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Abstract

The use of geotextile tubes for flood mitigation, retaining systems and possibly in

containment and storage applications is gaining much attention in construction of

temporary and permanent geotechnical facilities. Although there have been many

successful applications of geotubes in these capacities, further 'Work is needed in

prediction of their performance.

In this study, three-dimensional finite element models of stacked geotubes in

ABAQUS are used to investigate their application as soil retaining structures. The

geotubes are modelled as flexible membranes filled with an elasto-plastic soil

material. A single geotube's geometry, obtained from ABAQUS, is validated by

comparison to the available experimental results in the literature. The verified model

of a single tube is then used as a starting point for stacked formations.

Various designs composed of stacked geotubes lining the face of an embankment,

were modelled using finite elements in order to investigate their impact on the

sliding stability due to gravity and surcharge loads. The stability of the system is

investigated for two slope angles, 45 and 55 degrees, as the proximity of the

surcharge load to the top of the embankment was also varied. ~

Four different designs of the stacked tube retaining structures were modelled using

finite elements (FEM). The first demonstrated a reduction in lateral movement of
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the embankment, but the model lacked the desired level of realism with the imposed

boundary of a rigid wall against the bottom tube. The second design proved to be

too difficult to model with finite elements when a geotextile blanket was integrated

with the stacked tubes. The third des~n, with evenly spaced stakes against the

bottom tube increased lateral movement of the embankment, but slightly reduced

plastic strains and shear stresses. The fourth and final design, which employed

variable size tubes increasing from top to bottom, was more stable than others, but it

increased deformation, shear stress, and plastic strain in the embankment.

1 Introduction

A wide range of methods is available for designing and constructing soil retention

structures that have been proven effective and efficient. Most of them, such as

reinforced concrete and modular walls, require design and construction expertise. In

an effort to develop a soil retention structure that can be constructed inexpensively,

quickly, and possibly by untrained labour, several designs of stacked soil filled

geotextile tubes are investigated. The only synthetic construction material required

for a structure of this nature is the geotextile. The tubes can potentially be filled with

on site soil or slurry. In the construction of these facilities, some experience will

certainly improve the installation however the need for skilled labour may be
(

minimal. This allows stacked geotube soil retention structures to be erected virtually

at any location by local work force in an inexpensive and timely fashion.
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There have been numerous studies conducted concerning the use of single or stacked

geotubes to be used as breakwaters and water retention structures [3, 4, 10, 11, 13,

16, 17, 20]. These studies have used physical, analytical, and finite element models

to predict behaviour and feasibility of such structures. Less research has been

conducted in the area of using geotube structures for soil retention. The following is

an attempt to nJrther the ability to predict the behaviour of geotextile tube soil

retention structure designs using a finite element model. Specifically, a design of an

embankment stabilization structure consisting of stacked tubes lining the face of an

unstable slope, subject to various surcharge loads is considered.

Conceivably, the simplest design for a geotube retaining wall would be a single tube

filled with soil laying on a stiff foundation with the soil slope on one side. The

effectiveness and stability of such a design could be determined analytically with
-(

minimal effort. However, when more complicated designs involving variations such

as multiple stacked tubes, sloping or unstable foundations, tube straps, tube anchors,

or dynamic loads, it becomes difficult tcr predict performance and reliability without

a physical model. It also may prove to be challenging to predict and prevent possible

failure modes.

Analytical or finite element models are possible alternatives to physical models.

Analytical models can become complex and unmanageable as the complexity of the

structure increases. Finite element models (FEM) can be difficult to construct and
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may require a certain level of expertise, however they can accommodate designs of

higher complexity. They also provide the ability to fine-tune a design by making

small modifications until desirable results are achieved, as was exploited in this

work.

"2 Background

2.1 Geotextile tube description

A geotextile tube can be described as a permeable geotextile wrap that is filled with

sand or dredged slurry material. The diameter of the tube depends on its application

and site conditions [1]. Its length also depends on these factors but in general can be

unlimited [11]. The term "geotube" can be synonymous with the term "geotextile

tube" and is the name of a copyrighted product by TenCate (originally by Nicolon).

Dating back to 1957, when the first sand filled flexible tubes were made, geotubes

. have since been put to many uses. They have been used successfully in applications

such as breakwaters, shoreline protection, island creation, sand dune cores, wetland

creation, groynes, jetties, and dikes [8]. They also can be used for dewatering fine

grained soils, industrial sludges, sewage treatment sludges, and agricultural farm

waste [12].

In construction, the geotextile tube arrives on site rolled up on a tube [8]. The tube is

then laid flat at the location of installation. ' Sand or dredged material slurry, often
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from on site or local quarry, is then pumped into the tube through inlets spaced along

the length of the tube. The geotextile then acts as a cheese cloth letting the slurry

water to drain out but retaining the soil. Depending on the geotextile permeability

and soil particle size within the tube, the inlets should be close enough so the water

does not drain out before it can transport the soil evenly between the inlets [15].

One of the primary advantages to geotube structures lies in their construction. As

was previously mentioned, the only construction material needed to be manufactured

and brought to the construction site is the geotextile. The tubes can be constructed in

challenging site conditions such as underwater or in wetlands. The process has a

minimal impact on the surroundings due to fewer personnel, materials, and

construction equipment normally needed than other types of construction for similar
I'

functionality.

There are several factors of safety regarding different aspects of the product that

must be taken into consideration when selecting a geotextile to use as a geotube.

The first three deal with the strength of the geotextile; an installation damage factor

of safety, a seam strength factor of safety, and an ultimate strength factor of safety

[15]. During installation there could be unusual excessive loads caused by

irregularities in pumping rate and pressure. During the tube's lifetime the ultimate

strength of the material certainly is important as it will govern when it begins to tear,

however the seams of the tube are the weak links. A creep factor of safety should

also be considered. The geotextile will undergo creep behaviour resulting in a

5



reduction in ultimate strength over time [15]. Other factors of safety to consider are

for biol9gical degradation, chemical degradation, and degradation caused by ultra

violet radiation [15]. Specifically, the geotextile should be resistant to salts, alkalis,

and acids [8].

Apparent opening size is another important aspect of geotextile selection. The

material must be such that water is allowed to escape, but all of the soil particles are

retained. A perfect retention is not as important for geotube used in structures as it is

for tubes used for filtration applications [15]. Different design and test methods for

selecting an effective apparent opening size and permeability for a geotextile can be

found in text by Koerner [12]. This consideration is important if an on site soil is

used to fill the tubes.

2.2 Recent Background on Geotextile Tube Modelling

In 1981, Gen S. Liu defined and solved the governmg differential equations

predicting the shape of a geotube filled with sand or cement slurry [16]. Uu also

gathered experimental data to verify the numeric model [16]. Uu studied the use of

the geotubes as breakwaters in a surf zone along the coast.

Since Liu's experiments, other researchers such as, Silvester, Carroll,

Kazimierowicz, and Leshchinsky have presented numerical approaches to geotube

6



design considering geometry, stresses, and internal and external pressure factors [6,

10, 14, 15,20].

Adama Engineering, offers GeoCoPS (Geosynthetics Containing Pressurized Slurry),

a software package used for geotube design. The software is supplemented by a

complete numeric explanation as well as discussion regarding materials and

construction procedures [14]. Results from GeoCoPS for specific tubes are

compared to results for the same tube from methods presented in the past by Uu,

'Silvester, Carroll, and Kazimierowicz [6, 10, 16,20].

Nicolon, now part of TenCate, is also a manufacturer of geosynthetics and

commissioned Delft Hydraulilcs in 1994 to conduct physical modelling and reseatch

on the use of submerged geotubes and geocontainers as breakwaters [4]. The

research involved various stacking formations and their stability when subjected to
L

waves. The two factors that were varied were significant wave height and water

depth over the crest of the structure.

Seay [18] presents a three dimensional finite element model of a section of a

geotube. Various tube sizes were modelled using shell elements with small bending

stiffness. The tubes, initially empty and flat, were inflated with an internal

hydrostatic pressure. Variations, such as altering the internal pressure, were made in

the models. The effects on tube height, ground contact length, and shell stresses

were observed.
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Klusman developed a numerical model of a fe~ geotube stacking configurations

[11]. His model predicted that a 2:1 pyramid stacking formation when loaded with

water on one side would remain stable when triangular wedges are placed at the base

of the tubes to prevent sliding of the stack. Mohler and co workers [17] conducted

work on a physical model of three-tube stacking formation of water filled tubes for

levee construction. The study showed that sliding was a prominent failure mode and

that strapping the tubes together was an essential part of the structural stability.

Cantre developed a two-dimensional finite element model of a geotube cross section

[5]. This model investigated the effects of consolidation and loads from other

stacked tubes on tube geometry.

2.3 Case Studies

Since 1967 flexible plastic fabric tubes have been used as a means of coastal

protection along the German North Sea coast [7]. From 1967 to 1986 there were five

types of geotextiles used. These tubes were constructed for groynes on tidal flats,

retaining dikes in tidal flats, stabilization of beach nourishment, and an emergency

closing of a dike breach. In 1979 geotextile samples that were both exposed to the

sun and hidden from the sun were taken from tubes. The samples protected from the

sun showed a 10% reduction in tensile strength. The samples exposed to sunlight

showed reductions in tensile strength up to 56%. These studies showed that

8



geotubes can be used successfully in coastal applications protected or unprotected

from sunlight for time periods ranging from 1 to 2 decades.

In 1990 a series of storms threatened the historic house Kliffende on the western

shore of the Isle of Sylt, Germany [9]. Perched atop a coastal cliff, erosion brought

the edge of the cliff only 5.4 m away from the building, whereas when the house was

built in the 1920's the cliff was 80 m away. Due to the site's location in a nature

reserve, "hard" structures such as concrete blocks and rock revetments were not

desirable. A terraced system of geotextile tubes 8 m high was constructed to protect

the coastal region directly in front of the house. The structure has performed well

and since construction has weathered storm surges with waves up to 5 m high.

At the Naviduct in Enkhuizen, Netherlands, geotubes are used as the core for guide

dams. The Naviduct can be thought of as a cross between an aqueduct and a bridge.

It is a water way suspended over land for boats where automobile traffic can pass

underneath. In 'Construction of the Naviduct, the excavation material was directly

used to fill the tubes, resulting in a sustainable construction process. Unless confined

in an innovative way, such as a geotube, the excavated soil there would have been

too fine to use in dam construction. The tubes were laid where the dam was to be

and then covered with a rock layer for protection [21].

The Amwaj Island off the coast of Bahrain in the Arabian Gulf was created using

geotubes [8]. The 2.79 million square meter island was created to provide land for

9



houses, hotels, commercial real estate, and marinas. A two tube staggered stack

creates a perimeter for the island that is filled with locally dredged sand. The height

of the two tubes reaches 4.6 meters. After filling the tubes, they are covered with

rock in some areas and sand in other areas to create beaches. The two tube stacking

of Amwaj Island formation is similar to the design discussed in this study.

3 Analysis

3.1 Scope

The primary challenge in the finite element modelling of geotubes is the difficulty of

capturing the influence of their construction stages on the time dependant and hence

behaviour. Typically, the construction process starts with a permeable geotextile tube

that is laid empty on the ground at the desired location. It is then filled by pumping

in a soil-water slurry mix. The water then seeps out through the pores in the

geotextile leaving a packed saturated mass of soil inside the tube. The tube solidifies

as the viscous slurry inside looses its water over time. During the tube's viscous

phase, the equilibrium shape of the geotube cross-section is determined as a function

of the pumping pressure and the unit weight of the slurry [14, 15]. Once the tube has

drained and is solid, it possesses the shear and compressive strength needed to

function as a self-standing stable structure.
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Establishing a finite element model that incorporates these fundamental material and

geometric changes occurring simultaneously proves to be demanding. This

challenge can be overcome by creating a series of "sub-models", each simulating a

different stage of the tubes. The results from each of these sub models can then be

used as initial conditions for the subsequent one, resulting in an integrated model

describing the behaviour of the finished structure.

The geotube stack design presented here is intended to stabilize the slopes of an

embankment that is subject to a surcharge load from a road at the top of the

embankment. Two slope angles are considered: 45 and 55 degrees. The slopes are

prone to failure along a computed toe-slip plane as shown in Figure 3.1.1. The stack

oftubes, as shown in Figure 3.2.1, is used to restrain lateral movement. Various

models for each slope angle with surcharges placed at several positions in proximity

to the top of the bank are investigated.

\

FAILURE

Figure 3.1.1. Failure Surface.
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3.2 Modelling Approach

ABAQUS 6.7 was used in the development of finite element models of stacked

geotextile tubes. A typical design involved the three tubes resting on a deformable

embankment, as seen in Figure 3.2.1.

zyJ-x

Figure 3.2.1. Typical stacking formation (depicted with boundaries of Design 3).

While there was an evolutionary process in developing an effective and realistic

design, the modelling procedures and techniques were the same for all of the models.

All of the designs modelled, depicted typically in Figure 3.2.1, were similar enough

12



INTENI10NAL SECOND EXPOSURE

3.2 Modelling App,"oach

:\BAQlIS 6.7 \\<lS used in the development of linite clement models of stacked

geotextile tubes. i\ typical design involved the tbree tubes resting on a deformable

embankment. as seen in Figure 3.2.1.

Figure 3.2.1. Typical stacking formation (depicted with boundaries of Design 3).

While there was an evolutionary process in developing an' eftective",and' realistic

design. the modelling procedures and techniques were the same f01~ all of the n-iodel~.

All of the designs modelled, depicted typically in Figure 3.2,.1: were similar ,,-,,vC',b'"



so that the sub-modelling process was the same for all of them. The first sub-model

consisted of only one tube, the bottom tube in the. stack, represented as a hollow

membrane resting on a rigid surface of the embankment slope under consideration.

In this sub-model, only the viscous stage of the tube's life is modelled. This stage

provides the initial tube geometry.

In the first sub-model, the tube is initially a uniform cylinder with zero bending

stiffness that rests on a flat surface, with the embankment slope on one side. It is

subjected to an internal hydrostatic pressure simulating the liquid slurry load that the

tube would experience in the pumping process. The tube then deforms on the

surface until it reaches its equilibrium shape. The tube was originally positioned so

that it would deform onto the embankment creating a contact surface.

The final geometry from the first sub-model serves as the initial shape of the bottom

tube in the stacked formation. In the next sub-model, the bottom tube is replaced by

a solid mass of soil in the shape determined from the first sub-model. This solid tube

is surrounded by a thin skin acting as the geotextile. A hollow cylindrical membrane

tube, identical to the initial tube in the first sub-model, is then placed on top wedged

against the slope. The goal here is to determine the geometry of the second tube in

the stack. The same process is used to obtain the geometry of the top tube.

13



Once the geometry of all three tubes is determined and the solid tubes are in place,

the flat surface the tubes were resting on and deforming against is replaced by a

deformable solid embankment.

The hollow membrane tubes essentially represent mass-less hydrostatically loaded

tubes internally. It is for this reason, that they are only used for determination of

geometry. Once the solid tubes are in place, they posses the internal shear resistance

developed in the soil that contributes directly to the structure's load carrying

capacity. It is this shear resistance, combined with the compressive strength of soil

and the friction interactions between the tubes and the foundation that allow the stack

to retain its shape and carry load.

During the sub-modelling process, it became evident that the structure would fail by

means of sliding. The bottom tube would not remain in place when the other two

were loaded with gravity thus causing the whole structure to slide down the

embankment. A simple solution to this is to restrain the bottom tube from sliding.

This turned out to be the primary design challenge in getting the structure to perform

correctly. However, initially in all of the sub-models, a boundary condition was

imposed on the bottom tube that prevented it from sliding. This was done in order to

obtain all of the initial tube geometries without having to consider structural stability

and performance until later when the stack and foundation were assembled together.
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Other potential failure modes, besides sliding, are overtopping, rolling of individual

tubes, or foundation soil bearing failure. It is likely that if any of these failure modes

were to occur in the model, the ABAQUS solver simply would produce an error for

the modelled section indicating that a solution for the stiffness equations behind the

model did not converge. This most likely would be due to excessive deformations

and stresses. The models created in this study are limited by the fact that ABAQUS

cannot simulate these failure modes. If a solution to a model does not converge, it

can be inferred that one of the possible failure modes may be occurring.

Adjustments can then be made to the design in the model to obtain structural

stability, but the exact nature of the failure may not be known for sure from these

models.

3.3 Assumptions

The following assumptions were made when modelling the tubes.

• The effects of soil consolidation on tube geometry and tube strength are

small.

• The geotextile strength is not exceeded.

• Effects of seams and local imperfections in the geotextile on tube geometry

and tube strength are neglected.

• The geotextile does not slide relative to the soil inside the tube once filled.

• Bearing capacity failure does not occur.
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4 Initial Slope Stability Analysis

4.1 Classical Analysis

Before any results from the finite element models of the different designs can be of

use, the initial state of stability for the slope itself should be obtained. For this,

Slope/WTM (GeoStudio, 2004) was used for this purpose. A slope stability analysis

was conducted on 45 and 55 degree slopes modelled with the same geometry and

material properties that were to be used in the ABAQUS models. The height of the

45 degree slope embankment model was selected 3.2 meters, while the 55 degree

slope embankment height was 3.5 m. These heights were based on the height of three

stacked tubes. The soil in Slope/WTM was defined as a Mohr-Coulomb material with

total unit weight of 19.26 kN/m3
, <p = 35.3°, and c = 1.484 kPa. The soil friction

angle and cohesion values, <p and c, relate to the ~ and d parameters that ABAQUS

uses as for the Cap Drucker-Prager soil model, as shown in equations 1 and 2 below.

tan(,B) = 6sineqJ) (l )
3- sin(qJ)

d =18ccos(qJ)
3- sin(qJ)

(2)

A factor of safety of 1.1 was determined for the 45 degree slope according to both

the Bishop's method and the Morgenstein-Price method. The 45 degree slope at 3.2-

meter height is stable only by a small margin. This state serves as the reference state
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representing the stresses and strains at the verge of failure. These will be compared

to the resulting stress and strain levels when the stacked tubes are mounted in place.

For the 55 degree slope, a factor of safety of 0.87 was determined again using both

the Bishop's method and the Morgenstein-Price method. According to this analysis,

the slope at the height of 3.5 meters, is unstable and would fail. A second analysis of

the same slope at 3.0-meter height was carried out. This yielded a 1.00 factor of

safety according to Bishop's method and a 0.99 factor of safety according to the

Morgenstein-Price method. The maximum stable height for this soil in a 55 degree

slope is 3 meters. A model of this slope was also run in ABAQUS. The expected

outcome of the ABAQUS analysis was the reduction of stresses and strains for these

critical slope configurations with the application of the geotube structures.

Originally a failure criterion was adopted by considering the critical slope stresses

and strains "safe" and if they were exceeded in models with the tubes in place, the

slope could be considered to have failed. However, the weight of the tubes changed

the deformation behaviour of the embankment making it difficult to directly compare

stresses and strains to the stable slope. For example, the maximum strain might be

greater in a case with the tubes in place, but this strain could be at a location in the

embankment that has a minimal effect on the slope's stability. To overcome this

incompatibility, it was decided to compare specific stress and strain components at

several selected locations in the embankment. In doing so, the geotube structure's

affect on the stability of the slope can be gained only through the improvement of
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stress and strain fields at critical locations, but an exact quantitative analysis of the

slope's stability can not be carried out.

The strains used in the comparisons are maximum principal plastic strain vectors,

lateral strains, and plastic strain magnitudes. For the slopes with no tubes, the

plastic strain vectors provide information on the location and the possible mechanism

of failure. The lateral strain component is considered as a representation of the

magnitude of movement of the slope. This is relevant since one of the main goals of

the tube structure is to prevent or reduce lateral movement of the slope.

The plastic strain magnitudes throughout the embankment give a general indication

of how the tubes affect plastic deformation behaviour. This is relevant because,

while plastic strain mayor may not mean failure, it nevertheless provides an idea of

where the failure will most likely occur. Based on that information, values for stress

and strain can be compared between models at the locations that have been identified

as important or critical. These critical locations can, of course, be correlated and

verified with other results such as lateral deformation and maximum stresses.

The stress used for comparison purposes is the x-y shear stress. This is the shear

stress that has a vertical and horizontal component when looking at the x-y cross

section of the embankment. It is the resisting shear component that provides strength

when the slope is deforming laterally. It also is associated directly with the lateral

strains compared between models. However the x-y shear stress may not be the
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maximum shear component present at a given location. It is likely that the maximum

shear stress orientation varies with location.

Since the 3.2-meter high 45 degree slope was determined to be stable with a factor of

safety of 1.1, the ABAQUS was expected to demonstrate how the stability would be

affected by tube placement. The original 3.5 meter high 55 degree slope was

determined to be unstable. Its height had to be reduced to 3.0 meters in order to get a

factor of safety of 1.0 in Slope/WTM.

4.2 Finite Element Analysis

Slope/WTM was used to determine of the critical slope geometry. The same slopes

were modelled in ABAQUS to obtain actual stress and strain values within the

embankment, including the critical slip surface area. ABAQUS analysis results of

stress and strain distributions within the soil mass in the embankment were used to

compare the slope behaviour with and without the geotubes, both configured at the

critical geometry. ABAQUS could be used to predefine failure in the embankment

along with the selected cap plasticity soil model. Hence, the stable slope models'

results (from ABAQUS) are important because they serve as the baseline for the

occurrence of failure when comparing results from models with the tube structure in

place.
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Cap Plasticity is selected as the constitutive model to represent the expected

behaviour of the soil in the embankment and inside the tubes. Tables 4.2.1 and 4.2.2

contain the soil parameters used to define Cap Plasticity behaviour in ABAQUS.

The representative parameters used in this model were experimentally determined by

Shoop et al [19] for Lebanon Sand.

Table 4.2.1. Elastic and Plastic parameters for Lebanon Sand [19].

Elasticity
Young's Modulus E = 8.5 MPa

Poisson's Ratio v = 0.45

Mass Unit Weight V= 75 kg/m3

Plasticity
Cohesion d= 10,000 Pa

Angle of Friction f3 = 55.8°
Cap Eccentricity R = 0.45

Initial Yield Surf. Position E. = 0
Transition Surf. Radius 0=0

Flow Stress Ratio K=1

Table 4.2.2. Cap hardening data for Lebanon Sand [19].

Yield Volumetric
Stress (Pa) Plastic Strain

8200 0
38900 0.009

76000 0.022

163900 0.038
365500 0.054
720100 0.072

The embankment is modelled as a block of soil. It is composed of the same Cap

Plasticity soil that fills the tubes (Tables 4.2.1 and 4.2.2).
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The following results are presented in sections of three dimensional finite element

models of each embankment under consideration. The typical embankment

configuration is shown in Figure 3.2.1, with the exact dimensions varying with slope

angle and height for specific models. The sections are six meters thick and are

intended to be representative of a much longer embankment. The sides and ends of

the embankment in the model are restrained to movement within their own plane.

The base of the embankment is restrained from movement in all directions. Three

dimensional stress elements with reduced integration are used. The mesh size is

about OJ m in the zone near the slope and increases to about 0.6 m elsewhere. Only

gravity loads are applied in the stable slope models.

The first slope modelled in ABAQUS was the 45 degree slope with a factor of safety

of 1.1. Figure 4.2.1 illustrates this slope with the initial and deformed geometries

superimposed. Displacements have been scaled up by a factor of 10 to show the

slope's movement more effectively. Figure 4.2.1 shows that the top of the slope is

moving to the left and the bottom is moving to the right. Meanwhile, all locations

are moving downwards. Similar deformation behaviour occurs in the 55 degree

slope. Figures 4.2.2 and 4.203 illustrate maximum principle plastic strain vectors due

to a gravity load in the 45 and 55 degree slopes.
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Figure 4.2.1. Defonned 45 degree slope scaled up ten times.
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Figure 4.2.2. Plastic strain vectors for 45 degree, 3.2 meter high stable slope.
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Figure 4.2.1. Deformed 45 degree slope scaled up ten times.
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Figure 4.2.2. Plastic strain vectors for 45 degree. 32 meter high st.able slope.
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Figure 4.2.3. Plastic strain vectors for 55 degree, 3.0 meter high stable slope.

The vectors show that the slope deforms most plastically near the surface of the

slope and about the toe as expected. One of the goals of using the stacked tubes will

be to reduce these plastic strains at the toe.

Figures 4.2.4 and 4.2.5 show the plastic strain magnitude contours for the two slopes

respectively. These figures can help to identify critical or high strain locations in the

embankment and confirm other inferred behaviour about the embankment's

deformation.



y-J Step: Surchirge
Increment 1: Step Time' 1.DDD
PrimiryVir. PEMAG
Deformed Vir. U Deformition Scale FiC!Or. +l.DDDe+DD

Figure 4.2.4. Plastic strain magnitudes in 45 degree stable slope, H=3.2 m.
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Figure 4.2.5. Plastic strain magnitudes in 55 degree stable slope, H=3.0 m.
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The plastic deformation can also be presented only in terms of lateral strains. This is

useful because much of the success or failure of the tube stack for slope stabilization

is based on its restrictive ability of the lateral movement of the slope. Figures 4.2.6

and 4.2.7 illustrate that the distribution of lateral plastic strains on the face of the

slope increases downward and peaks at the toe, as expected. One item to note is that

in the 45 degree slope the lateral plastic strains increase gradually and are highest at

the toe. In the 55 degree slope, the strains down the face of the slope are very small

in comparison to the strains right at the toe.
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Figure 4.2.6. Lateral plastic strain along 45 degree slope face; H=3.2 m.
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The plastic dcf()rmation can also be presented only in terms of lateral strains. This is
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is based on its restricti\e ability of the lateral movement of the slope. Figures 4.2.6

and 4.2.7 illustrate that the distribution of lateral plastic strains on the l~1Ce of the

slope increases downward and peaks at the toe. as expected. One item to note is that

in the 45 degree slope the lateral plastic strains increase gradually and are highest at

the toe. In the 55 degree slope. the strains down the t~lce of the slope are very small

in comparison to the strains right at the toe.. .
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Figure 4.2.6. Lateral plastic strain along 45 degree s1c1pe LlCe: H=3.2 m.
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Figure 4.2.7. Lateral plastic strains along 55 degree slope face; H=3.0 m.

Another possible representation is in terms of deformations. Contours of lateral

movement are shown in Figures 4.2.8 and 4.2.9. The two slopes behave the same,

with the 55 degree slope deforming slightly less.

/
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Figure 4.2.8. Lateral defonnation of 45 degree slope; H=3.2 m.
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Figure 4.2.9. Lateral defonnation of 55 degree slope; H=3.0 m.
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Figures 4.2.8 and 4.2.9 show that the highest deformation occurs directly below the

slope moving approximately 1.7 em to the right for both slopes. The lateral

movement at this location most likely influence the stability of the slope, but it does

not coincide with the location of the maximum plastic stains and, as will be shown

shortly, the maximum shear stresses. Therefore the movement at this location is of

less concern. It is likely that the deformations here are mostly elastic. The soil at

this location is subjected to a much higher hydrostatic pressure than the soil on the

slope surface due to its depth. This will move its yield surface in the cap plasticity

model and allow for higher elastic strains to occur before plastic yielding begins.

Figures 4.2.10 and 4.2.11 show the distribution of x-y she&r stresses for the 45 and

55 degree slopes. As seen, the shear stress values within the embankment are similar

in both magnitude and location only slightly higher in the 55 degree slope.
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Figure 4.2.10. x-y shear stress distribution for 45 degree slope; H=3.2 m.
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Figure 4.2.11. x-y shear stress for 55 degree stable slope; H=3.0 m.
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Based on Figures 4.2.10 and 4.2.11 it is clear that the highest shear stresses are

present at the toe of the slope. This is consistent with Figures 4.2.2 through 4.2.7

which show that the highest plastic strains also occur at the toe of the slope.

According to plastic strains and shear stresses, the toe is a crucial point in the slope.

Based on the stable slope models, five regions of the embankment were selected to

compare stress, strain, and deformation results between models, as shown in Figure

4.2.12. These locations are all in areas relevant to slope stability. Their

corresponding stress and strain values are shown in Tables 4.2.1 and 4.2.2. These

values will be compared to results from later models with the geotube structure in

place.

\ \ \ \ \ ~1
\ \ \ \ \ \ ~l2\ \. \ \ \\ I......TI tm., \ \ \ \ \ ") ;I

'V7
\ \ \ ( ""i\i Y'i1\ ." fA... -

.<1

( ~
.... ,

4
y-J

Figure 4.2.12. Selected critical locations for comparing results.
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Table 4.2.1. Stress and strain results at selected locations for 45-degree stable slope
model. "

45° - Stable Slope - Gravitu Load
Lateral Plastic

Displacement Strain x-y shear
Location (cm) Magnitude stress (Pa)

1 -0.39 0.0023 -9801
2 0.45 0.005 -12420
3 0.65 0.0066 -14326
4 1.79 0.0098 -9311

5 1.18 0.0064 -5937

Table 4.2.2. Stress and strain results at selected locations for 55-degree stable slope
model.

55° - Stable Slope - Gravity Load
Lateral Plastic

Displacement Strain x-y shear
Location (cm) Magnitude stress (Pa)

1 -0.23 0.0042 -10585
2 0.57 0.0069 -12487

3 0.76 0.011 -16379
4 1.6 0.0091 -10271

5 1 0.0062 -8669

The fil}ite element models constructed cannot simulate the formation of a slip circle

as was shown in Figure 3.1.1. The assumption was made that the stack would

directly restrain a soil slip circle from forming. Deep failure was not considered in

any analysis or model and was assumed to not be a potential failure mode.
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5 Preliminary Models

Before an effective design for a soil retaining wall composed of stacked geotubes

could be developed, some preliminary models were needed. The purpose of these

models was to first verify that the modelling techniques did in fact yield realistic

results. Next, the procedure of sub-modelling and model assembly was explored and

refined until models of different designs could be created and evaluated with ease.

5.1 Verification Model

A finite element model of a single tube was initially created and results were

compared to available experimental data from literature. If the geometry from this

initial model matched experimental data, the validity of the modelling techniques

used and the results of subsequent models would be verified.

Liu [16] conducted a study where experimental results were used to verify a numeric

model. The experiment consisted of a water-cement slurry filled tube of 1.04 m in

circumference, which reached a height of 24.5 cm after deformation. A tube of same

dimensions was modelled in ABAQUS using membrane elements with a mesh size

of 3.7 cm. It was internally loaded with hydrostatic pressure considering the unit

weight of the water-cement slurry to be twice that of water [16]. Table 5.1.1

summarizes the difference between the results of Uu's experiment and the finite

element model. In this table "height" refers to the final tube height after being filled
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or loaded with slurry and "base" refers to the length of the contact region for a cross-

section view of a deformed tube. Figure 5.1.1 shows the final geometry of the

finite element model compared to the final geometry of the tube in Uu's experiment

[16]. Using a finer mesh can reduce the magnitude of the error shown in Table 5.1.1.

Table 5.1.1 Validation data for single slurry filled tube.

FE Model Liu [7] Data Error

Height (m) 0.24 0.245 2.0%

Base (m) 0.22 0.25 12.0%

Verification Model Data

~Liu--_.---'--H--- -------':I~t--.----~---

,-----------,---..I---B---I-------l...---r-------,

-30 -20 -10
---------~r__'_--

10 20 30

Figure 5.1.1. Verification model compared to Liu [16].

The most notable difference lies in the base contact area. However, the general

shape of the deformed finite element model is very close to Liu's experimental data.
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5.2 Sub Models

Different sub-models, each representing a different construction phase, were used in

creating the completed model. The purpose of each sub-model is to determine

initially geometry for one tube at a time.

5.2.1 Sub-model 1: Single membrane tube.

Liu [16] tested much smaller tube dimensions than would be used for an actual

geotube structure. In the first sub-model, a single hollow membrane tube is defined

as a uniform cylinder 2 m in diameter, 6 m long, with a wall thickness of 3 mm.

This tube then was placed on an analytical rigid surface in the desired embankment

shape near the toe of the slope. Aside from the scale-up dimensions, and the

corresponding larger loads, the model is identical to the one that is used to model

Liu's tube. First order rectangular membrane elements, approximately O.l2m x

0.12m, were used in the discretization of the tube. Reduced integration was used to

shorten the computation time. The membrane elements were defined as an isotropic

linear elastic material with Young's Modulus of 7.035 GPa, Poisson's ratio of 0.45,

and a mass density of75 kg/m3
, as given by Seay [18].

The model is oriented so that the origin of the system coordinates is at the toe of the

slope. The x-axis runs parallel with the length of the tubes, the y-axis runs
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horizontally perpendicular to the length of the tubes, and the z-axis runs vertically

towards the top of the structure, depicted as the coordinates 1,2 and 3 in Figure

5.2.1.1. The model is a representative segment cut out of a much longer tube. The

two ends of the tube segments are restrained in the x-direction.

The membrane tubes are also restrained along their vertical centrelines running along

the vertical planes of symmetry in z direction. These centrelines are restrained from

movement in the x and y directions. The x restraint will prevent wrinkling of the

membrane elements from occurring. The y restraint will provide lateral stability for

the tube when it is deforming. These restraints proved to be essential if a converging

solution was to be found by ABAQUS for deformation of membrane tubes under

internal hydrostatic loads. A contact interaction is defined between the tube and the

rigid surface it is resting on. This effectively creates a restraint along the z-axis on

the bottom of the tube.

The analysis of the single membrane tube is divided into four steps. First a uniform

internal pressure of 12.36 kPa is applied. This is essential for the use of membrane

elements here. This keeps the membrane in constant tension throughout the analysis

and eliminates the possibility of wrinkling which would quickly lead to instabilities.

Next a hydrostatic pressure is applied to the inside surface of the tube. The

magnitude of the pressure is based on the unit weight of the soil-cement slurry,

which Liu [16] used and is considered to be representative of the unit weight of a

soil-water slurry that would be used in geotube construction. The hydrostatic
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pressure has a maximum value of 41.20 kPa at the base of the tube and is set to zero

at an elevation of 2.1 m. The 2.1 m elevation is above the top surface of the tube.

This configuration simulates the pumping pressure when the tube is being pumped

full of slurry [18]. Once the tube has deformed under the hydrostatic pressure, the

initial uniform pressure is removed. Finally, gravity is applied to the tube resulting

in an additional small amount of deformation. The initial and deformed shapes of

the single tube can be seen in Figures 5.2.1.1 and 5.2.1.2. This resulting deformed

shape is used as preliminary geometry for the bottom tube in stacking configuration.

:step: Gr.v1ty
:Incre.aent. 11 :step Tiae. 1.000

Figure 5.2.1.1. Sub-model 1: Initial shape. (The coordinates labelled as 1,2 and 3

correspond to model coordinates ofx,y and z, respectively).

36



INTENTiONAL SECOND EXPOSURE

Step' GL1\l~ty

Increment 1: St.ep T:lTlle "" 1 000

pressure h'1S a ma:\imum value or 41.20 kPa '1t the base or the tube and is sct to ZCl"O

at an ele\'1tion or 2.1 m. The 2.1 m elev'1tion is above the top surl~1Ce or the tube.

This conliguwtion simulates the pumping pressure when the tube is being pumped

rull or slurry 11 BI. Once the tube has derormed under the hydrostatic pressure. the

initi'1l unirorm pressure is l"Cmo\ed. Finally. gravity is applied to the tube resulting

in an additional sm'1ll amount or dcrormation. The initial and dcrormed shapes or

the single tube can be seen in Figures 5.2.1.1 and 5.2.1.2. This resulting derormed

shape is used as preliminary geomctry ror the bottom tube in stacking configuration.

Figure 5.2.1.1. Sub-model 1: Initial shape. (The coordinates labelled as 1.2 and 3

correspond to model coordinates of :\.y and z. respectively).
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Figure 5.2.1.2. Sub-model 1: Deformed shape.

5.2.2 Sub-model 2: Solid bottom tube and membrane middle tube.

Using the deformed geometry obtained from the membrane model, a tube identical in

shape and size is defined. This time, however, the tube is a solid mass ofmaterial.

A skin is defined on the outer surface of the tube to represent the geotextile. The

skin is assigned the same membrane elements used in the membrane models and

simulates the geotextile surrounding the soil in the tube. The soil filling the tube is

discretized into 0.12 m sized rectangular elements. A first order three dimensional

stress element is used with reduced integration.

The solid tube is placed on the same analytical rigid surface that was used in sub-

modell. Its ends are restrained in the x-direction (axially). A coefficient of friction

of 0.5 is defined between the tube and the soil slope surface [5].
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Figure 5.2.1.2. Sub-model 1: Deformed shape.

5.2.2 Sub-model 2: Solid bottom tube and membrane middle tube.

Using the deformed geometry obtained hom the membrane model. a tube identical in

shape and size is delined. This time. however. the tube is a solid mass of material.

A skin is delined on the outer surface of the tube to represent the geotextile. The

skin is assigned the same membrane elements used in the membrane models and

simulates the geotextile surrounding the soil in the tube. The soil filling the tube is

discretized into 0.12 m sized rectangular elements. A first order three dimensional

stress element is used with reduced integration.

The solid tube i~ placed on the same analytical rigid surface that was used.in sub-

model 1. Its ends are restra.ined in the x-direction (axially). A c.oefticient of friction
.'

of 0.5 is defined between the tube and the soil slope surface [5]..
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The membrane tube in the middle is also restrained in the x and y directions along its

vertical centrelines, similar to sub-model 1. The membrane tube is also initially

restrained in the z-direction along its bottom centreline. It is positioned out of

contact with the rest of the model in such a way that when deformed 0.1 m

downward, it will barely come into contact with the slope and the top of the bottom

tube. A coefficient of friction of 0.3 is defined between the tubes to capture the

behaviour of the tubes sliding relative to each other [31.

The membrane tube is then loaded internally with a uniform pressure of 12.36 kPa as

before. The tube is then entirely allowed to deform downwards to initiate contact

with the bottom tube and the slope. This movement is defined in the model on only

the top half of the tube. In doing this, the bottom half of the tube is free to deform

when contact occurs. It acts like an air filled cushion providing a "soft contact".

Otherwise, if the movement was defined on the bottom half of the tube as well, it

would not stop at contact with the other surfaces, leading to large stress and strain

concentrations developing at the contact points and could prevent a solution. Once

this contact is established, gravity is applied to keep the tube in place. Next, the

hydrostatic pressure is applied in the same manner as that of the bottom tube

followed by the release of the initial uniform pressure. The deformed shape of the

middle tube membrane obtained as shown in Figure 5.2.2.1. This established

geometry is used as the initial shape when defining the solid tubes in the next phase

of the completed stacked model.
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Figure 5.2.2.1. Sub-model 2: Deformed shape.

5.2.3 Sub-Model 3: Solid bottom two tubes with membrane top tube

The loading and restraint schemes of sub-model 3 are identical to sub-model 2. Sub-

model 3 contains a solid middle tube stacked on the bottom tube. A membrane tube

is loaded to determine the shape of the top tube. The deformed stage of sub-model 3

is shown in Figure 5.2.3.1
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Figure 5.2.2.1. Sub-model 2: Deformed shape.

5.2.3 Sub-Model 3: Solid bottom two tubes with membrane top tube

The loading and restraint schemes of sub-model 3 are identical to sub-model 2. Sub-

model 3 contains a solid middle tube stacked on the bottom tube. A membrane tube

is loaded to determine the shape of the top tube. The deformed stage of sub-model 3

is shown in Figure 5.2.3.1
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Figure 5.2.3.1. Sub-model 3: Deformed Shape.

5.2.4 Complete Stack: All solid tubes on soil slope and foundation.

The final assembled model includes the three solid tubes resting on the embankment.

(Figure 3.2.1). At this point, however, only the tubes' initial geometry has been

obtained. They are not acting in any way as a soil retention structure and up until

now, and the bottom tube has been restrained laterally in the interest of temporarily

stabilizing the structure. The tubes are placed on an unstable embankment, as

determined from the earlier slope models, and any artificial restraints must be

removed. The embankment is modelled the same way it was for the slope models.

A section of the completed model is shown in Figure 6.1.1.1.
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Figure 5.2.3.1. Sub-model 3: Deformed Shape.

~

5.2.4 Complete Stack: All solid tubes on soil slope and foundation.

The final assembled model includes the three solid tubes resting on the embankment.

(Figure 3.2.1). At this point. however. only the tubes' initial geometry has been

obtained. They are not acting in any way as a soil retention structure and up until

now. and the bottom tube has been restrained laterally in the interest of temporarily

stabilizing the structure. The tubes are placed on an unstable embankment. as

determined from the earlier slope models. and any artificial restraints must be

removed. The embankment is modelled the same way it was for the slope models.

A section of the completed model is shown in Figure 6.1.1.1.·
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As the stack of solid tubes was placed on the modelled embankment and loaded with

gravity, it was clear that the structure was failing by means of sliding. This had been

observed earlier. This specific failure mode was confirmed by running models with

and without lateral restraints on the bottom tube. The ABAQUS solver could obtain

a converging solution when gravity was applied with the restraints for sliding. The

solver was unable to complete the analysis, indicating a divergence from a solution

when the same model was run without restraining the bottom tube.

6 Retaining wall designs

The following models are all different design attempts aimed at achieving two

things: a stable structure and a structure that improves slope stability. The stability

of the structure relies on the bottom tube remaining stationary. For improving slope

stability, the goal of the structure is to reduce stresses and strains in the embankment.

The primary goal of the designs was to eliminate lateral movement of the stack.

After this was achieved, modifications could be explored that improved the

structure's performance in improving the slope stability. It had been previously

observed that the structure was prone to movement by means of sliding down the

embankment slope. The issue had been temporarily avoided by imposing an

artificial lateral constraint on the bottom tube. This constraint was removed and

consequently the bottom tube needed to be restrained with an innovative design
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alteration. The primary criteria for such an alteration was to keep the construction

process easy and straightforward but still maintain the functionality of the structure.

6.1 Design 1

Design 1 did not satisfy the ease of construction stipulation, but it did allow for some

insight as to how well a stabilized structure would work. It was simply recognized

that the bottom tube had to be restrained somehow so a flat rigid vertical plane was

placed in front of the bottom tube.

6.1.1 Design 1 Development

The idea of constructing a rigid completely unmoving wall in front of the bottom

tube is unrealistic, but it was used as a model constraint because it achieved the same

effect that a more realistic modification would be required to achieve. As the

structure was loaded with gravity, the bottom tube would deform along this plane,

but still remain in place. A section of design 1 is shown in Figure 6.1.1.1.
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Figure 6.1.1.1. Section of design 1.

This model provided the first look at how the tube stack would affect stresses and

strains in the unstable slope. The stack performed well by directly restraining lateral

movement of the slope's surface. Models of 45 degree and 55 degree slopes with

applied surcharge loads were created and analyzed. The surcharge loads were

intended to simulate a two-lane road structure at the top of the embankment. A

magnitude of 14 kPa was selected for road surcharge load. 14 kPa is equal to about

300 psf which is slightly above a traffic surcharge load for retaining wall design as

defined by AASHTO Standard Specifications for Highway Bridges [2]. The

surcharge in the models of design 1 began at the leftmost edge of the embankment

and approached to the top edge of the slope by variable distances of 1 meter or 0.25

meter.
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This model provided the first look at how the tube stack would affect stresses and

strains in the unstable slope. The stack performed well by directly restraining lateral

movement of the slope's surface. Models of 45 degree and 55 degree slopes with

applied surcharge loads were created and analyzed. The surcharge loads were

intended to simulate a two-lane road structure at the top of the embankment. A

magnitude of 14 kPa was selected for road surcharge load. 14 kPa is equal to about

300 psf which is slightly above a traffic surcharge load for retaining wall design as

defined by AASHTO Standard Specifications for Highway Bridges [2]. The

surcharge in the models of design 1 began at the leftmost edge of the embankment

and approached to the top edge of the slope by variable distances of 1 meter or 0.25

meter.



6.1.2 Results From Design 1 Models

The success and effectiveness of this structure is based on its ability to reduce strains

and displacements of an unstable slope subject to surcharge and gravity loads. The

embankments modelled in design 1 differ in geometry from the stable slope models.

Additionally, the internal angle of friction, <p, of 18.3 degrees was used in design 1.

This is considerably lower than any of the other models. It is for this reason that

stress and strain values will only be compared to slopes without tubes (modelled

specifically for design 1) that have the same geometry and friction angle.

Figure 6.1.2.1 shows the maximum principal plastic strain vectors for the unstable

55-degree slope without the tubes. The location of the highest magnitude principle

strains is seen near the slope toe. This is similar to the response of the earlier stable

slope models with the higher friction angle and different embankment geometry.
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Figure 6.1.2.1. Maximum principle plastic strain vectors; 55-degree slope w/o

tubes.

The lateral component of displacement is illustrated in Figure 6.1.2.2. The zone

right above the toe is of the highest magnitude. The slope deforms horizontally to

the right by 5.5 cm at this location. This behaviour differs from the stable slope

models. In the stable slope models the maximum displacement was occurring a few

meters beneath the slope. In these models of design 1, though, the bottom tube is in

an ideal place to directly restrain the region experiencing the largest lateral

deformation.
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Figure 6.1.2.2. Lateral displacement in 55-degree slope without tubes for design 1.

Figure 6.1.2.3 shows the lateral displacements for the same slope and

surcharge load, with geotubes in place.
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Figure 6.1.2.3. Lateral displacements in 55 degree slope with tubes for design 1.

Figures 6.1.2.2 and 6.1.2.3 demonstrate that the magnitude of lateral displacement is

considerably reduced due to the implementation of the geotube stack.

In Figures 6.1.2.4 and 6.1.2.5, the values of lateral displacement at the nodes along

the face of the slope for each model are plotted against their vertical height. The

dashed lines represent the results of the models with tubes. The reductions in strains

are clearly visible where each tube is resting against the slope. These curves

demonstrate that the slope surface deform significantly less when the tubes are in

place.
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Figure 6.1.23. Lateral displacements in 55 degree slope \\ith tubes ror design 1.

I. igures 6.1.2.2 and (1.1.2.3 dcmonstratc that thc magnitude or lateral displaecment is

considerably reduced due to the implementation or the geotubc stack.

In !'igurcs 6.1.2.-+ and 6.1.2.5. the \alucs or lateral displacement at the nodes along

thc Llcc or the slopc for each model arc plotted against their \ertical height. The

dashed lines rcpresent the results or the models \vith tubes. The reductions in strains

arc clearly \isible whcre each tube is resting against the slope. These cunes

. dcmonstrate that theslopc surl~1Ce deform significantly less \\henthe tubcs arc in'

place.
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Figure 6.1.2.4. Lateral displacement of nodes on 45 degree slope face for design 1.

lateral Displacement of Nodes on 55° Slope Face for Design 1
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Figure 6.1.2.5. Lateral displacement of nodes on 55 degree slope face for design 1.
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Figure 6.1.2.6 is similar to Figures 6.1.2.4 and 6.1.2.5, but it contains the solutions

obtained for the two different angle slope loaded with gravity only. This figure

serves to show that the tubes on the 55-degree slope have more of an influence than

the tubes on the 45 degree slope. They are approximately twice as effective on the

steeper slope at reducing lateral movement. This may be attributed to the fact that

when the tubes are stacked steeper, they are carrying more of their own weight and

less is being transferred to the slope underneath. If the slope carries more weight,

particularly on the upper half, it has more pressure causing it to bulge out near the

bottom.

lateral Displacement of Nodes on 45· and 55· Slope Face with Gravity for
Desi n 1

E-

-0 1 0.01 0.02

...... 55-Gravity

- ... 55 - Gravity w/Tubes

-r-45-Gravity

--0-·45 - Gravity w/Tubes

0.03 O. 4

lateral Displacement (m)

Figure 6.1.2.6. 45 and 55-degree slope lateral displacement comparison with and
without tubes.
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Tables 6.1.2.1 and 6.1.2.2 compare stress and strain values between models under

gravity load with and without tubes for design 1. As was mentioned earlier, the

slope models without the tubes in this comparison are not the same as the stable

slope models. Models of embankments without the tubes were created specifically

for design 1 because of the different geometry and friction angle. One of these

models was shown in Figure 6.1.2.2. The comparative stress and strain values,

however, are from the selected locations identified in Figure 4.2.12. A third column

in the table, under the lateral displacement and plastic strain sections show the

percent increase or reduction in these parameters caused by the tubes. This value is

calculated by equation 3, as following:

O/R d t' (!1wltubes -!1wla.tubeJ
/0 e uc IOn = -----.:.:.::..:..-----'-~---.:--

!1 W1 tubes

(3)

For the shear stress values, the third column also included which lists the percent

increase or reduction in the shear stress magnitude. This is calculated by equation 4:

O/R d' (l!1wla"ubesl-l!1wltubesD (4)
/0 e uctlOn =-'-----'----'-----'----'--

!1 w1 a,lubes

Design 1 - 45° - Gravity Load
Lateral Displacement Plastic Strain

(cm) Magnitude x-v shear stress (Pa)

wlo wI % wlo wI % wlo wI %/1
Location tubes tubes +/- tubes tubes +/- tubes tubes mag.

1 0.63 0.06 -90.5 0.004 0.003 -28.9 -8428 1782 -79

2 1.86 0.55 -70.4 0.004 0.005 22.7 -8441 -3817 -55

3 2.275 1.084 -52.4 0.014 0.004 -69.3 -10323 -1127 -89

4 2.61 1.36 -47.9 0.011 0.017 54.5 -9043 -4325 -52

5 2.356 0.691 -70.7 0.01 0.013 30 -5445 1829 -66

Table 6.1.2.1. Stress and strain results comparison at selected locations for 45
degree design 1 model under gravity load.
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Table 6.1.2.2. Stress and strain results comparison at selected locations for 55
degree design 1 model under gravity load.

Design 1 • 55° . Gravity Load
Lateral Displacement Plastic Strain

(em) Magnitude x-v shear stress kPa)

wlo wI % wlo wI % wlo wI %.a
Location tubes tubes +/- tubes tubes +/- tubes tubes mag.

1 1.322 0.31 -76.6 0.004 0.011 175 -7469 -835 -89

2 3.17 1.18 -62.8 0.014 0.009 -35.7 -7094 -9267 30.6

3 3.53 1.574 -55.4 0.026 0.006 -78.8 -11457 3867 -66

4 2.861 1.719 -39.9 0.011 0.019 72.7 -12453 -3321 -73

5 2.81 1.212 -56.9 0.013 0.014 7.69 -9332 1347 -86

The most notable aspect of Tables 6.1.2.1 and 6.1.2.2 is that lateral displacements are

reduced significantly in all locations examined, as negative sign under % change

indicates a reduction in that particular value. Plastic strain and shear stress

magnitudes are improved in some places, but are worse in others. The areas that are

worse can be attributed to the fact that the slope, while deforming less, is also

supporting the weight of the tubes.

One aspect of this model that can be improved on is the length that the top of the

embankment extends behind the slope. In this model, the surcharge proximity varies

from the edge the slope but in both cases extents to the left boundary of the modelled

space at the top of the slope. Because of this aspect, the left edge of the embankment

may act as an unrealistic boundary, which influence the behaviour around the slope

and the tubes. Future models will extend the left boundary farther enough so that

there is a zone of unloaded embankment top - that is no surcharge.
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Another item of the model that will be changed is the angle of friction. The soil

modelled here has an angle of friction, <p, equal to 18.3 degrees. This is quite low.

Future models will have and angle of friction, q>, equal to 35 degrees.

In overall analysis, it is evident that the geotube stack does, in fact, reduce the

displacements in each slope configuration considered here. However, the problem of

the rigid wall remains. A more realistic restraining method for the bottom tube is of

importance.

6.2 Design 2

Design 2 utilized a geo-textile blanket, presumably the same material that was used

in the tubes themselves, that was attached to the bottom tube and ran along the slope

surface underneath the middle and top tube. The idea was that the weight of the top

two tubes pressing down on the blanket underneath would generate enough friction

to prevent the bottom tube, which was attached to the blanket, from moving once the

rigid wall from design 1 was removed. An anchor at the top of the blanket was also

considered to add to its restraining capability.

6.2.1 Design 2 Development

Design 2, which incorporated a blanket of geotextile on the slope surface was

challenging to model using finite elements. Membrane elements are by nature
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relatively unstable due to the fact that they have zero bending stiffness. To avoid

wrinkling and excessive non-linear deformations the membrane must be in tension.

In design 2, a membrane blanket was sandwiched in between the slope and the tubes.

These interactions are relatively complex. Two deformable solid surfaces, the tubes

and the soil are interacting with each other via the membrane. For the interactions to

yield accurate results, the structure must be static and unmoving. If the tubes slide at

all, the membrane will wrinkle and experience non-uniform stresses and strains. To

avoid this, the interactions must already be established and functioning correctly

before the tubes are loaded with gravity. The catch is that the tubes' weights are

exactly what provides the friction necessary for the interactions to work. Effectively

a loop is created where stability and correct interaction behaviour depend on each

other and neither can exist unless the other already does. In theory, the mechanism

of the blanket stabilizing the structure is possible, but attempting to model this with

finite elements introduces too many opportunities for instabilities to develop,

particularly in the membrane elements composing the blanket.

6.2.2 Results from Design 2 Model

A model of design 2 depending on artificial constraints was developed with a

converging solution. The constraints required to achieve this were to prevent the

blanket under the tubes from separating from the slope and to anchor it at the top.

Since the bottom tube was attached to the blanket it was prevented from sliding.

When the same model was run that allowed the blanket to separate from the slope
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but still retained the anchor at the top, the ABAQUS solver could not reach a

solution.

There are two likely reasons for this. The first lies in the aforementioned difficulties

modelling membrane elements and the crucial interactions that are imposed on them

here. The second reason could be that on the line along the bottom tube where the

blanket is attached, excessive stress concentrations quickly lead to divergence from a

solution when applying the stiffness equations of the model. In reality the blanket

would be stitched to the tube. Stitches in the geotextile are essentially the weak links

of the structure. A stitch connecting the blanket to the bottom tube would tear if too

large of a force applies to it. It may be possible to develop a method of stitching the

blanket to the tube that minimize the risk of tear, hence distribute stress more evenly,

but this was not attempted in any ofthe models nor was it the goal of this research.

6.3 Design 3

Design 3 uses a principle similar to that of design 1. It uses an outside cOllJponent to

stabilize the bottom tube. In the interest of replacing the rigid wall with something

more realistic, stakes were used instead. In construction, these stakes could be

transported and installed by driving them into the ground directly in front of the

bottom tube. They could be any shape or material as long as they could resist the

bending and shear imposed by tube sliding into them.
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6.3.1 Design 3 Development

Attempts with 3, 4 and 5 evenly spaced stakes were made for the 45-degree slope

configuration. All models proved to be successful, but the one with four stakes

spaced two meters apart was chosen for all subsequent models.

The stakes were modelled as discrete rigid tubes. These are non-deformable

components of the model completely restrained in every direction. They are meshed

with rigid elements. This approach was chosen to initially avoid the process of

determining a minimum material strength and section for each stake. A design for

the stakes was not under consideration.

Due to the success of the stakes as a restraining method for the bottom tube, work

could proceed and more information could be gathered on the reliability of the

structure and performance under a variety of loading conditions. The surcharge of

14 kPa was applied to the 45 and 55-degree slope configurations. The proximity of

the surcharge to the edge of the slope was varied as 0 m, 0.5 m and 1 m. The width

of the surcharge area was 7.6 meters (approximately two traffic lanes). Design 3

results are compared with results from the stable slope models. Data from twenty

one variations on models of design 3 will be used.
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All models use two load steps. The first step applies gravity to the entire model.

The second step applies the surcharge load. Figure 6.3 .1.1 is a sketch showing the

configuration of a section of design 3 and the surcharge load types applied.

14kPa

11-------10,55M-----3,5M

1---4'50M----Il

4L<------ J"
\. 17,5M------------IJ

Figure 6.3.1.1. Section of design 3.

A comparison of Figures 6.3 .1.1 and 6.1.1.1 will show that the soil block modelled

as the foundation and embankment used in design 3 has larger dimensions than the

one used in design 1. The surcharge proximities are different as well. Also, the

internal friction angle, <p, was increased to 35 degrees.

6.3.2 Results From Design 3 Models

In analysis it was found that though plastic strain and shear stress were reduced in

some locations, lateral deformations increased by the application of tubes in more
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locations. Tables 6.3.2.1, 6.3.2.2-a, and 6.3.2.2-b are comparisons of stress and

strain values at the predetermined select locations (see Figure 4.2.12) between design

3 models with tubes in place and models without tubes. The results shown in these

tables are from embankments under a gravity load. Note that for the 55-degree

models, there are two models without tubes: the stable 3.0m high model and the

unstable 3.5m high model. These comparisons are presented separately in two tables

for the 55-degree slope.

Table 6.3.2.1. Stress and Strain results at standard locations for 45 degree slope in
design 3.

Design 3 - 45° - Gravity Load
Lateral Displacement

(em) Plastic Strain Ma~ nitude x-y shear stress (Pa)

wI % wi % wI %A
Location stable tubes +/- stable tubes +/- stable tubes mag.

1 -0.39 -0.17 -56.9 0.002 0.004 87 -9801 -4186 -57

2 0.45 0.18 -60 0.005 0.006 22 -12420 -8593 -31

3 0.65 0.79 21.5 0.007 0.003 -53 -14326 -3496 -76

4 1.796 1.197 -33.4 0.01 0.013 32.7 -9311 -4416 -53

5 1.19 0.513 -56.9 0.006 0.009 45.3 -5937 1836 -69

Table 6.3.2.2-a. Stress and strain results at standard locations for 55-degree slope in
design 3; H=3.0 m.

Design 3 - 55° - Gravity Load; H=3.0 m (stable)
Lateral Displacement Plastic Strain

(em) Magnitude x-y shear stress (Pa)

wlo wI % wlo wI % wlo wI %A
Location tubes tubes +/- tubes tubes +/- tubes tubes mag.

1 -0.1 -0.32 239 0.003 0.005 42.4 -9869 -2249 -77

2 0.97 0.554 -42.9 0.008 0.009 6.02 -12809 -6963 -46

3 1.173 1.25 6.55 0.013 0.003 -81.1 -16143 -5612 -65

4 1.91 1.3 -31.9 0.011 0.014 27.3 -10563 -4102 -61

5 1.45 0.92 -36.6 0.008 0.01 35.1 -9740 -910 -91
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Table 6.3.2.2-b. Stress and strain results at standard locations for 55 degree slope in
design 3; H=3.5 m

Design 3 - 55° - Gravity Load; H=3.5 m (unstable)
Lateral Displacement

(cm) Plastic Strain Ma~ nitude x-v shear stress (Pa)

wI % wI % wI %a
Location stable tubes +1- stable tubes +1- stable tubes mag.

1 -0.23 -0.32 40 0.004 0.005 11.9 -10585 -2249 -79

2 0.57 0.554 -2.81 0.007 0.009 27.5 -12487 -6963 -44

3 0.76 1.25 64.5 0.011 0.003 -77.3 -16379 -5612 -66

4 1.6 1.3 -18.8 0.009 0.014 53.8 -10271 -4102 -60

5 1 0.92 -8 0.006 0.01 67.7 -8669 -910 -90

These tables show that the lateral deformations are increased by the tubes in more

locations than before, including the toe section (location 3). Plastic strain

magnitudes are decreased overall and shear stresses are decreased significantly

everywhere.

Figures 6.3.2.1 and 6.3.2.2 show lateral deformation of nodes on the slope surface

plotted against their vertical location. These charts show results from all models

including all surcharges applied and the slope angles. As noted before, the tubes

reduce the deformations, but in many, the deformations are higher, particular to

interest the toe area.
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Figure 6.3.2.1. Lateral displacements for 45 degree slopes.
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Figure 6.3.2.2. Lateral displacements for 55 degree slopes.
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Figures 6.3.2.3 shows lateral displacements of nodes on the slope surface for 45 and

55-degree slopes under surcharge. The purpose of this chart is to illustrate the

difference in influence that the structure has for the two slope angles. In the

45degree slope the tubes have more of an influence near the top. The displacement

is much higher with the tubes in place than in the 55-degree slope. In both slopes the

tubes increase movement at the toe, but in the 55-degree slope this increase is

slightly higher.

r---- ·------~~ter~~isPlacement of Nodes on 45° and 55° Slope Face with Gravity for

Desi n3

E-

____ 55· Gravity

- ... 55·Gravltyw/Tubes

-.-45·Gravlty

·---ts--4S-.Gravltywfrubu-· ..

---------.-.-------'~~H_-__..;:___-----------___f

-1- ~"" ..,,~ ..,----
'...........I:!:.

'"

-0.015 -0.005 Lateral Displacem&'Y'lb) 0.015

Figure 6.3.2.3. 45 and 55 degree slope lateral displacement comparison with and
without tubes.

These models of geo-tube applied embankments did behave quite differently than the

embankments without tubes modelled for design 1 due to the different geometry and
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friction angle used. An exception is the maximum principle plastic strain vectors.

Shown in Figure 6.3.2.4, are the maximum principle plastic strain vectors for the 55

degree embankment used in design 3 with gravity applied. Note that this

embankment has a height of 3.5 which is 0.5 meters higher than the 55 degree stable

slope that was shown earlier in the stable slope models' results. Figure 6.3.2.4 is

intended to be representative of the behaviour of all of the slopes without tubes

modelled for design 3. In all of these models with different slope angles and

surcharge proximities the stress and strain magnitudes varied, but the overall

deformation trends were the same.

I• PE, Max. Prindp..1 I

---------.-------r--r---,
~

. . I - I . . .
~A6~I I . - - . . ....

_._.

~. I -1~- - - - - - - - _.
'l- - - - - - - - - -- - -~ ~ ~/

- - - - - - - - - - - - -# V V/ 1/ 1 I

- - - - - - - ...- ~ IJl ",

- - - - - .- - ~ .- ., . \ . \

- - - - - - - - -
- - - - - --- - - -

- - - - . . - - - - - - - - . -
00 : 5585_no be-surl.o b Ab.QU ,lSLlndilr Version .7-1 T S'D~ 19~6: nOT 007

Z
S1ep: SollGr.v

v-l Increment 1: Step TIme. 1.000
symbol Voir: PE, MlX. Prindpil
Deformed Vlr: U Dcfomlo1.t1on Su~ Foldor: .1,QOoe.OD

Figure 6.3.2.4. Maximum principle plastic strain vectors for the 55 degree

embankment used in design 3.
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The vectors in Figure 6.3.2.4 are very similar to those from the embankments

modelled for design 1 as well as the 3.0-meter high stable embankment. Shown next

is a comparison of results between this slope with and without tubes. The

comparison will show exactly how the tubes influence the embankment distribution

of deformations. The magnitudes and distributions in the following figures vary

slightly~tween the two slope angles, but general behaviour shown for the 55-degree

slope angle is representative of what would be seen in the 45-degree slope as well as

for all of the surcharge variations. Figures 6.3.2.5 and 6.3.2.6 show the lateral

deformation contours for the two cases, without and with geo-tubes.

Step: SoilGrilv
InClement 1: Step 'Tlme. 1.000
PrlmaryVn U, U2
Deformed Vitr: U Deform,itlon St1~ Filclor: +l.OODe+OO

Figure 6.3.2.5. Lateral deformation of 55 degree slope under gravity without tubes.
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Step: SollGrilv
Incremem 9: Step llme. 1.000
Prlm~ryVilr: U, U2
OeformedVilr. U Oeformiltlon Su.1e Filcor. +1.00De+00

Figure 6.3.2.6. Lateral deformation of 55 degree slope under gravity with tubes.

When comparing these two figures, one can observe that the lateral deformation

along most of the slope is similar between the two resulting distributions. The
\J

exception is at the toe where it is higher with the tubes, contrary to what the role of

this structure was originally intended to be. The mechanism at work here seems to

be that the top and middle tubes are so massive that they weigh down on the upper

half of the slope excessively causing the bottom half to squeeze out. The stakes

appear to be much less effective at bracing the bottom tube in place than the rigid

wall was. One method of confirming the theory of the upper tubes squeezing out the

bottom half of the slope is to examine scaled lateral deformation plots. Figures

6.3.2.7 and 6.3.2.8 are lateral displacements scaled up one hundred times.
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SteP: SoilGr~v
Inuement 1: Step Time· 1.000

Deformed V~r. U Defonn~t1on Sule F~aor. JIl • +l.ooOe+OO V. +1.000e+02 z. +l.OOOe+OO

Figure 6.3.2.7. Lateral displacement scaled up 100 times for 55-degree slope under
gravity without tubes.

Step: SoilGr~v
Increment 9; SteP Tlme· 1.000

DeformedV~r.U Deformation Sale Fador: x. +1.000e+OO y. +1.00Ge+02 z· +1.000e:+OD

Figure 6.3.2.8. Lateral displacement scaled up 100 times for 55-degree slope under
gravity with tubes.
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Figure 6.:'.2.7. Lateral displacement scaled up 100 times for 55-degree slope under
grmity without tubes.

008' 5585 orib

Slep SoilGra ...
Increment 9 Slep TIme.. 1000

[·eformedV .. r U ['eleorm;!tIon Sc... !e Factor);" ·l.QODe .. aO \' '" -1 000e"02 :!" -1 OOOe.08L- ----, ~ ~_.-

Figure 6.:'.2.8. Lateral displacement scaled up.! OOlimes for »)-dcgi'L'c Sr,)pC 1I11lkr

gravity \vith tubes.



In Figure 6.3.2.7, without the tubes, the slope deforms to the right bulging out from

the embankment just above the toe. The slope surface's shape in Figure 6.3.2.8 is

different. It appears to be depressed near the top and squeezed out near the bottom.

It also is evident that the tubes are sliding to the right more than the slope surface is.

This means that the stack is actually sliding down the slope.

The weight of the upper two tubes is detrimental to the stability of the whole system.

The stability of the stack relies on the bottom tube remaining stationary. The bottom

tube is responsible for stabilizing the slope as well as stabilizing the entire tube

structure. The top tubes cause lateral movement of the bottom tube by squeezing out

the soil behind it and by pushing directly on it.

While greater movement of the slope surface is observed with the tubes in place, the

amount of plastic strain occurring in this movement is smaller. Plastic strain

magnitude contours for design 3 are shown in Figures 6.3.2.9 and 6.3.2.10.
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Step: SollCir.v
Inuemem 1: SteP l1me. 1.000
Prlm iry V.r: PEMAG
Deformed V.r: U Oeform,atlon Sule F.dor: +1.000e:+00

Figure 6.3.2.9. Plastic strain magnitude contours for 55-degree slope without tubes.

Step: SollGr,av
Intremern 9: Step Time. 1.000
Prim,aryV,ar. PEMAG
Deformed V,ar: U Deform,at!on Sc..1e FlOOr. +1.000e+OO

Figure 6.3.2.10. Plastic strain magnitude for 55-degree slope with tubes.
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The difference in plastic strains is not large, but the tubes provide an improvement

nonetheless. As is shown in Figures 6.3.2.9 and 6.3.2.10 the plastic strain contours

generally are horizontal bands varying with soil depth. The only exception to this is

a small region centralized around the toe of the slope. This is the same location as

the bulge in lateral displacement seen in Figure 6.3.2.7. When the tubes are in place,

the plastic strain in this region is effectively reduced. The plastic strain is slightly

higher in areas of the slope further up.

There is a new region under the right side of the bottom tube that clearly has higher

plastic strains. The increase here is caused by all of the tubes' weight pressing down

on the bottom tube as discussed before, however this is not causing an instability of

the slope. It may be the source of a bearing capacity failure, but investigating such

aspects were out of the scope of this study.

If the slope is deforming more with the tubes but experiencing with lower plastic

strain, this may mean that the slope is experiencing higher elastic strain. This notion

is counter intuitive, but can be explained again by the tubes weight. This weight is

causing the soil underneath to be subjected to higher hydrostatic pressure. This

strengthens the soil elements and moves their yield surface in the Cap Plasticity

model. A comparison of hydrostatic pressures on the elements in the embankment is

shown in Figures 6.3.2.11 and 6.3.2.12. It is clear that the pressures are indeed

higher in the model with the tubes as was expected.
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Step: SeilGrilv
InClement 1: Step llme. 1.000
PrimilryVlr: 5, Pressure
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Figure 6.3.2.11. Hydrostatic pressure distribution for 55-degree slope without tubes.
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Figure 6.3.2.12. Hydrostatic pressure distribution for 55-degree slope with tubes.
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One last variable to examine is the x-y shear stress. This is also slightly improved

with the tubes in place (Figures 6.3.2.13 and 6.3.2.14).

Step: SollGr,lV
Inuemem 1: Step Time· 1.000
Prim.ryVilr: S, 513
Deformed V.r. U ~forrn,atlon Stile FolOOr: +l.OODt:+OO

Figure 6.3.2.13. x-y shear stress in 55 degree slope without tubes.
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Figure 6.3.2.14. x-y shear stress for 55 degree slope with tubes.

In comparing figures 6.3.2.13 and 6.3.2.14 it can be seen that when the tube stack is

in place some areas of the embankment experience a reduction in shear stress, but

other areas experience an increase. One of the areas that was not improved is the

small region directly under the top tube. This area isnot crucial to the stability of the

whole slope, so this increase is of little concern. There also is an increase below the

bottom tube in the same region where plastic strains were seen to have increased.

This area, again, is not considered to be crucial area for slope stability.

The crucial area is behind the slope surface near the toe. In the model without the

tubes, the shear stress at this location is approximately 17 kPa. In the model with the
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tubes the shear stress at the same location is approximately 6 kPa, which is a

significant improvement.

According to the results from the finite element models of design 3, the tube

structure causes more lateral deformation of the slope, but slightly reduces plastic

strain and x-y shear stresses around the toe. A criteria selected earlier for success in

improving slope stability was using the tube stack to limit lateral deformation. It had

been assumed though, that higher later deformations would also indicate higher

plastic strains and shear stress values. Because this was not the case, it is not entirely

clear from the model whether or not the tubes improved slope stability. Hence, since

the lateral deformations increased with the tubes in place, design 3 can be considered

to be ineffective in improving slope stability.

6.4 Design 4

After examining the results from the design 3 models, the behaviour of the different

slopes and the effects of the tube stack were much better understood. The results

indicated that the weights of the top and middle tubes were causing the slope to

deform more than it would deform under its own self-weight. The first thing that

comes to mind to solve this problem is to reduce the weight of the top two tubes.

This is a natural step in the design evolution because it had become clear that there

was no reason the top two tubes should be the same size as the bottom tube since

bottom tube is the most important stability feature. The bottom tube holds up the

71



entire structure and holds the toe in place at the same time. The top tube stabilizes a

small section of the slope near the top that may be of little concern to overall slope

stability.

6.4.1 Design 4 Development

One model was created with tube size decreasing up the slope to observe the effects

of this design improvement. The bottom tube's initial diameter would be increased

to 2.84m, the middle tube would be decreased to 1.89m, and the top tube would be

decreased to 1.26m. These initial geometry changes also affected the loads applied

to them. Table 6.4.1.1 summarizes all of the geometry and loads applied for the new

tube sizes. In the new configuration Zh is the height of the hydrostatic pressure

distribution. Figure 6.4.1.1 shows a typical section of design 4.

Table 6.4.1.1. Adjustments for tubes and loads in Design 4.

Diamter (m) Ph (kPa) Zh (m) Pin (kPa)
Top Tube 2.84 59.9 2.98 17.55

Middle Tube 1.89 39.9 1.98 11.68
Bottom Tube 1.26 26.5 1.32 77.84
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Figure 6.4.1.1. Section of design 4.

6.4.2 Results for Design 4 Model

The bottom tube in design 4 was sufficiently heavy to prevent the structure from

failing due to sliding without external restrain. However, because the tube was so

much heavier, the vertical deformation of the stack and the slope was higher. It was

not until the results for this design that it became clear the extent of coupling

between the vertical and horizontal movements in the model. When the slope

subsides vertically, it tips backwards causing the area near the toe to move to the

right and the area near the top to move to the left, similar to a flexible wall. This

behaviour was seen in the scaled displacements in Figure 4.2.1. In the case of design

4, though, the vertical movement was so large that although the top of the slope did
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tip, but the net movement of all points on the surface was all towards the right.

Figure 6.4.2.1 illustrates this by showing the lateral displacements of nodes on the

surface of the slope. Stress and strain values for design 4 are seen in Table 6.4.2.1.

Lateral Displacementof Nodes on 45· Slope Face for Design 4

__Gravity

.....-SUrcharg.l

-~ Gravltyw/Tube.

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02 0.025 0.03
Lateral Displacement (m)

Figure 6.4.2.1. Lateral displacements for design 4.

Design 4 - 45° - Gravity Load
Lateral Displacement Plastic Strain

(em) Ma~nitude x-v shear stress (Pal

wI % wI % wI %b.
Location stable tubes +/- stable tubes +/- stable tubes mag.

1 -0.39 0.603 -253 0.002 0.003 39.1 -9801 -3925 -60

2 0.45 1.23 173 0.005 0.005 2 -12420 -3579 -71

3 0.71 1.785 151 0.007 0.003 -50 -14326 -4917 -66

4 1.796 1.93 7.46 0.01 0.017 73.5 -9311 -5306 -43

5 1.19 1.43 20.2 0.006 0.011 71.9 -5937 -4.6 -100

Table 6.4.2.1. Stress and strain results at standard locations for 45 degree slope in
design 4.
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All results for design 4 can be compared to the 45-degree stable slope already

modelled in Table 6.4.2.1. Immediately from this table it is seen that the tubes in

general increased the lateral movement of the slope dramatically, but reduced the

shear stresses. The following figures will help to illustrate this. First, the lateral

displacement contours are shown in Figures 6.4.2.2 and 6.4.2.3. The results shown

are for models loaded only with gravity.

ODB: 4SB5_NOTUBE1.odb Ab,aqus/Sund,ard Version 6.7-1 Sat Aug 1116:52:48 EDT 2C07

Step: Sl.lrth,arge
Inuemem 0: Step TIme. 0.000
PrimilryV,u: U, U2
Deformed V,ar. U Defonn.tdon Su.le Fo100r: +l.OOOe+OO

Figure 6.4.2.2. Lateral displacement contours for 45 degree stable slope without
tubes.
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008: 45BLv,ary_sulGOOO.odb AblqustSundlrdVerslon 6.7-1 Sun Sep 0919:07:25 EDT 2007

Step: Surthlrge
Inuemem 0: Step TIme· 0.000
Primlry Vir: U, U2
Deformed V,ar: U Deforrutlon sule Floor: +1.00oe+OO

Figure 6.4.2.3. Lateral displacement contours for design 4.

Figure 6.4.2.2 has a similar distribution oflateral displacements that is seen in Figure

6.3.2.5 for the 55-degree slope in design 3. The region of maximum displacements

in the embankment under the slope moves to the same location, under the toe when

tubes are put in place. This was also seen in Figure 6.3.2.6 for design 3. One item of

note in Figure 6.4.2.3 is that the maximum lateral displacements in the whole model

are at the front of the bottom tube within the tube itself. This indicates that, while

the tube is large enough to keep the structure stable, it is not effective at minimizing

movement of the system as a whole. Essentially it allows the stack and slope to

move as one unit without compromising structural stability.
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Figure 6..-1-.2.-'. Lateral displacement contours ror design 4.

Figure ().4.2.2 has a similar distribution or lateral displacements that is seen in Figure

6.-'.2.5 1'01' the 55-degree slope in design -'. The region or maximum displacements

in the embankment under the slope moves to the same location. under the toe when

tubes arc put in place. This \\as al·so seen in Figure 6.-'.2.6 1'01' design -'. One item or

note in Figure 6.4.2.-' is that the maximum lateral displacements in the whole model

are at the li"tmt or the bottom tube within the tube itself. This indicates that. while

the tube is large enough to keep the structurestablc. it is not efrecti\e at minimizing

movement of the system as a whole. Essentiallv it allows the stack and slope to

mo\e as one unit without compromising struetural.stnbility.



Figures 6.4.2.4 and 6.4.2.5 compare plastic strain magnitude distributions for models

of design 4, with and without tubes loaded with gravity.

ODB: 45B5_NOTUBEl.odb Ab.qu,/S..nd..d V."lon 6.7-l S.tAu911 16:52:4B EDT 2007

Step: Surc.hiUge
Inuement 0: Step Time· 0.000
Prim iry V,ar: PEMAG
~ormedV,ar: U Oefonn,atlon Su.1e Foldor. +l.OOOe+OO

Figure 6.4.2.4. Plastic strain magnitudes for 45 degree stable slope without tubes.
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Step: Surthlr!:te
Inuemem 0: Step TIme. 0.000
Prim,uyVlr: PEMAG
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Figure 6.4.2.5. Plastic strain magnitudes for design 4 under gravity load.

According to Figures 6.4.2.4 and 6.4.2.5, the plastic strain magnitudes are slightly

increased when the tubes are put in place. This indicates that tubes result in further

instability.

The following are figures showing x-y shear stresses for design 4.
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ODB: 45B5_NOlUBE1.odb Ab.qus/S..nd..dV."lon 6.7-1 S.,Aug 1116:52:46 EDT 2007

Step: Surth.ar!Je
InClement 0: Step Time. 0.000
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Figure 6.4.2.6. x-y shear stress contours for stable 45 degree slope.

Step: Surcharge
Increment 0: S1e:P 11me· 0.000
PrimaryVu: 5, 523
DefonnedV.r: U Detormltlon Sale Folaor. +l.OOae.OD

Figure 6.4.2.7. x-y shear stress contours for design 4.
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According to Figures 6.4.2.6 and 6.4.2.7, design 4 improves the shear stresses around

the slope. This was already shown with data in Table 6.4.2.1. Similar to the earlier

models, a region below the bottom tube has an increase in shear stress due to the

weight of the structure, but the stresses in the region behind the slope, particularly

around the toe, are reduced. Higher plastic strains, higher movement, and lower

shear stresses indicate that elastic strains are lower in the embankment for design 4.

The deformation strain of the embankment is made up of elastic and plastic

behaviour. Because the deformation is higher for design 4, the soil has yielded more

causing plastic strains to increase.

Design 4, over all, can be considered a failure even though the stress state is reduced.

The tubes cause the slope and structure to move as a whole to such an extent that in

reality the slope would likely have failed.

6.5 Summary of Designs

Out of all of the designs investigated only design 1 appears to have improved slope

stability. Design 1, however relied on an unrealistic restraint for the bottom tube.

Based on results from all of the designs it appears that restraining lateral movement

of the slope is just as important as minimizing vertical movement caused by the

weight of the tubes. For a design to be successful in improving slope stability it must
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have an effective method of restraining the bottom tube and each tube must be sized

separately so that no tube is heavier than it has to be.

7 Consolidation

None of the models have considered consolidation behaviour of the material in the

tubes. It is likely that consolidation would not only strengthen the tubes and the

structure as a whole, but it would also alter the geometry. It was observed that if a

fine-grained soil is used, tube height could be reduced by as much as 50% due to

consolidation [15]. In this case, the tubes can be pumped full a second or third time

to reach the desired height. On the other hand, it was stated that when sandy soils,

with more than 50% of particles greater than sieve No. 200 were used in filling

tubes, the desired tube height was achieved after pumping it full only once. The soil

used in all of the ABAQUS models was based on Lebanon Sand [19] so it was

assumed that the effects of including consolidation would be small. This was briefly

investigated.

Consolidation behaviour was defined in ABAQUS and a short study was conducted

on how this behaviour, if included, would affect the individual tubes' strength and

deformation behavior. To model consolidation behaviour several new material

properties were required. The permeability of the geo-textile was defined as 4 x 10-4

m1s [12]. This is a typical value for a non-woven needle punched geo-textile. An

arbitrary value of 0.5 was selected as the initial void space ratio for geo-textile. A
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three-dimensional pore pressure element was used in place of the three-dimensional

stress element to model the soil within the tubes. In addition to the six displacement

degrees of freedom, the pore pressure elements have a seventh degree of freedom for

pore pressure.

The initial pore pressure was set as 12.36 kPa inside the tube. This is also the

pumping pressure value that is used to inflate the membrane tubes in the sub-models.

A pore pressure boundary condition is set at 12.36 kPa around the entire surface of

the tube. The tube is first loaded with gravity. Next, in the consolidation step, the

pore pressure boundary condition is reduced to zero effectively letting the pore

pressure within the soil elements to dissipate therefore causing the tube contents to

consolidate.

The first model was aimed only at observing the differences in geometry on a single

tube that consolidation would cause. A model was created consisting of a single tube

resting on a flat rigid surface (Figure 7.1). With the exception of including the

consolidation behaviour, this tube had identical material properties and initial

geometry as the tubes used in all other models. There were two load steps defined in

the model: gravity and consolidation. The deformation caused by gravity alone

would be representative of the behaviour of the tubes in all other models. The

additional deformation as a result of consolidation would show how much of an

effect it has on the tube geometry.
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Figure 7.1. Consolidation model of single tube.

Deformations from both gravity and consolidation are small. Table 7.1 lists the

height of the tube at the end of each load step.

Table 7.1. Tube Height in geometry consolidation model.

Step Height (m) Total Settlement (m)

Initial 1.402 --

Gravity 1.4 0.002

Consolidation 1.396 0.006

As indicated in Table 7.1, consolidation had a very small affect on geometry. The

tube height is reduced by only 0.28%.
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Figure 7.1. Consolidation model 0" single tube.

Dct'ormations 11'om both gra\it) and consolidation are small. Table 7.1 lists the

height or the tube at the end or each load step.
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In order to investigate consolidation's effects on strength gain, two models, each

consisting of two vertically stacked tubes was created. In one model no

consolidation behaviour was defined and the stack was loaded with gravity one tube

at a time, bottom tube first. In the other model, the bottom tube was allowed to

consolidate before the gravity load on the top tube was applied. The weight of the

top tube does not cause any further consolidation of the bottom tube in this model.

The material parameters and analysis procedures used to define the consolidation

behaviour here were the same as the ones used in the first consolidation model aimed

at investigating geometry changes. The goal of these two stacks was to observe the

difference in strain that the bottom tube underwent when loaded by the top tube.

When observing strain behaviour it is useful to separate elastic and plastic strains.

This allows one to see what type of yielding is occurring and how that yield surface

may have moved due to consolidation. Figures 7.2 and 7.3 show maximum elastic

strain contours in the tube stack. It is immediately clear that the strains in the

consolidated tube are smaller than those in the unconsolidated tube. The maximum

value seen in the centre of the unconsolidated tube is approximately 0.0028. The

strain in the centre of the consolidated tube is around 0.0020. This is a 28 %

difference. This is an indication that the consolidated tube could be up to 28% stiffer

than the unconsolidated tube in certain regions.
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Figure 7.2. Elastic stains w/o Consolidation. Figure 7.3. Elastic stains w/Consolidation.

After comparing the elastic strains, it is useful to also look at plastic strains. Figures

7.4 and 7.5 show maximum principle plastic strains in the tube stack. Again, it is

clear right away that the unconsolidated tube has higher strains, particularly in the

central region of the tube, as were the elastic strains. The maximum strain in the

centre of the unconsolidated tube is approximately 0.015 and whereas the plastic

strain in the centre of the consolidated tube is 0.008. This is a 53% difference.

.J

Figure 7.4. Plastic stains w/o Consolidation.

. j
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8 Conclusions

The primary goal of this research was to establish the necessary techniques needed to

develop preliminary representative finite element models of stacked geotextile tubes

as a soil retention structure. The goal was achieved by developing the following

stepwise approach:

• Use of "sub-models" to build the final model. This allowed the final model

~ to account for different phases with different behaviour in the tubes'

construction. Past models have only considered either the liquid or solid

form of the tube.

• Use of a multiple step-loading scheme. The appropriate loads were applied

one by one in a particular order to capture the impact of actual in field

processes. The order of the steps, combined with the boundary conditions,

provides the numeric stability required by the ABAQUS solver. This was

particularly important when using membrane elements.

The secondary goal of this model was to develop a three-tube stack formation design

of geo-tubes as a slope stabilization structure. Multiple slope angles and surcharge

load proximities were also considered. The results of these models do not directly

incorporate a particular criterion for failure. Instead, the results of models of slopes

with the tube stack and models of slopes without tubes that have a safety factor equal

to one are compared.
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The deformation behaviour of embankments with geotubes on them was different

from the stable models without tubes. The effects the different stack designs had on

the embankments were shown and the possible causes of slope stability or instability

due to the geo-tubes were explored in discussion.

Design 1 reduced lateral movement of the slope as well as internal stresses and

strains in the embankment. The problem with this design was that a flat rigid wall

against the bottom tube, designed to prevent the bottom tube's lateral motion, was

not realistic and would be impractical for construction. Design 1 did improve the

slope's stability by reducing its lateral motion.

Design 2 consisted of the same stack as design one, but instead of a rigid wall

restraining the bottom tube, a geotextile blanket was attached to the bottom tube and

run up the slope underneath the other tubes. This design proved to be too

challenging for accurate modelling with finite elements.

Design 3 used evenly spaced stakes to replace the rigid wall from design 1. Much

data was collected on the performance of this design for two slope angles and

various surcharge loads. It was observed that the stakes were much less effective at

restraining the movement of the bottom tube. Because of this and the mass of the top

two tubes, the embankment appeared to deform more with the tubes in place than

without due to the excessive weight of the tubes. The x-y shear stresses and plastic

strains were slightly reduced, in areas directly behind the slope surface.
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Design 4 was intended to solve the problem of the top two tubes weighing down on

the slope and causing more deformation by reducing their size. In order to model

three tubes reaching the same height as design three, the bottom tube's size had to be

increased disproportionately. This increase in mass of the bottom tube provided

enough resistance to keep the stack stable without the stakes. The problem was that

it was so massive that it caused higher vertical deformation. It was observed that

vertical deformation coupled strongly with lateral movement, resulting in the entire

slope deforming even more than that of design 3. Plastic strain was also higher.

Two models were created aimed at investigating the effects of consolidation

behaviour of the geo-tube soil. These models showed that consolidation would have

a minimal impact on tube geometry, less than 1%, but that it did noticeably reduce

elastic and plastic strains within the tubes, increasing the tube strength. Overall, the

effects were small enough that the initial assumption that consolidation would have

little impact on model results was a valid one.

More work is needed to perfect a design. Design 4, even though leading to failure,

indicates promise. It makes sense that the tubes should get smaller as they go up the

slope not only to reduce the load on the slope and tubes below, but also because they

are supporting less soil. The fact that the bottom tube did not need to be restrained

by an outside component is also promising as it indicates a more stable structure. An

improvement to design 4 might be using four tubes with the bottom tube restrained
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by stakes. This would minimize weight on the upper half of the slope and reduce the

size of the bottom tube needed for the structure to reach the required height.

An alternative perspective is to expect controlled slope deformation under the geo

tubes, so long the stability of the tube structure itself is not compromised. Overall,

while the shear strength of the embankment may have been exceeded and there may

have been plastic deformation, the slope will remain intact under the tube structure.

It will still be underneath the stack of tubes and the tubes will not have slid away or

overturned. In effect, the structure causes the embankment to re-establish a new

state that is more stable. This theory would require a physical model to verify.

Finite element modelling has proven to be very useful tool as small design

modifications can be made relatively quickly and their effects can be observed soon

after. There are a number of modelling improvements that can be made in future

work. The behaviour of the geotextile skin could be improved. The skin modelled

here is, in effect, "bonded" to the surface of the solid tubes. In reality, the geotextile

is a separate component of the tube interacting with the soil inside primarily through

friction. The impact of this on geometry and stability is not known.

Modelling of the components restraining the bottom tube can also be improved.

Deformable material embedded in the foundation would show realistic behaviour. It

would eliminate the need for the assumption that they would not movc whcn loadcd.

It would also allow for specific designs for these components to bc dcveloped.
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Another aspect that could be improved lies in the interpretation of the results. If

stress and strain results from the cap plasticity model could be directly input to a

failure model, a better knowledge of the slope stability could be gained. This would

allow a factor of safety to be assigned to any embankment with tubes on it, hence

greatly improve the design process as it could be determined quickly and decisively

whether or not the structure improves the slope's stability.
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