

4.3.2 Static Testing 

Prior to the dynamic loading, static tests were conducted to verify that the structure was 

behaving as expected, with displacements increasing as damage occurred. Additionally, 

the static responses data, collected via LVDTs, was compared to simulated displacements 

from two SAP models (one with fully fixed boundary conditions and one with fully 

pinned conditions) the restraints of which are summarized in Table 4.3. For this 

comparison, a simplified model with only 29 nodes and 28 finite elements was created, as 

seen in Figure 4.23. Instead of the 21 sensor nodes, displacements are observed at 6 

different nodes, corresponding to 6 LVDT locations on the experimental structure. Figure 

4.24 shows the locations of the LVDTs on the experimental structure as well as the 

damage locations (D8 and D9) for the damaged case. 

The loading condition comprised of a 30-lb static force applied in the x-direction 

at the top of the left column. The load was applied at the level of the centerline of the 

beam. This load is less than 2% of the load required to cause yielding in the frame, which 

ensured linear-elastic behavior. The capacity of the experimental load cell (peak load of 

50 lbs) used in the experiments limited this load value. Small loads also attempt to reflect 

behavior of the structure under ambient loading. For the experimental structure, a total of 

40 tests were collected, 20 undamaged and 20 damaged. As previously stated, each test 
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contained approximately 50,000 samples at the static load, collected at a 500 Hz 

sampling rate.  

Because it is difficult to control the exact load in the experimental setting, the 

displacements were normalized in terms of inch-per-pound for direct comparison. Figure 

4.25 presents the normalized results for the undamaged and damaged cases for both 

simulated models and the experimental average. From this plot it can be seen that the 

experimental boundary conditions, shown in Figure 4.25, are not truly fixed, but rather 

fall somewhere between an idealized fixed and pinned condition. Therefore, there is a 

need for an updated model, in which the stiffness of the support connections is 

somewhere between that of a fixed and a pinned case, to be able to reflect the actual 

conditions of the experiment for more accurate comparisons. Additionally, the plot shows 

that the overall displacements did decrease, according to expectation, with the occurrence 

of damage as the damage increased the flexibility of a portion of the structure.  

4.3.2.1 Updated Finite Element Model for Simulation 

Using the results of the undamaged static tests, an update finite element model for the 

frame was created. The resulting updated model consists of pinned supports with a 

rotational spring at each support to add varying degrees of stiffness to reflect the physical 

behavior of the experimental structure. The updated simulated model with spring 

stiffnesses is shown in Figure 4.26. Simulated results were regenerated with this new 

model and are shown compared to the experimental results in Figure 4.27. These results 

show a significant improvement in the model’s ability to reflect the experimental frame’s 

true behavior. However, the updated model still shows a noticeable deviation from the 
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actual displacements measured at LVDT 2. Thus, future updating for this model should 

consider a greater number of variable parameters than the three support conditions.  

4.3.3 Dynamic Testing 

Because a real structure experiences dynamic loading on a continuous basis from ambient 

forces, dynamic testing was conducted for applying the localized damage detection 

method. A total of 60 tests were performed, comprised of 30 undamaged and 30 damaged 

runs. The simulated damage is the same as that for the static testing, with the far right 

beam switchout and the far right column switchout set to the damaged cross-section, each 

achieving a 20% localized stiffness reduction.  

4.3.3.1 Forcing Frequency 

For the dynamic testing it was important to first determine the optimal force type and 

forcing frequency for the conducting the tests. Both harmonic and random excitations 

were considered. While a random excitation would most closely resemble ambient 

vibrations of a structure, a harmonic excitation has the added benefit of easily identifying 

noisy data. However, for a harmonic excitation various forcing frequencies can affect the 

structure in different ways, thus, preliminary results at multiple frequencies were 

explored—5 Hz, 12 Hz, and 30 Hz. Additionally, preliminary results were produce using 

a white noise excitation (200 Hz bandwidth) for comparison.  The times histories of the 

applied load, acceleration responses, and displacement responses for each loading type 

are shown in Figure 4.28 through Figure 4.31. The benefit of a low forcing frequency is 

the ability to achieve higher amplitudes of load and responses, which translates to higher 
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signal to noise ratios. However, the acceleration responses decrease in visual noisiness as 

the forcing frequency increases, with the harmonic becoming more dominant. This 

suggests that although a lower frequency force, such as 5 Hz, has a higher amplitude, the 

higher frequency noise is more dominant within the time history data.  

Additionally, there is a trade-off for lower frequencies due to a phenomenon 

observed in data using the MODAL 50A actuator. When looking at the data in frequency 

domain the data shows recurring peaks at intervals equal to the forcing frequency. Figure 

4.32 through Figure 4.36 show the frequency content of the acceleration responses for 

each forcing type plotted in a logarithmic scale. Note, these peaks cease after about 90 Hz 

in all four plots due to the CR9000’s built-in low-pass filter. In the frequencies from 0 to 

90 Hz, this phenomenon creates a large number of peaks in the 5 Hz data, which can 

corresponds to noisy very noisy data. While the 12 Hz data also has recurring peaks, they 

are not as plentiful as that of the 5 Hz forcing frequency, resulting in cleaner power 

spectra. The 30 Hz power spectra exhibit the least number of recurring peaks; however, 

there exists other higher frequency noise peaks from about 45 to 90 Hz that are 

independent of these peaks. This added noise could be due to possible shaking of the 

support from a more aggressive forcing frequency. The random force spectra shows 

constant peaks from 0 to 90 Hz, making it difficult to distinguish between noise in the 

data and frequencies associated with the force itself. 

The four forcing types can also be compared using the accuracy and error 

parameters from the damage detection method, EA and γ.  In order to consider these 

values from a higher level, averages were taken for each node within a local joint, similar 

to the averaging of percent changes in Section 4.2.3. These values are presented in Figure 
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4.36 through Figure 4.39 for EA and Figure 4.40 through Figure 4.43 for γ.  Comparison 

of these sets of parameters shows that the 12 Hz sine data and the 30 Hz sine data are on 

par for the highest accuracy values. However, the 12 Hz data shows the lowest error 

associated with its data sets. Based on all of these comparisons, of the four forcing types, 

the optimal force was determined to be 12 Hz sine, the results of which are presented 

hereafter. 

4.3.3.2 Preliminary Results 

The 12 Hz sine data was processed using the proposed localized damage detection 

method for preliminary assessment. Because the total number of possible pairwise 

coefficients is 420 if considered throughout the whole structure, only local joint pairs 

were considered, narrowing this number down to 132 coefficients. Additionally, the EA 

and γ were used to identify the most reliable coefficients to consider, leaving 24 

coefficients with accuracies above 90%. Because these coefficients contain regression 

reciprocals, αij and αji, only 12 are necessary for comparison. Figure 4.44 shows the 

relative percent changes for each of these 12 coefficients from the undamaged to 

damaged states. It also contains averaged values, per portion of the structure, considering 

only these high accuracy values. Some pairwise coefficients performed along the lines of 

the expectation set by the Chapter 3 results, with nodal pairs surrounding the damage 

showing the highest change in their influence coefficient value. For example, αR3-R2, αR4-

R5, and αR6-R5 are in the vicinity of the two damage locations and show notable changes. 

Additionally, αL2-L3, αL4-L5, and αC7-C8 are remote from the damage locations and show 
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negligible changes. Plots of the α, EA, and γ for three of these pairs are shown in Figure 

4.45, Figure 4.46, and Figure 4.47.  

On the other hand, a few of these coefficients, for example αL4-L6 and αC5-C6, 

experience larger changes than expected given their vicinity with respect to damage. 

From these preliminary results, it is evident that some pairs perform as expected 

according to the results presented in Chapter 3, while others did not. These discrepancies 

could be due to possible experimental imperfections, such as difficulty maintaining 

levelness and squareness of the structure when switching the structured between the 

undamaged and damaged states. These potential issues should be further investigated and 

addressed in future research using this specimen. Another potential cause of these 

unexpected results, as well as for the larger number or inaccurate coefficients (only 24 of 

132 coefficients exhibited high accuracy), is that linear regression between two nodes is 

insufficient to capture the true behavior of this more complex structure. Therefore, the 

application of multivariate regression should also be considered. 
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Table 4.1. Global effects of damage per damage case 

Damage 

Case 

Damage 

Location 

Overall 

Stiffness 

Reduction 

Mode 1 

Frequency 

% Change 

Mode 2 

Frequency % 

Change 

Mode 3 

Frequency 

% Change 

D1 Left Column 0.38% 0.00% 0.20% 0.15% 

D2 Left Beam 0.51% 0.00% 0.28% 0.05% 

D3 Left Midspan 0.00% 0.04% 0.00% 1.40% 

D4 
Center Beam 

(Left) 
0.38% 0.04% 0.25% 0.05% 

D5 
Center Beam 

(Right) 
0.25% 0.36% 0.10% 0.15% 

D6 Center Column 0.51% 0.44% 0.13% 0.52% 

D7 Rigth Midspan 0.00% 1.25% 0.03% 0.03% 

D8 Right Beam 0.32% 0.20% 0.28% 0.00% 

D9 Right Column 0.45% 0.16% 0.23% 0.00% 

Dexp 
Right Beam & 

Right Column 
0.83% 0.32% 0.50% 0.02% 

 

 

Table 4.2. Specifications of Silicon Designs 2210-002 accelerometers 

Measurement Range ± 2 g 

Voltage Sensitivity 2000 mV/g 

Output Noise 13 µg/Hz 

Temperature Range -40 to +185 °F 

 

 

Table 4.3. Boundary condition restraints for static testing simulations 

Node 
Boundary Condition Restraints 

Model A Model B 

1 x, y, z, θx, θy, θz x, y, z, θx 

14 x, y, z, θx, θy, θz x, y, z, θx 

26 x, y, z, θx, θy, θz x, y, z, θx 
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Figure 4.1. Two-bay frame can represent either a two-span bridge girder or a two-

bay building frame 

 

 

 

Figure 4.2. SAP2000 model with 45 nodes and 44 elements 

 

http://www.cbdg.org.uk/bridge_types.html http://engineersnw.iconeo.net/?page_id=20
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Figure 4.3. Simulated two-bay frame with 21 sensor nodes and 9 damage locations 

 

 

(i)      (ii) 

Figure 4.4. Cross-sections for (i) undamaged and (ii) damaged members 
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Figure 4.5. Relative % change for simulated damage case D1 

 

 

Figure 4.6. Relative % change for simulated damage case D2 
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Figure 4.7. Relative % change for simulated damage case D3 

 

 

Figure 4.8. Relative % change for simulated damage case D4 
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Figure 4.9. Relative % change for simulated damage case D5 

 

 

Figure 4.10. Relative % change for simulated damage case D6 
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Figure 4.11. Relative % change for simulated damage case D7 

 

 

Figure 4.12. Relative % change for simulated damage case D8 
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Figure 4.13. Relative % change for simulated damage case D9 

 

 

 

Figure 4.14. Relative % change for simulated damage case Dexp 
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Figure 4.15. Experimental frame plans with switchout and sensor locations 
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Figure 4.16. Experimental frame constructed at the ATLSS Center 
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Figure 4.17. Views of member switchout for the experimental frame 
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Figure 4.18. Angle support channel with frame cantilevered at base of columns 

 

 

support channel

right span of frame

fixed connection at 

base of right column



92 

 

 

Figure 4.19. Adjustable support used to support the cantilevered end of the frame 

with Teflon layer facilitate roller support action 
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Figure 4.20. Experimental set-up with inline load cell and actuator at left joint 
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Figure 4.21. Silicon Designs 2210-002 wired accelerometer mounted on the frame 
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Figure 4.22. Macro Sensors GHSD 750-250 LVDT mounted at location 1 on the 

frame 
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Figure 4.23. Simplified SAP2000 simulation with 29 nodes and 28 finite elements for 

static testing 
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Figure 4.25. Comparison of experimental displacements to simulated displacements 

for undamaged and damaged cases 

 

 

Figure 4.26. Updated SAP2000 model with rotational springs in place of fixed 
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Figure 4.27. Comparison of updated simulated results to experimental 

displacements for the undamaged and damaged cases 
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Figure 4.28. Time histories for load, accelerations, and displacements at 5 Hz sine 
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Figure 4.29. Time histories for load, accelerations, and displacements at 12 Hz sine 
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Figure 4.30. Time histories for load, accelerations, and displacements at 30 Hz sine 
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Figure 4.31. Time histories for load, accelerations, and displacements at random 

force 

 

-5

-2.5

0

2.5

5

L
o

ad
 (

lb
s)

Random Forcing Frequency (BW: 200)

-0.2

-0.1

0

0.1

0.2
A

cc
el

er
at

io
n

 (
g

)

 

 

0 0.2 0.4 0.6 0.8 1
-5

-2.5

0

2.5

5
x 10

-3

Time (s)

D
is

p
la

ce
m

en
t 

(i
n

)

 

 

L1

L2

L3

L4

L5

L6

C1

C2

C3

C4

C5

C6

C7

C8

C9

R1

R2

R3

R4

R5

R6

LVDT1 LVDT2 LVDT3 LVDT4 LVDT5 LVDT6



103 

 

 

Figure 4.32. Power spectra of acceleration response for 5 Hz sine 
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Figure 4.33. Power spectra of acceleration response for 12 Hz sine 
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Figure 4.34. Power spectra of acceleration response for 30 Hz sine 
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Figure 4.35. Power spectra of acceleration response for random force 
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Figure 4.36. Average EA values for 5 Hz sine 
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Figure 4.39. Average EA values for random force 

 

 

Figure 4.40. Average γ values for 5 Hz sine 

 

 

Figure 4.41. Average γ values for 12 Hz sine 

: location of sensor node

0.33

0.36

x

y

0.37 0.34

0.38

0.34

0.21 0.27 0.21 0.19 0.27 0.26

0.24

0.24

0.22

0.36

0.44

0.46

0.45 0.45 0.41

: location of sensor node

0.009

0.007

x

y

0.007 0.009

0.007

0.009

0.04 0.1 0.02 0.2 0.07 0.03

0.08

0.04

0.03

0.03

0.02

0.04

0.02 0.03 0.04

: location of sensor node

0.006

0.004

x

y

0.004 0.006

0.004

0.004

0.03 0.04 0.01 0.04 0.01 0.03

0.008

0.008

0.008

0.004

0.005

0.006

0.005 0.005 0.005



109 

 

 

Figure 4.42. Average γ values for 30 Hz sine 
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Figure 4.44. Relative changes observed for coefficients with high accuracies in 12 Hz 

data 

 

L1 L2 L3 C1 C2 C3 C4 C5 C6 R1 R2 R3

L4

L5

L6

R4

R5

R6

C7

C8

C9

4.6%

10.5%

8.9%

1.2%

2.9%

6.9%

11.9%

12.7%

1.0%

4.1%

0.2% 7.3%

L1 L2 L3 C1 C2 C3 C4 C5 C6 R1 R2 R3

L4

L5

L6

R4

R5

R6

C7

C8

C9

: location of sensor node

x

y

9%6.2%

1.2% 12.7%

2.6%

3.75%

: location of 20% stiffness reduction

Average by 

joint member



111 

 

 

 

Figure 4.45. α, EA, and γ results for αR3-R2 

1.5

1.75

2


R
3

-R
2

Influence Coefficient, 
R3-R2

0 10 20 30 40 50 60

0.5
0.6
0.7
0.8
0.9

1

E
A

R
3

-R
2

Run Number

0

0.01

0.02

0.03

 R
3

-R
2

undamaged

damaged

damaging event

L1 L2 L3 C1 C2 C3 C4 C5 C6 R1 R2 R3

L4

L5

L6

R4

R5

R6

C7

C8

C9

x

y

αR3-R2

excitation

20% local stiffness 

reduction



112 

 

 

 

Figure 4.46. α, EA, and γ results for αR6-R5 
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Figure 4.47. α, EA, and γ results for αL4-L5 
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Chapter 5   Damage Detection of a Large-Scale Moment 

Connection with Strain Gauges 

5.1 Introduction 

While Chapters 3 and 4 present examples of applications validating the performance of 

the proposed localized damage detection method, these models have idealized the 

damage; a portion of the beam is replaced with a member of known characteristics. 

Therefore, there is a need to verify this method for full-scale structures exhibiting damage 

scenarios that are more varied in location and severity. Moreover, it is important to 

substantiate the use of other commonly used and affordable sensor types. In this case 

strain gauges are used, which also represent a different set of response parameters. In this 

chapter, the performance of the damage detection algorithm is evaluated for a large-scale 

steel moment connection constructed at the ATLSS Center at Lehigh University, which 

was being tested for use in an earthquake-prone structure. The test specimen was 

instrumented with strain gauges and cyclically loaded to failure. The strain responses 

were analyzed using the localized damage detection algorithm to identify the progression 

of damage. 

5.2 Theory for Application to Strain Data 

The local damage detection algorithm applied in this research was previously developed 

using the acceleration output of simulated and experimental structures in Chapters 3 and 

4. However, this method is theoretically applicable for a structure’s strain response as 

well. 
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Based on the principles of statics, the forces and moments at any point along a 

structure are linearly related to the applied load. Forces and moments directly translate to 

stress through the linear-elastic relations σ = P/A and σ = My/Izz, respectively. 

Furthermore, the constitutive stress-strain relation yields the strain at any point along the 

structure in terms of the applied load. If the strain at any two points, nodes i and j, can be 

defined in terms of the applied load, then these definitions can be reconfigured to yield 

the strain at node i, ϵi, in terms of the strain at node j, ϵj, as follows: 

                              (5.1) 

While a beam-column free body contains 9 possible DOFs, this number can be 

reduced similarly to the justifications presented for acceleration responses of a beam-

column in Section 2.2. Under the assumption that there is one dominant load applied with 

all other loads negligible, only one other strain response is required to define the strain at 

any point along the structure. From each pair-wise linear regression relationship, an 

influence coefficient can be extracted. When damage occurs at a local point in the 

structure, the change in structural properties occurs as demonstrated by the progressively 

reduced stiffness, or slope, in the force-displacement plot of Figure 5.10.  

These stiffness reductions reflect a change in the constitutive stress-strain 

relationship, which in turn will give different strain values for the same applied load. 

Ultimately, the pair-wise influence coefficient will also change from this damage, if the 

strain at node i changes differentially compared to the strain at node j. By observing the 

pattern of changes in a network of pair-wise influence coefficients, these parameters 

effectively serve as a ―damage indicator.‖ 
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5.3 Experimental Prototype 

A large-scale steel earthquake moment connection design was cyclically tested to failure 

for performance verification at the ATLSS Center at Lehigh University. While multiple 

variations of the design were tested for the client, four of the test specimens were 

instrumented with additional strain gauges. One of these datasets, referred to here as Test 

A, was use for application of the localized damage detection algorithm. 

5.3.1 Experimental Test Setup 

Because the design is to be implemented in a California hospital, it is subject to the 

seismic qualification requirements as set forth by the Office of Statewide Planning and 

Development (OSHPD) (Hodgson and Ricles 2010). According to these requirements, 

the specimen must sustain at least two full cycles of an inelastic drift angle of 0.03 

radians and at least two full cycles of an interstory drift angle of 0.04 or more radians 

without failure (Hodgson and Ricles 2010). Progressive drift sequences were applied 

using parallel hydraulic actuators at the free end of the beam, with the columns fixed to 

the strong wall and the strong floor, shown in Figure 5.1. The drift sequence is 

summarized in Table 5.1. 

Figure 5.2 shows the general configuration of the test specimen, as well as the 

instrumentation plan used for the application of the damage detection algorithm. The 

specimen was instrumented with five strain gauges, with gauges 1 and 2 at third points on 

the top flange of the beam, gauge 3 directly below gauge 1 on the bottom flange if the 

beam, and gauges 4 and 5 on the outside flange at the midpoint of each column.  
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5.3.2 Damage Results of Experiments 

The progression and location of damage was documented throughout testing for the 

subassembly. Notes were taken after the completion of each stage in the drift sequence. 

The proposed localized damage detection method was then applied to the data, and the 

results were compared to the observed behavior to assess the method. 

5.3.2.1 Test A Damage Observations 

The Test A damage notes are summarized in Table 5.2. Each set of drift cycles was 

designated with a respective damage classification starting with Damage Class 0 for the 

undamaged cycles through Damage Class 9 when failure occurred. Additionally, photos 

were taken during the test to further document the damage. Figure 5.3 through Figure 5.9 

demonstrate the damage incurred in each damage class from Damage Class 3 to failure as 

described in the damage notes.  

5.4 Application of Localized Damage Detection Algorithm 

The algorithm was applied using data from the Test A specimen. This data was used to 

determine the best approach for implementing the algorithm with this particular type of 

data. The resulting approaches can later be used for processing other similar datasets. 

5.4.1.1 Pre-processing of Strain Data 

Prior to processing the data through the algorithm, the strain responses were considered 

in comparison to one another as well as versus time. Figure 5.11 presents an example of a 

strain versus strain plot for the two gauges on the column, while Figure 5.12 shows a 
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strain versus strain plot for two of the gauges on the beam. Figure 5.11 shows a case in 

which the relationship between the two responses remains mostly linear throughout all 

cycles with small changes in slope over time. Figure 5.12, however, shows the result of 

excessive yielding. A structure exhibits linear-elastic behavior prior to a damaging event, 

experiences nonlinear behavior during an extreme event, and then returns to an altered 

linear-elastic state following the damaging event. Portions of the data which best 

exhibited a linear relationship were used in implementation of the algorithm in order to 

minimize the error term in the regression model, thus, increasing the accuracy of the 

parameters.  

Figure 5.13 shows the time histories of the strain responses and the applied load. 

It should be noted that, at the beginning of this plot, the cycles within the data are 

relatively uniform, but become less uniform as the testing continues, along with the 

increase of damage. Also, it can be seen that there are intermittent flat portions of the 

strain data, corresponding to a constantly held load at both the peaks and valleys of each 

load cycle. Initially, the influence coefficients were calculated for the entire data set. This 

was achieved by calculating influence coefficients for an overlapping, moving window of 

50 samples. The resulting coefficients are shown in Figure 5.14 for a selection of 

influence coefficients. Based on these preliminary results, it is clear that using the 

entirety of the data set produces results with high noise and error. This is evidenced by 

the large variations in the coefficient value, even prior to damage when the coefficient 

value should be the most consistent. Therefore, only certain portions of the data should be 

used for the algorithm. In order to determine which sections of the data were best for use 

in the algorithm, two types of sections were considered: (1) the loading and unloading 
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portions of strain data only and (2) the holding (or constant load) portions of the strain 

data only.  

For these scenarios, each loading or holding section was considered as a separate 

test, with one influence coefficient value calculated for each. The resulting values are 

shown for α1-2 in Figure 5.15 and Figure 5.16, respectively. By inspection of these plots, 

the holding data shows significantly more noise, which makes it difficult to distinguish 

between the undamaged and damaged coefficients. However, the loading/unloading data 

shows a relatively constant value for the influence coefficient, until later sections in 

which damage is occurring. This distinct change allows for damage detection; therefore, 

the loading and unloading sections were used for the remainder of the analysis.  

An explanation for the larger amount of noise in the holding data is that the 

hydraulic actuators vary as they hold a constant load, which can be seen in the data at the 

beginning of the test before the first load was applied, shown in Figure 5.17. However, 

with an increasing or decreasing load the data appears much smoother and more 

consistent. 

Furthermore, the loading and unloading portions of the data were trimmed 

according to the corresponding applied load, so as to only include strains due to loads 

within the ± 200 kip range, as demonstrated in Figure 5.18. This cutoff was chosen 

because 200 kips is the maximum load for the first drift in which the structure remained 

undamaged and purely linear-elastic. Considering strains within this range attempts to 

eliminate nonlinear behavior, which occurs with extreme loading. Therefore, this ensures 

that only strains from before and after the damaging events are used. 
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While the results in loading/unloading plot were less noisy, there were still large 

variations above and below the baseline value. This is inconsistent with the results found 

in the previous two applications, in which the coefficient drifts monotonically to a larger 

or smaller value with the onset of damage. There are two likely reasons for this 

discrepancy. Firstly, the damage in the previous applications was identical throughout all 

tests, whereas the damage in the current structure is varied and unknown. Therefore, the 

coefficient relationship may be different depending on what portion of the structure is 

damaged, say the top of the beam versus the bottom of the beam. The second reason 

relates to the first; there are four types of loading: downward loading (DL), downward 

unloading (DU), upward loading (UL), and upward unloading (UU). For example, if 

there is a crack in the top of the beam, when the beam is loaded downward, this crack 

will open further showing more damage. However, when the beam is loaded upward, this 

same crack will likely close and the structure will see less asymmetry. Therefore, the 

loading and unloading sections were further isolated to their loading types, resulting in 

four separate sets of influence coefficients for each pair. Figure 5.19 presents a plot of 

one of the coefficients after data was separated according to loading type. From this plot  

it can be seen that the coefficients follow a more consistent pattern of deviation from the 

baseline value as damage progresses.  

5.4.1.2 Damage Detecting Influence Coefficients 

After preliminary processing of the data was complete, holding and loading sections were 

sorted into the four separate loading conditions and processed through the algorithm. The 

damage detection algorithm could then be assessed by comparing each of the resulting 
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four sets of data to the observed structural deterioration over time. Figure 5.20 contains α, 

EA, and γ for all four loading conditions. From this plot, it can be seen that all four 

loading conditions show accuracy values of 1.0 and error terms close to null. These 

values were consistent for all estimated nodal pairs, meaning that all pairs should be 

reliable indicators. These values are much better than those observed in Chapters 3 and 4 

for the acceleration response data. This is reasonable because strain is the double 

integration of acceleration, causing a smoothing effect; thus, reducing error. 

For all four sets, the baseline is set by the coefficient values estimated in Damage Class 0, 

containing cycles from the first two drift angles. Figure 5.21 shows one of the 

coefficients, α2-4 plotted for the upward unloading sections according to progressive 

damage class. This plot demonstrates how the coefficients progressively deviate from the 

initial baseline value with each increasing damage state. However, the values do not 

begin decisively diverging from the baseline values until Damage Class 6. Inspection of 

the load-displacement plot separated by damage classes lends an explanation. In this plot, 

shown in Figure 5.22, it can be seen that, while yielding occurs as early as Damage Class 

1, an actual loss of strength does not appear until Damage Class 6. Moreover, according 

to the damage notes presented in  

Table 5.2 this also corresponds to the formation of a plastic hinge in the beam. In 

order to quantify these deviations from damage class to damage class, relative changes 

are considered. Each damaged class is referenced back to the baseline values. These 

values are presented and assessed hereafter. 
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5.4.1.2.1 Downward Loading 

The first loading condition to be considered is the downward loading (DL) in which the 

free end of the beam is being pushed downward. The percent change values for each DL 

damage class compared to the baseline DL values are shown for select node pairs in 

Figure 5.23 through Figure 5.31. It can be seen in Damage Classes 1 and 2 that all of the 

percent change values are less than 3%, at times as low as 0%. In fact, only one 

coefficient, α1-4 in Damage Class 2, exceeds 2%. Considering the damage described in  

Table 5.2, these negligible changes are consistent with the mild yielding observed on the 

bottom cover plate and the beam flange.  

Damage Classes 3 and 4 see slight increases in change, however, all values still 

remain 5%. In Damage Class 3, when yielding was seen in the bottom cover plate, in the 

top and botton beam flanges, and at 1/5
th

 locations of the web, more notable changes 

(2.4% - 3.3% compared to 0.3% - 0.9%) were seen in α1-4, α2-4, and α4-5, all of which have 

nodes located on either sides of the damage. However, not all of the pairs with nodes on 

opposing sides of damage showed a change. This assymmetry in coefficients is likely due 

to the assymetry seen in the damage, with more yielding on the bottom portion of the 

beam. Damage Class 4 changes became more symmetric, consistent with the addition of 

damage to the top cover plate as well as increases in preexisting yielding.  

Damage Class 5 saw drastic jumps in percent change with up to 53%. During this 

drift significant damage was incurred with considerable beam flange and web yielding, 

extreme yielding of the bottom cover plate, and separation of the top cover plate from the 

beam. The largest changes are that of α2-4, α2-5, and α1-2. The first two of these 

coefficients correspond to beam-column pairs with nodes on either side of damage due to 
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the heavily concentrated beam damage. Additionally, the third coefficient is between 

nodes on the same side of the beam, making these strains more sensitive to the same 

damage. On the other hand, coefficient α4-5, a column-column nodal pair, showed a 

negligible change of 1.2%. This small change can be accounted to the fact that all notable 

damage is isolated to the beam, with neither column node seeing the effects.  

During Damage Class 6 severe damage was incurred, including beam web 

buckling, top and bottom beam flange buckling, bottom cover plate separation from the 

beam, and the complete formation of a plastic hinge in the beam. However, from Damage 

Class 5 to Damage Class, there was a decrease in the percent changes from a range of 9% 

- 53% to a range of 1% - 37%. The likely cause of this is the formation of the plastic 

hinge, which resulted in out-of-plane bending of the beam. Out-of-plane bending changes 

the relationship between nodes and could make it appear closer to the original 

relationship than the relationship seen in Damage Class 5. Additionally, a small crack in 

the side plate-to-column weld was reflected in α4-5 with an almost tripled  3.4% change. 

Damage Class 7 shows a continued decrease in percent changes to less than 10%; 

however, the noticeable percent changes are concentrated at nodal pairs surrounding the 

observed beam damage. The damage observed consists of severe buckling of the beam 

flanges and web as well as increased out-of-plane beam bending. Again, increased out of 

plane bending is the most likely cause for the decrease in change.  

In the final two damage classes, 8 and 9, the top cover plate-to-beam weld crack, 

which developed in Damage Class 5, propagated into the beam flange and eventually 

halfway down the web. Both sets of relative changes show increases in the beam-beam 

and beam-column coefficients. Despite continued out-of-plane bending, this increase is 
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seen because the severe cracking in the beam becomes the more dominant damage in 

these two cases reverting the nodal relationships back to behavior more similar to 

Damage Class 5. 

Based on the DL data, the coefficients show a decisive jump during Damage 

Class 5. Although an argument could be made that the coefficient percent changes 

decrease after this and are not as effective in more severe damage detection,a counter-

argument can be made. The damage ideally will have been significantly detected from 

earlier damage indicating coefficients and repaired prior to reaching this severe damage 

state. 

5.4.1.2.2 Downward Unloading 

The second loading condition is the downward unloading (DU) in which the beam is 

unloaded back to its original position. Figure 5.32 through Figure 5.40 show the relative 

changes for each progressive DU damage class as compared to the baseline state. The 

performance of the first four DU damage classes were similar to that of the DL case, with 

no coefficients changing more than 3.5%.  

Damage Class 5, however, differs considerably, showing changes an order of 

magnitude lower than those from DL. A feasible explanation for this large difference is 

due to the crack opening at the top plate-to-beam weld. In the case of downward loading, 

the beam is pushed downward, causing the opening to enlarge and become more 

pronounced, resulting in large deviations from the baseline behavior. However, in 

downward unloading, as the beam is returned to neutral, the opening at the top is likewise 
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returned to a neutral, unopened position, causing the structure to reflect behavior more 

analogous to the undamaged state. 

The relative changes shown for damage classes 6 and 7 both show more notable 

values, with those of Damage Class 7 higher than that of 6. This is also different from the 

DL observations as the DL values decreased from Damage Class 6 to 7. It is possible that 

as the beam returned to neutral in downward unloading, the out-of-plane beam bending 

became less pronounced. In both damage classes, the highest percent changes correspond 

to beam-column nodal pairs, on opposite sides of the damage. 

From Damage Class 7 to Damage Class 8 the percent changes decrease 

asymmetrically. Though, as a whole the changes remain larger than those exhibited in 

Damage Class 6. This asymmetry could be due to the amplified prominence of the plastic 

hinge and out-of-plane bending. However, the percent changes remain dominant in the 

beam-beam and beam-column pairs, pointing to the damage in the beam. Damage Class 

9, during which total failure occurred, shows a variety of results ranging from a 2% 

change to a 250% change. Again, the large changes point to damage within the beam, 

consistent with the observed deterioration.  

5.4.1.2.3 Upward Loading 

Upward loading is the third loading condition for the specimen. Because failure occurred 

in the downward unloading portion of the first cycle of Damage Class 9, upward loading 

and unloading each only have 8 damage classes. The changes for each UL class relative 

to the baseline state are presented for select nodal pairs in Figure 5.41 through Figure 
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5.48. Damage classes 1 through 3 a showed comparably low changes to that of the 

downward loading and unloading cases, corresponding to mild yielding.  

However, unlike the previous two cases, UL Damage Class 4 saw large changes 

in the influence coefficients, up to 30%. These changes are likely more apparent in this 

case because as the beam is pushed upward the damage at the bottom of the beam 

becomes more prominent in the structure’s behavior. 

Damage Class 5 shows a decrease in changes from Damage Class 4, but the 

values are still notable. The column-column coefficient, α4-5, reduces to 0.5% likely due 

to the more severe beam yielding, isolating most of the movement to the beam. Damage 

Class 6 resulted in a much more significant decline in change values, with all below 10%. 

Again, the likely culprit for this unexpected reduction is the formation of the plastic 

hinge. 

For Damage Class 7, the values return to the range observed in Damage Class 5, 

up to 18% for a beam-column coefficient. The final Damage Class 8 saw the highest 

percent changes for UL. These results are almost completely symmetric. For both classes, 

the changes unanimously point to damage surrounding the connection, specifically the 

beam portion. 

5.4.1.2.4 Upward Unloading 

Upward unloading, the fourth and final loading condition, corresponds to the beam’s 

descent to the zero position from being displaced up. Figure 5.49 through Figure 5.56 

show the relative changes for these UU damage classes as they compare to the 

undamaged baseline coefficients. As can be seen, the results for damage classes 1 
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through 5 are similar to that of the DU case, in which all values remained at or below 5%. 

Because for UU the beam is still in an upward position, the effects of the top cover plate 

damage are negligible.  

 Damage Class 6, when the plastic hinge fully forms, is marked by increases in 

percent change up to 10 times that of Damage Class 5. Coefficient, α4-5, also returns to its 

lowest values since Damage Class 1. Damage Class 7 shows a combination of increases 

and decreases in values, with all values pointing to damage between node 2 and the 

beam-column connnection. Finally, Damage Class 8, again not corresponding to total 

failure, also shows a combination of increases and decreases with all values indicating 

damage in the beam element. 
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Table 5.1. Drift sequence applied to test structure 

Number of 

Cycles 

Angle of 

Drift (radian) 

6 0.00375 

6 0.005 

6 0.0075 

4 0.01 

2 0.015 

2 0.02 

2 0.03 

2 0.045 

1 0.05 

1 0.06 
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Table 5.2. Test A damage notes by damage class and drift angle 

Damage 

Class 

Angle of Drift 

(radians) 
Damage Observations 

0 0.00375 & 0.005 No visible damage 

1 0.0075 Onset of yielding under bottom of cover plate 

2 0.01 
Some slight yielding on the beam flange (extreme fiber) 

More yielding on the bottom cover plate 

3 0.015 

Yielding in the web about 1/5 of beam depth 

More yielding on the bottom cover plate 

Yielding in the through-thickness of beam flange 

Yielding in the top and bottom of beam flange 

4 0.02 

Web yielding of beam increased to 1/3 beam depth 

More yielding on the bottom cover plate 

More yielding on the beam flanges (top and bottom of both) 

Small crack (1/2 in) in top cover plate to beam weld (bottom 

side) 

2 small crack (1 in) in top cover plate-to-beam weld 

No crack in base metal 

5 0.03 

Extreme yielding in the bottom cover plate 

Considerable yielding in beam bottom flange 

Web yielding more than 1/3 beam depth 

Top cover plate separated from beam 

Crack of top cover plate-to-beam weld (bottom side) opened up 

to 2 in 

Cracks of top and bottom cover plate-to-beam weld (top side at 

cut-out) opened more than 2.5 in 

6 0.045 

Web start to buckle 

Top flange start to buckle 

Bottom cover plate separated from the beam 

Plastic hinge completely formed 

Bottom cover plate-to-beam weld crack propagated 

Bottom flange started to buckle (at the end of cycle) 

Web buckled at lower depth of beam 

Small crack in side plate-to-column weld (left side) 

7 0.05 

Top flange buckling increased 

Web buckling increased 

Bottom flange buckling increased 

Bottom web buckling increased 

Crack in cover plate-to-beam weld stopped where the beam-to-

side plate weld starts 

8 0.06 
Top cover plate-to-beam weld crack propagated to the base metal 

(beam flange) about ¼ in 

9 0.07 
Fracture from the bottom flange propagated into the web more 

than half the depth of beam 
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Figure 5.1. Typical experimental test setup at Lehigh’s ATLSS Center  
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Figure 5.2. Test setup with strain gauge instrumentation plan 
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Figure 5.3. Photos from Test A Damage Class 3 

 

  

Figure 5.4. Photos from Test A Damage Class 4 
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Figure 5.5. Photos from Test A Damage Class 5 

 

  

Figure 5.6. Photos from Test A Damage Class 6 
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Figure 5.7. Photos from Test A Damage Class 7 
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Figure 5.8. Photos from Test A Damage Class 8 

 

 

Figure 5.9. Photos from Test A Damage Class 9 (Failure) 
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Figure 5.10. Force-displacement curve for Test A 
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Figure 5.11. Relationship between strain gauges 4 and 5 in Test A 

 

 

Figure 5.12. Relationship between strain gauges 1 and 3 in Test A 
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Figure 5.13. Strain response and applied load time histories for Test A 
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Figure 5.14. A selection of preliminary influence coefficients calculated for entire 

dataset using a 50-sample moving window for Test A 
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Figure 5.15. Preliminary influence coefficient, α1-2, considering loading and 

unloading sections of Test A data only  

 

 

Figure 5.16. Preliminary influence coefficient considering holding sections of Test A 

data only 
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Figure 5.17. Strain response and applied load histories show greater noise at 

constant load for Test A data 
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Figure 5.18. Holding and loading sections trimmed by load to capture linear-elastic 

behavior of data for Test A data 
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Figure 5.19. Separating the coefficients according to loading type shows more 

consistency in the deviation of coefficients 
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Figure 5.20. α, EA, and γ for all four loading conditions for Test A nodal pair 2-4 
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Figure 5.21. α2-4 for Test A UU sections shown with progressive damage classes 

 

 

Figure 5.22. Test A load-displacement plotted by damage class showing where loss 

of strength occurs 
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Figure 5.23. Relative change for DL 

Damage Class 1 (Test A) 

 

Figure 5.24. Relative change for DL 

Damage Class 2 (Test A) 

 

 

 

Figure 5.25. Relative change for DL 

Damage Class 3 (Test A) 

 

Figure 5.26. Relative change for DL 

Damage Class 4 (Test A) 
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Figure 5.27. Relative change for DL 

Damage Class 5 (Test A) 

 

 

Figure 5.28. Relative change for DL 

Damage Class 6 (Test A) 

 

 

 

Figure 5.29. Relative change for DL 

Damage Class 7 (Test A) 

 

Figure 5.30. Relative change for DL 
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Figure 5.31. Relative change for DL Damage Class 9 (Test A)
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Figure 5.32. Relative change for DU 

Damage Class 1 (Test A) 

 

Figure 5.33. Relative change for DU 

Damage Class 2 (Test A) 

 

 

 

Figure 5.34. Relative change for DU 

Damage Class 3 (Test A) 

 

Figure 5.35. Relative change for DU 

Damage Class 4 (Test A) 
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Figure 5.36. Relative change for DU 

Damage Class 5 (Test A) 

 

 

Figure 5.37. Relative change for DU 

Damage Class 6 (Test A) 

 

 

 

Figure 5.38. Relative change for DU 

Damage Class 7 (Test A) 

 

Figure 5.39. Relative change for DU 
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Figure 5.40. Relative change for DU Damage Class 9 (Test A)
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Figure 5.41. Relative change for UL 

Damage Class 1 (Test A) 

 

Figure 5.42. Relative change for UL 

Damage Class 2 (Test A) 

 

 

 

Figure 5.43. Relative change for UL 
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Figure 5.45. Relative change for UL 

Damage Class 5 (Test A) 

 

 

Figure 5.46. Relative change for UL 

Damage Class 6 (Test A) 

 

 

 

Figure 5.47. Relative change for UL 

Damage Class 7 (Test A) 

 

Figure 5.48. Relative change for UL 

Damage Class 8 (Test A)
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Figure 5.49. Relative change for UU 

Damage Class 1 (Test A) 

 

Figure 5.50. Relative change for UU 

Damage Class 2 (Test A) 

 

 

 

Figure 5.51. Relative change for UU 

Damage Class 3 (Test A) 
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Figure 5.53. Relative change for UU 

Damage Class 5 (Test A) 

 

Figure 5.54. Relative change for UU 

Damage Class 6 (Test A) 

 

 

Figure 5.55. Relative change for UU 

Damage Class 7 (Test A) 
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Chapter 6   Summary, Conclusions, and Future Work 

An innovative localized damage detection method that uses structural responses collected 

via a densely clustered sensor network to effectively identify damage is presented in this 

thesis. The proposed method is an output-only method that is not limited to specific 

structural materials types or loading conditions. Knowledge of a baseline healthy state 

condition is required to which to compare the state in question to determine if damage 

has occurred.  

The damage indicating parameters are influence coefficients obtained by 

regressing the responses from two different points on the structure. Linear regression 

analysis is used for finding these parameters under the assumption of linear-elastic 

behavior in the structure before and after a damaging event. When damage occurs in the 

structure, the relationship between these two points change, in turn causing a change in 

the influence coefficient. With a densely clustered network of sensors, multiple influence 

coefficients can be determined. The pattern of change in this system of influence 

coefficients points to not only the existence, but also to the location of damage.  

A statistical framework is adopted to determine the change-point in the influence 

coefficient to determine damage to a significant level. This statistical analysis allows for 

simplified monitoring of changes in the influence coefficients as data is collected over 

time. Additionally, two parameters, evaluation accuracy and normalized estimation error, 

were introduced to determine which influence coefficients will be the most reliable 

damage indicators in a system. This is particularly useful in the instrumentation of a 

structure with a large sensor network, in which case the number of possible influence 
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coefficients likewise becomes large. Being able to determine the most reliable parameters 

reduces processing, allowing for more efficient damage identification. 

 This thesis presented three experimental applications for validation of the 

proposed localized damage detection method. The first specimen was a small-scale beam-

column connection that served to represent the local portion of a larger beam and column 

as they come to a joint. This model was also simulated in SAP2000 to verify the 

experimental prototype. The results of this application demonstrated the importance of 

using EA and γ for identifying reliable damage indicators. Additionally, it was seen that a 

typical pattern of change for damage shows the largest changes for pair-wise coefficients 

where each node is on an opposite side of the damage location. The coefficients with the 

smallest change are intuitively from nodes that are remote from the damage member. 

Hypothesis testing was used to statistically identify the damage. It was found that the test 

statistic will cross the confidence bounds earliest when the influence coefficient exhibits 

a large change in conjunction with large accuracy and low error values. The beam-

column was instrumented with parallel networks of wired and wireless accelerometers. 

The data was processed for each and compared side by side to investigate the 

performance of the WSN. The results showed that while the WSN data contained more 

noise than that of the wired network, the WSN was still effective in identifying damage. 

The second application that was presented involved simulated models and an 

experimental prototype of a two-bay, uneven span frame that was instrumented with 

wired accelerometers. The frame was developed with the intention of representing either 

a building frame or a bridge girder. Additionally, it was built with capability for a variety 

of damage combinations with nine distinct locations along the structure. The larger 
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structure also allowed for the implementation of a larger sensor network of 21 

accelerometers. In order to reduce the number of insignificant influence coefficient 

parameters, coefficients were obtained only for pairs within one of the three local joints.  

Simulated results showed that the damage that was created by a 20% stiffness 

reduction in the section, equal to a global stiffness reduction below 1%, had negligible 

effects on the global properties of a structure. Therefore, global methods would be unable 

to decisively identify the damage. However, simulations and preliminary experimental 

results showed that the proposed local method was successful in detecting damage within 

a local joint of the frame. The results showed difficulty, however, in identifying damage 

when it was simulated at the midspans, where no sensors were placed. This demonstrates 

the importance of a densely clustered sensor network; a higher density of sensors along 

the structure translates to a higher resolution picture of the structure’s condition.  

Experimental results were collected for four different loading types. One of the 

loading types was chosen as the optimal load for the experiment based on the evaluation 

accuracy and error terms associated with its data. However, the results were only 

preliminary and it is recommended that more research be done to find the ideal 

experimental conditions for the frame. The frame was also instrumented with 6 LVDTs 

and static testing was performed. The experimental displacements were compared to 

results for a model given all fixed and then all pinned supports. The experimental results 

matched neither simulation, but rather fell in between the two, indicating the need for an 

updated finite element model. However, this updating process is beyond the scope of this 

research. 



159 

 

The third and final application of the algorithm was an experimental large-scale 

earthquake moment connection. The connection was instrumented with 5 strain gauges 

for the purpose of this application and cyclically loaded to failure. Damage observations 

that were made throughout testing were used as a comparison point for the changes in 

influence coefficients as damage progressed. It was discovered that throughout the cycle 

of loading there were four distinct loading conditions, referred to as upward loading, 

upward unloading, downward loading, and downward unloading. Some of the damage 

identification was inconsistent between loading conditions, which points to the 

importance of recognizing the role that damage location and loading type play in damage 

detection. In certain combinations, they can cause damage to become more prominent or 

to go unnoticed by the influence coefficients. While data associated with each loading 

condition captured slightly different behavior of the structure, damage was decisively 

identified in all four cases. Furthermore, the influence coefficients obtained from the 

strain data exhibited very high accuracy and negligible error, compared to that of the 

acceleration data. Strain data was successfully used with the proposed algorithm. 

Therefore, one of the benefits of the proposed method is its applicability with a variety of 

common, easy-to-use, and affordable sensor types and loading conditions. 

While experimental tests and finite element model simulations have demonstrated the 

success of each of the localized damage detection method, there is still much to be done 

in the way of developing this method for application to full-scale, in-situ structures for 

continuous structural health monitoring. A number of benefits would result from 

continuous SHM including the abilities to monitor for early detection of damage, make 

educated decisions about repairs, save on costs, and prevent tragic structural failures. 
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Furthermore, the proposed local damage detection method could potentially be applied to 

earthquake-prone structures in order to get instant feedback on the health of a structure 

immediately following an earthquake load.  

Future research should focus on determining the optimal spatial density of the 

sensor network.  Additionally, further experiments should be conducted using the frame, 

or another experimental prototype, using varied combinations of damage location and 

severity to more quantitatively infer about the robustness of the method. The possible use 

of multivariate regression analysis should also be explored for cases in which linear 

regression does not suitably capture the relationships between nodal responses, such as in 

nonlinear behavior or cases where there are multiple dominant loading sources. Once the 

method has been proven extensively in the laboratory setting, a WSN should be deployed 

for semi-continuous monitoring of an in-situ structure to evaluate the performance of the 

method in a real-world application. Finally, a damage detection method is only as 

effective as the sensor network used to monitor the structure. Further research is required 

to develop a WSN that can realistically and reliably be implemented on real structures for 

long-term monitoring and to reap the potential benefits of this method. 
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