
Lehigh University
Lehigh Preserve

Theses and Dissertations

2011

Dynamic Response of Oily Clay to Impact Loading
Carlos Ismael Medina
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Medina, Carlos Ismael, "Dynamic Response of Oily Clay to Impact Loading" (2011). Theses and Dissertations. Paper 1176.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1176?utm_source=preserve.lehigh.edu%2Fetd%2F1176&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


 

 

 

 

Dynamic Response of Oily Clay to Impact Loading 

 

by 

 

Carlos Medina 

 

 

A Thesis 

Presented to the Graduate and Research Committee 

of Lehigh University 

in Candidacy for the Degree of 

Master of Science 

 

in 

 

Civil and Environmental Engineering 

 

Lehigh University 

August 12, 2011 

 

 

  



ii 

 

 

 

 

 

 This thesis is accepted and approved in partial fulfillment of requirements for the Master 
of Science. 

 

 

 

 

________________ 

Date 

 

 

 

 

 

 

 

       ______________________________ 

         Thesis Advisor 

 

  

       ______________________________ 

Chairperson of Department 



iii 

 

 

 

 

 

 

 ACKNOWLEDGEMENTS 

 

I would first like to thank Professor Sibel Pamukcu. I appreciate her guidance and 

oversight throughout my graduate studies. Also, Professor Mesut Pervizpour who along with 

Professor Pamukcu served as an advisor and pointed me in the proper direction in order to 

complete this work. Special thanks go to Professor Naito and his grad students who developed 

the numerical models. I would also like to thank Trent Muraoka and Dan Zeroka who assisting 

me in the lab for countless hours. Lastly, I would like to thank my family. Specifically my 

parents for providing me with support throughout my studies and never allowing me to step 

backwards. 

  



iv 

 

 TABLE OF CONTENTS 

 
ACKNOWLEDGEMENTS ........................................................................................................... iii 

TABLE OF CONTENTS ............................................................................................................... iv 

LIST OF FIGURES ...................................................................................................................... vii 

LIST OF VARIABLES................................................................................................................... x 

ABSTRACT .................................................................................................................................... 1 

Chapter 1 INTRODUCTION .......................................................................................................... 2 

1.1 ROMA PLASTILLINA CLAY ....................................................................................... 2 

1.2 NEED FOR STUDY ........................................................................................................ 3 

1.3 BALL DROP TEST ......................................................................................................... 5 

1.4 FOCUS OF RESEARCH ................................................................................................. 7 

Chapter 2 : BACKGROUND.......................................................................................................... 8 

2.1 DYNAMIC SOIL PROPERTIES .................................................................................... 8 

2.2 YOUNG’S AND SHEAR MODULUS ......................................................................... 10 

2.3 WAVE PROPAGATION ............................................................................................... 12 

2.3.1 LONGITUDINAL WAVE ..................................................................................... 12 

2.3.2 TORSIONAL WAVE ............................................................................................. 15 

2.3.3 Rayleigh Waves ...................................................................................................... 16 

2.4 DAMPING/ATTENUATION ........................................................................................ 18 

2.5 RESONANT COLUMN ................................................................................................ 21 

Chapter 3 : LABORATORY TESTING ....................................................................................... 25 

3.1 RESONANT COLUMN EQUIPMENT ........................................................................ 25 

3.1.1 TORSIONAL DRIVE COILS AND MAGNET .................................................... 26 

3.1.2 LONGITUDINAL DRIVE COILS AND MAGNET ............................................. 26 

3.1.3 TOP PLATEN SYSTEM ........................................................................................ 28 

3.1.4 BOTTOM PLATEN SETUP .................................................................................. 28 

3.1.5 OTHER ................................................................................................................... 30 

3.2 ELECTRICAL EQUIPMENT/AUXILIARY EQUIPMENT ........................................ 31 

Chapter 4 : DATA ANALYSIS AND INTERPRETATION .................................................... 35 



v 

 

4.1 DATA REDUCTION ..................................................................................................... 35 

4.2 CURVE FITTING .......................................................................................................... 42 

4.2.1 Reference Strain (�� ): ........................................................................................... 42 

4.2.2 NORMALIZED SHEAR MODULUS ................................................................... 44 

4.2.3 DAMPING FIT ....................................................................................................... 45 

4.3 DRUCKER-PRAGER CAP MODEL ............................................................................ 47 

4.3.1 GENERAL THEORY PLASTICITY ..................................................................... 47 

4.3.2 YIELD SURFACE FOR DRUCKER PRAGER WITH CAP ................................ 49 

Chapter 5 : DATA ANALYSIS AND INTERPRETATION .................................................... 55 

5.1 SAMPLE PREPORATION............................................................................................ 55 

5.1.1 UNDISTURBED SAMPLES ................................................................................. 55 

5.1.2 REMOLDED SAMPLES ....................................................................................... 57 

5.1.3 HEATED SAMPLES.............................................................................................. 58 

5.2 RESULTS....................................................................................................................... 59 

5.3 ANALYSIS USING PREDICTIVE EQUATION ......................................................... 67 

5.4 PREDICTIVE CURVES FOR DAMPING ................................................................... 70 

5.5 COMPARISONS TO DRUCKER PRAGER CAP MODEL ........................................ 74 

5.6 CONCLUSSION/RECOMMENDATIONS .................................................................. 80 

Appendix A. CALIBRATION .................................................................................................. 81 

A.1 POLAR MASS MOMENT OF INERTIA FOR TOP PLATEN ................................... 81 

A.2 Torque Calibration Constant .......................................................................................... 92 

A.3 Apparatus Damping Coefficient for Torsion ................................................................. 95 

A.4 Sample Test .................................................................................................................... 97 

Appendix B. DATA REDUCTION CURVES ......................................................................... 99 

B.1 UNDISTURBED ............................................................................................................ 99 

B.2 UNDISTURBED HEATED ......................................................................................... 102 

B.3 REMOLDED ................................................................................................................ 105 

B.4 REMOLDED HEATED ............................................................................................... 108 

Appendix C. DATA SHEETS ................................................................................................ 111 

C.1 UNDISTURBED .......................................................................................................... 111 

C.2 UNDISTURBED HEATED ......................................................................................... 116 



vi 

 

C.3 REMOLDED ................................................................................................................ 121 

C.4 REMOLDED HEATED ............................................................................................... 127 

Bibliography ............................................................................................................................... 132 

VITA ........................................................................................................................................... 134 

 

  



vii 

 

LIST OF FIGURES 

FIGURE 1.1- TESTING TRAY PACKED WITH CLAY AND FIBER OPTIC GRID................ 6 

FIGURE 1.2- FRAME USED TO DROP STEEL BALL ONTO THE CLAY SAMPLE............. 6 

FIGURE 2.1-HYSTORESIS LOOP ............................................................................................... 9 

FIGURE 2.2DEGRADATION OF SHEAR MODULUS WITH INCREASING SHEAR 

STRAIN ................................................................................................................................... 9 

FIGURE 2.3- TYPICAL STRESS-STRAIN GRAPH PRODUCED FROM TRIAXIAL TEST 11 

FIGURE 2.4- CONSTRAINED ROD WITH A LONGITUDINAL STRESS WAVE ............... 12 

FIGURE 2.5- RAYLEIGH WAVE .............................................................................................. 17 

FIGURE 2.6- FREE-FIXED SPECIMEN .................................................................................... 22 

FIGURE 3.1-SCHEMATIC OF RESONANT COLUMN ........................................................... 27 

FIGURE 3.2- SAMPLE SETUP ................................................................................................... 27 

FIGURE 3.3- TOP PLATEN ........................................................................................................ 29 

FIGURE 3.4- TOP PLATEN SYSTEM SIDE VIEW .................................................................. 29 

FIGURE 3.5- TOP PLATEN SYSTEM TOP VIEW ................................................................... 29 

FIGURE 3.6-WIRING SCHEMATIC .......................................................................................... 32 

FIGURE 3.7-CONSOLIDATED WIRING SCHEMATIC .......................................................... 33 

FIGURE 4.1- CIRCLE SHOWS 180 PHASE BETWEEN INPUT AND OUTPUT SIGNAL ... 37 

FIGURE 4.2- DIMENSIONLESS FREQUENCY FACTOR GRAPH FROM ASTM D4015 ... 39 

FIGURE 4.3- AMPLIFICATION COEFFICIENT BASED ON THE DIMENSIONLESS 

FREQUENCY FACTOR ...................................................................................................... 41 

FIGURE 4.4- SHEAR STRESS-STRAIN GRAPH ..................................................................... 43 

FIGURE 5.1- CIRCULAR CLAY LAYERS ............................................................................... 56 



viii 

 

FIGURE 5.2- WHOLE CLAY SAMPLE ..................................................................................... 56 

FIGURE 5.3- SHEAR MODULUS BY PREPARATION METHOD ......................................... 60 

FIGURE 5.4- SHEAR MODULUS FOR UNDISTURBED SAMPLES ..................................... 61 

FIGURE 5.5- SHEAR MODULUS FOR UNDISTURBED HEATED ....................................... 61 

FIGURE 5.6- SHEAR MODULUS FOR REMOLDED .............................................................. 62 

FIGURE 5.7- SHEAR MODULUS FOR REMOLDED HEATED ............................................. 62 

FIGURE 5.8- DAMPING RATIO BY PREPARATION METHOD ........................................... 64 

FIGURE 5.9- DAMPING RATIO FOR UNDISTURBED .......................................................... 64 

FIGURE 5.10- DAMPING RATIO FOR UNDISTURBED HEATED ....................................... 65 

FIGURE 5.11- DAMPING RATIO FOR REMOLDED .............................................................. 65 

FIGURE 5.12- DAMPING RATIO FOR REMOLDED HEATED ............................................. 66 

FIGURE 5.13- MODULUS REDUCTION CURVES ................................................................. 69 

FIGURE 5.14- AVERAGE MODULUS REDUCTION CURVES ............................................. 69 

FIGURE 5.15- DAMPING RATIO PREDICTIVE CURVES ..................................................... 72 

FIGURE 5.16- HEATED SAMPLES PREDICTIVE CURVES .................................................. 72 

FIGURE 5.17- REMOLDED SAMPLES PREDICTIVE CURVES ........................................... 73 

FIGURE 5.18- MODULUS REDUCTION CURVES USING MODEL VALUES  ................... 77 

FIGURE 5.19- STRESS-STRAIN CURVES USING MODEL VALUES .................................. 77 

FIGURE 5.20- STRESS-STRAIN CURVES USING MODEL VALUES .................................. 78 

FIGURE 5.21- MODULUS REDUCTION CURVES USING CALCULATED SHEAR 

MODULUS ........................................................................................................................... 78 

FIGURE 5.22- STRESS-STRAIN RELATIONSHIP USING CALCULATED SHEAR 

MODULUS ........................................................................................................................... 79 



ix 

 

FIGURE 5.23- STRESS-STRAIN RELATIONSHIP USING CALCULATED SHEAR 

MODULUS ........................................................................................................................... 79 

FIGURE A.1-SHOP DRAWING OF CALIBRATION RODS ................................................... 83 

FIGURE A.2- RESONANT FREQUENCY OF THE CALIBRATION RODS .......................... 83 

FIGURE A.3- FROM (TATSUOKA & SILVER, 1980) CALIBRATION RODS ..................... 88 

FIGURE A.4- RESULTS FOR NEW METHOD OF CALIBRATION ...................................... 88 

FIGURE A.5- FREE VIBRATION OF THE CALIBRATION ROD .......................................... 96 

FIGURE A.6- PEAKS VERSUS NUMBER OF CYCLES ......................................................... 96 

 

  



x 

 

LIST OF VARIABLES 

 

G     Shear Modulus    MPa 

ξ     Damping Ratio    Unit less 

AL     Energy Dissipated 

AT     Peak Energy 

Gmax      Maximum Shear Modulus   MPa 

ξmin      Minimum Damping Ratio   Unit less 

σ     Stress      Pa 

�      Poisson’s Ratio    Unit less 

E     Young’s Modulus    MPa 

ρ      Density     kg/m3 

A      Cross Sectional Area    m2 

M      Constrained Modulus    MPa 

u     Displacement     m 

t     Time      Seconds 

�      Strain      m/m 

��     Longitudinal Wave Velocity   m/s 

θ      Angle of Twist    radians 

Jz     Polar Moment of Inertia   m4 

��     Shear Wave Velocity    m/s 

��     Rayleigh Wave Velocity   m/s 

	��      Ratio of Rayleigh Wave   Unit less 
 to Shear Wave Velocity 


�      Wave Number of Rayleigh Wave  rad/m 

�       Angular Frequency    rad/s 



xi 

 

�      Shear Stress     Pa 

     Shear Strain     m/m 

�      Viscosity     Pa*s 

�        Mass Moment of Inertia   kg*m2 

�     Volume     m3 

�     Diameter     m 

�     Length of Sample    m 

�     Density     kg/m3 

��     Rotational Mass Polar    kg*m2 

Moment of Inertia of Sample 

�     Mass      kg 

��     Active-End Inertial Factor   Unitless 
     For Torsional Excitation 

��     Rotational Mass Polar    kg*m2 

Moment of Inertia of Top Platen 

����     Rotational Apparatus Damping   
Factor 

�����     Apparatus Damping Coefficient  kg*m2 

for Torsion 

��     Resonant Frequency for Torsion  Hz 

���     Rotational Motion Transducer   
     Calibration Factor 

RTO     Output Reading from Resonant   
     Column 

TCF     Torque Calibration Factor    

���     Input to Resonant Column    

  ��     Torsional Magnification Factor   



xii 

 

!     Reference Strain 

"     Hyberbolic Strain 

# #$%&'     Normalized Shear Modulus 

()*     Strain       

()*+      Elastic Strain      

()*,      Plastic Strain      

-)*     Deviatoric Stress Component 

.     Plastic Non-negative Multiplier 

�)*/0     Stiffness Modulus Tensor 

1)*     Kroenecker Delta     

2/0     Second Order Tensor 

 

 

 

  



1 

 

ABSTRACT 

 

The characterization of the oil based clay response used as a backing material during 

ballistic impact of light armor testing is essential in assessment of level of potential injury, and 

effectiveness and certification of the body armor. The current standard for quantification of level 

of impact relies on the permanent imprint of the impact on clay backing material. Current 

investigations are in progress for the measurement of magnitude and rate of internal stresses 

within clay due to ballistic projectile impact. A finite element model of the projectile impact is 

developed. The dynamic characteristics of the oil based clay backing material are assessed 

through resonant column tests. The frequency dependent moduli and damping characteristics are 

determined under various confining pressures and temperatures. The strain and frequency 

dependency are characterized through appropriate hyperbolic fits.  
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Chapter 1 INTRODUCTION  

 The safety and protection of the individuals dedicated to the defense of our nation is a 

priority of the national research agenda. Body armor and other protective gear are important in 

preventing damage to the human body. In order to evaluate the effectiveness of body armor, a 

standardized method for testing Body Armor Protection Systems (BAPS) needs to be developed. 

The United States National Institute of Justice (NIJ) has developed a standard procedure for 

testing the BAPS. The test setup consists of the body armor backed by clay. The armor is fired 

pn and removed at the conclusion of the test to examine clay. The ballistic impact’s deformation 

of the clay is used to assess the severity of the impact and the effectiveness of the armor. The 

clay used as backing is Roma Plastillina No. 1 oil based modeling clay (RP). The clay and its 

properties are the main focus of this paper.  

1.1 ROMA PLASTILLINA CLAY 

 Little research has been conducted on RP, the backing material used for testing. 

Typically, oil based modeling clays consist of oil, waxes, and clay minerals. The exact 

composition of this clay is unknown due to the privacy rights of the manufacturer. In order to 

assure the consistency of the material, the clay used was the same color and purchased from the 

same warehouse. 

  Modeling clay provides several benefits compared to other materials. Unlike ballistic 

gelatin, which does not provide a deformation to assess, the RP is left with an impression or 

deformation due to the impact. Ballistic gelatin is more commonly used to measure the 

penetration of bullets on human tissue, so it is useless for assessing the damage that is caused by 

impact. An advantage to using RP is that it is homogenous, so consistent samples can be created 
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with relative ease. Another advantage is that, since the clay is oil based water content or rather 

water evaporation is not a concern like it would be in other soils. 

While the oil based clay is an advantage for testing and reproducing samples, it is a slight 

disadvantage when it comes to deriving the properties of the clay. Traditionally clays are 

classified using their particle distribution and Atterburg limits. Neither of those two concepts can 

be applied to this clay. In addition, other important soil properties such as void ratio and water 

content could not be determined. Void ratio could not be determined because attempts at burning 

off the oil were unsuccessful, which made it difficult to apply some relationships to the clay and 

limited some of our initial testing. 

Several general observations were made about the clay prior to testing. The clay seemed to 

be very susceptible to temperature change, becoming more malleable when heated and even 

liquefying at higher temperature. It was also observed that at high temperatures the sulfur in the 

clay would burn off. Vice versa the clay seemed to become slightly stiffer at cooler temperatures. 

Handling or disturbing the samples also seemed to cause the clay to be more malleable. 

1.2 NEED FOR STUDY 

NIJ provides criterion for what deformation would constitute a “kill shot” on the clay 

backing (44 mm indentation). There has been a movement to not only focus on the deformation 

created by the impact, but also the stress wave created by the ballistic impact. Previous studies 

conducted (Carrol & Soderstrom, 1978) & (Moseley & Doty, 1969) suggest that though the 

penetration of the bullet is prevented by the body armor, damage can still be caused by the 

impact and concurrent stress wave. These studies state that though the bullet is stopped, the 

concurrent stress wave can lead to internal damage to the lungs, liver, heart, spleen and spinal 
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cord. For this reason, the event of a ballistic impact needs to be numerically simulated in order to 

assess the stress values. 

Assessing the impact is currently done by measuring the depth of the indentation after the 

impact and using high speed cameras to measure the impact velocities. These values are then 

used to construct a numerical model. The modeling is important in identifying internal strains 

and stresses. The accuracy of these values are unconfirmed due to the inability to accurately 

record internal stress values during an event. Furthermore, without lab tests to validate the 

properties used for the modeling, the accuracy of the results is always going to be in question. 

The proposed solution to this issue is to use fiber optic sensors to take real time measurements of 

the event. Through a combination of accurate numerical modeling and corresponding strain 

measurements, an accurate depiction of the ballistic impact can be created. 

Fiber optic sensors provide an unconventional method for measuring strain. Traditionally, 

strain gauges are intrusive and require flexible backing. Though traditional strain gauges can 

provide good measurements for strain at the back of the clay layer, they are difficult to install in 

a manner that does not alter the clay. Whether they have the capability to sustain the impact and 

capture the signal is also of concern. In contrast, fiber optic sensors are fairly durable, especially 

in tension. Due to their physical characteristics (diameters of 1253�), fiber optic sensors are not 

as intrusive and should have minor effects on the clay. Capturing the signal, however, still 

remains a concern. Once installed in the clay, the fiber optic sensors can be left there for the 

entire extent of testing. Another benefit of fiber optic sensors is that they can be layered and 

continuous. As a result, fiber optics can provide measurements that allow us to map out the strain 

throughout as opposed to other sensors that usually only provide point measurements.  

Eventually, fiber optic layering can provide a better three dimensional rendering of the strains 
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occurring in the clay. This three dimensional rendering can be compared to a numerical model in 

order to verify or establish relationships between the two. This is another reason why accurate 

soil properties need to found. 

1.3 BALL DROP TEST 

NIJ provides an outline for testing the oily clay which does not require body armor or an 

actual ballistic impact (i.e. shooting gun). The impact testing is referred to as the “ball drop” test. 

The test was created as a calibration procedure in order to verify whether the clay was suitable 

for backing material. This test is also used to derive the properties that are used for the numerical 

model. An additional benefit to this test is that it can easily be conducted in a lab setting. This 

test is a huge asset and was frequently used in our lab in order to verify the model. 

The test is simple so that it can easily be reproduced. Firstly, the packaged clay bricks are 

heated to a temperature of about 40° C. This is done to make the clay more workable and to ease 

the sample preparation process. The clay is then hammered flat with a mallet and molded into 

tray 305 x 305 x 102 mm (12 x 12 x 4 in), as shown in figure 1.1. The dimensions provided are 

the ones used for this test, however tray size may vary. After the clay is packed, the tray is placed 

back in the oven and reheated to about 40° C. The prepped sample is then ready to be tested. A 

steel sphere, with a diameter of 63.5 mm and a mass of 1043 g, is dropped from various heights 

(typically about 2 meters); the setup for this is shown in figure 1.2. In the image the ball is 

dropped from the top of the frame through a PVC pipe, which served as a guide for the sphere. 

The maximum deformation allowed for these test is 44 mm. This is the impact that would cause 

a fatal blow behind a BAPS. If the clay deforms more than the limit, the sample was determined 

to be unsuitable for testing. Also, this test is used to predict initial soil properties until lab tests  
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Figure 1.1- Testing Tray Packed with clay and Fiber Optic grid 

 

 

Figure 1.2- Frame used to drop steel ball onto the clay sample. 

H= 2 

m 
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are conducted. This is done by recording the deformations, and altering the properties of the 

models until the deformations match.  

1.4 FOCUS OF RESEARCH 

 The purpose of this research is to provide accurate dynamic soil properties for the finite 

element modeling. Without accurate soil properties, there is no verification of the model or the 

measurements taken by the sensors. Typically, dynamic soil properties are a function of strain 

amplitude, effective stress, and number of loading cycles (Hardin & Drnevich, Shear Modulus 

and Damping in Soils: Design Equations and Curves, 1972). Low strain test are therefore 

conducted on the clay at varying confining pressures and with increasing strain amplitude. The 

results of these tests are then interpreted using predictive equations that provide the strain 

dependent behavior. Also an attempt is made to relate the laboratory data to the Drucker Prager 

yield criterion that is used to simulate the event. By the end of this study a clear depiction of the 

clays dynamic clay properties and their interpretation will be shown. 
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Chapter 2 : BACKGROUND  
 

2.1 DYNAMIC SOIL PROPERTIES 

Dynamic soil properties are used in geotechnical engineering for both earthquake and soil 

dynamic problems.  Since, at low strains, the stress-strain relationship of the soil is linear the 

theory of viscoelasticity is used to describe the dissipation of energy in soils through wave 

propagation. Soil dynamic properties are found by applying a harmonic oscillation to samples. 

The harmonic motion applied to the sample creates a hysteresis loop (figure 2.1) which allows us 

to calculate both the shear modulus (G) and damping ratio (ξ). Figure 2.1 shows the reversal of 

the harmonic strain that is applied on the sample.  

Shear modulus and damping ratios are important when calculating dynamic response of 

soils or soil structures. The size of the loop varies according to strain amplitude. In figure 2.1, the 

area within the loop, AL, is the amount of energy dissipated by the soil during cyclic loading. 

The area under the triangle, AT, is the peak energy during a cycle of excitation. 

Shear modulus is the relationship between shear strain and stress. It is found using the 

hysteresis loop. This is done by drawing a line through the endpoints (strain reversals) of the 

hysteresis loop and finding the slope. The shear modulus and strain allow us to construct the 

stress curve referred to as the backbone curve. The damping ratio can also be determined by 

using the hysteresis loop. The damping ratio is used to describe the oscillations’ magnitude of 

decay after a disturbance. By comparing the amount of energy dissipated, AL, and the peak 

energy, AT, the hysteresis loop can give the damping ratio. Both dynamic properties are therefore 

a function of strain amplitude. 
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Figure 2.1-Hystoresis Loop 

 

Figure 2.2Degradation of Shear Modulus with Increasing Shear Strain 
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Soils at low strains behave linearly, meaning that properties like G and ξ are constant low 

strains (elastic). As the strain amplitude increases, the shear modulus tends to decrease.  This is 

shown in figure 2.2 with normalized shear modulus (G/Gmax). The maximum value for shear 

modulus is found at low strains and is called the initial tangent shear modulus (Gmax). 

Conversely, the damping ratio increases with strain. The initial value for damping ratio is called 

the minimum material damping ratio (ξmin).  

2.2 YOUNG’S AND SHEAR MODULUS 
 

The moduli of material are used to describe the stress strain relationship of the material. 

For dynamic soil problems, elastic and shear modulus are a point of emphasize. The elastic 

modulus is used to describe the relationship between normal stress and normal strain. It can be 

found using a resonant column or, more commonly, a triaxial machine. The following equation 

describes elastic modulus: 

4 5 6789:6;<=>?@A       (2.1) 

In equation 2.1 σ1 represents the normal stress, σ3 represents the confining stress of the test and � 

is Poisson’s ratio of the material. Elastic modulus can be conveniently derived from the stress 

strain curve created by the triaxial test. 



 

Figure 2.3- Typical Stress

 Shear modulus relates shear stress and shear strain. It can also be defined by the 

following equation: 

Poisson’s ratio relates elastic modulus 

contraction to the extension under an applied load. The equations relat
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Typical Stress-Strain Graph Produced from triaxial test

shear stress and shear strain. It can also be defined by the 

         

lastic modulus to shear modulus. Poisson’s ratio is the ratio of

contraction to the extension under an applied load. The equations relating G and E

       

        

Strain Graph Produced from triaxial test 

shear stress and shear strain. It can also be defined by the 

  (2.2) 

is the ratio of a material 

G and E are below: 

  (2.3) 

  (2.4) 
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2.3 WAVE PROPAGATION 

Dynamic disturbances in soils are characterized by the perspective of wave propagation. 

Wave velocity and wave attenuation (damping) are two of the most telling soil characteristics. In 

order to understand wave propagation, the analogy of an infinitely long rod is commonly used. If 

one looks at the rod, it can have three types of vibration (Steven L.Kramer, 1996).  One is when 

the particles experience longitudinal displacement, the other is when there is torsional 

displacement, and the third is flexural displacement. Flexural displacement has little application 

in soils and is typically ignored. Most resonant column tests are conducted for torsional 

displacement (focus of this study), but they are also capable of longitudinal vibrations so both are 

covered. 

 

Figure 2.4- Constrained Rod with a Longitudinal Stress Wave 

 

2.3.1 LONGITUDINAL WAVE 

The infinitely long rod analogy helps when envisioning longitudinal waves. Figure 2.4 

shows the rod, fixed at both the top and bottom so that no radial displacement can occur. Particle 

displacement can only occur along the axis which is what constitutes a longitudinal wave. In 

order to derive the wave equation for a longitudinal wave, aspects of the rod’s physical 
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characteristics such as rod density, ρ, cross sectional area, A, and constrained modulus, M, must 

be known.  Also, the assumption that stress is evenly distributed throughout the cross section of 

the rod must be made. The initial stress traveling along the rod is σi, shown at the beginning of 

the rod in figure 2.4. The rod is continuous so that the stress at any point along the rod can be 

described by: 

B) C D6D& E �F           (2.5) 

The strain at the arbitrary point is equal to the initial stress plus the change in stress with 

respect to the change in distance, shown in figure 2.4. We get the following equation because the 

external force (i.e., Stress) has to be equal to inertial force that is induced by the internal mass 

acceleration and, according to dynamic equilibrium, the rates of the forward and the reverse 

reactions most be equal: 

GB) C D6D& E �FH � I B)� 5 �� �F DKLDMK       (2.6) 

Equation 2.6 simplifies to: 

D6D& 5 � DKLDMK        (2.7) 

Equation 2.7 is the one-dimensional equation of motion for a longitudinal wave through an 

infinitely long rod. Furthermore, stress can be related to strain by equation 2.8: 
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B 5  �          (2.8) 

� 5  DLD&        (2.9) 

In the equation of motion, equation 2.8 and 2.9 are used to replace stress. Simplifying even 

further to: 

DKLDMK 5 NO DKLD&K       (2.10) 

Using material properties for wave velocity the constrained modulus and the density above can 

be replaced: 

DKLDMK 5 ��9 DKLD&K        (2.11) 

Where �� is the velocity of the longitudinal wave through the solid material. 

�� 5 PNO         (2.12) 

Similar to elastic modulus, constrained modulus is the stress strain relationship of a material due 

to its normal stress and axial strain. The difference is that constrained modulus is for a 

continuous rod while elastic modulus is for a rod with a fixed boundary. In a lab setting, this is 

not easy to test, so we must relate the elastic modulus to the constrained modulus using Poisson’s 

ratio: 

 5 QRS8:TRSU:TRS89:T      R2.13T 
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2.3.2 TORSIONAL WAVE 

 Torsional waves, or shear waves, involve a rotation about the axis of the rod. This means 

that the particle motion is perpendicular to the axis instead of along it. Deriving the wave 

equation of a torsional wave is exactly like deriving the wave equation to that of the longitudinal 

wave. If σi is replaced with a torque, Ti in figure 2.4 then equation 2.5 becomes: 

�) C D�D& E �F      (2.14) 

Equation 2.14 gives the torque at a point, dx, away from the initial torque, Ti. Similar to deriving 

the longitudinal wave equation, dynamic equilibrium is also applied for the torsional wave. The 

external torque applied on the rod has to be equal to the internal rotation of the system. 

G�) C D�D& E �FH I �) 5 ��Z �F DK[DMK      R2.15T 
Equation 2.6 and 2.15 are very similar. From mechanics the following equation is true for torque: 

� 5 #�Z D[D&       R2.16T 
In equation 2.16, G is shear modulus, θ is the angle of twist, Jz is the polar moment of inertia, 

and x is length of the object to which the torque is applied. Like the longitudinal equation, the 

torsional equation simplifies to: 

# DK[D&K 5 �  DK[DMK       R2.17T 
The following equation relates shear modulus and density in equation 2.17 to the shear wave 

velocity through a solid: 
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�� 5 P_O       R2.18T 
Plugging in shear wave velocity (��) as described in equation 2.18 to equation 2.17 the final 

derivation: 

DK[DMK 5 ��9   DK[D&K       R2.19T 
 

2.3.3 Rayleigh Waves 

Rayleigh waves are acoustic surface waves that occur in solids. They are produced in 

earthquakes and other dynamic loading making them an interest to geotechnical engineering. 

Rayleigh waves are unique in that they only travel along the surface of a solid. They can be 

loosely described as a combination of longitudinal and torsional waves. Figure 2.5 shows how 

particle displacement begins to occur in a circular motion as the wave extends away from the 

point of origin. The image below shows the circular motion of a Rayleigh wave as it moves in a 

planar direction. Rayleigh wave velocity is related to torsional wave by equation 2.20 in which 

	�� is the ratio of Rayleigh wave velocity to shear wave velocity. 

�� 5 	����        R2.20T 
Equation 2.20 is important because it relates the shear wave, which can easily be tested in a lab, 

to Rayleigh wave velocity. Another way of finding Rayleigh wave velocity is by the following 

equation: 

 



 

In the equation above kR stands for 

frequency. 
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Figure 2.5- Rayleigh Wave 

 

      
stands for the wave number of Rayleigh waves and ω 

  R2.21T 
ω for the harmonic 
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2.4 DAMPING/ATTENUATION 

Attenuation of stress waves or damping refers to the fact that the amplitude of stress waves 

decays as they propagate away from the source through soil. Damping can be described by two 

mechanisms; material damping and geometric damping. The former is of greater importance to 

us. Material damping in coarse grained soils occurs because of two mechanisms. The friction 

caused by soil particles rubbing against each other is the first of these mechanisms. The second 

which typically happens in saturated soils is the interaction between the fluids (pore water 

pressure) and the solids. Pore pressure disturbance can cause the fluids to absorb some of the 

energy transmitted by the wave. 

 To mathematically explain material damping in soils, the analogy of a viscous damper is 

used. In viscoelastic wave propagation, soils are modeled using the Kelvin-Voigt model. 

� 5 # C � DcDM        R2.22T 
Equation 2.22 describes the stress strain relationship of the Kelvin-Voigt solid in shear. τ is shear 

stress,  is shear strain and η is the viscosity of the material. The first term in equation 2.22 

refers to the elastic properties of the material, and the second term is the viscous part of the 

material. If a harmonic shear strain was applied: 
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 5 � sin �g       R2.23T 
Equation 2.22 can be combined with the equation 2.23 resulting in: 

� 5 #� sin �g C ��� cos �g     R2.24T 
Equation 2.24 produces an elliptical stress strain loop, the hysteresis loop. The elastic energy 

dissipated in a single cycle is the area within the ellipse. This is shown mathematically by: 

∆l 5 m � DcDM �g 5 n���9MoU9p q'Mo      R2.25T 
Equation 2.25 indicates that the energy dissipated is dependent on the frequency of the loading. 

As implied above, this is not necessarily true for coarse grained soils because elastic energy can 

be dissipated through the friction caused between soil particles. However, in moist soils or fine 

grained soils this relationship is true. As stated above the dynamic loading causes the pore water 

pressure to fluctuate. This is referred to as “squirting”. Due to the frequency dependent nature of 

soil-fluid interaction, squirting is a frequency dependent behavior. Using the hysteresis loop the 

following is true. 

r 5   ∆stps       R2.26T 
Where W is peak energy stored in a cycle. The area of the triangle in the hysteresis loop is: 

l 5 _coK9        R2.27T 
Material damping then simplifies to: 



20 

 

r 5   puqcoKtpvwoKK
5 uq9_      R2.28T 

While material damping absorbs some of the load caused by the stress wave, it does not entirely 

account for its dissipation. The remaining energy is dissipated through geometric damping. 

Geometric damping is simple; imagine a stress wave beginning at an epicenter and propagating 

through the solid in a spherical manner. As the stress wave moves through the material, the 

energy of the wave never changes yet the area to which the stress is applied continues to grow. 

Eventually, the stress will spread throughout the media and become small enough to neglect. 

This is geometric or radiation damping.  
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2.5 RESONANT COLUMN 

A resonant column is tool designed to test soil samples in a non-destructive manner. This 

makes it effective for measuring soil dynamic properties. The resonant column functions by 

applying a harmonic cyclic load to a sample.  Since this is a low strain test, the samples are 

barely damaged and can be reused in other laboratory tests. Resonant column testing is based on 

the theory of wave propagation, in which a cylindrical specimen is subjected to a harmonic axial 

or torsional load. For this study, only torsional loads were applied. 

The properties can be derived by controlling the frequency and amplitude of the torsional 

load applied to the sample. For this test, a Drnevich Resonant column was used. It consists of a 

free-fixed specimen setup where the top, or free end, applies the load. This is shown in figure 

2.6. The load applied to the top of the specimen creates a torque which can be described by: 

� 5 #� D[D& 5 # xO D[D&      R2.29T 
Equation 2.29 is based on the elastic resistance of the sample. � is the mass moment of the 

specimen’s inertia. In order for our analysis to make sense, the torque on the top of the specimen 

has to be equal to the torque of the loading system, in other words there should be no loss 

between the sample and the cap. This coupling between loading system and specimen is 

important. The torque of the loading system can be described using Newton’s second law and 

changing it for torsion: 

� 5 I��� DK[DMK        R2.30T 
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Figure 2.6- Free-Fixed Specimen 
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Where �� is the mass polar moment of inertia for the top loading system, and 
DK[DMK  is the angular 

acceleration. The rotation applied by the top cap is harmonic. So its rotation can be described by 

using the following equation: 

yRF, gT 5 ΘRFTR�S cos �g C �9 sin �gT    R2.31T 
ΘRFTis the shape function for the sample harmonic torsion. 

ΘRFT 5 �| cos 
F C �t sin 
F     R2.32T 
The bottom of the specimen is fixed thereby making the rotational boundary condition of the 

bottom zero. The bottom is taken to be our starting point (z=0) in order to drop out the C3=0 

term. Setting the torsion of the sample’s top (2.29) and the loading system (2.30) equal to each 

other and inserting equation 2.31 for the rotation into both produces the following equation: 

# xO D[D& 5 I��� DK[DMK       R2.33T 
# xO �t
 cos 
} R�S cos �g C �9 sin �gT 5 ���R�t sin 
FT�9 R�S cos �g C �9 sin �gT (2.34) 

This equation is then solved for ω at the fundamental or natural frequency, �~ 5 
~��. Equation 

2.34 then simplifies to: 
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xxo 5  q�0�� tan q�0��       R2.35T 
In 2.35, three of the variables are known (�, ��, �), the other, �~, is found experimentally through 

the resonant column. �� can be found using equation 2.35. �� is then related to shear modulus 

using equation 2.18. 
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Chapter 3 : LABORATORY TESTING 

Dynamic soil properties can be determined in both lab and in-situ settings. Tests such as 

the Seismic Cross-Hole and Seismic Cone measure shear wave velocity in geologic material. 

Data from the Cone Penetration Test (CPT) and Standard Penetration Test (STP) can be 

empirically related to values such as shear modulus. For the RP clay these methods are not 

required, because the application of the test is experimental.  

Lab tests are divided into two groups. The first group consists of low strain tests. These 

tests include resonant column, ultrasonic pulse test, and the piezoelectric bender element test. 

Tests such as these provide the low strain properties of the geologic material and the elastic 

properties of the soil. The second group is comprised of high strain tests. These consist of the 

cyclic shear test and cyclic torsional test. As implied by category, these tests apply higher strains 

on the samples which typically result in an increase in porewater pressure. For these tests it is 

important to monitor the volumetric strain in drained conditions and the increase in porewater 

pressure in undrained conditions. In low strain tests, this is not required because the loads 

applied are low and are not enough to induce a significant increase in porewater pressure. 

3.1 RESONANT COLUMN EQUIPMENT 
 

Tests were conducted on a Drnevich Resonant column. The equipment was purchased 

from Soil Dynamics Inc. It consisted of a fixed-free experimental setup used for cylindrical 

specimens, as shown in figure 2.6. The top (free-end) provides a torque on the top of the 

cylindrical specimen. The dynamic soil properties can be accurately derived with appropriate 

coupling between the top of the sample and the loading system. The resonant column allows for 
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several diameter samples. The various setups include a 35.7mm, a 71mm, or a specimen with a 

71 mm outside diameter and 35.7 mm inside diameter (i.e. hollow sample).  The setup used for 

our experiment was the 71 mm. The schematic of the resonant column is show in figure 3.1. 

3.1.1 TORSIONAL DRIVE COILS AND MAGNET 

In figure 3.1 and 3.2, the torsional drive coils are attached to the coil support brackets. 

Each of the four coils is numbered. The numbers correspond to the support brackets. The drive 

coils slide on the support brackets and are fastened in place. Care needs to be taken when 

fastening the coils because they damage easily. In figure 3.1, the torsional drive coils fit right 

next to the torsional magnet. Figure 3.2, shows clearly how the magnet and drive coil fit 

together. The magnet fits inside of the gap in the torsional drive coils. The separation between 

the magnet and the drive coils should be uniform in all four which may require some adjusting to 

the torsional drives. 

The torsional magnet is actually part of the top platen system. The top platen system sits 

on top of the specimen and delivers the torsion on the specimen. So, the torsional magnet and the 

drive coils provide torsional excitation to the specimen. The shear strain amplitude produced can 

be controlled by varying the amplitude of the voltage delivered to the drive coils. 

3.1.2 LONGITUDINAL DRIVE COILS AND MAGNET 

Figure 3.1, also shows the placement of the longitudinal drive coil as well as that of the 

longitudinal magnet. The longitudinal drive coil is located above the top platen system. The 

longitudinal magnet is large and fits over the drive coil. Similar to the torsional drive coils and 

magnet, the longitudinal drive coil and magnet provided a compression wave in the specimen. 

  



 

Figure 
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Figure 3.1-Schematic of Resonant Column 

 

Figure 3.2- Sample Setup 
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Note that the longitudinal magnet and coil are not shown in figure 3.2. This is because the setup 

was only for torsional excitation, the focus of this study. 

3.1.3 TOP PLATEN SYSTEM 

 The top platen system provides the stress wave in the sample. It consists of two 

accelerometers, torsional magnets, longitudinal drive coils, top platen and porous stones. The top 

platen is different from the top platen system. The top platen system is the entire system. The top 

platen, on the other hand, is the removable piece that corresponds to the type or size of the 

specimen that is being tested.  Placement of the accelerometers is shown in figure 3.5. The 

accelerometers are Colombia Research Laboratories, Inc. model 200-1-H. Their purpose is to 

measure the reflected wave response. Each accelerometer corresponds to one mode of 

displacements, torsional or longitudinal. The LVDT is a Scheavitz model; it is connected to the 

top platen system in figure 3.4. The LVDT measures longitudinal displacement and is accurate to 

within 0.01 mm. 

3.1.4 BOTTOM PLATEN SETUP 

 The base supporting the sample is rigidly fixed to maintain the fixed conditions necessary 

for the assumption of wave propagation. The bottom platen has a porous stone that allows for 

drainage. Additionally the bottom platen has inlets for vacuum, water and a pressure transducer 

(measures porewater pressure). It is important to note that the chamber is not to be filled entirely. 

The porewater transducer is a P SI-Tronix, Inc. Model LC-0100-G11-111. The transducer is 

located under the specimen. The porewater pressure was not measured because the material in 

question was comprised of oil based clay. 



 

 

Figure 

 

Figure 
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Figure 3.3- Top Platen 

Figure 3.4- Top Platen System Side View 

Figure 3.5- Top Platen System Top View 
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3.1.5 OTHER 

 

 The chamber that surrounds the sample is an acrylic tube. Silicon jell is carefully placed 

around the ends of the tube in order to prevent pressure from escaping the chamber. Also, the top 

is sealed off with metal chamber lid. The lid provides connections for the LVDT, accelerometers, 

drive coils. It also supplies an inlet from which to apply pressure to the specimen. The chamber 

allows for pressures up to 700 kPa (100 psi). The building pressure had a limit of 175 kPa (25 

psi). 
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3.2 ELECTRICAL EQUIPMENT/AUXILIARY EQUIPMENT 

  Besides the resonant column, there are other external apparatuses that help in collecting 

data, applying shear strain, and controlling both the shear strain amplitude and the frequency of 

the excitation applied to the sample. The Drnevich resonant column comes with a control box, 

which is constructed by Soil Dynamics Inc. The control box serves as the router for the 

electronics. It also provides a control for the modes of excitation, either torsional or longitudinal. 

The connections are shown in the wiring schematic (figure 3.6). It is important to note that the 

switch box in the image is actually incorporated in the Drnevich control box. The switch box is 

the part of the control box that allows us to switch from torsional to longitudinal excitations and 

controls what voltage reading is displayed on the Digital Multimeter, Fluke 8010A (Digital 

Voltmeter). By setting the switch, the voltmeter can display either the accelerometer reading 

(output) or the power delivered to the drive coils (input). The power supply amplifier is a 

Techron Model 5507. It has two channels available. For this setup, channel one is used for 

longitudinal excitation, and channel two for torsional excitation. 

 A function generator is used to control the frequency of the excitation and the type of 

wave used for the signal. Two BK Precision 3011B 2MHz function generators are used. One 

function generator controls the torsional excitations and the other the longitudinal excitations. 

The function generator is capable of creating square, triangular, and sinusoidal waves. Typically, 

tests are conducted using a sinusoidal signal. The accuracy of the frequency can be recorded up 

to 0.1 Hertz.   

The function generator and the power amplifier deal with the input signal. The output 

signals (accelerometer readings) must be amplified to be used. This is done with two Columbia 

Research Laboratories, Inc. Model 4102 charge amplifiers. The final piece of equipment is the  
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Figure 3.6-Wiring Schematic 

 



 

Figure 
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Figure 3.7-Consolidated Wiring Schematic 
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oscilloscope. The one used in this setup is a Hameg HM 205-3. Both the input and output are 

displayed on the oscilloscope. The oscilloscope shows the signal in both time domain and X-Y 

mode. Channel one of the oscilloscopes displays the output signal and channel two displays the 

input signal.  
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Chapter 4 : DATA ANALYSIS AND INTERPRETATION 

 The auxiliary equipment assists in collecting and attaining data from the resonant column 

apparatus. The data needs to be converted into more understandable values. Several sources 

provide guidelines for data reduction (ASTM D4015, Drnevich, Hardin, & Shippy, 1978, Hardin 

& Drnevich, 1972). The results of the data reduction are fitted using predictive equations and 

comparisons are drawn. 

4.1 DATA REDUCTION 

 Several preliminary measurements need to be taken prior to running the test. As 

previously stated, cylindrical samples are used for testing. Typically, the length of the sample 

should be about twice its diameter. There is some leeway for this but the sample should not be 

used if its length is less than 1.5 the diameter. Since physical properties like density (�) are used 

to determine constants for the data reduction, accurate measurements need to be taken prior to 

testing. Before every test the diameter (d), length (�), and Mass (m) are taken. Metric units are 

used in data reduction equations (meters and Kg). 

� 5 2n �K
t �         (4.1) 

 To determine the constants used to arrive at shear modulus and damping, physical 

properties are used. The properties that need to be calculated are volume (V, equation 4.1), 

density, and the rotational mass polar moment of inertia (��). The equations for density and 

rotational mass polar moment of inertia are provided below: 
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� 5 $�           (4.2) 

�� 5  $�K
�         (4.3) 

�� is used to calculate the active-end inertial factor for torsional excitation. 

�� 5 �=��            (4.4) 

TT denotes the active-end inertial factor for torsional excitation. The other variable, ��, is the top 

platen’s rotational mass moment of inertia. JA is typically calculated experimentally (�� 5
0.003 
�/�9) with the use of a calibration rod with known material properties. This process is 

shown in appendix A.1. The rotational apparatus damping factor, ����, is calculated as: 

���� 5 ���o�9p����       (4.5) 

 �����, a system constant, is calculated during the calibration process. This is shown in 

appendix A.3. The value used for the apparatus damping coefficient, �����, was 0.004 
� I
�9/���. The other value, fT, is the resonant frequency for torsion of the test at that strain 

amplitude. Shear modulus can be determined using the following equation: 

# 5  �R2n�T9 G����H9
         (4.6) 

Resonant frequency for torsion is determined during the test by plotting the input signal vs. 

output signal on the oscilloscope, in other words the X-Y mode of the oscilloscope. The 

frequency on the function generator is increased until a clear circle is shown in the X-Y mode of  
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Figure 4.1- Circle shows 180 Phase between input and output signal 
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the oscilloscope. This is shown in figure 4.1. The image in figure 4.1 is circular meaning that the 

input and output signals are 180° phase. When the signal is in 180° phase the corresponding 

frequency is taken to be the resonant frequency. FT is the dimensionless frequency factor found 

using figure 4.2. The frequency factor is a function of TT, which is the ratio of the polar mass 

moment of inertia of top platen to the sample. It is important to note that in figure 4.2, ADFT is 

assumed to be zero and damping is less than 10 %. Since ADFT is typically rather small the 

assumption is justified and damping typically stayed below 10%.  The next important parameter 

that needed to be calculated was shear strain amplitude, : 

 5 G0.4 �0 H R���TR���T        (4.7) 

RCF is the rotational motion transducer calibration factor. It is dependent on the calibration of 

the accelerometer.  

��� 5 %��+0+!%M)�~ �%0)�!%M)�~ �%�M�!9p��       (4.8) 

The acceleration calibration factor is a constant found during calibration. The Columbia 

Research Laboratory found the calibration of the accelerometers to be 28.1. RCF is given the 

following units Pk-rad/VoltRMS. RTO is the output reading from the resonant column apparatus 

or the accelerometer reading. 

 Torsional magnification factor, MMFT, is necessary in order to determine damping ratio 

and is defined as follows: 
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Figure 4.2- Dimensionless Frequency Factor Graph from ASTM D4015 
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  �� 5 R���TR���T��R9p��TK
R���T���        (4.9) 

��� being the measured voltage associated with the current to the torsional drive coils (input to 

resonant column system). TCF is the torque calibration factor and is determined during 

calibration shown in Appendix A.2. Damping ratio, r, is computed by: 

r 5 S�RNN��T        (4.10) 

A is the amplification coefficient found in figure 4.3. Like the dimensionless frequency factor it 

is also a function of TT.  
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Figure 4.3- Amplification Coefficient based on the Dimensionless Frequency Factor from 
ASTM D4015 
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4.2 CURVE FITTING 

 In processing resonant column data it is common practice to fit the normalized shear 

modulus with the hyperbolic model that predicts the reduction of modulus as a function of strain. 

Using the low strain data collected, shear modulus can be predicted for larger strains. 

Additionally, allows us to compare trends of different soils or samples. The factors or trends of 

the reduction of normalized shear modulus in soils have been heavily researched (Hardin and 

Drnevich 1972, Stokoe 1999, Zhang 2005). 

 When interpreting resonant column results many issues arise. Most issues arise from the 

variability of the soil properties. The clay used removes some of these issues because it is almost 

completely homogeneous. Other issues, such as Plasticity index, can be ignored. The main 

concerns when testing RP clay were temperature monitoring, and sample preparation. 

Temperature, as originally stated, caused the clay to become more malleable, as did remolding.  

In order, to simplify the results, they are separated by confining stress, temperature, and 

preparation method. 

4.2.1 Reference Strain (�� ): 

 Hardin and Drnevich stressed the importance of normalizing the strain. In most analysis 

this step is ignored as strain is an already dimensionless parameter. Hardin and Drnevich define 

their reference strain,! as: 

! 5  ��@>_�@>        (4.11) 



 

Figure 4.4- Shear Stress

Reference strain is the point where a line with a slope of 

and intercepts the maximum shear stress, 

concept of reference strain was different. In Stokoe’s approach

need to be found. Stokoe defines his  

than 0.5 so applying Stokoe methodology was simply not possible.

 Both  and , can be determined experimentally. Though, not both can be found 

using the resonant column. 

test.  values can be found using the
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Shear Stress-Strain Graph (Hardin & Drnevich, 1972)

the point where a line with a slope of  extends from the origin 

the maximum shear stress, . This is clearly shown in figure 4.4. 

concept of reference strain was different. In Stokoe’s approach the static value, 

found. Stokoe defines his   as the point when . Ours  

than 0.5 so applying Stokoe methodology was simply not possible. 

, can be determined experimentally. Though, not both can be found 

  can be determined using a traditional undrained 

can be found using the resonant column test.  

 

(Hardin & Drnevich, 1972) 

extends from the origin 

This is clearly shown in figure 4.4. Stokoe’s 

 does not 

 remains greater 

, can be determined experimentally. Though, not both can be found 

be determined using a traditional undrained triaxial shear 
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4.2.2 NORMALIZED SHEAR MODULUS 

Fitting normalized shear modulus with hyperbolic curves is an effective tool for 

interpreting the stress strain relationship of the RP clay. It also helps to predict the behavior of 

the soil after its initial elastic range at low strains. Once the reference strain, as defined by 

Hardin and Drnevich, is found one can proceed interpreting the data. The basic hyperbolic stress 

strain relationship is as follows: 

� 5 c7v�@>U 7��@>       (4.12) 

Equation 4.12 gives what is typically referred to as the backbone curve. The backbone curve is 

the stress curve of the soil. Using the shear modulus relationship, # 5 � ⁄  , in equation 4.12 a 

normalized relationship can be expressed. 

__�@> 5  SSU ww�        (4.13) 

Equation 4.13 is only true if the stress strain relationship is hyperbolic. Typically this is not the 

case. Therefore, the relationship needs to be modified in order to account for the variability. For 

this Hardin and Drnevich introduced hyperbolic strain,". Hyperbolic strain distorts the strain 

scale in order to accurately fit data. Hyperbolic strain is given: 

" 5 cc� �1 C � �8�G ww�H�     (4.14) 

Hyperbolic strain incorporates two constants, a and b, that modify the normalized strain in order 

to get a more accurate fit.  Hyperbolic strain is used in equation 4.13 to replace the reference 

strain ratio, 
cc�: 
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__�@> 5  SSUc�       (4.15) 

 

4.2.3 DAMPING FIT 

Once the coefficients for hyperbolic strain are defined similar relationships can be used to 

predict damping in soils. Normalized damping is described as follows: 

  �@> 5  c�SU c�        (4.16) 

Equations 4.15 and 4.16 are very similar. Equation 4.16 relates the constants found in the 

previous section to damping. Basically, equation 4.16 is the same as 1 I # #$%&' . This 

relationship is convenient and gives a clear hyperbolic curve. The only issue is that r$%& is found 

using empirical correlations. Since there is no data existing for the synthetic oil based clay, r$%& 

remained undefined.  

Stokoe used another method for determining the relationship between normalized shear 

modulus and damping ratio (Stokoe, Darendeli, Gilbert, Meng, & Choi, 2004). Instead of fitting 

a hyperbolic equation to damping data using r$%& he established a fit that incorporated  r$)~ 

instead. The advantage was that r$)~ can be determined during resonant column test. 

r 5 � G# #$%&' H C  r$)~     (4.17) 

Zhang (Zhang, Andrus, & Juang, 2005) further modifies this approach by subtracting r$)~ from 

the other damping ratio: 
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r I  r$)~ 5 � G# #$%&' H     (4.18) 

Typically, � G# #$%&' H can be defined using a quadratic equation. Like the one below: 

r I  r$)~ 5 � G# #$%&' H9 C ¡ G# #$%&' H C �     (4.19) 
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4.3 DRUCKER-PRAGER CAP MODEL 

 Currently the dynamic impact of the ballistic impact is modeled using Drucker-Prager 

yield criterion. Drucker-Prager a constitutive model for the behavior of geotechnical material is 

widely used in finite element stress analysis. Drucker-Prager provides a mathematical model of 

the behavior of granular or frictional material. The model is an elastic-perfectly plastic model 

(bilinear relationship). The yield surface on the model is dependent on the hydrostatic pressure 

and the associated flow rule. Hydrostatic pressure is in turn highly dependent on volumetric 

strain. For our purpose, Drucker-Prager with cap (hardening) is used instead of without 

hardening. The difference is that the cap model includes a second yield function or surface that 

closes the cone in the principal stress space. The cap better simulates the hardening (softening in 

soils) in the numerical model. 

It is important to compare the resonant column results to the results of the finite element 

or numerical solution. In this section the stress matrix using Drucker-Prager criteria is reduced to 

its one dimensional equation. By deriving the one dimensional stress strain relationship a 

comparison of the predicted shear modulus values of the numerical solution to the predictive 

equations developed by Hardin and Drnevich can be drawn.   

4.3.1 GENERAL THEORY PLASTICITY 

 Drucker-Prager is a plasticity model that provides an inviscid relationship between stress 

rate, �B)*, and strain rate, �()*. For multiaxial loading, general strain rate can be decomposed 

into its elastic and plastic components: 
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�()* 5  �()*+ C �()*,       (4.20) 

()*+  is the elastic component of strain and ()*,  is the plastic component. Assuming that the elastic 

behavior is isotropic, the elastic strain can be defined by: 

�()*+ 5 S9_ �-)*      (4.21) 

-)* is the deviatoric stress component and is defined by the following equation: 

-)* 5 B)* I B//3 1)*  

 The plastic strain increment or plastic strain rate is given by the associated flow laws for the 

active yield surface: 

�()*, 5 �. D�D6?¢       (4.22) 

� in equation 4.22 is the function that describes the yield surface and �. is the plastic non-

negative multiplier, with 

�. £5 0 ¤¥�¦ � § 0 ¨� � 5 0 ©ªg �� § 0« 0 ¤¥�¦ � 5 0 �¦� �� 5 0                 ¬ 
Using Hooke’s law for the strain rate: 

�B)* 5  �)*/0�(/0 I �(/0, ® 5 �)*/0�(/0 I �.�)*/0 D�D6¯A    (4.23) 

�)*/0is the stiffness or elastic modulus tensor. In isotropic media the stiffness tensor relates the 

resulting internal stresses with the resulting strains or deformation. The stiffness tensor is given 

by: 
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�)*/0 5 	1)*1/0 C #R1)/1*0 C 1)01*/ I 9| 1)*1/0T    (4.24) 

K is the bulk modulus of the material and G is shear modulus. The other term introduced here is 

the Kronecker delta (1)*). Plugging equation 4.24 into the previous equation 4.23 gives: 

�B)* 5 2#�()* C 	�(//1)* I �. °G	 I 9| #H D�D6�� 1$~1)* C 2# D�D6¯A±  (4.25) 

The above gives change of stress as a function of shear and bulk modulus. 

4.3.2 YIELD SURFACE FOR DRUCKER PRAGER WITH CAP 

Chapter 5 Now that the stress rate is defined in terms of shear modulus and bulk modulus the 

yield function needs to be derived for the Drucker-Prager cap model. The yield function in a 

Drucker-Prager cap model is a �RB)*, ()*, , 
T=0. The constant k is defined by: 


 5 |� ²³´ µ√|R|8�)~ µT       (4.26) 

c and · are the cohesion and the friction angle of the material that is being used respectively. 

These values are easily be determined using a triaxial test. The consistency condition is assumed 

to be: 

�� 5 D�D6?¢ �B)* C D�D¸?¢¹ �()*, C D�D/ �
 5 0     (4.27) 

This ensures the plastic process and that the stress and strain remain on the yield surface. The 

general form for the yield function for isotropic hardening in Drucker-Prager is: 
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�B)*, (,® 5 º(,®�S C »�9 I 
(,® 5 0     (4.28) 

Equation 4.28 is a function of stress and (,, uniaxial effective strain. The constant º can also be 

defined using triaxial test results by the following equation: 

º 5 9 ´¼½ µ√|R|8´¼½ µT      (4.29) 

For simplicity, assume that the loading surface (�S I »�9) is constant, º(,® 5 º. This allows us 

to assume the hardening behavior of the material to be dependent on the single uniaxial stress-

strain relation through the hardening parameter k, 

�B)*, (,® 5 º�S C »�9 I 
(,® 5 0    (4.30) 

To derive the Drucker-Prager isotropic-hardening elastic-plastic constitutive relationship one 

must find the increment for isotropic hardening, dk: 

�
 5 �/�¸¹ �(,       (4.31) 

This is obtained from equation 4.30. The following equation gives the increment of uniaxial 

effective strain in terms of C: 

�(, 5  �P�()*, �()*,       (4.32) 

Combining the above equation with equation 4.31 it can be simplified to: 

�
 5 �/�¸¹ �P��()*, �()*,      (4.33) 

Applying the associated flow laws from equation 4.22 it can further be simplified to: 
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�
 5 �/�¸¹ �P D�D6?¢
D�D6?¢ �.     (4.34) 

Combining equation 4.34 with the consistency equation (4.27) reduces the later to: 

�� 5 ¾�¾B)* ¿�)*/0�(/0 I �.�)*/0 ¾�¾B/0À C ¾�¾()*, �. ¾�¾B)* C ¾�¾
 �
�(, �Á ¾�¾B)*
¾�¾B)* �. 5 0 

�� 5 D�D6?¢ �)*/0�(/0 I �. Â D�D6?¢ �)*/0 D�D6¯A I D�D¸?¢¹ D�D6?¢ I D�D/ �/�¸¹ �P D�D6?¢
D�D6?¢Ã 5 0  (4.35) 

The part of 4.35 that is within the parenthesis is represented by the scalar function, h, for 

simplicity: 

¥ 5 D�D6?¢ �)*/0 D�D6¯A I D�D¸?¢¹ D�D6?¢ I D�D/ �/�¸¹ �P D�D6?¢
D�D6?¢    (4.36) 

Solving equation 4.35 for the scalar function, �., gives: 

�. 5 ÄÅÄÆ?¢�?¢¯A�¸¯A
" 5 Ç¯A�¸¯A"       (4.37) 

2/0 is a second order tensor that is associated with the yield function and is defined as: 

2/0 5 D�D6?¢ �)*/0      (4.38) 

Taking the derivative of the Drucker-Prager yield function from above with respect to B)* gives: 

D�D6?¢ 5 º1)* C S9»�K -)*      (4.39) 

Equation 4.39 is combined with the second order tensor from equation 4.38 and 4.24 to the 

second order tensor in terms of G and K: 
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2/0 5 ¾�¾B)* �)*/0 5 Âº1)* C 12»�9 -)*Ã ¿	1)*1/0 C #R1)/1*0 C 1)01*/ I 23 1)*1/0TÀ 

2/0 5 3	º1/0 C _»�K -/0     (4.40) 

The loading function, f, is not expressed as a function of ()*,  explicitly, so 
D�D¸?¢¹  5 0. In order to 

determine the scalar function, h, we obtain the function 
�/�¸¹ and the parameter C. The hardening 

parameter, k, can be expressed using the effective stress, B+, for Drucker-Prager material. 

B+ 5 √|RÈx7U»�KTSU√|È       (4.41) 

Then: 


 5 SU√|È√| B+      (4.42) 

From here combine with equation 4.31: 

�/�¸¹ 5 SU√|È√| �6É�¸¹ 5 SU√|È√| 2,      (4.43) 

Hp is determined from a uniaxial tension stress-strain curve, �B 5 2,�(. Hp is the modulus of 

the material up to its plastic yield point. The effective strain, (,, is defined as: 

�(, 5 �s¹6É 5 6¯A�¸¯A¹
6É 5 �P D�D6?¢

D�D6?¢     (4.44) 

Now parameter C can be defined as: 
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Ê 5 ËÌÍÎÏÌÍÐ
ËÑÁ ÒÓÒËÔÕ ÒÓÒËÔÕ

5 ËÌÍ ÒÓÒËÌÍ
ËÑÁ ÒÓÒËÔÕ ÒÓÒËÔÕ

      (4.45) 

h is found by combining equations 4.39, 4.40, 4.41, 4.43, and 4.45 in equation 4.36: 

¥ 5 # C 9	º9 C Èx7U»�K|/ 1 C √3º®92, 5 # C 9	º9 C Gº C S√|H9 2,   (4.46) 

Using equation 4.37 plastic strain increment is then given as: 

�()*, 5 �. ¾�¾B)* 5 ¾�¾B$~ �$~�M�(�M,
¥ ¾�¾B)* 5 2�M�(�M,

¥ ¾�¾B)* 

Again applying Hooke’s law: 

�B)* 5  �)*/0 Â�(/0 I ÄÅÄÆ������Ö�¸�Ö" D�D6¯AÃ 5 �)*/0 Â1�/1M0 I ÄÅÄÆ������Ö" D�D6¯AÃ  �(�M 5
Â�)*/01�/1M0 I ÄÅÄÆ���?¢¯A����Ö" D�D6¯AÃ  �(�M 5 G�)*�M I Ç�ÖÇ?¢" H  �(�M  

�B)* 5  G�)*�M I Ç�ÖÇ?¢" H  �(�M     (4.47) 

Now the most general form of the Drucker-Prager isotropic-hardening elastic-plastic constitutive 

relationship is formed: 

�B)* 5 ×2#1)$1*~ C R	 I 9| #T1)*1$~ I ¿ v»ØKÀÙ?¢U|ÚÈÛ?¢
_UÜÚÈKU�GÈU 7√;HKÇ¹� ¿ _»�K -$~ C 3	º1$~ÀÝ �($~  (4.48) 
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Equation 4.48 gives the change in shear stress by making i=m=1 and j=n=2. Also the Kronecker 

delta allows us to cancel out many of the parameters. 

�BS9 5
Þß
ßß
à2#1SS199 C R	 I 23 #T1S91S9 I Â #»�9Ã -S9 C 3	º1S9

# C 9	º9 C á¿º C 1√3À9 2,â Â #»�9 -S9 C 3	º1S9Ã
ãä
ää
å �(S9 

�BS9 5 æ2# I ¿ v»ØKÀKÙ7KÙ7K
_UÜÚÈKU�GÈU 7√;HKÇ¹�ç �(S9    (4.49) 

Equation 4.49 defines the shear stress-strain relationship. In other words, it can construct the 

backbone curve. The backbone curve can then be used to plot normalized shear modulus to 

strain. We can see whether Drucker-Prager can effectively model the clay by comparing this to 

the measured normalized shear modulus values. 
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Chapter 5 : DATA ANALYSIS AND INTERPRETATION 

5.1 SAMPLE PREPORATION 
 

5.1.1 UNDISTURBED SAMPLES 

 The behavior of the synthetic oil based clay is mostly dependent on the temperature and 

preparation method of the samples. Special care needs to be taken when the preparing samples.  

A method for preparing the cylindrical test samples needed to be established prior to testing in 

order to minimize human error and increase the reliability of the samples. Any disturbances to 

the clay may cause it to become more malleable. Remolding and variations in temperature are 

considered disturbances because they also have an effect on the clay. For initial tests, samples 

were constructed directly from packaged clay bricks with minimal disturbance, referred to as 

undisturbed samples. The undisturbed samples were initially constructed by bonding several 

bricks together. The layers were cut out using a mold that had a 71.1 mm diameter. The sample 

layers were then scarred and compressed together. Several issues arose from constructing this 

way. The bonding between layers wasn’t strong enough to resist the torsion and many times the 

sample would break apart. Also, the layering caused damping to increase and shear modulus 

values to decrease, similar to a softening affect. This was due to the mechanisms caused by the 

weak bonding between layers. 

 In order to correct these issues samples were constructed from a single clay brick. By 

constructing samples from a single clay brick, the layering mechanisms could be excluded as a 

discrepancy. The clay bricks were trimmed to a 64 mm diameter (largest diameter possible for 

the samples). A molding ring of the one dimensional consolidation test was used for trimming. 
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Figure 5.1- Circular Clay Layers 

 

 

Figure 5.2- Whole Clay Sample 
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5.1.2 REMOLDED SAMPLES 

As stated throughout this paper, the clay in question can either stiffen or become more 

malleable depending on the conditions applied. Initially, the tests were conducted on undisturbed 

samples (continuous samples). However, the clay used as the backing for the drop ball test is 

actually rolled and hammered into the box prior to testing. In order to construct an accurate 

numerical model of the ballistic event, the clay should be tested under similar conditions. 

It is important to keep the remolding process constant throughout testing. The method 

developed in our lab was very simple in order to assure this. Firstly, the clay was flattened using 

a roller. The flattened clay was then rolled into long slender cylinders and placed into molds. The 

sample molds had an inside diameter of 72 mm and a height of 144 mm. The molds were then 

filled to about a quarter of their length and compacted using a standard compaction hammer. 

Each layer was given 10 blows by the hammer. Typically, it took 5 layers to completely fill the 

mold and create a sample. Using the following equation the energy delivered to each layer can be 

determined: 

4¦�è�é 5 ê# ¨� ¡�¨¤�ìê# ¨� í�é�è�ìêl�î�¥g ¨� 2����èìê�è¨ï 2�î�¥g ¨� 2����èì�¨�ª�� ¨�  ¨��  

4¦�è�é 5 ê10 ©�¨¤�ìê5 ��é�è�ì °2.5 ð 9.811000 
ñ± ê0.305 �ì570 ð 108ò�| ó 656 
ñ I �/�| 

These samples are referred to as remolded samples. The clay did show signs of rebound after 

initial disturbance. Due to the rebound, the decision was made to test the remolded samples at a 

finite time after they were created. This was set to 48 hours after disturbing. Like the undisturbed 

samples these were tested in both heated and non-heated conditions at varying confining 

pressures. 
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5.1.3 HEATED SAMPLES 

 Besides remolding the clay the DOD also heats the clay in an oven. Typically, the DOD 

wants the clay to be around 70ô, which is around the lab’s room temperature. The temperature 

was maintained by heating the clay to 100ô and limiting the time a sample could be used to 30 

minutes. The clay is very susceptible to temperature so the heating process had to be simulated 

during lab tests. Samples were heated to 100ô in the oven for at least 8 hours, in order to assure 

the entire sample was properly heated. Certain modification had to be made during this stage of 

testing. Since resonant column test can take several hours to transpire, due to the consolidation of 

samples as the test is run, an effective manner of heating the sample throughout the duration of 

the test needed to be developed. 

When running similar triaxial tests a circulation system was used that helped maintain the 

required temperature. This was not possible for the resonant column due to insufficient inlets. 

Instead, hot water was placed in the chamber prior to testing and  was replaced throughout the 

test. The tap water used for heating was 120ô when placed. The temperature within the cell was 

carefully monitored using thermostats inside the chamber. Additionally, the water was removed 

after the tests to verify that the temperature had not dropped below the intended target. The 

temperatures of the samples were taken prior to and after the tests were concluded. The goal was 

to maintain a temperature above 90ô. Both the remolded and undisturbed samples were heated 

in this manner. 
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5.2 RESULTS 

 Four sets of samples were created using combinations of the previously mentioned 

sample preparation methodology. They will be referred to as undisturbed, undisturbed heated, 

remolded, and remolded heated.  The samples were also subjected to varying confining 

pressures. A summary of the important properties are shown in table 5.1. As previously stated, 

#$%& and õöÔ÷ represent the elastic behavior of the clay. Undisturbed samples were expected to 

be the stiffest and this is shown in that it has the highest #$%& value and lowest õöÔ÷ value. 

Comparing undisturbed samples to remolded samples shows that the clay loses a large amount of 

strength during the remolding process. More strength is lost remolding than heating the samples. 

This is shown in that the undisturbed heated samples have a #$%&of 41 MPa compared to 

remolded sample’s 35.2 MPa. The disturbed sample loses close to 40% of its strength were 

heating only causes it to lose 28%. Surprisingly, the loss of shear modulus for heated samples is 

similar to that of their non-heated counterparts, 27% for disturbed and 28% for undisturbed. The 

ranges for shear modulus show a lot of overlap for the shear strains tested. The samples seem to 

overlap in the 10-30 MPa range except for the undisturbed samples, which consistently stayed 

above. Figures 5.3 through 5.7 show the effects of confining pressure on shear modulus. As 

anticipated the increase of confining pressure causes an increase in shear modulus, but besides 

that no definitive pattern was determined. 

Damping is shown in table 5.1, as well as figure 5.8. It’s difficult to distinguish any 

trends in damping due to confining pressure (figures 5.9 through 5.12). Looking at damping by 

comparing the preparation method does show some distinctive characteristics. The remolded 

samples have higher initial values of damping, r$)~, than the undisturbed samples. This is 

attributed to the mechanisms of the remolded clay. The remolding process leaves voids and some 
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 Table 5.1- Summary of Test 

 

 

Figure 5.3- Shear Modulus by Preparation Method 
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Figure 5.4- Shear Modulus for Undisturbed Samples 

 

Figure 5.5- Shear Modulus for Undisturbed Heated 
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Figure 5.6- Shear Modulus for Remolded 

 

Figure 5.7- Shear Modulus for Remolded Heated 
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layering. The layering likely plays a large role in the dissipation of energy in the clay. In figure 

5.8, the undisturbed and remolded look almost identical except that the remolded data is shifted 

up. Other more significant interpretations of the damping data are done later when the analytical 

predictive equations are used. 
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Figure 5.8- Damping Ratio by Preparation Method 

 

Figure 5.9- Damping Ratio for Undisturbed 
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Figure 5.10- Damping Ratio for Undisturbed Heated 

 

Figure 5.11- Damping Ratio for Remolded 
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Figure 5.12- Damping Ratio for Remolded Heated 
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5.3 ANALYSIS USING PREDICTIVE EQUATION 

Section 4.2 describes the analytical methods that are applied to the resonant column 

results. In this section it is explained that certain variables are necessary prior to the analysis of 

the data. For example, the triaxial test needs to be conducted in order to determine the 

maximum shear stress of the clay for all four of the sample types. Table 5.2 provides the 

necessary properties from both the static test (ûöùú) and the dynamic test (øöùú). The reference 

strain of the samples at their corresponding cell pressure is also given in table 5.2. Reference 

strain is found using equation 4.11. Figure 5.13 shows all the normalized shear modulus 

reduction curves. The appendix shows more detailed figures of each test (i.e remolded, 

undisturbed, etc,). Typically, confining pressure had little significance on the reduction curves; 

this is also shown in figure 5.13 were most of the curves overlap except for a few outliers. In 

order to simplify the congestion the averages of the reduction curves were taken, ignoring 

confining pressure. This is shown in figure 5.14 where the data is separated by preparation 

method. 

Looking at figure 5.14, the undisturbed samples decrease in normalized shear modulus at 

an earlier shear strain than the other three samples. This means that the soil retains its strength 

longer as the shear strain amplitude increases for undisturbed heated samples and both heated 

and unheated remolded samples. Also the difference between the two remolded sets of data is 

very small compared to the two undisturbed samples. The most important trend shown in figures 

5.13 and 5.14 is that the shear modulus degrades later than typical clays. This behavior is similar 

to non-Newtonian fluids. If the backbone curve were reconstructed it would show that the RP 

clay is very stiff. Whereas typical clays, studied by Hardin & Drnevich (1972), show a softer 

relationship. The reconstruction of the backbone curve is done later. 
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Table 5.2- Summary of Static and Dynamic Properties 

Non Heated Sample (Undisturbed) 

 

0 psi 1 psi 5 psi 10 psi 20 psi ûöùú (kPa) 

46 46 46 46 46 øöùú (MPa) 

44.6 53.8 53.8 56.2 56.9 ��  1.031 ð 108|
 8.55 ð 108t

 8.55 ð 108t
 8.185 ð 108t

 8.084 ð 108t
 

Heated Sample (Undisturbed) 

 

0 psi 1 psi 5 psi 10 psi 20 psi 

ûöùú (kPa) 

25.1 25.1 25.1 25.1 25.1 

øöùú (MPa) 

32.7 30.1 33.1 33.2 41.0 

��  7.676 ð 108t
 8.339 ð 108t

 7.583 ð 108t
 7.56 ð 108t

 6.122 ð 108t
 

Non Heated Sample (Disturbed) 

 

0 psi 1 psi 5 psi 10 psi 20 psi ûöùú (kPa) 

44 44 44 44 44 øöùú (MPa) 

26.5 29.1 32.0 34.7 35.2 ��  1.66 ð 108|
 1.512 ð 108|

 1.375 ð 108|
 1.268 ð 108|

 1.25 ð 108|
 

Heated Sample (Disturbed) 

 

0 psi 1 psi 5 psi 10 psi 20 psi 

ûöùú (kPa) 

25.1 25.1 25.1 25.1 25.1 

øöùú (MPa) 

15.5 19.6 25.2 21.8 25.7 

��  1.619 ð 108|
 1.281 ð 108|

 9.96 ð 108t
 1.151 ð 108|

 9.767 ð 108t
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Figure 5.13- Modulus Reduction Curves
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5.4 PREDICTIVE CURVES FOR DAMPING 

Damping is frequency dependent according to the Kelvin-Voigt model. To compare 

damping from a resonant column test, it is looked at as a function of G/Gmax. Using G/Gmax 

allows for the  data collected from samples of different dimensions to be compared, basically 

normalizing frequency. Since empirical correlations could not be used for the RP clay, the 

method laid out by (Zhang, Andrus, & Juang, 2005) was used. Using equation 4.19, the quadratic 

curve was used to fit the data. These are the results: 

r I  r$)~ 5 17.31 G# #$%&' H9 I 47.98 G# #$%&' H C 30.9    (5.1) 

r I  r$)~ 5 2.433 G# #$%&' H9 I 13.39 G# #$%&' H C 11.37    (5.2) 

r I  r$)~ 5 3.655 G# #$%&' H9 I 18.38 G# #$%&' H C 14.97   (5.3) 

r I  r$)~ 5 3.115 G# #$%&' H9 I 15.43 G# #$%&' H C 12.33   (5.4) 

Equation 5.1 is the damping fit for undisturbed samples, equation 5.2 is for the heated 

undisturbed samples, equation 5.3 is for remolded, and equation 5.4 is for heated remolded. 

Figure 5.15 graphically shows all of the equations. The undisturbed sample shows a more drastic 

increase in damping as the normalized shear modulus decreases. Looking at figures 5.16 and 

5.17,  there are no dramatic variations. Specifically both of the heated samples show almost 

identical trends, figure 5.16.  In table 5.1, the fits are used to predict values for r$%&, though the 

heated remolded sample and the heated undisturbed sample show similar trends their r$%& value 

is different due to r$)~. As stated before damping is not a function of confining pressure. The 

fact that the trends in damping support the trends found in the normalized shear modulus fits 
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with the fact that the clay behaves more similar for heated undisturbed than the two remolded 

samples. 
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Figure 5.15- Damping Ratio predictive curves 

  

 

Figure 5.16- Heated Samples predictive curves 
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Figure 5.17- Remolded Samples predictive curves 
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5.5 COMPARISONS TO DRUCKER PRAGER CAP MODEL 

Now the results from the resonant column can be compared to the one dimensional 

equation derived for the Drucker-Prager cap model. Only the samples with no confining pressure 

applied were compared to the 1D equation (equation 4.49). The parameters used for the Drucker-

Prager cap model were directly taken from the model created through the testing/calibration 

method. The properties of which are listed in table 5.3. It is important to note that shear modulus 

was never inputted to the finite element program. The program assigns a value to shear modulus 

using elastic modulus and Poisson’s ratio (equation 2.3). The shear modulus that the finite 

element model uses is therefore smaller than the one measured using the resonant column, 1.388 

MPa to 44.6 MPa. Equation 4.49 is also very dependent on J2 , second invariant of deviatoric 

stress. This value is dependent on the yield stress of the clay. In order to show the sensitivity of 

the model, the yield stress and modulus are varied. The matlab program is included in the 

appendix. 

Figure 5.18 and 5.19 compare the data from the currently being used for analysis to the 

one measured. In the graphs the yield stress was varied in order to show the effects on the shear 

modulus reduction curves. Due to the lower shear modulus values and higher yield stress the 

strain at which the material becomes plastic is shifted further to the right in both figures 5.18 and 

5.19. Also, in figure 5.19 we can see that the Drucker-Prager model predicts a stress strain 

relationship that is on a different scale than the Hardin/Drenvich prediction. Figure 5.20 shows 

the stiffer stress strain relationship of the Hardin/Drnevich when compared to the others. Also 

notice that the yield stress needed to be reduced by a factor of ten in order to be comparable to 

the predictive curve. 
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Figures 5.21 and 5.22 were constructed using a higher elastic modulus (132.908 MPa).  

Figure 5.21 looks like it gives a better prediction for yield strain; still Drucker-Prager is going to 

predict a material that is stiffer than the measured results. This is shown in more detail in Figure 

5.23. It is determined using figure 5.23 that a yield stress of 5 kPa would give a similar stress 

strain relationship to the measured data. Obviously a higher elastic modulus would also have to 

be used in order to get the best fit possible with the collected data. 
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Table 5.3- Model Values 

 

 

 

 

Finite Element Model Parameters 

Friction Angle (ü) ýþ° 
Cohesion (c) 46 kPa 

E (Elastic Modulus) 4.136 MPa 

Yield Stress 60 kPa 

Poisson’s Ratio (�) 0.49 

�� 34.641 kPa 
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Figure 5.18- Modulus Reduction Curves using Model Values 

 

Figure 5.19- Stress-Strain curves using Model Values 
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Figure 5.20- Stress-Strain curves using Model Values  

 

Figure 5.21- Modulus Reduction Curves using Calculated Shear Modulus 
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Figure 5.22- Stress-Strain relationship using Calculated Shear Modulus 

 

Figure 5.23- Stress-Strain relationship using Calculated Shear Modulus 
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5.6 CONCLUSSION/RECOMMENDATIONS 

In conclusion, this paper presented shear modulus values for four sets of samples; 

undisturbed, remolded, undisturbed heated and remolded heated. The study determined that the 

clay is considerably affected by remolding and temperature. It behaves more like a non-

Newtonian fluid when heated. These results show a material that is stiffer than typical clays. 

The study also offers a comparison of the behavior of Drucker-Prager yield criterion with 

a cap to the experimental results of our resonant column. The results of our tests show a huge 

difference between the models that is currently being used.  With some adjustments the model 

though could be made to match our measurements pretty closely. Drucker-Prager typically 

predicts soils to be stiffer or have a more constant shear modulus, our clay also shows that it is 

stiffer than typical clays. Additionally, the study provides values for maximum shear modulus as 

well as ranges for damping and maximum damping. 

In order to gain a greater understanding of the material tests need to be conducted at 

higher strains. Though the predictive equations assist in characterizing the soils behavior at such 

strains running a high strain test would reduce the error in these estimates. Also, the resonant 

column test should be compared to other constitutive models such as CAM Clay, and Von Mises. 
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Appendix A. CALIBRATION 
 

In order to accurately measure dynamic soil properties, it is necessary to first calibrate the 

resonant column. Calibrating the resonant column allows us to provide assurance of the 

recorded; also it allows us to become intimate with both the equipment and the testing procedure.  

It’s also important to take an inventory of the equipment prior to beginning calibration process in 

order to assure everything is accounted for and functioning properly. It’s also important to oil 

and clean pieces in order to prevent loss created by the friction of the rubbing pieces.  

A.1 POLAR MASS MOMENT OF INERTIA FOR TOP PLATEN 
 

Polar mass moment of inertia for the top mass of the resonant column is an integral 

property for determining dynamic properties of soil using the equipment. Typically polar mass 

moment of inertia can be determined by the physical properties of the object. In the resonant 

column though, the complex shape of the top mass makes it difficult to accurately measure the 

physical properties. It then becomes easier and more accurate to measure the value, JA, 

experimentally instead of using physical measurements this is directly from “Drnevich Resonant 

Column Apparatus Operating Manual”. This method is also briefly described in ASTM D4015. 

In order to begin the calibration process it’s necessary to have a calibration rod, which is usually 

provided by the company that produces the resonant column. In this calibration the rod needed to 

be manufactured. The manufactured rod is based on the description provided in ASTM D 4015. 

It is recommended that a calibration rod with a known stiffness be used. The rod used in our 

calibration process was aluminum alloy 2024. The aluminum rod has a known shear modulus 

2.646 GPA. The rod is used to perform standard test at very low strain amplitudes. From 

dynamics the following relationship is known: 
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�~ 5 S9p PÚ���o        A.1 

Where 	�!  is the torsional spring constant of calibrating rod (N-m/Rad) and J0 is the polar mass 

moment of inertia (Kg-m2).  Equation  A.1 can be rearranged in order to find the polar mass 

moment of inertia of the top platen. This is shown below: 

�� 5 Ú��R9p��TK      A.2 

Torsianal spring constant can be accurately solved because the value for shear modulus of the 

rod is known:  

	�! 5 _x¹0       A.3 

Ip in the equation above stands for the polar moment of inertia for the rod and � is the length of 

the rod. 

�, 5 p��|9       A.4 

In order to authenticate the calibration process, two rods were used to find the polar mass 

moment of inertia. The length of both rods varied, one was 134 mm and the other 119 mm. Both 

rods had a diameter of 9.525 mm (0.375 in). The rods were placed in the fixed on the resonant 

column using screw to attach them to the top and bottom platen. A sketch of the calibration rods 

can be found on figure A.1. Using the large rod the resonant frequency was found to be 37.65 

Hz. The resonant frequency of the smaller rod was about 39.6 Hz. The results of the resonant  
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Figure A.1-Shop Drawing of Calibration Rods 

 

Figure A.2- Resonant frequency of the calibration rods 
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column test on the two calibration rods is also shown in figure A.2 where the independent 

variable is the approximate equivalent shear strain for the aluminum rods using the equation 

Drnevich created for soil samples. 

The   polar mass moment of inertia were experimentally determined to be 2.858 ð
108| �9
� and 2.893 ð 108| �9
�, for the large and small rods respectively. For the final 

value of polar mass moment of inertia the polar mass moment of inertia of the top attachment of 

the calibration rod needs to be subtracted. Then by adding the polar mass moment of inertia of 

the copper porous stone for soil testing results in our final values, final value is referred to as JA. 

These values are 2.935 ð 108| �9
� and 2.87 ð 108| �9
� . Both numbers are very close. 

Due to some modifications to the porous stone to increase the friction between the top platen 

system and sample the value used was actually 3.0 ð 108| �9
�. A set of sample calculations 

are included below. 
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Hardin Calibration Method (Directly from Manual):  
Physical Characteristics of Sample (Large Aluminum Rod): 

 Based on Tatsuoka and Silver paper and some online research. 
Drnevich uses a G of 23.7 GPa but  

  

  

For Natural Frequency I used an average value 

  

Small Aluminum Rod: 

  

  

For Natural Frequency I used an average value 

  

Both Rods give a close estimate for polar mass of inertia  

  Directly from manual 

 

 

G 2.64610
7

⋅ kPa⋅ 2.646 10
4

× MPa⋅=:=

D 0.375in⋅:= IP
π D

4
⋅

32
8.081 10

10−
× m

4
=:=

l1 5.764 in⋅ 2 0.25⋅ in⋅−( ) 0.134m⋅=:= Kcr

G IP⋅

l1
159.919Nm⋅⋅=:=

fn1 37.65Hz⋅:= Jo1

Kcr

2 π⋅ fn1⋅( )2
2.858 10

3−
× m

2
kg⋅=:=

D 0.375in⋅:= IP
π D

4
⋅

32
8.081 10

10−
× m

4
=:=

l2 5.2 in⋅ 2 0.25⋅ in⋅−( ) 0.119m⋅=:= Kcr

G IP⋅

l2
179.109Nm⋅⋅=:=

fn2 39.6Hz⋅:= Jo2

Kcr

2 π⋅ fn2⋅( )2
2.893 10

3−
× m

2
kg⋅=:=

JATop 4.301 10
5−

× m
2

kg⋅:= JPlaten 0.0001199m
2

⋅ kg⋅:=

JA1 Jo1 JATop− JPlaten+ 2.935 10
3−

× m
2

kg⋅=:=

JA2 Jo2 JATop− JPlaten+ 2.97 10
3−

× m
2

kg⋅=:=
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Besides using different calibration rods the polar mass moment of inertia was also 

verified using alternative methods. The second method used to calculate JA was taken from 

(Tatsuoka & Silver, 1980). This method has some advantages over the other. The most important 

being that material properties, such as shear modulus, are not needed in order to find JA.  It is 

important to note that this method was used as verification of the previous one. It is not discussed 

in the ASTM standards for resonant column so it was used to verify whether the numbers 

resulting from the previous method were reasonable. In order to use this method it is important to 

understand some the derivation. Firstly, the following relationship is known to be true for shear 

modulus: 

# 5 � G9p��0� H9
     A.5 

In equation A.5, fn is the resonant frequency, l is the length, ρ is the density and F is the 

dimensionless frequency factor. This equation is the same as 4.6 in the data reduction section. 

Dimensionless frequency factor can be read of a chart provided in ASTM D4015 (this is also 

shown in figure 4.2).Dimensionless frequency factor is also described by the following equation: 

� tan � 5 ��=8 ��RK	Å�TK     A.6 

J, in equation A. 6, is the total rotational moment of inertia of a sample. KS is the spring constant. 

Spring constant can be related to the resonant frequency of the system, fOT.  
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��� 5 S9p PÚ��=      A.7 

Equation A.7 is then solved for Ks, the spring constant, and then plugging that into equation A.6, 

for dimensionless frequency factor. This gets ride of the spring constant in equation A.6. 

� tan � 5 �
�=°S8Å
�Å� ±K      A.8 

For this method two calibration samples with different rotational moments of inertia need to be 

tested. The calibration samples basically consist of rods and top and bottom masses. In figure 

A.3 this is shown more clearly. As you can see in figure A.3 both of the rods of the calibration 

samples need to have the same physical properties (i.e. length, rotational moment of inertia, and 

density). Also the rods should have the same shear modulus value. Then equation A.5 can be 

made equal to each other because they have the same shear modulus. That gives use the 

following relationship: 

� G9p��70�7 H9 5 � G9p��K0�K H9
     A.9 

As seen in equation A.9, most of the terms are the same and can actually be dropped out. 

Dropping those like terms leaves the following: 

��7�7 5 ��K�K  
��7��K 5 �7�K    A.10 

This equation shows that the rods have linear relationships with each other. (Tatsuoka & Silver, 

1980) Using this relationship the following is established: 
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Figure A.3- From (Tatsuoka & Silver, 1980) Calibration Rods 

 

Figure A.4- Results for New Method of Calibration 
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�� 5  �K8�7GÅ�7Å�KHK8S      A.11 

Equation A.11 is pretty straight forward and convenient. Basically, two rods with the same 

properties are tested. By adding more weight to the top of one, therefore increasing its mass 

moment of inertia and reducing its natural frequency, JA can be experimentally determined. For 

my calibration, the same rod was used, one without a mass attached and another with a mass 

attached. As previously stated this changes the mass moment of inertia of either rod, also by 

using the same rod we reduce the possibility of having different physical properties, which was a 

point of emphasize for the author. 

Figure A.4 shows the test results for each rod. The rod without a mass has a higher 

frequency than the rod with the mass, which was expected. It was recommended to use the most 

linear part of the data. Most materials are linear from 106 to 105 strain range. This range was 

extrapolated from then data and interpreted using a linear equation. This is shown in Mathcad on 

the following page. In the calculations the following relationship was used in equation A. 11, 

∆� 5 �9 I �S, this basically ends up being the mass moment of inertia of the copper porous stone, 

which is 1.199 ð 108| �9
�  (value has been used throughout text and is taken from 

Drnevich’s manual). 
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Using Tatsuoka and Silver Method: 

 

   

 

  

JA
∆J

fn 1 0.00001105( )

fn 2 0.00001105( )









2

1−

2.849 10
3−

× m
2

kg⋅=:=

  

 

fn1 γ( ) 37.841 3084.8γ⋅−:=
∆ J 0.0001199 kg⋅ m

2
⋅:=

fn2 γ( ) 37.079 3918.5γ⋅−:=



91 

 

This value does not include the mass moment of inertia of the copper porous stone. If the 

porous stone is included the final value becomes 2.969 ð 108| �9
�. This values measures up 

favorably with the previous method for measuring mass moment of inertia, this is shown in table 

A.1. There is about a 0.5% error between the values. 

 ASTM D4015 
(Average Value) 

(Tatsuoka & Silver, 
1980) 

JA, mass moment of 
inertia of top platen 

2.952 ð 108| �9
� 2.969 ð 108| �9
� 

Table A.1- Polar mass moment of inertia of top platen 
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A.2  Torque Calibration Constant 

Besides mass moment of inertia of top platen there are other system constants that need 

to be determined during the calibration process. In this section the constant that is determined is 

the Torque Calibration Constant (TCF). ASTM D4015 describes the process for verifying the 

TCF. The method consist of taking two measurements one at 0.707 time the resonant frequency 

of the rod, the other being at 1.414 times the resonant frequency of the rod. The resonant 

frequency of the rod used was 37.6 Hz (average value for the larger rod). The measurements 

were taking at 26.6 Hz (0.707 times fn) and 53.2 Hz (1.414 times fn). The measurements were 

made on varied amplitude of power delivered to the drive coils or CRT in order to verify the 

results. Using these measurements C1 and C2 (constants used to find TCF) can be found. C1 

corresponds to the 0.707 reading and C2 to the 1.414 reading. The constants are defined by the 

following equations: 

�S 5 ���E���o.�o�9���o.�o�      A.12 

�9 5 ���E���7.�7����7.�7�      A.13 

RCF is a calibration factor that is given for the accelerometer. The equation for RCF is given in 

chapter 4 (equation 4.8). RTO is the accelerometer reading in voltage and CRT is the power 

delivered to the drive coil, this is explained in chapter 4. 

��� 5 R�7U�KTÚ9      A.14 

In equation A.14 the constant K is the stiffness of the rod that is being used to calibrate the 

equipment. For this phase of the calibration process the larger rod was used, its stiffness was  

159.91 N-m (using equation A.3). ASTM does stipulate that the C values cannot be more than 
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10% apart. Also it states that the voltage readings should be ten times higher than the signal 

when the machine is off, in other words the noise of the signal (which is about 0.001), so as to 

make sure that the instrumentation is measuring the forcing function. A set of calculations are 

included on the next page. This number is lower than any previous ones. I repeated the test 

several times.  

 Current Calibration Previous Calibration 

TCF, Torque 
Calibration Factor 

0.03 0.049 

Table A.2- Torque Calibration Factor comparison 
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Torque Calibration Factor using ASTM D4015 

   

  

   

  

  

 

fn 36.7Hz⋅:= f0.707 26.6Hz⋅:= f1.414 53.1Hz⋅:=

RCF0.707
4.4723

f0.707
2

s
2

⋅

6.321 10
3−

×=:= RCF1.414
4.4723

f1.414
2

s
2

⋅

1.586 10
3−

×=:=

CRT0.707 1.049:= CRT1.414 1.049:= K 159.919:=

RTO0.707 0.06:= RTO1.414 0.132:=

C1

0.5 RTO0.707⋅ RCF0.707⋅

CRT0.707
1.808 10

4−
×=:= C2

RTO1.414RCF1.414⋅

CRT1.414
1.996 10

4−
×=:=

TCF
C1 C2+( ) K⋅

2
0.03=:=
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A.3   Apparatus Damping Coefficient for Torsion 

 The final constant that needs to be verified is the apparatus damping coefficient for 

torsion. This is basically done by conducting what is typically referred to as a “free vibration” 

test. Basically, the rod is excited and allowed to vibrate freely. In this case the calibration rod is 

excited at its resonant frequency and then shut it off. That is shown in figure A.5. Figure A.6 

takes the data from A.5 and plots the peaks versus No. of cycles in order to process the data more 

efficiently. The data from these graphs are used in the following equation that is taken from 

ASTM D4015. 

����� 5 2�����1�     A.15 

Mass moment of inertia, JA, was found earlier in the calibration process. The other parameter, 

foT, is the torsional motion resonant frequency measured during damping determination. In this 

case that was taken to be the resonant frequency of the rod. The other parameter is δT or 

logarithmic decrement for torsional motion. Logarithmic decrement for torsion is given by the 

following equation: 

1� 5 S~ log G�7��H     A.16 

In equation A.16, the A values refer to the amplitude of the cycle. A1 is the notation for the 

amplitude of the first cycle and An  the amplitude of the nth cycle. The results using figure A.6 

give a 1� 5 0.01933 . This value is plugged into equation A.15. ADCoT then is about 0.004 

which matches the number that is on the calibration sheets. 
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Figure A.5- Free Vibration of the calibration rod 

 

Figure A.6- Peaks versus number of cycles 
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A.4  Sample Test 

 Now that I have the three system constants, shown in table A.3. A test was run in order to 

verify whether the calibration yielded reasonable results. Using a rod with known properties a 

frequency sweep was conducted in order to determine the resonant frequency of the rod at 

varying strain amplitudes. Some assumptions needed to be made. For example, the 

dimensionless frequency factors actually fall out of the range that is provided. In order to use the 

charts that are provided for F (Dimensionless frequency factor) and A (Damping factor), ADF 

has to be equal to zero. This is not the case here but in order to continue it was necessary to 

ignore this rule and just assume that ADF is about zero (the other option would have been to use 

a program that is giving in ASTM but the program makes some assumptions in order to converge 

that I was not sure about). Also, damping factor was out of the range of the charts, but in 

Drnevich’s manual he states that A can be assumed to be twice the value of TT, Active-end factor 

for torsional motion for most cases. This resulted in shear modulus values that varied from 2.81 x 

104  - 2.69 x 104 MPa. As previously mentioned aluminum alloy has a shear modulus of about 

2.646 x 104 MPa. The slight variance could be attributed to two reasons; dimensionless 

frequency factor being slightly off, or the material might have a higher stiffness than we 

predicted. Also the Damping ratio matched pretty closely for both free vibration and steady state 

damping. 
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JA, mass moment of inertia of 
top platen 

TCF, Torque Calibration 
Factor 

ADCoT, Apparatus damping 
coefficient for torsion 2.952 ð 108| �9
� 0.03 0.004 

Table A.3- Summary of Calibration 
ft (Hz) Jm (kg/m2) Tt ADFt TCF γ (Shear Strain) G Dt (damping ratio) FV Damping Error 

38.2 0.0029 9835.23 56.52 0.03 0.00029% 2.81E+10 0.80% 0.75% 6.29% 

37.7 0.0029 9835.23 57.27 0.03 0.00456% 2.74E+10 0.29% 0.29% 1.75% 

37.5 0.0029 9835.23 57.58 0.03 0.01104% 2.71E+10 0.35% 0.40% 16.04% 

37.4 0.0029 9835.23 57.73 0.03 0.01281% 2.69E+10 0.51% 0.77% 49.27% 

Table A.4- Results of Aluminum Rod 
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Appendix B. DATA REDUCTION CURVES 
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B.2  UNDISTURBED HEATED 
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B.3  REMOLDED 
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B.4  REMOLDED HEATED  
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Appendix C. DATA SHEETS 

C.1  UNDISTURBED 
M L D ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.648 0.134 0.064 65.5 0.005 0.010 4.31E-04 1502 3.32E-04 9.05 2.93E-02 1.04E-03 9.76E-01 0.32 9.96E-07 44.6E+6 19 5.40% 

0.648 0.134 0.064 65.6 0.010 0.020 4.31E-04 1502 3.32E-04 9.05 2.93E-02 1.04E-03 9.76E-01 0.32 1.99E-06 44.7E+6 19 5.40% 

0.648 0.134 0.064 65.3 0.021 0.041 4.31E-04 1502 3.32E-04 9.05 2.94E-02 1.05E-03 9.99E-01 0.32 8.22E-06 44.3E+6 19 5.27% 

0.648 0.134 0.064 64.1 0.054 0.127 4.31E-04 1502 3.32E-04 9.05 3.00E-02 1.09E-03 8.30E-01 0.32 2.64E-05 42.7E+6 19 6.34% 

0.648 0.134 0.064 63.2 0.165 0.391 4.31E-04 1502 3.32E-04 9.05 3.04E-02 1.12E-03 8.23E-01 0.32 8.36E-05 41.5E+6 19 6.39% 

0.648 0.134 0.064 60.5 0.227 0.687 4.31E-04 1502 3.32E-04 9.05 3.17E-02 1.22E-03 6.45E-01 0.32 1.60E-04 38.1E+6 19 8.16% 

0.648 0.134 0.064 56.8 0.339 1.624 4.31E-04 1502 3.32E-04 9.05 3.38E-02 1.39E-03 4.07E-01 0.32 4.30E-04 33.5E+6 19 12.92% 

 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.648 0.134 0.064 71.9 0.005 0.010 4.31E-04 1502 3.32E-04 9.05 2.67E-02 8.65E-04 9.76E-01 0.32 8.26E-07 53.8E+6 19 5.40% 

0.648 0.134 0.064 71.7 0.012 0.026 4.31E-04 1502 3.32E-04 9.05 2.68E-02 8.70E-04 9.01E-01 0.32 1.99E-06 53.5E+6 19 5.84% 

0.648 0.134 0.064 70.9 0.026 0.063 4.31E-04 1502 3.32E-04 9.05 2.71E-02 8.90E-04 8.05E-01 0.32 1.07E-05 52.3E+6 19 6.54% 

0.648 0.134 0.064 70.0 0.102 0.254 4.31E-04 1502 3.32E-04 9.05 2.74E-02 9.13E-04 7.84E-01 0.32 4.43E-05 51.0E+6 19 6.72% 

0.648 0.134 0.064 68.8 0.212 0.523 4.31E-04 1502 3.32E-04 9.05 2.79E-02 9.45E-04 7.91E-01 0.32 9.44E-05 49.2E+6 19 6.65% 

0.648 0.134 0.064 68.3 0.291 0.740 4.31E-04 1502 3.32E-04 9.05 2.81E-02 9.59E-04 7.67E-01 0.32 1.36E-04 48.5E+6 19 6.86% 

0.648 0.134 0.064 67.5 0.369 0.943 4.31E-04 1502 3.32E-04 9.05 2.84E-02 9.82E-04 7.63E-01 0.32 1.77E-04 47.4E+6 19 6.89% 
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M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.648 0.134 0.064 71.9 0.005 0.010 4.31E-04 1502 3.32E-04 9.05 2.67E-02 8.65E-04 9.76E-01 0.32 8.26E-07 53.8E+6 19 5.40% 

0.648 0.134 0.064 71.8 0.010 0.020 4.31E-04 1502 3.32E-04 9.05 2.67E-02 8.68E-04 9.76E-01 0.32 1.66E-06 53.6E+6 19 5.40% 

0.648 0.134 0.064 71.8 0.020 0.040 4.31E-04 1502 3.32E-04 9.05 2.67E-02 8.68E-04 9.76E-01 0.32 6.63E-06 53.6E+6 19 5.40% 

0.648 0.134 0.064 71.6 0.041 0.091 4.31E-04 1502 3.32E-04 9.05 2.68E-02 8.72E-04 8.79E-01 0.32 1.52E-05 53.3E+6 19 5.99% 

0.648 0.134 0.064 71.0 0.096 0.227 4.31E-04 1502 3.32E-04 9.05 2.70E-02 8.87E-04 8.25E-01 0.32 3.85E-05 52.4E+6 19 6.38% 

0.648 0.134 0.064 70.2 0.177 0.440 4.31E-04 1502 3.32E-04 9.05 2.74E-02 9.08E-04 7.85E-01 0.32 7.63E-05 51.2E+6 19 6.71% 

0.648 0.134 0.064 68.0 0.369 1.054 4.31E-04 1502 3.32E-04 9.05 2.82E-02 9.67E-04 6.83E-01 0.32 1.95E-04 48.1E+6 19 7.71% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.648 0.134 0.064 73.5 0.005 0.011 4.31E-04 1502 3.32E-04 9.05 2.61E-02 8.28E-04 9.76E-01 0.32 8.38E-07 56.2E+6 19 5.40% 

0.648 0.134 0.064 72.9 0.012 0.027 4.31E-04 1502 3.32E-04 9.05 2.63E-02 8.42E-04 8.89E-01 0.32 1.98E-06 55.3E+6 19 5.92% 

0.648 0.134 0.064 72.9 0.021 0.046 4.31E-04 1502 3.32E-04 9.05 2.63E-02 8.42E-04 8.99E-01 0.32 7.40E-06 55.3E+6 19 5.85% 

0.648 0.134 0.064 72.4 0.048 0.105 4.31E-04 1502 3.32E-04 9.05 2.65E-02 8.53E-04 8.92E-01 0.32 1.71E-05 54.5E+6 19 5.90% 

0.648 0.134 0.064 72.2 0.122 0.272 4.31E-04 1502 3.32E-04 9.05 2.66E-02 8.58E-04 8.75E-01 0.32 4.46E-05 54.2E+6 19 6.01% 

0.648 0.134 0.064 70.9 0.224 0.536 4.31E-04 1502 3.32E-04 9.05 2.71E-02 8.90E-04 8.15E-01 0.32 9.11E-05 52.3E+6 19 6.45% 

0.648 0.134 0.064 69.6 0.345 0.929 4.31E-04 1502 3.32E-04 9.05 2.76E-02 9.23E-04 7.25E-01 0.32 1.64E-04 50.4E+6 19 7.26% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.648 0.134 0.064 74.0 0.006 0.0108 4.31E-04 1502 3.32E-04 9.05 2.60E-02 8.17E-04 1.05E+00 0.32 9.05E-07 56.9E+6 19 5.02% 

0.648 0.134 0.064 73.9 0.011 0.0208 4.31E-04 1502 3.32E-04 9.05 2.60E-02 8.19E-04 1.01E+00 0.32 1.69E-06 56.8E+6 19 5.20% 

0.648 0.134 0.064 73.7 0.021 0.0434 4.31E-04 1502 3.32E-04 9.05 2.61E-02 8.23E-04 9.49E-01 0.32 6.83E-06 56.5E+6 19 5.55% 

0.648 0.134 0.064 73.2 0.054 0.116 4.31E-04 1502 3.32E-04 9.05 2.62E-02 8.35E-04 9.08E-01 0.32 1.85E-05 55.7E+6 19 5.79% 

0.648 0.134 0.064 73.1 0.115 0.243 4.31E-04 1502 3.32E-04 9.05 2.63E-02 8.37E-04 9.23E-01 0.32 3.89E-05 55.6E+6 19 5.70% 

0.648 0.134 0.064 72.4 0.242 0.537 4.31E-04 1502 3.32E-04 9.05 2.65E-02 8.53E-04 8.79E-01 0.32 8.75E-05 54.5E+6 19 5.99% 

0.648 0.134 0.064 70.8 0.397 0.992 4.31E-04 1502 3.32E-04 9.05 2.71E-02 8.92E-04 7.81E-01 0.32 1.69E-04 52.1E+6 19 6.74% 
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M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.658 0.135 0.064 63.3 0.004 0.010 4.34E-04 1516 3.37E-04 8.90 2.98E-02 1.12E-03 8.33E-01 0.32 8.89E-07 42.7E+6 19 6.32% 

0.658 0.135 0.064 63.2 0.008 0.020 4.34E-04 1516 3.37E-04 8.90 2.99E-02 1.12E-03 7.78E-01 0.32 1.66E-06 42.5E+6 19 6.77% 

0.658 0.135 0.064 63.1 0.011 0.029 4.34E-04 1516 3.37E-04 8.90 2.99E-02 1.12E-03 7.53E-01 0.32 6.18E-06 42.4E+6 19 6.99% 

0.658 0.135 0.064 63.1 0.020 0.054 4.34E-04 1516 3.37E-04 8.90 2.99E-02 1.12E-03 7.35E-01 0.32 1.15E-05 42.4E+6 19 7.16% 

0.658 0.135 0.064 62.9 0.044 0.116 4.34E-04 1516 3.37E-04 8.90 3.00E-02 1.13E-03 7.53E-01 0.32 2.49E-05 42.1E+6 19 6.99% 

0.658 0.135 0.064 61.9 0.106 0.289 4.34E-04 1516 3.37E-04 8.90 3.05E-02 1.17E-03 7.28E-01 0.32 6.40E-05 40.8E+6 19 7.23% 

0.658 0.135 0.064 60.2 0.232 0.663 4.34E-04 1516 3.37E-04 8.90 3.14E-02 1.23E-03 6.94E-01 0.32 1.55E-04 38.6E+6 19 7.58% 

0.658 0.135 0.064 58.1 0.325 0.978 4.34E-04 1516 3.37E-04 8.90 3.25E-02 1.32E-03 6.59E-01 0.32 2.46E-04 36.0E+6 19 7.98% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.658 0.135 0.064 68.0 0.004 0.010 4.34E-04 1516 3.37E-04 8.90 2.78E-02 9.67E-04 8.01E-01 0.32 7.70E-07 49.3E+6 19 6.57% 

0.658 0.135 0.064 68.3 0.008 0.021 4.34E-04 1516 3.37E-04 8.90 2.77E-02 9.59E-04 7.90E-01 0.32 1.49E-06 49.7E+6 19 6.66% 

0.658 0.135 0.064 68.1 0.015 0.039 4.34E-04 1516 3.37E-04 8.90 2.77E-02 9.64E-04 7.72E-01 0.32 7.19E-06 49.4E+6 19 6.81% 

0.658 0.135 0.064 68.1 0.026 0.067 4.34E-04 1516 3.37E-04 8.90 2.77E-02 9.64E-04 7.70E-01 0.32 1.23E-05 49.4E+6 19 6.84% 

0.658 0.135 0.064 67.5 0.071 0.186 4.34E-04 1516 3.37E-04 8.90 2.80E-02 9.82E-04 7.57E-01 0.32 3.46E-05 48.5E+6 19 6.95% 

0.658 0.135 0.064 66.3 0.147 0.396 4.34E-04 1516 3.37E-04 8.90 2.85E-02 1.02E-03 7.36E-01 0.32 7.64E-05 46.8E+6 19 7.15% 

0.658 0.135 0.064 63.8 0.339 0.954 4.34E-04 1516 3.37E-04 8.90 2.96E-02 1.10E-03 7.05E-01 0.32 1.99E-04 43.4E+6 19 7.47% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.658 0.135 0.064 66.4 0.004 0.011 4.34E-04 1516 3.37E-04 8.90 2.84E-02 1.01E-03 7.72E-01 0.32 8.08E-07 47.0E+6 19 6.82% 

0.658 0.135 0.064 66.9 0.010 0.024 4.34E-04 1516 3.37E-04 8.90 2.82E-02 9.99E-04 8.41E-01 0.32 1.89E-06 47.7E+6 19 6.26% 

0.658 0.135 0.064 66.5 0.015 0.039 4.34E-04 1516 3.37E-04 8.90 2.84E-02 1.01E-03 7.63E-01 0.32 7.48E-06 47.1E+6 19 6.90% 

0.658 0.135 0.064 66.1 0.035 0.090 4.34E-04 1516 3.37E-04 8.90 2.86E-02 1.02E-03 7.72E-01 0.32 1.75E-05 46.5E+6 19 6.82% 

0.658 0.135 0.064 64.9 0.102 0.271 4.34E-04 1516 3.37E-04 8.90 2.91E-02 1.06E-03 7.47E-01 0.32 5.46E-05 44.9E+6 19 7.05% 

0.658 0.135 0.064 62.5 0.310 0.869 4.34E-04 1516 3.37E-04 8.90 3.02E-02 1.14E-03 7.08E-01 0.32 1.89E-04 41.6E+6 19 7.44% 
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M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.658 0.135 0.064 67.1 0.004 0.011 4.34E-04 1516 3.37E-04 8.90 2.81E-02 9.93E-04 7.72E-01 0.32 7.91E-07 48.0E+6 19 6.82% 

0.658 0.135 0.064 67.4 0.010 0.026 4.34E-04 1516 3.37E-04 8.90 2.80E-02 9.84E-04 7.82E-01 0.32 1.94E-06 48.4E+6 19 6.73% 

0.658 0.135 0.064 67.0 0.020 0.051 4.34E-04 1516 3.37E-04 8.90 2.82E-02 9.96E-04 7.78E-01 0.32 9.64E-06 47.8E+6 19 6.76% 

0.658 0.135 0.064 66.6 0.042 0.110 4.34E-04 1516 3.37E-04 8.90 2.84E-02 1.01E-03 7.58E-01 0.32 2.10E-05 47.2E+6 19 6.95% 

0.658 0.135 0.064 65.8 0.103 0.275 4.34E-04 1516 3.37E-04 8.90 2.87E-02 1.03E-03 7.43E-01 0.32 5.39E-05 46.1E+6 19 7.08% 

0.658 0.135 0.064 64.0 0.203 0.566 4.34E-04 1516 3.37E-04 8.90 2.95E-02 1.09E-03 7.12E-01 0.32 1.17E-04 43.6E+6 19 7.40% 

0.658 0.135 0.064 61.4 0.310 0.954 4.34E-04 1516 3.37E-04 8.90 3.08E-02 1.19E-03 6.45E-01 0.32 2.15E-04 40.2E+6 19 8.16% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.658 0.135 0.064 68.4 0.004 0.010 4.34E-04 1516 3.37E-04 8.90 2.76E-02 9.56E-04 8.33E-01 0.32 7.61E-07 49.8E+6 19 6.32% 

0.658 0.135 0.064 67.9 0.012 0.031 4.34E-04 1516 3.37E-04 8.90 2.78E-02 9.70E-04 7.36E-01 0.32 2.12E-06 49.1E+6 19 7.15% 

0.658 0.135 0.064 67.5 0.028 0.077 4.34E-04 1516 3.37E-04 8.90 2.80E-02 9.82E-04 7.21E-01 0.32 1.43E-05 48.5E+6 19 7.30% 

0.658 0.135 0.064 65.5 0.101 0.301 4.34E-04 1516 3.37E-04 8.90 2.88E-02 1.04E-03 6.66E-01 0.32 5.95E-05 45.7E+6 19 7.91% 

0.658 0.135 0.064 60.6 0.297 0.981 4.34E-04 1516 3.37E-04 8.90 3.12E-02 1.22E-03 6.01E-01 0.32 2.27E-04 39.1E+6 19 8.76% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.653 0.134 0.064 64.1 0.007 0.011 4.31E-04 1514 3.34E-04 8.98 2.97E-02 1.09E-03 1.25E+00 0.32 1.46E-06 43.1E+6 19 4.21% 

0.653 0.134 0.064 64.1 0.013 0.021 4.31E-04 1514 3.34E-04 8.98 2.97E-02 1.09E-03 1.22E+00 0.32 2.70E-06 43.1E+6 19 4.32% 

0.653 0.134 0.064 63.9 0.028 0.046 4.31E-04 1514 3.34E-04 8.98 2.98E-02 1.10E-03 1.20E+00 0.32 9.63E-06 42.8E+6 19 4.40% 

0.653 0.134 0.064 62.5 0.089 0.181 4.31E-04 1514 3.34E-04 8.98 3.05E-02 1.14E-03 9.67E-01 0.32 3.96E-05 40.9E+6 19 5.44% 

0.653 0.134 0.064 61.7 0.142 0.305 4.31E-04 1514 3.34E-04 8.98 3.09E-02 1.17E-03 9.15E-01 0.32 6.85E-05 39.9E+6 19 5.75% 

0.653 0.134 0.064 58.0 0.238 0.727 4.31E-04 1514 3.34E-04 8.98 3.29E-02 1.33E-03 6.44E-01 0.32 1.85E-04 35.2E+6 19 8.18% 

0.653 0.134 0.064 56.2 0.297 0.943 4.31E-04 1514 3.34E-04 8.98 3.39E-02 1.42E-03 6.19E-01 0.32 2.55E-04 33.1E+6 19 8.50% 
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M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.653 0.134 0.064 64.6 0.006 0.011 4.31E-04 1514 3.34E-04 8.98 2.95E-02 1.07E-03 1.07E+00 0.32 1.23E-06 43.7E+6 19 4.91% 

0.653 0.134 0.064 64.4 0.011 0.021 4.31E-04 1514 3.34E-04 8.98 2.96E-02 1.08E-03 1.03E+00 0.32 2.27E-06 43.5E+6 19 5.11% 

0.653 0.134 0.064 63.5 0.030 0.059 4.31E-04 1514 3.34E-04 8.98 3.00E-02 1.11E-03 1.00E+00 0.32 1.25E-05 42.3E+6 19 5.26% 

0.653 0.134 0.064 62.4 0.052 0.121 4.31E-04 1514 3.34E-04 8.98 3.05E-02 1.15E-03 8.45E-01 0.32 2.66E-05 40.8E+6 19 6.23% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.653 0.134 0.064 65.6 0.006 0.010 4.31E-04 1514 3.34E-04 8.98 2.90E-02 1.04E-03 1.18E+00 0.32 1.19E-06 45.1E+6 19 4.46% 

0.653 0.134 0.064 65.4 0.012 0.023 4.31E-04 1514 3.34E-04 8.98 2.91E-02 1.05E-03 1.03E+00 0.32 2.40E-06 44.8E+6 19 5.13% 

0.653 0.134 0.064 64.7 0.023 0.051 4.31E-04 1514 3.34E-04 8.98 2.95E-02 1.07E-03 8.87E-01 0.32 1.04E-05 43.9E+6 19 5.94% 
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C.2  UNDISTURBED HEATED 
M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.648 0.134 0.064 56.1 0.005 0.010 4.31E-04 1502 3.32E-04 9.05 3.42E-02 1.42E-03 9.76E-01 0.32 1.36E-06 32.7E+6 19 5.40% 

0.648 0.134 0.064 55.2 0.010 0.021 4.31E-04 1502 3.32E-04 9.05 3.48E-02 1.47E-03 8.83E-01 0.32 2.66E-06 31.7E+6 19 5.96% 

0.648 0.134 0.064 54.8 0.019 0.044 4.31E-04 1502 3.32E-04 9.05 3.50E-02 1.49E-03 8.43E-01 0.32 1.25E-05 31.2E+6 19 6.25% 

0.648 0.134 0.064 54.2 0.047 0.108 4.31E-04 1502 3.32E-04 9.05 3.54E-02 1.52E-03 8.49E-01 0.32 3.14E-05 30.5E+6 19 6.20% 

0.648 0.134 0.064 53.0 0.101 0.243 4.31E-04 1502 3.32E-04 9.05 3.62E-02 1.59E-03 8.11E-01 0.32 7.39E-05 29.2E+6 19 6.49% 

0.648 0.134 0.064 49.9 0.288 0.762 4.31E-04 1502 3.32E-04 9.05 3.85E-02 1.80E-03 7.37E-01 0.32 2.61E-04 25.9E+6 19 7.14% 

0.648 0.134 0.064 46.7 0.455 1.327 4.31E-04 1502 3.32E-04 9.05 4.11E-02 2.05E-03 6.69E-01 0.32 5.20E-04 22.7E+6 19 7.87% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.648 0.134 0.064 53.8 0.005 0.010 4.31E-04 1502 3.32E-04 9.05 3.57E-02 1.55E-03 9.76E-01 0.32 1.48E-06 30.1E+6 19 5.40% 

0.648 0.134 0.064 53.0 0.011 0.023 4.31E-04 1502 3.32E-04 9.05 3.62E-02 1.59E-03 9.33E-01 0.32 3.35E-06 29.2E+6 19 5.64% 

0.648 0.134 0.064 52.4 0.022 0.051 4.31E-04 1502 3.32E-04 9.05 3.66E-02 1.63E-03 8.42E-01 0.32 1.59E-05 28.6E+6 19 6.25% 

0.648 0.134 0.064 51.6 0.072 0.169 4.31E-04 1502 3.32E-04 9.05 3.72E-02 1.68E-03 8.31E-01 0.32 5.42E-05 27.7E+6 19 6.33% 

0.648 0.134 0.064 50.6 0.143 0.344 4.31E-04 1502 3.32E-04 9.05 3.80E-02 1.75E-03 8.11E-01 0.32 1.15E-04 26.6E+6 19 6.49% 

0.648 0.134 0.064 48.4 0.285 0.749 4.31E-04 1502 3.32E-04 9.05 3.97E-02 1.91E-03 7.42E-01 0.32 2.73E-04 24.4E+6 19 7.09% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.648 0.134 0.064 56.4 0.005 0.010 4.31E-04 1502 3.32E-04 9.05 3.40E-02 1.41E-03 9.76E-01 0.32 1.34E-06 33.1E+6 19 5.40% 

0.648 0.134 0.064 56.4 0.011 0.024 4.31E-04 1502 3.32E-04 9.05 3.40E-02 1.41E-03 8.94E-01 0.32 2.95E-06 33.1E+6 19 5.89% 

0.648 0.134 0.064 56.2 0.044 0.099 4.31E-04 1502 3.32E-04 9.05 3.42E-02 1.42E-03 8.67E-01 0.32 2.68E-05 32.8E+6 19 6.07% 

0.648 0.134 0.064 55.8 0.118 0.274 4.31E-04 1502 3.32E-04 9.05 3.44E-02 1.44E-03 8.40E-01 0.32 7.52E-05 32.4E+6 19 6.26% 

0.648 0.134 0.064 54.4 0.246 0.602 4.31E-04 1502 3.32E-04 9.05 3.53E-02 1.51E-03 7.97E-01 0.32 1.74E-04 30.8E+6 19 6.60% 

0.648 0.134 0.064 52.4 0.391 1.029 4.31E-04 1502 3.32E-04 9.05 3.66E-02 1.63E-03 7.41E-01 0.32 3.20E-04 28.6E+6 19 7.10% 
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M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.648 0.134 0.064 56.4 0.005 0.010 4.31E-04 1502 3.32E-04 9.05 3.40E-02 1.41E-03 9.76E-01 0.32 1.34E-06 33.1E+6 19 5.40% 

0.648 0.134 0.064 56.4 0.009 0.021 4.31E-04 1502 3.32E-04 9.05 3.40E-02 1.41E-03 8.36E-01 0.32 2.42E-06 33.1E+6 19 6.29% 

0.648 0.134 0.064 56.5 0.019 0.047 4.31E-04 1502 3.32E-04 9.05 3.40E-02 1.40E-03 7.89E-01 0.32 1.26E-05 33.2E+6 19 6.67% 

0.648 0.134 0.064 56.1 0.065 0.161 4.31E-04 1502 3.32E-04 9.05 3.42E-02 1.42E-03 7.88E-01 0.32 4.37E-05 32.7E+6 19 6.68% 

0.648 0.134 0.064 54.8 0.200 0.523 4.31E-04 1502 3.32E-04 9.05 3.50E-02 1.49E-03 7.46E-01 0.32 1.49E-04 31.2E+6 19 7.05% 

0.648 0.134 0.064 52.3 0.388 1.104 4.31E-04 1502 3.32E-04 9.05 3.67E-02 1.64E-03 6.86E-01 0.32 3.45E-04 28.4E+6 19 7.68% 

0.648 0.134 0.064 49.4 0.567 1.765 4.31E-04 1502 3.32E-04 9.05 3.89E-02 1.83E-03 6.27E-01 0.32 6.18E-04 25.4E+6 19 8.40% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.648 0.134 0.064 62.8 0.005 0.011 4.31E-04 1502 3.32E-04 9.05 3.06E-02 1.13E-03 8.87E-01 0.32 1.08E-06 41.0E+6 19 5.93% 

0.648 0.134 0.064 62.8 0.011 0.025 4.31E-04 1502 3.32E-04 9.05 3.06E-02 1.13E-03 8.58E-01 0.32 2.38E-06 41.0E+6 19 6.13% 

0.648 0.134 0.064 62.8 0.037 0.080 4.31E-04 1502 3.32E-04 9.05 3.06E-02 1.13E-03 9.02E-01 0.32 1.73E-05 41.0E+6 19 5.83% 

0.648 0.134 0.064 62.3 0.107 0.234 4.31E-04 1502 3.32E-04 9.05 3.08E-02 1.15E-03 8.92E-01 0.32 5.15E-05 40.4E+6 19 5.90% 

0.648 0.134 0.064 61.0 0.240 0.552 4.31E-04 1502 3.32E-04 9.05 3.15E-02 1.20E-03 8.48E-01 0.32 1.27E-04 38.7E+6 19 6.20% 

0.648 0.134 0.064 51.8 0.824 2.500 4.31E-04 1502 3.32E-04 9.05 3.71E-02 1.67E-03 6.43E-01 0.32 7.96E-04 27.9E+6 19 8.18% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.658 0.135 0.064 49.7 0.004 0.010 4.34E-04 1516 3.37E-04 8.90 3.80E-02 1.81E-03 7.94E-01 0.32 1.37E-06 26.3E+6 19 6.63% 

0.658 0.135 0.064 50.1 0.008 0.021 4.34E-04 1516 3.37E-04 8.90 3.77E-02 1.78E-03 7.56E-01 0.32 2.70E-06 26.7E+6 19 6.96% 

0.658 0.135 0.064 50.1 0.017 0.047 4.34E-04 1516 3.37E-04 8.90 3.77E-02 1.78E-03 7.18E-01 0.32 1.59E-05 26.7E+6 19 7.33% 

0.658 0.135 0.064 50.0 0.045 0.121 4.34E-04 1516 3.37E-04 8.90 3.78E-02 1.79E-03 7.38E-01 0.32 4.10E-05 26.6E+6 19 7.13% 

0.658 0.135 0.064 48.0 0.171 0.492 4.34E-04 1516 3.37E-04 8.90 3.93E-02 1.94E-03 6.90E-01 0.32 1.81E-04 24.5E+6 19 7.63% 

0.658 0.135 0.064 45.2 0.410 1.285 4.34E-04 1516 3.37E-04 8.90 4.18E-02 2.19E-03 6.33E-01 0.32 5.33E-04 21.8E+6 19 8.31% 

0.658 0.135 0.064 41.5 0.564 1.973 4.34E-04 1516 3.37E-04 8.90 4.55E-02 2.60E-03 5.67E-01 0.32 9.72E-04 18.3E+6 19 9.28% 
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M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.658 0.135 0.064 47.5 0.004 0.010 4.34E-04 1516 3.37E-04 8.90 3.98E-02 1.98E-03 7.94E-01 0.32 1.50E-06 24.0E+6 19 6.63% 

0.658 0.135 0.064 47.5 0.008 0.020 4.34E-04 1516 3.37E-04 8.90 3.98E-02 1.98E-03 7.94E-01 0.32 3.01E-06 24.0E+6 19 6.63% 

0.658 0.135 0.064 47.0 0.016 0.049 4.34E-04 1516 3.37E-04 8.90 4.02E-02 2.02E-03 6.48E-01 0.32 1.88E-05 23.5E+6 19 8.12% 

0.658 0.135 0.064 46.9 0.045 0.147 4.34E-04 1516 3.37E-04 8.90 4.03E-02 2.03E-03 6.07E-01 0.32 5.67E-05 23.4E+6 19 8.67% 

0.658 0.135 0.064 46.1 0.126 0.379 4.34E-04 1516 3.37E-04 8.90 4.10E-02 2.10E-03 6.60E-01 0.32 1.51E-04 22.6E+6 19 7.98% 

0.658 0.135 0.064 42.8 0.293 0.975 4.34E-04 1516 3.37E-04 8.90 4.41E-02 2.44E-03 5.96E-01 0.32 4.51E-04 19.5E+6 19 8.83% 

0.658 0.135 0.064 40.6 0.403 1.432 4.34E-04 1516 3.37E-04 8.90 4.65E-02 2.71E-03 5.58E-01 0.32 7.37E-04 17.6E+6 19 9.43% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.658 0.135 0.064 52.6 0.004 0.010 4.34E-04 1516 3.37E-04 8.90 3.59E-02 1.62E-03 7.94E-01 0.32 1.23E-06 29.5E+6 19 6.63% 

0.658 0.135 0.064 52.6 0.009 0.025 4.34E-04 1516 3.37E-04 8.90 3.59E-02 1.62E-03 7.14E-01 0.32 2.76E-06 29.5E+6 19 7.37% 

0.658 0.135 0.064 52.5 0.022 0.061 4.34E-04 1516 3.37E-04 8.90 3.60E-02 1.62E-03 7.16E-01 0.32 1.88E-05 29.4E+6 19 7.36% 

0.658 0.135 0.064 51.7 0.073 0.219 4.34E-04 1516 3.37E-04 8.90 3.65E-02 1.67E-03 6.61E-01 0.32 6.95E-05 28.5E+6 19 7.96% 

0.658 0.135 0.064 48.8 0.266 0.821 4.34E-04 1516 3.37E-04 8.90 3.87E-02 1.88E-03 6.43E-01 0.32 2.92E-04 25.4E+6 19 8.19% 

0.658 0.135 0.064 44.0 0.513 1.840 4.34E-04 1516 3.37E-04 8.90 4.29E-02 2.31E-03 5.53E-01 0.32 8.06E-04 20.6E+6 19 9.52% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.658 0.135 0.064 53.4 0.004 0.010 4.34E-04 1516 3.37E-04 8.90 3.54E-02 1.57E-03 7.94E-01 0.32 1.19E-06 30.4E+6 19 6.63% 

0.658 0.135 0.064 53.4 0.008 0.022 4.34E-04 1516 3.37E-04 8.90 3.54E-02 1.57E-03 7.21E-01 0.32 2.38E-06 30.4E+6 19 7.30% 

0.658 0.135 0.064 53.4 0.023 0.063 4.34E-04 1516 3.37E-04 8.90 3.54E-02 1.57E-03 7.24E-01 0.32 1.87E-05 30.4E+6 19 7.27% 

0.658 0.135 0.064 52.8 0.079 0.213 4.34E-04 1516 3.37E-04 8.90 3.58E-02 1.60E-03 7.36E-01 0.32 6.48E-05 29.7E+6 19 7.15% 

0.658 0.135 0.064 50.6 0.255 0.740 4.34E-04 1516 3.37E-04 8.90 3.73E-02 1.75E-03 6.84E-01 0.32 2.45E-04 27.3E+6 19 7.70% 

0.658 0.135 0.064 48.3 0.481 1.521 4.34E-04 1516 3.37E-04 8.90 3.91E-02 1.92E-03 6.27E-01 0.32 5.53E-04 24.9E+6 19 8.39% 
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M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.658 0.135 0.064 57.8 0.004 0.010 4.34E-04 1516 3.37E-04 8.90 3.27E-02 1.34E-03 7.94E-01 0.32 1.02E-06 35.6E+6 19 6.63% 

0.658 0.135 0.064 58.6 0.010 0.026 4.34E-04 1516 3.37E-04 8.90 3.22E-02 1.30E-03 7.63E-01 0.32 2.47E-06 36.6E+6 19 6.90% 

0.658 0.135 0.064 58.3 0.018 0.050 4.34E-04 1516 3.37E-04 8.90 3.24E-02 1.32E-03 7.14E-01 0.32 1.25E-05 36.2E+6 19 7.37% 

0.658 0.135 0.064 58.5 0.073 0.194 4.34E-04 1516 3.37E-04 8.90 3.23E-02 1.31E-03 7.47E-01 0.32 4.81E-05 36.5E+6 19 7.05% 

0.658 0.135 0.064 57.8 0.175 0.454 4.34E-04 1516 3.37E-04 8.90 3.27E-02 1.34E-03 7.65E-01 0.32 1.15E-04 35.6E+6 19 6.88% 

0.658 0.135 0.064 55.5 0.352 0.952 4.34E-04 1516 3.37E-04 8.90 3.40E-02 1.45E-03 7.34E-01 0.32 2.62E-04 32.8E+6 19 7.17% 

0.658 0.135 0.064 52.4 0.607 1.778 4.34E-04 1516 3.37E-04 8.90 3.60E-02 1.63E-03 6.77E-01 0.32 5.49E-04 29.2E+6 19 7.77% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.653 0.134 0.064 51.3 0.005 0.010 4.31E-04 1514 3.34E-04 8.98 3.71E-02 1.70E-03 9.83E-01 0.32 1.62E-06 27.6E+6 19 5.35% 

0.653 0.134 0.064 51.5 0.010 0.024 4.31E-04 1514 3.34E-04 8.98 3.70E-02 1.69E-03 8.19E-01 0.32 3.22E-06 27.8E+6 19 6.42% 

0.653 0.134 0.064 50.6 0.032 0.086 4.31E-04 1514 3.34E-04 8.98 3.77E-02 1.75E-03 7.32E-01 0.32 2.87E-05 26.8E+6 19 7.19% 

0.653 0.134 0.064 47.6 0.107 0.313 4.31E-04 1514 3.34E-04 8.98 4.00E-02 1.97E-03 6.72E-01 0.32 1.18E-04 23.7E+6 19 7.83% 

0.653 0.134 0.064 43.9 0.307 0.971 4.31E-04 1514 3.34E-04 8.98 4.34E-02 2.32E-03 6.22E-01 0.32 4.30E-04 20.2E+6 19 8.47% 

0.653 0.134 0.064 40.6 0.538 1.849 4.31E-04 1514 3.34E-04 8.98 4.69E-02 2.71E-03 5.72E-01 0.32 9.58E-04 17.3E+6 19 9.20% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.653 0.134 0.064 51.5 0.005 0.010 4.31E-04 1514 3.34E-04 8.98 3.70E-02 1.69E-03 9.83E-01 0.32 1.61E-06 27.8E+6 19 5.35% 

0.653 0.134 0.064 51.2 0.010 0.023 4.31E-04 1514 3.34E-04 8.98 3.72E-02 1.71E-03 8.55E-01 0.32 3.26E-06 27.5E+6 19 6.16% 

0.653 0.134 0.064 50.4 0.034 0.090 4.31E-04 1514 3.34E-04 8.98 3.78E-02 1.76E-03 7.43E-01 0.32 3.03E-05 26.6E+6 19 7.09% 

0.653 0.134 0.064 46.9 0.130 0.384 4.31E-04 1514 3.34E-04 8.98 4.06E-02 2.03E-03 6.66E-01 0.32 1.49E-04 23.0E+6 19 7.91% 

0.653 0.134 0.064 43.4 0.312 0.978 4.31E-04 1514 3.34E-04 8.98 4.39E-02 2.37E-03 6.27E-01 0.32 4.44E-04 19.7E+6 19 8.39% 

0.653 0.134 0.064 40.7 0.561 1.906 4.31E-04 1514 3.34E-04 8.98 4.68E-02 2.70E-03 5.79E-01 0.32 9.83E-04 17.4E+6 19 9.09% 
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M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.653 0.134 0.064 55.3 0.005 0.010 4.31E-04 1514 3.34E-04 8.98 3.45E-02 1.46E-03 9.83E-01 0.32 1.40E-06 32.0E+6 19 5.35% 

0.653 0.134 0.064 55.0 0.011 0.024 4.31E-04 1514 3.34E-04 8.98 3.46E-02 1.48E-03 9.01E-01 0.32 3.11E-06 31.7E+6 19 5.84% 

0.653 0.134 0.064 54.4 0.025 0.055 4.31E-04 1514 3.34E-04 8.98 3.50E-02 1.51E-03 8.94E-01 0.32 1.59E-05 31.0E+6 19 5.89% 

0.653 0.134 0.064 52.7 0.083 0.218 4.31E-04 1514 3.34E-04 8.98 3.62E-02 1.61E-03 7.49E-01 0.32 6.71E-05 29.1E+6 19 7.03% 

0.653 0.134 0.064 50.4 0.225 0.627 4.31E-04 1514 3.34E-04 8.98 3.78E-02 1.76E-03 7.06E-01 0.32 2.11E-04 26.6E+6 19 7.46% 

0.653 0.134 0.064 47.0 0.434 1.359 4.31E-04 1514 3.34E-04 8.98 4.05E-02 2.02E-03 6.28E-01 0.32 5.26E-04 23.1E+6 19 8.38% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.653 0.134 0.064 50.9 0.005 0.010 4.31E-04 1514 3.34E-04 8.98 3.74E-02 1.73E-03 9.83E-01 0.32 1.65E-06 27.1E+6 19 5.35% 

0.653 0.134 0.064 51.1 0.009 0.020 4.31E-04 1514 3.34E-04 8.98 3.73E-02 1.71E-03 8.85E-01 0.32 2.94E-06 27.4E+6 19 5.95% 

0.653 0.134 0.064 49.6 0.026 0.067 4.31E-04 1514 3.34E-04 8.98 3.84E-02 1.82E-03 7.63E-01 0.32 2.33E-05 25.8E+6 19 6.90% 

0.653 0.134 0.064 47.5 0.081 0.235 4.31E-04 1514 3.34E-04 8.98 4.01E-02 1.98E-03 6.78E-01 0.32 8.90E-05 23.6E+6 19 7.77% 

0.653 0.134 0.064 44.9 0.225 0.681 4.31E-04 1514 3.34E-04 8.98 4.24E-02 2.22E-03 6.50E-01 0.32 2.89E-04 21.1E+6 19 8.10% 

0.653 0.134 0.064 40.4 0.494 1.634 4.31E-04 1514 3.34E-04 8.98 4.72E-02 2.74E-03 5.94E-01 0.32 8.55E-04 17.1E+6 19 8.85% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.653 0.134 0.064 58.7 0.005 0.010 4.31E-04 1514 3.34E-04 8.98 3.25E-02 1.30E-03 9.83E-01 0.32 1.24E-06 36.1E+6 19 5.35% 

0.653 0.134 0.064 58.6 0.010 0.022 4.31E-04 1514 3.34E-04 8.98 3.25E-02 1.30E-03 8.94E-01 0.32 2.49E-06 36.0E+6 19 5.89% 

0.653 0.134 0.064 58.2 0.037 0.086 4.31E-04 1514 3.34E-04 8.98 3.27E-02 1.32E-03 8.46E-01 0.32 2.17E-05 35.5E+6 19 6.22% 

0.653 0.134 0.064 57.4 0.122 0.281 4.31E-04 1514 3.34E-04 8.98 3.32E-02 1.36E-03 8.54E-01 0.32 7.29E-05 34.5E+6 19 6.17% 

0.653 0.134 0.064 54.6 0.383 1.013 4.31E-04 1514 3.34E-04 8.98 3.49E-02 1.50E-03 7.43E-01 0.32 2.90E-04 31.2E+6 19 7.08% 

0.653 0.134 0.064 51.5 0.551 1.722 4.31E-04 1514 3.34E-04 8.98 3.70E-02 1.69E-03 6.29E-01 0.32 5.55E-04 27.8E+6 19 8.37% 
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C.3  REMOLDED 
M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.859 0.137 0.072 62.5 0.004 0.011 5.57E-04 1543 5.57E-04 5.39 1.83E-02 1.14E-03 1.04E+00 0.41 8.44E-07 26.5E+6 11 8.72% 

0.859 0.137 0.072 62.4 0.008 0.025 5.57E-04 1543 5.57E-04 5.39 1.83E-02 1.15E-03 1.05E+00 0.41 1.93E-06 26.4E+6 11 8.67% 

0.859 0.137 0.072 62.3 0.021 0.068 5.57E-04 1543 5.57E-04 5.39 1.84E-02 1.15E-03 1.01E+00 0.41 1.65E-05 26.3E+6 11 8.98% 

0.859 0.137 0.072 61.9 0.044 0.143 5.57E-04 1543 5.57E-04 5.39 1.85E-02 1.17E-03 1.01E+00 0.41 3.51E-05 26.0E+6 11 9.02% 

0.859 0.137 0.072 61.2 0.070 0.233 5.57E-04 1543 5.57E-04 5.39 1.87E-02 1.19E-03 9.84E-01 0.41 5.86E-05 25.4E+6 11 9.24% 

0.859 0.137 0.072 60.4 0.180 0.601 5.57E-04 1543 5.57E-04 5.39 1.89E-02 1.23E-03 9.81E-01 0.41 1.55E-04 24.7E+6 11 9.26% 

0.859 0.137 0.072 59.5 0.303 1.041 5.57E-04 1543 5.57E-04 5.39 1.92E-02 1.26E-03 9.54E-01 0.41 2.77E-04 24.0E+6 11 9.53% 

0.859 0.137 0.072 58.3 0.345 1.311 5.57E-04 1543 5.57E-04 5.39 1.96E-02 1.32E-03 8.62E-01 0.41 3.63E-04 23.0E+6 11 10.54% 

0.859 0.137 0.072 56.7 0.418 1.653 5.57E-04 1543 5.57E-04 5.39 2.02E-02 1.39E-03 8.28E-01 0.41 4.84E-04 21.8E+6 11 10.97% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.859 0.137 0.072 65.4 0.004 0.011 5.57E-04 1543 5.57E-04 5.39 1.75E-02 1.05E-03 1.04E+00 0.41 7.71E-07 29.0E+6 11 0.087205 

0.859 0.137 0.072 65.5 0.008 0.027 5.57E-04 1543 5.57E-04 5.39 1.75E-02 1.04E-03 9.71E-01 0.41 1.76E-06 29.1E+6 11 0.093647 

0.859 0.137 0.072 65.3 0.019 0.062 5.57E-04 1543 5.57E-04 5.39 1.75E-02 1.05E-03 1.00E+00 0.41 1.37E-05 28.9E+6 11 0.090543 

0.859 0.137 0.072 65.3 0.047 0.155 5.57E-04 1543 5.57E-04 5.39 1.75E-02 1.05E-03 9.93E-01 0.41 3.42E-05 28.9E+6 11 0.091507 

0.859 0.137 0.072 64.7 0.134 0.442 5.57E-04 1543 5.57E-04 5.39 1.77E-02 1.07E-03 9.93E-01 0.41 9.94E-05 28.4E+6 11 0.091524 

0.859 0.137 0.072 61.7 0.254 0.932 5.57E-04 1543 5.57E-04 5.39 1.85E-02 1.17E-03 8.93E-01 0.41 2.31E-04 25.8E+6 11 0.101813 

0.859 0.137 0.072 61.3 0.366 1.357 5.57E-04 1543 5.57E-04 5.39 1.87E-02 1.19E-03 8.84E-01 0.41 3.40E-04 25.5E+6 11 0.102877 

0.859 0.137 0.072 60.3 0.467 1.765 5.57E-04 1543 5.57E-04 5.39 1.90E-02 1.23E-03 8.67E-01 0.41 4.57E-04 24.6E+6 11 0.104869 
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M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.859 0.137 0.072 68.7 0.004 0.011 5.57E-04 1543 5.57E-04 5.39 1.66E-02 9.48E-04 1.04E+00 0.41 6.98E-07 32.0E+6 11 0.087205 

0.859 0.137 0.072 68.5 0.014 0.043 5.57E-04 1543 5.57E-04 5.39 1.67E-02 9.53E-04 1.07E+00 0.41 2.81E-06 31.8E+6 11 0.085224 

0.859 0.137 0.072 68.3 0.032 0.103 5.57E-04 1543 5.57E-04 5.39 1.67E-02 9.59E-04 1.02E+00 0.41 2.08E-05 31.6E+6 11 0.089311 

0.859 0.137 0.072 67.4 0.110 0.347 5.57E-04 1543 5.57E-04 5.39 1.70E-02 9.84E-04 1.04E+00 0.41 7.19E-05 30.8E+6 11 0.08753 

0.859 0.137 0.072 66.4 0.258 0.831 5.57E-04 1543 5.57E-04 5.39 1.72E-02 1.01E-03 1.02E+00 0.41 1.77E-04 29.9E+6 11 0.089372 

0.859 0.137 0.072 63.7 0.424 1.616 5.57E-04 1543 5.57E-04 5.39 1.80E-02 1.10E-03 8.60E-01 0.41 3.75E-04 27.5E+6 11 0.105753 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.859 0.137 0.072 71.5 0.004 0.011 5.57E-04 1543 5.57E-04 5.39 1.60E-02 8.75E-04 1.04E+00 0.41 6.45E-07 34.7E+6 11 8.72% 

0.859 0.137 0.072 71.1 0.009 0.033 5.57E-04 1543 5.57E-04 5.39 1.61E-02 8.85E-04 8.44E-01 0.41 1.58E-06 34.3E+6 11 10.77% 

0.859 0.137 0.072 71.1 0.018 0.069 5.57E-04 1543 5.57E-04 5.39 1.61E-02 8.85E-04 8.55E-01 0.41 1.29E-05 34.3E+6 11 10.64% 

0.859 0.137 0.072 70.8 0.039 0.155 5.57E-04 1543 5.57E-04 5.39 1.62E-02 8.92E-04 8.24E-01 0.41 2.91E-05 34.0E+6 11 11.03% 

0.859 0.137 0.072 70.3 0.115 0.461 5.57E-04 1543 5.57E-04 5.39 1.63E-02 9.05E-04 8.17E-01 0.41 8.78E-05 33.5E+6 11 11.12% 

0.859 0.137 0.072 68.9 0.205 0.84 5.57E-04 1543 5.57E-04 5.39 1.66E-02 9.42E-04 8.00E-01 0.41 1.67E-04 32.2E+6 11 11.37% 

0.859 0.137 0.072 67 0.379 1.628 5.57E-04 1543 5.57E-04 5.39 1.71E-02 9.96E-04 7.63E-01 0.41 3.41E-04 30.4E+6 11 11.92% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.859 0.137 0.072 71.9 0.004 0.011 5.57E-04 1543 5.57E-04 5.39 1.59E-02 8.65E-04 1.04E+00 0.41 6.37E-07 35.0E+6 11 8.72% 

0.859 0.137 0.072 71.9 0.008 0.035 5.57E-04 1543 5.57E-04 5.39 1.59E-02 8.65E-04 7.49E-01 0.41 1.46E-06 35.0E+6 11 12.14% 

0.859 0.137 0.072 72.1 0.037 0.157 5.57E-04 1543 5.57E-04 5.39 1.59E-02 8.60E-04 7.72E-01 0.41 2.84E-05 35.2E+6 11 11.77% 

0.859 0.137 0.072 71.5 0.115 0.515 5.57E-04 1543 5.57E-04 5.39 1.60E-02 8.75E-04 7.32E-01 0.41 9.49E-05 34.7E+6 11 12.43% 

0.859 0.137 0.072 70.3 0.192 0.873 5.57E-04 1543 5.57E-04 5.39 1.63E-02 9.05E-04 7.21E-01 0.41 1.66E-04 33.5E+6 11 12.62% 

0.859 0.137 0.072 68.6 0.323 1.504 5.57E-04 1543 5.57E-04 5.39 1.67E-02 9.50E-04 7.04E-01 0.41 3.01E-04 31.9E+6 11 12.92% 
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M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.877 0.138 0.072 54.6 0.003 0.011 5.61E-04 1564 5.69E-04 5.28 2.05E-02 1.50E-03 9.13E-01 0.41 9.41E-07 20.8E+6 11 9.96% 

0.877 0.138 0.072 55.6 0.008 0.032 5.61E-04 1564 5.69E-04 5.28 2.01E-02 1.45E-03 8.37E-01 0.41 2.42E-06 21.6E+6 11 10.87% 

0.877 0.138 0.072 55.3 0.025 0.104 5.61E-04 1564 5.69E-04 5.28 2.02E-02 1.46E-03 8.04E-01 0.41 3.18E-05 21.3E+6 11 11.30% 

0.877 0.138 0.072 54.4 0.098 0.414 5.61E-04 1564 5.69E-04 5.28 2.06E-02 1.51E-03 7.92E-01 0.41 1.31E-04 20.6E+6 11 11.48% 

0.877 0.138 0.072 52.6 0.197 0.871 5.61E-04 1564 5.69E-04 5.28 2.13E-02 1.62E-03 7.57E-01 0.41 2.94E-04 19.3E+6 11 12.01% 

0.877 0.138 0.072 49.5 0.340 1.612 5.61E-04 1564 5.69E-04 5.28 2.26E-02 1.83E-03 7.06E-01 0.41 6.15E-04 17.1E+6 11 12.88% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.877 0.138 0.072 59.8 0.003 0.011 5.61E-04 1564 5.69E-04 5.28 1.87E-02 1.25E-03 9.13E-01 0.41 7.84E-07 24.9E+6 11 9.96% 

0.877 0.138 0.072 59.4 0.007 0.026 5.61E-04 1564 5.69E-04 5.28 1.89E-02 1.27E-03 9.01E-01 0.41 1.85E-06 24.6E+6 11 10.09% 

0.877 0.138 0.072 59.3 0.023 0.087 5.61E-04 1564 5.69E-04 5.28 1.89E-02 1.27E-03 8.85E-01 0.41 2.31E-05 24.5E+6 11 10.28% 

0.877 0.138 0.072 58.5 0.083 0.345 5.61E-04 1564 5.69E-04 5.28 1.91E-02 1.31E-03 8.05E-01 0.41 9.43E-05 23.9E+6 11 11.29% 

0.877 0.138 0.072 57.9 0.160 0.689 5.61E-04 1564 5.69E-04 5.28 1.93E-02 1.33E-03 7.77E-01 0.41 1.92E-04 23.4E+6 11 11.70% 

0.877 0.138 0.072 56.1 0.227 1.003 5.61E-04 1564 5.69E-04 5.28 2.00E-02 1.42E-03 7.57E-01 0.41 2.98E-04 21.9E+6 11 12.00% 

0.877 0.138 0.072 53.8 0.345 1.591 5.61E-04 1564 5.69E-04 5.28 2.08E-02 1.55E-03 7.26E-01 0.41 5.14E-04 20.2E+6 11 12.53% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.877 0.138 0.072 61.6 0.003 0.011 5.61E-04 1564 5.69E-04 5.28 1.82E-02 1.18E-03 9.13E-01 0.41 7.39E-07 26.5E+6 11 9.96% 

0.877 0.138 0.072 61.1 0.009 0.035 5.61E-04 1564 5.69E-04 5.28 1.83E-02 1.20E-03 8.60E-01 0.41 2.25E-06 26.0E+6 11 10.57% 

0.877 0.138 0.072 60.6 0.039 0.160 5.61E-04 1564 5.69E-04 5.28 1.85E-02 1.22E-03 8.16E-01 0.41 4.07E-05 25.6E+6 11 11.15% 

0.877 0.138 0.072 59.8 0.140 0.566 5.61E-04 1564 5.69E-04 5.28 1.87E-02 1.25E-03 8.28E-01 0.41 1.48E-04 24.9E+6 11 10.98% 

0.877 0.138 0.072 58.3 0.227 0.943 5.61E-04 1564 5.69E-04 5.28 1.92E-02 1.32E-03 8.05E-01 0.41 2.59E-04 23.7E+6 11 11.29% 

0.877 0.138 0.072 56.4 0.394 1.693 5.61E-04 1564 5.69E-04 5.28 1.99E-02 1.41E-03 7.79E-01 0.41 4.98E-04 22.2E+6 11 11.67% 
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M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.877 0.138 0.072 63.8 0.003 0.011 5.61E-04 1564 5.69E-04 5.28 1.76E-02 1.10E-03 9.13E-01 0.41 6.89E-07 28.4E+6 11 9.96% 

0.877 0.138 0.072 63.7 0.007 0.024 5.61E-04 1564 5.69E-04 5.28 1.76E-02 1.10E-03 9.76E-01 0.41 1.61E-06 28.3E+6 11 9.31% 

0.877 0.138 0.072 63.6 0.021 0.085 5.61E-04 1564 5.69E-04 5.28 1.76E-02 1.11E-03 8.27E-01 0.41 1.96E-05 28.2E+6 11 11.00% 

0.877 0.138 0.072 63.3 0.056 0.221 5.61E-04 1564 5.69E-04 5.28 1.77E-02 1.12E-03 8.48E-01 0.41 5.16E-05 27.9E+6 11 10.72% 

0.877 0.138 0.072 61.8 0.181 0.707 5.61E-04 1564 5.69E-04 5.28 1.81E-02 1.17E-03 8.57E-01 0.41 1.73E-04 26.6E+6 11 10.61% 

0.877 0.138 0.072 61.0 0.378 1.547 5.61E-04 1564 5.69E-04 5.28 1.84E-02 1.20E-03 8.18E-01 0.41 3.89E-04 25.9E+6 11 11.12% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.877 0.138 0.072 66.2 0.003 0.011 5.61E-04 1564 5.69E-04 5.28 1.69E-02 1.02E-03 9.13E-01 0.41 6.40E-07 30.6E+6 11 9.96% 

0.877 0.138 0.072 66.2 0.007 0.025 5.61E-04 1564 5.69E-04 5.28 1.69E-02 1.02E-03 8.70E-01 0.41 1.39E-06 30.6E+6 11 10.45% 

0.877 0.138 0.072 65.9 0.038 0.146 5.61E-04 1564 5.69E-04 5.28 1.70E-02 1.03E-03 8.71E-01 0.41 3.14E-05 30.3E+6 11 10.44% 

0.877 0.138 0.072 65.2 0.113 0.431 5.61E-04 1564 5.69E-04 5.28 1.72E-02 1.05E-03 8.77E-01 0.41 9.48E-05 29.6E+6 11 10.36% 

0.877 0.138 0.072 63.3 0.235 0.955 5.61E-04 1564 5.69E-04 5.28 1.77E-02 1.12E-03 8.23E-01 0.41 2.23E-04 27.9E+6 11 11.04% 

0.877 0.138 0.072 62.0 0.377 1.555 5.61E-04 1564 5.69E-04 5.28 1.81E-02 1.16E-03 8.11E-01 0.41 3.78E-04 26.8E+6 11 11.21% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.851 0.136 0.072 51.9 0.003 0.011 5.53E-04 1540 5.52E-04 5.44 2.22E-02 1.66E-03 8.85E-01 0.409 1.06E-06 18.0E+6 11.1 10.18% 

0.851 0.136 0.072 51.3 0.007 0.027 5.53E-04 1540 5.52E-04 5.44 2.25E-02 1.70E-03 8.42E-01 0.409 2.52E-06 17.6E+6 11.1 10.70% 

0.851 0.136 0.072 51.3 0.016 0.065 5.53E-04 1540 5.52E-04 5.44 2.25E-02 1.70E-03 7.99E-01 0.409 2.34E-05 17.6E+6 11.1 11.27% 

0.851 0.136 0.072 50.9 0.042 0.169 5.53E-04 1540 5.52E-04 5.44 2.27E-02 1.73E-03 8.07E-01 0.409 6.19E-05 17.4E+6 11.1 11.17% 

0.851 0.136 0.072 49.9 0.103 0.418 5.53E-04 1540 5.52E-04 5.44 2.31E-02 1.80E-03 8.00E-01 0.409 1.59E-04 16.7E+6 11.1 11.26% 

0.851 0.136 0.072 48.0 0.214 0.910 5.53E-04 1540 5.52E-04 5.44 2.40E-02 1.94E-03 7.63E-01 0.409 3.75E-04 15.4E+6 11.1 11.80% 

0.851 0.136 0.072 44.6 0.366 1.695 5.53E-04 1540 5.52E-04 5.44 2.59E-02 2.25E-03 7.01E-01 0.409 8.09E-04 13.3E+6 11.1 12.85% 
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M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.851 0.136 0.072 56.9 0.003 0.011 5.53E-04 1540 5.52E-04 5.44 2.03E-02 1.38E-03 8.85E-01 0.409 8.79E-07 21.7E+6 11.1 10.18% 

0.851 0.136 0.072 57.5 0.008 0.029 5.53E-04 1540 5.52E-04 5.44 2.01E-02 1.35E-03 8.40E-01 0.409 2.15E-06 22.1E+6 11.1 10.73% 

0.851 0.136 0.072 57.2 0.020 0.077 5.53E-04 1540 5.52E-04 5.44 2.02E-02 1.37E-03 8.43E-01 0.409 2.23E-05 21.9E+6 11.1 10.68% 

0.851 0.136 0.072 56.7 0.054 0.211 5.53E-04 1540 5.52E-04 5.44 2.04E-02 1.39E-03 8.31E-01 0.409 6.23E-05 21.5E+6 11.1 10.84% 

0.851 0.136 0.072 55.5 0.133 0.536 5.53E-04 1540 5.52E-04 5.44 2.08E-02 1.45E-03 8.05E-01 0.409 1.65E-04 20.6E+6 11.1 11.18% 

0.851 0.136 0.072 53.9 0.240 0.993 5.53E-04 1540 5.52E-04 5.44 2.14E-02 1.54E-03 7.85E-01 0.409 3.24E-04 19.5E+6 11.1 11.48% 

0.851 0.136 0.072 51.3 0.371 1.626 5.53E-04 1540 5.52E-04 5.44 2.25E-02 1.70E-03 7.41E-01 0.409 5.86E-04 17.6E+6 11.1 12.16% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.851 0.136 0.072 58.7 0.003 0.011 5.53E-04 1540 5.52E-04 5.44 1.97E-02 1.30E-03 8.85E-01 0.409 8.26E-07 23.1E+6 11.1 10.18% 

0.851 0.136 0.072 58.7 0.007 0.027 5.53E-04 1540 5.52E-04 5.44 1.97E-02 1.30E-03 8.42E-01 0.409 1.93E-06 23.1E+6 11.1 10.70% 

0.851 0.136 0.072 58.7 0.019 0.074 5.53E-04 1540 5.52E-04 5.44 1.97E-02 1.30E-03 8.33E-01 0.409 2.04E-05 23.1E+6 11.1 10.81% 

0.851 0.136 0.072 58.1 0.065 0.251 5.53E-04 1540 5.52E-04 5.44 1.99E-02 1.32E-03 8.41E-01 0.409 7.06E-05 22.6E+6 11.1 10.72% 

0.851 0.136 0.072 56.1 0.166 0.668 5.53E-04 1540 5.52E-04 5.44 2.06E-02 1.42E-03 8.07E-01 0.409 2.01E-04 21.1E+6 11.1 11.17% 

0.851 0.136 0.072 54.6 0.272 1.122 5.53E-04 1540 5.52E-04 5.44 2.11E-02 1.50E-03 7.87E-01 0.409 3.57E-04 20.0E+6 11.1 11.45% 

0.851 0.136 0.072 51.5 0.434 1.915 5.53E-04 1540 5.52E-04 5.44 2.24E-02 1.69E-03 7.36E-01 0.409 6.85E-04 17.8E+6 11.1 12.25% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.851 0.136 0.072 61.6 0.003 0.011 5.53E-04 1540 5.52E-04 5.44 1.87E-02 1.18E-03 8.85E-01 0.409 7.50E-07 25.4E+6 11.1 10.18% 

0.851 0.136 0.072 61.3 0.008 0.030 5.53E-04 1540 5.52E-04 5.44 1.88E-02 1.19E-03 8.66E-01 0.409 2.02E-06 25.2E+6 11.1 10.41% 

0.851 0.136 0.072 61.3 0.018 0.071 5.53E-04 1540 5.52E-04 5.44 1.88E-02 1.19E-03 8.23E-01 0.409 1.79E-05 25.2E+6 11.1 10.95% 

0.851 0.136 0.072 61.2 0.048 0.185 5.53E-04 1540 5.52E-04 5.44 1.89E-02 1.19E-03 8.42E-01 0.409 4.69E-05 25.1E+6 11.1 10.70% 

0.851 0.136 0.072 60.1 0.141 0.550 5.53E-04 1540 5.52E-04 5.44 1.92E-02 1.24E-03 8.32E-01 0.409 1.44E-04 24.2E+6 11.1 10.83% 

0.851 0.136 0.072 58.5 0.237 0.960 5.53E-04 1540 5.52E-04 5.44 1.97E-02 1.31E-03 8.01E-01 0.409 2.66E-04 22.9E+6 11.1 11.24% 

0.851 0.136 0.072 55.5 0.430 1.863 5.53E-04 1540 5.52E-04 5.44 2.08E-02 1.45E-03 7.49E-01 0.409 5.74E-04 20.6E+6 11.1 12.02% 
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M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.851 0.136 0.072 63.3 0.003 0.011 5.53E-04 1540 5.52E-04 5.44 1.82E-02 1.12E-03 8.85E-01 0.409 7.10E-07 26.8E+6 11.1 10.18% 

0.851 0.136 0.072 63.6 0.009 0.034 5.53E-04 1540 5.52E-04 5.44 1.81E-02 1.11E-03 8.59E-01 0.409 2.11E-06 27.1E+6 11.1 10.48% 

0.851 0.136 0.072 63.6 0.020 0.076 5.53E-04 1540 5.52E-04 5.44 1.81E-02 1.11E-03 8.54E-01 0.409 1.78E-05 27.1E+6 11.1 10.55% 

0.851 0.136 0.072 63.3 0.045 0.169 5.53E-04 1540 5.52E-04 5.44 1.82E-02 1.12E-03 8.64E-01 0.409 4.00E-05 26.8E+6 11.1 10.42% 

0.851 0.136 0.072 62.5 0.144 0.547 5.53E-04 1540 5.52E-04 5.44 1.85E-02 1.14E-03 8.55E-01 0.409 1.33E-04 26.2E+6 11.1 10.54% 

0.851 0.136 0.072 60.8 0.282 1.114 5.53E-04 1540 5.52E-04 5.44 1.90E-02 1.21E-03 8.22E-01 0.409 2.86E-04 24.8E+6 11.1 10.96% 

0.851 0.136 0.072 57.7 0.424 1.846 5.53E-04 1540 5.52E-04 5.44 2.00E-02 1.34E-03 7.46E-01 0.409 5.26E-04 22.3E+6 11.1 12.08% 
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C.4  REMOLDED HEATED 
 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.919 0.146 0.072 45.3 0.003 0.011 5.96E-04 1541 5.95E-04 5.04 2.36E-02 2.18E-03 9.56E-01 0.415 1.29E-06 15.5E+6 10.5 9.97% 

0.919 0.146 0.072 44.1 0.007 0.027 5.96E-04 1541 5.95E-04 5.04 2.42E-02 2.30E-03 9.08E-01 0.415 3.17E-06 14.7E+6 10.5 10.48% 

0.919 0.146 0.072 43.3 0.022 0.091 5.96E-04 1541 5.95E-04 5.04 2.47E-02 2.39E-03 8.47E-01 0.415 4.27E-05 14.2E+6 10.5 11.24% 

0.919 0.146 0.072 42.7 0.070 0.294 5.96E-04 1541 5.95E-04 5.04 2.50E-02 2.45E-03 8.34E-01 0.415 1.42E-04 13.8E+6 10.5 11.42% 

0.919 0.146 0.072 41.6 0.148 0.635 5.96E-04 1541 5.95E-04 5.04 2.57E-02 2.58E-03 8.17E-01 0.415 3.23E-04 13.1E+6 10.5 11.66% 

0.919 0.146 0.072 40 0.238 1.086 5.96E-04 1541 5.95E-04 5.04 2.67E-02 2.80E-03 7.68E-01 0.415 5.97E-04 12.1E+6 10.5 12.40% 

0.919 0.146 0.072 37.1 0.354 1.763 5.96E-04 1541 5.95E-04 5.04 2.88E-02 3.25E-03 7.04E-01 0.415 1.13E-03 10.4E+6 10.5 13.54% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.919 0.146 0.072 50.6 0.003 0.011 5.96E-04 1541 5.95E-04 5.04 2.11E-02 1.75E-03 9.56E-01 0.415 1.03E-06 19.4E+6 10.5 9.97% 

0.919 0.146 0.072 50.5 0.007 0.030 5.96E-04 1541 5.95E-04 5.04 2.12E-02 1.75E-03 8.18E-01 0.415 2.41E-06 19.3E+6 10.5 11.65% 

0.919 0.146 0.072 50.9 0.019 0.074 5.96E-04 1541 5.95E-04 5.04 2.10E-02 1.73E-03 9.00E-01 0.415 2.51E-05 19.6E+6 10.5 10.59% 

0.919 0.146 0.072 50.6 0.055 0.220 5.96E-04 1541 5.95E-04 5.04 2.11E-02 1.75E-03 8.76E-01 0.415 7.56E-05 19.4E+6 10.5 10.87% 

0.919 0.146 0.072 49.6 0.144 0.588 5.96E-04 1541 5.95E-04 5.04 2.16E-02 1.82E-03 8.58E-01 0.415 2.10E-04 18.6E+6 10.5 11.10% 

0.919 0.146 0.072 48.6 0.220 0.926 5.96E-04 1541 5.95E-04 5.04 2.20E-02 1.89E-03 8.32E-01 0.415 3.45E-04 17.9E+6 10.5 11.44% 

0.919 0.146 0.072 45.7 0.344 1.567 5.96E-04 1541 5.95E-04 5.04 2.34E-02 2.14E-03 7.69E-01 0.415 6.60E-04 15.8E+6 10.5 12.38% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.919 0.146 0.072 57.7 0.003 0.011 5.96E-04 1541 5.95E-04 5.04 1.85E-02 1.34E-03 9.56E-01 0.415 7.93E-07 25.2E+6 10.5 9.97% 

0.919 0.146 0.072 57.5 0.008 0.030 5.96E-04 1541 5.95E-04 5.04 1.86E-02 1.35E-03 9.34E-01 0.415 2.13E-06 25.0E+6 10.5 10.19% 

0.919 0.146 0.072 57.6 0.019 0.074 5.96E-04 1541 5.95E-04 5.04 1.86E-02 1.35E-03 9.00E-01 0.415 1.96E-05 25.1E+6 10.5 10.59% 

0.919 0.146 0.072 56.4 0.069 0.276 5.96E-04 1541 5.95E-04 5.04 1.90E-02 1.41E-03 8.76E-01 0.415 7.63E-05 24.1E+6 10.5 10.87% 

0.919 0.146 0.072 55.6 0.125 0.535 5.96E-04 1541 5.95E-04 5.04 1.92E-02 1.45E-03 8.19E-01 0.415 1.52E-04 23.4E+6 10.5 11.63% 

0.919 0.146 0.072 54.4 0.260 1.144 5.96E-04 1541 5.95E-04 5.04 1.97E-02 1.51E-03 7.96E-01 0.415 3.40E-04 22.4E+6 10.5 11.96% 

0.919 0.146 0.072 52.7 0.372 1.702 5.96E-04 1541 5.95E-04 5.04 2.03E-02 1.61E-03 7.66E-01 0.415 5.39E-04 21.0E+6 10.5 12.44% 
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M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.919 0.146 0.072 53.4 0.003 0.011 5.96E-04 1541 5.95E-04 5.04 2.00E-02 1.57E-03 9.56E-01 0.415 9.25E-07 21.6E+6 10.5 9.97% 

0.919 0.146 0.072 53.6 0.012 0.048 5.96E-04 1541 5.95E-04 5.04 2.00E-02 1.56E-03 8.76E-01 0.415 3.67E-06 21.8E+6 10.5 10.87% 

0.919 0.146 0.072 53.3 0.036 0.146 5.96E-04 1541 5.95E-04 5.04 2.01E-02 1.57E-03 8.64E-01 0.415 4.52E-05 21.5E+6 10.5 11.02% 

0.919 0.146 0.072 52.7 0.139 0.569 5.96E-04 1541 5.95E-04 5.04 2.03E-02 1.61E-03 8.56E-01 0.415 1.80E-04 21.0E+6 10.5 11.13% 

0.919 0.146 0.072 51.2 0.244 1.023 5.96E-04 1541 5.95E-04 5.04 2.09E-02 1.71E-03 8.36E-01 0.415 3.43E-04 19.9E+6 10.5 11.40% 

0.919 0.146 0.072 48.8 0.375 1.691 5.96E-04 1541 5.95E-04 5.04 2.19E-02 1.88E-03 7.77E-01 0.415 6.25E-04 18.0E+6 10.5 12.26% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.919 0.146 0.072 57.9 0.003 0.011 5.96E-04 1541 5.95E-04 5.04 1.85E-02 1.33E-03 9.56E-01 0.415 7.87E-07 25.4E+6 10.5 9.97% 

0.919 0.146 0.072 57.8 0.009 0.033 5.96E-04 1541 5.95E-04 5.04 1.85E-02 1.34E-03 9.56E-01 0.415 2.37E-06 25.3E+6 10.5 9.97% 

0.919 0.146 0.072 58.3 0.035 0.119 5.96E-04 1541 5.95E-04 5.04 1.83E-02 1.32E-03 1.03E+00 0.415 3.08E-05 25.7E+6 10.5 9.24% 

0.919 0.146 0.072 56.2 0.104 0.441 5.96E-04 1541 5.95E-04 5.04 1.90E-02 1.42E-03 8.26E-01 0.415 1.23E-04 23.9E+6 10.5 11.53% 

0.919 0.146 0.072 55.2 0.212 0.973 5.96E-04 1541 5.95E-04 5.04 1.94E-02 1.47E-03 7.63E-01 0.415 2.81E-04 23.1E+6 10.5 12.48% 

0.919 0.146 0.072 52.9 0.391 1.827 5.96E-04 1541 5.95E-04 5.04 2.02E-02 1.60E-03 7.50E-01 0.415 5.74E-04 21.2E+6 10.5 12.70% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.923 0.147 0.072 37.8 0.003 0.011 5.96E-04 1548 5.98E-04 5.01 2.81E-02 3.13E-03 8.00E-01 0.418 1.54E-06 10.7E+6 10.5 11.90% 

0.923 0.147 0.072 38.0 0.009 0.048 5.96E-04 1548 5.98E-04 5.01 2.80E-02 3.10E-03 6.60E-01 0.418 5.48E-06 10.8E+6 10.5 14.43% 

0.923 0.147 0.072 37.6 0.042 0.223 5.96E-04 1548 5.98E-04 5.01 2.83E-02 3.16E-03 6.63E-01 0.418 1.39E-04 10.6E+6 10.5 14.36% 

0.923 0.147 0.072 36.0 0.103 0.641 5.96E-04 1548 5.98E-04 5.01 2.96E-02 3.45E-03 5.66E-01 0.418 4.35E-04 9.7E+6 10.5 16.83% 

0.923 0.147 0.072 33.0 0.226 1.525 5.96E-04 1548 5.98E-04 5.01 3.22E-02 4.11E-03 5.22E-01 0.418 1.23E-03 8.2E+6 10.5 18.25% 
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M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.923 0.147 0.072 44.3 0.003 0.011 5.96E-04 1548 5.98E-04 5.01 2.40E-02 2.28E-03 9.60E-01 0.418 1.34E-06 14.7E+6 10.5 9.92% 

0.923 0.147 0.072 43.7 0.009 0.035 5.96E-04 1548 5.98E-04 5.01 2.43E-02 2.34E-03 9.05E-01 0.418 4.14E-06 14.3E+6 10.5 10.52% 

0.923 0.147 0.072 43.4 0.038 0.153 5.96E-04 1548 5.98E-04 5.01 2.45E-02 2.37E-03 8.75E-01 0.418 7.14E-05 14.1E+6 10.5 10.89% 

0.923 0.147 0.072 41.8 0.141 0.598 5.96E-04 1548 5.98E-04 5.01 2.55E-02 2.56E-03 8.30E-01 0.418 3.01E-04 13.1E+6 10.5 11.47% 

0.923 0.147 0.072 40.0 0.242 1.081 5.96E-04 1548 5.98E-04 5.01 2.66E-02 2.80E-03 7.88E-01 0.418 5.94E-04 12.0E+6 10.5 12.08% 

0.923 0.147 0.072 37.5 0.383 1.829 5.96E-04 1548 5.98E-04 5.01 2.84E-02 3.18E-03 7.37E-01 0.418 1.14E-03 10.6E+6 10.5 12.92% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.923 0.147 0.072 50.2 0.003 0.011 5.96E-04 1548 5.98E-04 5.01 2.12E-02 1.77E-03 9.60E-01 0.418 1.05E-06 18.9E+6 10.5 9.92% 

0.923 0.147 0.072 50.3 0.013 0.049 5.96E-04 1548 5.98E-04 5.01 2.12E-02 1.77E-03 9.34E-01 0.418 4.52E-06 19.0E+6 10.5 10.19% 

0.923 0.147 0.072 50.0 0.049 0.186 5.96E-04 1548 5.98E-04 5.01 2.13E-02 1.79E-03 9.28E-01 0.418 6.54E-05 18.8E+6 10.5 10.27% 

0.923 0.147 0.072 49.1 0.131 0.523 5.96E-04 1548 5.98E-04 5.01 2.17E-02 1.86E-03 8.82E-01 0.418 1.91E-04 18.1E+6 10.5 10.80% 

0.923 0.147 0.072 47.4 0.252 1.053 5.96E-04 1548 5.98E-04 5.01 2.24E-02 1.99E-03 8.43E-01 0.418 4.12E-04 16.9E+6 10.5 11.30% 

0.923 0.147 0.072 45.2 0.386 1.724 5.96E-04 1548 5.98E-04 5.01 2.35E-02 2.19E-03 7.88E-01 0.418 7.42E-04 15.3E+6 10.5 12.08% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.923 0.147 0.072 48.1 0.003 0.011 5.96E-04 1548 5.98E-04 5.01 2.21E-02 1.93E-03 9.60E-01 0.418 1.14E-06 17.4E+6 10.5 9.92% 

0.923 0.147 0.072 47.6 0.011 0.043 5.96E-04 1548 5.98E-04 5.01 2.24E-02 1.97E-03 9.01E-01 0.418 4.27E-06 17.0E+6 10.5 10.57% 

0.923 0.147 0.072 47.3 0.051 0.193 5.96E-04 1548 5.98E-04 5.01 2.25E-02 2.00E-03 9.30E-01 0.418 7.58E-05 16.8E+6 10.5 10.24% 

0.923 0.147 0.072 46.7 0.104 0.404 5.96E-04 1548 5.98E-04 5.01 2.28E-02 2.05E-03 9.06E-01 0.418 1.63E-04 16.4E+6 10.5 10.51% 

0.923 0.147 0.072 44.8 0.227 0.923 5.96E-04 1548 5.98E-04 5.01 2.38E-02 2.23E-03 8.66E-01 0.418 4.04E-04 15.1E+6 10.5 11.00% 

0.923 0.147 0.072 43.3 0.318 1.334 5.96E-04 1548 5.98E-04 5.01 2.46E-02 2.39E-03 8.39E-01 0.418 6.26E-04 14.1E+6 10.5 11.35% 

 

 

 



130 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.923 0.147 0.072 50.4 0.003 0.011 5.96E-04 1548 5.98E-04 5.01 2.11E-02 1.76E-03 9.60E-01 0.418 1.04E-06 19.1E+6 10.5 9.92% 

0.923 0.147 0.072 50.4 0.014 0.052 5.96E-04 1548 5.98E-04 5.01 2.11E-02 1.76E-03 9.48E-01 0.418 4.85E-06 19.1E+6 10.5 10.05% 

0.923 0.147 0.072 50.4 0.060 0.219 5.96E-04 1548 5.98E-04 5.01 2.11E-02 1.76E-03 9.65E-01 0.418 7.58E-05 19.1E+6 10.5 9.87% 

0.923 0.147 0.072 48.5 0.132 0.555 5.96E-04 1548 5.98E-04 5.01 2.19E-02 1.90E-03 8.37E-01 0.418 2.07E-04 17.7E+6 10.5 11.37% 

0.923 0.147 0.072 47.3 0.226 0.980 5.96E-04 1548 5.98E-04 5.01 2.25E-02 2.00E-03 8.12E-01 0.418 3.85E-04 16.8E+6 10.5 11.73% 

0.923 0.147 0.072 45.1 0.342 1.582 5.96E-04 1548 5.98E-04 5.01 2.36E-02 2.20E-03 7.61E-01 0.418 6.84E-04 15.3E+6 10.5 12.51% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.889 0.142 0.072 32.3 0.004 0.011 5.77E-04 1540 5.76E-04 5.21 3.42E-02 4.29E-03 1.08E+00 0.41 3.05E-06 7.8E+6 10.5 8.82% 

0.889 0.142 0.072 32.9 0.009 0.030 5.77E-04 1540 5.76E-04 5.21 3.36E-02 4.13E-03 1.02E+00 0.41 7.55E-06 8.1E+6 10.5 9.36% 

0.889 0.142 0.072 32.3 0.034 0.122 5.77E-04 1540 5.76E-04 5.21 3.42E-02 4.29E-03 9.45E-01 0.41 1.06E-04 7.8E+6 10.5 10.08% 

0.889 0.142 0.072 31.4 0.083 0.325 5.77E-04 1540 5.76E-04 5.21 3.52E-02 4.54E-03 8.66E-01 0.41 2.99E-04 7.4E+6 10.5 10.99% 

0.889 0.142 0.072 28.6 0.174 0.735 5.77E-04 1540 5.76E-04 5.21 3.86E-02 5.47E-03 8.03E-01 0.41 8.16E-04 6.1E+6 10.5 11.86% 

0.889 0.142 0.072 26.9 0.234 1.037 5.77E-04 1540 5.76E-04 5.21 4.11E-02 6.18E-03 7.65E-01 0.41 1.30E-03 5.4E+6 10.5 12.44% 

0.889 0.142 0.072 22.9 0.389 1.978 5.77E-04 1540 5.76E-04 5.21 4.82E-02 8.53E-03 6.67E-01 0.41 3.43E-03 3.9E+6 10.5 14.28% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.889 0.142 0.072 43.1 0.004 0.011 5.77E-04 1540 5.76E-04 5.21 2.56E-02 2.41E-03 1.08E+00 0.41 1.71E-06 13.9E+6 10.5 8.82% 

0.889 0.142 0.072 42.9 0.015 0.052 5.77E-04 1540 5.76E-04 5.21 2.57E-02 2.43E-03 9.78E-01 0.41 7.40E-06 13.7E+6 10.5 9.73% 

0.889 0.142 0.072 42.7 0.050 0.174 5.77E-04 1540 5.76E-04 5.21 2.59E-02 2.45E-03 9.75E-01 0.41 8.67E-05 13.6E+6 10.5 9.77% 

0.889 0.142 0.072 41.9 0.098 0.349 5.77E-04 1540 5.76E-04 5.21 2.64E-02 2.55E-03 9.52E-01 0.41 1.81E-04 13.1E+6 10.5 10.00% 

0.889 0.142 0.072 38.1 0.263 1.061 5.77E-04 1540 5.76E-04 5.21 2.90E-02 3.08E-03 8.41E-01 0.41 6.64E-04 10.8E+6 10.5 11.33% 

0.889 0.142 0.072 35.7 0.374 1.632 5.77E-04 1540 5.76E-04 5.21 3.09E-02 3.51E-03 7.77E-01 0.41 1.16E-03 9.5E+6 10.5 12.25% 

 

 

 



131 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.889 0.142 0.072 49.5 0.004 0.011 5.77E-04 1540 5.76E-04 5.21 2.23E-02 1.83E-03 1.08E+00 0.41 1.30E-06 18.3E+6 10.5 8.82% 

0.889 0.142 0.072 49.5 0.010 0.032 5.77E-04 1540 5.76E-04 5.21 2.23E-02 1.83E-03 1.06E+00 0.41 3.71E-06 18.3E+6 10.5 8.99% 

0.889 0.142 0.072 48.9 0.052 0.180 5.77E-04 1540 5.76E-04 5.21 2.26E-02 1.87E-03 9.80E-01 0.41 6.84E-05 17.8E+6 10.5 9.72% 

0.889 0.142 0.072 47.0 0.135 0.495 5.77E-04 1540 5.76E-04 5.21 2.35E-02 2.02E-03 9.25E-01 0.41 2.04E-04 16.5E+6 10.5 10.30% 

0.889 0.142 0.072 45.4 0.223 0.841 5.77E-04 1540 5.76E-04 5.21 2.43E-02 2.17E-03 8.99E-01 0.41 3.71E-04 15.4E+6 10.5 10.59% 

0.889 0.142 0.072 41.9 0.420 1.696 5.77E-04 1540 5.76E-04 5.21 2.64E-02 2.55E-03 8.40E-01 0.41 8.77E-04 13.1E+6 10.5 11.34% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.889 0.142 0.072 48.7 0.004 0.011 5.77E-04 1540 5.76E-04 5.21 2.27E-02 1.89E-03 1.08E+00 0.41 1.34E-06 17.7E+6 10.5 8.82% 

0.889 0.142 0.072 49.4 0.009 0.031 5.77E-04 1540 5.76E-04 5.21 2.24E-02 1.83E-03 9.85E-01 0.41 3.35E-06 18.2E+6 10.5 9.67% 

0.889 0.142 0.072 48.9 0.024 0.084 5.77E-04 1540 5.76E-04 5.21 2.26E-02 1.87E-03 9.69E-01 0.41 3.19E-05 17.8E+6 10.5 9.83% 

0.889 0.142 0.072 48.1 0.081 0.283 5.77E-04 1540 5.76E-04 5.21 2.30E-02 1.93E-03 9.71E-01 0.41 1.11E-04 17.2E+6 10.5 9.81% 

0.889 0.142 0.072 45.9 0.204 0.775 5.77E-04 1540 5.76E-04 5.21 2.41E-02 2.12E-03 8.93E-01 0.41 3.34E-04 15.7E+6 10.5 10.67% 

0.889 0.142 0.072 43.0 0.332 1.340 5.77E-04 1540 5.76E-04 5.21 2.57E-02 2.42E-03 8.40E-01 0.41 6.58E-04 13.8E+6 10.5 11.33% 

 

M L d ft RTO CRT V p Js Tt ADFt RCF MMFt Ft γ G A Dt (%) 

0.889 0.142 0.072 54.0 0.004 0.011 5.77E-04 1540 5.76E-04 5.21 2.05E-02 1.53E-03 1.08E+00 0.41 1.09E-06 21.7E+6 10.5 8.82% 

0.889 0.142 0.072 53.9 0.017 0.058 5.77E-04 1540 5.76E-04 5.21 2.05E-02 1.54E-03 9.94E-01 0.41 5.31E-06 21.7E+6 10.5 9.58% 

0.889 0.142 0.072 52.5 0.067 0.233 5.77E-04 1540 5.76E-04 5.21 2.10E-02 1.62E-03 9.75E-01 0.41 7.68E-05 20.6E+6 10.5 9.76% 

0.889 0.142 0.072 50.0 0.195 0.763 5.77E-04 1540 5.76E-04 5.21 2.21E-02 1.79E-03 8.67E-01 0.41 2.77E-04 18.6E+6 10.5 10.99% 

0.889 0.142 0.072 47.1 0.379 1.562 5.77E-04 1540 5.76E-04 5.21 2.35E-02 2.02E-03 8.23E-01 0.41 6.40E-04 16.5E+6 10.5 11.57% 
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