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Abstract 

Structural health monitoring (SHM) research has become a vital tool in 

maintaining the integrity of structures that has been refined over the years. There are 

numerous methods for damage detection and localization; yet some are not efficient. For 

example, researchers have used dynamic properties as damage features to monitor a 

structure because they change in the presence of damage; however, these methods are 

global in nature. Research in improving them (i.e. having automated, statistical 

monitoring techniques) is critical to the advancement of the civil engineering field. This 

thesis presents the implementation of damage detection methods using an experimental 

structure. Damage features are created from linear regression models and are utilized in 

control charts to localize damage because they represent the changing properties of a 

structure in the event of damage. Therefore, this thesis evaluates the performance of 

different damage features and change point analysis methods in detecting and localizing 

damage.   
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1. Introduction 

1.1 Overview 

Damage detection is a fundamental element of SHM practice and is one of the most 

challenging research tasks for the civil engineering community. Literature shows 

numerous techniques for damage detection which are classified in different ways. Some 

approaches involve non-destructive evaluation (NDE) techniques. Many of these rely on 

the skill and experience of a trained inspector and also require a priori knowledge about 

the structure’s properties; on the other hand, some are data-driven techniques which rely 

on measurement and monitoring and can be classified into model-based and model-free 

methods (Dorvash et al. 2012). Many approaches use modal parameter identification with 

data in time and frequency domain, to establish damage sensitive features such as modal 

frequencies (Yao and Pakzad 2013), mode shapes (West 1984) or mode shape curvatures 

(Pandey et al. 1991). A review of these methods can be found in Ewins (1984), Doebling 

(1998) and Salawu (1997). However, these methods for damage detection are generally 

unable to detect local damage (Alvandi and Cremona 2006); these features are not 

sensitive enough to the changes in local elements of the structure hence they require high 

signal to noise ratio of the measurement data as well as moderate damage levels (Farrar et 

al. 1994). 

As an answer to the shortcomings of these damage detection techniques, model-free 

approaches can be employed which use local responses of the structure through sensor 

networks. These localized networks have been used on various types of structures such as 

large-scale steel beam-to-column moment connection, (Dorvash et al. 2013), large-scale 

moment connections (Labuz et al. 2011), long-span bridges (Pakzad 2010), concrete 
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structures (Nishikawa et al.  2012), composite and reinforced concrete bridges (Cruz et al. 

2008), and highway bridges (Hu. et al. 2013). Considering the recent technological 

advancements in sensing technology, affordable sensors (such as wireless sensors) can 

address the need for higher number of outputs. Hence, with an increase in the number of 

output channels, the accuracy and resolution of the detection of change can increase 

without a loss for efficiency in time for computation. With an increase in the amount of 

data from these dense sensor networks, output only algorithms can be developed so there 

is no need for input parameters such as excitation.  Furthermore, this data could be used 

in damage detection techniques in which there would be no need for a priori knowledge 

of the structure’s properties or suspected location of damage.  

In this thesis, data is collected from a dense sensor network and used in an algorithm 

to create damage features to use in control chart analysis. These features are produced 

from linear regression models including single variate, collinear, Auto Regression (AR) 

and Auto Regression with Exogenous term (ARX). They can either be the influence 

coefficients, parameters derived from these influence coefficients, or the residuals of the 

different types of linear regression models. These features can be correlated to a location 

on the structure through the dense sensor network. Hence, they can be used to localize 

damage on a structure. While localized model-free approaches, like the one used in this 

thesis, are easy to implement and effective in reflecting the changes in the structure’s 

behavior, they are dependent on statistical analysis to determine the significance of the 

changes in the data.  

Literature presents different statistical approaches which are developed for detection 

of changes in observations for different applications and disciplines including structural 
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damage detection such as in Amiri et al. (2011) and Nishina (1992). However, despite 

their importance in damage detection, control charts and statistical frameworks are not 

properly utilized in this area. On the other hand, most of the existing change point 

analysis techniques were originally developed for applications in the stock market, as in 

Taylor (2011), or industrial engineering processes, as in Zamba and Hawkins (2006); 

therefore utilizing them in structural damage detection needs performance evaluation and 

may also require particular customizing for adaption. Additionally, there are different 

control statistics based on the parameter being monitored. For example, some are 

sensitive to the changes in the mean of a data set and some are more sensitive to the 

change in the variance of a data set. These different types of control charts can be used to 

monitor different damage features. For instance, it is assumed that the mean of the 

influence coefficients will change from an undamaged set of data to a damaged set of 

data; meanwhile the variance of the residuals is subject to change in the presence of 

damage. 

For this thesis, the response of a scaled steel frame is recorded from two states: the 

first is a baseline healthy state of the structure, and the second is an unknown state. This 

procedure creates two sets of acceleration data that would be taken from a structure pre- 

and post- a damaging event. After the data is collected, damage features from univariate 

and multivariate linear regression models can be estimated and used to localize damage. 

To achieve this, control charts are used. The damage indicators from the univariate 

regression (i.e. single variate and collinear regression) are used in different control 

schemes than the multivariate indicators (i.e. ARX and AR regression parameters); yet 

both are used to make a distinction, if any, between an undamaged and unknown state of 



5 

 

the structure using the data from a sensor network in order to correlate locations with 

acceleration.  

 

1.2 Research Objectives 

The contribution of this paper is in establishing and comparing the effectiveness of 

different control statistics, damage sensitive features, and threshold methods in detecting 

damage for the application of structural health monitoring. Performance of different 

control statistics are evaluated through implementation on data obtained from laboratory 

frame. The following objectives are established: 

1. To develop a damage detection algorithm using linear regression parameters as 

damage features. Three different damage features are used: the influence 

coefficients of the regression, the regression residuals, and the angle between an 

undamaged and damaged linear regressed line. Four different types of regression 

models are used: single variate, collinear, Auto Regression (AR) and Auto 

Regression with Exogenous term (ARX).  

2. To analyze and compare the effectiveness of different control statistics for 

detecting a significant change in the mean and variance of the damage features. 

Ten different control statistics are used based on the damage feature utilized. 

3. To use statistical frameworks for generating confidence level threshold 

boundaries to determine the significance and location of damage. Bootstrapping is 

employed as well as simple Shewart thresholds that are used in many statistical 

process control techniques. These threshold types are used with different control 

statistics depending on applicability.  
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4. To instrument a scaled steel frame with a wired sensor network to validate the 

methods from different damage cases. A simulated model is also created to verify 

the response of the experimental set up.  

5. To create a Graphical User Interface (GUI) so that the control charts used in this 

thesis can be available to researchers monitoring a process in different fields of 

work. The control charts should be able to be used in industries besides civil 

engineering structural health monitoring (most control analysis is used in 

industries other than SHM); therefore, in creating a GUI, these methods can be 

available to the public. It should be user interactive so that the researchers will be 

able to define their own confidence levels and charting properties such as title, 

axes labels etc.  

 

1.3 Scope of Research 

In order to accomplish these research objectives, the following work was completed. A 

damage detection algorithm was produced based on linear regression models and control 

chart statistics. Damage features were extracted from the linear regression models. These 

were utilized in control statistics that were generated and customized for the particular 

adaption to use for damage detection. To obtain initial damage features, a simulated 

model was produced in SAP2000. Then an experimental two-bay moment frame was 

developed and instrumented with a dense network of wired accelerometers. Data 

collected from both the simulated and experimental model were used in the algorithm to 

obtain damage features. These features were compared to assure the accuracy of the 

simulated model and overall effectiveness of the algorithm. Then, the results from the 



7 

 

experimental structure were used in control statistics. This thesis analyzes the 

effectiveness of the damage sensitive features in the control charts.  

 

1.4 Organization of Thesis 

This thesis contains 6 chapters as follows. 

- Chapter 1 presents an introduction to the study providing a general overview, 

research objectives, scope and organization of thesis. 

- Chapter 2 introduces the development of the localized damage detection 

algorithm in which relevant literature is reviewed. Structural theory is also 

introduced which forms the basis of using linear regression parameters as 

damage features. Afterwards, the linear regression models are presented and 

the features are derived.  

- Chapter 3 is an introduction to the change point detection statistics in which 

relevant literature is reviewed. Bootstrapping is also explained as a method for 

threshold generation. Simple Shewart bounds are presented along with the 

specific control statistics for which they will be utilized. 

- Chapter 4 presents the test specimen used to validate the damage detection 

methods. The simulated model is also presented along with the model 

updating. This model has the same physical properties as the experimental 

specimen. Testing procedures, as well as equipment used, are discussed.  

- Chapter 5 shows the results from the experimental model for each damage 

feature and control statistic. The effectiveness of each statistic and damage 

feature pairing is analyzed. 
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- Chapter 6 includes a summary, conclusions and possible future work that can 

be dedicated to the subject of this thesis.  
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2. Development of Localized Damage Detection Algorithm 

2.1 Introduction 

As stated, there are many different parameters that can be used as damage sensitive 

features in control charts. These parameters should be sensitive to the changing properties 

of a structure in the event of damage. For example, Ghosh et al. (2006) uses the ratio 

between two different univariate linear regression coefficients while Lou et al. (2004) 

presents a novel time-series model in the form of a prediction model of auto-regressive 

with exogenous input. In this case, the standard deviation of the residual error is found to 

be the damage sensitive feature. Additionally, many researchers have used different 

methods for estimating these damage features. In order to find and use dynamic 

characteristics of a structure as damage features, Huang (2001) proposes a procedure that 

uses the ARV model for numerical simulations of a six-story shear building subjected to 

white-noise and low-pass filtered white-noise input. Similarly, He et al. (1997) uses M-

ARMA and M-AR(P) models to find the modal parameters of a water transmission tower. 

Furthermore, Hung et al. (2004) identifies modal parameters from measured input and 

output data using a vector backward auto-regressive with exogenous model.  

The damage features studied in this thesis come from linear regression coefficients 

produced by an algorithm called Influenced-based Damage Detection Algorithm (IDDA) 

developed by Dorvash et al. (2012). These damage features are shown to be effective 

ways of detecting damage in a structure because they are sensitive to the changing 

properties of a structure. It is essential in structural damage detection that the features 

used in the model reflect a unique pattern to the state of the structure (Qiao et al. 2012). 

This algorithm correlates the response of a structure at various locations by creating 
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influence coefficients from linear regression models based on output of a dense sensor 

network. When damage occurs, the relationship between responses at different locations 

changes, which will be reflected in the parameters and indicate the existence of damage. 

The position of damage can then be identified by correlating the location of each sensor 

to the damage feature.  

 

2.2 Structural Behavior 

2.2.1 Linear Behavior 

A realistic scenario for implementation of the damage detection algorithm on real-

life structures is to collect the ambient response of the structure before and after a 

catastrophic event. The algorithm introduced is only suitable for a linear damage defined 

by Doebling et al. 1998 as “the case when the initially linear-elastic structure remains 

linear-elastic after damage”. Thus, it is acceptable to assume that the behavior of the 

structure is within the linear elastic range in which small angle theory applies which 

corresponds to negligible rotations (Dorvash et al. 2012). It is then also valid to use linear 

regression methods to model the behavior of the experimental model. 

 

2.2 Linear Regression Parameters as Damage Indicators 

2.2.1 Single Regression Model 

The simplest linear regression is the single variate model. It relates the response of 

one location to another location at the current time step. This version of the model can be 

represented using Eq. (2.2) below. 
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                                                (2.2) 

Which correlates the response at node   to current response at node   through   at 

time step n with intercept   and residual  . Since the effects of previous time steps are 

removed from the equation, the intercept ( ) is added into Eq. (2.2) to account for the 

initial conditions. To verify the accuracy of the estimated coefficient, evaluation accuracy 

(EA) and estimation error parameter (γ) are used. These parameters ensure that the 

influence coefficients are correctly reflecting the properties of the frame. They are 

derived in Labuz 2011. 

EAij is defined as the product of influence coefficients αij and αji as: 

EAij =                                                 (2.3) 

The influence coefficient for location j regressed onto location i should be the reciprocal 

of the influence coefficient i regressed onto j if there is minimal residuals and a zero 

intercept.  Therefore, a value for their product close to unity signifies a strong accuracy of 

estimation and a product of less than unity corresponds to progressively higher values of 

the noise and nonlinear behavior of the physical structure.  

The normalized estimation error,      can be calculated by: 

 

    
    

   
                                  (2.4) 

As noted above, αij is the influence coefficient between nodes i and j, and      
 is the 

standard error of the influence coefficient estimates.     
 is estimated by Eq. (2.5): 

                                                             
 

  

 ∑  
  

                             (2.5) 
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Here,    is the standard error of the estimation residuals, (i.e. the standard deviation 

of the vector was obtained by subtraction of the estimated response from the true 

response) and yi is the response at node i which is regressed with respect to the response 

at node j (yj). Considering that the response has a zero mean, the denominator of Eq. (2.5) 

is simply the standard deviation of the response at node i. This equation is utilized to 

show that a low standard deviation of the influence coefficients, which corresponds to a 

more accurate estimate, produces a low estimation error. Hence, the closer     is to zero, 

the less error is associated with the estimated damage indicator     (Labuz 2011). 

The derivation and validation of this simplified mathematical model can be found in 

Dorvash et al. (2010) on a small scale beam-column connection. One of the focuses of 

this thesis is enhancing IDDA with the use of a larger structural system as opposed to a 

structural component. Additionally, since this damage feature has already been proven to 

detect and localize damage, it is used as a basis for comparison and derivation of the 

proceeding damage features discussed in this section. 

 

2.2.2 Auto Regression 

The single variate regression can be expanded to include past and present time steps. 

It is suspected that more information about the system can be included in this way by 

including dynamic effects. This Auto Regressive with Exogenous term (ARX) model can 

be written as: 

           ∑         ∑            
          

                           (2.6)   

where yj and yi are outputs at locations j and i respectively,    ’s are ARX coefficients, 

     represents the residuals,   is the time index, and   and   are orders of the 
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autoregressive and exogenous parts of  the ARX model, respectively. Derivation and 

validation of this formulation can be found in Yao et al. (2012). These damage features 

are similar to those found in literature. Sohn et al. (2001) and Yao and Pakzad (2010) also 

use a similar AR and ARX model for feature extraction and pattern recognition.  

Similarly, Qiao and Esmaeily (2011) use an ARX regression model for time-history 

damage features. 

This ARX model can be simplified to include just one location on a structure. In 

effect, this regression may produce more localized results if only one location is involved 

in the model. Response relationships at one location throughout time can be established 

using an Auto Regressive model as: 

      ∑           
                                (2.7) 

In this formulation, yj  ̅                      is the output at location j,   ’s are 

AR coefficients,       ̅   represents the residuals,   is the time index, and   is the order 

of the autoregressive parts of  the AR model. The Yule Walker method is used to produce 

these AR coefficients. This method multiples the linear equation by yj −k−1, k being the 

time lag. Then the expectance is found and the results are normalized to form a square 

coefficient matrix with full rank and symmetry so that the inverse can be found.  

The model order of the AR and ARX models must be determined before the linear 

regression parameters can effectively be used in damage control charts. The accuracy of 

the two regression models is dependent on the selected model order based on the raw data 

from the localized sensor networks. While higher model orders, in general, deliver more 

details of the system and reduce the estimation bias, it is always desired to keep the order 

at the minimum level to avoid over-parameterization. One way to establish the model 
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order is to minimize the Akaike’s Information Criterion (AIC) which is used in 

Friedlander et al. (1984) and Figueriedo et al. (2011). And defined in Bozdogan (1987)  

as, 

                ̂                              (2.8) 

In Eq. (2.8), k is the number of parameters in the statistical model and  ̂  is the 

maximized value of the likelihood function.  

 

2.3 Tri-variate Regression Model 

The single regression model can then be modified even further to generate the tri-

variate model. This model is used to correlate the response of three different locations at 

the current time step. It can be written as  

         
 
          

                   (2.9) 

In this formulation, yj, yk and yi are the outputs at the three locations involved in the 

regression. The α’s are tri-variate coefficients, with      representing the intercept and  

     representing the residuals. It will be shown later that this model is not robust to 

noise levels and may over parameterize the system. Therefore a different model, collinear 

regression, is presented in the next section as a different method for comparing three 

different locations within one regression model.  

 

2.3.1 Collinear Regression Model 

Another way to involve three different locations is to modify the single regression 

model even further to generate the collinear regression model. In order to correlate three 

locations on a specimen without over parameterizing the system, collinear regression can 
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be used in which the definition of the regressors is changed. There are many different 

types of regressors that can be used in collinear regression models. For this 

implementation    in Eq. (2.2) is changed to the average of two outputs. In effect, the 

mathematical model would be calculated from Eq. (2.10) below.  

       
       

 
                                  (2.10) 

Here, an additional location’s response output,   , can be included to create the new 

coefficient      . The effectiveness of collinear regression linear regression parameters is 

analyzed and compared to the other regression model parameters presented above.  

 

2.3.2 The Damage Features 

There are three main types of features that are analyzed. Two are used to test the null 

hypothesis that the mean of two populations are equal; the other is used to test the null 

hypothesis that the variance of two populations is equal. The first of these is the influence 

coefficient,  , obtained from  all of the regression methods discussed above. This will be 

called the Alpha Coefficient. The second is called the Angle Coefficient. This coefficient 

does not capture the slope of a linearly regressed line as   does, but it measures the angle 

between two different lines. In other words, for damage detection methods, instead of 

measuring the difference in slope between a healthy state linearly regressed line and an 

unknown-state-line of a structure, the angle between the two lines can be compared to 

detect change as well. In effect, the Angle Coefficient can be written as  

                 |
    

‖ ‖‖  ‖
|=     |

     

√    √     
|                                     (2.11) 
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Here   and    correspond to a vector          for an undamaged state and an unknown 

state respectively. In this formulation,   is the respective influence coefficient from the 

linear regression models. For single and collinear regression models,   will be a scalar 

value. However, in AR and ARX regression models, the linear regression parameter is 

actually a set of coefficients. Hence,                   
 . Here, p is the model 

order chosen using the AIC parameter. These two coefficients, α and Γ, can be tested for 

a change in their mean.  

However, the variance will be affected in the third feature, the residuals from all the 

linear regression models. The mean of these features is deemed to be zero and unchanged 

with damage; however, their variance can change because of a damaging event. The 

residuals are found by convolving the coefficients of an undamaged state with the data 

collected from the unknown, or damaged state of the structure, and the coefficients from 

the damaged state with the data collected from the undamaged state of the structure. 

 Because the alpha and angle coefficient’s mean can change in a damaging event 

while the residual’s variance change in a damaging event, these damage features lend 

themselves to different control statistics. The next chapter will discuss some control 

statistics are used to measure the change in the mean of a process and some are more 

sensitive to the change in variance of a process; hence, they are paired with the 

appropriate damage feature.  
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3. Statistical Framework of Control Charts 

3.1 Introduction and Background 

Control statistics can be used to monitor a change in a process. However, there are two 

causes of variation that could occur in a process: common causes and assignable causes. 

For instance, in civil engineering, a structure’s properties could change slightly with 

passage of time (common causes) and is not damaged, or a structure could be damaged 

during an event (assignable cause). In order to distinguish between the two, control charts 

can be used to provide boundary limits for detecting a change in a process. Once the 

boundary is crossed, the change in the process can be denoted as out of control from an 

assignable cause and, in the case of civil engineering, a structure can be deemed 

damaged.  

Literature presents several different types of control statistics that can be used for 

change point detection in different processes. Univariate and multivariate statistics can be 

used to detect a single change or multiple changes in the mean or variance of the data 

(Amiri et al. 2011). As an early effort in this area, the standard univariate Shewhart  ̅ 

control chart was introduced in 1924 by Walter Shewhart as simple tools to be used by 

workers in production lines (Wilcox 2003). Since then, control schemes have found 

widespread application in different disciplines including civil engineering. For example, 

in order to quantitatively address the uncertainty in measured response data, Sohn et al. 

(2000) applied Shewhart control charts to auto regressive coefficients and successfully 

detected the irregularities associated with damaged structures. Other control statistics 

have since been introduced.  
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Challenges in univariate quality control occur when one observes a set of quality 

characteristics that have components with the potential to be interrelated. One major flaw 

in using the mentioned univariate control statistics is that they can only monitor one 

variable at a time. It is common in civil engineering that more than one variable would 

need to be examined. Although it could be argued that univariate control charts could be 

applied independently to each component of the multivariate data, misleading results may 

be obtained in some cases due to failure to allow for the inherent relationship among the 

components of the multivariate data (Zamba and Hawkins 2006). Therefore, this thesis 

also explores multivariate control statistics.  

This thesis aims to provide a better understanding of the performance of different 

change point detection methods in civil engineering damage detection through 

implementation and validation of different approaches. A flow chart of the certain 

damage features that can be utilized in the specific control charts is shown in Figure 3.1. 

 

3.2 Exponentially Weighted Moving Average (EWMA) 

First introduced by Roberts (1959), the Exponentially Weighted Moving Average 

(EWMA) is easy to implement and interpret and has optimal properties in forecasting and 

control applications; yet, only recently has its value in other detection schemes been 

recognized. Lucas and Saccuci (1990) used and enhanced this statistic in order to 

compare it to the CUMSUM statistic. Steiner (1999) used EWMA statistics because of its 

ability to detect small persistent process shifts and advanced its use by producing time-

varying control limits. Additionally, Macgregor and Harris (1990) identified two uses of 

the invariant EWMA statistic.  
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The EWMA statistic ( ) is an exponentially weighted average of all previous 

observations shown in Eq. (3.1): 

 

                              0<λ<1                      (3.1) 

where    are components of the data set and typical values of λ are between .05 and .25 

for quality monitoring techniques.  This statistic is used with upper control limits and 

lower control limits to create a threshold of change. The control limits that are pre-

derived for this statistic from Lucas and Saccuci (1990) are based on the asymptotic 

standard deviation of the control statistics as   

                                          (3.2) 

where σ is the standard deviation of all of the   ’s, µ is the mean, and L is the factor of 

standard deviations away from the mean. In practice, Shewhart control limits are 

designed to limit the acceptable range of values within three standard deviations of the 

mean (Lucas et al. 1990). This value correlates the point in a standard normal distribution 

plot (of mean zero and standard deviation of one) in which 99.7% of the area under the 

curve is included. It will be shown in Chapter 5.1.1 that this control limit does not suit all 

data. Therefore, bootstrapping will be used for comparison of the EWMA statistic with 

some of the control statistics discussed that do not have previously specified thresholds. 

 

3.3 Cumulative Sum 

The Cumulative Sum (CUSUM) statistic is one approach which is commonly used for 

detecting change points in data sets. It is a very flexible method which can be applied to 

different types of data (Lucas et al. 1990). The Cumulative Sum (CUSUM) indicator, was 
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used by Taylor (2011) in analyzing change in U.S. trade data in order to see if and when a 

trade deficit occurred during the late 1980s. The CUSUM indicator is optimal in 

detecting shifts in the mean, yet Hawkins (1981) advanced its use for monitoring a 

process’ variance. 

All historic data is used to create the statistic meaning each value of the plot is a 

function of all previous values. In this study, it is implemented in damage detection 

schemes to distinguish if there is a change between an undamaged data set and an 

unknown data set. The cumulative sums S0, S1, S2… Sn can be calculated by the 

following equations where X1, X2… Xn are the components of the data set (Taylor 2011). 

                                                                  (3.3) 

                         ̅                                                                    (3.4) 

 where,   ̅ is the mean of all the known in control data. Shown in Eq. (3.4), the 

cumulative sums are not simply sums, but the sums of the differences between the values 

of data and the average of the data.  For this reason, it should start at zero and eventually 

make its way back down to zero. A segment of the CUSUM chart with an upward slope 

indicates a period where the values tend to be above the overall average. Similarly, a 

segment with a downward slope indicates a period of time when the values tend to be 

lower than the average.  It is based on the theory that as each consecutive data point is 

added into the cumulative sum, the distance to the average should be relatively small and 

forever monotonic to the actual average if there is no significant change in the data set. 

Therefore, in a damage detection scheme, a drastic change in the slope, or inflection 

point, indicates a possible damaged state of the structure. In the case where two segments 

of data are considered from a pre and post-damaging event, there should only be one 



21 

 

change point in the data: when the data switches from an undamaged set to a damaged 

set. This change point would occur where the magnitude of the CUSUM chart was 

furthest away from zero and is called the Cumulative Sum Indicator. This indicator can 

then be investigated by comparing it to threshold conditions in order to verify the state of 

the structure.  

 

3.4 Mean Square Error Indicator 

Taylor (2011) introduces the Mean Square Error (MSE) indicator, to analyze the U.S. 

trade deficit data in order to synchronize the results with the CUSUM. It is a scheme that 

splits the data into two segments, from one to m and m+1 to n (       ). This 

procedure of splitting the data in this way will be referred to as Procedure 1 in this thesis. 

The data is then analyzed to see how well it fits the two estimated averages of those 

segments (Taylor 2011). This is based on the idea that if successive values in a vector are 

close in magnitude to one another, they will also be close to the average of themselves. 

However, if successive values are not close to each other, some of them will be much 

further away from the mean than others and the value of MSE, or distance to the mean, 

will be larger. As a result, this method groups the coefficients that are closest to each 

other and their mean. In this respect, the point m+1 indicates the first point after the value 

that minimizes MSE, a possible change point in the data. MSE can be defined as: 

       ∑        
  

   +  ∑        
  

                      (3.5) 

             
∑   

 
    

 
    and            

∑   
 
     

   
                   (3.6) 

where    is a member of the data set and    and    are the means of the two segments of 

the data. The MSE is dependent on the variability within the data, which will be shown in 
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Chapter 5.1.3. Consequently, the statistic must be modified to expunge the variance 

between the two data segments produced while still maintaining their independent means. 

Therefore, a new statistic, ModMSE is introduced as:  

            ∑  
     

             
    

    +  ∑  
     

               
   

                     (3.7) 

where variables are defined the same as in Eq. (3.7); however, the value is normalized by 

the variance (i.e. std(Xk
2
)) of the two independent vectors. Results for the verification of 

this statistic are shown in Chapter 5.1.3. It is noted the statistic starts at the second value 

in the vector in order to avoid using the standard deviation of a single number which 

would produce numerical instability.  

 

3.5 Bootstrapping for Threshold Construction 

Bootstrapping is used to create a threshold for the three univariate control statistics 

discussed above. It creates multiple iterations of new data generated by randomly 

resampling the original data with replacement. Since these new data vectors are randomly 

sampled, the properties of the statistic they create will have similar properties to an 

undamaged data set and therefore can be used as a basis for comparison. It is common in 

practice to create at least 1000 bootstraps for comparison (Taylor 2011). Damage 

detection methods try to statistically prove that a significant change has occurred in a data 

set. Once a statistic crosses the threshold bounds produced by the bootstrap, the change in 

the data can be deemed from an assignable cause and the properties of the system have 

changed significantly to become out of control. In damage detection schemes, this means 

damage has occurred.   
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The confidence level produced by the bootstraps depends on the amount of bootstraps 

produced. This threshold can be defined in Eq. (3.8) as: 

                  
 

 
  

                                

                                      
                             (3.8) 

In this equation Sdiffzero is the difference between the maximum and minimum value of 

each bootstrapped data set, Sdiff is the range of the original data, N is the number of 

bootstrap samples performed and X the number of bootstraps for which Sdiffzero was less 

than the original Sdiff of the data. A confidence level calculates the degree of certainty to 

which a change has occurred in the data. 

 

3.6 Mahalanobis Distance using the T
2
 Statistic and Fisher Criterion 

The original and best known work in multivariate control charts are those described 

in Hotelling (1947), using the T
2
 statistic. This statistic is a direct multivariate equivalent 

to the Shewart  ̅ control statistic and is used to create Mahalanobis distances which 

extract damage features by measuring the amount of variation from a reference condition. 

This method uses two assumptions: the samples are taken from a population that has a 

multivariate normal distribution, and that successive samples are independent over time.  

Zamba and Hawkins (2012) use these distances in their work, in which the quality of a 

smelter feed in an aluminum smelting process is checked, to analyze change in the mean 

vector and compare the results of univariate and multivariate methods. Wang and Ong 

(2012) use Hotelling T
2
 to detect damage using simulated data on a progressively 

damaged reinforced concrete frame subjected to lateral loading. Pompe and Feelders 

(1997) used the Mahalanobis distance in order to determine the significance of the 

change in their selection criterion. Gul and Catbas (2009) use autoregressive models in 
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conjunction with a Mahalanobis distance-based outlier detection algorithm when 

implementing structural damage detection in a laboratory simply supported beam and 

highly redundant steel grid structure. In order to alleviate the need for initiating 

assumptions, Verdier and Ferreira (2010) propose another distance that is nonparametric. 

This new distance can be applied without the postulation of normal probability 

distribution and is used for fault detection in semiconductor manufacturing.  

When significant changes in more than one variable are to be identified, multivariable 

models are applicable. As a measure for quantification of changes, assume that there is a 

matrix of damage indices associated with a certain condition and a certain location on the 

structure. The Mahalanobis distance gives the distance between selected damage features 

corresponding to a condition of interest and those corresponding to a reference condition. 

It is used in autoregressive techniques because it is a multivariate potential outlier method 

that correlates all the damage indices with a certain location.  

Zamba and Hawkins (2012) explain that many different scenarios can exist when 

using this statistic:  the mean vector could change from µ to µ1 while the covariance 

structure remains unchanged; the covariance structure could be perturbed from Σ to Σ1; 

both the mean and covariance could have a step change; one or both of these parameters 

could drift; and lastly, the distribution could change (for example, from normal to some 

other forms). In this study, structural damage detection cases are considered in which the 

feature mean undergoes a step change but the covariance remains unchanged. This does 

in fact represent the realistic condition when a property of the structure is changed due to 

damage because the change does not affect the estimation uncertainty of the damage 

feature. To unify all of the localized damage features, the covariance of damage feature 
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matrix is taken into account. Without using the covariance matrix, the distance would 

ignore the possibility of correlated sets of multivariate measurements that usually form 

and compromise the superior performance of multivariate methods (Zamba and Hawkins 

2012).  

The Mahalanobis distance Dm(x) can be computed by using Eq. (3.9) from Mosavi et 

al. (2011): 

      √                                    (3.9) 

where   is the mean of the damage feature x, and S is the covariance. In detection 

schemes, a larger Mahalanobis distance indicates that the location is closer to damage.  

While a Mahalanobis distance, Dm(x), reflects the changes in a set of damage 

indices, a criterion is needed to statistically investigate the significance of this change. To 

address this need, the Fisher Criterion can be utilized (Mosavi et al. 2012). The Fisher 

Criterion measures the actual deviation of Mahalanobis distance under the damage 

condition of interest versus those for the healthy condition. Mosavi et al. (2011) used the 

Fisher Criterion on a two span continuous steel beam to detect damage in the structure. 

Damage is simulated on an idealized steel bridge frame using saw cuts in the bottom 

flange. This criterion,  , can be obtained using Eq. (3.10): 

  
        

  
    

                   (3.10) 

where    and    correspond to the mean values of the Mahalanobis distances for 

healthy and damaged conditions, and           represent the standard deviations of 

those vectors, respectively. This statistic is calculated for all of the sensor parings on a 

structure and is the largest for locations closest to the damage. A threshold value of T = 

        is used. Here,   and   are the mean value and standard deviation of the Fisher 
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Criterion statistic from all of the locations on the structure. This threshold is chosen 

because 95% of the area under a normal curve lies within 1.96 standard deviations of 

the mean (Mosavi et al. 2011). 

 

3.7 The Normalized Likelihood Ratio Test 

There are many types of Likelihood Ratio Tests. Srivastava and Worsley (1986) 

propose a form of the likelihood ratio test that is more effective in detecting a shift 

involving only the mean vector.  On the other hand, Zhang et al. 2009 presents a control 

chart used for detecting mean, along with variance, shifts. It, like the similar method 

proposed by Zhou et al. (2010), integrates the generalized likelihood ratio test and the 

exponentially weighted average statistic. Both of these studies use Average Run Length 

(ARL) to compare the effectiveness of the proposed control charts and are variations of 

an ELRT chart. On the other hand, Zou et al. (2006) presents a control chart based on 

change-point models for monitoring linear profiles and names the proposed method the 

standardized likelihood ratio test.  Additionally, Hawkins et al. 2012 proposes a variation 

of the GLRT.  For this thesis, a normalized ratio test from Sullivan et al. 1996 is used in 

which the population is tested for change in its mean or variance.  

The Normalized Likelihood Ratio test can detect a shift in the mean and/or variance 

of a data set. It assumes that there are m independent observations that are normally 

distributed with mean µ and standard deviation σ. If a process is in control, at any 

partition of the data, the two sets would have similar means and variances. However, if 

there was a change in the process, the means and variances of the two subgroups would 
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vary substantially from one another. The objective of using a control chart is to find the 

significance of this variation by creating a confidence bound for comparison. 

The log of the likelihood function for the first m1 observations can be written as 
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Here,   ̅̅̅ and   ̂
 
, represent the mean and variance of the first m1 observations;    

represents the variance of all n observations. This function can be maximized to generate 

l1 presented below. 
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                             ( 3.12) 

This procedure can be repeated for the remaining            observations to 

create the maximum likelihood function, l2. In this way of partitioning the process into 

m1 and m2, there is an assumption that there is a change in the data at point m1+1. 

However, if this were not the case and the process was in control for all m observations, 

the likelihood function would be maximized using  ̅ and   ̂, the mean and variance of 

the entire set of observations. This would generate lo, the maximum of the likelihood 

function for an assumed in control process (Sullivan et al. 1996). This procedure of 

splitting the data in this way is the same as Procedure 1. The data points are split from 1 

to m1 and m1+1 to n and the likelihood function is maximized for each split. 

If la, the sum of l1 and l2, is much larger than lo, the process is deemed to be out of 

control. For this reason, the likelihood ratio test detects the significance of the difference 

between the two. It is defined as                      and has an asymptotic chi-

squared distribution (  ) with two degrees of freedom.  

This statistic is normalized to create the NLRT with a threshold value of unity. In 

damage detection schemes, any value of the likelihood ratio for a damage feature that is 
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above one represents an out of control feature. This can then be correlated to a location 

on a structure if the damage feature originated from data taken from a localized sensor 

network. In order to normalize the statistic, it is divided by its expected value (E), based 

on the dimensionality of the observations, p, and an upper control limit based on a 

desired overall in-control false alarm probability ω. As explained in Sullivan et al. 

(1996), the in control expected value is not the same for all values of m1. If m1 and m2 are 

small, the expected value is larger than when both are the same. Therefore, if the model 

order is 1, the expected value can be approximated by simulation or  

   [
       

            
  ]                        (3.13) 

This value will change as m1 and m2 change. If the model order were to be greater than 

one, the approximated expected value follows three different best fit lines. If m1<p+1, E 

follows the first equation in Eq. (3.14). If (m-m1) <p+1, E follows the second equation in 

Eq. (3.14). Otherwise, E will follow the last equation in Eq. (3.14).  

              or                      or       
      

              
 (3.14) 

In all three cases, the expected value is then calculated using Eq. (3.15). 

                           (3.15) 

Derivation of this formulation can be found in Sullivan et al. (1999) for which the values 

of m1 from two to p, fit a linear estimation. The line takes the shape of slope and 

intercept: 

   
                         

   
                         

              

   
          (3.16) 
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The statistic is also normalized using an upper control limit. It is usually set to give a 

specified in control average run length. Based on m and p, the upper control limit can be 

approximated. Its value has been tabulated in Sullivan et al. (1996) using Eq. (3.17): 

    
 

   
         

 

 
              (3.17) 

Here k* is the best fit number of independent variables and F is the CDF of the    

distribution.  In situations where the damage feature is scalar, the NLRT can directly be 

used on the feature itself. However, in cases where the damage feature is a matrix with 

dimensionality greater than one, the features are first condensed using the Mahalanobis 

distance and then used in the NLRT statistic.  

 

3.8 t – Distribution Tests 

The t-distribution is similar to the normal distribution in that it is symmetric about 

zero and bell shaped. Its main difference from the normal distribution is in the tails.  A 

larger degree of freedom creates smaller tails and therefore the distribution is closer to the 

normal distribution. A statistic can be generated that should have a t-distribution and then 

tested to determine if it does fit the t-distribution. Because the statistic generated is to 

have a t-distribution, its peak should be in the center. If the statistic falls outside of the 

threshold boundary, it will be at this center point. Therefore, in structural health 

monitoring schemes, the timing of damage cannot be indicated using a t-test. It is only 

the magnitude of the maximum point that will be used to determine if damage has 

occurred. If the statistic falls outside the range of the threshold created at its midpoint, the 

null hypothesis is rejected and it is concluded that the population means are different. If 

the statistic stays within the threshold bounds, the null hypothesis is neither rejected nor 
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accepted; all that can be concluded is that it is not rejected. The Satterthwaite-Welch 

method is used with the assumption that the variance of the two populations is unknown 

and unequal. Rossi uses this type of t-test as a solution to the Behrens-Fisher problem to 

confidence bounds. For this thesis, we will use the well-known and trusted Student’s t-

test, and another statistic with the t-distribution generated Pakzad (2008), and used by 

Labuz (2011), here called a Bayesian hypothesis test.  

 

3.8.1 Student’s t-test 

The Two-sample t-test is a form of statistical hypothesis testing to distinguish 

significant differences in measurements. Montegomery et al. (1987) shows the 

applicability of the t-test for detecting trends in water quality variables. Additionally, 

Limentani et al. 2005 shows the advantages to the two one-side t test and two-sample t-

test. The t-test is a very common procedure for testing the differences between the means 

of two samples with normal distribution and length M. It has been used to statistically 

show the correlation between the mean of two sets of data. Hawkins and Zamba et al. 

2013 uses the t-test in conjunction with the GLRT in order to distinguish between a shift 

in the mean and the variance in a gold mining quality control example.  

There are three assumptions that the Student’s t-test follows: 1) samples come from a 

parent population that is normally distributed, 2) the two sample groups have equal 

variances with N-2 degrees of freedom (N being the combined length of the two vectors, 

   3) sample observations are independent. It is given by 

   
   ̅

  √
 

  
 

 

  

     (3.18) 
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Where X is the grouped population,  ̅ is the mean and n1 and n2 are the size of each 

population. The variable    is the pooled variance defined by: 

   √
        

          
 

       
                             (3.19) 

Here S1 and S2 are the standard deviation of each population and the degrees of freedom 

are equal to         . This is the approximate t-test for a change in the mean using 

the Student’s t method. This method, used for cases in which the variance is assumed to 

be unchanged, can be used with linear regression parameters. This is because it represents 

the realistic condition when a property of the structure is changed due to damage: the 

change does not affect the estimation uncertainty of the damage feature and therefore the 

variance remains unchanged. Control limits are calculated using the Student's t inverse 

cumulative distribution function, k, at a certain confidence level and degree of freedom. 

This k value is then used to create the upper and lower control limits using Eq. (3.20). 

The confidence level can be user defined and ranges from 0 to 1.  

      ̅   ̅    

                                                             ̅   ̅                           (3.20) 

Here,  ̅ and  ̅ are the means of the two populations being considered. In effect, the 

bounds represent the acceptable spread in the difference of the two means of the two 

populations.  

 

3.8.2 Bayesian Hypothesis Testing 

Bayesian Hypothesis Testing is a type of control chart that was previously used in 

Labuz 2011 to verify the use of linear regression influence coefficients from a simple 

beam column connection with harmonic excitation for damage detection. For this thesis, 
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it is used to verify the use of linear regression influence coefficients from a more 

complex structure with impact excitation for damage detection. It is also used to prove 

whether the tri-variate linear regression influence coefficients are valid representations of 

the frame properties and should not be used in damage detection schemes. It is a change 

point detection tool that, like the Student’s t-test measures the variation in the mean of a 

population. It is very similar to the Student’s t-test in its formulation but its application is 

a little different. It tests the hypothesis that the mean of the population for each 

successive index is equal to the mean of the entire set of N values 

                   ̅               (3.21) 

against the one-sided alternative that the mean of the population after a certain change 

point, denoted as k, is greater than the mean prior to k by a significant amount. 

                                               (3.22) 

The change point and mean of the population are all unknown values. Because the 

standard deviation is unknown, it is estimated as  ̂. The statistic can be written as 

  
  

 ̂√
            

 

                 (3.23) 

Where    is the Bayesian statistic  

   ∑         ̅    
   .               (3.24) 

The test statistic has a t-distribution with N-2 degrees of freedom. The hypothesis are 

tested at a 90% confidence level. The value of the CDF is found at 90% with N-2 degrees 

of freedom and its positive and negative value (because a t-distribution is symmetric, the 

value of the CDF at 90% and 10% are equal) is plotted with the statistic itself to create 

the upper and lower control limits respectively. If the statistic remains inside the 
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confidence bound, one can say that the properties have not changed; however, if it 

crosses the bounds, one cannot say that the properties have not changed. 

 To implement this statistic a baseline population is used to create the statistic. Then 

each index is added to the population one by one and the statistic is generated for that 

index. As shown in Eq. the Bayesian statistic is multiplied by the index i. This will have a 

drastic effect on its magnitude if the process becomes out of control. In effect, as each 

index of the feature is added into the statistic, it will have more of an effect on the 

magnitude of the statistic. If        ̅  is not large, multiplying it by i will not have a 

major effect on the magnitude of the statistic. However, if        ̅  is large, 

multiplying it by i will have an exponential effect on the magnitude of the statistic.  

 

3.9  Moving Range  

The moving range control chart will be used to determine the difference in variance 

of the regression residuals. This chart is used because it is a known and trusted method 

that has been used in many applications. Radson shows the behavior of the moving range 

statistic in the presence of autocorrelation. Additionally, Marks et al. (2009) as well as 

Amin et al. (1998), evaluates the design of the moving range chart along with the 

individuals control chart.  

It is sensitive to changes in variability of a data set and is used for a control chart of 

the linear regression residuals. The Moving Range (MR) statistic is calculated below as: 

                        (3.25) 

The  ’s in Eq. (3.22) refer to members of the data. As shown, the moving range is simply 

the difference between consecutive points. Each point on a moving range plot is only 
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affected by      and   . Splitting the data in this way will be referred to as Procedure 2.  

The process can be deemed as out of control when the process reaches a control 

threshold. There are two questions that should be answered upon choosing a threshold 

value. One is how often will there be false alarms; two is how quickly a change will be 

detected. There are many different means of computing a control limit for a desired in 

control threshold. For this implementation, an upper control limit (UCL) and lower 

control limit (LCL) are defined in Eq. (3.26) below.  

          ̅̅̅̅̅  and                                       (3.26) 

Here,   ̅̅̅̅̅ is the average of all moving range statistics and 4.65 is chosen as an in control 

multiplier for the desired average run length. The average run length is defined as the 

number, on average, of how many successive plots will be generated before a point is 

detected beyond the control limits.   

 

3.10  F-Test 

The t-test monitors the change in the mean of a population by using the t-distribution 

function. Similarly, the F-test distinguishes between the variances of two populations 

using the F-distribution function. It is used here to be compared to the well-known 

Moving Range control chart. Similar to Rossi, Kabaila uses the F Test for the solution to 

the Behren-Fisher problem. Diaz et al. (1998) uses the F test for data with the Weiner 

Stochastic process pattern in the covariance matrix. However, for this thesis, the F-test 

will be used to determine the significance of the difference between variances of linear 

regression residuals.  



35 

 

The F test is used to test for a change in variance because it is sensitive to non-

normality.  The F distribution is zero for [-∞, 0], the total area under the curve is 1 and 

the curve as a value of zero at x=0. It is positive for x>0 and extends infinitely to the right 

to then approach zero as x goes to infinity. It is asymmetric, or right-skewed, so that its 

CDF will have a peak to the right of zero. If the populations used have multiple 

dimensions, a test statistic is generated having an F distribution. For this reason, similar 

to the t-test, if the statistic generated by the F-test is to have a F-distribution, the timing of 

damage in structural health monitoring schemes cannot be indicated using the F-test. The 

plot will have its maximum value at an index depending on the F-distribution, not 

depending on the timing of the damaging event.  In effect, only the magnitude of the 

maximum point will be used to determine if the structure is indeed damaged. The F-test 

uses the CDF of the F-distribution to create a confidence bound for the statistic. The null 

hypothesis of the test is that the variances of the two populations are in fact equal. If the 

statistic crosses the confidence bound, the null hypothesis can be rejected. If the statistic 

does not cross the confidence bound, the null hypothesis is not rejected but it is also not 

necessarily accepted. For this implementation, the F Test is utilized with the regression 

errors from the linear regression models because the mean is zero yet the variance may 

change after a damaging event. The test statistic is given as 

       
  

 

  
                                           (3.27) 

Here   
  and   

  are the variances of the two populations in question. The closer F is to 

unity, the less likely the null hypothesis is rejected. A confidence interval is found using 

the inverse of the F function with numerator and denominator degrees of freedom equal 

to one less than the size of each population (Fα,df1,df2). Standardly, α is the confidence 
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level and df1 and df2 are the degrees of freedom of the numerator and denominator 

respectively.  

 

3.11  Graphical User Interface (GUI) 

A Graphical User Interface was produced in order to make the investigations in this 

thesis accessible to other researchers. Two different GUIs can be generated. One for 

generating the damage features in Chapter 2, and another for producing the control charts 

described above in Chapter 3. At this current time, only the second GUI has been created. 

The first GUI can be included in the future work in this area of study. Because many 

control charts are used in industrial settings, these GUIs could be used by researchers in 

other industries who are monitoring a process or wanting to create property sensitive 

features.  

Upon entering the first GUI the user would be asked to input the raw data. This data 

can be any response data taken from a structure or industrial process. Each column 

should be a different sensor location’s response (as in structural health monitoring) or a 

different characteristic that is being monitored. Once the data is loaded, it can be graphed 

to easily view inconsistencies. This preprocessing check allows the researcher to find 

invalid data such as data that would be taken from broken sensors. After the data is 

checked, it can be used in the different regression models discussed in Chapter 2. 

Additionally, the user should be able to choose which feature he/she wants to generate 

(whether it is the alpha coefficient, angle coefficient, or residuals). Upon creating these 

indicators, the user can export the results to MatLab or continue onto the second GUI. 



37 

 

This second GUI can be used to create control statistics and produce the control 

charts. A layout of the initial screen is shown in Figure 3.2. The user may have their own 

feature to use in the control schemes and therefore this GUI is completely separate from 

the first one.  The user can choose different charts based on the type of data used. If the 

feature is a vector, having a dimensionality of one, the cumulative sum, exponentially 

weighted moving average, and mean square error, normalized likelihood ratio, t-test, 

Bayesian hypothesis test, Moving Range and F-test can be used. However, if the feature 

is a matrix, having dimensionality greater than one, the Mahalanobis distance, can be 

used to condense the feature in order to use it in any univariate scheme along with the 

fisher criterion. The charts that are available to the user would depend on whether the 

mean or the variance of the data set was being monitored. For example, the Moving 

Range and F-tests are used to monitor a change in the variance, the Normalized 

Likelihood Ratio test is used to monitor either the mean or the variance, and all the other 

methods are used to monitor a change in the mean. Addititonally, a feature is added so 

that if the user creates the CUSUM, MSE, or EWMA statistic and uses bootstrapping as 

the threshold generating method, he or she can choose to see the bootstraps or just see the 

minimum and maximum value. Once the charts are plotted and the title and axis labels 

are added, the user can save the figure as a “.fig” and then open it in MatLab.  
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Figure 3.1: Flow Chart of specified pairs of monitor parameter, damage feature and 

control chart 

 

 

 
 

Figure 3.2: Preliminary GUI set up for the second GUI for control Chart Analysis 
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4. Application to Two Bay Frame Test-bed 

4.1 Introduction 

To test the performance of the damage features, a simulated model of a two bay frame 

test bed was constructed using SAP2000. Additionally, a two-bay steel frame with the 

same physical properties was constructed at the laboratory of Advanced Technology for 

Large Structural Systems (ATLSS) at Lehigh University. The first three natural 

frequencies as well as vibration amplitudes due to random vibration are compared 

between the simulated model and experimental frame in order to achieve a model that 

correctly represents the response of the specimen and to verify the algorithm. Then, both 

models are used to create damage features using single variate regression model. The 

results are compared. Once the simulated model is updated and the algorithm is verified, 

the experimental frame can be used for damage detection and localization. 

 

4.2 Properties of the Structure 

 

The simulated and experimental models are both made of steel tube sections. A sketch of 

the structure is shown in Figure 4.1. In order to simulate damage, there are nine sections 

that can be changed throughout the frame.  These interchangeable sections are 0.19 m 

long shown in Figure 4.2 and have different cross sectional properties than the healthy 

state (shown in Table 4.1) which correspond to a 20% reduction in member moment of 

inertia (only for the length of the interchangeable piece).  It is important to note that these 

property changes only correspond to less than a 0.5% decrease in the overall stiffness of 

the frame when one piece is replaced at a time (the global lateral stiffness of the frame 
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reduces by up to this amount due to simulated damage at different locations). This change 

in stiffness may be insignificant on the global scale but may have a larger impact on the 

response of the structure locally. A small change in stiffness can be from a small crack, 

corrosion, or any other damage mode representing a loss in cross sectional area resulting 

in the loss of stiffness. Damage has been considered as such stiffness reduction in Farrar 

et al. (1999) and Nichols et al. (2003). The interchangeable sections could be used in 

order to test the effectiveness of the damage features and control charts discussed in 

Chapter 2 and 3 respectively.  

 

4.2.1 Assumption of Mass 

It is assumed that the mass of the structure undergoing univariate damage detection using 

this algorithm is negligible.  In this way, dynamic effects are not considered.  Pakzad 

(2008) and Chang (2010) have presented simulated examples that support this 

assumption reasoning that if the stiffness of a structure is much larger than the mass, then 

the influence of the mass term becomes negligible and the dynamic equation of motion 

can be reduced to a static one.  This is only valid, however, within a local joint where 

nodes are close to each other. Therefore, this thesis only creates damage features for 

nodes that are within the same local joint of the experimental structure.  

To consider the dynamic effects in the frame multivariate methods can be used. 

Two removable lumped masses (lifting weights) are attached to the frame at the middle 

of the spans. The weights are selected in the possible range of loads that such a frame 

would be subjected to. The stress in the two beam spans due to bending from the two 

lumped masses should not exceed 50ksi in order to maintain linear elastic properties, 
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assuring that the frame will not yield. Considering the smallest moment arm of the added 

mass and the moment of inertia of the steel tube section, the largest load that should be 

placed on the beams can be calculated using the simple stress calculation 

   
   

 
 

      

 
                                (4.1) 

Using this formulation the maximum load was found to be 1.74 kips. Therefore a load 

with a magnitude of less than ten percent of this maximum load was placed at midspan of 

both beams to ensure linear elastic behavior. It should be noted that the addition of the 

mass to the frame is limited to the tests where Auto Regressive and Auto Regressive with 

Exogenous term (multivariate) methods are applied. This is because single variate and 

collinear (univariate) methods are not proper for modeling the system with dynamic 

effects as validated above. 

 

4.3 Simulated Model 

In order to make sure that the model correctly portrays the response of the actual frame, 

the first three natural frequencies along with acceleration response amplitudes were 

compared. These features were chosen because they are of the most basic features of a 

structural system. The frequencies of the actual frame were found using the Structural 

Model Identification Toolbox for MATLAB. The acceleration response was found by 

exciting the frame with ambient vibrations and recording the response using sensors 

discussed in Chapter 4.4.3. The first three natural frequencies were found to be 13.66Hz, 

21.95Hz and 31.58Hz shown in Figure 4.3.  Additionally, two different locations on the 

frame were chosen for acceleration amplitude investigation, L4 and R4. These nodes are 

the closest to the beam and their responses are relatively large, 1.18g, for both sensors.  
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Initially, the simulation was modeled to have a fixed connection at the end of each 

column. However, the actual frame was bolted to the ground in the laboratory which did 

allow vibration to pass through the joint; hence, it was not completely fixed. Therefore, a 

fixed connection modeled in SAP2000 would not correctly represent the frame. It was 

assumed that because the three bases are bolted in the same manner, they would have the 

same support stiffness. Hence, connections were replaced with hinges and moment 

springs. From the results shown in Figure 4.4 it can be shown that the value of the first 

two frequencies gets closer to the actual value when the stiffness of the supports is 

reduced. However, they never reach the actual value. Therefore, more updating was 

necessary. 

Each interchangeable section has a moment connection, shown in Figure 4.2. These 

connections should not be modeled as completely fixed due to laboratory conditions. As a 

result, these features of the frame needed to be updated as well. However, not all of these 

connections could be assumed to be the same. Therefore, the stiffnesses were divided into 

four groups: the left beam, right beam, columns and supports. These rigid connections 

were replaced with hinges with moment springs and changed until the results converged. 

It is shown in Figure 4.5- Figure 4.7 that the first mode shape is mainly dependent on the 

vibration from the right beam, the second mode is dependent on the horizontal vibration 

of the columns, and the third mode is dependent on the left beam vibration response. The 

stiffness of each connection was modified and the results and error are shown in Table 

4.2. It is shown that the error is very minimal and the first three frequencies are correctly 

generated using the updated model. 
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Using this information, the acceleration responses were then used as convergence 

criteria. The accelerations responses of the updated simulated model were initially 

reviewed and shown in Table 4.3. Here is it shown that even though the first three natural 

frequencies are consistent with the experimental specimen (a conclusion from Table 4.2), 

the response accelerations were not similar to values obtained from the actual specimen. 

The error in Table 4.3 is too high to conclude that the simulated model is correctly 

portraying the properties of the experimental structure. Hence, it is shown in Figure 4.8 

that even though the springs on the column don’t have much effect on the natural 

frequencies, they do alter the acceleration amplitudes. Therefore, by changing the 

stiffness in the column connections, the percent error for the acceleration amplitudes was 

in an acceptable range shown in Table 4.4. More updating could be done using different 

convergence criteria; however, the results are in a tolerable percent error for the complete 

simulated model.  

 

4.4 Experimental Model 

A two-bay, steel tube frame testbed was constructed at the laboratory of Advanced 

Technology for Large Structural Systems (ATLSS) at Lehigh University for the 

implementation of the damage detection algorithm and the verification of the 

performance of different change point detection methods.  

 

4.4.1 Experimental Procedure 

To collect data, the specimen was instrumented with 21 wired accelerometers, labeled 

in Figure 4.1.for L, C, or R for left, center, and right sections of the frame. These sensors 
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were spaced throughout the two-span frame as shown. Initially, data was collected on a 

healthy frame for multiple test runs. Then, a damaged section was replaced and data was 

collected again. For all procedures, the amount of healthy state runs is the same as 

damaged, or so called unknown-state runs. In effect, a change point in the data should be 

found at the midpoint of the test samples. Additionally, damage should only be detected 

where the damaged piece was inserted and the healthy section was replaced. 

Additionally, as stated in Chapter 4.2.1, to consider the dynamic effects in the frame 

response two removable lumped masses (lifting weights) are attached to the frame at the 

middle of the spans. Therefore in multivariate methods discussed in this thesis there will 

be two sets of results for the two sets of data.   

 

4.4.2 Specifications of Excitation 

A realistic scenario for implementation of the damage detection algorithm on real-life 

structures is to collect the ambient response of the structure before and after a damaging 

event. Thus, it is acceptable to assume that the behavior of the structure is within the 

linear elastic range in which small angle theory applies (Dorvash et al. 2012). Hence, in 

this implementation of the damage detection algorithm on the laboratory specimen, the 

excitation amplitude of the laboratory specimen was limited as not to contradict this 

assumption. It should be noted that other forms of excitation can be used with this 

algorithm. This is shown in Dorvash et al. (2010) in which simulations are used to prove 

that theoretically, in a stiff system with small mass, IDDA should detect damage 

regardless of excitation type.   
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4.4.2.1 For comparison of simulated model and experimental specimen 

Both the simulated and experimental models were subjected to a harmonic excitation of 

18Hz. This frequency was chosen as to reduce resonant effects. Once the data was 

collected the alpha coefficients from single variate regression were calculated to compare 

their effectiveness from both the simulated and experimental models.  For this study, the 

damage case consisted of replacing a healthy section with one of less stiffness at the 

locations corresponding to sensors R2 and R5. Sixty test runs were collected for the 

experimental frame (i.e. 30 undamaged runs and 30 damaged runs).  For each run, the 

sampling rate was 500Hz and 10,000 samples were recorded so that each test lasted a 

total of 20 seconds. The coefficients were created for each run number for each pairing of 

locations using the experimental specimen. The values for the undamaged and damaged 

runs were averaged and compared to the simulated coefficients. It should be noted that in 

Labuz 2011, the excitation frequency was chosen to be 12Hz.  Even though these results, 

as well as the results shown in Chapter 4.4 using a forcing frequency of 18Hz, are 

consistent with the damage case, the results are too dependent on the forcing frequency 

chosen. Therefore, a new excitation method was needed so that resonant effects and 

variability with forcing frequency could be eliminated altogether. The next section 

describes the impact excitation used for the rest of the damage detection schemes.  

 

4.4.2.2  For experimental specimen and change point detect schemes 

In order to take the dynamic effects into consideration, impact load is chosen as a 

means of excitation. Thus the excitation does not have frequency content of any 

particular range. To apply impact load, the frame is tapped with a light hammer on the 
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beam-column connection at the right side of the frame with a magnitude less than 10% of 

the load required to cause yielding (using the simulated model, this linear elastic limit 

was found to be 1500 pounds).  For this study, the damage case consists of replacing a 

healthy section with one of less stiffness at the location corresponding to sensors R5. 

Location R2 was not involved to see how localized the algorithm could detect damage. In 

total 40 tests were conducted. Half of them were from the undamaged state of the 

structure and half were taken after R5 was switched with its damaged counterpart. 

According to Tague 2004, only when there are at least 20 sequential points from a period 

when the process is in control, is the basis for comparison complete. For each run, the 

sampling rate was 500Hz and 1,000 samples were recorded so that each test lasted a total 

of 2 seconds. Based on the simulated model analysis, the first three frequencies of the 

frame are 13.66Hz, 21.95Hz and 31.58Hz. These frequencies are much lower than the 

sampling rate as to cause aliasing in the data. Since the data used in this study was 

collected from the real testbed structure it already contains measurement noise as 

opposed to the simulation results in which artificial simulated noise is often added to the 

signal. 

 

4.4.3 Wired Capacitive Accelerometers 

The accelerometers used in this experiment are model number 2210-002 produced by 

Silicon Design. Inc. (2010) shown in Figure 4.9. This is a capacitive accelerometer and 

type of small micro electro-mechanical systems (MEMS) with an anodized aluminum 

case that is epoxy sealed and easily mounted using two screws.  The sensor produces two 

analog voltage outputs, which vary with acceleration.  The sensitive axis is perpendicular 
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to the bottom of the package, with positive acceleration defined as a force pushing on the 

bottom of the package.  

The signal outputs are fully differential about a common mode voltage of 

approximately 2.5 volts independent from the supply voltage which could range from +9 

to +32 volts. At zero acceleration the output differential voltage is nominally 0 volts DC; 

at ±full scale acceleration the output differential voltage is ±4 volts DC respectively. 

Analog output voltages are proportional to acceleration. An analog-to-digital converter 

(ADC) reads the change in capacitance and translates this to a voltage that corresponds to 

a specific acceleration. 

 

4.4.4 Data Acquisition System 

Acceleration responses were collected from the wired sensors using the CR9000, 

shown in Figure 4.10, a modular, multiprocessor data acquisition (DAQ) system and 

PC9000 support software by Campbell Scientific, Inc. (2005; 2009). The CR9000 has a 

16-bit analog-to-digital converter and a peak sampling rate of 100 kHz.  

 

4.5 Comparison of Simulated and Experimental Model 

The simulated and experimental models were both subjected to an 18Hz vibration and 

acceleration data was collected during excitation. This data was then used in the damage 

detection algorithm to generate single variate alpha coefficients. This regression type and 

damage feature is chosen because Labuz 2011 has already proven that these indicators 

correctly portray the changing properties of the frame and correctly localize damage.  As 

stated, the damage case in question involves an interchangeable section at R2 and R5. For 
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this reason, the percent change in the alpha coefficient between an undamaged and 

damaged state of the frame should be largest at these locations.  

As shown in Table 4.5 the experimental results do show damage in this general 

location. The percent change on the entire left side of the frame is very small compared to 

that of the right side. Additionally, sensors R2 and R1 have the greatest percent change. 

These results are satisfactory in that they generally locate damage to the right side of the 

frame and indicate R2 as the most damaged location. Even though R5 does not have one 

of the highest percent changes, it does have a higher percent change than any location on 

the left side of the frame. Additionally, it is expected that the location’s responses close 

to the actual damage would also be affected by the damage. Therefore, the large percent 

change at R1 can be expected and these results are consistent with the damage case.  

The results for the simulated model are shown in Table 4.6.  The results are similar to 

that of the experimental frame in that the right side has a higher percent change than the 

left side in general. However, these results pinpoint R3 and R4 as the most damaged 

locations. Even though these results are not consistent with the actual damage case, these 

locations are the closest to the damaged locations R2 and R5. Therefore, these results 

would indicate the right side as a damaged joint and lead an observer to the correct 

general location of damage. These results could become more localized if the simulated 

model was updated to completely mimic the response of the frame. However, the 

influence coefficients do detect damage at the correct joint and therefore can be deemed 

valid features for damage detection.  
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Figure 4.2: Different Views of the Interchangeable sections. (Top two Figures courtesy of E. Labuz 

2011) 

 

Location of Damage 

 

Figure 4.1: Sketch of the specimen and the location of the introduced damage. 
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Table 4.1 Geometry of Baseline and Interchangeable sections 

Feature Baseline Sections Interchangeable “Damaged” 

sections 

Outer Dimension of Hollow 

Cross Section 

0.05m 0.05m 

Tube Thickness 2.16 mm 1.65mm 

Cross Sectional Area 410.57 mm
2
 324.57 mm

2
 

Moment of Inertia 162526 mm
4
 130811 mm

4
 

 
 

 

 

Figure 4.3: SMIT output of the first three natural frequencies of the experimental frame 
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Figure 4.4 First and second mode frequency convergence generated from base Column Stiffness 

changes 
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Legend for Figures 4.5-4.7 

 
 

 
 

Figure 4.5: Right Beam Spring Stiffness vs Frequency and First Mode Shape 
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Figure 4.6: Visual of Column Spring Stiffness Effect on Second Mode Shape 

 

 

 

 

 

 
Figure 4.7: Left Beam Spring Stiffness vs Frequency and Third Mode Shape 
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Table 4.2 Simulated vs Experimental results of the first Three Natural Frequencies 

 First Mode 

Frequency 

Second Mode 

Frequency 

Third Model 

Frequency 

Simulated Model 13.68 21.812 31.906 

Experimental 

Frame 

13.660 21.945 31.581 

Percent Error .307% .606% 1.029% 

 

 

 

 
Table 4.3: Simulated and Experimental Acceleration Response Amplitude 

 Acceleration L4 (g) Acceleration R4 (g) 

Simulated Model .966 .860 

Experimental Model 1.18 1.18 

Error 27.11% 18.14% 

 

 

 

 

 
 

Figure 4.8: Column Spring Stiffness vs Acceleration response amplitude and Column Spring 

Stiffness vs Frequency  
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Table 4.4: Final Simulation vs Experimental Models 

 First Mode 

Frequency 

(Hz) 

Second 

Model 

Frequency 

(Hz) 

Third 

Mode 

Frequency 

(Hz) 

Acceleration 

L4(g) 

Acceleration 

R4 (g) 

Simulated 

Model 

13.568 21.512 31.545 1.11 1.12 

Experimental 

Model 

13.660 21.645 31.581 1.18 1.18 

Percent 

Error 

.67% 1.97% .11% 5.84% 3.80% 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4.9: Model number 2210-002 produced by Silicon Design. Inc. (2010) Courtesy of E. Labuz 

2011 
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Figure 4.10: MODAL 50A Actuator Courtesy of Y. Pan 2012 

 

 
Table 4.5: Experimental Specimen Percent Change Of Alpha Coefficients from Single Variate 

Undamaged to Damaged State 

Side/Node 1 2 3 4 5 6 

Left Side 3.60% 3.89% 6.32% 3.85% 3.96% 5.04% 

Right Side 53.3% 241% X 28.2% 27.6% 27.7% 

 

 

 

 

 
Table 4.6: Simulated Percent Change of Alpha Coefficients from Single Variate Undamaged to 

Damaged State 

Side/Node 1 2 3 4 5 6 

Left Side .491% .599% .770% 1.22% .619% .325% 

Right Side 2.55% 2.72% 2.87% 4.61% 1.21% 2.595% 
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5. Results of Change Point Analysis 

Because the damage case being considered is a section on the right side column, the 

results for each method should detect damage at or near this location. Only the results on 

the left and right side of the frame are compared and presented for simplification. 

Considering there are six sensors on both sides of the frame, there are many different 

combinations of sensors that can be paired in the different linear regression models. 

However, an assumption of negligible mass only holds true within local joints of a 

structure. Therefore, only sensors within the same side of the frame will be used to create 

damage features. In effect, for cases in which two sensor nodes are compared to one 

another, thirty pairs can be made without comparing a sensor to itself. This occurs in 

single variate and ARX linear regression. However, in collinear regression, 120 different 

combinations can be made and in the AR model 6 coefficient can be made with each 

sensor location regressed onto itself. Coefficients are calculated for each sensor pair 

combination which are then analyzed using the change point detection methods.  First, 

the statistical methods are examined to see if they correctly identify occurrence of the 

change point, at the 20
th

 run, when the damage is introduced. Then, the results are further 

inspected to determine if they can provide where damage occurred. 

Upon investigation of the data, the sensor corresponding to location L1 on the frame 

was found to be damaged. A picture of a damage sensor can be found in Figure 5.1 

Additionally, the normalized error associated with this sensor was large. For this reason, 

this sensor is eliminated as a faulty sensor in all data sets and control charts. If this 

location is indicated as a damaged section, the results are disregarded.  
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5.1 Single Variate Regression Results 

Some of the methods use the assumption that the variables used in the control charts 

are normally distributed. It is shown, using normal probability plots in the Figure 5.2 (a) 

Figure 5.2 (b), that the alpha and alpha coefficients R56 are normally distributed. Their 

purpose is to graphically assess whether the data has come from a normal distribution. If 

the data is indeed of a normal distribution, these plots would be linear. The coefficients 

are used to create the blue “+” markings. These are compared to a red linear line 

superimposed on the graph joining the first and third quartiles of the coefficients. This 

line is extrapolated out to the ends of the sample to help evaluate the linearity of the data.  

It is shown here that the coefficients are indeed from a normal distribution because they 

do not stray far from the red line.  

Figure 5.3 shows typical  single variate linear regression coefficients and their 

corresponding Evaluation Accuracy and Estimation Error parameters for the influence 

coefficient     in Eq. 2.2, for locations 5 and 6, namely    , for both the left side 

(shortened to        and the right side (       of the frame. This coefficient will be used 

as an example plot for some of the single variate control statistics being investigated. It is 

crucial to use a damage feature that changes with the properties of the structure. Even 

though the timing of damage would be unknown, a comparison between the undamaged 

and damaged features was generated to evaluate the effectiveness of these damage 

features. If no difference is found between a location near and far from damage, these 

features would be deemed less effective in identifying the location of damage. The first 

graph in each plot in Figure 5.3  shows the magnitude of the coefficient for all 40 runs. 

For the left side coefficient,       shown Figure 5.3(a) the mean of the first 20 
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(undamaged) runs is different from that of the last 20 (damaged) runs by 1.25%. On the 

right side (     ), however, this variation increases to 5.50% as shown in Figure 5.3(b). 

This indicates that the right side properties of the frame have changed more than the left 

side. In using a control chart, the timing and location of the damage should be indicated 

since these parameters are previously unknown in real damage detection scenarios. Note 

that the accuracy parameter does not deviate far from one on both of these graphs which 

indicates that these parameters should not be disregarded as false alarms. Additionally, 

the estimation error can be used to further justify these coefficients as correct 

representations of the properties of the frame. 

 

5.1.1 Estimated Weighted Moving Average  

The process is considered out of control when the Z value in Eq. (3.1) falls outside 

the range of the control limits. As stated previously, the conventional threshold from 

Lucas and Saccucci, (1990) is three standard deviations away from the mean. However, 

when this method is implemented, damage wasn’t detected anywhere on the frame as 

plots from both the left and right side of the frame never crossed the boundaries. An 

example is shown in Figure 5.4 where the left and right side coefficient α56 plotted using 

the Shewhart control threshold. As a result, this way of determining thresholds is deemed 

insufficient. It is reasonable to decrease the value of L for it corresponds to a 99.7% 

confidence, creating a very large confidence region. However, a bootstrap is used in order 

to compare the effectiveness of some of the EWMA statistic to other univariate methods 

in this thesis.  

The results of the EWMA bootstrapped plot of the left and right side alpha coefficient 

α56 are shown in Figure 5.5 (a) and Figure 5.5 (b) respectively. It is important to note that 
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there is a well-defined change in the EWMA slope for the original data at the 21
st
 run, as 

soon as the damage cases are included in the statistic. This indicates a change from a 

baseline state of the frame at the correct time of damage. However, this could also be 

considered as trivial variation until the line reaches the threshold generated from 

bootstrapping. Once the threshold is crossed, the change can be considered assignable 

and it can be concluded that the frame was damaged near this location.  In Figure 5.5 (a) 

the left side coefficient       does not cross the bounds created by the bootstrap.  This 

indicates that the frame’s properties do not change significantly near these sensors. 

However, in Figure 5.5 (b) the EWMA for       does cross the threshold at the 24
th

 run, 

a fairly quick detection of damage. Therefore, the properties of the right side of the frame 

near sensor locations R5 and R6 do change significantly with a 91% confidence level 

using Eq. (3.8). These results are consistent with the damage case and occurrence of 

damage. Every sensor pairing is analyzed in a similar fashion and the results confirm that 

there is damage on the right side column of the frame. As a result, the EWMA correctly 

identifies the correct time and location of damage. 

Similarly, the results for the angle coefficient are generated for the same location 

pairing,     and the results are shown in Figure 5.6. These results are very similar to the 

alpha coefficient results described above. There is no damage indicated on the left side 

because the original data EWMA plot does not cross the threshold generated by the 

bootstrap.  Additionally, the right side coefficient EWMA does cross the confidence 

bound at the same run as the alpha coefficient indicating a damaged location on the 

frame. This time, however, the confidence level here was determined to be 92.2%. 

Therefore the results can be deemed very trustworthy which indicates the certainty to 
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which there is a significant change in the data at the 23
rd

 run when the original EWMA 

crosses the threshold boundary. These results are very comparable to the results for the 

alpha coefficient. Both damage features seem to indicate the correct timing and location 

of damage to confidence level within 91%.  

 

5.1.2 Cumulative Sum Chart  

The CUSUM plots that were created for the left and right side of the specimen are 

shown in Figure 5.7 (a) Figure 5.7 (b) respectively. Each line in these plots represents a 

sensor pairing. Both plots exhibit a change in slope at the 20
th

 run thus indicating a 

possible change point at the 21
st
 run. Therefore the CUSUM correctly identifies when the 

change occurred (there were 20 undamaged and 20 damaged cases); however, this does 

not help differentiate the left side from the right side and thus does not provide a location 

of damage. Because the entire structure’s response is affected by the damaged section, 

the left side CUSUM shows a change in slope as well. However, the change should not 

be as significant as the right side considering the damage case in question. It is noted that 

in Figure 5.7 the ranges of the cumulative sum are a lot smaller for those sensor locations 

on the left side of the frame which would indicate that the properties of the structure on 

the right side have changed more compared to the left side. Yet, no conclusion can be 

made about the significance of the change.  

In order to create the necessary threshold bound, bootstrapping is used to show if the 

change of properties on the right side of the frame is indeed significant. A bootstrap is 

able to depict the behavior of the frame for the case of no damage by statistical 

simulation. Therefore, the left side cumulative sum charts should remain within the range 
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of bootstraps; yet, the cumulative sum charts for the right side coefficients should cross 

the bounds of the bootstrap as close to the 21
st
 run as possible at locations near damage. 

The bootstrapped plots for       and       are shown in Figure 5.8 (a) and Figure 5.8 

(b). In Figure 5.8 (b) the cumulative sum chart for alpha coefficient       crosses the 

confidence bound produced by the bootstrap. Using Eq. (3.8), this indicates damage is 

detected at this sensor pairing with a 98.8% confidence level. Additionally, this method 

detects damage at the 21
st
 run, which is a very quick detection scheme. On the other 

hand, the bootstrap threshold is not exceeded for coefficient      , indicating no damage 

at this location. Charts are created for all sensor pairings on the frame and it is very 

evident that there is a significant change on the right column of the frame. The results 

show damage at sensor locations R4 and R6. These locations are not directly at the 

damage, but because of their proximity to sensor R5, they show a more significant 

change than others. Conversely, the left side cumulative sum plots have a range very 

similar to the bootstraps. Because the bootstraps are supposed to simulate data that has no 

damage, the left side of the frame can be characterized as so. In effect, the cumulative 

sum for the alpha coefficient correctly identifies the occurrence and location of damage. 

The results for the angle coefficient are shown in Figure 5.9 where the cumulative 

sum for the angle coefficient has a peak at the 21
st
 run. This is the correct timing of 

damage. However, this peak cannot be deemed significant until it crosses the confidence 

bounds. This does not occur for the left side coefficient      , yet does for the right side 

coefficient      . This indicates significant change in the data at the 21
st
 run and a 

damaged location.  Additionally, the confidence level was found to be 100%.; none of the 

ranges for the bootstraps were bigger than the actual data set range; all of the bootstrap 
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ranges were below the range of the actual damage. This directly shows that there is 

damage at this location. Including all of these factors, the cumulative sum for the angle 

coefficient correctly identifies the occurrence and location of damage.  

 

5.1.3 Mean Square Error  

The MSE algorithm separates the coefficients from all 40 runs into two segments and 

finds the MSE associated to each segment. This testing method follows Procedure 1. For 

instance, the first point on an MSE plot is the MSE calculated for the first run and the 

next 39 runs paired together. The second point on the plot is the MSE for the first and 

second runs paired together and then the next 38 runs grouped together etc. An example 

of the alpha coefficient results is shown in Figure 5.10 (a) and Figure 5.10 (b) where the 

MSE indicator is plotted for all 30 coefficients on the left and right side of the frame 

respectively. The 20
th

 run marks the lowest value for the MSE implicating the 21
st
 run as 

the first possible index of the damaged state.  

This is the correct timing of damage; however, this plot, like the CUSUM chart, does 

not allow the observer to detect the location of damage. As a result, a bootstrap was 

generated to establish a threshold and the results are shown in Figure 5.11 (a) and Figure 

5.11 (b) for coefficient       and      , respectively. It is expected, as shown in the 

CUSUM and EWMA plots previously, that the       coefficient cross the bounds near 

the 21
st
 run and the       coefficient not cross at all. However, the MSE plot of this 

sensor pairing crosses the bounds on both plots shown in Figure 5.11. This implies that 

both       and       undergo a significant change in the data and therefore signify a 

damaged section at L5, L6, R5, and R6. Additionally, the MSE plot crosses the bound 
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around the 13
th

 run which is well before the damage occurs. Hence, both the timing and 

placement of damage from these plots are misleading and the statistic must be changed in 

order to detect the correct location and time of damage. As stated earlier, damage 

detection using control charts relies on the change in the mean and constant variance. 

Therefore the ModMSE can be used, shown in Eq. (3.7), which expunges the variance 

between the two segments produced and maintains their independent means.  

Before a bootstrap is conducted, the difference between the original MSE and the 

ModMSE is inspected using a similar approach to the CUSUM indicator discussed at the 

end of Section 3.3; this indicator is the point furthest away from zero which can be a 

possible damaging point. Because the MSE may not start or end at zero, the ranges of the 

statistic were recorded instead of the largest magnitude. As a result, all the coefficients, 

from the left and right side of the frame, can be examined at one time. On the plots in 

Figure 5.11, the ranges of the MSE and ModMSE respectively are shown for all 60 

coefficients. The first 30 coefficients are from the left side and last 30 coefficients are 

from the right side. Additionally, a boundary condition of three standard deviations away 

from the mean (a normal procedure of a Shewhart control chart from Lucas et al. 1990) is 

used for a simple comparison. Figure 5.11 (a) shows the MSE range plot using the 

original MSE coefficients. This model detects damage at sensor locations R1, R2, R3, 

and R4 which are located on the right beam and column close to the joint.  Although 

these locations are on the right side of the frame, the actual location of damage, R5, is not 

included or detected. This procedure proves that the original MSE statistic does not 

always produce localized results. On the other hand, the normalized MSE statistic, 

ModMSE, was then used to create the same plot and the results are shown in Figure 5.11 
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(b) where the damage is correctly identified.  Sensors R3, R4, and R6, along with R5, 

show a significant change in properties because of their proximity to the damage because 

the ModMSE ranges cross the confidence bound for the coefficients      ,      , 

     ,      , and      .  

Additionally, false alarms can be eliminated by using the evaluation accuracy and 

estimation error parameters. If these numbers are low and high respectively, the 

coefficient should be disregarded because it is not correctly representing the properties of 

the frame in accordance with the assumptions made.  As shown in Figure 5.12 (b), 

coefficient       seems to cross the bounds, signifying a damage location. However, it is 

at this point that the accuracy and error parameters associated with the sensor pairing, 

shown in Figure 5.13, can be used to eliminate it as a false alarm. The accuracy and error 

parameters are very high and low respectively; hence, this coefficient can be disregarded.  

Now that the ModMSE has shown the correct location of damage in Figure 5.12 (b), a 

bootstrap can be generated to analyze its results in order to compare it to the EWMA and 

CUSUM plots previously discussed. The results of the bootstrap are shown in Figure 5.14 

(a) and Figure 5.14 (b) for the left,      and right,       coefficient respectively. 

Damage is correctly detected at sensor pairing       because the right side coefficient 

crosses the bound at the 21
st
 run (i.e., as soon as the damage occurs). Additionally, the 

left side coefficient       does not cross the boundary, indicating an undamaged 

location. This demonstrates that the ModMSE can be used to correctly find the timing 

and location of damage.   

The original MSE results for the angle coefficient were very similar to that of the 

alpha coefficient. The original data crossed the threshold value on both the left and right 
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sides at around the 13
th

 run number. As a result, only the ModMSE results will be 

discussed in the proceeding section. The results for the angle coefficient can be seen in 

Figure 5.15. It can be shown that the timing of damage is found at the correct run. The 

original ModMSE data plot does not cross the bounds for the left side coefficient but 

does for the right side at the 21
st
 run.  

The plots from both the alpha and angle coefficient have indicated that the ModMSE 

is an effective method for damage detection and localization. The timing and location of 

damage are correctly indicated using this pair of damage feature and control chart. 

Therefore, the use of the ModMSE to eliminate the MSE’s sensitivity to variance is 

validated. 

 

5.1.4 Normalized Likelihood Ratio Test 

The coefficients made using single variate regression were used in the Normalized 

Likelihood Ratio Test. This type of regression produces coefficients that are already 

scalar and can be directly used in the NLRT statistic; hence, a possible damage point 

should be detected at the 21
st
 run of testing. As stated in Chapter 3.7, the statistic is 

normalized using the expected value in Eq. (3.13)-(3.16). This value is supposed to 

simulate the mean of the statistic and eliminate the variability brought with different 

dimensionalities. However, when these simulated values of E were compared with the 

actual statistic, they were not capturing the mean of the statistic. For example, in Figure 

5.16, the expected value obtained in Eq. (3.13) is plotted with the actual likelihood 

statistic for all the coefficient pairings on the left side of the frame (the black dotted 

lines). These locations are of the undamaged, healthy frame and should not indicate any 
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damage. As the figure shows, the expected value of the statistic is far lower than the 

statistic itself; the mean of the actual statistic for all locations is 15.9; yet the value for E 

ranges from about 4 to 2.5. Since E, as defined in Sullivan and Woodall (1996, 1999) is 

only derived using the dimensionality of the data, it cannot fully capture the mean of the 

likelihood statistic in this case. Therefore, the statistic was instead divided by the mean of 

all the coefficient pairings from both the left and the right sides. Therefore, the expected 

value is properly indicated the average of the likelihood statistics. At locations of 

damage, the right side likelihood ratio statistics should be larger than those at an 

undamaged location. Hence, in using this method of normalization, the relative difference 

between the right and left sides of the frame can be established. The results for the alpha 

coefficient are shown in Figure 5.17 where the correct timing is indicated. Both plots 

show peaks at or around the 21
st
 run. The results can then be analyzed for damage 

localization.  

Because the entire frame’s response is changing with the switch of the damaged 

section, it is expected that the damage features do peak on the left side as well as the right 

side of the frame. However, the change should not be as significant on the left side. 

Hence, the coefficients on this side do not cross the confidence boundary of unity. 

Additionally, damage is detected at the exact location: the middle of the right column. 

Coefficients that cross the bounds are those involving sensor pair R56 (     ), and R65 

(     ) only. Since a location is not compared to itself in this type of regression, these 

results are very localized.  

The results from the angle coefficient show a very similar pattern in Figure 5.18. No 

coefficients on the left side of the frame cross the confidence bounds; yet the same pairs 
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do on the right side with an addition of coefficients       and      . These coefficients 

are still on the right side of the frame and therefore can be considered a correct location 

of damage because sensors around the actual location of damage are expected to be more 

affected by the damage as well. It is noted that the Normalized Likelihood Ratio Test can 

be used in conjunction with the alpha and angle coefficient from single variate regression 

to correctly indicate the timing and location of damage.  

 

5.1.5 Student’s t-test 

The Student’s t-test can be used with the alpha, angle coefficients from the single 

variate regression model. As explained, the t-test is a type of hypothesis test. If the 

statistic falls outside the range of the confidence level, the null hypothesis can be 

rejected. However, if the statistic stays within the bounds of the threshold, the null 

hypothesis can neither be reject nor accepted. On the plots for the Student’s t-test there 

are 40 numbers. Each of these correspond to a different split of the data using Procedure 

1. For example, the first data point on the graph is based on splitting the data between the 

first run and the next thirty nine runs. The second point indicates the t-statistic when the 

first and second runs are paired together and the next thirty eight runs are paired together. 

This would continue until the first 39 runs are paired together and the 40
th

 run is by itself. 

When the pre-derived threshold for the t-test, using the inverse T-distribution 

function, was used on the coefficients, the first run was already outside the threshold 

boundary. This would indicate that from the beginning, the hypothesis can be rejected. 

This would mean that the mean of the two segments was not the same; which is to be 

expected. The mean of the first 20 undamaged runs is projected to be different from the 
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next 20 damaged runs. For this reason, when pairs of runs are grouped in such a way as to 

include both sets of data, it would not be surprising that the means are not the same. 

However, this thesis is interested in when and where on the frame the biggest spread in 

the means occurs. The “when” cannot be answered using the t-test threshold. Due to the 

testing procedure, it would be expected that when the data is split into 20 and 20, the 

difference in the means would be the greatest. However, as stated in Chapter 3.8.1, the t-

statistic has a t-distribution. Therefore, its maximum value is always going to be in the 

middle. Hence, the timing of damage cannot be formally indicated by the t-test 

hypothesis threshold. For this reason, a threshold similar to the one used in the 

Normalized Likelihood Ratio test is used to find the “where”. The t statistic is normalized 

so that the threshold is unity. In summary, it would be expected that the t-test null 

hypothesis would be rejected because the means of the undamaged and damaged data are 

different. In effect, no matter where the test runs are segmented, the means are going to 

be different. Therefore, the widest spread in the difference of the two means is 

investigated. 

The results for the alpha coefficient are shown in Figure 5.19. Here is can be seen that 

     ,      ,      ,      ,      ,      ,      ,      ,      ,      , and       cross 

the confidence bound of unity at the 21
st
 run. This would indicate these locations having 

the biggest spread in the difference of their means when the runs are separated into two 

populations of 20 tests. This is the correct timing of damaged; however, this can be 

attributed to the t-distribution. It cannot be concluded that this maximum value is because 

of the data, but because of the distribution of the statistic itself.  However, the coefficients 
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that do cross the unity bounds are mainly from R5 and R6 paired with every other 

location on the right side of the frame. This is consistent with the damage case. 

Similarly, the results for the angle coefficient are shown in Figure 5.20. These results 

are even more localized. The only coefficients that cross the bound of unity are      , 

and      . These results only include locations R5 and R6 which localize the damage to 

the exact location. It is noted that the t-test can be used to correctly detect where damage 

has occurred on the frame using both the alpha and angle coefficient from the single 

variate regression model. It cannot be used to detect the timing of damage because the t-

distribution is always going to have its maximum value in the center.  

 

5.1.6 Bayesian Hypothesis test 

The Bayesian Hypothesis test can be used to detect a change in the mean of two 

populations. As stated in Chapter 3.8.2, an initial population is needed as a baseline. For 

this procedure, the first 15 runs were used. Therefore, if there is damage that a feature 

indicates, the statistic should cross the confidence bound after the 5
th

 run on the 

hypothesis test figures in this thesis. This point represents the first damaged coefficient 

being added to the statistic (the 20
th

 run of testing). The results are shown in Figure 5.21 

for the single variate regression alpha coefficient    . These results show that the left 

side of the frame, near locations L4 and L5 are undamaged because the statistic does not 

cross the threshold boundary. This is consistent with the damage case. Additionally, the 

right side coefficient does cross the threshold boundary right after the 5
th

 run with a 90% 

confidence level.  Therefore, this test indicates the correct timing and location of damage. 

 The results for the angle coefficient also show a similar pattern. The result for     is 

shown in Figure 5.22. The plot for the Bayesian statistic does not cross the threshold for 
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the left side coefficient. This indicates an undamaged section of the frame and is 

consistent with the damage case. Contrastingly, the right side coefficient does cross the 

bounds of a 90% confidence level immediately after the first damaged run is introduced 

into the statistic. Therefore, these results comply with the correct timing and location of 

damage and can be used as a viable damage detection method.  

 

5.1.1 Moving Range Chart for Residuals 

The Moving Range chart can be used to test the variance of the residuals. This type 

of chart is a univariate method. In order to use the residuals as damage features they 

need to be condensed into scalar values for each run number. Instead of using the 

Mahalanobis distance to do so, the variance of each residual vector at each run number 

was found and used as the feature for the Moving Range plots. The results for the single 

variate regression are shown in Figure 5.23 for coefficient    . It is evident that the 

variance changes at the 21
st
 run on both the left side and the right side because both plots 

have a higher statistic magnitude at this point. However, only the statistic on the right 

side plot crosses the confidence bound. This indicates damage on the right side column, 

the correct placement of damage. Other pairs of coefficients were analyzed and it is clear 

that there is damage on the right side column of the frame. The plots cross the 

confidence bound for      ,      ,      ,      ,      ,      ,      ,      ,      , 

     ,      ,      ,       . These results generally localize damage to the right side 

joint of the frame. Although it can be noted that these coefficients are a combination of 

R5 and R6 with the other four coefficients on the right side of the frame. This would 

indicate R5 and R6 as the most damaged locations on the right side of the frame. Since 
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these locations are on the right side column, closest to the actual damage location, it can 

be deduced that this way of detecting damage does actual localize the results to the right 

side column. 

 

5.1.2 F-Test for Alpha Coefficient Residuals 

The residuals for the single variate regression model can be used in an F-test for the 

change in their variance. The F-test has a null hypothesis that the variance of two 

populations in question is the same. However, if the statistic crosses a confidence bound, 

this null hypothesis is rejected and the variances have changed significantly enough to 

have come from an out of control process. For the single variate regression, the 

residuals,    , were found using Eq. 5.1 below. 

                            (5.1) 

Here    and    are the responses of two locations at time step n correlated through  . In 

effect, the residuals represent how well the alpha coefficient fits the single variate model 

and represents the true relationship between the two outputs. The mean of the residuals 

should be zero and remain unchanged through a damaging event; however, the variance 

is subject to change.  

 As stated in Chapter 3.10, in the populations used in the F-test are matrices, the 

statistic that is generated will have an F-distribution and the timing of admage will not be 

able to be determined. Therefore, only procedures that create a vector of populations are 

used in the F-statistic so that the test produces a scalar value at each run number and the 

distribution is determined by the properties of the data and not the properties of the F-

statistic.  
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Initially, Procedure 1 was used to split the data. In order to condense the matrices of 

residuals, the variance of each run test was calculated. This created a vector of length 40 

that could be used with Procedure 1 and put in to the F-statistic so that only a scalar value 

is formed. However, when the first statistic was generated using the first run as one 

population and the next 39 runs together as another population, the statistic fell outside 

the confidence bounds produces using the cumulative distribution function. These results 

are similar to the t-test and would be expected. The variances are not going to be the 

same when the data is split in this way. The main concern of damage detection is finding 

where the largest difference of the variance occurs in time and on the frame and to test 

the significance of this difference. Therefore, the statistic was normalized using a a 

threshold generation similar to that of the Normalized Likelihood Ratio to make the 

boundary of unity. The results are shown in Figure 5.24 for the alpha coefficient of the 

single variate regression. Here, the statistic immediately changes when the runs are 

separated into 20 and 20. This shows the correct timing of damage; however, nothing can 

be said about the significance of the change until a threshold is used. It is shown that two 

coefficient pairings cross the threshold bound. These include       and      . These 

locations are the closest to the actual damaged location R5. Even though this sensor 

location is not indicated as damaged, it is between the two that are indicated. Therefore 

an observer would be led in the correct direction to locate the damage. This method of 

normalizing the statistic and using the variance instead of the entire set of residuals only 

showed correct damage localization for the single variate regression residuals. The 

variance of other regression types produced an F-statistic with very high magnitude that 

could not be normalized for a threshold of unity using Eq. (3.14-3.17). Therefore a new 
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procedure was adapted. In order to use all of the residuals without condensing the 

vectors, Procedure 2 can be used similar to that of the trusted Moving Range chart.  

In using Procedure 2 is may also be possible to detect the timing of damage. With 

each run consisting of 1000 data points, in order to use these full vectors in the F- test 

each run is used as a separate population. In this procedure, the test runs were split into 

consecutive pairs and put into the F statistic. The first point in this procedure would be 

the F-statistic for the first and second runs as the two different populations. Then the 

second point would be the second run tested against the third run and so on until all 40 

runs were tested. In this way, only consecutive runs numbers are tested against one 

another and the statistic may not have the F-distribution so that the timing of damage can 

be detected. The threshold was found using the maximum and minimum of the F-

distribution CDF at 95% confidence.  

The residuals for the single variate regression are put into the F-Test and the results 

are shown in Figure 5.25. It is noted that this distribution does not match the F-

distribution. This may be attributed to the way the test runs are split using Procedure 2. 

The timing of damage is investigated first to see if the plot shows the correct occurrence 

of the change in the frame. Shown in Figure 5.25 the plot peaks at the 20
th

 run; this 

indicates the correct stage of damage for this statistic was created when the data was split 

using the 20
th

 and 21
st
 run of testing. The results are then further analyzed for the 

localization of damage. It can be shown that      ,       and       cross the confidence 

bounds produced for a 95% confidence level. Therefore, these locations, R3, R4, R5, and 

R6, are indicated as locations of damage. This is the correct location of damage for these 

locations are on the right side column of the frame (R4, R5, and R6) and the closest 



75 

 

location to the right side column but on the beam (R3). Therefore, the results show that 

the F-Test is a valid method for detecting and localizing damage. It should be noted that 

the F-test can be used to detect the correct timing and location of damage using 

Procedure 1 and 2. However, only Procedure 2 will be used for the rest of the regression 

types.  

 

5.2 Auto Regression with Exogenous Term Results 

In order to use many control charts, there is an assumption that the variables used are 

normally distributed. It is shown in Figure 5.26 that the ARX alpha and angle coefficients 

are normally distributed through the use of a normal probability plot. The ARX alpha 

coefficient is actually a matrix as described in Chapter 2.3.2. Therefore, there are many 

coefficients depending on the order number. It will be shown that an order number of 

four is sued and therefore there are nine coefficients in the ARX alpha model. These are 

individually compared to a line to show that they are normally distributed. However, in 

the angle coefficient, there is just a vector of coefficients because from each run test, a 

scalar value is found. In Figure 5.26 (b) the blue “+” marks indicate the actual 

coefficients and the red line is a regressed line for comparison. The marks do not stray far 

from the red line and therefore the coefficients can be deemed from a normal distribution.  

 

5.2.1 Mahalanobis Distance with the Fisher Criterion, Normalized Likelihood Ratio Test 

and Bayesian Test 

In order to use the Mahalnobis distance to condense the AR and ARX influence 

coefficients, it is necessary to know the model order of the data.  However, the model 
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order is limited based on the amount of run numbers. This is explained as follows: In the 

matrices that are used to calculate the Mahalanobis distance, each column represents a 

coefficient from the ARX or AR model and each row represents a run number. However, 

in order to use these matrices to generate a distance, there cannot be more columns than 

there are rows in the influence coefficient matrix. Therefore, the amount of coefficients 

produced, which depends on the model order, cannot exceed the amount of test runs used 

to create the Mahalanobis distance. In the next section, the AIC is derived for both data 

sets in order to calculate the Mahalanobis Distance.  

 

5.2.1.1 Mahalanobis Distance 

In order to condense the ARX alpha coefficients, Mahalanobis distances are 

calculated between coefficients from the first 10 healthy state runs and the last 10 healthy 

state runs. This step creates a baseline distance. Then, the first 10 healthy runs and the 20 

damaged runs are used to create a distance to compare to the reference. The distances 

calculated in the latter coefficients should be bigger than the baseline condition at areas 

of damage. Through the procedure discussed above, the smallest amount of runs used to 

create the Mahalanobis distance is ten. Therefore the maximum model order for both of 

the data sets used in this paper has to be four (i.e. there would be four columns from yj 

ARX coefficients and five columns from ARX yi coefficients. The total number of 

coefficients cannot exceed ten).   

Histograms are used as a means to plot the Mahalanobis distances because 

coefficients with the largest distance are those that are closest to a location of damage and 

stray furthest from the baseline state. As discussed in Section 2.2.2, two testing 
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conditions are used for the AR and ARX data: a system without added mass and a system 

with mass. The two sets of results obtained from these two testing conditions for the 

alpha coefficient and are shown in Figure 5.27 (a) and Figure 5.27  (b) respectively. To 

analyze these results, the sensor pairings with the larger Mahalanobis distances are 

deemed closer to a possible damaged location because they deviate more from the 

reference condition. In Figure 5.27 (a), the results are inconsistent. Sensors from the left 

side of the frame,       and      , as well as sensor pairing       have large 

Mahalanobis distances. On the other hand, using the impact test data with added mass, 

shown in Figure 5.27 (b), the Mahalanobis distances have the greatest magnitude for 

coefficients      ,       and      . Overall coefficient       has the greatest distance 

and this result properly indicates the location of damage; despite these observations, 

without a threshold it cannot be concluded that any location is necessarily undamaged or 

damaged. Hence, the next sections introduce the Fisher Criterion, Normalized Likelihood 

Ratio Test and Bayesian Hypothesis test to minimize the discrepancy of damage 

localization by creating a threshold boundary.   

The results for the angle coefficient are analyzed and shown in Figure 5.28. The 

procedure for these coefficients differs slightly than the procedure for the alpha 

coefficient. The major difference is that the angle coefficient is a scalar value for each run 

number (making a vector including all 40 runs) for each sensor pairing. Therefore, 

instead of dealing with a matrix of coefficients as in the alpha coefficient, the 

Mahalanobis distance is used to find the distance between values in a vector for the angle 

coefficient. However, the same number of baseline distances and so called “damage 

distances” are used as a comparison making the possible change point at the 11
th

 run. A 
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histogram was made with these angle coefficients for tests without mass and the results 

are shown in Figure 5.28 (a) and Figure 5.27 (b) respectively.  Figure 5.28 (a) indicates 

     , and       as coefficients with larger Mahalanobis distances. As indicated above, 

there is no threshold value for these distances. Hence, the Fisher criterion, Normalized 

Likelihood Ratio Test and Bayesian Hypothesis Test are utilized in the next section to 

distinguish between significant differences in the data. 

The data with mass was also used to create the Mahalanobis histogram shown in 

Figure 5.28 (b). The coefficients with the largest distances include      ,      , and 

     . These results a more localized than the results without mass because only those 

coefficients involving the right side column of the frame are included. Still no conclusion 

can be made about the significance of these distances until the results from the Fisher 

Criterion, Normalized Likelihood Ratio Test and Bayesian Hypothesis Test are analyzed. 

These results are presented in the next sections.  

 

5.2.1.2 Fisher Criterion 

The Fisher Criterion is used to create the boundary threshold for the Mahalanobis 

histogram that is necessary to distinguish the location of damage and the state of the 

structure. Figure 5.29 (a) and Figure 5.29 (b) show the Fisher criterion for the alpha 

coefficient without and with added mass, respectively. This statistic, as explained in 

Section 3.6, includes the mean and variance of the distances in order to statistically 

determine the significance of the deviation of the larger distances from the baseline 

distances. The results for tests without added mass show the correct location of damage 

while also eliminating the discrepancies from the Mahalanobis distance results. The only 
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sensor coefficients that cross the bounds are       and       corresponding to sensor 

pairings that are located on the right side column of the frame. Although the histogram in  

Figure 5.27 (a) shows large values for coefficients       and       for the impact data 

without added mass, the Fisher Criterion plot eliminates these as false alarms of damage 

detection because these values remain well below the threshold. This verifies that even 

though the Mahalanobis distances may have had some larger magnitudes at locations on 

the left side of the frame, these locations did not experience any significant change in 

properties and can be considered undamaged.  

Similarly, when the Fisher Criterion is analyzed using the tests with mass added to 

the system, the results correctly point to the location of damage. The coefficients that 

cross the threshold indicating damage are at              and      . Although there is 

no damage associated with sensors R4, R6 and R3, these locations are the closest to 

sensor R5 where the damage is located. It is reasonable that the coefficients 

corresponding to these sensor pairings also cross a damaged boundary. 

The results for the angle coefficient without mass are shown in Figure 5.30 (a). The 

Mahalanobis distances are largest for      , and       as stated above; however, the 

fisher criterion can use a threshold value to distinguish between significant distances and 

those that are not. The fisher criterion for the data without mass crosses the confidence 

bound for      ,      ,      ,       and      . (From the figure       also crosses the 

confidence bound. However, as stated earlier, the sensor L1 results are misleading 

because the error is very high. Therefore this is disregarded as a false alarm). Hence, the 

coefficients include only locations on the right side beam and column. They are not 

localized to the right side column, but the right side of the frame in general. Even though 
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these results are not very localized, they do show the correct vicinity of damage. No 

coefficient on the left side crosses the bounds indicating an undamaged section.  

The results for the data with mass can be analyzed and compared to these results. 

Figure 5.30 (b) shows the plots for the angle coefficient fisher criterion using the data 

with mass. The coefficients that cross the confidence bound include      ,      , and 

     . These results only include coefficients from those locations on the right side 

column of the girder: those that are closest to the actual damaged location. Therefore, the 

fisher criterion specifies the right location of damage using the data with mass. In all of 

these cases, both the alpha and angle coefficient show the correct general location of 

damage. Therefore, they are valid methods for damage detection using the fisher criterion 

as a control statistic.  

These results indicate that the Mahalanobis distance statistic can be used in 

conjugation with the Fisher Criterion in order to properly indicate the location of damage. 

It can be noted that the timing of a possible damaging event is assumed to be known; the 

distances are calculated using the two separate sets of data from pre and post damaging 

event.  

 

5.2.1.3 Normalized Likelihood Ratio Test  

The ARX regression alpha coefficients can only be used in the NLRT after they have 

been condensed using the Mahalanobis distance. As stated, the first 10 distances are 

baseline healthy distances; hence there should be a possible damage point at the 11
th

 run. 

The results for the alpha coefficient without mass will be analyzed first and are shown in 

Figure 5.31. The damage features for ARX regression do show the correct timing of 
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damage. Both plots peak at the 11
th

 run. The results can then be analyzed for their 

effectiveness in localizing the damage. Similar to the single variate regression results, the 

results for the ARX coefficients using the data without mass only show coefficients on 

the right side of the girder crossing the confidence bounds. In effect, damaged pairings 

are correctly found in the vicinity of the actual damage on the girder. Coefficients that 

cross the threshold on the right side of the frame include      ,      , and      ; 

however, no coefficients cross the threshold on the left side.  

Although there is no damage on the right side beam, these locations are close to the 

actual damaged section and therefore it is reasonable that these locations would 

experience more of a significant change in response due to a damaging event. These 

results do show the correct general location of damage; however, the results can only 

localize the damage to the right side of the frame, not specifically the middle of the right 

column. Yet, the correct general location of damage is detected; hence the normalized 

likelihood ratio test using alpha coefficients as damage features from ARX regression for 

the data without mass can be deemed a viable method for damage detection but not 

necessarily localization.  

The results for the alpha coefficient with mass, however, show misleading results.  

Even though the correct timing of damage is indicated by both plots having peaks at the 

11
th

 run, as shown in Figure 5.32, no damage features from the left and right side of the 

girder are indicated as damaged. This does not comply with the damage case and should 

not be used a valid results. Therefore, the NLRT statistic should not be used with the 

ARX regression test data with mass in order to test for a change in the alpha coefficients.  
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5.2.1.4 Bayesian Hypothesis test 

The Bayesian Hypothesis test can be used to monitor the mean of the alpha influence 

coefficients made with the ARX model. First, the matrix of coefficients must be 

condensed using the Mahalanobis distance. The Bayesian Hypothesis test is a univariate 

method and can only be used with a population with dimension of one. As stated, using 

the Mahalanobis distance creates a vector of length 30 and a change point should be 

detected at the 10
th

 run. The first five runs are used as a baseline population. Therefore, in 

the Bayesian plots in this thesis for the ARX regression types, the statistic should cross 

the bounds as close to the 6
th

 run as possible. This corresponds to the 11
th

 Mahalanobis 

distance in which the damage features are introduced into the statistic. The results for the 

alpha coefficient without mass are shown in Figure 5.33 where neither the left side nor 

the right side coefficient cross the 95% confidence bounds. More pairs of coefficients 

were analyzed and the results don’t indicate damage anywhere on the frame. This would 

indicate that the entire frame is in an undamaged, healthy state. However, this is not the 

case and therefore these results are not consistent with the actual damage. Contrastingly, 

the results for the tests with mass for coefficient     are shown in Figure 5.34. It is 

shown here that the left side at these locations is undamaged because the statistic does not 

cross the confidence bounds. However, the statistic for alpha coefficient     does cross 

the bounds indicating a damaged section at sensor locations R5, and R6. These locations 

are on the right side of the frame. These results localize the damage to the right side 

column of the frame which is exactly where the actual damage is located.  

The results for the angle coefficient ARX model for the data without and with mass 

respectively were not as conclusive and are not shown in this thesis. Neither of these 
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results comply with the damaged location and therefore this damage feature should not be 

used in the Bayesian statistic to localize damage to the correct section of the frame.  

 

5.2.2 Normalized Likelihood Ratio Test using the Angle Coefficient 

The angle coefficient from the ARX model does not need to be reduced using the 

Mahalanobis distance. For this reason, a possible change point is at the 21
st
 run when the 

damaging event occurs. The Normalized Likelihood Ratio Test results for the angle 

coefficient using ARX regression without mass can be analyzed and compared to the 

alpha coefficient. These results are shown in Figure 5.35 using the data without mass. As 

seen in the plots, the timing of damage is correctly identified. Each plot shows peaks at 

the 21
st
 run of testing. The results are then analyzed for the localization of damage. Like 

the alpha coefficient ARX results using the same data set, damage is generally located to 

the right side of the frame. The plots for the coefficients from the left side of the frame, 

shown in Figure 5.35 (a), do not cross the boundary threshold indicating no significant 

change or damage to these locations. However, damage is detected on the right side of 

the frame because the NLRT statistic for coefficients      ,      ,      ,      ,      , 

     , and       cross the unity confidence bound. However, these results are not 

localized to the right side column.  

The results for the angle coefficient using the data with mass show damage at 

locations R1 and R3 as shown in Figure 5.36 because       crosses the confidence 

bound. These locations are on the right side of the frame; however, the coefficient pairing 

only involves locations on the right side beam. Since the damage is on the right side 

column, these results would lead an observer to the correct vicinity of damage, but would 
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not lead to the exact location of damage. It can then be noted that ARX regression is a 

viable method for correct timing of damage and general damage localization when using 

data without mass. Both the alpha and angle coefficient results do correctly show an 

undamaged left side and a damaged right side of the frame with peaks in the graph at the 

correct point of the damaging event. However, the data with mass is proven to show 

inconsistent results. Additionally, more tests would need to be done to truly localize the 

damage to the center of the right side column.  

 

5.2.3 Student’s t-test 

Instead of condensing the ARX alpha coefficients using the Mahalanobis distance in 

order to use them in the univariate Student’s t-test, the residuals were used instead. For 

each run number there are 1000 data points for the residuals because that is equal to the 

length of each data test collected. The variance of all 1000 data points was calculated 

and then used in the Student’s t-test to test for a change in the mean.  It is assumed that 

the variance of the residuals would change due to a damage event. Therefore, the 

variance of the first 20 runs should be different from the variance of the second 20 runs. 

In effect, the change in mean of the variance of the residuals can be tested using the 

Student’s t-test. Procedure 1 was used to split the data. The results for the ARX 

regression model are shown in Figure 5.37 and Figure 5.38 for the tests without and with 

mass respectively. Shown in Figure 5.37, most of the coefficients cross the unity 

confidence bound on the right side of the frame. The only ones that do not cross the 

threshold are       ,      ,      ,      ,      ,      ,       and      . This would 

indicate damage on the entire right side joint. However, one coefficient,       also 
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crosses the confidence bound on the left side of the frame. Yet, so many more 

coefficients cross the bound on the right side of the frame that an observer would be 

more inclined to check the right side of the frame first for damage. Therefore, this would 

correctly indicate the location of damage.  

Similarly, the results for the data with mass in Figure 5.38 shows coefficient ,       

crossing the confidence threshold on the left side of the frame. However, more 

coefficients cross the right side.  Those coefficients that do cross the bound,      , 

     ,      ,       ,       and      , dictating damage on the right side mainly near 

locations R5 and R6. This is the correct location of damage. Therefore it can be noted 

that the change in mean of the variance of the residuals of the ARX model can be tested 

using the Student’s t-test. Even though both data sets, without and with mass, indicate a 

one damaged coefficients on the left side, the damaged features are densely found on the 

right side of the frame. Therefore, the results can be used to correctly indicate damage.  

 

5.2.4 Bayesian Hypothesis Test using Angle Coefficient  

The angle coefficient from the ARX model does not need to be condensed using the 

Mahalanobis distance in order to be used in the Bayesian statistic. This statistic is 

univariate, it uses a vector and generates another vector. The angle statistic is scalar. 

When all the test runs are put together a vector is formed. Therefore, this coefficient can 

be directly used in the hypothesis test in order to detect damage. The results for the angle 

coefficient using the test data without mass for the left and right side coefficient     are 

shown in Figure 5.39 (a) and Figure 5.39 (b) respectively. It is shown that the right side 

of the frame at locations R4 and R5 are deemed damaged sections because the statistic 
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crosses the 95% confidence level. These locations are on the right side column of the 

frame and therefore this complies with the damage case. Additionally, the left side 

coefficient does not cross the bounds and is therefore deemed undamaged and healthy. 

However, the damage occurred at the 21
st
 run of testing which corresponds to the 6

th
 run 

on this plot. Therefore it would be expected that the statistic cross the threshold soon 

after this run was included in the statistic. Yet, the plot crosses the confidence bound at 

the 23
rd

 run on this plot which corresponds to the 38
th

 run of testing. This is a delayed 

detection of damage. Still, the correct location of damage is found.  

The results for the data with mass are not as conclusive. As shown in Figure 5.40, 

the left and right side coefficient     crosses the confidence level indicating a damaged 

section. However, the left side is not damaged in this case. Other pairs of coefficients 

were analyzed and the results indicate that the entire frame was subject to damage. 

These results are not consistent with the damage case and therefore this pair of test data, 

damage feature and control chart should not be used together in order to correctly 

located damage.  

 

5.2.5 Moving Range Chart for Residuals 

The moving range control chart can be used with the ARX regression residuals in the 

same way that the single variate regression errors were used. The results using the data 

without mass are compared to those with mass. In Figure 5.41 (a) the results are shown 

using the data without mass for      . This coefficient, along with      ,      ,      , 

     , and       cross the confidence bounds. These results comply with the actual 

damaged location.  
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Similarly, the results for the data with mass generally location the actual damaged 

location. Shown in Figure 5.41 (b) the results are shown for      . The plots that also 

cross the bounds are      ,      ,      ,      , and      . These results would lead 

an observer to the right side of the frame for damage. It would not indicate the right side 

column any more than the right side beam. As a result, the moving range control chart 

generally identifies the right side of the frame as a damaged section. It does not pinpoint 

the exact location of damage; however, does indicate the left side as an undamaged 

section which is consistent with the damage case.  

 

5.2.6 F-Test for ARX residuals  

The residuals for the ARX regression model can be used as damage features that can 

be tested for a change in their variance in the occurrence of damage. The residuals can be 

found using the equation below 

ε(n)= ∑         ∑ ∑            
   

 
   

 
                         (5.2) 

This is the equation for ARX regression shown in Chapter 2 rearranged to solve for the 

residuals. In effect, the alpha coefficients are tested for how well they estimate the 

relationship between the two locations involved within time. The data without mass and 

that with mass were used to generate the F-test for the ARX regression. The results are 

shown for a comparison in Figure 5.42 (a) and Figure 5.42 (b) respectively using 

Procedure 2. For the single variate regression residuals, Procedure 2 was able to find the 

placement and timing of damage. Therefore, it is now tested for the ARX regression 

residuals. For both plots in Figure 5.42, the correct timing of damage was found after the 

20
th

 run of testing because both plots peak at this point. The location of damage can then 
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be further analyzed. Using the data without mass, the F-test indicates a damaged location 

solely at R5 and R4 because       is the only coefficient that crosses the bounds of a 

95% confidence level. This is a very localized results for damage considering the actual 

damage is located at R5. 

  The results for the test data with mass were not as conclusive. Four coefficients, 

     ,      ,       and       crossed the confidence bound for the same confidence 

level. These damage indices are from the left side of the frame. This joint was not 

subjected to any damage and should not be indicated as damaged locations. Therefore, 

these results are deemed inconclusive. The data with mass should not be used in 

conjunction with the F-Test for detecting a change in the variation of ARX residuals.  

 

5.3 Auto Regression Results 

In order to use many control charts, there is an assumption that the variables used are 

normally distributed. It is shown in Figure 5.43 that the AR alpha and angle coefficients 

are normally distributed through the use of a normal probability plot. Like the ARX 

alpha coefficient, the AR alpha coefficient is actually a matrix as described in Chapter 

2.3.2. These are individually compared to a line to show that they are normally 

distributed. Contrastingly, in the angle coefficient, there is just a vector of coefficients 

because from each run test, a scalar value is found. In Figure 5.43(b) the blue “+” marks 

indicate the actual coefficients and the red line is a regressed line for comparison. The 

marks in both the alpha and angle coefficient stray from the line at the bottom of the 

plots. This may be why some of the methods do not precisely show the timing and 

location of damage shown in this section.   
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5.3.1 The Mahalanobis Distance used in the Fisher Criterion and Normalized Likelihood 

Ratio Test 

5.3.1.1 Mahalanobis Distance 

The Auto Regression alpha and angle coefficients can be used to create a 

Mahalanobis distance histogram. In this way, the damage features with the highest 

distance are those that are closest to the damage. First the alpha coefficient results will be 

examined. As seen in Figure 5.44 (a) the results for the data without mass are shown. The 

coefficient with the highest Mahalanobis distance is R1. This location is not very close to 

the actual damage although it is on the same joint; hence the results are not localized to 

the actual location of damage but would lead an observer to the correct vicinity of 

damage. Next the results for the data with mass can be analyzed and compared to those of 

the data without mass for the alpha coefficient. As seen in Figure 5.44 (b), those features 

with the highest distances include R5, R6 and L4. These coefficients on the right side 

indicate the correct location of damage on the right side column; however, the left side 

should not experience any damage. For this reason, the fisher criterion and normalized 

likelihood ratio test can be used to eliminate the discrepancies in these results by using a 

threshold value.    

The results for the angle coefficient are similar to that of the alpha coefficient. In 

Figure 5.45 (a) the Mahalanobis distance histogram is shown for the angle coefficient 

using data without mass. R1, R2, R5 and R6 are associated with the highest distances. 

Therefore damage is localized to the correct joint of the frame; even though R1 and R2 

are located on the right side beam, these locations are close the actual damaged location 
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and are within the same local joint. Contrastingly, the results for the angle coefficient for 

the data with mass in Figure 5.45 (b) show L5, R1 and R2 as damaged locations. These 

results are misleading for coefficients on the left side should not indicate damage. 

However, R1 and R2 are on the same local joint as the actual damage.  

In all of these cases, nothing can be said about the significance of the larger distances 

because there is no threshold to use for a comparison. Therefore, the Fisher Criterion and 

Normalized Likelihood Ratio Test can be used to create this confidence bound and are 

described in the next sections. There should be no damage on the left side of the girder 

considering the damage case in question. 

  

5.3.1.2 Fisher Criterion 

The Fisher Criterion can be used to monitor the significance of the Mahalanobis 

distance magnitudes. Initially the alpha coefficient results will be examined. The results 

for the data without mass are shown in Figure 5.46 (a). This indicates damage at R1 (L1 

crossing the confidence bound is neglected). However, the results for the data with mass 

are shown in Figure 5.46(b). This plot indicates that only R4 is a damaged section. This 

eliminates the coefficient      as a damaged feature. R4 is on the right side column of 

the frame near the damaged location and R1 is on the right side beam; however, the 

actual location of damage is not shown. Therefore these results would lead an observer in 

the correct vicinity of damage but not to the correct actual location of damage.  

Similar to the results for the data without mass for the alpha coefficient, the results for 

the angle coefficient also indicate R1 as the damaged section as shown in Figure 5.47 (a). 

These results are not localized enough to lead an observer to the correct section of 
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damage; however, R1 is on the same local joint as the actual damage. The results for the 

data with mass, shown in Figure 5.47 (b) do not indicate any damaged location. None of 

the sensor’s Fisher Criterion statistic crosses the boundary threshold for damage. This 

would lead to the conclusion that the entire frame is undamaged and in a healthy state 

which is not consistent with the damage case. Therefore, these results are deemed 

inconclusive and this pairing of damage indicator and control chart should not be used for 

statistical process control. 

It should be noted that the Mahalanobis distance and Fisher Criterion results for the 

Auto Regression model do not give very localized or trustworthy results. As a whole, 

these results are not consistent with the actual damaged section and are misleading. This 

combination of damage feature and control chart should be used in conjunction with 

other control charts in order to solidify the results.  

 

5.3.1.3 Normalized Likelihood Ratio Test 

The AR alpha coefficients can be used in the NLRT control chart to test for a 

damaged location only after they are condensed using the Mahalanobis distance. The 

alpha coefficient results using the data without and with mass are shown in Figure 5.48 

and Figure 5.49 respectively. The plots using the data with mas show a completely 

healthy frame; yet the results for the data without mass show a damaged frame on the left 

side of the frame because coefficient      crosses the unity bounds. Both of these results 

are not consistent with the actual damage case. Therefore the NLRT statistic should not 

be used with the alpha coefficient to detect and localize damage.  
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It should be noted that all the control charts based on the Mahalanobis distance of the 

AR model alpha coefficients give inconsistent results. This would lead to the conclusion 

that the Mahalanobis distance should not be used to the condense AR alpha coefficients 

in order to use them in univiariate methods. Since the AR model regresses the same 

location response onto itself, it may be more sensitive to manipulation. 

 

5.3.2 Normalized Likelihood Ratio Test for the Angle Coefficient 

The angle coefficient does not need to be reduced using the Mahalanobis distance in 

order to be used in the Normalized Likelihood Ratio Test. The results are shown in 

Figure 5.50 for the data without mass. Here      is indicated as a damaged location. This 

location is on the right side beam of the frame. Therefore these results would lead an 

observer to the correct vicinity of damage; however, not to the actual damaged location. 

Additionally, the results for the data with mass show a damaged section at L5 shown in 

Figure 5.51. This location is on the completely opposite side of the frame as the actual 

damaged location, R5. Therefore these results are very misleading As a result, the AR 

coefficients should not be used with the NLRT statistic to detect and localize damage.  

It should be noted that neither the alpha nor the angle coefficient from the AR model 

should be used in the Normalized Likelihood Ratio Test to detect damage. The results do 

not comply with the actual damaged location. 

 

5.3.3 Student’s t-test 

 

The same procedure was used for the AR residuals than for the ARX residuals. The 

variance of the residuals was tested for a change in the mean. The results for the data 
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without mass are shown in Figure 5.52. Here locations R5 and R6 are indicated as 

damaged sections of the frame because they cross the unity threshold. The results for the 

data with mass are not as conclusive. The entire frame is indicated as healthy and 

undamaged as shown in Figure 5.53. None of the coefficients from either side of the 

girder cross the threshold bound of unity. Therefore, this data set, damage feature, and 

control chart should not be used with each other in order to properly locate damage.  

 

 

5.3.4 Moving Range for Residuals 

The moving range control chart can be used with the linear regression residuals to 

pinpoint damage. The results for the data without mass and the data with mass pinpoint 

the same locations for damage. Shown in Figure 5.54 (a) the moving range plot for the 

data without mass is shown for    on both the left and right side of the frame. Both of 

these plots indicate damage on the right and left side of the frame. This does not comply 

with the damage case in question. The results for the data with mass show the same result 

as shown in Figure 5.54 (b). In effect, the AR residuals should not be used in conjunction 

with the moving range chart to test for a variance change and detect the correct location 

of damage.  

 

5.3.5 F-test for AR Residuals 

In order to be able to localize the damage to one sensor node, AR regression can be 

used. In this way, a set of coefficients can be made for each location separately. Instead 

of comparing the actual coefficients, the regression residuals are used as damage features. 

The assumption is that the residuals have a mean of zero; however in the event of 
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damage, the variance will change while the mean stays the same. For this reason, an F-

test is used to test the change in variance. The AR residuals can be found using Eq. (5.4) 

below: 

ε(n)= ∑         ∑            
   

 
                 (5.4) 

The results for the data set without mass will be analyzed using Procedure 2 and the 

results are shown in Figure 5.55 (a). The graph for the F-Tests crosses the 95% 

confidence level for coefficients     , and     , sensors that are on the center and lower 

end of the right side of the frame. It is at these locations that the null hypothesis can be 

rejected; the variance of the damage sensitive features has change significantly enough to 

indicate an out of control process. In the case of damage detection, this signifies a 

damaged location which is the correct location of damage. On the plot, coefficient      

actually has a larger magnitude for the F statistic than coefficient      which leads to the 

misleading conclusion that sensor R6 is actually where the damage is. However, these 

results are more localized than the ARX and collinear results because the damage is 

concentrated in the column and not the general right side of the girder. These results are 

very similar to the single variate regression results in which the same two sensors are 

identified as damaged.  

Secondly, the results for the test data with mass can be analyzed, shown in Figure 

5.55 (b) and compared to that of the data without mass. The same plot is generated for 

this set of data and the results are shown in Fig. Here, the coefficients that cross the 

bounds are     , and     . These results would indicate damage on the right side 

column and beam. This does generally locate the correct damaged section although the 

actual damaged location, R5, is not indicated. As a result, the results without mass show a 
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more localized result. However, the results with mass are not necessarily wrong. Damage 

is not found on the left side of the frame but is found on the right side. Therefore, an 

observer would be led to the correct vicinity of damage.  

 

5.4 Tri-variate Model 

5.4.1 Noise Comparison 

 As stated earlier, this model has not been used previously in damage detection 

schemes. The coefficient       is plotted for the left and right side coefficient shown in 

Figure 5.56.  This figure can compared to that of the single variate regression coefficient 

    shown in Figure 5.3. Initially, the error parameter is higher than the single variate 

model. Therefore, the model is tested for its robustness against noise using the 

normalized error parameter. The model is compared to the trusted single variate model. 

In effect, the average of each coefficient pairing was calculated over the 20 healthy runs 

and 20 damaged runs. Then the percent change was generated. The changes were 

grouped for each sensor pairing with the same j location. Noise was generated by creating 

a signal of normal distribution with a mean of zero and standard deviation of .001 and 

.008 for comparison. This noise signal was added to the data and used in the algorithm to 

create the influence coefficients.  

The results for the single variate regression were very consistent even when noise was 

added to the system as shown in Table 5.1. The only coefficients that had a concerning 

amount of error associated with them were the ones dealing with the L1 location which is 

to be expected because this sensor was found to be defective. The results are shown for 
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an increasing amount of noise. In all cases, the sensors that have the highest percent 

change are sensor R5 and R6. This is consistent with the damage case.  

However, the results for the tri-variate regression model were not as solid. Even 

without noise, more than half of the coefficients had large normalized error parameters 

associated with them. An X indicates that all of the coefficients associated with that 

sensor location have very high error and therefore were disregarded as false alarms. Even 

with the false alarms removed, the tri-variate model was able to find locations R2 and R4 

as damaged sections. These results are consistent with the damage case. It would be 

expected that any section close to the actual damaged location could have a significant 

change in response due to damage. Therefore, pinpointing R2 as a damaged location is 

not necessarily wrong. Yet, as more noise is added to the system, the results do not 

remain consistent. In Table 5.2, the model with a .008 standard deviation noise level 

indicates L4 and R4 as damaged locations. This does not comply with the actual damage 

location. Section L4 should remain categorized as a healthy section; therefore this model 

is not robust to noise. It is therefore not used as a regression type for any control charts.  

 

5.4.2 Bayesian Comparison 

In order to further justify that the tri-variate regression coefficients were not correctly 

portraying the change in response of the frame, a Bayesian hypothesis testing statistic 

was used that was verified in Labuz 2011. This method was used to verify the influence 

coefficients from simple beam-column connection. This specimen was a simpler structure 

than the frame discussed in this thesis; however, the Bayesian statistic proved that the 

influence coefficients from harmonic excitation on a simplified beam column connection 
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could be used as damage features for damage detection methods. The damage was 

correctly found on the beam. Further discussion of those results can be found in Labuz 

2011. For this thesis, the Bayesian statistics were used again in order to verify the use of 

single and tri-variate regression coefficients from impact data from a larger, more 

complex specimen.  

The first fifteen runs were used as a baseline for the Bayesian statistic. As a result, the 

results for this test will show twenty five run numbers. The first five are the last set of 

undamaged runs; the next twenty are the damaged tests. Therefore, damage should be 

detected soon after the 5
th

 run at locations close to the actual damage.  

As previously shown, the results are shown in Figure 5.21 for the single variate 

regression coefficient    . These results show that the left side of the frame, near 

locations L4 and L5 are undamaged. The statistic does not cross the threshold boundary. 

However, the right side coefficient does cross the threshold boundary right after the 5
th

 

run.  Therefore, these results pinpoint the exact timing and location of damage. However, 

the results for the tri-variate coefficients are not as conclusive. These are shown in Figure 

5.57 for coefficient      . Damage is detected on both the left or the right sides. This does 

not comply with the damage case and therefore these coefficients should not be used as 

correct representations of the properties of the frame.  

  

5.5 Collinear Regression Results 

It should be noted that this type of regression can only be used with data without mass 

because dynamic effects cannot be considered. Therefore only this data set is used and 

presented as results. Additionally, it should be shown that the collinear alpha and angle 
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coefficients are normally distributed. In Figure 5.58 the distributions are graphically 

compared to that of a linear regressed line. The coefficients in both plots do not stray far 

from the red line and therefore can be assumed to have a normal distribution. 

Additionally, from Eq. (2.10), the collinear regression coefficients are the same for when 

yi and yj are switched. For example, the coefficient      should be the same as coefficient 

     because the regressor is simply the average of yi and yj and will be the same no matter 

the order of yi and yj. For this reason, this section will call       (and      )  for the 

regression coefficient that involves yk being regressed onto yi  and yj. 

 

5.5.1 Exponentially Weighted Moving Average 

The exponentially weighted moving average statistic can be used with the collinear 

regression influence coefficient to detect and localize damage. The results for this 

statistic using the data without mass for the alpha coefficient is shown in Figure 5.59. 

These results are from       on both the left side and right side of the frame. This 

coefficient involves all of the sensor nodes that are the locations closest to damage: the 

right side column. The coefficient pairing should cross the bounds of the EWMA on the 

right side; however, they should stay within the range of the bootstraps for the left side. 

As seen from the figure,         does not cross the bounds while         does. This 

would indicate R4, R5, and R6 as damaged locations on the frame and L4, L5 and L6 as 

healthy locations on the frame. This is consistent with the damage case; the confidence 

bounds was found to be 94.2%.   

Unlike the results from the alpha coefficient, the results for the angle coefficient      

do not show damage on either side of the frame for this coefficient. However, damage is 
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found on the right side column of the frame using       shown in Figure 5.60. This proves 

that the order of regressors does change the results. The confidence level is found to be 

94.8%. Additionally, no damage is found on the left side using this coefficient indicating 

this section as an undamaged, healthy section. Therefore, damage is detected and 

localized to the correct location of the frame using the angle coefficient.  

 

5.5.2 Cumulative Sum 

The Cumulative sum statistic can be used with the collinear regression influence 

coefficients to test for damage. The alpha coefficient results are shown in Figure 5.61 (a) 

and Figure 5.61 (b) for       on the left and right side respectively. The left side 

coefficient crosses the bounds while the right side coefficient does not. This is the 

opposite of what is to be expected based on the damage case. There is damage on the 

right side of the frame, not the left side. Other coefficients from this regression model 

were analyzed which indicate that there is damage all over the frame on both the left and 

right sides. These results are deemed inconclusive.  

On the other hand, the result for the angle coefficient       is shown in Figure 5.62. 

Here the results are consistent with the damage case. The plot for the right side 

coefficient indicates damage by crossing the confidence bound; however, the left side is 

deemed as healthy because it does not cross the confidence bound. It would be expected 

that the CUSUM plot would cross the bounds as close to the 20
th

 run as possible. Yet, the 

plot doesn’t cross the threshold until about the 38
th

 run. This is a delayed indication of 

damage; still the correct location of damage is detected to a 94.5% confidence level. The 

sensors R4, R5 and R6 are closest to the actual damaged location and are expected to 
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change in response significantly in the presence of a damaging event. Additionally, the 

left side is correctly indicated as undamaged. Other pairs of coefficients are analyzed and 

the results are consistent with the damage case. In conclusion, the CUSUM should only 

be used with the collinear regression angle coefficient to correctly identify the timing and 

location of damage. 

 

5.5.3 Mean Square Error Indicator 

Only the results for the ModMSE are presented. The alpha and angle coefficient can 

be used in the ModMSE to detect and localized damage. The results for the angle 

coefficient       are shown for the left and right side in Figure 5.63(a) and Figure 5.63 (b) 

respectively. Here the ModMSE for the original data crosses the bounds on sides of the 

frame. This would indicate damage on both the left and right side. However, this is not 

consistent with the damage case. Additionally, other pairs of coefficients were analyzed 

and these results also show damage on both sides of the frame. Therefore, the ModMSE 

should not be used with the collinear regression alpha coefficients to detect and localize 

damage. 

However, the results for the angle coefficient      , shown in Figure 5.64 (a) and 

Figure 5.64 (b) for the left and right side        coefficient, give the opposite result. No 

damage is found at locations R4, R5, and R6 as well as L4, L5 and L6. Additionally, 

damage is not detected anywhere on the girder because all the coefficients from the left 

and right side of the frame do not cross the bounds of the threshold.   
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It is noted that the collinear regression alpha and angle coefficients give misleading 

results using the ModMSE control chart. As a result, this pairing should not be used in 

control processes. 

 

5.5.4 Normalized Likelihood Ratio Test 

Collinear regression involves three different locations. In effect, the results may be 

able to show a more information about the location of damage because the coefficients 

themselves include more locations. It is still expected that those coefficients with 

combinations of the locations on the right side column will show significant damage by 

crossing the unity confidence bounds. The results for the alpha coefficient are shown in 

Figure 5.65. The plots are initially analyzed for the timing of damage. Both plots in 

Figure 5.65 show a peak at the 21
st
 run of testing. This is the correct time of the damaging 

event. The results can then be analyzed for their effectiveness in localizing the damage to 

the right side column of the frame. The collinear regression for the alpha coefficient 

shows damage at locations R1, R2, R4, R5 and R6 because         and          cross the 

boundary threshold. Even though there is no damage at sensor location R1 and R2, these 

results are still localized to the right side of the frame with more attention to the right side 

column (R5 and R6) where the damage is actually located. Additionally, no coefficient 

crosses the bounds from the left side of the frame indicating an undamaged state of the 

frame. These results are in compliance with the actual damage location.  

The results of the angle coefficient can now be compared to the alpha coefficient and 

are shown in Figure 5.66. They are very similar to the alpha coefficient, except that more 

coefficients cross the bounds. These include        ,        ,        ,        ,        , 
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       ,        ,        ,        ,        ,and          This result pinpoints not only R2, 

R5, and R6 as damaged locations, but also R1, R3 and R4. All of these locations make up 

the right side of the frame. Inspecting the magnitudes of the statistic, it would seem as 

though all of these locations have similar amounts of damage with R2, R6 and R5 with 

the largest influence on the statistics that cross the bounds. This is the same result as the 

alpha coefficient.  

The collinear regression results for both the alpha and angle coefficient show similar 

results. The damage is not as localized as the single variate regression; however, it does 

detect damage in the correct vicinity. Coefficients from right side of the girder cross the 

bounds while no coefficients from the left side cross. These results can be compared to 

those of the ARX results in which damage is localized to the right side of the girder but 

not within that particular side.  

 

5.5.5 Moving Range Control Chart for Residuals 

The residuals of the collinear regression can be used in a moving range chart to test 

for a change in their variance. The same procedure for condensing the residuals was used 

on this type of regression as the single variate regression. The results are shown in Figure 

5.67 for coefficient        . The coefficient does not cross the bounds on the left side but 

does on the right. This indicates damage on the right side column of the frame. Other 

coefficient pairings were analyzed and damage can be detected on the entire right side of 

the frame. It is not indicated specifically at the right side column; however, it does 

exclude the left side from any damaged section.  
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5.5.6 F-test for Collinear Regression Residuals  

The residuals for the collinear regression can be used in the F-test to test the null 

hypothesis that the variance of the undamaged and damaged residuals stays the same. 

When the statistic crosses the bounds, the location associated with the residual can be 

deemed as a damaged location. The residuals for the collinear regression can be found 

using the equation below.  

ε(n)=           
           

 
           (5.3) 

Here   ,    and    are the responses of three locations at time step n correlated through 

    . 

 The results using Procedure 2 are shown in Figure 5.68. It can be seen that the 

correct timing of damage was found; the plots peak after the 20
th

 run. Additionally, the 

results localize the damage to one sensor pairing:        . This coefficient pinpoints the 

correct location of damage. Even though location R2 is on the beam, R5 and R6 are on 

the column very close to the actual damaged location. Therefore, these results are very 

localized and would lead an observer to the correct location of damage. These results are 

also very similar to the results for the angle coefficient using the normalized likelihood 

ratio test. In effect, the comparison of the results for both of these charts allows an 

observer to be more certain about the findings. 
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Figure 5.1: Damage on the back of a sensor that would impair it from working correctly 

 

 

 

 

 

 
 

Figure 5.2: Normal Probability plots for the (a) alpha coefficient       and (b) 

angle coefficient       for the single variate regression model  

 

(a)               (b) 
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   (a)                                                  (b) 

Figure 5.3: Results for the coefficient values, accuracy and error parameters for (a) 

coefficient        and (b) coefficient        . 

 

 

 

 

 
 

Figure 5.4: Typical plots for the EWMA alpha coefficient with Shewhart threshold 

for the (a) coefficient       and (b) coefficient       . 

 

 

 

 

 

 

(a)                 (b) 
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Figure 5.5: Typical plots for the EWMA alpha coefficient with bootstrapping for the 

(a) coefficient       and (b) coefficient       . 

 

 

 

 

 

 

 
 

Figure 5.6: Typical plots for the EWMA angle coefficient with bootstrapping for the 

(a) coefficient       and (b) coefficient      . 

 

 

 

 

 

 

 

(a)               (b) 

(a)  (b)  
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Figure 5.7: Cumulative Sum Charts for (a) the left and (b) right side of the frame. 

Shows no boundary for detecting damage, just a possible change point 

 

 

 

 

 

 

 

 
 

Figure 5.8: Typical plots for the CUSUM alpha coefficient with bootstrapping for 

(a) coefficient       and (b) coefficient        

 

 

 

 

 

 

(b

)  

(a)  

(a)                 (b) 
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Figure 5.9: Typical plots for the CUSUM angle coefficient with bootstrapping for (a) 

coefficient       and (b) coefficient        

 

 

 

 

 

 

 

 

 
 

 

Figure 5.10: Typical plots of Mean Square Error Indicator for alpha coefficient on 

the (a) left and (b) right sides of the frame 

 

 

 

 

 

(a)  (b)  

(b)  (a)  
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Figure 5.11: MSE plots for alpha (a) coefficient       and (b) coefficient       . 

The threshold limit is crossed on both sides within the supposed undamaged runs 

and the bootstrap does not fit the data. 

 

 

 

 

 

 

 

 
 

Figure 5.12: The magnitudes of the (a) MSE and (b) ModMSE for all pairs of alpha 

coefficients. 

 

 

 

 

(b)  (a)  

(b)  (a)  
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Figure 5.13: Eliminating False Alarms: The accuracy and error parameters 

associated with coefficient        can be analyzed to correct for any false results. 

 

 

 

 

 

 
 

Figure 5.14: ModMSE Bootstrap for alpha (a) coefficient        and (b)       

coefficient . 

 

 

 

 

 

 

 

(a)        (b) 
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Figure 5.15: ModMSE Bootstrap for angle (a) coefficient        and (b)       

coefficient. 

 

 

 

 

 

 

 

 

 
Figure 5.16: Likelihood Ratio Statistic plotted with actual mean and expected value 

obtained from Eq. (3.13). 

 

 

(a)                 (b) 
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(a)                                                                  (b) 

 

Figure 5.17: The results for the Single variate regression using the alpha coefficient 

in the NLRT statistic for the (a) left side of the girder and (b) right side of the 

girder. 

 

 

 

 

 

 
(a)                                                            (b) 

Figure 5.18: The results for the Single variate regression using the angle coefficient 

in the NLRT statistic for the (a) left side of the girder and (b) right side of the 

girder. 
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Figure 5.19: Student’s t-test for the Single Variate alpha coefficient for the (a) left 

and (b) right side of the frame respectively. 

 

 

 

 

 

 

 
 

Figure 5.20: Student’s t-test for the Single Variate angle coefficient for the (a) left 

and (b) right side of the frame respectively. 

 

 

(a)               (b) 

(a)               (b) 
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Figure 5.21: Single Variate Regression alpha coefficient using impact test data 

Bayesian Hypothesis test for the coefficient (a)       and coefficient (b)        

 

 

 

 

 

 

 
 

Figure 5.22: Single Variate Regression angle coefficient using impact test data 

Bayesian Hypothesis test for the coefficient (a)      and coefficient (b)       

 

 

(a)               (b) 

(a)               (b) 
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Figure 5.23: Moving Range results for the regression residuals of the single variate 

regression model for coefficient     

 

 

 

 

 

 

 

 
Figure 5.24: F-test results for the regression residuals of the single variate 

regression model using Procedure 1. 

 

 

Crosses Bounds 
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Figure 5.25: F-Test results for the regression residuals of the single variate 

regression model using Procedure 2. 

 

 

 

 

 

 
 

Figure 5.26: Normal Probability Plot for the (a) alpha        and (b) angle 

coefficient        from the ARX regression model  

 

 

 

 

 

(a)               (b) 
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Figure 5.27: Mahalanobis Distance Histograms for alpha coefficient using data (a) 

without mass and (b) with mass. 

 

 

 

 

 

 

 

 
 

Figure 5.28: Mahalanobis Distance Histograms for angle coefficient using data (a) 

without mass and (b) with mass. 

 

 

 

 

 

 

(a)                      (b) 

(a)                        (b) 
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Figure 5.29: Fisher Criterion for alpha coefficient (a) without and (b) with mass. 

 

 

 

 

 

 

 

 
 

Figure 5.30: Fisher Criterion for angle coefficient (a) without and (b) with mass. 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

(a)                   (b) 
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(a)                                                               (b) 

Figure 5.31: The results for the ARX regression using the alpha coefficient without 

mass in the NLRT statistic for the (a) left side of the girder and (b) right side of the 

girder 

 

 

 

 

 

 

 

 
 

Figure 5.32: The results for the ARX regression using the alpha coefficient with 

mass in the NLRT statistic for the (a) left side of the girder and (b) right side of the 

girder 

 

 

 

 

 

 

(a)             (b) 
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Figure 5.33: Bayesian Statistic Hypothesis Test for ARX model alpha coefficient 

without mass for coefficient     

 

 

 

 

  
 

Figure 5.34: Bayesian Statistic Hypothesis Test for ARX model alpha coefficient 

with mass for coefficient     

 

 

 

 

(a)               (b) 

(a)               (b) 
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       (a)                                                                  (b) 

Figure 5.35: The results for the ARX regression using the angle coefficient without 

mass in the NLRT statistic for the (a) left side of the girder and (b) right side of the 

girder. 

 

 

 

 

 

 

 

 
       (a)                                                                  (b) 

Figure 5.36: The results for the ARX regression using the angle coefficient with 

mass in the NLRT statistic for the (a) left side of the girder and (b) right side of the 

girder. 
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Figure 5.37: Student’s t-test for the ARX residuals using the data without mass for 

the (a) left and (b) right sides of the girder. 

 

 

 

 

 

 

 
 

Figure 5.38: Student’s t-test for the ARX residuals using the data with mass for the 

(a) left and (b) right sides of the girder. 
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Figure 5.39: Bayesian hypothesis test for the ARX angle coefficient without mass for 

(a) coefficient       and (b) coefficient       

 

 

 

 

 

 

 

 
 

Figure 5.40: Bayesian hypothesis test for the ARX angle coefficient without mass for 

(a) coefficient       and (b) coefficient       

 

 

 

 

 

(a)               (b) 

(a)               (b) 



124 

 

 
 

Figure 5.41: Moving Range results for the ARX regression model coefficient     

residuals (a) without mass and (b) with mass 

 

 

 

 

 

 

 
 

Figure 5.42: F-Test results for the ARX regression model residuals (a) without mass 

and (b) with mass using Procedure 2 

 

 

 

 

 

 

(a)                  (b) 

(a)        (b) 



125 

 

 
 

Figure 5.43: Normal Probability plot for (a) alpha      and (b) angle coefficient 

     for the AR regression model. 

 

 

 

 

 

 
 

Figure 5.44: Mahalanobis Distance Histograms for alpha coefficient for Auto 

Regression using data (a) without mass and (b) with mass. 
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Figure 5.45: Mahalanobis Distance Histograms for angle coefficient for Auto 

Regression using data (a) without mass and (b) with mass. 

 

 

 

 

 
 

Figure 5.46: Fisher Criterion results for the auto regression model for the alpha 

coefficient using data (a) without mass and (b) with mass 
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Figure 5.47: Fisher Criterion results for the auto regression model for the angle 

coefficient using data (a) without mass and (b) with mass 

 

 

 

 

 
       (a)                                                                  (b) 

Figure 5.48: NLRT results for the auto regression model without mass for the alpha 

coefficient on the (a) left side and (b) right side of the girder 
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       (a)                                                                  (b) 

Figure 5.49: NLRT results for the auto regression model with mass for the alpha 

coefficient on the (a) left side and (b) right side of the girder 

 

 

 

 

 

 

 

 

 

 
       (a)                                                                  (b) 

Figure 5.50: NLRT results for the auto regression model without mass for the angle 

coefficient on the (a) left side and (b) right side of the girder 
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       (a)                                                                  (b) 

Figure 5.51: NLRT results for the auto regression model with mass for the angle 

coefficient on the (a) left side and (b) right side of the girder 

 

 

 

 

 

 

 
 

Figure 5.52: Student’s t-test for AR residuals using the data without mass for the (a) 

left and (b) right side of the girder 
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Figure 5.53: Student’s t-test for AR residuals using the data with mass for the (a) 

left and (b) right side of the girder 

 

 

 

 

 

 
 

Figure 5.54: Moving Range results for the auto regression residuals without mass 

for coefficient    on the left and right side of the frame. 
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Figure 5.55: F-test results for the auto regression residuals using the data (a) 

without mass and (b) with mass using Procedure 2 
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Figure 5.56: Coefficient, Accuracy and Error plot for coefficient (a)         and (b) 

          

 

 

 

 

 

 

 

 

 

 

(a)                 (b) 



132 

 

 

Table 5.1: Percent Change of Single Variate Coefficients for (1) No Noise, (2) Noise 

with .001 Standard Deviation, and (3) Noise with .008 Stand Deviation 

(1)/Sensor 

Location 

1 2 3 4 5 6 

Left X 0.024 0.037 0.110 0.223 0.242 

Right 0.329 0.136 0.072 0.084 0.309 0.354 

(2)       

Left X 0.024 0.037 0.110 0.223 0.241 

Right 0.330 0.136 0.072 0.084 0.309 0.354 

(3)       

Left X 0.036 0.036 0.105 0.217 0.229 

Right 0.324 0.132 0.069 0.085 0.305 0.349 

 

 

 

 

 

 

 

 

 

Table 5.2: Percent Change of Tri-variate Coefficients for (1) No Noise, (2) Noise 

with .001 Standard Deviation, and (3) Noise with .008 Stand Deviation 

(1)/Sensor 

Location 

1 2 3 4 5 6 

Left X 0.152 0.191 0.186 X X 

Right X 0.262 0.225 0.248 X 0.227 

(2)       

Left X .152 0.195 .232 X X 

Right X 0.274 0.225 0.191 0.205 0.227 

(3)       

Left X 0.213 0.174 0.641 X X 

Right X 0.168 0.148 0.227 .204 0.219 
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Figure 5.57: Tri-Variate Regression coefficient using impact data Bayesian 

Hypothesis test for the coefficient (a)         and coefficient (b)         

 

 

 

 

 

 

 
 

Figure 5.58: Normal Probability Plot for the (a) alpha coefficient         and (b) 

angle coefficient         for the collinear regression model 

 

 

 

 

 

 

(a)               (b) 

(a)               (b) 



134 

 

 
 

Figure 5.59: Typical plots for the EWMA alpha coefficient collinear regression with 

bootstrapping using collinear regression for the (a) coefficient         and (b) 

coefficient         

 

 

 

 

 

 

 
 

Figure 5.60: Typical plots for the EWMA angle coefficient with bootstrapping using 

collinear regression for the (a) coefficient         and (b) coefficient         
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Figure 5.61: Typical plots for the CUSUM alpha coefficient with bootstrapping 

using collinear regression for the (a) coefficient         and (b) coefficient         

 

 

 

 

 

 

 
 

Figure 5.62: Typical plots for the CUSUM angle coefficient with bootstrapping 

using collinear regression for the (a) coefficient         and (b) coefficient         
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Figure 5.63: Typical ModMSE plots for the alpha (a) coefficient         and (b) 

coefficient         using collinear regression 

 

 

 

 

 
 

Figure 5.64: Typical ModMSE plots for the angle (a) coefficient         and (b) 

coefficient         using collinear regression 
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     (a)                                                               (b) 

Figure 5.65: The results for the collinear regression using the alpha coefficient in the 

NLRT statistic for the (a) left side of the girder and (b) right side of the girder. 

 

 

 

 

 
(a)                                                           (b) 

Figure 5.66: The results for the collinear regression using the angle coefficient in the 

NLRT statistic for the (a) left side of the girder and (b) right side of the girder. 
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Figure 5.67: Moving Range for the collinear regression residuals for         

 

 

 

 

 
Figure 5.68: F-Test results for the collinear regression residuals using Procedure 2 

 

 

 

 

 

 



139 

 

6. Summary, Conclusions and Future Work 

 

This thesis presents multiple damage features, control charts, and threshold generating 

methods that can effectively be used to detect the timing and location of damage. The 

algorithm introduced is an output only damage detection method that does not require 

any previous knowledge of the structure or damaged location. Furthermore, a modified 

Mean Square Error statistic is introduced which eliminates the susceptibility of the 

statistic to the variance within a data set. The enhanced algorithm, ModMSE, is 

introduced and its application and effectiveness is demonstrated.  

The damage features used in this thesis are linear regression parameters. These 

indicators change with a change in the physical properties of a structure and can therefore 

be used to detect a change in a structure due to a damaging event. They include the slope 

of the linearly regressed line, the angle between two linear regressed lines, and the 

regression residuals. The slope and angle are subject to a change in their mean in the 

occurrence of damage and the regression residuals are subject to a change in their 

variance. Four different linear regression models are used which include the Single 

Variate, Auto Regressive with Exogenous term, Auto Regressive, and Collinear. 

Additionally, the effect of mass is investigated in this thesis. Univariate methods do not 

lend themselves to incorporate dynamic effects and therefore these effects are only 

considered in multivariate regression models: the AR and ARX linear regression 

techniques. Mass is added to the system in order to analyze its effect on these linear 

regression parameters.  

Because the damage features are subject to different parameter changes (i.e. mean or 

variance) in the event of damage, various control charts are used with each damage 
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feature that are sensitive to the appropriate change. Additionally, different methods lend 

themselves to either single variate or multivariate parameters (i.e. scalar or matrix 

damage features). It is shown in this thesis that the single variate linear regression 

parameters (whether using the alpha, angle or residuals as damage features) are the most 

consistently correct damage features. The control charts used with these parameters 

consistently indicate the correct timing and location of damage. Generally, the ARX 

regression parameters localize damage to the correct local joint using the data without 

mass but cannot localize it further to the correct element in the structure. Similarly, the 

collinear regression parameters detect damage on the correct local joint of the frame. 

Most of the control charts detect damage in the correct vicinity of damage. However, the 

results for the Auto Regression are more inconsistent. This may be a result of the non-

normality of the damage features themselves as shown in the normal probability plots for 

these features. Therefore, it may not capture the changing properties due to damage. 

Additionally, the superimposed mass has a significant effect on the results of the change 

point analysis. Many control charting methods, such as the Normalized Likelihood Ratio 

test, were not successful in indicating the correct location of damage using this data set. 

The vibration data more accurately depict the behavior of the structure when mass is not 

added to the frame.   

Bootstrapping as well as simple Shewhart thresholds are all viable options for 

creating confidence bounds for control charts. These are all subject to certain confidence 

levels. Because each bootstrap is different, the results for the bootstrapping will be 

altered every time; additionally, they can be customized for user defined confidence 

levels which makes them suspect to inconsistencies. Unless enough bootstraps are used, 
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damage detection results will differ. On the other hand, confidence levels are pre-chosen 

for the Shewhart threshold.  Therefore these methods may show more consistent results 

that can be repeatedly reproduced. However, it is also shown, in the case of the EWMA 

statistic that sometimes the simple Shewart thresholds do not lend themselves to all types 

of data sets. This threshold indicated a fully healthy frame. Similarly, distribution 

thresholds can also be valid methods for creating a threshold. These also use 

predetermined confidence levels. It is recommended that for civil engineering damage 

detection purposes, in using univariate and/or multivariate control charts a “shotgun 

approach” be utilized in which multiple charts be used on the same data set to coordinate 

damage localization.  

However, more work may be done in this area. Other damage cases may be 

investigated to see how well the algorithm can detect and localize damage. Additionally, 

this thesis tries to evaluate the most well-known and trusted statistics in order to compare 

their results. Hence, other control charts may be analyzed as well. There are many 

different types of statistical process controls that are used in other disciplines. An 

example is the less common Grey relational coefficient. This statistic can be used to show 

a relationship among a series of data in order to detect a shift or damaged location in 

concrete crack patterns. Additionally, more work is needed to enhance the performance 

of the F-test; a more refined threshold boundary should be used in order to test for 

damage. Furthermore, the location and number of sensors can have an effect on the 

accuracy and resolution of damage detection. This investigation should be included in 

future work. 
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Nichols et al. (2003) define a successful scheme as one that “will both identify the 

damage and quantify the statistical significance of the result.” It is shown in this thesis 

that IDDA, when combined with the control charts, is an efficient damage detection 

scheme. The implementation of change point detection methods with IDDA features that 

was presented in this thesid accurately locates the damage using statistically generated 

threshold values to determine the significance of change. A similar approach for other 

data-driven damage detection methods is recommended. 
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