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ABSTRACT 

 

Steel special concentrically braced frames (SCBFs) are effective, economic and stiff 

lateral force resisting systems for steel structures. However, they have limited ductility 

capacity because of brace buckling. Steel self-centering concentrically braced frames 

(SC-CBFs) have been developed to have the effectiveness, economy and stiffness of 

SCBFs with increased lateral drift capacity and reduced residual lateral drift. 

A probabilistic structural damage assessment of SCBF and SC-CBF buildings is 

presented in this thesis. The assessment shows the differences between the earthquake 

performance of SCBFs and SC-CBFs, and verifies the expected earthquake performance 

of SC-CBFs.  

Structural damage assessment is an essential part of performance based earthquake 

engineering (PBEE). In an earthquake structural damage assessment, the earthquake 

response of the structure is related to physical damage states observed in the structure 

after the earthquake. In this research, structural damage is considered as a combination of 

building damage (collapse/non-collapse and demolition/no demolition events) and 

damage of the braces of an SCBF or SC-CBF (repair actions corresponding to the 

damage).  

Four model buildings (4- and 9-story SCBF and SC-CBF buildings) are used in the 

assessment and their earthquake performance is assessed under the design level 
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earthquake (DBE) and maximum considered earthquake (MCE). Structural response data 

(EDPs) are obtained from nonlinear dynamic analysis. The peak story drift (θm), the peak 

residual story drift (θr) and the residual out-of-plane displacement of the braces, ∆or, are 

the EDPs used in this study. EDP limit values, that are defined to be the minimum value 

of the EDP corresponding to a related damage state, are established for each damage 

state. When the EDP value obtained from the dynamic analysis equals or exceeds the 

EDP limit, the building is considered to be in the related damage state. The EDP limit 

values are treated as random variables. Fragility functions providing the probability that a 

building reaches or exceeds a level of damage are obtained for each specified damage 

state.  

Damage scenarios are described as sequences of the individual building and brace 

damage events, and shown schematically using an event tree (ET) model. The probability 

of each damage scenario is obtained using a multi-event analysis for each model building 

under the DBE and MCE.  

Results of this study show that the SC-CBF buildings have better earthquake performance 

than the SCBF buildings both under the DBE and MCE, as a result of the low probability 

of structural damage. Both systems achieved low collapse probabilities. SC-CBFs have 

lower probability of post-earthquake demolition, since the residual drift is nearly 

eliminated. The probability of brace damage is lower in the SC-CBF buildings than in the 

SCBF buildings.     
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Special concentrically braced frames (SCBFs) are effective, economical and frequently-

used earthquake lateral force resisting systems for steel structures. The braces provide 

large lateral strength and stiffness, and are the critical components of an SCBF. 

Deterioration and fracture of the braces under earthquake loading limits the capability of 

SCBFs to undergo large inelastic deformations. This limited deformation capacity is 

associated with significant damage to the braces leading to permanent lateral deformation 

(such as residual lateral drift) in the system. 

Self-centering concentrically braced frames (SC-CBFs) have been developed to maintain 

the effectiveness, economy and stiffness of SCBFs, and to have increased lateral drift 

capacity before damage and reduced residual lateral drift (Roke et al., 2006).  An SC-

CBF is designed to rock on its foundation, and the rocking action increases the lateral 

drift capacity of the system. An SC-CBF has vertically-oriented PT bars that provide 

restoring forces to self-center the frame during the earthquake (Roke et al., 2010). The 

main structural components are designed to remain undamaged under the design 

earthquake to permit the system to self-center. The controlled rocking action and the self-

centering behavior of SC-CBFs enable the structural damage to be concentrated into a 

few replaceable elements and to eliminate significant residual drift.  
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SCBFs are designed to prevent collapse under severe earthquakes, although damage 

occurs. SC-CBFs are also designed to prevent collapse, however damage is expected to 

be minimal under the design level earthquake.   

The main difference between SCBFs and SC-CBFs is expected to be in the damage to the 

braces and in the residual drift. The probability of structural damage and residual drift of 

an SC-CBF is expected to be very low under the design level earthquake. To verify the 

expected earthquake performance of SC-CBFs, compared to the earthquake performance 

of SCBFs, and to show the differences between the two systems, an earthquake structural 

damage assessment for these two systems is performed in this study.  

Structural damage assessment is an essential part of the performance based earthquake 

engineering (PBEE). In an earthquake structural damage assessment, the earthquake 

response of the structures is related to physical damage states observed in the structure 

after the earthquake. Necessary repair actions are determined for the corresponding 

damage states. The relationship between the structural response and the damage is 

expressed as the probability of being in a specific damage state. 

Four model buildings are used in the earthquake damage assessment in this study. 4- and 

9-story SCBF building are designed for earthquake loading according to current building 

codes. The earthquake performance of these SCBF buildings is compared to that of 

previously designed 4- and 9-story SC-CBF buildings (Chancellor, 2013). These 

buildings are office-type buildings designed for a site in Southern California. Two 

different building heights were selected to see the effect of building height on the 
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earthquake performance of SCBFs and SC-CBFs. Nonlinear dynamic earthquake 

response analyses of the model buildings which were performed for two ground motion 

intensity levels, namely the design level earthquake (DBE) and the maximum considered 

earthquake (MCE) (Tahmasebi, 2014). The results of these analyses are used for the 

damage assessment. Damage criteria are developed for the buildings and the braces. A 

probabilistic methodology is developed and used for the damage assessment. The 

assessment results for the model buildings are compared with each other.   

1.2 Research Objectives 

The overall objective of this research is to develop a better understanding of the 

earthquake performance of SC-CBFs by comparing this performance with the earthquake 

performance of SCBFs. The specific objectives necessary to achieve the overall objective 

are as follows: 

1. To design model SCBF buildings for the purpose of comparing their performance 

with that of previously designed SC-CBF buildings (Chancellor, 2013).  

2. To obtain the structural response of the model buildings from nonlinear dynamic 

earthquake response analysis performed by Chancellor (2013) for the SC-CBF 

buildings and by Tahmasebi (2014) for the SCBF buildings. 

3. To define critical earthquake damage states for the buildings and the braces.  

4. To establish limit values for structural response parameters corresponding to each 

damage state.  

5. To develop damage fragility functions for each damage state.  
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6.  To perform probabilistic earthquake structural damage assessment for the model 

buildings. 

7. To compare the damage assessment results for the model buildings.   

1.3 Report Scope  

To achieve the research objectives, the following work was completed. Two SCBF model 

buildings with different building heights were designed according to the seismic design 

procedures given in ASCE 7-10 (ASCE, 2010). These SCBF model buildings are used to 

make comparisons with SC-CBF model buildings designed previously (Chancellor, 2013) 

using the design procedure developed by Roke et al. (2010). The nonlinear dynamic 

earthquake response analysis of the SCBF and SC-CBF model buildings were performed 

by Tahmasebi (2014) and by Chancellor (2013); the results of these analyses are used in 

this study to obtain the structural response parameters of the model buildings under 

earthquake loading. Building damage criteria are established for collapse and demolition 

conditions. Brace damage criteria are established from a previous experimental study. A 

probabilistic methodology is developed and used to relate structural response parameters 

to specified damage criteria.  

1.4 Organization of Thesis 

The remaining chapters of this thesis are organized as follows: 

 Chapter 2 presents background information about Performance Based Earthquake 

Engineering (PBEE) methodology, and the earthquake performance of SCBFs and 

SC-CBFs. 
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 Chapter 3 describes the seismic design procedures used for the SCBF and SC-

CBF model buildings. The nonlinear numerical models created for nonlinear 

dynamic earthquake response history analyses are also explained, and results of 

the dynamic analyses are given. 

 Chapter 4 discusses the building earthquake damage assessment considering 

building collapse and building demolition. Collapse and demolition criteria are 

established in terms of related structural response parameters. Collapse/non-

collapse and demolition/no demolition fragility functions are presented. Building 

damage is assessed as the probability of collapse and the probability of 

demolition. 

 Chapter 5 discusses the damage assessment of the braces. Damage states are 

established based on a previous experimental study and on the potential for the 

damage state to be established in a post-earthquake inspection. Brace damage 

fragility functions for each damage state are presented. The brace damage 

assessment is expressed as probability of needing the repair action corresponding 

to each damage state.  

 Chapter 6 presents a probabilistic earthquake structural damage assessment that 

combines the building damage assessment discussed in Chapter 4 and the damage 

assessment of the braces discussed in Chapter 5. Possible damage scenarios for 

the model buildings are described. An event tree is formed to illustrate the 

damage scenarios. The method for estimating the probability of each damage 

scenario occurrence is described. Assessment results are presented and compared.      
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 Chapter 7 summarizes the research work, and presents conclusions and 

recommendations for future work.   
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CHAPTER 2 

BACKGROUND 

2.1 General 

Several research studies have been conducted on damage to buildings (i.e., on “building 

losses”) from earthquakes. The present research focuses on the potential for self-

centering systems to reduce earthquake losses. Probabilistic earthquake structural damage 

assessments will be conducted to compare the earthquake performance of SC-CBF and 

SCBF systems. 

The Pacific Earthquake Engineering Research Center (PEER) developed a performance-

based earthquake engineering (PBEE) framework based on loss estimates, using 

conditional probability concepts and the total probability theorem (Moehle and Deierlein, 

2004). An enhanced building-specific loss estimation procedure was developed by 

Miranda (2010) that considers building losses associated with collapse, repair of damage, 

and demolition. The Applied Technology Council (ATC) developed guidelines for 

performance assessment based on losses in the ATC-58-1 project “Seismic Performance 

Assessment of Buildings”.  

Other previous research has examined the performance-based design of SCBFs and SC-

CBFs. This chapter summarizes the concepts and results of recent research related to the 

PBEE methodology, and performance assessment of SCBFs and SC-CBFs. 



   

10 

 

2.2 PEER Performance-Based Earthquake Engineering (PBEE) 

The first generation PBEE approaches (e.g., FEMA 273, 350 and 351) tried to relate 

structural response parameters to performance objectives such as Immediate Occupancy 

(IO), Life safety (LS) and Collapse Prevention (CP). The design of a structure is 

considered to satisfy the performance objectives if deformations or forces in each 

component do not exceed the specified limits (Porter, 2003). Whittaker et al. (2003) listed 

the key shortcomings of the first generation PBEE approaches as follows:  

 The structural response and demand are evaluated for the whole structure, 

whereas the performance assessment is done on the basis of damage of individual 

components (and most of the time, the weakest component’s performance 

controls the structural performance) 

 Most criteria for the performance of structures in building codes are based on 

judgment instead of reliable data 

 Most structural engineers presume that code-specified performance objectives are 

too conservative with respect to prescriptive criteria 

 Specified performance levels do not consider the concerns of the stakeholders 

such as economic losses (in terms of repair costs), occupancy losses in damaged 

buildings, casualties, etc. 

These shortcomings led to the development of an improved methodology that correlates 

structural response parameters to performance measures. 
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In the PEER PBEE methodology, earthquake performance risks are estimated on a 

design-specific basis. Risks are expressed in terms of specific losses (e.g., repair cost of a 

damaged facility, casualties and downtime) instead of through code-specified 

performance objectives (Moehle and Deierlein, 2004). 

The PEER PBEE methodology involves four types of parameters. The ground motion 

intensity (seismic hazard) is expressed by ground motion Intensity Measures (IMs). Non-

linear analyses are performed to determine the response of the structure to earthquake 

ground motions and the response is defined in terms of Engineering Demand Parameters 

(EDPs). EDPs are linked to damage observed in a building, which is expressed in terms 

of Damage Measures (DMs). Finally, Decision Variables (DVs), which depend on DMs, 

are obtained. Thereby, the damage is translated into decision making quantities. 

These four parameters are obtained in four stages that are summarized by Deierlein et al. 

(2003), Moehle and Deierlein (2004) and Porter (2003) as follows: 

Hazard Analysis: Intensity Measures (IMs) are obtained by seismic hazard analysis. The 

analysis considers the seismic environment of the structure. A seismic hazard function is 

obtained that expresses the rate of exceedance of ground motion intensity that is specific 

to the location and design. The hazard function considers potential earthquakes from all 

nearby sources. The parameter that is used to define the intensity of the ground motion is 

the IM. An IM is useful if it is compatible with the structural analysis that gives the 

structural response and is well-correlated with structural response. The most commonly 

used IM in the PEER methodology is the spectral acceleration at the fundamental period 
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of the structure, Sa(T1). In addition to determining the IM, input ground motion records 

which are appropriate for the site should be selected for nonlinear dynamic earthquake 

response analysis.   

Structural Analysis: For the given IMs and input ground motions, nonlinear dynamic 

earthquake response analysis of the building are carried out to estimate the structural 

response in terms of Engineering Demand Parameters (EDPs). The EDPs can be story 

drift ratios, component deformations or internal member forces. The Incremental 

Dynamic Analysis (IDA) procedure is used to establish the relationship between the EDP 

and IMs. Deierlein et al. (2003) defined IDA as;  

“IDA is a strategy for conducting nonlinear time history analyses where a 

structure is subjected to multiple analyses for a given ground record, 

which has been scaled to various intensities”.  

In an IDA, the input ground motion intensities are scaled, such that all have the same IM. 

The analysis is repeated several times at increasing levels of the IM.   

Damage Analysis: Using the EDPs, a damage analysis is performed to estimate the 

relationship between the EDPs and Damage Measures (DMs). In the probabilistic PBEE 

methodology, damage is modeled using fragility functions. A fragility function gives the 

probability of a level of damage as functions of one (or more) EDPs (Porter et al. 2007). 

Damage is defined in terms of the repair actions required to return the building to an 

undamaged state.  
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Loss analysis: Losses are associated with the DMs. Losses are expressed in terms of 

Decision Variables (DVs). DVs indicate the seismic performance of the building 

according to the interests of the stakeholders. DVs can be dollar losses, deaths, or 

downtime. The relationship of DVs to DMs is given in terms of loss functions. Loss 

functions provide information on the probability of exceeding a certain level of 

repair/replacement cost at a specified damage state.  

The PEER PBEE methodology is illustrated schematically in Figure 2.1. This 

methodology considers the inherent uncertainties of earthquake performance assessment 

with a consistent framework. 

To account for these uncertainties, PEER developed a framework equation by using 

conditional probability concepts and total probability theory (Moehle and Deierlein, 

2004). The DVs are the seismic performance measures. Various sources of uncertainty 

that cause uncertainty in the DVs are combined. Three sources of uncertainties should be 

taken into account: uncertainty in the DVs for a certain level of structural response 

(expressed by EDPs), uncertainty in the structural response at a certain level of ground 

motion intensity (expressed by IMs), and uncertainty in the ground motion intensity. 

These uncertainties are accounted for by corresponding random variables. The 

consideration of uncertainties in the PEER framework is explained as follows by Aslani 

and Miranda (2005): 

“The uncertainty in estimating the seismic hazard at the site has been 

modeled by considering a ground motion intensity measure (IM) as a 

random variable and estimating the mean annual frequency of exceedance 
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of  the seismic hazard at the site, ν(IM > im), by performing a 

Probabilistic Seismic Hazard Analysis (PSHA). The uncertainty in 

estimating the intensity of the structural response is incorporated by 

considering a vector of engineering demand parameters (EDPs) and 

estimating the conditional probability of an EDP exceeding a certain 

intensity, edp, at different levels of ground motion intensity, P(EDP > edp 

| IM=im). The uncertainty in estimating the decision variables, DVs, is 

incorporated using the conditional probabilities of exceeding a certain 

level of dv at a level of edp, P(DV > dv| EDP=edp).” 

The first version of the PEER framework equation estimated the mean annual frequency 

of exceedance of a DV as follows (Cornell and Krawinkler, 2000): 

       imIMdimIMedpEDPdPedpEDPdDVPdDVDV  ||)(  (2.1) 

However later work showed that a more realistic estimation of DV can be obtained by 

estimating the DV as a function of the level of damage by introducing random variables 

to quantify damage, the DMs.  

A recent version of the PEER framework equation is as follows (Krawinkler and 

Miranda, 2004): 

   

   imIMdimIMedpEDPdP

edpEDPdmDMdPdmDMdDVPdDVDV



 





|

||)(
      (2.2) 

In Equation 2.2, DMs are assumed to be continuous random variables. However, while 

expressing the seismic performance in terms of economic losses, it is better to assume the 
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DMs to be discrete random variables, because repair work is a discrete action. In this 

manner, Equation 2.2 was modified as follows (Krawinkler and Miranda, 2004): 

   

   imIMdimIMedpEDPdP

edpEDPdmDMPdmDMdDVPdDV
i

iDV



 





|

||)(
  (2.3) 

As it is seen from Equation 2.3, one of the integrals in Equation 2.2 is replaced with a 

summation to consider discrete damage states of building components; i.e., 

dP(DM>dm|EDP=edp) in Equation 2.2 is replaced by ∆P(DM>dm|EDP=edp) to consider 

damage states as discrete random variables (Miranda and Aslani, 2003).  

2.3 Response Assessment for Building-Specific Loss Estimation 

Miranda et al. (2004) proposed a performance-based approach that estimates the total loss 

in the building from damage as a summation of individual losses of building components.  

Analyses were done with an existing non-ductile seven story reinforced concrete 

building. It was stated that the total loss is the sum of losses associated with non-collapse 

and losses associated with collapse. In this approach, collapse (C) and non-collapse (NC) 

damage states are considered as mutually exclusive. 

The probability of collapse was estimated for two conditions: sidesway collapse and 

collapse as a result of loss of vertical carrying capacity. The analysis results showed that 

the second type of collapse is more critical for non-ductile structures (Aslani and 

Miranda, 2005). 
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The expected total loss in the building given that collapse does not occur at a ground 

motion intensity IM, E[LT | NC,IM], is obtained as the sum of the losses of individual 

components of the building as follows: 

      












N

i

ii

N

i

iiT IMNCLEaIMNCLaEIMNCLE
11

,|,|,|  (2.4) 

where, 

 IMNCLE i ,| = the expected normalized loss in the i
th

 component of building 

conditioned on the building non-collapse (NC) and a ground 

motion intensity (IM) 

ia = the replacement cost of component i 

iL = the normalized loss in the ith component defined as the cost of repair or 

replacement in the component normalized by ai 

Economic losses are estimated by combining uncertainties in seismic hazard, structural 

response, component fragility, and costs of repair actions associated with the damage. 

The damage in the system is estimated by relating structural response parameters (EDPs) 

with component fragility functions. Economic losses are interpreted as expected annual 

loss or as the probability of experiencing an economic loss larger than a given amount. 

In the proposed approach by Miranda and Aslani (2003) the annual expected loss was 

estimated as follows for a single component: 
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- Estimation of component expected loss as a function of the EDPs by summation 

over all damage states 

- Estimation of component expected loss as a function of the IMs by integration 

over a range of EDPs 

- Estimation of component annual expected loss by integration over the various 

levels of IM 

Finally, the annual expected loss of the building can be estimated with a summation of all 

component losses (structural components and nonstructural components). These steps can 

be shown in a single formula as follows: 

       

dIMdEDP
dIM

IMd

imIMedpEDPPedpEDPdsDSPdsDSLELE jji

m

i

ijj

)(

|||
1 0 0






 

 (2.5) 

where, 

dIM

IMd )(
= the derivative of the hazard curve as a function of IM at the site 

P(EDPj>edp|IM=im) = the probability of EDP for component j exceeding a 

certain limit, edp, for a given level of intensity 

P(DS=dsi|EDPj=edp) = the probability of being at damage state i, DSi, for a given 

level of deformation 

E[Lj|DS=dsi] = the expected loss in the component j for a given damage state i 
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In another study, Zareian and Krawinkler (2006) developed a simplified PBEE approach. 

This simple procedure contains three domains: Hazard Domain, Structural System 

Domain, and Loss Domain. Building-specific economic losses are represented in a semi-

graphical way. The Structural System Domain and Loss Domain consider both non-

collapse and collapse cases as separate sub-domains. This approach recommends to group 

building components into subsystems (at the story level or building level). By this way, 

components in the same subsystem can be related to a single response parameter. A 

comprehensive structural response database was established within the scope of this 

study. This database includes EDPs for various reinforced concrete moment-resisting 

frames and shear walls. This approach gives only the mean values of performance not a 

full probabilistic performance assessment.   

Mitrani-Reiser (2007) developed another performance assessment methodology that 

estimates economic losses in terms of repair costs, building downtime and human 

fatalities. An event-tree-based virtual inspection procedure was used to check the safety 

of buildings according to the current code-based guidelines. An analytical methodology 

was presented in the form of a toolbox (MatLab Damage and Loss Analysis) for damage 

and loss estimation. A new reinforced concrete moment frame office building was 

analyzed in this study. Mean losses as a function of ground motion intensity level and 

expected total annual loss were estimated for different structural design approaches. For 

the components with available fragility functions, non-collapse losses were estimated in a 

component basis. The expected annual loss results indicated that the non-code 

conforming design had the worst performance.  Additionally, an event-tree-based fatality 
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model was created to evaluate factors affecting human injuries and deaths. The fatality 

estimation results showed that there is no life safety risk in code-conforming building 

designs at all hazard levels.  

In the seismic performance assessment approach of Ramirez and Miranda (2009), a story-

based loss estimation is used. This approach estimates damage by directly relating 

structural response to loss of each story of a building through EDP-DV functions. There 

is no need to estimate component damage in this approach, because it is included in the 

building story losses. With this alternative approach, the performance assessment can be 

obtained in a more efficient manner. The total loss estimation was also modified to 

consider the losses associated with the demolition of a building that has not collapsed but 

cannot be repaired due to excessive residual deformations. Further information on this 

approach is given in Section 2.3.1 of this thesis. 

2.3.1 Enhanced Building-Specific Seismic Performance Assessment 

Miranda (2010) states that the total economic losses of a building after an earthquake are 

the sum of losses associated with the building collapse and losses associated with the 

non-collapse case of the building. The losses associated with non-collapse case are of two 

types: losses associated with reparable damage when the building does not collapse (i.e., 

non-collapse), and losses associated with building demolition when the building does not 

collapse (i.e., non-collapse). Residual drift is the EDP used to establish the reparability of 

the damage.  
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It is known that ductile lateral force resisting systems (without self-centering ability) are 

designed to resist large lateral displacements without collapse. For this reason, these 

systems experience residual deformations after intense ground motions (Miranda, 2010).   

The expected value of the total loss in the building conditioned on ground motion 

intensity is formulated as follows: 

CDRT LLLIMLE ]|[
 (2.6) 

where,  

LR= the losses associated with the case that collapse does not occur and the 

damage is reparable 

LD= the losses associated with the case that collapse does not occur, the damage is 

not reparable, and the building is demolished 

LC= the losses associated with the case that the building collapse occurs 

Each of these losses can be obtained as follows: 

)|(],|[ IMRNCPIMRNCLELR    (2.7) 

where,  

E[L|NC∩R,IM]= expected building loss given the non-collapse case with 

reparable damage and conditioned on ground motion intensity 
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P[NC∩R|IM]= probability of the non-collapse case with reparable damage 

conditioned on ground motion intensity 

]|(],|[ IMDNCPIMDNCLELD   (2.8) 

where,  

E[L|NC∩D,IM]= expected building loss given the non-collapse case with 

building demolition due to non-reparable damage, and 

conditioned on ground motion intensity 

P[NC∩D|IM]= probability of non-collapse case with building demolition 

conditioned on ground motion intensity 

)|(]|[ IMCPCLELC   (2.9) 

where,  

E[L|C]= expected building loss given the collapse (C) case  

P[C|IM]= probability of collapse conditioned on ground motion intensity 

The following expression becomes valid by assuming repair and demolition, given the 

non-collapse case, are mutually exclusive events: 

),|(1),|( IMNCDPIMNCRP   (2.10) 

Similarly, collapse and non-collapse are also mutually exclusive as follows: 
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)|(1)|( IMCPIMNCP   (2.11) 

Residual lateral deformation (residual lateral drift) in the system is treated as the main 

parameter controlling the demolition decision (Miranda, 2010). However, there is no 

specific residual drift value that represents demolition. It mainly depends on engineering 

judgment. Based on the limited information, it is assumed that the probability of having 

demolition at a certain residual drift value has a lognormal distribution with a median of 

0.015 and a logarithmic standard deviation of 0.3 (Miranda, 2010). Residual drifts that 

cause demolition are in the range of 0.7 to 3%.  

Within the scope of this research by Miranda (2010), several reinforced concrete 

buildings were analyzed in terms of their seismic performance with and without 

considering the demolition losses.  According to the analysis results, the effect of 

demolition losses on the total loss is the largest at the MCE level of ground motion 

intensity. Although, both demolition and collapse contribute to the total loss of the 

building, the demolition losses are larger than the collapse losses. The reason for this 

difference is that the probability of demolition is much higher than the probability of 

collapse at the MCE.  

A similar study was conducted by Ramirez and Miranda (2009) as well. It was observed 

that non-collapse reparable losses are larger than total losses due to collapse or 

demolition at lower intensities Sa(T1) less than 0.5g. In the intensity range of 0.6g and 

1.7g, reparable losses are decreasing and non-collapse demolition losses are increasing. 

Finally, collapse losses are largest at intensities greater than 1.7g.  
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Ramirez and Miranda (2009) also studied different height buildings to see the effect of 

height on demolition losses. According to this study, the total losses appeared to be 

smaller for a high-rise building than for a low-rise building. However, the increase in the 

total loss after including the demolition losses is higher for the high-rise structure. This 

result indicates that high-rise buildings may have larger residual drifts so that the 

demolition probability is higher for them in the non-collapse case.  

The results showed that previous earthquake performance assessment approaches 

underestimated the total loss, since LD is appreciable. These underestimates seemed to be 

larger for ductile buildings than for non-ductile buildings; because ductile structures have 

more residual drift and less probability of collapse (Miranda, 2010).  

The benefits of self-centering systems with reduced residual drifts can be seen more 

clearly with the application of the approach suggested by Miranda (2010). Although the 

initial cost of these systems is higher than the cost of conventional systems, their ability 

to minimize residual drifts reduces the probability of building demolition and economic 

losses associated with demolition. 

2.4 Seismic Performance Assessment of Buildings (ATC-58 Project) 

The ATC-58 project aims to establish guidelines to estimate the probable earthquake 

performance of both new and existing buildings (ATC, 2011). The PEER PBEE 

methodology was the basis of the ATC-58 project. An electronic database of component 

fragility specifications was developed. In the performance-based design process of ATC-

58, the first step is for the project decision-makers to determine the performance 
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objectives. Then design professionals develop the design to meet the performance 

objectives. ATC-58 uses casualties (number of deaths), repair cost, repair time and 

“Unsafe Placards” (which deem the building to be unsafe for post-earthquake occupancy) 

as performance measures.    

Factors affecting the building performance are as follows (ATC, 2011): 

 The ground motion intensity and seismic hazard that the building experiences 

 The building earthquake response  

 The vulnerability of the building and its components to damage 

 The number of people present and their location in the building when the 

earthquake occurs 

 The results of post-earthquake inspections 

 The details of the repair actions; the availability of labor and materials, the 

efficiency of contractors, etc.  

Although it is impossible to predict these factors accurately, the performance measures 

can be assessed as probabilistic performance functions. The ATC-58 project provides 

procedures for obtaining these performance functions. The performance assessment can 

be done in three ways (ATC, 2011): 

1. Intensity-Based Assessments: Probable performance assessment of the building 

when it is assumed that the building is subjected to a specific shaking intensity 

(e.g. from a 5% damped, elastic acceleration response spectra).  
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2. Scenario-Based Assessments: Probable performance assessment of the building 

when it is subjected to the effects of a specific magnitude earthquake.  

3. Time-Based Assessments: Probable performance assessment of the building over 

a specific period of time, considering all earthquakes that may occur in that time 

period.   

The ATC-58 process flow chart is illustrated in Figure 2.2. The process is similar to the 

PEER PBEE methodology that is explained in detail in Section 2.2. 

A Performance Assessment Calculation Tool (PACT) was developed to make the 

necessary performance calculations using the damage database. PACT is an 

implementation of the PEER PBEE methodology. With input of the building information 

and a set of EDPs, PACT provides repair time and casualty models, “Unsafe Placard” 

probabilities, and structural collapse probabilities and consequences. It does intensity-

based, scenario-based and time-based assessments. PACT is still under development, and 

is not appropriate for use in actual projects now.    

2.5 Performance-Based Seismic Design and Analysis of Steel Braced-Frame 

Buildings 

Performance-based seismic design (PBD) approach aims to achieve a predetermined 

performance objective under predetermined ground motion intensity.  If the structure 

reaches a performance level at the specified intensity level, the performance objective is 

said to be achieved. A performance level is defined in terms of damage that is acceptable 

at that performance level. Damage is determined by the structural or non-structural limit 
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states that are reached or exceeded. Building performance levels and damage control for 

each performance level are defined broadly in ASCE-41-06 (2007) and can be seen in 

Table 2.1. Three seismic hazard levels (i.e., ground motion intensity level) are defined in 

FEMA 450 (FEMA, 2003) and can be seen in Table 2.2. 

2.5.1 Performance-Based Earthquake Engineering Analysis of Multi Story Special 

Concentrically-Braced Steel Frame Structures (SCBFs) 

PBD usually aims to meet multiple performance objectives. PBD enables structures to 

sustain their serviceability during small, frequent earthquakes with minor loss in their 

strength and stiffness. Similarly, PBD assures life safety and collapse prevention during 

large, infrequent earthquakes. A performance-based design strategy for SCBFs was 

proposed by Roeder et al. (2004) and is summarized in Table 2.3.  

The performance of low- and mid-rise concentrically braced steel frames (SCBF), where 

the diagonal braces were hollow structural tube sections prone to low cycle fatigue and 

fracture, together with buckling-restrained braced frames (BRBF) was studied by Uriz 

and Mahin (2008). Improved brace models for the SCBFs were used to consider brace 

fracture due to low-cycle fatigue. Low-cycle fatigue leads to a sudden loss of strength 

and stiffness when the braces fracture. In many of the cases in the study by Uriz and 

Mahin (2008), collapse occurred where the brace fracture occurred. Nine frames were 

modeled including three- and six-story SCBFs and BRBFs (Uriz and Mahin, 2008). The 

SCBF models include out-of-plane buckling of the braces and columns, and consider 

low-cycle fatigue effects. SCBFs were also modeled in a way that considers column base 
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uplift. Additionally, two moment resisting frames (MRF) were studied for comparison.  

These models were subjected to several ground motions and their seismic responses were 

assessed.  

When the analysis results for the low-rise frames were compared, the following findings 

were obtained: 

 Damage in fixed based SCBFs concentrated in one story (most of the time in the 

lowest story), whereas rocking frames had a more uniform damage distribution 

throughout the height. 

 Among all frame models, SCBFs with rocking bases had the least residual drift at 

the end of the earthquake motion.  

 The interstory drift ratio observed at brace buckling is about 0.25%.  

 Collapse occurred for only a few ground motions at the MCE level.   

 Excessive lateral displacement of the lower story caused collapse of the fixed base 

SCBF model. 

 Most of the time, when brace fracture occurred in the model, collapse also 

occurred. For the non-collapse case, no brace fracture was observed for more than 

half of the structures. Therefore, the collapse resistance depends on the fracture 

resistance of the braces.   

 The yield drift for the SCBFs was 0.3%.  

 Out-of-plane displacement can be used as an indicator of brace buckling in 

SCBFs. The median peak residual out-of-plane displacement of the braces was 

around 30 in. for MCE level ground motions and approximately 16 in. for DBE 
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level ground motions. Even for FOE level ground motions, the median peak out-

of-plane residual displacement was more than 5 in. The rocking SCBF model had 

less buckling and hence had much less residual out-of-plane displacement 

compared to the fixed base model.  

When the analysis results for the mid-rise frames were compared, following findings 

were obtained: 

 Damage was concentrated in a single story, usually in the lower and upper 

stories which had large drift values. Drifts were much less than the low-rise 

structure drifts. 

 The rocking model had a low natural frequency at rocking and a high 

frequency when contact with the ground occurred.  

 The roof drift of the rocking model was slightly larger than the roof drift of 

the fixed base model, but the interstory drift was larger for the fixed base 

model. 

 Collapse occurred for only a few ground motions at the MCE level for both 

the fixed base and rocking models. 30% of the ground motion records caused 

collapse for the fixed base SCBF. For the rocking SCBF, this value was 

reduced to 10%.  

 Excessive lateral displacement of the lower and upper stories triggered 

collapse for the fixed base SCBF. The rocking SCBF collapsed because of an 

excessive overturning moment. 
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 Although the drift demand was less, more brace fractures were observed for 

the mid-rise frames compared to the low-rise frames. Longer periods and P-

delta effects can cause this difference.  

 The mid-rise frames have more brace damage. 

 The residual drift values were almost the same for both the low-rise and mid-

rise fixed base SCBF at the MCE level; however for smaller ground motion 

intensities, the mid-rise frame has larger residual drift. 

 Residual out-of-plane displacements of the braces are larger for the mid-rise 

buildings.   

This study points out the superiority of the rocking SCBF structure over the fixed-base 

SCBF structure. Some advantages are as follows: It has less damage to the braces, the 

damage is distributed uniformly throughout the height of the structure, and very little 

residual displacement is observed.    

2.5.2 Performance-Based Seismic Design of Self-Centering Concentrically-Braced 

Frames (SC-CBFs) 

Performance based design of the SC-CBF system was specified according to the 

performance levels identified in FEMA 450 (FEMA,2003) by Roke et al. (2010). Each 

performance level is related to a seismic hazard level and various limit states. 

Performance levels are determined according to the damage observed in the structure 

after the earthquake. The performance levels for the SC-CBF are as follows (Roke et al., 

2010): 
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 Operational (O): This performance level represents no damage in the structure. 

Column decompression is expected to occur without causing any damage.  

 Immediate Occupancy (IO): Slight structural damage has occurred at this level. 

The structure retains its pre-earthquake strength and stiffness. This level 

corresponds to the minimum damage to the system. Minor PT bar yielding is 

permitted. 

 Life Safety (LS): Significant structural and non-structural damage has occurred at 

this level. The structure may lose stiffness, however there is still a significant 

collapse margin present in the system. For the SC-CBF system, column 

decompression, PT bar yielding, and member yielding are expected.  

 Collapse Prevention (CP): The structure is almost collapsed. An extensive amount 

of damage is expected which includes column decompression, PT bar yielding, 

and member yielding.  

In the PBD approach, these performance levels are associated with ground motion 

intensity levels to set the performance objectives. Roke et al. (2010) specified the 

performance objectives of an SC-CBF as: IO performance level under DBE level ground 

motions, and CP performance level under MCE level ground motions. Limited PT bar 

yielding is allowed under the DBE whereas significant yielding is allowed under the 

MCE. Frame members are designed to remain elastic under the DBE by using capacity 

design principles. Member yielding is allowed at the MCE level. Performance-based 

design objectives for SC-CBFs are summarized in Table 2.4. The probability of reaching 

(or exceeding) PT bar yielding under the DBE is 50%, while the probability of reaching 
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(or exceeding) member yielding is around 5%. Under the MCE, these probabilities are 

larger, as expected. The expected lateral force versus lateral roof drift behavior of an SC-

CBF is illustrated by Roke et al. (2010) and can be seen in Figure 2.3.  

For conventional systems (such as SCBFs), the usual performance objectives are LS 

performance level under DBE level ground motion and CP performance level under MCE 

level ground motion. From a comparison of the performance objectives for the two 

systems, it is seen that the performance of the SC-CBF is expected to be better than the 

conventional systems.  

Roke et al. (2010) analyzed a four-story SC-CBF test structure by using nonlinear 

dynamic earthquake response analysis. This analysis results showed that system exceeded 

the specified performance objectives (i.e., there was less damage than specified). Under 

the DBE, the maximum story drifts are well below the code specified limit of 2% (ASCE, 

2010), and the mean maximum story drifts under the MCE are also below 2%. In 

addition, Roke et al. (2010) stated that SC-CBF system has larger drift capacity prior to 

initiation of damage of the main structural members than a conventional CBF system.  

2.6 Summary 

SCBF systems are stiff and economical earthquake resistant systems. However, they have 

limited ductility capacity with a tendency to accumulate residual drift during an 

earthquake. Self-centering systems have been developed to increase the ductility and 

reduce the residual drift under seismic loading.  The superiority of the SC-CBF system 

over conventional SCBF systems has been suggested, but should be shown in terms of 
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structural damage after an earthquake. The damage assessment procedure presented in 

this thesis can be used to show this advantage of SC-CBFs.   
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Table 2.1 – Building Performance Levels and Damage Control (ASCE 41-06) 
 Target Building Performance Levels 

 Operational (O) Immediate 

Occupancy (IO) 

Life Safety (LS) Collapse 

Prevention (CP) 

Overall Damage Very light Light Moderate Severe 

General No permanent drift. 

Structure 

substantially retains 

original strength 

and stiffness. Minor 

cracking of facades, 

partitions, and 

ceilings as well as 

structural elements. 

All systems 

important to normal 

operation are 

functional.  

No permanent 

drift. Structure 

substantially 

retains original 

strength and 

stiffness. Minor 

cracking of 

facades, 

partitions, and 

ceilings as well as 

structural 

elements. Fire 

protection 

operable. 

Some residual 

strength and 

stiffness left in all 

stories. Gravity-

load-bearing 

elements 

function. No out-

of-plane failure of 

walls or tipping of 

parapets. Some 

permanent drift. 

Damage to 

partitions. 

Building may be 

beyond 

economical 

repair. 

Little residual 

stiffness and 

strength, but 

load-bearing 

columns and 

walls function. 

Large permanent 

drifts. Some 

exits blocked. 

Infills and 

unbraced 

parapets failed or 

at incipient 

failure. Building 

is near collapse. 

Nonstructural 

Components 

Negligible damage 

occurs. Power and 

other utilities are 

available, possibly 

from standby 

sources.  

Equipment and 

contents are 

generally secure, 

but may not 

operate due to 

mechanical failure 

or lack of utilities. 

Falling hazards 

mitigated but 

architectural, 

mechanical, and 

electrical systems 

are damaged.  

Extensive 

damage 

 

 

Table 2.2 – Seismic Hazard Levels (FEMA 450) 

Hazard level Probability of 

exceedance in 50 

years 

Return period 

MCE-Maximum Considered 

Earthquake 

2% 2475 years 

DBE-Design Basis Earthquake 2/3 of MCE 475 years 

FOE-Frequently Occurring 

Earthquake 

50% 72 years 
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Table 2.3 – Performance Based Design Strategy for SCBFs (Roeder et al., 2004) 
Seismic Hazard Level Performance Level Limit States 

FOE Immediate Occupancy (IO)  Brace buckling 

 Incipient Brace yielding 

DBE Life Safety (LS)  Tension yielding of brace  

 Incipient yielding of gusset plate 

 Incipient elongation of bolt holes 

MCE Collapse Prevention (CP)  Full brace yielding 

 Yielding of gusset plate 

 Elongation of bolt holes  

 Incipient brace fracture 

 

 

Table 2.4 – Performance Based Design of SC-CBFs (Roke et al., 2010) 

Seismic Hazard 

Level 

Performance Level Limit States 

DBE Immediate Occupancy (IO)  Column decompression 

 Minor PT bar yielding 

MCE Collapse Prevention (CP)  Column decompression 

 PT bar yielding 

 Member yielding 
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Figure 2.1 – Components of PEER’s PBEE methodology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 – ATC-58 process flow chart (ATC, 2011) 
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Figure 2.3 – Schematic illustration of PBD criteria of SC-CBF (Roke et al., 2010) 
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CHAPTER 3 

SEISMIC DESIGN AND DYNAMIC ANALYSIS OF SCBFS AND SC-

CBFS 

3.1 General 

In this study, the seismic performance of SCBFs and SC-CBFs is evaluated from a 

damage assessment and compared. As part of this study, engineering demand parameters 

(EDPs) such as story drift and component deformation are estimated by dynamic 

analysis. These EDPs are then related to damage states to quantify the necessary repair 

actions.  

Four buildings are analyzed in this study: 4- and 9-story SCBF buildings (4SCBF and 

9SCBF, respectively), and 4- and 9-story SC-CBF buildings (4SC-CBF and 9SC-CBF, 

respectively). These four model buildings are designed using design procedures described 

in this chapter. Analytical models of these four frames are created in OpenSees and the 

earthquake response of these models is determined from nonlinear dynamic earthquake 

response analysis.   

The peak story drift (θm), the peak residual story drift (θr) and the normalized residual 

out-of-plane displacement of the braces (∆or) of the CBFs are the EDPs extracted from 

the dynamic analysis results. θm and θr are used for the collapse/non-collapse and 

demolition/no demolition damage assessment of the buildings presented in Chapter 4. ∆or 

is used for the damage assessment of the brace components of the SCBFs and SC-CBFs 
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presented in Chapter 5. All three EDPs are used in a comprehensive damage assessment 

presented in Chapter 6. 

This chapter describes the seismic design procedures for the SCBF and SC-CBF 

buildings used in this study. The nonlinear dynamic time history analyses of the buildings 

used to obtain the EDPs are also described. The nonlinear numerical models and ground 

motions used in dynamic analyses are described briefly. Finally, a brief discussion of the 

dynamic analysis results is given.                 

3.2 Earthquake Forces for Design 

The earthquake design lateral forces are determined using two methods derived from 

ASCE 7-10 (ASCE, 2010).  

3.2.1 Equivalent Lateral Force (ELF) Procedure 

The equivalent lateral force (ELF) procedure starts by determining the approximate 

fundamental period (Ta) of the building. The equation to obtain the approximate period is 

as follows (ASCE, 2010): 

x

nta hCT   (3.1) 

where, 

Ct = 0.02 

x = 0.75 (for both the SCBF and SC-CBF) 

hn = the total height of the structure (ft) 
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The seismic response coefficient, Cs, is determined as follows (ASCE, 2010): 










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R

S
C DS

s  (3.2) 

where, 

R = the response modification factor (Table 12.2-1 in ASCE, 2010) 

I = the occupancy importance factor (Table 11.5-1 in ASCE, 2010) 

SDS = the spectral response acceleration parameters for short periods (ASCE, 

2010) 

For the SCBF, R is equal to 6 and for the SC-CBF, R varies, but should not exceed 10. 

Detailed information about R in the design of SC-CBFs is given in Section 3.3.2.  

Maximum and minimum values of Cs are (ASCE, 2010): 
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where, 

T = the fundamental period of the structure (sec) 

SDS, SD1 = the spectral response acceleration parameters for short periods and a 

period of 1 sec (ASCE, 2010) 

T used in the above equations is determined as follows. The actual fundamental period, 

T1 is estimated from an analysis of the structural model and corresponds to the first mode. 

T used in the above equations should be the smaller of T1 and Tmax, where Tmax is 

calculated as follows. 

 au TCT max  (3.5) 

where, 

Cu = the coefficient for the upper limit on period (Table 12.8-1 ASCE, 2010) 

Initially, Ta can be used as T for a preliminary design, and the ELFs are calculated using 

Ta. However, the ELFs should be recalculated after obtaining T1 from a structural 

analysis and the design should be checked for the recalculated ELFs.  

The design base shear is calculated (ASCE, 2010) as follows: 
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WCV s   (3.6) 

where, 

W = the total seismic weight of the building (kips) 

partitionLLDLW   (3.7) 

where, 

DL = the total dead load of the building (kips) 

LLpartition = the portion of the live load of the building associated with the 

partitions (kips) 

The dead and live loads used in the design of the SCBF and SC-CBF buildings are given 

in Tables 3.1 and 3.2.  

Finally, the lateral earthquake forces (Fx) for each floor level are obtained as follows 

(ASCE, 2010): 

VCF vxx   (3.8) 





n

i

k

ii

k

xx

vx

hw

hw
C

1

 (3.9) 

where, 

Cvx = the vertical distribution factor 
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wi and wx = the portion of total building weight (W) for level i or x (kips) 

hi and hx = the building height from the base of the building to level i or x (ft) 
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Story drifts should be checked against the drift limits of ASCE7-10 (ASCE, 2010). The 

design story drift is determined as the difference between the center of mass deflections 

of two adjacent floors, modified as follows (ASCE, 2010): 

I

C xed

x


   (3.11) 

where, 

Cd = the deflection amplification factor (Table 12.2-1 in ASCE, 2010) 

δxe = the story drift at level x determined by an elastic analysis 

I = the occupancy importance factor (Table 11.5-1 in ASCE, 2010) 

To obtain the elastic drifts (δxe), ELFs based on the estimated T1 may be used without 

considering the period limit Tmax in the structural analysis (ASCE, 2010).   

3.2.2 Response Spectrum Analysis (RSA) 

The earthquake lateral forces can be estimated from a modal response spectrum analysis 

(RSA). In this analysis, modal properties (modal shape, period, and other properties) of 
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the building are estimated. Then the earthquake response is estimated from the code-

specified design response spectrum. The responses for the modes are then combined to 

obtain the total response of the building. The design response spectrum used in this 

analysis is defined in ASCE7-10 (ASCE, 2010) as follows: 































































TT

TTT

TTT

T

TS

T

S

S

TT
T

T
S

TS

L

LS

S

LD

D

DS

DS

a

0

2

1

1

0

0

6.04.0

)(  (3.12) 

where, 

SDS, SD1 = the spectral response acceleration parameters for short periods and a 

period of 1 sec 

T0, TS, and TL = the transition periods (sec) 

T = the estimated period of a given vibration (sec) (ASCE, 2010)  

The DBE-level design response spectrum determined from Equation 3.12 is shown in 

Figure 3.1. The MCE-level spectrum is obtained by multiplying the design response 

spectrum by 1.5 (ASCE, 2010).  
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To obtain modal response parameters (story drifts, reaction forces, individual member 

forces for each mode of response) for an RSA according to ASCE7-10, the design 

response spectrum (Equation 3.12) should be scaled down by dividing by the quantity of 

R/I as it is given in ASCE7-10 (ASCE, 2010). The response spectrum in Equation 3.12 is 

used in the design method for SC-CBFs proposed by Roke et al. (2010) without scaling 

down by R/I.  

The modes to be included in the ASCE7-10 RSA are based on the combined modal mass 

participation ratio. At least 90% of the participating mass should be included in the RSA 

for each principal direction of the building.  

The design response obtained for each mode is combined with the responses from other 

modes by using either the square root of the sum of the squares method (SRSS) or the 

complete quadratic combination (CQC) rule (ASCE, 2010).   

The combined modal base shear (Vt) from the ASCE7-10 RSA should not be less than 

85% of the calculated base design shear (V) from the ELF procedure. When Vt is less 

than 0.85V, the RSA results should be scaled up to that level using the following scale 

factor (ASCE, 2010): 

tV

V
FS  85.0..  (3.13) 

Then the building design should be updated using the scaled results and Vt should be 

rechecked against the 85% limit. This design process is repeated until the 85% limitation 

in Vt is met.  
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For a structural design based on RSA, the design story drifts are checked against the story 

drift limit of ASCE 7-10. Modified story drifts are obtained from Equation 3.11. For the 

cases when the response is scaled up so Vt is greater than or equal to 0.85V, the story 

drifts need not be multiplied by the scale factor before they are compared against the drift 

limit (ASCE, 2010).  

3.3 Structural Design 

SCBF and SC-CBF frames were designed for both 4- and 9-story office buildings located 

in Southern California (near Los Angeles) on a stiff-soil site (Site Class D). The same 

floor plan is used for all buildings and is shown in Figure 3.2. The seismic design 

parameters are tabulated in Table 3.3 for both systems. The structural design of the two 

types of frames is explained in this section.   

3.3.1 Design of SCBF 

SCBFs consist of beams, columns, and diagonal bracing. The design of an SCBF starts 

with the determination of the base shear and the earthquake lateral forces. Member forces 

are then obtained from a structural analysis of the structure under the earthquake lateral 

forces. The brace design forces are taken from these analysis results. For the beams and 

columns, however, the design method for SCBFs from the AISC Seismic Provisions 

(AISC, 2010b) considers the maximum expected brace forces together with the gravity 

loads acting on the beams and columns (Powell, 2009). 

2-dimensional SAP2000 models were used for the design of the 4- and 9-story SCBFs 

termed 4SCBF and 9SCBF, respectively. These SAP2000 models include only the main 
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structural members (beams, columns, and braces) and a lean-on column connected to the 

left-hand side of the SCBF. The lean-on column is modeled as weightless and connected 

to the SCBF with weightless rigid link elements. The tributary seismic mass for one 

frame (which is one quarter of the total building mass) is applied to the lean-on column. 

The lean-on column in the model considers the P-delta effects due to the total gravity 

load of the tributary area for one SCBF (corresponding to one quarter of the total floor 

area). Twenty five percent of the live load, as well as the full dead load, within the one 

quarter of the total floor area associated with one SCBF are applied to the lean-on 

column.  

The connections between the beams and columns are modeled as full-moment 

connections without any moment release, but the brace connections are modeled as pin 

connections by releasing the moment at the ends of the braces. The columns are assumed 

to be fixed at the base and modeled accordingly.  

3.3.1.1 Load Cases 

The SCBFs are designed using the load combinations as follows (ASCE 2010): 

D4.1  (3.14) 

rLLD 5.06.12.1   (3.15) 

LLD r  6.12.1  (3.16) 

LQDS EDS   )2.02.1(  (3.17) 
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EDS QDS  )2.09.0(  (3.18) 

where, 

D = the dead load 

L = the live load 

Lr = the roof live load 

QE = the effects of earthquake lateral forces from the ELF procedure or RSA 

ρ = the redundancy factor = 1.0 (Section 12.3.4.2 in ASCE, 2010) 

γ = 0.5 when live load is less than or equal to 100 psf (ASCE, 2010) 

Note, lateral earth pressure and snow load were omitted from the design. 

The dead and live loads used in the design are given in Tables 3.1 and 3.2. Live load 

reduction is done in accordance with ASCE 7-10.  

3.3.1.2 Member Selection 

The 4- and 9-story SCBFs are designed for both ELF and RSA forces. The most 

economical design among the two is used for further analysis. Members are designed for 

the most critical load combination by using the SAP2000 Steel Design tool in accordance 

with the current AISC Design Specification.  

The SCBFs with section sizes are given in Figure 3.3 through Figure 3.5. Figure 3.3 

shows the 4SCBF. There is only one design for 4SCBF because both the ELF procedure 
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and RSA give the same design base shear and member section sizes for the 4SCBF. 

Figure 3.4 and Figure 3.5 show the 9SCBF designed using the ELF procedure and RSA, 

respectively. As seen from these figures, the ELF procedure and RSA give different 

designs.  

The weights of the structural steel members, seismic weights, base shear values, base 

shear values normalized by seismic weight and fundamental periods of the 4- and 9-story 

SCBFs are given in Table 3.4. The 9SCBF designed using the RSA has lighter section 

sizes than the 9SCBF from the ELF procedure. The 9SCBF designed using the RSA is 

used in the remaining studies since it has the lightest weight.   

3.3.2 Design of SC-CBF 

3.3.2.1 System Behavior 

The SC-CBF systems studied in this research were designed by Chancellor (2013). These 

SC-CBF systems consist of beams, columns and braces, as well as gravity columns 

adjacent to each SC-CBF (Figure 3.6). These gravity columns carry gravity loads; the 

SC-CBF columns do not carry gravity loads other than the weight of the SC-CBF. The 

SC-CBF columns are not rigidly connected to the foundation. Lateral load bearings are 

located between gravity columns and adjacent SC-CBF column at each floor. These 

bearings transfer the lateral forces from the floor diaphragm to the SC-CBF. Post-

tensioning bars run vertically over the height of the SC-CBF. There is also a distribution 

strut in the top story that distributes the large concentrated force from the PT bars to the 

other stories (Chancellor et al., 2012).   
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As earthquake lateral forces are applied to the SC-CBF, the SC-CBF deforms elastically, 

similar to an SCBF. The initial overturning moment resistance is provided by the 

prestress force of the PT bars, the weight of SC-CBF, and the friction in the lateral load 

bearings. Once the applied overturning moment becomes greater than the initial 

overturning moment resistance of the system, one of the SC-CBF columns uplifts and the 

SC-CBF begins to rock on its foundation. When the earthquake lateral forces are reduced, 

system returns to its plumb position from the effect of the restoring overturning moment 

provided by the PT bars (Chancellor et al., 2012).      

3.3.2.2 Design Procedure 

A performance based design procedure was developed by Roke et al. (2010) for the SC-

CBF system. As explained in Section 2.5.2, this design procedure targets performance 

objectives of Immediate Occupancy (IO) under the DBE and Collapse Prevention (CP) 

under the MCE. The design procedure limits the PT bar yielding under the DBE, but PT 

bar yielding is permitted under the MCE, along with some member yielding.    

A modified version of the RSA procedure is used in the design of SC-CBFs. In a 

conventional RSA, to obtain the response of the structure for each mode, the design 

response spectrum is scaled down by R/I and the response is determined for each mode. 

The responses of the modes are combined with one of the modal combination methods 

(SRSS or CQC) to obtain the peak response. In the modified RSA for SC-CBFs, the 

response spectrum is scaled down for the first mode and scaled up for the higher modes. 
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The responses of the modes are combined by the CQC method with specially derived 

correlation coefficients. 

The design procedure is summarized as follows (Chancellor et al., 2012): 

1. Select the member sizes, number and area of PT bars, prestress ratio and the 

friction in the lateral load bearings 

2. Determine the modal properties of the SC-CBF 

3. Determine the decompression overturning moment (OMD) and decompression 

roof drift (θD)  (Roke et al., 2010) 

4. Determine the overturning moment at PT bar yielding (OMY) 

5. Calculate the response modification factor (RA,D) which is similar to the R factor 

in ASCE7-10 (ASCE, 2010). RA,D is not a specified value, instead it is calculated 

as shown in Equation 3.19: 

D

elastic

DA
OM

OM
R

1,

,   (3.19) 

elastic

total

elastic OM
M

M
OM 

*

1
1,  (3.20) 

where, 

OMelastic,1 = the elastic overturning moment using the first mode mass 

OMelastic = the required elastic overturning moment from code-based ELF without 

scaling by R/I procedure 
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M1
*
= the effective modal mass for the first mode  

Mtotal = the total mass   

In the design of SC-CBFs, RA,D should not exceed 10. 

6. Determine the first mode peak effective pseudo-acceleration. The first mode 

forces are limited by the SC-CBF rocking action and yielding of the PT bars. For 

this reason, the first mode pseudo-acceleration value (αy,1)  is not obtained from 

the design spectrum. The equation for α1,y is given as follows: 

1

1,
OM

OMY
y   (3.21) 

where, 

OMY = the overturning moment at PT bar yielding  

OM1 = the overturning moment calculated from the first mode spatial distribution 

of mass (Roke et al., 2010)  

αy,1 is then scaled up by a factor of 1.15 to consider the probability that the effective first 

mode pseudo-acceleration can exceed αy,1.  

7. Determine the higher modes factored design pseudo-acceleration. In a 

conventional RSA, the entire spectrum is scaled down by R/I for all modes. 

However, in the design procedure by Roke et al. (2010), the pseudo-acceleration 

values for the higher modes are scaled up by a factor 2. In studies by Roke et al. 



   

52 

 

(2010), time history analysis results of SC-CBFs show these larger effective 

pseudo-acceleration responses for the higher modes. The factor of 2 is chosen to 

prevent member forces from the dynamic analysis from exceeding the member 

design forces, to prevent yielding under the DBE.     

8. Determine the factored member force design demands from the combination of 

factored modal member forces. The CQC method is used to combine the modal 

forces. The correlation between the modes for the SC-CBF was studied by Roke 

et al. (2010), the suggested correlation coefficient is 0.25.     

9. Calculate the energy dissipation ratio (βE). The hysteretic energy dissipation 

ratio, βE, is the ratio of the energy dissipated by the hysteresis loop of an SC 

system to the energy dissipated by a bilinear elasto-plastic system having the 

same strength as the SC system under cyclic loading (Seo and Sause, 2005). It is 

needed to estimate the peak roof drift under the DBE. The source of energy 

dissipation in the SC-CBF systems of this study is the lateral load bearings with 

friction. Equation 3.22 (Roke et al., 2010) is used to calculate βE: 














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
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where, 

μ = the friction coefficient for the lateral load bearings 

 bED = the SC-CBF width + centerline distance between SC-CBF column and 

gravity column 

h = the vector of the floor heights of the SC-CBF 

i = the influence vector which has elements equal to 1 

F1 = the vector of the first mode forces  

OMmax = the maximum overturning moment under DBE 

OMmax depends on the estimated peak roof displacement under the DBE (θR,DBE), and the 

calculation of θR,DBE depends on βE. An iterative approach is used to calculate both θR,DBE 

and βE. For the first iteration, OMmax is assumed to be equal to OMY as a starting point.  

θR,DBE is obtained by multiplying  θD (from Step-3) with μ (ductility). μ-R-T relationships 

from Seo (2005) are used to determine μ of the system under the DBE with known βE, 

site soil condition, natural period (T1), and RA,D. In the design of SC-CBFs, PT bars 

should not yield under the DBE, and θR,DBE is taken as the design drift at which the PT 

bars should not yield.   

According to Seo (2005), the maximum βE value of SC systems is 0.5. Therefore, the 

design value of βE should be less than 0.5 (Roke et al., 2010). For the design of 4SC-

CBF, βE is chosen as 0.5; and for the design of 9SC-CBF, βE is chosen as 0.2.  
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10. Check the design parameters (βE, RA,D, PT bar yielding, member sizes) to see if 

further iterations are needed until all design criteria met.  

4SC-CBF and 9SC-CBF are two of several SC-CBF buildings designed by Chancellor 

(2013) following the design procedure explained above. The member sizes of 4SC-CBF 

and 9SC-CBF are given in Figure 3.6 and 3.7. PT bars for the designed SC-CBFs are as 

follows: 4SC-CBF has 10 PT bars with 1.25” diameter; 9SC-CBF has 10 PT bars with 

1.75”diameter.   

3.3.3 Comparison of Designs  

The 4- and 9-story SCBF and SC-CBFs are compared in terms of their weights of the 

structural steel members, seismic weights, base shear values, base shear values 

normalized by seismic weight and fundamental periods in Table 3.5.  

Table 3.5 shows that the SC-CBFs are heavier than the SCBFs for both the 4- and 9-story 

buildings. Likewise, the design base shear values for the SC-CBFs are much larger than 

the design base shear values for the SCBFs. The base shear values normalized by seismic 

weight (Vbase/Wseismic) for the SC-CBFs are about 13% and for the SCBFs are about 4%. 

The reason for this difference is the scaled up (by a factor of 2) rather than scaled down 

(by R/I) values of the pseudo acceleration for the higher modes in the SC-CBF design 

procedure. 

The period values of the SCBF and SC-CBF designs are close since both systems have 

the same mass.  
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3.4 Nonlinear Dynamic Earthquake Response Analysis 

Nonlinear dynamic earthquake response analyses of the model 4- and 9-story buildings 

were conducted to generate data for the damage assessment. Nonlinear dynamic 

earthquake response analyses are used to obtain the structural response in terms of EDPs. 

Peak story drift (θm), peak residual story drift (θr) and normalized residual out-of-plane 

(OOP) displacement of the braces (∆or) are the EDPs.  

A nonlinear numerical model for each model building was developed in OpenSees by 

Tahmasebi (2014) and by Chancellor (2013). The Far-Field ground motion set specified 

in FEMA P695 (FEMA, 2009) was used in the analyses to perform the incremental 

dynamic analysis (IDA). Vamvatsikos and Cornell (2002) described IDA as a parametric 

analysis method to estimate structural performance under seismic loads. In an IDA, the 

structural model is subjected to scaled ground motions. A series of analyses are 

performed with the scale factor increased in each analysis, so that the intensity measure 

(IM) increases sequentially. An IDA curve is obtained for each ground motion. The curve 

is a plot of a response parameter (i.e., an EDP) vs. an IM (such as the first mode spectral 

acceleration, Sa(T1)). This data is provided by Tahmasebi (2014) for the SCBF model 

buildings and by Chancellor (2013) for the SC-CBF model buildings. IDA is often used 

to determine the collapse capacity of a building. The use of IDA for building collapse 

analysis is discussed in detail in Chapter 4.    
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3.4.1 Nonlinear Numerical Models 

As mentioned earlier, nonlinear numerical models for the 4- and 9-story SCBF and SC-

CBF model buildings were created in OpenSees for the dynamic analyses by Tahmasebi 

(2014) and by Chancellor (2013).  

The nonlinear numerical models for the SCBFs include the frame members (beams, 

columns, braces) and a lean-on column (Tahmasebi, 2014). Beam-column connections 

are modeled as rigid connections. The brace connections are modeled as moment-free pin 

connections. In a real building, buckling of the beams is restrained by the floor system 

and gravity load framing. The beams in the SCBF model are modeled without buckling to 

reflect this restraint. Column bases are modeled as fixed base.  

The nonlinear numerical models for SC-CBFs include the frame members (beams, 

columns, and braces), two gravity columns adjacent to the SC-CBF columns, PT bars and 

a lean-on column (Chancellor, 2013). Beam-column connections are modeled as rigid 

connections. The brace connections are modeled as moment-free pin connections as in 

the SCBF model. Contact-gap elements are used to model gap opening and uplift at the 

base of the column. Friction-contact-gap elements are used to model the lateral load 

bearings between the SC-CBF columns and the adjacent gravity columns.  

All of the SCBF and SC-CBF members are modeled with nonlinear beam-column 

elements.  

Gravity loads are applied to the lean-on column according to the corresponding tributary 

area of both the SCBFs and SC-CBFs. The gravity loads for dynamic analysis are 
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different from the design gravity loads given in Section 3.3. The gravity loads used in the 

dynamic analysis are based on Equation 3.25 (FEMA, 2009):  

   LD 25.005.1   (3.25) 

where, 

D = the nominal dead load of the structure 

L = the nominal live load  

As stated in FEMA P695, the models should consider all seismic mass and P-delta effects 

associated with the gravity loads carried by the seismic-force-resisting system. The mass 

of the structure tributary to the modeled frame is put on the lean-on column. For both the 

SCBF and SC-CBF models, the lean-on column is connected to the frame with a rigid 

link by using the “equal DOF” feature of OpenSees which is assigned only in the 

horizontal direction (Tahmasebi, 2014 and Chancellor, 2013).  

An initial imperfection is given to the braces in the models to create the potential for 

brace buckling in the model. The AISC Code of Standard Practice for Steel Buildings and 

Bridges (AISC, 2010a) specifies the maximum permissible out-of-straightness of brace 

members during fabrication as about L/1000. For this reason the initial imperfection of 

the braces was specified as L/1000 in the model. Since the diagonal braces in the model 

buildings are wide flange sections not prone to low-cycle fatigue and fracture (Powell, 

2009), the braces are modeled without considering the effects of low-cycle fatigue and 

fracture.   
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3.4.2 Input Ground Motions 

Nonlinear dynamic earthquake repsonse analyses were performed with the gravity loads 

from Equation 3.25 and the input Far-Field record set given in FEMA P695 (FEMA, 

2009). The Far-Field record set consists of twenty-two ground motion pairs. These 

ground motion records are from sites located at least 10 km from a fault rupture (FEMA, 

2009). The Far-Field record set includes records from earthquakes with magnitudes 

greater than 6.5. The records were selected from the PEER Next Generation Attenuation 

(NGA) database. The ground motions in the Far-Field record set are summarized in Table 

3.6.   

These 22 ground motion pairs (i.e., 44 ground motion records) are scaled to a specific 

intensity level according to the scaling methodology given in FEMA P695 (FEMA, 

2009). This scaling methodology has two steps. The first step is the “normalization” step. 

In this normalization step, each individual record in the record set is normalized by its 

respective peak ground velocity. Normalization factors are given in FEMA P695. The 

normalization is intended to eliminate the variability due to the event magnitude, distance 

to source, source type and site conditions without the eliminating record-to-record 

variability (FEMA, 2009). The second step is to scale the normalized ground motion 

records to a specific ground motion intensity level. In this scaling, the median spectral 

acceleration of the record set coincides with a given spectral acceleration at the 

fundamental period of the building being studied (i.e., Sa(T1) ), which is treated as the IM 

in the present study.    
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The Far-Field record set ground motions were scaled to either the DBE or the MCE 

levels. Damage assessment was done using the dynamic analyses results at the DBE and 

MCE level. Figures 3.8, 3.9, 3.10 and 3.11 show the design spectrum (ASCE, 2010) and 

the pseudo-acceleration response spectrum for each of the scaled ground motions from 

the Far-Field record set used in this study. Since the fundamental periods of the 4SCBF 

and 4SC-CBF models (and similarly the 9SCBF and 9SC-CBF models) are very close, 

the same scaled ground motions are used for both systems.   

The displacement response spectrum for each of the scaled ground motions are also 

shown in Figures 3.12 through 3.15.      

3.4.3 Dynamic Analysis Results 

Selected EDPs (θm, θr, Δor) are extracted from the results of the nonlinear dynamic 

analyses. The nonlinear numerical models for each model building were analyzed for 

each scaled ground motion record from the FEMA P695 Far-Field record set. Results are 

obtained for each of the 44 ground motion records. The statistical parameters, mean (μ) 

and standard deviation (σ) of θm, θr, and Δor from the 44 results from each model building 

are given in Table 3.7. 

Table 3.7 shows the θm response of the SCBFs and SC-CBFs are similar with similar 

mean and standard deviation values. For both systems, θm increases with increasing 

building height.  

The rocking action of SC-CBFs reduces the potential for residual drift; SC-CBFs are 

expected to have less θr than SCBFs. Table 3.7 shows the θr response of the SCBFs are 
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greater than the θr response of the SC-CBFs.  θr values for 4SC-CBF are very small (close 

to zero). Therefore, 4SC-CBF has no significant residual drift under the DBE or MCE.   

Δor results listed in Table 3.7 show that the braces of the 4SCBF and 9SCBF will be 

damaged more than the braces of the 4SC-CBF and 9SC-CBF. 4SC-CBF has very small 

Δor values. Damage to the braces increases with increasing building height, as the 9-story 

buildings have larger Δor values than the 4-story buildings. As expected, the structural 

response of the buildings to the MCE is larger than the response to the DBE. These θm, θr, 

and Δor values are used for the probabilistic structural damage assessments presented in 

the following chapters.    
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Table 3.1 – Dead loads 

Item (psf) 

Floor / Roof Slabs 43 

Floor / Roof Decks 3 

Ceiling Material  5 

Mechanical Weight per Floor 10 

Mechanical Weight on Roof  25 

Structural Steel – Floor  15 

Structural Steel – Roof  10 

Floor Finish  2 

Steel Fireproofing 2 

Vertical Projection of Exterior Wall  25 

Roofing Material  10 

 

Table 3.2 – Live loads 

Item (psf) 

Office – Floor 50 

Office – Roof  20 

Partition 15 
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Table 3.3 – Seismic design parameters for SCBFs and SC-CBFs  

Parameter Notation Value 

  SCBF SC-CBF 

Seismic design category  D D 

Occupancy importance 

factor 
I 1.0 – 

Site class – D (Firm soil) D (Firm soil) 

Site coefficients for site 

class 

Fa 1.0 1.0 

Fv 1.5 1.5 

Response modification 

factor 
R 6 – 

Deflection amplification 

factor 
Cd 5 – 

Deterministic MCE spectral 

acc. at short periods 
Ss 1.5g 1.5g 

Deterministic MCE spectral 

acc. at 1 sec period 
S1 0.6g 0.6g 

Long-period transition 

period 
TL 8 sec 8 sec 
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Table 3.4 – Comparison of SCBF designs  

SCBF 

Steel Weight 

(W) 

(kips) 

Seismic Weight 

(Wseismic) 

(kips) 

Base Shear 

(Vbase) 

(kips) 

     
        

 

Fund. Period 

(T1) 

(sec) 

4-story 30.9 1.191E4 423.1 0.036 0.59 

9-story ELF 97.3 2.847E4 987.6 0.035 1.52 

9-story RSA 86.1 2.847E4 840.6 0.030 1.66 

 

 

 

 

 

Table 3.5 – Comparison of designed buildings 

Frame 

Steel Weight 

(W) 

(kips) 

Seismic Weight 

(Wseismic) 

(kips) 

Base Shear 

(Vbase) 

(kips) 

     
        

 

Fund. Period 

(T1) 

(sec) 

4SCBF 30.9 1.191E4 423.1 0.036 0.55 

4SC-CBF 56.7 1.191E4 1569.2 0.132 0.48 

9SCBF 86.1 2.847E4 840.6 0.030 1.48 

9SC-CBF 184.8 2.847E4 3866.8 0.136 1.32 
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Table 3.6 – Summary of Far-Field ground motion record set (FEMA, 2009) 

ID 

No. 

Earthquake 
Recording Station 

M Year Name 

1 6.9 1995 Kobe, Japan Nishi-Akashi 

2 6.9 1995 Kobe, Japan Shin-Osaka 

3 7.5 1999 Kocaeli, Turkey Arcelik 

4 7.5 1999 Kocaeli, Turkey Duzce 

5 7.6 1999 Chi-Chi, Taiwan CHY101 

6 6.5 1976 Friuli, Italy Tolmezzo 

7 7.6 1999 Chi-Chi, Taiwan TCU045 

8 7.1 1999 Duzce, Turkey Bolu 

9 7.4 1990 Manji, Iran Abbar 

10 6.5 1979 Imperial Valley Delta 

11 6.5 1979 Imperial Valley El Centro Array # 11 

12 7.1 1999 Hector Mine Hector 

13 6.6 1971 San Fernando LA-Hollywood Stor 

14 6.5 1987 Superstition Hills El Centro Imp. Co. 

15 6.5 1987 Superstition Hills Poe Road (temp) 

16 6.9 1989 Loma Prieta Capitola 

17 6.9 1989 Loma Prieta Gilroy Array # 3 

18 7.0 1992 Cape Mendocino Rio Dell Overpass 

19 7.3 1992 Landers Coolwater 

20 7.3 1992 Landers Yermo Fire Station 

21 6.7 1994 Northridge Beverly Hills-Mulhol 

22 6.7 1994 Northridge Canyon Country - WLC 
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Table 3.7 – Mean and standard deviation of buildings structural response quantities 

Frame Hazard 

Peak story 

drift (θm) 
Peak residual story 

drift (θr) 

Largest normalized 

residual OOP 

displacement (Δor) 

μ σ μ σ μ σ 

4SCBF 
DBE 0.011 0.005 8.34E-04 0.001 0.022 0.014 

MCE 0.019 0.009 0.003 0.003 0.038 0.022 

4SC-CBF 
DBE 0.010 0.004 1.24E-07 1.90E-07 1.74E-04 2.83E-05 

MCE 0.017 0.008 1.19E-04 7.81E-04 1.32E-04 6.78E-05 

9SCBF 
DBE 0.019 0.006 0.003 0.003 0.028 0.013 

MCE 0.026 0.008 0.008 0.007 0.044 0.023 

9SC-CBF 
DBE 0.016 0.008 0.001 0.001 0.006 0.01 

MCE 0.026 0.014 0.003 0.009 0.017 0.016 

 

  



   

66 

 

 

  

 

Figure 3.1 – General design response spectrum (ASCE 7-10)  
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Figure 3.2 – Floor plan of building with (a) SCBFs, and (b) SC-CBFs 
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Figure 3.3 – 4SCBF with designed section sizes 
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Figure 3.4 – 9SCBF with designed section sizes by ELF procedure 
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Figure 3.5 - 9SCBF with designed section sizes by RSA procedure   
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Figure 3.6 – Designed 4SC-CBF (Chancellor, 2013) 
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Figure 3.7 – Designed 9SC-CBF (Chancellor, 2013) 
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Figure 3.8 – Pseudo-acceleration response spectrum for ground motions in Far-Field 

record set scaled to DBE for 4-story buildings 
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Figure 3.9 – Pseudo-acceleration response spectrum for ground motions in Far-Field 

record set scaled to DBE for 9-story buildings   
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 Figure 3.10 – Pseudo-acceleration response spectrum for ground motions in Far-

Field record set scaled to MCE for 4-story buildings 
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 Figure 3.11 – Pseudo-acceleration response spectrum for ground motions in Far-

Field record set scaled to MCE for 9-story buildings 
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Figure 3.12 – Displacement response spectrum for ground motions in Far-Field record set 

scaled to DBE for 4-story buildings 
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Figure 3.13 – Displacement response spectrum for ground motions in Far-Field record set 

scaled to DBE for 9-story buildings 
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Figure 3.14 – Displacement response spectrum for ground motions in Far-Field record set 

scaled to MCE for 4-story buildings 
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Figure 3.15 – Displacement response spectrum for ground motions in Far-Field record set 

scaled to MCE for 9-story buildings 
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CHAPTER 4 

BUILDING DAMAGE ASSESSMENT 

4.1 General 

In performance based earthquake engineering (PBEE), “building losses” are estimated 

from a damage assessment. As mentioned in Chapter 2, Miranda (2010) stated that the 

total expected loss in a building is the summation of the losses associated with the 

building collapse case and the losses associated with the building non-collapse case. 

According to Miranda (2010), losses associated with the non-collapse case consist of the 

losses associated with the case when the damage is reparable, and the losses associated 

with the case when the damage is considered irreparable so that the building is 

demolished.  

In this study, the damage assessment is similar in concept to that of Miranda (2010). 

Building damage is classified into two damage categories: damage corresponding to 

building collapse, i.e., a total building loss, and damage corresponding to building non-

collapse. Damage associated with the non-collapse case are specified further and 

classified into two damage categories: reparable damage and irreparable damage. 

Irreparable damage corresponds to building demolition which leads to total building loss 

as in the collapse case.  

The peak story drift (θm) is used as the structural engineering demand parameter (EDP) 

for the collapse assessment, and the peak residual story drift (θr) is used as the EDP for 
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the demolition assessment. Building damage is expressed in terms of probabilities, such 

as probability of collapse/non-collapse and probability of demolition/no demolition. In 

this chapter, the collapse/non-collapse and demolition/no demolition events are treated as 

independent events without any correlation. In Chapter 6, correlation between these 

events is considered.  

The probabilities of collapse/non-collapse and demolition/no demolition described in 

Sections 4.2.2 and 4.3.2 are estimated using fragility functions. Development of the 

collapse/non-collapse and demolition/no demolition fragility functions is described in this 

chapter. A discussion of results is given for each damage case, illustrating the differences 

between the buildings used in this study. The buildings used in this study are the 4- and 

9-story SCBF model buildings (referred to as 4SCBF and 9SCBF, respectively), and the 

4- and 9-story SC-CBF model buildings (referred to as 4SC-CBF and 9SC-CBF, 

respectively) described in Chapter 3.  

4.2 Building Collapse Assessment 

A critical objective of the seismic design of buildings is protection against collapse. Local 

collapse or global collapse may occur as a result of earthquake loading. Local collapse, 

which is also known as vertical collapse, occurs when a vertical load carrying component 

fails, or when the shear transfer between horizontal and vertical components is lost. 

Global collapse occurs if most components in the system experience local collapse or if a 

single story displaces so extensively that P-delta effects overcome gravity load resistance 
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and dynamic instability occurs (Krawinkler et al., 2009). In this study, “collapse” refers 

to global collapse. 

Collapse is triggered by large story drifts that result from P-delta effects and from 

deterioration in the strength and stiffness of the individual components. For this reason, 

the peak story drift (θm) is chosen as the EDP for building collapse.  

To determine the values of the EDPs, nonlinear dynamic earthquake response analysis is 

needed. For this analysis, numerical models of the structures are created and subjected to 

selected earthquake ground motion records. The numerical models of the SCBFs and SC-

CBFs used in this study are mentioned in Section 3.4.  

Deterioration in the stiffness and strength of the components should be considered in a 

collapse assessment (Krawinkler et al., 2009). Therefore, the ability to represent stiffness 

and strength deterioration is an essential part of the model used in the nonlinear dynamic 

earthquake response analysis. In the numerical models used in this study, buckling of 

braces is modeled. The model accounts for deterioration of the braces in compression to 

some extent. Low-cycle fatigue and fracture of the braces is not considered in the models. 

This deterioration can be seen in results shown in Chapter 5. Beams and columns are 

modeled with fiber sections having a steel material model with the Bauschinger effect. 

No deterioration is included in the models for the beams and columns (Tahmasebi, 2014).  

As mentioned in Chapter 3, the numerical models of the 4- and 9- story SCBFs and SC-

CBFs are subjected to FEMA P695 Far-Field record set ground motions (FEMA, 2009) 

scaled to the DBE and MCE levels. According to FEMA P695, the Far-Field record set 
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can be used for the collapse evaluation of all Seismic Design Categories (FEMA, 2009). 

This record set includes ground motion records from large magnitude events. These large 

magnitude events are important for a building collapse assessment, because they 

dominate the collapse potential and have longer durations of shaking (FEMA, 2009). The 

ground motion records in the Far-Field record set are listed in Table 4.1 with the scale 

factors used for 4- and 9-story model buildings scaled to the DBE and MCE level 

intensities.  

4.2.1 Development of Collapse – Non-Collapse Fragility Functions 

There are two approaches to develop collapse fragility functions: One approach is the 

IM-based approach. In this approach, the collapse capacity of a structure subjected to a 

given ground motion is defined as the ground motion intensity, IMc, at which the 

dynamic instability is observed. Incremental dynamic analysis (IDA) is performed to find 

IMc. IMc is often defined as the intensity at which a small increment of intensity causes a 

large increment in the lateral displacement (Krawinkler et al., 2009).  IMc values are 

obtained for a large number of ground motions and a statistical evaluation of IMc is 

performed (Krawinkler et al., 2009). A probability distribution is fit to the IMc values to 

develop the collapse fragility function. 

The second approach is the EDP-based approach. In this approach, an EDP limit value, 

EDPc, is used as the collapse indicator. EDPc is defined to be the minimum value of the 

EDP corresponding to collapse. When the EDP value obtained from the dynamic analysis 

equals or exceeds EDPc, the building is considered to be in the collapse condition (i.e., 
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the collapse event has occurred). Both EDP and EDPc are random variables. The 

probability of collapse when EDP equals a given value EDPi is written as 

P(C|EDP=EDPi), where C represents the collapse event. This probability equals the 

probability that EDPi equals or exceeds EDPc, written as P(EDPi≥EDPc), which equals 

the probability that EDPc is less than or equal to EDPi, written as P(EDPc≤EDPi). 

P(EDPc≤EDPi) is the cumulative probability distribution function for EDPc, written as 

CDFEDPc(EDPi). Therefore P(C|EDP=EDPi)=CDFEDPc(EDPi). In words, the probability of 

collapse when EDP has the given value EDPi equals the CDF for EDPc evaluated at 

EDPi. More succinctly, P(C|EDP) = CDFEDPc(EDP), that is, the probability of collapse for 

a given value of EDP is estimated using the CDF for EDPc, so the CDF for EDPc is the 

collapse fragility function.  

The peak story drift, θm, is selected as the EDP for collapse in this study. Figure 4.1(a), 

shows the CDF for the θm limit value, θm,c. The CDF for θm,c in Figure 4.1(a) is assumed 

to follow a lognormal distribution and is defined by a median value, θm,c,m, and the 

lognormal standard deviation, βc. This CDF shown in Figure 4.1(a), has the following 

mathematical expression:  
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where, 

P(θm,c ≤  θm) = the probability that θm,c is less than or equal to the given value of 

θm 
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θm,c = the θm limit value for collapse, which is the minimum value of θm 

corresponding to collapse  

θm,c,m = the median value of θm,c  

βc = the lognormal standard deviation of θm,c 

Φ = the standard normal cumulative distribution function  

Figure 4.1(b) shows that the same function, the fragility function, expresses the 

probability of collapse for a given value of θm. The fragility function plotted in Figure 

4.1(b) is given by the following mathematical expression: 
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where, 

P(C| θm) = the probability of collapse for a given θm 

P(θm≥ θm,c) = the probability that θm exceeds θm,c 

θm = the peak story drift  

θm,c,m = the median value of θm,c  

βc = the lognormal standard deviation of θm,c 

Φ = the standard normal cumulative distribution function 
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In both Figures 4.1(a) and 4.1(b), θm,c,m is the median value of θm,c. There is a 50% 

probability of collapse when θm is equal to θm,c,m. As indicated in Figure 4.1(b), P(C| θm) 

increases with increasing θm and the complementary P(NC| θm) decreases with increasing 

θm, where NC represents the non-collapse event. 

In this study, since the dynamic analyses are performed at only two ground motion 

intensity levels, namely the DBE and MCE, the collapse fragility curve is defined by 

using this EDP-based approach. Krawinkler et al. (2009) state that collapse is imminent 

at a story drift of less than 10%, even for frame structures having very ductile 

components. Therefore, θm,c,m is set equal to 0.10 or 10%. βc is assumed to be 0.3 to 

account for the uncertainty in θm,c.    

Collapse and non-collapse are mutually exclusive events because the occurrence of 

collapse implies the non-occurrence of non-collapse. This relationship is illustrated in 

Figure 4.2 by a Venn diagram. The fragility function for the non-collapse case is obtained 

as follows: 

)|(1)|( mm CPNCP    (4.3)    

The collapse and non-collapse fragility functions used in this study are plotted in Figures 

4.3 and 4.4.  

4.2.2 Probability of Collapse and Probability of Non-Collapse 

The collapse potential of a building is expressed as the probability of collapse. The 

probability of collapse for a given θm is found using Equation 4.2. The unconditional 
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probability of collapse for a given ground motion intensity level is estimated from the 

total probability theorem by convolving P(C|θm) with the probability density function for 

θm (for a given ground motion intensity level) as follows: 

 



0

)()|()( mmm dfCPCP   (4.4)    

where, 

P(C) = the probability of collapse  

P(C| θm) = the probability of collapse for a given θm from the collapse fragility 

function (Equation 4.2) 

f(θm) = the probability density function (PDF) for θm 

The unconditional probability of non-collapse can be obtained in the same manner as 

follows: 
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where, 

P(NC) = the probability of non-collapse  

P(NC| θm) = probability of non-collapse for a given θm from the non-collapse 

fragility function (Equation 4.3) 
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f(θm) = PDF for θm 

The PDF for θm (for a given ground motion intensity level) in Equations 4.4 and 4.5 was 

obtained from dynamic analysis results for the model buildings. 44 different ground 

motion records were used in the dynamic analyses at each ground motion intensity level 

(i.e., at the DBE and MCE), so the PDF for θm (for a given ground motion intensity level) 

was estimated from 44 different θm values, one value of θm for each ground motion at the 

given intensity level. The lognormal PDF was used for θm since deformation-based EDPs 

such as θm have been shown to follow the lognormal distribution. The θm values for the 4- 

and 9-story model buildings under the DBE and MCE are given in Table 4.2 and Table 

4.4; and the probability distribution parameters based on these θm data are given in Tables 

4.3 and 4.5. Mean (μ), standard deviation (σ), lognormal mean (λ), and lognormal 

standard deviation (ζ) values of the θm data are given in these tables. The values given in 

these tables are rounded off to three significant decimal digits.  

As it is seen from these tables, the mean peak story drifts of the 9-story model buildings 

are larger than the mean peak story drifts of the 4-story model buildings. Not much 

difference is observed in the mean peak story drifts between the SCBF and SC-CBF for 

both the 4- and 9-story model buildings. As expected, both systems have larger story 

drifts as the ground motion intensity level is increased from the DBE to MCE. 

As shown in Table 4.4, the 9SC-CBF has a very large θm value (~80%) for ground 

motion-6 under the MCE. This is a very large value compared to the other 43 θm values 

and lies outside the overall pattern. For this reason, this θm value is treated as an outlier of 
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the θm data set for the 9-story SC-CBF under the MCE and is excluded from the 

probability distribution parameter (i.e., μ, σ, λ and λ) calculations.  

Such a large peak story drift value is unexpected for an SC-CBF. The response of the 

9SC-CBF under ground motion-6 scaled to the MCE was analyzed in detail to find the 

reason for this large θm value.  

GM-6 is a ground motion from the Kocaeli, Turkey Earthquake in 1999 which had a 

magnitude of 7.5 (see Table 4.1).  The pseudo-acceleration spectrum of GM-6 scaled to 

the MCE for the 9SC-CBF is plotted in Figure 4.5 together with the median spectrum for 

the ground motion set and the MCE design spectrum. The corresponding displacement 

spectra are plotted in Figure 4.6. From Figures 4.5 and 4.6, it is seen that after 3.5 

seconds, both the spectral acceleration and spectral displacement of GM-6 increase 

rapidly with the period.  

The initial fundamental period of the 9SC-CBF is around 1.3 seconds when both the 

columns are in contact with the foundation. During rocking, the effective period of the 

SC-CBF is lengthened with respect to the initial period (Roke et al., 2010). As a result of 

the period elongation, the acceleration demand is reduced (Seo, 2005), but larger non-

linear displacements can be expected.  

When GM-6 excites the rocking behavior of the 9SC-CBF, the system softens and the 

period elongates. In the long period region for GM-6, the spectral acceleration is 

increasing and the spectral displacement is increasing rapidly and this is the reason for 

the large peak story drifts. The rapid increase in the spectral displacement based on the 
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median and the design spectrum. For ground motions where the spectral acceleration 

decreases with increasing period, the period elongation can be beneficial in reducing the 

effect of the seismic excitation. However, as it is seen from Figure 4.5, the spectral 

acceleration of GM-6 increases with increasing period after a period of about 3.5 seconds. 

P(C) and P(NC) values found using Equations 4.4 and 4.5 are given in Table 4.6 for the 

model buildings under the MCE and DBE. According to Table 4.6, the P(C) values are 

very small for all model buildings under both the DBE and MCE. Although the P(C) 

values are very small, there are some differences between the SCBF and SC-CBF model 

buildings, as well as between the 4-story and 9-story model buildings. As expected, the 

results in Table 4.6 show that P(C) increases with increasing ground motion intensity. 

The 9-story model buildings have a larger P(C) than the 4-story model buildings. 

Comparing the collapse performance of the SCBF and SC-CBF model buildings, it is 

seen that the 4SCBF has a larger P(C) than the 4SC-CBF under both the DBE and MCE. 

However, the 9SCBF has a lower P(C) than the 9SC-CBF both under the DBE and MCE.  

When the statistical parameters of θm given in Tables 4.3 and 4.5 are compared for the 

model buildings, it is seen that μ and σ of θm are similar for the buildings with the same 

number of stories under both the DBE and MCE except one case. The one exception is 

between the 9SCBF and the 9SC-CBF under the MCE, where σ of θm for the 9SC-CBF is 

larger than σ of θm for the 9SCBF. The larger σ for the 9SC-CBF leads to the increased 

probability of collapse of the 9SC-CBF.  
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The values of the probabilities given in Table 4.6 are rounded off so that the sum of P(C) 

and P(NC) equals one, because the collapse and the non-collapse events are mutually 

exclusive. 

4.3 Building Demolition Assessment  

Post-earthquake inspections of buildings often observe significant residual drift. Past 

studies show that post-earthquake residual drift increases with increasing inelastic 

deformations during the earthquake (Ramirez and Miranda, 2009). Lateral force resisting 

systems designed to develop large inelastic deformations may have large residual 

deformations. These systems may perform well in terms of collapse prevention with a 

low P(C), but good earthquake performance may require more than collapse prevention. 

Buildings not collapsed by seismic excitations may have irreparable damage and large 

residual deformations. In such a situation, the most economical post-earthquake option 

may be to demolish the building. For this reason, residual deformations are considered to 

be important in determining the technical and economical reparability of building 

damage.  

In this study, the peak residual story drift, θr, is used as the measure of the potential for 

post-earthquake building demolition. 

4.3.1 Development of Demolition – No Demolition Fragility Functions 

Demolition (D) and No Demolition (ND) fragility functions are developed using the 

EDP-based approach explained in Section 4.2.1.  
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The demolition fragility function is as follows: 
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where, 

P(D| θr) = the probability of demolition for a given θr 

P(θr≥ θr,d) = the probability that θr exceeds θr,d 

θr = the peak residual story drift  

θr,d = the θr limit value for demolition of the building, which is the minimum 

value of θr corresponding to demolition 

θr,d,m = the median value of θr,d  

βd = the lognormal standard deviation of θr,d  

Φ = the standard normal cumulative distribution function 

Miranda (2010) states that residual drifts leading to demolition are in the range of 0.7 to 

3%. Limited information is available for determining appropriate values for θr,d. For this 

reason, the demolition fragility curve is adopted from the repair fragility given by ATC-

58 (ATC, 2011) in this study. According to ATC-58 (ATC, 2011), the repair fragility 

function has a median θr,d value (θr,d,m) of 1% and a dispersion (βd) of 0.3. Furthermore, 

ATC-58 (ATC, 2011) uses a lognormal distribution for θr,d, which is adopted for the 

present research.       
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D and ND are mutually exclusive events, since the building is either demolished or not. It 

can be said that demolition represents the irreparable damage case whereas no demolition 

represents the reparable damage case. This relationship is illustrated in Figure 4.7 using a 

Venn diagram. Considering this relationship between the D and ND events, the fragility 

curve for the no demolition case is as follows: 

)|(1)|( rr DPNDP    (4.7)    

The demolition and no demolition fragility functions used in the present study are plotted 

in Figures 4.8 and 4.9.  

4.3.2 Probability of Demolition and Probability of No Demolition 

The probability of demolition, P(D), and the probability of no demolition, P(ND), for a 

given θr are found using Equations 4.6 and 4.7. The unconditional probabilities of D and 

ND for a given ground motion intensity level are estimated as shown for P(C) and P(NC) 

in Section 4.2.2.  P(D) and P(ND) are as follows, based on the total probability theorem: 
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where, 

P(ND) = the probability of no demolition  



   

95 

 

P(D) = the probability of demolition  

P(D| θr) = the probability of demolition for a given θr (Equation 4.6) 

P(ND| θr) = the probability of no demolition for a given θr (Equation 4.7) 

f(θr) = the probability density function (PDF) for θr 

The PDF for θr (for a given ground motion intensity level) in Equations 4.8 and 4.9 was 

obtained from dynamic analysis results for the model buildings. The PDF was estimated 

from 44 different θr values that were obtained for the 44 different ground motions at each 

ground motion intensity level. The lognormal PDF was used to represent this data. The 

peak residual story drifts for the 4- and 9-story model buildings under the DBE and MCE 

are given in Table 4.7 and Table 4.9; and the probability distribution parameters based on 

these θr data are listed in Tables 4.8 and 4.10. The values given in these tables are 

rounded off to three significant decimal digits.  

Tables 4.7 and 4.9 show that both the 4- and 9-story SC-CBF model buildings have lower 

θr values than the SCBF model buildings. The 4SC-CBF has θr values very close to zero, 

with a mean in the range of 10
-7

, so θr is treated as zero. This is an expected result, since 

the SC-CBF system with the controlled rocking action is able to concentrate structural 

damage into replaceable elements and eliminate residual drift (Roke et al., 2010).  

Tables 4.7 and 4.9 show that the 9-story model buildings have larger θr than the 4-story 

model buildings for both systems. As expected, the buildings have larger θr under the 

MCE than the DBE.  
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Similar to θm, a very large θr value (~80%) is obtained for the 9SC-CBF under ground 

motion-6 at the MCE level. This value is treated as an outlier of the θr data set for the 

9SC-CBF under MCE since it is much larger than the rest of the data. This value is 

excluded from the probability distribution parameter (i.e., μ, σ, λ and λ) calculations. The 

reasons for this unexpected θr under GM-6 are discussed in Section 4.2.2.  

P(D) and P(ND) values are calculated using Equations 4.8 and 4.9. The results are given 

in Table 4.11 for all model buildings under the MCE and DBE. The values of 

probabilities given in Table 4.11 are rounded off so that the sum of P(D) and P(ND) 

equals one, because they are mutually exclusive. The results in Table 4.11 show that 

P(ND) is greater than P(D) for all model buildings. Both the 4- and 9-story SC-CBF 

model buildings have much lower P(D) than the 4- and 9-story SCBF model buildings, 

because the self-centering design greatly reduces the residual drift. For example, the 

9SCBF model building has a 26% probability of demolition after the MCE, while the 

9SC-CBF has a 8% probability of demolition after the MCE.  
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Table 4.1 – Far-Field ground motion record set scale factors (S.F.) for DBE and MCE  

ID 

No. 

Earthquake DBE S.F. MCE S.F. 

M Name 4-story 9-story 4-story 9-story 

1-2 6.9 Kobe, Japan 1.319 1.795 1.978 2.692 

3-4 6.9 Kobe, Japan 1.436 1.954 2.153 2.930 

5-6 7.5 Kocaeli, Turkey 1.656 2.254 2.484 3.381 

7-8 7.5 Kocaeli, Turkey 0.852 1.159 1.278 1.739 

9-10 7.6 Chi-Chi, Taiwan 0.539 0.733 0.808 1.100 

11-12 6.5 Friuli, Italy 1.880 2.559 2.820 3.838 

13-14 7.6 Chi-Chi, Taiwan 1.212 1.649 1.817 2.473 

15-16 7.1 Duzce, Turkey 0.790 1.074 1.184 1.612 

17-18 7.4 Manji, Iran 1.076 1.465 1.614 2.197 

19-20 6.5 Imperial Valley 1.584 2.155 2.376 3.233 

21-22 6.5 Imperial Valley 1.227 1.669 1.840 2.504 

23-24 7.1 Hector Mine 1.377 1.874 2.066 2.811 

25-26 6.6 San Fernando 2.596 3.533 3.894 5.299 

27-28 6.5 Superstition Hills 1.043 1.420 1.565 2.130 

29-30 6.5 Superstition Hills 1.526 2.076 2.289 3.115 

31-32 6.9 Loma Prieta 1.365 1.858 2.048 2.787 

33-34 6.9 Loma Prieta 1.093 1.487 1.639 2.231 

35-36 7.0 Cape Mendocino 0.983 1.337 1.474 2.006 

37-38 7.3 Landers 1.360 1.851 2.040 2.776 

39-40 7.3 Landers 1.277 1.738 1.916 2.607 

41-42 6.7 Northridge 0.869 1.183 1.304 1.774 

43-44 6.7 Northridge 1.087 1.480 1.631 2.220 
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Table 4.2 – Peak story drift (θm) of 4-story model buildings from dynamic analysis 

GM 

4SCBF 4SC-CBF 

DBE MCE DBE MCE 

1 0.014 0.023 0.009 0.014 

2 0.014 0.022 0.009 0.013 

3 0.018 0.027 0.014 0.018 

4 0.014 0.019 0.010 0.016 

5 0.005 0.008 0.003 0.005 

6 0.003 0.004 0.004 0.007 

7 0.007 0.010 0.005 0.009 

8 0.006 0.009 0.012 0.024 

9 0.004 0.005 0.006 0.008 

10 0.004 0.006 0.009 0.015 

11 0.010 0.014 0.009 0.015 

12 0.017 0.029 0.011 0.014 

13 0.014 0.015 0.007 0.010 

14 0.015 0.027 0.011 0.017 

15 0.008 0.015 0.008 0.016 

16 0.015 0.026 0.019 0.026 

17 0.010 0.019 0.008 0.011 

18 0.009 0.019 0.010 0.022 

19 0.006 0.017 0.009 0.011 

20 0.014 0.041 0.013 0.034 

21 0.010 0.011 0.007 0.012 

22 0.007 0.014 0.007 0.009 

23 0.006 0.010 0.009 0.018 

24 0.012 0.022 0.017 0.038 

25 0.008 0.024 0.015 0.027 

26 0.009 0.008 0.007 0.010 

27 0.009 0.016 0.010 0.018 

28 0.005 0.009 0.005 0.006 

29 0.008 0.021 0.011 0.015 

30 0.009 0.018 0.010 0.012 

31 0.017 0.034 0.021 0.031 

32 0.018 0.017 0.010 0.016 

33 0.009 0.014 0.006 0.009 

34 0.007 0.010 0.008 0.019 

35 0.011 0.024 0.012 0.019 
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Table 4.2  – Peak story drift (θm) of 4-story model buildings from dynamic analysis 

(cont’d) 

GM 

4SCBF 4SC-CBF 

DBE MCE DBE MCE 

36 0.017 0.013 0.007 0.012 

37 0.009 0.014 0.007 0.009 

38 0.021 0.027 0.014 0.024 

39 0.007 0.028 0.014 0.023 

40 0.005 0.006 0.006 0.016 

41 0.012 0.036 0.020 0.023 

42 0.016 0.035 0.020 0.028 

43 0.011 0.022 0.010 0.019 

44 0.018 0.026 0.011 0.014 

 

 

 

 

 

 

 

 

 

 

Table 4.3 – Statistics for peak story drift (θm) of 4-story model buildings from dynamic 

analysis 

 4SCBF 4SC-CBF 

 DBE MCE DBE MCE 

μ 0.011 0.019 0.010 0.017 

σ 0.005 0.009 0.004 0.008 

λ -4.622 -4.091 -4.672 -4.191 

ζ 0.412 0.459 0.408 0.433 
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Table 4.4 – Peak story drift (θm) of 9-story model buildings from dynamic analysis 

GM 

9SCBF 9SC-CBF 

DBE MCE DBE MCE 

1 0.016 0.032 0.023 0.035 

2 0.022 0.031 0.019 0.031 

3 0.018 0.024 0.018 0.026 

4 0.018 0.025 0.012 0.019 

5 0.007 0.008 0.005 0.014 

6 0.010 0.021 0.018 0.804
* 

7 0.012 0.033 0.027 0.059 

8 0.032 0.022 0.013 0.021 

9 0.008 0.014 0.019 0.037 

10 0.012 0.023 0.043 0.076 

11 0.014 0.017 0.010 0.018 

12 0.023 0.025 0.010 0.020 

13 0.018 0.023 0.009 0.020 

14 0.022 0.028 0.015 0.023 

15 0.015 0.015 0.015 0.022 

16 0.020 0.029 0.009 0.015 

17 0.012 0.016 0.017 0.023 

18 0.021 0.019 0.017 0.028 

19 0.022 0.034 0.026 0.028 

20 0.034 0.044 0.026 0.042 

21 0.020 0.034 0.019 0.026 

22 0.017 0.021 0.011 0.021 

23 0.018 0.020 0.010 0.011 

24 0.018 0.025 0.014 0.020 

25 0.028 0.049 0.037 0.052 

26 0.015 0.023 0.011 0.022 

27 0.022 0.025 0.012 0.016 

28 0.028 0.030 0.018 0.024 

29 0.017 0.023 0.021 0.036 

30 0.016 0.025 0.019 0.038 

31 0.019 0.017 0.019 0.021 

32 0.019 0.020 0.010 0.019 

33 0.019 0.021 0.006 0.011 

34 0.021 0.035 0.019 0.025 

35 0.019 0.023 0.009 0.013 

* data considered to be outlier  



   

101 

 

Table 4.4– Peak story drift (θm) of 9-story model buildings from dynamic analysis 

(cont’d) 

GM 

9SCBF 9SC-CBF 

DBE MCE DBE MCE 

36 0.017 0.023 0.015 0.026 

37 0.014 0.021 0.007 0.011 

38 0.030 0.023 0.013 0.028 

39 0.034 0.051 0.024 0.054 

40 0.017 0.016 0.007 0.028 

41 0.024 0.028 0.012 0.023 

42 0.022 0.031 0.013 0.021 

43 0.019 0.031 0.014 0.025 

44 0.022 0.028 0.010 0.023 

 

 

 

Table 4.5 – Statistics for peak story drift (θm) of 9-story model buildings from dynamic 

analysis 

 9SCBF 9SC-CBF 

 DBE MCE DBE MCE 

μ 0.019 0.026 0.016 0.026 

σ 0.006 0.008 0.008 0.014 

λ -3.987 -3.714 -4.242 -3.766 

ζ 0.308 0.322 0.458 0.493 

 

 

 

 

Table 4.6 – Collapse and Non-Collapse Probabilities of model buildings 

Frame Hazard P(C)  P(NC)  

4SCBF 
DBE 3.00E-06 9.99997E-01 

MCE 5.60E-04 9.9944E-01 

4SC-CBF 
DBE 1.50E-06 9.999985E-01 

MCE 1.70E-04 9.9983E-01 

9SCBF 
DBE 4.50E-05 9.99955E-01 

MCE 6.70E-04 9.9933E-01 

9SC-CBF 
DBE 2.00E-04 9.998E-01 

MCE 5.60E-03 9.944E-01 
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Table 4.7 – Peak residual story drift (θr) of 4-story model buildings from dynamic 

analysis 

GM 

4SCBF 4SC-CBF 

DBE MCE DBE MCE 

1 6.972E-04 5.559E-03 8.734E-09 7.292E-06 

2 1.060E-03 3.095E-03 4.485E-07 1.683E-06 

3 2.887E-03 7.350E-03 4.851E-12 5.942E-11 

4 1.223E-03 2.393E-03 6.356E-12 1.502E-11 

5 1.965E-07 5.859E-04 1.328E-13 1.733E-13 

6 1.371E-09 1.771E-06 6.646E-14 5.754E-13 

7 2.633E-04 5.246E-04 1.877E-12 4.434E-07 

8 1.523E-05 5.028E-04 1.932E-12 2.812E-08 

9 1.703E-07 4.535E-04 2.949E-14 4.434E-07 

10 6.954E-06 8.072E-04 2.935E-13 4.462E-07 

11 2.890E-04 8.966E-04 9.204E-10 1.802E-06 

12 1.422E-03 7.099E-03 3.269E-07 4.631E-06 

13 1.475E-03 1.581E-03 7.757E-10 3.675E-08 

14 2.504E-03 8.384E-03 3.294E-07 2.962E-10 

15 3.416E-04 3.067E-03 1.851E-09 4.900E-10 

16 2.133E-03 7.377E-03 1.957E-11 2.279E-06 

17 9.101E-04 2.797E-03 5.791E-10 3.269E-08 

18 2.235E-04 2.634E-03 4.432E-07 3.719E-07 

19 2.040E-04 7.078E-04 6.735E-11 4.089E-10 

20 6.639E-04 1.825E-03 6.135E-11 5.180E-03 

21 2.956E-04 5.503E-04 3.813E-07 3.717E-06 

22 7.824E-04 1.400E-03 2.093E-10 3.761E-07 

23 5.389E-04 5.725E-04 1.538E-11 7.989E-10 

24 1.019E-03 5.405E-03 3.308E-12 4.513E-11 

25 6.653E-04 2.977E-03 1.072E-07 5.894E-06 

26 4.501E-04 1.398E-03 6.425E-11 3.381E-09 

27 6.872E-04 2.880E-03 3.066E-11 1.628E-10 

28 3.752E-06 6.875E-04 1.928E-12 3.294E-07 

29 2.736E-04 2.493E-03 4.730E-07 2.670E-07 

30 4.386E-04 3.063E-03 4.394E-07 4.432E-07 

31 1.468E-03 5.050E-03 3.232E-07 8.301E-06 

32 1.066E-03 8.861E-04 6.963E-12 5.711E-07 

33 2.931E-04 4.933E-04 4.484E-07 6.605E-07 

34 4.390E-04 2.071E-04 3.322E-11 4.561E-07 

35 1.350E-03 6.265E-03 5.184E-10 3.245E-07 
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Table 4.7 – Peak residual story drift (θr) of 4-story model buildings from dynamic 

analysis (cont’d) 

GM 

4SCBF 4SC-CBF 

DBE MCE DBE MCE 

36 1.129E-03 2.311E-03 9.911E-09 6.070E-07 

37 4.447E-04 2.053E-03 4.428E-07 4.598E-07 

38 3.478E-03 3.668E-03 3.943E-07 2.523E-05 

39 8.926E-04 9.997E-03 4.343E-13 3.416E-10 

40 2.615E-06 4.536E-04 5.816E-13 6.214E-10 

41 5.002E-04 3.704E-03 2.347E-12 1.052E-08 

42 1.693E-03 6.949E-03 7.721E-11 1.806E-09 

43 9.374E-04 6.025E-03 4.434E-07 5.209E-07 

44 1.545E-03 3.108E-03 4.360E-07 4.179E-06 

 

 

 

 

 

 

 

 

 

 

Table 4.8 – Statistics for residual peak story drift (θr) of 4-story model buildings from 

dynamic analysis 

 4SCBF 4SC-CBF 

 DBE MCE DBE MCE 

μ 8.344E-04 2.960E-03 1.241E-07 1.194E-04 

σ 7.925E-04 2.583E-03 1.900E-07 7.806E-04 

λ -7.410 -6.106 -16.506 -10.923 

ζ 0.802 0.752 1.099 1.944 
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Table 4.9 – Peak residual story drift (θr) of 9-story model buildings from dynamic 

analysis 

GM 

9SCBF 9SC-CBF 

DBE MCE DBE MCE 

1 2.908E-03 2.433E-02 1.361E-03 2.743E-03 

2 2.251E-03 8.991E-03 1.495E-03 3.369E-03 

3 2.078E-03 1.796E-03 8.360E-07 1.988E-03 

4 1.052E-03 3.412E-03 1.805E-05 8.943E-04 

5 1.836E-06 4.034E-04 4.857E-07 6.284E-10 

6 6.559E-04 2.674E-03 4.857E-07 8.036E-01
* 

7 8.210E-04 1.407E-02 4.758E-04 1.132E-02 

8 9.247E-03 9.547E-03 5.405E-04 4.793E-04 

9 4.119E-04 1.276E-03 4.857E-07 3.894E-07 

10 9.523E-04 3.158E-03 4.321E-07 5.916E-02 

11 1.875E-03 3.597E-03 1.495E-03 4.536E-03 

12 2.866E-03 5.096E-03 1.742E-03 8.452E-04 

13 1.183E-03 3.215E-03 3.897E-04 3.886E-03 

14 1.755E-03 4.800E-03 1.158E-03 5.001E-03 

15 3.209E-03 1.445E-02 1.189E-03 5.551E-03 

16 1.001E-03 1.797E-03 4.796E-04 1.402E-03 

17 8.692E-04 1.707E-03 9.342E-04 1.621E-03 

18 6.936E-03 1.876E-02 1.104E-03 1.234E-03 

19 4.942E-03 1.723E-02 3.082E-04 5.940E-04 

20 1.261E-03 2.985E-02 7.405E-04 7.795E-04 

21 1.125E-02 2.078E-02 5.375E-06 9.305E-04 

22 1.240E-03 6.589E-03 6.599E-04 1.377E-03 

23 8.977E-04 2.869E-03 3.029E-05 4.928E-07 

24 5.200E-03 2.111E-03 6.947E-04 1.593E-03 

25 5.765E-03 1.521E-02 1.450E-03 1.793E-03 

26 1.218E-03 6.970E-03 4.501E-04 4.065E-04 

27 5.970E-03 5.691E-03 1.512E-07 1.799E-03 

28 2.634E-03 8.439E-03 5.929E-04 5.050E-04 

29 1.514E-03 1.152E-02 6.482E-04 1.019E-02 

30 1.657E-03 9.900E-03 5.960E-04 4.181E-03 

31 2.742E-03 1.291E-02 5.164E-04 1.943E-03 

32 1.361E-03 7.383E-03 9.028E-04 1.619E-03 

33 1.485E-03 1.836E-03 6.413E-04 9.966E-04 

34 4.215E-03 8.892E-03 1.789E-09 1.198E-03 

35 2.006E-03 4.849E-03 4.735E-07 1.835E-05 

* data considered to be outlier  
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Table 4.9 – Peak residual story drift (θr) of 9-story model buildings from dynamic 

analysis (cont’d) 

GM 

9SCBF 9SC-CBF 

DBE MCE DBE MCE 

36 4.534E-03 8.699E-03 1.811E-03 4.794E-03 

37 9.292E-04 2.318E-03 2.828E-05 6.367E-04 

38 3.949E-03 6.002E-03 6.771E-04 4.460E-03 

39 1.010E-02 6.874E-03 6.328E-04 6.671E-05 

40 1.195E-03 1.005E-03 6.723E-09 3.572E-05 

41 2.454E-03 1.385E-03 4.468E-07 1.098E-03 

42 1.948E-03 3.011E-03 1.684E-04 9.849E-04 

43 4.315E-03 1.106E-02 5.113E-04 3.571E-04 

44 2.182E-03 5.971E-03 9.688E-04 2.946E-03 

 

 

 

Table 4.10 – Statistics for residual peak story drift (θr) of 9-story model buildings from 

dynamic analysis 

 9SCBF 9SC-CBF 

 DBE MCE DBE MCE 

μ 0.003 0.008 0.001 0.003 

σ 0.003 0.007 0.001 0.009 

λ -6.142 -5.132 -7.765 -6.688 

ζ 0.767 0.743 0.786 1.432 

 

 

 

 

Table 4.11 – Demolition and No Demolition Probabilities of model buildings 

Frame Hazard P(D)  P(ND)  

4SCBF 
DBE 5.38E-04 9.99462E-01 

MCE 3.23E-02 9.677E-01 

4SC-CBF 
DBE 0.000 1.000 

MCE 6.65E-04 9.9934E-01 

9SCBF 
DBE 3.14E-02 9.686E-01 

MCE 2.57E-01 7.43E-01 

9SC-CBF 
DBE 8.84E-05 9.99E-01 

MCE 7.78E-02 9.22E-01 
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Figure 4.1 – (a) CDF for θm,c, (b) collapse fragility function P(C|θm)  
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Figure 4.2 – Venn diagram illustration of C and NC events  
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Figure 4.3 – Collapse fragility function 
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Figure 4.4 – Non-Collapse fragility function 
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Figure 4.5 – Pseudo-acceleration response spectrum for ground motion-6 in Far-Field 

record set scaled to MCE for 9-story SC-CBF 
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Figure 4.6 – Displacement response spectrum for ground motion-6 in Far-Field record set 

scaled to MCE for 9-story SC-CBF 
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Figure 4.7 – Venn diagram illustration of D and ND events  
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Figure 4.8 –Demolition fragility function 
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Figure 4.9 – No Demolition fragility function 
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  CHAPTER 5 

DAMAGE ASSESSMENT OF DIAGONAL BRACES 

5.1 General  

SCBFs act as vertical trusses, transferring the lateral forces through the diagonal braces, 

beams, and columns. The braces are the main components in SCBFs that resist story 

shear due to lateral forces. The resistance of SCBFs to seismic loading is based on the 

capacity of braces to resist the story shear and to undergo inelastic deformations in 

compression and in tension. Buckling of the braces in compression and yielding of the 

braces in tension leads to residual lateral drift after an earthquake. For this reason, the 

damage of the braces is a significant aspect of the performance of an SCBF.  

In the elastic range, SC-CBFs deform similarly to SCBFs. However, the rocking action of 

the SC-CBF and yielding of the PT bars limit the internal forces that can develop in the 

members of an SC-CBF (Chancellor et al., 2012). The seismic performance of an SC-

CBF depends mainly on the rocking behavior and the PT bars. When lateral forces acting 

on an SC-CBF are large enough to decompress one column, the column base lifts up from 

the foundation. At this point, the lateral stiffness of the system is reduced and the lateral 

stiffness is mainly controlled by the properties of the PT bars. As the lateral drift 

continues to increase, the lateral stiffness reduces further as a result of PT bar yielding. 

Yielding of the PT bars is the first indication of plastic system behavior. With increasing 

lateral drift, the frame members may begin to yield as well. Eventually, the frame 
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members may fail (Chancellor, 2013). According to the performance-based seismic 

design procedure for SC-CBFs, yielding of the PT bars is limited under the DBE but is 

permitted under the MCE (Roke et al., 2010). Frame members are designed using 

capacity design principles to remain essentially elastic under the DBE. Some member 

yielding is permitted under the MCE. Braces in SC-CBFs are not expected to undergo 

large inelastic deformations.  

In this study, damage to brace members is estimated as a function of an EDP using 

fragility functions; the probability of being in or beyond a given damage state is captured 

by a fragility function. Residual out-of-plane (OOP) displacement at the location of the 

mid-length of the brace, normalized by the brace length, ∆or, is the EDP selected for 

estimating the brace damage. This EDP is used because it can be easily observed and 

measured in a post-earthquake inspection.  

This chapter summarizes the development of the fragility functions that permit damage in 

the braces to be estimated. Estimates of damage to braces in the model buildings under 

the DBE and MCE are made. 

5.2 Inelastic Seismic Behavior of Braces 

Elastic design of SCBFs is uneconomical and SCBFs are designed to sustain inelastic 

deformations (Lumpkin, 2009). The design of an SCBF requires that beams and columns 

in the system should remain undamaged under the DBE to protect the gravity load 

carrying capability of the SCBF system while the braces yield in tension and buckle in 

compression. For this reason, the beams and columns in an SCBF are designed to resist 



   

117 

 

gravity loads together with the maximum anticipated brace forces. The braces are 

designed to meet the compressive strength requirements as well as code specified 

slenderness and width-to-thickness ratio limits. It should be noted that the tensile capacity 

of a brace is typically greater than its compressive capacity, which is controlled by 

buckling. 

A typical brace response under cyclic loading is shown in Figure 5.1. Tremblay (2002) 

describes the hysteretic behavior of this brace under quasi-static loading. A summary of 

this description is as follows: The brace was first loaded in tension, when the load was 

reversed it buckled in compression in the first cycle. After buckling occurred, the 

compressive strength started to decrease and a plastic hinge formed near the brace mid-

length. With load reversal, the brace straightened through inelastic rotation in the plastic 

hinge. During the following cycles, the compressive resistance decreased due to the 

Baushinger effect and the residual out-of-plane displacements from previous cycles. In 

tension, the brace reached the yield capacity and exhibited some strain hardening. With 

every load cycle, the permanent axial elongation increased. As the axial elongation 

increased, the inelastic rotation of the mid-length plastic hinge increased. Then, local 

buckling at the hinge location caused a further reduction in the brace compressive 

resistance. Finally, after local buckling, the brace fractured at the plastic hinge when it 

was loaded in tension.  

In an SCBF with a tension-compression X-bracing configuration, when the tension brace 

in the given story is at its yield capacity, the story shear reaches a maximum value. As the 

compression brace strength degrades due to buckling, the force in the tension brace 
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remains constant or increases slightly due to strain hardening. As a result of this action, 

the story shear capacity decreases although there is some strain hardening in the tension 

brace. After the strength loss in the compression brace, the interior columns must carry 

the difference between the vertical components of the compression and tension brace 

forces together with the gravity loads. 

A common configuration of braces in practice is an arrangement that provides two braces 

in each story, one in tension and one in compression. The braced frames used in the 

model buildings of this study (see Chapter 3) have a multi-story X-bracing configuration.  

5.3 Development of Fragility Curves for Brace Damage 

5.3.1Formulation of Brace Damage Fragility Functions 

As explained in Section 4.2.1, fragility functions provide the probability that a building 

reaches or exceeds a level of damage (i.e., a damage state or damage condition), as a 

function of (or conditioned on) a structural demand parameter (EDP) (Baker, 2008). One 

such fragility function is required for each component and each damage state. As 

explained in Section 4.2.1, the fragility function which represents the conditional 

probability of a component being in a damage state (conditioned on an EDP) is 

equivalent to the CDF for the limit value of the EDP (the minimum value of the EDP 

corresponding to the damage state). A lognormal distribution is often used for fragility 

functions because it often fits structural damage data well, and because the lognormal 

distribution has zero probability density when the EDP value is less than or equal to zero 

(Porter et al., 2007).  
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In this study, the brace damage fragility functions use the residual out-of-plane (OOP) 

displacement of brace mid-length normalized by the brace length, ∆or, as the EDP. Three 

damage states are considered, as discussed later. 

The fragility functions can be written as follows: 










 


i

mioror

iororori PDSDSP


)ln()ln(
)()|(

,,

,  (5.1) 

where, 

DS = the damage state 

DSi = damage state i  

∆or,i = the ∆or limit value for damage state i, which is the minimum value of ∆or 

corresponding to damage state DSi or worse 

∆or,i,m  = the median value of ∆or,i  

βi = the lognormal standard deviation of ∆or,i 

Φ = the standard normal cumulative distribution function 

∆or,i,m and βi must be established for each DSi.  

∆or,i,m in Equation 5.1 is the limit value for ∆or for which the probability of being in 

damage state DSi (or worse) is 50%. When ∆or obtained from dynamic analysis (or 

observed after a test or after an earthquake) exceeds ∆or,i, the braces are considered to be 

in damage state DSi (or worse).   
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Note that ∆or,i, is not deterministic, but is a random variable. The lognormal standard 

deviation βi is used as the measure of dispersion of ∆or,i. It considers the uncertainty in the 

limit value for ∆or corresponding to damage state DSi. Without any dispersion (i.e., when 

βi=0), the fragility functions would plot as straight vertical lines and the damage states are 

separated from each other with these lines. Brace fragility functions with βi=0 are shown 

in Figure 5.2(a). As seen in this figure, damage states are separated by vertical lines at 

deterministic limit values. Damage states are represented as the range between the 

deterministic limit values in Figure 5.2(a). Figure 5.2(b) shows fragility functions for 

brace damage plotted with βi not equal to zero. The definition of ∆or,i,m is seen in Figure 

5.2(b). Damage states are represented as the range between the uncertain limit values in 

Figure 5.2(b). When ∆or obtained from dynamic analysis exceeds the limit value of a 

damage state (either ∆or,1 or ∆or,2), the braces are considered to be in that damage state or 

worse.   

5.3.2 Definition of Damage States 

In this study, three discrete damage states are used to quantify the damage of the braces. 

These damage states are defined according to the repair actions that would be taken as a 

result of observed damage. The damage states are as follows: 

DS0: There is no damage in this damage state. The braces retain all of their pre-

earthquake strength and stiffness. No repairs are needed. This damage state is represented 

by either DS0 or NR (no repair).  
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DS1: The damage of the braces is slight. The expected strength loss at this level of 

damage is recoverable with a repair action consisting of brace straightening (BS) by heat 

straightening. In the heat straightening process, a limited amount of heat is applied to the 

plastically deformed regions in a specific pattern with repetitive heating and cooling 

cycles (Kowalkowski and Varma, 2007). This damage state is represented by either DS1 

or BS (brace straightening).  

DS2: At this level of damage, the brace member is damaged significantly. High residual 

deformations are observed in the brace. A large strength loss is expected; therefore the 

brace needs to be replaced (BR). This damage state is represented by either DS2 or BR 

(brace replacement).    

5.3.3 Definition of Damage State Limits  

To define the damage fragility functions, limit values for each damage state are needed. 

These damage state limits correspond to the minimum value of the EDP (i.e., ∆or) 

corresponding to the damage state. Two damage state limits are used in this study:  

Δor,1: This damage state limit is the minimum value of ∆or corresponding to damage state 

DS1 and separates DS0 and DS1. As illustrated in Figure 5.2, Δor values smaller than Δor,1 

correspond to DS0 and Δor values greater than Δor,1 correspond to DS1 (or DS2). The 

median value of Δor,1, defined as Δor,1,m, corresponds to 50% probability of being in 

damage state DS1 (or worse, i.e., DS2).    

Δor_2: This damage state limit is the minimum value of Δor corresponding to damage state 

DS2 and separates DS1 and DS2. As illustrated in Figure 5.2, Δor values smaller than Δor,2 
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correspond to DS1 (or DS0) and Δor values greater than Δor,2 correspond to DS2. The 

median value of Δor,2, defined as Δor,2,m, corresponds to 50% probability of being in DS2.      

5.3.3.1 Experimental Results Used to Define Median Damage State Limits 

The level of residual OOP displacement corresponding to the damage states and the 

associated repair actions from actual buildings after earthquakes would be useful for the 

present study. However, information of this type is not available in the literature. 

Therefore, the results of a previous experimental study are used to establish the limit 

values for Δor associated with the defined damage states.    

The results of brace tests, which are a part of the National Science Foundation program 

CMS-0619161 “International Hybrid Simulation of Tomorrow’s Braced Frame Systems”, 

are used (Powell, 2009). The test data is found at the NEES Project Warehouse website 

(NEEShub). The main goal of this project was to understand the nonlinear behavior of 

SCBFs under severe seismic loading. 

The tests were performed at the University of Washington Structures Laboratory. The test 

setup consists of a single bay, single story frame system with a diagonal brace. The same 

test setup was used for various brace sections. Since all the brace sections studied in the 

present research are wide flange brace sections, the results from one test with a wide 

flange brace (WF-23) are used. The test setup drawing for specimen WF-23 is shown in 

Figure 5.3. The out-of-plane movement of the beams and columns was restricted in the 

test setup; the beams and columns displace in-plane. The braces and gusset plates are not 

restrained and free to displace out-of-plane when the braces buckle under compression. 



   

123 

 

The system was subjected to pseudo-static loading with a focus on the diagonal brace and 

gusset plate connections (Powell, 2009).   

Potential yield mechanisms and failure modes in this test are described by Powell (2009). 

Potential yield mechanisms are associated with inelastic behavior that does not cause a 

rapid reduction in the system strength. On the other hand, failure modes are associated 

with inelastic behavior and brittle failure which result in a significant loss of system 

strength. Figure 5.4 shows the typical yield and failure mechanisms of SCBFs.  

Damage levels described by Powell (2009) are given in Table 5.1. The descriptions of 

these damage levels are based on component-based observations and do not necessarily 

coincide with the damage states of a complete SCBF system. Table 5.2 relates each 

damage state to performance levels that are explained in Chapter 2 (Powell, 2009).  

Specimen WF-23 was subjected to 41 loading cycles before failure. The frame 

displacements during the loading cycles are shown in Figure 5.5. The results of the test 

are given in Table 5.3, including maximum (max) and minimum (min) drift ratios, max 

and min lateral loads resisted by the frame, and the progression of damage to the braces 

(Powell, 2009). Table 5.3 also indicates the test cycles at which damage was first 

observed.  

Damage of braces in compression is important for specifying the damage state limits for 

the present study. As seen in Table 5.3, the brace experienced Y1, B1, Y3, B2, and Y5 

type damage under compression in the WF-23 test according to Powell (2009). Initial 

yielding (Y1) in compression was first observed in the flanges of the brace at -0.18% 
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drift. At -0.38% drift, the OOP displacement of brace mid-length was measured as 4 in. 

This level of OOP displacement exceeds 2% of the brace length, which is considered by 

Powell (2009) to be initial buckling (B1), as shown in Table 5.1. At -0.38% drift, 

moderate yielding (Y3) was observed at the brace mid-length. The OOP displacement at 

the brace mid-length was 5.14 in., identified as moderate buckling (B2), at -0.49% drift. 

Beyond this drift level, yielding at the mid-length of the brace continued to increase and a 

hinge formed. At -0.83% drift, severe yielding (Y5) was observed at the brace mid-

length. The specimen failed at 2.32% drift because of a weld fracture, not because of 

brace fracture.  

The WF-23 test results are plotted in Figures 5.6, 5.7 and 5.8. These figures were plotted 

using the data obtained from the NEES Project Warehouse database (NEEShub). The 

brace axial force is plotted against drift in Figure 5.6 to obtain the brace hysteresis curve. 

Figure 5.6 shows that the axial force increases with increasing positive drift when the 

brace is in tension. In compression, the largest brace axial force was recorded just before 

buckling. After buckling, the compressive strength decreases with increasing negative 

drift. The OOP displacement is plotted against drift in Figure 5.7 and the brace axial 

force is plotted against OOP displacement in Figure 5.8. These figures show that the OOP 

displacement of the brace increases with the decreasing compressive force (especially 

after buckling) and decreases with the increasing tensile force, as expected.  

It should be kept in mind that in this test, a single diagonal brace was used. This 

configuration exhibits an unsymmetric response, with different resistance from the brace 
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in tension or in compression. In actual SCBF systems, a pair of braces, one in tension and 

one in compression is often used, resulting in nearly equal resistance in each direction.  

5.3.3.2 Definition of Damage State Limits from Experimental Results 

According to the experimental results described in Section 5.3.3.1, damage state B1 was 

initially selected as the lower limit of DS1 and damage state Y5 was initially selected as 

the lower limit of DS2. Based on the information in Tables 5.1 and 5.2, B1 and Y5 are 

defined as follows: 

 B1: Initial buckling of the brace which does not affect the strength of the system. 

Repairs are not required for IO.  

 Y5: Severe yielding of the brace section with residual deformation. There is some 

loss of strength but not enough to cause collapse. The brace needs to be replaced. 

The definitions of B1 and Y5 appear to have some similarities with the definitions of DS1 

and DS2, respectively. Therefore, the test data associated with damage state B1 was 

initially used to determine ∆or,1,m and the test data associated with damage state Y5 was 

initially used to determine ∆or,2,m. Note that, the OOP displacement values given in the 

test results (Powell, 2009) are not the residual displacements. The residual OOP 

displacements were determined from the test data.  

By using brace hysteresis curves for specimen WF-23 obtained from the data available on 

the NEES Project Warehouse website (NEEShub), the residual OOP displacements of 

brace mid-length were determined. The residual OOP displacement is assumed to be the 
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OOP displacement that the brace has at its mid-length when the axial force is zero during 

the cyclic loading. 

The compression force capacity at first buckling of WF-23 was found as 167 kips from 

brace hysteresis curve given in Figure 5.6. After first buckling, the compressive strength 

of the brace starts to decrease. 167 kips is used as the reference capacity for estimating 

the loss in compressive force capacity of the brace.     

In Table 5.3, the loading cycle numbers at which the corresponding damage state is first 

observed are given. These cycles are used to identify damage state limits for B1 and Y5, 

defined as ∆or,B1 and ∆or,Y5, respectively. ∆or,B1 and ∆or,Y5 are deterministic values 

established from the WF-23 test data. It was mentioned earlier that the test had 41 load 

cycles as shown in Figure 5.5. According to Table 5.3, damage state B1 was first 

observed from cycle 19 to 20, and damage state Y5 was first observed from cycle 25 to 

26 (Powell, 2009). Therefore, cycle 19 to 20 was defined as cycle B1 and cycle 25 to 26 

was defined as cycle Y5. These cycles are shown on the brace hysteresis curve in Figure 

5.9. Similarly, the data from Figures 5.7 and 5.8 are plotted again with cycle B1 and 

cycle Y5 marked on them in Figures 5.10 and 5.11, respectively. Cycle B1 and cycle Y5 

were considered initially as the cycles defining the damage state limit values ∆or,1,m and 

∆or,2,m.  

Determination of ∆or,1,m 

In cycle B1 (cycle 19 to 20), the peak compression force at buckling was 111.1 kips 

which is 33% less than the compression force capacity of the brace. A 33% capacity loss 
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is thought to be too large to correspond to ∆or,1,m. As mentioned earlier, ∆or,1,m is the 

median of ∆or,1 which is the limit value for damage state DS1. DS1 represents a damage 

state without considerable strength loss so that damage can be repaired by minor repair 

actions such as brace straightening. More importantly, ∆or≤∆or,1 corresponds to damage 

state DS0, for which the brace retains all of its pre-earthquake strength and stiffness. For 

this reason, the test data used to define ∆or,1,m was reconsidered. Alternative load cycles 

are selected from the brace hysteresis curve to define ∆or,1,m, and the results are compared 

with ∆or,B1 in Table 5.4.  

Cycle 15 to 16, defined as cycle 1-alt-1, was considered for determining ∆or,1,m. Cycle 17 

to 18, defined as cycle 1-alt-2, was also considered. These alternative cycles are shown 

on the brace hysteresis curve together with cycle B1 in Figure 5.12. Each cycle is plotted 

individually in Figures 5.13 through 5.18. The points of residual OOP displacements and 

the peak compression forces are marked on these figures. The results from each cycle are 

tabulated in Table 5.4 for comparison. 

According to the data given in Table 5.4, cycle 1-alt-1 has the lowest values among the 

three cycles. The compression force capacity loss is about 5%, and ∆or is about 0.3% (i.e., 

L/333) at the end of cycle 1-alt-1. As indicators of the limit between DS0 and DS1, these 

values are conservative. For the cycle 1-alt-2, the compression force capacity loss is 

about 20%, and ∆or is about 1% (i.e., L/100) at the end. Since the brace damage state is 

assumed to be determined in a post-earthquake inspection, the potential for observing the 

limit value of ∆or is important. When the potential for observing ∆or in an inspection is 

considered, the value 0.3% from cycle 1-alt-1 is considered to be too small to observe.  
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However, ∆or=1% from cycle 1-alt-2 would be easier observed. For this reason, cycle 1-

alt-2 was selected to determine ∆or,1,m, and ∆or,1,m is set to 1%. ∆or,1,m represents the 

median of the ∆or,1 data and the uncertainty in ∆or,1 is considered by a specified dispersion 

value, as discussed later. 

Determination of ∆or,2,m 

In cycle Y5 (cycle 25 to 26), the peak compression force at buckling was 69.96 kips 

which is 60% less than the compression force capacity of the brace. A 60% capacity loss 

is considered to be too large for the limit between DS1 and DS2. As mentioned earlier, 

∆or,2,m is the median of ∆or,2 which is the limit value for damage state DS2. DS2 represents 

major brace damage with significant strength loss so that the brace needs to be replaced. 

∆or,1,m≤∆or≤∆or,2,m  corresponds to damage state DS1 and ∆or≥∆or,2,m corresponds to 

damage state DS2. For this reason, the test data used to define ∆or,2,m was reconsidered. 

Alternative load cycles were selected from the brace hysteresis curve to define ∆or,2,m, and 

the results are compared with ∆or,Y5 in Table 5.5.  

Cycle 22 to 23, defined as cycle 2-alt-1, was considered for determining ∆or,2,m. Cycle 24 

to 25, defined as cycle 2-alt-2, was also considered. These alternative cycles are shown 

on the brace hysteresis curve together with the cycle Y5 in Figure 5.19. Each cycle is 

plotted individually in Figures 5.20 through 5.25. The points of residual OOP 

displacements and the peak compression forces are marked on these figures. The results 

obtained from each cycle are tabulated in Table 5.5 for comparison. 
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According to the data given in Table 5.5, cycle 2-alt-1 has the lowest values among the 

three cycles. The compression force capacity loss is about 45%, and ∆or is about 2.5% 

(i.e., L/40) at the end of cycle 2-alt-1. For the cycle 2-alt-2, the compression force 

capacity loss is about 53%, and ∆or is about 3.5% (i.e., L/29) at the end. Either cycle 

could be used to define ∆or,2,m; however cycle 2-alt-1 was selected to determine ∆or,2,m and 

∆or,2,m is set to 2.5%.       

5.3.4 Brace Fragility Functions 

After determining ∆or,1,m and ∆or,2,m, brace damage fragility functions for DS1 and DS2 are 

obtained and plotted in Figure 5.26. Fragility curves for B1 (or worse) and Y5 (or worse) 

as identified by Powell (2009) are also plotted in Figure 5.26. To the represent the 

dispersion in the damage state limit values, β1 and βB1 are taken as 0.2; and β2 and βY5 are 

taken as 0.3. Figure 5.26 shows that damage state DS1 is reached at a smaller ∆or than B1 

and damage state DS2 is reached at a smaller ∆or than Y5.  

5.4 Brace Damage State Probabilities 

Fragility functions developed for the braces were used to estimate the probability that the 

braces would be in a specific damage state (or worse) as a function of ∆or when the model 

buildings are subjected to earthquake loading at a given ground motion input level. The 

conditional probability that a brace will be damaged to damage state DSi or a more severe 

damage state (i.e., DSi or worse) is found by using the fragility function given in 

Equation 5.1. The conditional probability that the brace will be damaged to damage state 

DSi is obtained as follows (Aslani and Miranda, 2005): 
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where, 

DS0 (i=0) corresponds to no damage (i.e., no repair) 

P(DS=DSi|∆or) = probability that the brace is in the damage state DSi 

P(DS≥DSi|∆or) = the brace damage fragility function for DSi (i
th

 damage state) 

from Equation 5.1 

m = number of damage states defined for the component (where m=2 for this 

study) 

The generalized form of Equation 5.2 is written for this study as follows: 

)|(1)|()|( 10 ororor DSDSPNRPDSDSP   (5.3) 

)|()|()|()|( 211 orororor DSDSPDSDSPBSPDSDSP   (5.4) 

)|()|()|( 22 ororor DSDSPBRPDSDSP   (5.5) 

The conditional probabilities for each damage state from Equations 5.3, 5.4 and 5.5 are 

shown schematically in Figure 5.27. As seen in Figure 5.27, the individual brace damage 

state probabilities add up to 1. The conditional probabilities obtained from Equations 5.3, 

5.4 and 5.5 are used in the damage assessment presented in Chapter 6.  
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Repair actions corresponding to each damage state are illustrated using the Venn diagram 

in Figure 5.28. According to Figure 5.28, the no repair or worse condition (NR') fills the 

sample space and its probability is equal to 100%. This means, in every case, the 

probability that the brace remains undamaged or worse (DS1 or DS2) is 100%. The brace 

straightening or worse condition (BS') is a subset of the NR' condition and has a smaller 

probability than NR'. Likewise, the brace replacement (BR) condition is a subset of the 

BS' condition and has the least probability.  

The probability of the BS' condition (P(BS')) is the probability that the brace is in damage 

state DS1 or DS2 so that BS (brace straightening) or BR (brace replacement) may be 

needed. In Figure 5.28, the light grey area plus the dark grey area of the Venn diagram is 

associated with P(BS'). In Figure 5.27, P(BS') is shown as P(DS≥DS1|∆or). Likewise, the 

probability of BR condition (P(BR)) is the probability that the brace is in damage state 

DS2 so that BR (brace replacement) is needed. In Figure 5.28, the dark grey area of the 

Venn diagram represents P(BR). In Figure 5.27, P(BR) is shown as P(DS≥DS2|∆or). 

The light grey area of the Venn diagram shown in Figure 5.28 represents the probability 

that the brace is in damage state DS1 only, P(BS). In other words, it represents the 

probability that Δor is between Δor,1 and Δor,2. Similarly, the white area of the Venn 

diagram shown in Figure 5.28 represents the probability that the brace is undamaged, 

P(NR), and it represents the probability that Δor is less than Δor,1.   
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Equations 5.1 and 5.2 give the brace damage state probabilities conditioned on ∆or. The 

unconditional probabilities are obtained as follows from total probability theory by 

convolving the fragility functions with the PDF for ∆or:  

1)'()( 0  NRPDSDSP  (5.6) 

 



0

11 )()|()'()( ororor dfDSDSPBSPDSDSP  (5.7) 





0

22 )()|()()( ororor dfDSDSPBRPDSDSP  (5.8) 

where, 

P(DS≥DSi) = the probability that the brace will be in damage state DSi (or worse) 

P(DS≥DSi|∆or) = the brace damage fragility function from Equation 5.1  

f(∆or) = the probability density function (PDF) for ∆or 

The PDF for ∆or in Equations 5.7 and 5.8 is specific for each brace in the model buildings 

and is obtained from the dynamic earthquake response analysis results. In Chapter 3, the 

dynamic earthquake response analysis of the 4- and 9-story SCBF and SC-CBF model 

buildings was described. The FEMA P695 Far-Field ground motion set which includes 

44 different ground motion records was used in these analyses. From the 44 ground 

motions, 44 different residual OOP displacements were obtained for each brace, and were 

normalized by the brace length to obtain 44 values of ∆or. The mean and standard 

deviation of these 44 values were obtained, and the PDF of ∆or for each brace was 
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obtained. The lognormal distribution was chosen for the ∆or PDF. The process was 

repeated for each model building and for both the DBE and MCE intensity levels. The 

probability distribution parameters for ∆or for each brace of each model building are given 

in Tables 5.6 through Table 5.9. The values listed in these tables are rounded off to 3 

significant decimal digits. Values around 10
-6 

to 10
-7

 or less are rounded to zero.     

The damage state probabilities for each brace in the model buildings are found from 

Equations 5.7 and 5.8. The results for the 4-story model buildings are given in Table 

5.10, and the results for the 9-story model buildings are given in Table 5.11 for both the 

DBE and MCE intensity levels. In Tables 5.10 and 5.11, P(B1 or worse) and P(Y5 or 

worse) are given in addition to P(DS≥DS1) and P(DS≥DS2) to see the difference between 

them. The values listed in these tables are rounded off to 3 significant decimal digits. 

Values around 10
-6 

to 10
-7

 or less are rounded to zero. 

According to the results in Tables 5.10 and 5.11, it is seen that P(DS≥DS1) values are 

greater than the P(B1 or worse) values. Similarly, P(DS≥DS2) values are greater than the 

P(Y5 or worse) values. This shows that changing Δor,B1 and Δor,Y5 to Δor,1,m and Δor,2,m 

respectively, increases the brace damage probabilities. The expected need for repair 

actions is strongly influenced by the definition of the damage state limits from 

experimental data and observations.  

According to the brace damage probabilities for the 4-story model buildings given in 

Table 5.10, the brace damage probabilities for the 4SC-CBF are almost zero. For this 

reason the braces of this building are considered to be damage free under the DBE and 

MCE level earthquakes. On the other hand, damage is expected in the braces of the 
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4SCBF. Results from Table 5.10 show that brace damage for the 4SCBF is concentrated 

in the 1
st
 story braces, with the highest brace damage probabilities. Some damage is also 

expected in the 2
nd

 and 4
th

 story braces. 

According to the brace damage probabilities for the 9-story model buildings given in 

Table 5.11, the brace damage is concentrated in the 5
th

, 6
th

 and 7
th

 story braces of the 

9SC-CBF, where the brace damage probabilities are higher. The damage probabilities for 

the lower story braces are very small (almost zero) for this frame, so that they are 

considered to be undamaged. This result is expected for SC-CBFs, because in the design 

of SC-CBFs, higher mode forces affect upper stories, as mentioned in Section 3.3.2. On 

the other hand, results from Table 5.11 show that the brace damage is more uniformly 

distributed over the stories in the 9SCBF.  

When the brace damage probabilities are compared on the basis of the number of stories, 

it is seen that the 9-story model buildings have more brace damage and require more 

expensive repair actions than the 4-story model buildings.   

As expected, more brace damage is observed in both 4- and 9-story model buildings 

under the MCE level than the DBE level. In other words, more repair actions are needed 

after an MCE level event, as expected. 

When considering which repair action to apply to a damaged brace, the damage 

probabilities are not the only decision parameters. There are some limitations for the use 

of heat straightening that should be kept in mind. Heat straightening increases the yield 

and ultimate stresses, and decreases the ductility of the repaired steel. For this reason, it is 
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recommended that heat straightening should not be applied more than twice to the same 

region if it is re-damaged (Avent and Mukai, 2001). If a repaired section may be 

damaged again, the changes in mechanical properties and the possibility of cracking 

should be considered when heat straightening is considered as the repair action.      
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Table 5.1 – Brace Damage Levels (Powell, 2009) 

Symbol Description Detailed Description 

Y1 Initial/Mild Yielding Yield lines cover half the component 

width/depth 

Y3 Moderate Yielding Yield lines cover most of the component 

width/depth 

Y5 Severe Yielding Nearly all of the component is yielded with 

wide stretching yield lines 

B1 Initial Buckling/Local 

Deformation 

OOP of brace reaches 2% of brace length; 

when initial OOP buckling or deformation of 

component becomes visible 

B2 Moderate 

Buckling/Local 

Deformation 

OOP displacement of brace is greater than 

member depth; when buckling or deformation 

is greater than member depth 

B3 Severe Buckling/Local 

Deformation 

OOP displacement of brace exceeds twice the 

member depth, local pinching and severe 

deformation of component 

BC Brace Compressive 

Failure 

Large local deformations (cupping and 

bulging) at plastic hinge location of brace in 

compression 

BF Brace Fracture Brace begins to tear or it is completely 

fractured 

 

 

 

 

 

Table 5.2 – Damage States for Performance Based Design (Powell, 2009) 

SCBF Damage States for Performance Based Design 

 Brace Performance Based Description 

Minor Y1; B1 
Superficial damage not affecting strength of 

system. Repairs not required for IO. 

Moderate Y3; B2 

Some obvious yielding or residual 

deformation. 

Minimal loss of strength. Repairs possibly 

required for IO perception. 

Severe Y5; BC 

Severe visual yielding and residual 

deformations. 

Some loss of strength but okay for LS and CP. 

Component would have to be replaced. 

Failure BF 

Fracture of component. Major loss of strength 

and potential for system failure or collapse. 

Beyond LS and possibly CP. 
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Table 5.3 – Peak Results of WF-23 Test (Powell, 2009) 

Cycle Drift Ratio Load (kips) 
Brace 

Damage 

From To Min Max Range Min Max Comp Tens 

1 6 -0.06 0.07 0.12 -69.5 78.8   

7 8 -0.09 0.10 0.18 -99.4 112.1  Y1 

9 10 -0.12 0.13 0.25 -120.8 141.0   

11 16 -0.18 0.16 0.35 -128.5 173.6 Y1  

17 18 -0.27 0.20 0.48 -121.0 193.9   

19 20 -0.38 0.24 0.62 -107.0 215.4 B1; Y3  

21 22 -0.49 0.29 0.78 -100.0 232.2 B2  

23 24 -0.67 0.40 1.07 -103.7 255.5  Y3 

25 26 -0.83 0.53 1.36 -109.1 264.9 Y5  

27 28 -1.16 0.74 1.90 -121.8 291.7   

29 30 -1.48 0.98 2.47 -135.5 305.4   

31 32 -1.80 1.23 3.02 -141.5 316.5   

33 34 -2.15 1.48 3.63 -145.6 324.9   

35 36 -2.49 1.77 4.26 -148.4 330.8   

37 38 -2.86 2.05 4.91 -149.5 336.3   

39 40 -3.21 2.35 5.56 -137.3 338.2   

41 41 - 2.32 - - 243.5   

 

 

 

 

  



   

138 

 

Table 5.4 – Comparison of ∆or values from several load cycles for determining ∆or_1  

 Cycle Compression 

Capacity 

(kips) 

Compression 

Capacity 

Loss (%) 

Residual 

OOP Displ. 

(in.) 

∆or 

(%) 
From To 

B1 19 20 111.1 ~33 2.6 ~1.5 

1-alt-1 15 16 157.6 ~5 0.45 ~0.3 

1-alt-2 17 18 136.5 ~20 1.55 ~1 

 

 

Table 5.5 – Comparison of ∆or values from several load cycles for determining ∆or_2  

 Cycle Compression 

Capacity 

(kips) 

Compression 

Capacity 

Loss (%) 

Residual 

OOP 

Displ. (in.) 
∆or 

(%) 

From To 

Y5 25 26 69.96 ~60 6.5 ~4 

2-alt-1 22 23 90.3 ~45 3.9 ~2.5 

2-alt-2 24 25 78.2 ~53 5.5 ~3.5 
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Table 5.6 – Probability Distribution Parameters for 4-story SCBF Braces 

 
4 story SCBF 

 
DBE MCE 

Brace Normal 

mean 

(μ) 

Normal 

std. dev. 

(σ) 

Lognormal 

mean (λ) 

Lognormal 

std. dev. 

(ζ) 

Normal 

mean 

(μ) 

Normal 

std. dev. 

(σ) 

Lognormal 

mean (λ) 

Lognormal 

std. dev. 

(ζ) 
 1LB 0.022 0.014 -3.991 0.584 0.038 0.022 -3.400 0.525 

2LB 0.001 0.002 -8.130 1.435 0.005 0.013 -6.334 1.424 

3LB 0.001 0.004 -8.577 1.752 0.001 0.007 -8.630 1.929 

4LB 0.008 0.008 -5.143 0.811 0.010 0.010 -4.945 0.810 

1RB 0.021 0.014 -4.032 0.611 0.037 0.020 -3.423 0.506 

2RB 0.000 0.001 -8.587 1.293 0.004 0.012 -6.649 1.500 

3RB 0.001 0.004 -8.637 1.750 0.002 0.008 -7.552 1.652 

4RB 0.006 0.008 -5.592 1.003 0.012 0.010 -4.757 0.772 

 

 

 

 

 

 

 

Table 5.7 – Probability Distribution Parameters for 4-story SC-CBF Braces 

 
4 story SC-CBF 

 
DBE MCE 

Brace Normal 

mean 

(μ) 

Normal 

std. 

dev. (σ) 

Lognormal 

mean (λ) 

Lognormal 

std. dev. 

(ζ) 

Normal 

mean 

(μ) 

Normal 

std. 

dev. (σ) 

Lognormal 

mean (λ) 
Lognormal 

std. dev. (ζ) 

 1LB 0.000 0.000 -11.838 0.134 0.000 0.000 -12.073 0.400 

2LB 0.000 0.000 -10.571 0.155 0.000 0.000 -10.956 0.478 

3LB 0.000 0.000 -8.672 0.162 0.000 0.000 -9.053 0.485 

4LB 0.000 0.000 -8.854 0.145 0.000 0.000 -9.238 0.477 

1RB 0.000 0.000 -11.838 0.134 0.000 0.000 -12.132 0.404 

2RB 0.000 0.000 -10.571 0.155 0.000 0.000 -10.957 0.479 

3RB 0.000 0.000 -8.672 0.162 0.000 0.000 -9.041 0.489 

4RB 0.000 0.000 -8.854 0.145 0.000 0.000 -9.234 0.473 

0.000 means value less than 1x10
-6
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Table 5.8 – Probability Distribution Parameters for 9-story SCBF Braces 

 
9 story SCBF 

 

DBE MCE 

Brace Normal 

mean 

(μ) 

Normal 

std. 

dev. (σ) 

Lognormal 

mean (λ) 

Lognormal 

std. dev. 

(ζ) 

Normal 

mean 

(μ) 

Normal 

std. dev. 

(σ) 

Lognormal 

mean (λ) 

Lognormal 

std. dev. 

(ζ) 
 1LB 0.022 0.016 -4.054 0.660 0.044 0.023 -3.243 0.495 

2LB 0.001 0.003 -8.537 1.636 0.009 0.022 -5.583 1.357 

3LB 0.017 0.017 -4.462 0.853 0.035 0.027 -3.591 0.689 

4LB 0.002 0.008 -7.544 1.658 0.014 0.023 -4.984 1.167 

5LB 0.018 0.019 -4.355 0.843 0.034 0.023 -3.566 0.619 

6LB 0.018 0.019 -4.350 0.847 0.027 0.023 -3.865 0.724 

7LB 0.028 0.013 -3.670 0.434 0.034 0.019 -3.521 0.527 

8LB 0.003 0.007 -7.019 1.470 0.005 0.011 -6.266 1.359 

9LB 0.000 0.000 -12.544 1.339 0.000 0.000 -10.788 1.438 

1RB 0.026 0.020 -3.873 0.674 0.038 0.026 -3.464 0.622 

2RB 0.002 0.007 -7.551 1.640 0.003 0.009 -7.028 1.542 

3RB 0.016 0.019 -4.600 0.941 0.025 0.029 -4.124 0.925 

4RB 0.004 0.012 -6.728 1.526 0.002 0.009 -7.612 1.719 

5RB 0.018 0.016 -4.333 0.778 0.023 0.018 -3.995 0.695 

6RB 0.017 0.016 -4.426 0.810 0.016 0.021 -4.623 1.004 

7RB 0.028 0.015 -3.674 0.482 0.034 0.018 -3.485 0.484 

8RB 0.003 0.009 -6.705 1.428 0.007 0.013 -5.768 1.232 

9RB 0.000 0.000 -12.423 1.384 0.001 0.009 -8.463 1.935 

0.000 means value less than 1x10
-6
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Table 5.9 – Probability Distribution Parameters for 9-story SC-CBF Braces 

 
9 story SC-CBF 

 
DBE  MCE  

Brace Normal 

mean 

(μ) 

Normal 

std. 

dev. (σ) 

Lognormal 

mean (λ) 
Lognormal 

std. dev. (ζ) 

Normal 

mean 

(μ) 

Normal 

std. dev. 

(σ) 

Lognormal 

mean (λ) 

Lognormal 

std. dev. 

(ζ) 

 1LB 0.000 0.000 -11.966 0.281 0.000 0.000 -12.419 1.496 

2LB 0.000 0.000 -10.981 0.251 0.000 0.000 -11.394 1.363 

3LB 0.000 0.000 -10.531 0.323 0.000 0.000 -11.117 1.565 

4LB 0.000 0.000 -9.986 0.313 0.000 0.000 -9.982 0.506 

5LB 0.000 0.001 -9.037 1.514 0.003 0.010 -6.839 1.498 

6LB 0.006 0.010 -5.751 1.136 0.017 0.016 -4.392 0.808 

7LB 0.005 0.008 -5.856 1.116 0.016 0.016 -4.525 0.858 

8LB 0.000 0.000 -8.057 0.328 0.001 0.001 -7.622 0.969 

9LB 0.000 0.000 -8.057 0.328 0.005 0.014 -6.230 1.415 

1RB 0.000 0.000 -12.033 0.284 0.000 0.000 -12.159 1.686 

2RB 0.000 0.000 -10.929 0.246 0.000 0.000 -11.511 1.387 

3RB 0.000 0.000 -10.606 0.327 0.000 0.000 -10.822 1.100 

4RB 0.000 0.000 -9.942 0.319 0.000 0.000 -10.128 1.463 

5RB 0.000 0.000 -9.490 1.018 0.001 0.003 -7.649 1.430 

6RB 0.006 0.009 -5.769 1.122 0.017 0.016 -4.372 0.784 

7RB 0.006 0.009 -5.799 1.120 0.016 0.014 -4.426 0.749 

8RB 0.000 0.000 -8.070 0.359 0.001 0.001 -7.741 0.982 

9RB 0.001 0.000 -7.071 0.170 0.002 0.007 -7.498 1.587 

0.000 means value less than 1x10
-6
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Table 5.10 – Damage state probabilities for braces in 4-story model buildings 

Brace 
EQ 

Level 

P(B1 or worse)   P(DS≥DS1)   P(Y5 or worse)   P(DS≥DS2)   

SCBF SC-CBF SCBF SC-CBF SCBF SC-CBF SCBF SC-CBF 

1LB 
DBE 0.633 0.000 0.840 0.000 0.120 0.000 0.323 0.000 

MCE 0.923 0.000 0.984 0.000 0.383 0.000 0.684 0.000 

2LB 
DBE 0.003 0.000 0.008 0.000 4.05E-04 0.000 0.001 0.000 

MCE 0.069 0.000 0.115 0.000 0.016 0.000 0.035 0.000 

3LB 
DBE 0.007 0.000 0.012 0.000 0.001 0.000 0.003 0.000 

MCE 0.011 0.000 0.019 0.000 0.003 0.000 0.006 0.000 

4LB 
DBE 0.130 0.000 0.260 0.000 0.013 0.000 0.046 0.000 

MCE 0.186 0.000 0.342 0.000 0.023 0.000 0.073 0.000 

1RB 
DBE 0.603 0.000 0.814 0.000 0.116 0.000 0.308 0.000 

MCE 0.923 0.000 0.985 0.000 0.365 0.000 0.675 0.000 

2RB 
DBE 4.00E-04 0.000 0.001 0.000 2.63E-05 0.000 1.12E-04 0.000 

MCE 0.053 0.000 0.088 0.000 0.013 0.000 0.027 0.000 

3RB 
DBE 0.006 0.000 0.011 0.000 0.001 0.000 0.003 0.000 

MCE 0.022 0.000 0.038 0.000 0.005 0.000 0.011 0.000 

4RB 
DBE 0.087 0.000 0.167 0.000 0.012 0.000 0.035 0.000 

MCE 0.242 0.000 0.424 0.000 0.032 0.000 0.099 0.000 

0.000 means value less than 1x10
-6
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Table 5.11 – Damage state probabilities for braces in 9-story model buildings 

Brace 
EQ 

Level 

P(B1 or worse)   P(DS≥DS1)   P(Y5)   P(DS≥DS2)   

SCBF SC-CBF SCBF SC-CBF SCBF SC-CBF SCBF SC-CBF 

1LB 
DBE 0.584 0.000 0.788 0.000 0.125 0.000 0.308 0.000 

MCE 0.964 0.000 0.995 0.000 0.484 0.000 0.780 0.000 

2LB 
DBE 0.004 0.000 0.009 0.000 6.95E-04 0.000 0.002 0.000 

MCE 0.157 0.000 0.238 0.000 0.045 0.000 0.087 0.000 

3LB 
DBE 0.383 0.000 0.565 0.000 0.085 0.000 0.197 0.000 

MCE 0.802 0.000 0.921 1.83E-05 0.311 0.000 0.552 0.000 

4LB 
DBE 0.023 0.000 0.039 0.000 0.005 0.000 0.011 0.000 

MCE 0.254 0.000 0.374 0.000 0.072 0.000 0.141 0.000 

5LB 
DBE 0.429 7.69E-04 0.614 0.002 0.102 8.20E-05 0.229 2.66E-04 

MCE 0.835 0.040 0.945 0.070 0.308 0.009 0.572 0.020 

6LB 
DBE 0.432 0.089 0.615 0.160 0.104 0.016 0.231 0.040 

MCE 0.672 0.409 0.838 0.601 0.205 0.087 0.412 0.208 

7LB 
DBE 0.866 0.072 0.975 0.135 0.197 0.011 0.515 0.030 

MCE 0.886 0.356 0.973 0.536 0.310 0.076 0.610 0.179 

8LB 
DBE 0.029 0.000 0.052 0.000 0.006 0.000 0.013 0.000 

MCE 0.066 2.72E-04 0.113 0.001 0.014 0.000 0.032 5.30E-05 

9LB 
DBE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

MCE 0.000 0.078 1.03E-05 0.128 0.000 0.019 6.76E-07 0.040 

1RB 
DBE 0.679 0.000 0.851 0.000 0.188 0.000 0.402 0.000 

MCE 0.870 0.000 0.960 0.000 0.362 0.000 0.628 0.000 

2RB 
DBE 0.021 0.000 0.037 0.000 0.005 0.000 0.010 0.000 

MCE 0.035 0.000 0.060 0.000 0.008 0.000 0.017 0.000 

3RB 
DBE 0.339 0.000 0.502 0.000 0.081 0.000 0.178 0.000 

MCE 0.532 0.000 0.694 0.000 0.176 0.000 0.328 0.000 

4RB 
DBE 0.050 0.000 0.084 0.000 0.012 0.000 0.025 0.000 

MCE 0.024 2.98E-05 0.041 9.19E-05 0.006 0.000 0.012 0.000 

5RB 
DBE 0.434 0.000 0.633 0.000 0.091 0.000 0.220 0.000 

MCE 0.612 0.009 0.801 0.018 0.153 0.001 0.344 0.003 

6RB 
DBE 0.393 0.084 0.585 0.154 0.081 0.014 0.197 0.037 

MCE 0.340 0.416 0.493 0.613 0.090 0.085 0.187 0.208 

7RB 
DBE 0.843 0.080 0.963 0.147 0.212 0.013 0.511 0.035 

MCE 0.914 0.385 0.984 0.591 0.321 0.068 0.641 0.181 

8RB 
DBE 0.041 0.000 0.073 0.000 0.009 0.000 0.019 0.000 

MCE 0.104 2.05E-04 0.176 8.76E-04 0.022 5.34E-06 0.051 3.99E-05 

9RB 
DBE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

MCE 0.014 0.020 0.024 0.035 0.004 0.004 0.007 0.009 

0.000 means value less than 1x10
-6
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Figure 5.1 – Typical brace hysteresis curve under symmetric cyclic loading (Tremblay, 

2002) 
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Figure 5.2 – (a) Brace damage fragility function with zero dispersion (βi=0), (b) Brace 

damage fragility function with non-zero dispersion  
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Figure 5.3 – Test specimen drawing (Powell, 2009)  
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Figure 5.4 – Yield mechanisms and failure modes for SCBFs (Powell, 2009) 
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Figure 5.13 – Brace axial force vs. drift plot for cycle B1  

 

Figure 5.14 – Brace axial force vs. OOP displacement plot for cycle B1   
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Figure 5.15 – Brace axial force vs. drift plot for cycle 1-alt-1 

 

Figure 5.16 – Brace axial force vs. OOP displacement plot for cycle 1-alt-1  

Compression 
capacity 

Compression 
capacity 



   

158 

 

Figure 5.17 – Brace axial force vs. drift plot for cycle 1-alt-2 

 

Figure 5.18 – Brace axial force vs. OOP displacement plot for cycle 1-alt-2  
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Figure 5.20 – Brace axial force vs. drift plot for cycle Y5  

 

Figure 5.21 – Brace axial force vs. OOP displacement plot for cycle Y5   
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Figure 5.22 – Brace axial force vs. drift plot for cycle 2-alt-1 

 

Figure 5.23 – Brace axial force vs. OOP displacement plot for cycle 2-alt-1  
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Figure 5.24 – Brace axial force vs. drift plot for cycle 2-alt-2 

 

Figure 5.25 – Brace axial force vs. OOP displacement plot for cycle 2-alt-2  
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Figure 5.26 – Brace damage fragility functions for DS1, DS2, B1, and Y5 
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Figure 5.27 –Conditional individual damage state probabilities 
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Figure 5.28 – Illustration of repair actions NR', BS' and BR with a Venn diagram 
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CHAPTER 6 

PROBABILISTIC EARTHQUAKE STRUCTURAL DAMAGE ASSESSMENT 

6.1 General 

The assessment of building damage and the assessment of brace damage were explained 

in Chapter 4 and 5, treating these damage events as individual events. However, the 

structural damage in a building during earthquake loading should be assessed considering 

them as possibly correlated events. In this chapter, an event tree (ET) model is formed 

and used to understand the possible damage scenarios. A multi-event probabilistic 

assessment is made to estimate the probability of occurrence of each damage scenario.  

The performance of the model buildings is assessed from the damage scenario 

probabilities. Results are obtained for all model buildings (4SCBF, 4SC-CBF, 9SCBF, 

and 9SC-CBF) under both the DBE and MCE level ground motion intensities. The results 

are compared for each damage scenario.    

6.2 Event Tree Analysis 

When an initiating event occurs, one or more adverse outcomes may occur. To consider 

all potential adverse outcomes of the initiating event, the possible sequences of 

subsequent events should be identified (Ang and Tang, 1984). Event tree analysis (ETA) 

is used to identify the possible sequences of subsequent events after the initiating event. 
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The objective of an ETA is to evaluate the probability of all possible outcomes of the 

initiating event (Ericson, 2005). 

An event tree (ET) starts with the initiating event (IE) and proceeds with subsequent 

pivotal events (PE) until an end state is reached. Ericson (2005) defined the IE as an 

undesired event that triggers an undesired sequence; the IE is the earthquake loading of 

the building in this study. PEs were defined by Ericson (2005) as the intermediate events 

between the IE and the end state. The PEs are mutually exclusive events (Ang and Tang, 

1984). In this study, each path in the ET represents a different damage scenario. 

Calculations of the probability of each event lead to an estimate of the probabilities of 

occurrence of the damage scenarios.  

6.2.1 Event Tree Model  

An ET model is created to help visualize the sequence of damage events in each damage 

scenario. The ET for this study is given in Figure 6.1. According to Figure 6.1, “Building 

subjected to DBE or MCE (DBE/MCE)” is the IE. There are 3 stages of PE in the ET, 

listed in their possible occurrence order: PE-1, PE-2 and PE-3. Collapse (C) and non-

collapse (NC) events are PE-1 and represent building damage associated with the peak 

story drift, θm. C and NC are mutually exclusive events. Demolition (D) and no 

demolition (ND) events are PE-2 and represent building damage associated with the peak 

residual story drift, θr. D and ND are also mutually exclusive events. No brace repair 

(NR), brace straightening (BS) and brace replacement (BR) events are PE-3; these events 
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represent repair actions corresponding to the brace damage associated with the 

normalized brace residual out-of-plane displacement, ∆or.     

It should be noted that the occurrence of each PE in the ET depends on a different 

engineering demand parameter (EDP) as described in Chapters 4 and 5. To recall, θm is 

the EDP chosen for the C/NC event assessment, θr is the EDP chosen for the D/ND 

assessment, and Δor is the EDP chosen for the NR/BS/BR assessment.    

6.2.2 Damage Scenarios  

There are 5 paths in the ET. Each path represents a different damage scenario. The paths 

for each damage scenario are shown schematically in Figure 6.2. The damage scenarios 

are as follows: 

Damage Scenario # 1 (D.S.#1): Building collapse occurs because of a large θm. There is 

no need for further damage assessment since collapse (C) causes a total loss of the 

building.  

Damage Scenario # 2 (D.S.#2): The building does not collapse (NC) but the building is 

demolished. θm is not large enough to cause building collapse; however θr is large enough 

to make repair infeasible so that the decision is made to demolish the building. There is 

no need for further damage assessment since demolition (D) causes a total building loss.  

Damage Scenario # 3 (D.S.#3): The building does not collapse (NC), and is not 

demolished (ND), and no repair (NR) is needed in the braces. θm and θr are not large 

enough for building collapse or building demolition. A component-based damage 
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assessment is performed for the braces. The normalized brace residual out-of-plane 

displacement, ∆or, is not significant and corresponds to brace damage state DS0 or NR.  

Damage Scenario # 4 (D.S.#4): The building does not collapse (NC), and is not 

demolished (ND). Brace straightening (BS) is needed. θm and θr are not large enough for 

building collapse or building demolition. ∆or is in the range corresponding to brace 

damage state DS1 or BS.  

Damage Scenario # 5 (D.S.#5): The building does not collapse (NC) and is not 

demolished (ND). Brace replacement (BR) is needed. θm and θr are not large enough for 

building collapse or building demolition. There is a significant ∆or in the braces in the 

range corresponding to brace damage state DS2 or BR.   

It should be noted that D.S.#3, D.S.#4 and D.S.#5 are simplified. In fact many possible 

combinations of these scenarios could occur as the various brace components in the 

building can be in different damage states. Therefore, these damage scenarios are 

assessed for each individual brace in the model buildings. 

6.3 Event Tree Probabilistic Assessment  

The probabilities of building C/NC, building D/ND and brace damage (NR/BS/BR) were 

explained in detail in Chapters 4 and 5, treating each case as an individual damage event. 

Figure 6.3 shows these individual damage events using Venn diagrams. As seen in this 

figure, the individual events fill the sample space independent of the other event 

occurrences. However, in the study presented in this chapter, the damage scenario 

probabilities are based on a sequence of damage events as illustrated in Figure 6.1. 
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The multi-event system used in this study can be illustrated using the Venn diagram 

shown in Figure 6.4. According to this representation, the damage events share the same 

sample space. The damage events have independent occurrences, however the events 

depend on random variables (EDPs) which are correlated. The EDPs used in this study, 

namely θm, θr and ∆or, represent different aspects of the structural response of the same 

building to earthquake loading. Therefore they are correlated with each other.  

The probability of a particular damage scenario is the product of the probabilities of the 

events in the scenario path (Ang and Tang, 1984). For statistically independent events, 

the product of the probabilities of each event corresponds to the probability of the 

intersection of those events (Ang and Tang, 2007). The probability of the intersection 

denotes the probability that all events in the scenario path occur.  

Using this approach, the probability of the damage scenarios defined in Section 6.2 can 

be obtained as follows: 

)()1.#.( CPSDP   (6.1) 

)()()()2.#.( DPNCPDNCPSDP   (6.2) 

)()()()()3.#.( NRPNDPNCPNRNDNCPSDP   (6.3) 

)()()()()4.#.( BSPNDPNCPBSNDNCPSDP   (6.4) 

)()()()()5.#.( BRPNDPNCPBRNDNCPSDP   (6.5) 

where, 
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P(D.S.#1) = the probability of damage scenario # 1  

P(D.S.#2) = the probability of damage scenario # 2  

P(D.S.#3) = the probability of damage scenario # 3  

P(D.S.#4) = the probability of damage scenario # 4  

P(D.S.#5) = the probability of damage scenario # 5  

P(C) = the probability of collapse 

P(NC) = the probability of non-collapse 

P(D) = the probability of demolition 

P(ND) = the probability of  no demolition 

P(NR) = the probability of  no brace repair  

P(BS) = the probability of  brace straightening 

P(BR) = the probability of  brace replacement 

The event tree probabilistic assessment estimates the probability of occurrence of each 

damage scenario using Equations 6.1 through 6.5.  

In the damage assessment presented in this chapter, the probability estimates presented in 

Chapter 4 and Chapter 5 are combined considering the ET, and considering the 

correlation of the EDPs to estimate the damage scenario probabilities. In Chapter 4, the 

building damage assessment was described in terms of the probabilities of C/NC and 
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D/ND. In Chapter 5, the damage assessment of the braces was described in terms of the 

probabilities of repair actions corresponding to damage states in the braces.  

In the multi-event system, these individual events are combined. The damage scenarios of 

this multi-event system are shown schematically in Figure 6.5. In this figure, the median 

values of the EDP limits for each damage state are indicated. To illustrate the combined 

assessment simply, the dispersion in these limits is omitted. As shown in this figure, the 

probabilities of C/NC events are estimated. θm is the EDP for the C/NC event assessment. 

The median value of θm corresponding to collapse, θm,c,m, is 10%. If θm is in the NC 

region, the probabilities of D/ND events are estimated. These probabilities are P(NC∩D) 

and P(NC∩ND). θr is the EDP for  the D/ND event assessment. The median value of θr 

corresponding to demolition, θr,d,m, is 1%. If θm is in the NC region and θr is in the ND 

region, the probabilities of NR/BS/BR events are estimated. These probabilities are 

P(NC∩ND∩NR), P(NC∩ND∩BS), and P(NC∩ND∩BR). ∆or is the EDP for the 

NR/BS/BR event assessment. The median value of ∆or,1 corresponding to BS, ∆or,1,m, is 

1%, and the median value of ∆or,2 corresponding to BR, ∆or,2,m, is 2.5%. 

The probability estimate for each damage scenario is explained in the following sections. 

The probability estimates for D.S.#3, D.S.#4 and D.S.#5 are explained in one section 

since they are related to brace damage. The probability estimates for D.S.#1 and D.S.#2 

are explained in separate sections.   
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6.3.1 Probability of D.S. #1 

P(D.S.#1) is equivalent to P(C). The estimate of P(C) is explained in detail in Chapter 4, 

where P(C) is calculated as follows: 





0

)()|()( mmm dfCPCP   (6.6)    

where, 

P(C) = the probability of collapse  

P(C| θm) = the probability of collapse for a given θm from the collapse fragility 

function (Chapter 4) 

f(θm) = the probability density function (PDF) for θm 

P(C) is also shown using a Venn diagram in Figure 6.6, where the shaded region 

represents P(C). Since C and NC are mutually exclusive events, P(NC) can be found as 

follows: 

)(1)( CPNCP   (6.7)    

6.3.2 Probability of D.S. #2 

P(D.S.#2) is equivalent to P(NC∩D) which is the probability of NC and D events 

together. The following equation is used to calculate P(NC∩D) from the total probability 

theory: 
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 
 


0 0

),(),|()( rmrmrm ddfDNCPDNCP   (6.8)    

where, 

P(NC∩D) = the probability of NC and D 

P(NC∩D| θm, θr) = the probability of NC and D for a given θm and θr 

f(θm, θr) = the joint probability density function (PDF) for θm and θr 

NC and D are independent events since they have two different fragility functions, 

although they depend on correlated variables. Therefore, Equation 6.8 is simplified as 

follows: 

  
 


0 0

),(),|(),|()( rmrmrmrm ddfDPNCPDNCP   (6.9)    

NC depends on θm only and D depends on θr only, therefore Equation 6.9 can be 

simplified further as follows: 

   
 


0 0

),()|()|()( rmrmrm ddfDPNCPDNCP   (6.10)    

where, 

P(NC| θm) = the probability of non-collapse for a given θm from the non-collapse 

fragility function (Chapter 4) 
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P(D| θr) = the probability of demolition for a given θr from the demolition fragility 

function (Chapter 4) 

f(θm, θr) = the joint probability density function (PDF) for θm and θr  

Although the fragility functions of NC and D are independent, the underlying random 

variables, θm and θr, as noted above are correlated. The correlation coefficient (ρθmθr) is 

the measure of correlation between these two random variables. To consider this 

correlation between θm and θr, the joint PDF is used. The multivariate lognormal 

probability density function is used to formulate the joint PDF for θm and θr. Fletcher 

(2007) gives the multivariate lognormal probability density function as follows: 
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where, 
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x1,…,xk = the k random variables of the distribution 

λ1, …, λk = the lognormal mean values for the k random variables 

ζ1, …, ζk = the lognormal standard deviation values for the k random variables 

k = the number of random variables 

Σ = the covariance matrix 

ji

ij

JICov




),(
  (6.15)   

where, 

ρij = the correlation coefficient between random variables i and j 

Cov(I,J) = covariance of random variables i and j 

σi = the standard deviation for random variable i 

σj = the standard deviation for random variable j 

For two random variables θm and θr, the multivariate lognormal probability density 

function given in Equation 6.11 is as follows: 
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where, 

θm = the peak story drift  

θr = the peak residual story drift  

λm = the lognormal mean of θm  

λr = the lognormal mean of θr  

ζm = the lognormal standard deviation of θm  

ζr = the lognormal standard deviation of θr  

ρθm,θr = the correlation coefficient between θm and θr  

Equation 6.16 can also be written in the following scalar form, which is the lognormal 

bivariate probability density function (Ang and Tang, 2007): 
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A Venn diagram is given in Figure 6.7 where P(NC∩D) is represented by the shaded 

region. As seen in this figure, the portion of D intersecting with NC is the region 

representing P(NC∩D). Although D has a portion intersecting with C, the probability of 

building demolition and building collapse is not of interest. As discussed earlier, C/NC 

depends on the θm response, and D/ND depends on the θr response. When a θm value 

obtained from nonlinear dynamic earthquake response analysis for a given ground motion 

is in the NC region, the θr value obtained for the same ground motion may be either in the 

D region or in the ND region. Therefore, the shaded region representing P(NC∩D) in 

Figure 6.7 represents the case when θm is in the NC region and θr is in the D region.  

These relationships are shown mathematically with the following equations: 

)()()( NDCPDCPCP   (6.21)    

)()()( NDNCPDNCPNCP   (6.22)    

or 

)()()( NCDPCDPDP   (6.23)    

)()()( NCNDPCNDPNDP   (6.24)    

P(NC∩D) is calculated by using Equations 6.10 and 6.20 considering the correlation 

between θm and θr. As seen in Equation 6.10, the NC and D fragility functions developed 

in Chapter 4 are used to estimate P(NC∩D).  
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6.3.3 Probability of Brace Damage Scenarios (D.S.#3, D.S.#4, and D.S.#5) 

If the building has not collapsed (NC) and will not be demolished (ND), a building 

component damage assessment is appropriate. In this study, a damage assessment of the 

braces was performed. The probabilities of the repair actions corresponding to different 

brace damage states are estimated for the case when NC and ND events occur. Three 

brace damage scenarios are considered in this study, namely D.S.#3, D.S.#4 and D.S.#5 

which were described in Section 6.2.2. According to these definitions, P(D.S.#3) is 

equivalent to P(NC∩ND∩NR); P(D.S.#4) is equivalent to P(NC∩ND∩BS); and 

P(D.S.#5) is equivalent to P(NC∩ND∩BR).  

The following equations are used to calculate the probabilities of brace damage scenarios 

4 and 5 by using total probability theorem: 

  
  


0 0 0

),,(),,|()( orrmorrmorrm dddfBSNDNCPBSNDNCP 

 (6.25) 

  
  


0 0 0

),,(),,|()( orrmorrmorrm dddfBRNDNCPBRNDNCP 

 (6.26) 

where, 

P(NC∩ND∩BS) = the probability of NC and ND and BS 

P(NC∩ND∩BR) = the probability of NC and ND and BS 
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P(NC∩ND∩BS | θm, θr,∆or) = the probability of NC and ND and BS for a given 

θm , θr and ∆or 

P(NC∩ND∩BR | θm, θr,∆or) = probability of NC and ND and BR for a given θm , 

θr and ∆or 

f(θm, θr,∆or) = the joint probability density function (PDF) for θm, θr, and ∆or 

Events in the damage scenarios are considered as independent events, Equations 6.25 and 

6.26 can be simplified as follows: 
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NC depends on θm only, ND depends on θr only, and BS and BR depend on ∆or only; 

therefore Equations 6.27 and 6.28 can be simplified further as follows: 
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where, 

P(NC| θm) = the probability of non-collapse for a given θm from the non-collapse 

fragility function (Chapter 4) 

P(ND| θr) = the probability of no demolition for a given θr from the no demolition 

fragility function (Chapter 4) 

P(BS| ∆or) = the probability of brace straightening for a given ∆or from the brace 

damage fragility function (i.e., P(DS=DS1|∆or) from Equation 5.4) 

P(BR| ∆or) = the probability of brace replacement for a given ∆or from the brace 

damage fragility function (i.e., P(DS=DS2|∆or) from Equation 5.5) 

Although the events in the damage scenarios are independent, the random variables are 

correlated. To consider the correlation between θm, θr and ∆or the joint PDF for these three 

variables is used. The multivariate lognormal probability density function (Equation 6.11) 

is used to formulate this joint PDF as follows for these three random variables: 

  
























  




 xxf T

orrm

orrm ln)(ln
2

1
exp

1

)2(

1
),,( 1

2

1

2

3

 (6.31)   

  





















or

r

m

x

ln

ln

ln

ln 



 (6.32)    



   

182 

 

  



















or

r

m







  (6.33)    

  

























2

,,

,

2

,

,,

2

ororrorrormorm

orrorrrrmrm

ormormrmrmm













 (6.34)    

where, 

θm = the peak story drift  

θr = the peak residual story drift  

∆or = the residual out of plane displacement at brace mid-length normalized by the 

brace length 

λm = the lognormal mean of θm  

λr = the lognormal mean of θr  

λor = the lognormal mean of ∆or  

ζm = the lognormal standard deviation of θm  

ζr = the lognormal standard deviation of θr  

ζor = the lognormal standard deviation of ∆or  

ρθm,θr = the correlation coefficient between θm and θr  

ρθm,Δor = the correlation coefficient between θm and ∆or  
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ρθr,Δor = the correlation coefficient between θr and ∆or  

The probability calculations given in Equations 6.29 and 6.30 are used to find the 

probability of a specific brace damage state when the building is in the NC and ND 

states. This multi-event probability concept is similar to the single event probability 

concept explained in Chapter 5, except in a multi-event system there is more than a single 

event that contributes to the probability.   

A Venn diagram illustration of the brace damage scenarios is given in Figure 6.8. A 

different shaded region represents each damage scenario in the figure. The portion of ND 

intersecting with NC is the region where brace damage states and subsequent brace repair 

events are of interest. Since a total building loss occurs from the D and C events, brace 

repair is not of interest.  

The dark grey region in Figure 6.8 represents P(NC∩ND∩BR). P(NC∩ND∩BR) is the 

probability of being in a brace damage state DS2 that requires brace replacement (BR) 

when the building is neither collapsed nor demolished. Here, Δor>Δor,2.  

The medium grey region in Figure 6.8 represents P(NC∩ND∩BS), which is the 

probability of being in brace damage state DS1 that requires brace straightening (BS) 

when the building is neither collapsed nor demolished. Here, Δor,1≤Δor<Δor,2. 

Similarly, the light grey region in Figure 6.8 represents P(NC∩ND∩NR), which is the 

probability of being in brace damage state DS0 that requires no repair (NR) when the 

building is neither collapsed nor demolished. Here, Δor<Δor,1. P(NC∩ND∩NR) is 

obtained as follows:   



   

184 

 

  )()()()( BRNDNCPBSNDNCPNDNCPNRNDNCP 

 (6.35) 

Probability of Brace Damage Scenarios – Simplified Methodology 

The θr values obtained from dynamic analysis for some of the model buildings are very 

low (see Chapter 4 for details). P(D) is zero (i.e., P(ND) is one) for those buildings since 

there is no significant θr leading to building demolition. The estimate of the probability of 

the brace damage scenarios can be simplified for the buildings that have very low values 

of θr, which can be treated as θr=0.  

When P(ND| θr) is equal to one, Equations 6.29 and 6.30 can be simplified as follows: 

ormormorm ddfBSPNCPNDBSNCP   
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 (6.36) 
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 (6.37) 

where, 

P(NC∩BS|ND) = the probability of NC and BS given that building is not 

demolished  

P(NC∩BR|ND) = the probability of NC and BR given that building is not 

demolished  
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Since θr=0, there is no need to consider the correlation of θr with θm and ∆or. For this 

reason, the joint PDF for θm and ∆or is used in Equations 6.36 and 6.37 which is given by 

Equation 6.38.  

This simplified case is shown by the Venn diagram in Figure 6.9. As seen in this figure, 

the ND event fills the sample space which means P(ND) is equal to one.   

6.4 Event Tree Probability Results 

The probabilities of the damage scenarios are estimated as explained in Section 6.3 for 

the model buildings analyzed in this study. Calculations are performed for both the DBE 

and MCE intensity levels and reported accordingly for each model building.   
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6.4.1 Probability of D.S. #1  

Equation 6.6 is used to estimate P(D.S.#1), which equals P(C). As mentioned in Chapter 

4, the PDF for θm in Equation 6.6 is obtained from dynamic earthquake response analysis 

results, with one value of θm for each ground motion at each intensity level. The 

probability distribution parameters for θm were tabulated in Chapter 4 and can be seen in 

Tables 4.2, 4.3, 4.5 and 4.6 for all model buildings. P(NC) is calculated using Equation 

6.7. 

Results obtained from the calculations of P(C) and P(NC) for each model building are 

given in Table 6.1. These results are the same as those shown in Table 4.6. The 

probability values given in this table are rounded off in order to equate the summation of 

P(C) and P(NC) to one, since C and NC are mutually exclusive events. 

Results given in Table 6.1 show that for all model buildings the P(C) values are very low. 

The P(NC) values are much larger and very close to 1. This means that collapse is not 

likely to occur for the model buildings under both the DBE and MCE. There are slight 

differences observed in the results because of the different CBF systems, number of 

stories and intensity levels.  

For the 4-story model buildings, the 4SCBF building has a slightly larger P(C) than the 

4SC-CBF building under both the DBE and MCE. For 9-story model buildings, the 

situation is opposite; the 9SC-CBF building has a larger P(C) than the 9SCBF building 

under both the DBE and MCE.  
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The 9-story model buildings have larger P(C) values than the 4-story model buildings 

under both ground motion intensity levels. As expected, a larger ground motion intensity, 

MCE, results in larger P(C) values.  

6.4.2 Probability of D.S. #2  

Equation 6.10 is used to estimate P(D.S.#2). As seen in Equation 6.10 and discussed in 

Section 6.3.2, the joint PDF for θm and θr is used to calculate P(NC∩D) together with the 

NC and D fragility curves. The joint PDF considers the correlation between the random 

variables θm and θr. Dynamic earthquake response analysis results mentioned in Chapter 

4 provide the data points needed to develop the PDF (Equation 6.20).  Correlation 

coefficients between θm and θr data points (ρθm,θr) for each model building under the DBE 

and MCE are listed in Table 6.2. According to Table 6.2, there is correlation between θm 

and θr since ρθm,θr values are non-zero. ρθm,θr closer to 1 (or -1) indicates higher 

correlation between the random variables. Table 6.2 shows that θm and θr for the 4SCBF 

have the highest correlation. θm and θr obtained for the 4SC-CBF under the DBE have the 

lowest correlation.     

The relationship given in Equation 6.22 is solved to determine P(NC∩ND), where P(NC) 

is from Equation 6.7.   

P(NC∩D) and P(NC∩ND) results are obtained from a program coded in MatLab and are 

given in Table 6.3. The probability values given in this table are rounded off in order to 

equate the summation of P(NC∩D) and P(NC∩ND) to P(NC) according to Equation 6.22 

and Figure 6.7. Results in Table 6.3 show that the P(NC∩D) values are very low 
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compared to the P(NC∩ND) values for all model buildings both under the DBE and 

MCE. Results vary for the different CBF systems, number of stories and intensity levels. 

For the 4-story model buildings, the 4SCBF has a larger P(NC∩D) than the 4SC-CBF. 

P(NC∩D) is zero for the 4SC-CBF under both the DBE and MCE, since it has very low 

θr. For 9-story model buildings, the same difference is observed between the 9SCBF and 

the 9SC-CBF. The 9SCBF has a larger P(NC∩D) than the 9SC-CBF. For the DBE, 

P(NC∩D) is about 3% for the 9SCBF, but P(NC∩D) is very small (1x10
-4

) for the 9SC-

CBF. For the MCE, P(NC∩D) for the 9SCBF is about 26%, while P(NC∩D) is about 

10% for the 9SC-CBF. This is an expected result because the rocking behavior of SC-

CBFs nearly eliminates residual deformations.  

When the results are compared in terms of the number of stories, it is seen that taller 

buildings have larger P(NC∩D) than the shorter buildings. Unlike the 4SC-CBF, 

P(NC∩D) is not zero for the 9SC-CBF.    

The MCE causes more residual deformations than the DBE, resulting in larger P(NC∩D) 

under the MCE than under the DBE. 

6.4.3 Probability of Brace Damage Scenarios  

Equation 6.29 is used to estimate P(D.S.#4), and Equation 6.30 is used to estimate 

P(D.S.#5). P(D.S.#3) is obtained from the relationship given in Equation 6.35. 

Calculations are performed for each brace of each model building.  
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As given in Equations 6.29 and 6.30, the joint PDF for θm, θr and Δor is used to calculate 

P(NC∩ND∩BS) and P(NC∩ND∩BR) together with the NC, ND and BS/BR fragility 

curves. θm, θr and Δor results from the dynamic analyses are used to develop the 

lognormal trivariate joint PDF (Equation 6.31) for each brace of each model building. In 

addition to ρθm,θr obtained for the building, correlation coefficients between θm and Δor 

(ρθm,Δor), and between θr and Δor (ρθr,Δor) are obtained for each brace in the building from 

the analysis results. ρθm,Δor and ρθr,Δor values for each brace of each model building under 

both the DBE and MCE are given in Table 6.4 for 4-story model buildings and in Table 

6.5 for 9-story model buildings. According to the values in Tables 6.4 and 6.6, both θm 

and Δor and θr and Δor are correlated since the ρθm,Δor and ρθr,Δor values are non-zero.          

P(NC∩ND∩NR), P(NC∩ND∩BS) and P(NC∩ND∩BR) results are obtained from a 

program coded in MatLab and are given in Table 6.6 for the braces of the 4-story model 

buildings and in Table 6.7 for the braces of the 9-story model buildings. The probability 

values given in these tables are rounded off in order to equate the summation of 

P(NC∩ND∩NR), P(NC∩ND∩BS) and P(NC∩ND∩BR) to P(NC∩ND) according to 

Equation 6.35 and Figure 6.8.  

The results for the 4-story model buildings given in Table 6.6 indicate that the brace 

damage probabilities (i.e., P(NC∩ND∩BS) and P(NC∩ND∩BR) ) for the 4SC-CBF are 

zero for all braces. The very low Δor (in the range of 10
-6 

to 10
-7

) for the braces of the 

4SC-CBF is the reason for the zero brace damage probability. For the 4SCBF, Δor in the 

braces leads to higher brace repair probabilities. Table 6.6 shows that the highest repair 

probabilities are obtained for the 1
st
 story braces of the 4SCBF. P(NC∩ND∩BS) for the 
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1
st
 story braces is larger than P(NC∩ND∩BR) under the DBE. This makes BS is the most 

probable repair action for the 1
st
 story braces of 4SCBF under the DBE with a probability 

of about 52%. The probability of BR is about 32%, and the probability of needing some 

type of brace repair is 84%. Under the MCE, BR is the most probable repair action for 

the 1
st
 story braces of the 4SCBF. The probability of BR is about 65% and the probability 

of BS is about 29%. The probability of needing some type of brace repair is about 94%. 

There is some probability of needing repair of 4
th

 story braces of the 4SCBF; however it 

is not as high as the probability of repair for the 1
st
 story braces. These results show that 

there is a high probability of reparable brace damage in the 4SCBF.  

The results for the 9-story model buildings in Table 6.7 show that the brace repair 

probabilities are higher than those for the 4-story buildings. The 9SC-CBF has brace 

repair probabilities much larger than zero under the MCE. For the DBE, the brace repair 

probabilities are very low. Damage is concentrated in upper story braces of the 9SC-CBF, 

mainly in the 5
th

, 6
th

 and 7
th

 story braces. P(NC∩ND∩BS) is higher than 

P(NC∩ND∩BR) for these braces of the 9SC-CBF both under the DBE and MCE. Under 

the DBE, the probability of BS is about 8% and the probability of BR is about 3% for the 

6
th

 and 7
th

 story braces of 9SC-CBF. The probability of needing some type of brace repair 

is about 11% for these braces under the DBE. Under the MCE, the probability of BS is 

about 36% and the probability of BR is about 19% for the 6
th

 story braces of the 9SC-

CBF. For the 7
th

 story braces of the 9SC-CBF under the MCE, the probability of BS is 

37% and the probability of BR is about 16%. The probability of needing some type of 

brace repair is about 55% for 6
th

 and 7
th

 story braces under the MCE.     
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Results show that the 9SCBF has more uniformly distributed brace repair probabilities. 

Brace damage is not concentrated in a specific story of the 9SCBF but the highest repair 

probability is in the 1
st
 story. The probability of BS is about 45% and the probability of 

BR is about 35% under the DBE which gives about 80% probability of needing some 

type of brace repair. Under the MCE, the probability of BR is larger than the probability 

of BS for the 1
st
 braces of 9SCBF with about 70% probability of needing some type of 

brace repair. For many braces of the 9SCBF, the probability of needing some type of 

brace repair is about 80% under the DBE and about 70% under the MCE. Note that the 

probability of brace repair under the MCE is less than under the DBE because the 

probability of demolition is greater. Overall, it is observed that BS is the most probable 

repair action under the DBE. However, under the MCE, with increased brace damage, 

BR is the most probable repair action. 

6.4.4 Summary of Results 

The probability of collapse (i.e., P(C) ) is very low for the model buildings both under the 

DBE and MCE. The probability of demolition when the building does not collapse, i.e., 

P(NC∩D), is also low for the model buildings except for the 9SCBF. P(NC∩D) is about 

26% for the 9SCBF under the MCE.    

The SC-CBF model buildings have less brace damage with lower brace repair 

probabilities than the SCBF model buildings. The braces of 4SC-CBF are damage free 

both under the DBE and MCE. The braces of 9SC-CBF are mainly undamaged under the 

DBE with braces in the 6
th

 and 7
th

 stories having about 10% probability of needing some 
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type of brace repair. Braces of the 4SCBF have large repair probabilities in the 1
st
 and 4

th
 

story braces. Braces of the 9SCBF are damaged more uniformly over the building height 

and have probabilities of needing some type of brace repair up to 80% under the DBE, 

and up to 70% under the MCE. The reason of this reduction in the brace repair 

probability is the larger probability of demolition (P(NC∩D)) for the 9SCBF under the 

MCE. As the demolition probability of the building increases, brace repair probability 

decreases since there is no need for brace repair when the building is demolished. Under 

the DBE, 9SCBF has about 83% probability of needing brace repair or being demolished. 

Under the MCE, the 9SCBF has about 96% probability of needing some type of brace 

repair or being demolished.   
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Table 6.1 – P(C) and P(NC) results for model buildings  

Frame Hazard P(C)  P(NC)  

4SCBF 
DBE 3.00E-06 9.99997E-01 

MCE 5.60E-04 9.9944E-01 

4SC-CBF 
DBE 1.50E-06 9.999985E-01 

MCE 1.70E-04 9.9983E-01 

9SCBF 
DBE 4.50E-05 9.99955E-01 

MCE 6.70E-04 9.9933E-01 

9SC-CBF 
DBE 2.00E-04 9.998E-01 

MCE 5.60E-03 9.944E-01 

 

 

 

 

Table 6.2 – Correlation coefficients between θm and θr (ρθm,θr) for model buildings 

ρθm,θr 

SCBF SC-CBF 

DBE MCE DBE MCE 

4-story 0.823 0.712 0.039 0.359 

9-story 0.563 0.479 0.104 0.631 

 

 

 

 

 

Table 6.3 – P(ND∩NC) and P(D∩NC) results for model buildings 

Frame  Hazard P(NC∩ND) P(NC∩D) 

4SCBF 
DBE 9.9946E-01 5.36E-04 

MCE 9.638E-01 3.56E-02 

4SC-CBF 
DBE 9.999985E-01 0.00 

MCE 9.9983E-01 0.00 

9SCBF 
DBE 9.6856E-01 3.1395E-02 

MCE 7.435E-01 2.5583E-01 

9SC-CBF 
DBE 9.997E-01 1.00E-04 

MCE 8.946E-01 9.98E-02 
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Table 6.4 – Correlation coefficients between θm and Δor (ρθm,Δor) and between θr and Δor 

(ρθr,Δor)  for each brace in 4-story model buildings 

  
SCBF SC-CBF 

  
DBE MCE DBE MCE 

1LB 
ρθm,Δor 0.859 0.888 -0.778 -0.634 

ρθr,Δor 0.690 0.566 0.091 -0.047 

2LB 
ρθm,Δor 0.101 0.464 -0.783 -0.928 

ρθr,Δor 0.203 0.360 0.069 -0.272 

3LB 
ρθm,Δor 0.064 0.125 -0.785 -0.923 

ρθr,Δor 0.151 0.264 0.071 -0.289 

4LB 
ρθm,Δor 0.319 0.346 -0.781 -0.932 

ρθr,Δor 0.170 0.230 0.065 -0.307 

1RB 
ρθm,Δor 0.929 0.782 -0.776 -0.895 

ρθr,Δor 0.724 0.424 0.085 -0.179 

2RB 
ρθm,Δor 0.563 0.395 -0.782 -0.925 

ρθr,Δor 0.645 0.413 0.069 -0.240 

3RB 
ρθm,Δor 0.091 -0.088 -0.785 -0.890 

ρθr,Δor -0.023 -0.087 0.072 -0.289 

4RB 
ρθm,Δor 0.475 0.305 -0.781 -0.930 

ρθr,Δor 0.230 0.079 0.065 -0.286 
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Table 6.5 – Correlation coefficients between θm and Δor (ρθm,Δor) and between θr and Δor 

(ρθr,Δor)  for each brace in 9-story model buildings 

  
SCBF SC-CBF 

  
DBE MCE DBE MCE 

1LB 
ρθm,Δor 0.236 0.385 -0.268 -0.241 

ρθr,Δor 0.228 0.458 0.070 0.046 

2LB 
ρθm,Δor 0.086 0.103 -0.358 -0.291 

ρθr,Δor 0.214 0.221 -0.070 0.024 

3LB 
ρθm,Δor 0.251 0.333 -0.269 -0.311 

ρθr,Δor 0.458 0.464 0.132 -0.066 

4LB 
ρθm,Δor 0.123 0.138 -0.286 -0.273 

ρθr,Δor 0.075 0.064 0.116 0.210 

5LB 
ρθm,Δor 0.473 0.402 0.157 0.042 

ρθr,Δor 0.382 0.405 0.278 -0.034 

6LB 
ρθm,Δor 0.636 0.586 0.029 -0.031 

ρθr,Δor 0.248 0.086 0.554 -0.095 

7LB 
ρθm,Δor 0.626 0.503 0.229 0.124 

ρθr,Δor -0.052 0.046 0.539 0.021 

8LB 
ρθm,Δor 0.197 0.244 -0.107 -0.037 

ρθr,Δor -0.159 0.271 0.654 0.097 

9LB 
ρθm,Δor 0.196 -0.175 -0.107 -0.010 

ρθr,Δor 0.509 0.344 0.654 0.113 

1RB 
ρθm,Δor 0.209 0.307 -0.292 -0.255 

ρθr,Δor 0.403 0.157 -0.059 0.017 

2RB 
ρθm,Δor -0.028 -0.073 -0.367 -0.337 

ρθr,Δor -0.021 -0.086 0.016 -0.090 

3RB 
ρθm,Δor 0.255 0.280 -0.245 -0.320 

ρθr,Δor 0.465 0.432 0.047 0.029 

4RB 
ρθm,Δor 0.264 0.013 -0.296 -0.291 

ρθr,Δor 0.296 0.143 0.089 -0.065 

5RB 
ρθm,Δor 0.516 0.316 0.127 -0.109 

ρθr,Δor 0.396 0.021 0.141 0.014 

6RB 
ρθm,Δor 0.519 0.495 0.264 0.069 

ρθr,Δor 0.009 -0.172 0.587 -0.031 

7RB 
ρθm,Δor 0.741 0.619 -0.020 -0.085 

ρθr,Δor 0.228 0.058 0.559 -0.067 

8RB 
ρθm,Δor 0.142 0.168 -0.138 -0.228 

ρθr,Δor 0.034 0.097 0.699 -0.036 

9RB 
ρθm,Δor 0.146 0.048 -0.537 0.106 

ρθr,Δor 0.476 -0.037 0.449 0.014 
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Table 6.6 – Probabilities of brace damage states for 4-story model buildings 

  
P(NC∩ND∩NR) P(NC∩ND∩BS) P(NC∩ND∩BR) 

  
SCBF SC-CBF SCBF SC-CBF SCBF SC-CBF 

1LB 
DBE 0.159 9.999985E-01 0.517 0.000 0.323 0.000 

MCE 0.026 9.9983E-01 0.293 0.000 0.646 0.000 

2LB 
DBE 0.992 9.999985E-01 0.006 0.000 0.001 0.000 

MCE 0.861 9.9983E-01 0.074 0.000 0.029 0.000 

3LB 
DBE 0.987 9.999985E-01 0.009 0.000 0.003 0.000 

MCE 0.946 9.9983E-01 0.013 0.000 0.005 0.000 

4LB 
DBE 0.740 9.999985E-01 0.213 0.000 0.046 0.000 

MCE 0.638 9.9983E-01 0.258 0.000 0.068 0.000 

1RB 
DBE 0.186 9.999985E-01 0.506 0.000 0.308 0.000 

MCE 0.024 9.9983E-01 0.301 0.000 0.639 0.000 

2RB 
DBE 0.998 9.999985E-01 0.001 0.000 1.123E-04 0.000 

MCE 0.886 9.9983E-01 0.057 0.000 0.021 0.000 

3RB 
DBE 0.988 9.999985E-01 0.008 0.000 0.003 0.000 

MCE 0.960 9.9983E-01 0.006 0.000 0.010 0.000 

4RB 
DBE 0.832 9.999985E-01 0.133 0.000 0.035 0.000 

MCE 0.556 9.9983E-01 0.314 0.000 0.094 0.000 
0.000 means value less than 1x10

-6
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Table 6.7 – Probabilities of brace damage states for 9-story model buildings 

  
P(NC∩ND∩NR) P(NC∩ND∩BS) P(NC∩ND∩BR) 

  
SCBF SC-CBF SCBF SC-CBF SCBF SC-CBF 

1LB 
DBE 0.215 9.997E-01 0.463 0.000 0.290 0.000 

MCE 0.014 8.946E-01 0.191 0.000 0.539 0.000 

2LB 
DBE 0.961 9.997E-01 0.006 0.000 0.002 0.000 

MCE 0.592 8.946E-01 0.103 0.000 0.049 0.000 

3LB 
DBE 0.431 9.997E-01 0.360 0.000 0.177 0.000 

MCE 0.084 8.946E-01 0.310 0.000 0.350 0.000 

4LB 
DBE 0.932 9.997E-01 0.027 0.000 0.010 0.000 

MCE 0.479 8.946E-01 0.171 0.000 0.094 0.000 

5LB 
DBE 0.385 9.983E-01 0.375 0.001 0.208 2.030E-05 

MCE 0.058 8.482E-01 0.311 0.034 0.375 0.013 

6LB 
DBE 0.385 8.865E-01 0.371 0.080 0.212 0.033 

MCE 0.160 3.576E-01 0.314 0.351 0.269 0.186 

7LB 
DBE 0.034 9.027E-01 0.441 0.072 0.493 0.026 

MCE 0.027 5.323E-01 0.275 0.244 0.442 0.119 

8LB 
DBE 0.920 9.997E-01 0.037 0.000 0.012 0.000 

MCE 0.677 8.938E-01 0.050 7.730E-04 0.017 3.700E-05 

9LB 
DBE 0.969 9.997E-01 0.000 0.000 0.000 0.000 

MCE 0.744 8.081E-01 0.000 0.061 0.000 0.026 

1RB 
DBE 0.156 9.997E-01 0.439 0.000 0.374 0.000 

MCE 0.052 8.946E-01 0.259 0.000 0.432 0.000 

2RB 
DBE 0.933 9.997E-01 0.026 0.000 0.009 0.000 

MCE 0.697 8.946E-01 0.034 0.000 0.013 0.000 

3RB 
DBE 0.535 9.997E-01 0.276 0.000 0.158 0.000 

MCE 0.278 8.946E-01 0.279 0.000 0.187 0.000 

4RB 
DBE 0.893 9.997E-01 0.055 0.000 0.021 0.000 

MCE 0.718 8.946E-01 0.019 0.000 0.007 0.000 

5RB 
DBE 0.364 9.997E-01 0.402 0.000 0.202 0.000 

MCE 0.154 8.827E-01 0.341 0.010 0.248 0.002 

6RB 
DBE 0.412 8.858E-01 0.372 0.082 0.185 0.032 

MCE 0.365 3.466E-01 0.236 0.362 0.143 0.186 

7RB 
DBE 0.046 8.933E-01 0.435 0.077 0.488 0.029 

MCE 0.016 3.666E-01 0.261 0.366 0.467 0.162 

8RB 
DBE 0.900 9.997E-01 0.051 0.000 0.018 0.000 

MCE 0.622 8.940E-01 0.089 5.686E-04 0.033 2.710E-05 

9RB 
DBE 0.969 9.997E-01 0.000 0.000 0.000 0.000 

MCE 0.726 8.709E-01 0.013 0.018 0.005 0.006 
0.000 means value less than 1x10

-6
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Figure 6.1 – Event tree (ET) used in this study 
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Figure 6.2 –Damage scenarios’ paths   
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Figure 6.3 – Venn diagrams for individual damage events 
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Figure 6.4 – Venn diagram for the multi-event system 
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Figure 6.5 – Schematic representation of damage scenarios indicating median EDP limit 

values of each individual event 
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Figure 6.6 – Venn diagram representing P(C) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 – Venn diagram representing P(NC∩D) 
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Figure 6.8 – Venn diagram representing brace damage state (brace repair) probabilities 

 

 

 

 

 

 
Figure 6.9 – Venn diagram representing brace damage state (brace repair) probabilities 

for the simplified methodology 
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CHAPTER 7 

SUMMARY, CONCLUSIONS AND FUTURE WORK 

7.1 Summary 

A probabilistic earthquake structural damage assessment of SCBFs and SC-CBFs was 

presented in this thesis. The objective is to develop a better understanding of the 

earthquake performance of SC-CBFs by comparing this performance with that of SCBFs. 

An SC-CBF is designed to rock on its foundation, and the rocking action increases the 

lateral drift capacity of the system. SC-CBFs exhibit a capability to soften with little 

structural damage and residual drift. Therefore, the earthquake performance of an SC-

CBF is expected to be better than the earthquake performance of an SCBF because an 

SC-CBF has greater lateral drift capacity before damage of individual members begins. 

This thesis summarizes the seismic design procedures for SCBFs and SC-CBFs. 

Structural response parameters (EDPs) obtained from nonlinear dynamic earthquake 

response analyses of model SCBF and SC-CBF buildings performed by Chancellor 

(2013) and Tahmasebi (2014) are summarized. A probabilistic building damage 

assessment of the model buildings, and a detailed discussion of brace damage and the 

probabilistic brace damage assessment for the model buildings are presented. 

Comparisons of the damage assessment for the SCBF and SC-CBF model buildings are 

given.  
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First, the designs of 4- and 9-story SCBF buildings (4SCBF and 9SCBF, respectively) 

were presented to permit comparisons with the 4- and 9-story SC-CBF model buildings 

(4SC-CBF and 9SC-CBF, respectively) designed previously by Chancellor (2013). The 

nonlinear dynamic earthquake response analyses of these model buildings were 

performed in OpenSees by Tahmasebi (2014) and Chancellor (2013) under DBE and 

MCE ground motion intensities. Forty-four ground motion records, known as the Far-

Field record set (FEMA, 2009), were used in these analyses. Structural response data 

(values of the engineering demand parameters, EDPs) necessary for the damage 

assessment were obtained from the dynamic analysis results. The peak story drift (θm), 

the peak residual story drift (θr) and the normalized residual brace OOP displacement 

(Δor) were extracted from the dynamic analysis results. These EDPs were taken as 

random variables in the probabilistic damage assessment. 

Second, the building damage assessment was performed. The probability of collapse/non-

collapse (C/NC) and the probability of demolition/no demolition (D/ND) were used to 

quantify the building damage. θm was used as the EDP for the collapse assessment and θr 

was used as the EDP for the demolition assessment. To obtain these probabilities, C/NC 

and D/ND fragility functions were developed. Probabilities of (C/NC) and (D/ND) were 

obtained for each model building under both the DBE and MCE and the results were 

compared. 

Third, the damage assessment of the braces was performed. Brace damage states (DS0, 

DS1 and DS2) and the repair actions corresponding to each damage state (NR, BS, and 

BR) were specified. Probabilities of DS0, DS1 and DS2 (or NR, BS, and BR) were used to 
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quantify the damage in the braces. Δor was used as the EDP for the brace damage 

assessment. Results of a previous experimental study were used to determine the damage 

state limit values of Δor. Using the damage state limit values of Δor, fragility functions for 

each damage state were developed. When Δor from the dynamic earthquake response 

analysis equaled or exceeded the limit values, the building was considered to be in the 

corresponding damage state. The probability of being in each damage state was obtained 

for each brace of each model building under both the DBE and MCE and the results were 

compared.      

Finally, the building damage assessment and the brace damage assessment were 

combined into a multi-event damage assessment of each model building. The multi-event 

damage assessment was based on damage scenarios, where each scenario was a sequence 

of individual events. Damage scenarios were described as sequences of the individual 

building and brace damage events, and shown schematically using an event tree (ET) 

model. The probability of each damage scenario was obtained from the fragility functions 

and data developed previously, using an event tree analysis (ETA). The probability of 

each damage scenario was estimated for each model building under both the DBE and 

MCE. Results were compared and discussed.       

7.2 Findings 

The following findings are obtained from the work reported in this thesis: 

 The earthquake design procedure for SC-CBF buildings resulted in SC-CBFs that 

are heavier than corresponding SCBFs for both the 4- and 9-story buildings, even 
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though the CBFs are designed for the same seismic mass and seismic conditions. 

The reason for this difference is the modified RSA used in the SC-CBF design 

procedure in which the higher mode spectral acceleration values are scaled up by 

a factor of 2, rather than scaled down by R/I.   

 All model buildings have a very low collapse probability (P(C)) under both the 

DBE and MCE. However, some slight differences were observed in the results. 

P(C) for the 4SC-CBF is slightly lower than the P(C) of the 4SCBF; but, P(C) of 

the 9SC-CBF is slightly higher than the P(C) of the 9SCBF.  

 The mean values of θm for the SCBF and SC-CBF buildings are very similar for 

buildings with same number of stories and under the same ground motion 

intensity. The difference in the standard deviations for θm between the different 

model buildings caused the differences in the P(C). 

 The probability of demolition (P(NC∩D)) is much lower than the probability of 

no demolition (P(NC∩ND)) for all model buildings (when collapse has not 

occurred). The SC-CBF model buildings have a lower P(NC∩D) than the SCBF 

buildings. Specifically, P(NC∩D) for the 4SC-CBF is essentially zero under both 

the DBE and MCE. P(NC∩D)  for the 9SCBF is about 26% under the MCE. 

 Similar to P(NC∩D), θr is also lower in the SC-CBF buildings than in the SCBF 

buildings. This is expected since the demolition probability depends on θr.  

 The braces of the SC-CBF model buildings have a lower probability of brace 

repair than the SCBF model buildings.  
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 The 4SC-CBF has zero probability of brace repair, therefore the braces of 4SC-

CBF are considered to be damage free both under the DBE and MCE. On the 

other hand, the 4SCBF has brace damage concentrated in the 1
st
 story braces 

under both the DBE and MCE. The 4
th

 story braces of the 4SCBF also 

experienced some damage, but not as much as the braces in the 1
st
 story.   

 Brace damage was concentrated in the 6
th

 and 7
th

 story braces of the 9SC-CBF; 

the probability of some type of brace damage is about 11% under the DBE and 

about 55% under the MCE. The braces of the first 4 stories of the 9SC-CBF had 

zero probability of brace repair. The 8
th

 and 9
th

 story braces had low probabilities 

of brace repair under both the DBE and MCE.  

 In the 9SCBF, the brace damage was more uniformly distributed over the building 

height. For many braces of the 9SCBF, the probability of some type of brace 

repair is about 80% under the DBE, and about 70% under the MCE. The 

probability of brace damage under the MCE is lower because of the higher 

probability of demolition under the MCE.    

 Brace straightening (corresponding to minor damage) is the most probable brace 

repair action under the DBE. The most probable repair action is brace 

replacement (corresponding to major damage) under the MCE, except for the 

9SC-CBF. Brace straightening is the most probable brace repair action under both 

the DBE and MCE for 9SC-CBF.   

 ∆or values for the braces are closely related to the brace repair probability results, 

therefore, the discussion of the brace repair probabilities are applicable to the ∆or. 
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 In all model buildings, structural damage increased with increasing building 

height and with increasing ground motion intensity. 

7.3 Conclusions  

The following conclusions are developed from the findings of this study: 

 The SC-CBF buildings have better earthquake performance than the SCBF 

buildings both under the DBE and MCE ground motion intensities. 

 Both systems achieved collapse prevention with low probability of collapse. 

 The SC-CBF buildings have a lower probability of demolition, because the 

residual drift is reduced with the self-centering capability. 

 The probabilities of brace damage for the SC-CBF buildings are lower than for 

the SCBF buildings, because the brace buckling is delayed in the SC-CBF 

buildings. 

 It is noteworthy that the taller SCBF model building (i.e., 9SCBF) had a very 

large probability of damage under the MCE. It had a 96% probability of needing 

some type of brace repair or being demolished under the MCE.  

7.4 Future Work  

The following recommendations are made for further research work: 

 The design procedure for SC-CBFs should be modified for a more optimum 

design. 
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 The applications of SC-CBF buildings with different numbers of stories should be 

studied to observe the effect of building height on the earthquake performance 

extensively, since this study considered only 4- and 9-story SCBF and SC-CBF 

buildings.  

 The lack of data on building damage and associated repair actions and repair costs 

is one of the most challenging aspects of the structural damage assessment. A 

damage database is needed which collects all available earthquake damage and 

repair data. 

 A building damage assessment should consider the non-structural components 

because the damage to non-structural components are the main contributor to the 

earthquake related losses. 

 The only brace configuration considered in this study is multi-story X-bracing. 

Other brace configurations, such as chevron bracing, should be studied to 

understand the effect of brace configuration on the earthquake performance of 

CBF buildings. 

 Comparative studies on SCBF and SC-CBF structures with hollow steel structural 

sections for diagonal bracing should be pursued. Hollow steel structural sections 

are prone to low-cycle fatigue and fracture, which can have an effect on the on the 

probability of collapse and damage from an earthquake.   

 Data from dynamic earthquake response analyses using a wide variety of ground 

motion intensities should be developed so the present study can be extended to 

other ground motion intensity levels.  
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 The results of building damage assessments should be considered in terms of 

economic losses which are more meaningful to decision-makers. To accomplish 

this, a comprehensive cost inventory should be prepared including initial material 

costs, building construction costs, demolition costs, and repair costs.  
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