Cryptosporidium source tracking in the Wissahickon Creek Watershed

Amy Elizabeth Lynch
Lehigh University

Follow this and additional works at: http:// preserve.lehigh.edu/etd

Recommended Citation

Lynch, Amy Elizabeth, "Cryptosporidium source tracking in the Wissahickon Creek Watershed" (2008). Theses and Dissertations. Paper 1003.

Lynch, Amy

 Elizabeth

 Elizabeth}

CryptosporidiumSource Tracking in the Wissahickon Creek Watershed

May 2008

Cryptosporidium Source Tracking in the Wissahickon Creek Watershed

by
Amy Elizabeth Lynch

A Thesis
Presented to the Graduate and Research Committee of Lehigh University in Candidacy for the degree of Master of Science in Environmental Engineering
in
Department of Civil and Environmental Engineering Lehigh University

April 25, 2008

Certificate of Approval

Approved and recommended for acceptance as a thesis in partial fulfillment of the requirements for the degree of Master of Science in Environmental Engineering

April 25, 2008

Dr. Kristen Jellison

Thesis Advisor

Dr. Stephen Pessiki

Acknowledgements

I would like to thank the Philadelphia Water Department and PITA for funding of this project. In addition, the Philadelphia Water Department has been a great help with so much of this project, including the sampling, advice, and so much more. I would also like to thank my advisor, Dr. Kristen Jellison, for starting this project and choosing me to work on in for the past two years. I truly appreciate all of the advice, support, and knowledge she has given me during this time. I would like to thank Dr. Giovanni Widmer and Ruben Bonilla of Tufts Veterinary School for their time helping me learn some of the fecal prep protocols. I would like to thank all of the students in the lab who have helped with my research and also kept the long hours interesting, especially Julie Napotnik, Elizabeth Wolyniak, Gemma Kite, and Kevin Myers. I want to thank my parents, for whom I owe everything to, for all their love and support throughout my college career and beyond. And lastly, I want to thank all of the great people I have met here at Lehigh for make my experience here memorable, especially Steve for all his support.

Table of Contents

Page
List of Tables and Figures vi
Abstract1
I. Source Tracking Project

1. Background 2
1.1. Objective
1.2. Cryptosporidium
1.3. Project Justification
1.4. Known Genotypes
1.5. Wissahickon Creek
1.6. Type of Sampling
2. Methods 7
2.1. Sample Collection
2.1.1. Sampling Timeline
2.1.2. Sampling Protocol
2.2. IMS
2.3. DNA Extraction ${ }^{\circ}$
2.4. PCR
2.5. Quality Control
2.6. Cloning
2.7. Sequencing
2.8. Alignment
2.9. Phylogenetic analysis
3. Results 13
3.1. Scope of results
3.2. Detection percentages
3.3. Additional water data
4. Discussion 17
4.1. Scope o genotype detection
4.2. Phylogenetic Analysis
4.2.1. GenBank sequences
4.2.2. Species/Genotype Identification
4.2.3. Bootstraps
4.2.4. Unknown Genotypes
4.2.5. Main Source types
4.2.6. Human Health Risk Evaluation
4.2.7. Unusual genotype hosts
4.3. Distribution of genotypes by sample type
4.4. Distribution of genotypes by seasons
4.5. Pennsylvania Cryptosporidiosis Outbreak
5. Conclusions 26
5.1. Summary of Findings
5.2. Recommendations
II. Fecal prep protocol testing
6. Objective 29
7. Project Justification
8. Results
9. Results
10. Disscussion
11. Recomendations
References 33
Appendix A: List of all positive samples 36
Appendix B: Alignments of Helixes 1 and 2 38
Appendix C: Final full alignment of all sequence 44
Vita. 55

List of Tables and Figures

Figure 1: Map of Wissahickon Creek watershed and sampling locations 6
Figure 2: Detection limit test for PCR reactions 11
Table 1: Sample totals from each source and percent detected 16
Figure 3: Turbidity of versus volume filtered 13
Figure 4: Parsimony phylogentic tree for all cryptosporidium sequences found in samples 19
Table 2: Percent of genotypes carrying human health risk 22
Table 3: Distribution of genotypes by sample type 24
Table 4: Seasonal distribution of genotypes. 25
Table 5: Fecal prep protocol testing results. 31

Abstract

Cryptosporidium is a parasitic protozoa of concern for drinking water treatment. With the Philadelphia Water Department, the Wissahickon Creek watershed was studied because of it a source for Philadelphia's drinking water. The purpose of this study is to determine the species and genotypes of Cryptosporidium found in the watershed for source identification. Two water locations, three wastewater effluents, and animal fecal sampling occurred from August 2006 through March 2008. The samples were processed with IMS and PCR before sequencing and phylogenetic analysis to identify genotypes. About 20% of the water samples and 10% of the wastewater effluents were positive for Cryptosporidium. It was also detected in 9 geese, a calf, a deer, a raccoon, and an unknown animal. A total of 12 genotypes were found, with mostly human and wildlife sources. Human health risk is present with C. hominis and C. parvum, found in 37.5% of the sequences, with geese as a main source of these two genotypes. Some seasonal distribution can be seen. All C. hominis occurred after reported outbreak in Montgomery County in the summer of 2007. In addition, the method for preparing fecal samples was optimized for best recovery of oocysts by testing three procedures: the current protocol of settling and removing middle suspension, adding Tween 80 and kaolin to the current protocol, and filtering through gauze. All procedures tested had low recoveries(less than 15\%), but the current protocol or adding Tween 80 and kaolin were best. More testing with varying parameters is needed to find which method is best.

I. Wissahickon Creek Source Tracking

1. Background

1.1 Objective

To determine the species and genotypes of Cryptosporidium found in the
Wissahickon watershed for source identification and evaluation of human health risk.

1.2 Cryptosporidium

Cryptosporidium is a parasitic protozoa which causes cryptosporidiosis, a diarrheal disease that is especially dangerous for immunocompromised people.

Cryptosporidiosis infections range from being asymptomatic to resulting in mortality. Common symptoms include watery diarrhea, dehydration, nausea, vomiting, fever, and weight loss. There is no medical cure for cryptosporidiosis. Cryptosporidium has been found all over the world and in a growing list of animal hosts. (Center for Disease Control) The largest outbreak recorded was in Milwaukee, Wisconsin in 1993, when 403,000 people were infected and 100 people died. (Fayer 2008)

Cryptosporidium's infectious form is an oocyst, a thick walled spore stage of its lifecycle. Oocysts are released into the environment by the feces of infected hosts and can survive in this form for long periods of time before ingested by a new host.

Treating drinking water for Cryptosporidium is a growing concern for human health.

Waterborne transmission of Cryptosporidium is the focus of this project, but zoonotic, person-to-person, and foodborne transmission also leads to infection. (Xiao \& Ryan 2004)

Cryptosporidium is a pathogen of concern in terms of drinking water because it is resistant to chlorine disinfection. The small size of an oocyst also eliminates filtration as a sole treatment option. Ultra-violet (UV) light is a proven disinfectant for Cryptosporidium, but installation of UV treatment systems is prohibitively expensive for many drinking water treatment plants. (Clancy 2008)

1.3 Known Genotypes

The main species that infect humans are C. hominis, C. parvum, C. mealegridis, C. felis, and C. canis. The most prevalent species in humans cases though are C. hominis and C. parvum. (Jiang 2005). Many other genotypes have been found, including hostadapted species and genotypes. There are 16 valid species and over 40 genotypes. Several criteria need to be met before a genotype can be classified as a new species. Cryptosporidium species cannot be differentiated by their morphology, making species identification difficult. Genotypes are isolates that are distinct on a molecular level. Additional investigation is necessary before a novel genotype can be classified as a species. The classification of valid species and genotypes used in this study was referenced from "Cryptosporidium and Cryptosporidiosis". (Fayer 2008)

The host specificity varies among different species and genotypes. Some genotypes only infect one host, called host-adapted genotypes, such as goose genotype I. Other types infect a range of hosts, such as C. parvum which infects cattle, sheep, goats, deer, and horses. (Xiao and Ryan 2004) Most genotypes though only infect one class of vertebrates (e.g. birds, mammals) with exceptions such as C. meleagridis which is associated with birds but also infects humans.

1.4 Project justification

USEPA's Long Term 2 Enhanced Surface Water Treatment Rule (abbreviated LT2ESWT or LT2 rule), enacted in 2006, requires water treatment plants serving more than 100,000 people to monitor their source water for Cryptosporidium for 24 months, after which the average concentration found will determine further action. (EPA 816-F-06-005)

In response to the LT2 rule, the Philadelphia Water Department (PWD) wanted to investigate the factors and sources contributing to Cryptosporidium contamination in the drinking water for the city of Philadelphia. With a better picture of what the sources of Cryptosporidium are in the watershed, the PWD can enact preventative watershed management strategies to protect a water source for Philadelphia's drinking water, which may be a better solution than the end-of-pipe strategy of additional treatment at the water treatment plants.

The detection methods for Cryptosporidium regulated by the EPA do not include genotyping data, only enumeration data. Since only a few species are known to infect humans, the health risk to humans is overestimated. A study of the types of Cryptosporidium in the watershed gives a better estimate of the human health risk present.

1.5 Wissahickon Creek

Wissahickon Creek, shown in Figure 1, was chosen because the mouth empties into the Schuylkill River right before the intake for the Queen Lane Water Treatment Plant, causing it to significantly contribute to the influent water going into the treatment plant. Additionally, the Wissahickon Creek watershed includes a mix of urban, suburban, and agricultural land.

The occurrence of Cryptosporidium in one of the City of Philadelphia's water sources can be more easily characterized by looking at the Wissahickon watershed than the other water sources because of the extensive size of the other sources, the Delaware River and Schuylkill River.

Figure 1: Map of Wissahickon Creek watershed and sampling locations

1.6 Type of sampling

The possible sources to contaminate the drinking water include human waste from wastewater treatment plant effluents, wild animal wastes, and agriculture wastes from anywhere within the Delaware and Schuylkill River watersheds, which includes the Wissahickon Creek watershed. Three different types of samples are looked at in this study to find Cryptosporidium from all of these sources: Wissahickon Creek water, wastewater treatment plant effluents, and animal fecal samples. The water samples show what Cryptosporidium genotypes are present in the creek and entering into the water treatment plant. The wastewater effluents are a source into the creek and also an indicator of human sources. The animal fecal sampling is direct source sampling that supplements the genotype data from the environmental samples from unknown hosts.

2. Methods

2.1 Sampling locations

The water sampling sites, Wiss 140 and Wiss 410 , are located near the mouth of the creek and approximately 6 miles upstream, respectively. The map of the watershed in Figure 1 displays all of the water sampling locations. The wastewater effluent sampling sites at the wastewater treatment plants located in the towns of Abington, Ambler, and Upper Gwynedd are spread out across the watershed.

Fecal samples were collected at various locations in the watershed from a number of different animals. The animals sampled include deer, geese, ducks, dogs, donkeys, sheep, calves, cows, horses, lamb, heifers, woodchucks, opossums, a raccoon, and a skunk. The locations include Saul Agriculture High School, Fairmount Park, Upper Gwynedd, Militia Hill Park, Kelly Drive on the Schuylkill, Valley Green Road on the Wissahickon, Schuylkill Center for Environmental Education, and Morris Arboretum (at location of Wiss 410).

2.1.1 Sampling timeline

The project has been continued year-round for three years (since May 2005) to check for seasonal trends within the watershed. Water samples are collected on the first and last Monday of every month. Wastewater samples were collected on the same schedule, with Abington starting on January 23, 2006, Ambler on February 5, 2007, and Upper Gwynedd on February 26, 2007. Monthly fecal sampling began in January 2007, on the third Monday of the month. Previously to this schedule, one fecal sampling event occurred in August 2006. The data included here is from August 2006 to March 2008.

2.1.2 Sampling protocol

PWD personnel collected all of the water samples. The samples were then filtered using Gelman Envirocheck Sampling_Capsules (Pall Gelman Sciences, Inc., Ann Arbor, MI) and eluted in the PWD lab. Up through January 2008, the volume of water filtered was determined by however much it took to clog one filter. Starting in

January 2008, a standard volume of 10 liters of water were filtered for all samples, with more than one filter used for especially turbid samples. The sample pellets were shipped with ice overnight to Lehigh University for the rest of the processing.

PWD personnel collected all of the fecal samples, with the exception of one sampling event in August 2006. The samples were shipped overnight to the Lehigh lab packed in ice. About 1.5-2 grams of each sample was suspended in 40 milliliters of distilled water and vortexed thoroughly. After settling for about one minute, 20 milliliters was removed from the middle suspension. The fecal samples and water samples were treated the same for the rest of the processing.

2.2 IMS

Sample processing continued with immunomagnetic separation (IMS) using the Aureon Biosystems Crypto Kit (Vienna, Austria). Immunomagnetic separation uses magnetic beads with Cryptosporidium antibodies attached to pull out with a magnet any Cryptosporidium oocysts present in an environmental sample. As the manufacturer recommends, one IMS tube with 100 microliters of beads is used for every 1 milliliter of pelleted material. 0.5 M of hydrochloric acid is used to dissociate the beads from the oocysts.

2.3 DNA Extraction

The deoxyribonucleic acid (DNA) of the oocysts is extracted using phenol
chloroform with an initial overnight incubation with Proteinase K and SDS solution.

2.4 PCR

The DNA extracted from the sample is put directly into nested polymerase chain reactions (PCRs). The first PCR is a 50 microliter reaction using GoTaq Fexi DNA Polymerase (Promega Corporation, Madison, WI) and primers KLJ1 and KLJ 2. The result is a strand of DNA that is about 1056 base pairs long. (Jellison 2002). The second PCR uses the primers CPB-DIAGF and CPB-DIAGR and the DNA template is the first PCR product. The nested PCR amplicon is about 434 base pairs long.

Primers:
KLJ1: (5^{\prime}-CCA CAT CTA AGG AAG GCA GC-3')
KLJ2: (5'-ATG GAT GCA TCA GTG TAG CG-3')
CPB-DIAGF: (5^{\prime}-CAA TTG GAG GGC AAG TCT GGT GCC AGC-3') CPB-DIAGR: (5^{\prime}-CCT TCC TAT GTC TGG ACC TGG TGA GT-3')

The PCR cycle consisted of initial denaturation of 5 minutes at $80^{\circ} \mathrm{C}$ and 30 seconds at $98^{\circ} \mathrm{C}, 40$ cycles of amplification (denaturation for 30 seconds at $94^{\circ} \mathrm{C}$, annealing for 30 seconds at $53^{\circ} \mathrm{C}$, and extension for 1 minute at $72^{\circ} \mathrm{C}$), and a final extension of 10 minutes at $72^{\circ} \mathrm{C}$.

A detection limit test shows that the PCR reactions are sensitive enough to detect one oocyst. Figure 2 is the gel electrophoresis image with clearly visible bands for a concentration of DNA equivalent to 10000 oocysts down to 1 oocyst.

Figure 2: Detection limit test for PCR reactions

The nested PCR product was processed by gel electrophoresis to confirm the presence of Cryptosporidium DNA by the length of the DNA fragments (~ 433 base pairs). If a sample has the correct length DNA, it is cleaned up with the QIAquick PCR Purification Kit (QIAGEN Sciences, Germantown, MD). The QIAquick Gel Extraction Kit was used instead if there are multiple bands visible on the gel for a given sample.

2.5 Quality Control

A positive and negative control for each step of the procedure ensures quality control for each environmental sample. Oocysts from Waterborne, Inc. (New Orleans, LA) were used for all positive controls, with approximately 5000 oocysts used for the IMS control, 500 oocysts for the DNA extraction control, and 10000 oocysts for the PCR

Figure 2: Detection limit test for PCR reactions

The nested PCR product was processed by gel electrophoresis to confirm the presence of Cryptosporidium DNA by the length of the DNA fragments (~ 433 base pairs). If a sample has the correct length DNA, it is cleaned up with the QIAquick PCR Purification Kit (QIAGEN Sciences, Germantown, MD). The QIAquick Gel Extraction Kit was used instead if there are multiple bands visible on the gel for a given sample.

2.5 Quality Control

A positive and negative control for each step of the procedure ensures quality control for each environmental sample. Oocysts from Waterborne, Inc. (New Orleans, LA) were used for all positive controls, with approximately 5000 ooçsts used for the IMS control, 500 oocysts for the DNA extraction control, and 10000 oocysts for the PCR
controls. The correct results for the controls validate any positive samples detected within the environmental samples. A positive result for a negative control means contamination was present somewhere in the procedure. A negative result for a positive control means the procedure may not detect oocysts in the sample even if they were present.

2.6 Cloning

The Promega pGEM-T Easy Vector System I (Promega Corporation, Madison, WI) inserted the nested PCR product into a plasmid. The plasmid was transformed into the z-competent E. coli strain DH5 \propto (Zymo Research Corporation, Orange, CA). The E. coli cells are grown and the ones containing the PCR products were isolated. The plasmids from six isolates were removed with the QIAprep Spin Miniprep Kit (QIAGEN Germantown, MD). Multiple isolates were screened to recover more than one genotype of Cryptosporidium possibly present within the sample. The presence of the Cryptosporidium DNA was confirmed with restriction enzyme NotI and the heterogeneity, or sequence differences, among the isolates with restriction enzyme NdeI. At least three isolates were chosen to be sent out for sequencing, depending on the heterogeneity found.

2.7 Sequencing

The plasmids from the screened isolates were sent to University of Pennsylvania's DNA Sequencing Facility in Philadelphia, PA and sequenced using ABI (Applied

Biosystems) 96 -capillary 3730 XL sequencer. The primers added at the facility were SP6 and T7.

2.8 Alignment

The software program MacClade Version 4.06 was used to view and align the sequences. The 18 S rRNA section of Cryptosporidium DNA of isolated is about 433 base pairs long. The structures of the two variable helixes found within this segment of DNA were determined using the program Vienna RNA Secondary Structure Prediction http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi. The alignments of these helixes are included in Appendix B. Spaces were included to align the bump-outs of the helixes. If there was any uncertainty with respect to where a base pair should be aligned within the helix or the rest of the sequence, those spots were blocked out throughout all of the sequences. Additionally, the variable loops of the two helixes were also blocked out. The final sequence alignments and masked out base pairs for the complete sequences are shown in Appendix C.

2.9 Phylogenetic Analysis

The final alignment of all of the samples and the GenBank sequences was input into the software program PAUP Version 4.0 bl0 to create the phylogenetic trees. The method chosen for the phylogenetic analysis was a parsimony tree using heuristic tree searching strategy. The bootstrap numbers represent 1000 pseudoreplicates. All other parameters were the default setting in the program.

3. Results:

Cryptosporidium was detected at both water sites and two of the three wastewater effluents. Fecal sampling resulted in Cryptosporidium detection in nine geese, a deer, a calf, a raccoon, and an unknown animal, as shown in Table 1. A full listing of all positive samples and characteristics can be found in Appendix A. The sequences of all the genotypes found in these positive samples, arranged in the final alignment input into PAUP, are listed in Appendix C.

3.1 Scope of results

The purpose of this study was to evaluate qualitative data associated with Cryptosporidium, the species or genotypes. The quantitative data, the detection percentages, listed below do not enumerate the amount of Cryptosporidium that is in the watershed. The detection percentages only show how often Cryptosporidium was detected with this method. A negative water sample does not mean there weren't any oocysts in the water that day, just that none were captured. The types of Cryptosporidium present in the watershed, however, are just as important to know in determining the health risk as the amount present.

Additionally, a positive animal sample only confirms the occurrence of Cryptosporidium, not an infection in that animal. Oocysts can be ingested by an animal without causing an infection, and possibly shed from the animal intact. If an animal is infected, the likelihood of detecting Cryptosporidium is higher because of the large number of oocysts that are shed from an infected animal.

The genotypes detected in the water may not come from the sources that they are named after and usually associated with. For example, the detection of the cervine genotype in an environmental sample does not necessarily mean that the source is a deer. That genotype is found mostly to infect deer, but has also been found in sheep and lemurs. (Xiao and Ryan 2004) Identifying the sources of Cryptosporidium with molecular genotyping data from environmental samples with 100% certainty is not possible. But it is most likely that the genotype came from the sources associated with it.

3.2 Detection Percentages

The greatest detection percentages are found in both Wissahickon Creek water sites, with Cryptosporidium found in 18.2% of all Wiss140 samples at the mouth of the creek and 20.5% of all Wiss 410 samples approximately six miles upstream. No Cryptosporidium was detected at Upper Gwynedd wastewater treatment plant effluent, but about 8% of the Abington and Ambler wastewater treatment plant effluents were positive for Cryptosporidium.

Of the animal fecal samples collected, multiple geese were positive for Cryptosporidium as well as a deer, a calf, a raccoon, and an unknown animal sample. The geese had the highest detection percentage with 16.7% of the samples positive for Cryptosporidium. Only 5% of deer and 11% of calf samples were positive. Not
enough raccoon samples were analyzed to give a significant detection percentage.
Overall, only 10% of all animal fecal samples were positive for Cryptosporidium.

Several samples contained more than one genotype. Nine samples contained two different genotypes and two contained three genotypes. Therefore, the number of sequences analyzed, listed in Table 1, is greater than the number of positive samples.

Table 1: Sample totals from each source and percent detected from August 2006 to March 2008

Source	Total Samples	Positive for Crypto	Sequences Analyzed	Detection Percentage
Wiss 140	44	8	13	18.2%
Wiss 410	44	9	11	20.5%
Abington WWTP	36	3	4	8.3%
Ambler WWTP	28	2	3	7.1%
Upper Gwynedd WWTP	26	0	0	0%
				1
Deer	20	1	1	1
Calf	1	1	1	11.1%
Unknown	1	1	1	100%
Raccoon	44	9	13	16.7%
Goose	46	0	0	0%
All other animals	131	13	17	9.9%
Total animals	309	35	48	11.3%

3.3 Additional Water Data

For water and wastewater samples, additional data was collected for each sample on the volume of water filtered, the volume of the packed pellet after elution, and the turbidity of the initial sample. No correlation was seen with the amount of packed pellet, but there was a relationship between the volume filtered and the turbidity, shown in Figure 3. Generally, the higher the turbidity of the water is, the lower the volume of water able to be filtered. As described in the methods section, a goal is to filter ten liters but usually the water is filtered until the filter begins to clog. Higher turbidity water causes the filter to clog faster.

Figure 3: Turbidity of versus volume filtered

4. Discussion

4.1 Scope of genotype detection

This study is mostly a qualitative look at Cryptosporidium in the watershed. One drawback of the nested PCR is that while detection limits are more sensitive, quantitative data is lost in the process. The positive samples could have contained one or multiple oocysts. Several clones are screened and sequenced in hopes of finding more than one genotype within one sample. Nine samples contained two different genotypes and two contained three genotypes. The number of sequences analyzed in the phylogenetic tree is greater than the number of positive samples because of multiple genotypes found in a single sample.

4.2 Phylogenetic Tree

The species/genotypes of the sequenced samples are identified using a phylogenetic analysis. Figure 4 shows the combined tree with every Cryptosporidium sequence found from August 2006 to March 2008.

4.2.1 GenBank sequences

The Cryptosporidium genotypes found in environmental samples are unknown until compared to known, published species and genotypes of Cryptosporidium. All known sequences included in the phylogenetic tree are taken from GenBank <www.ncbi.nlm.nih.gov>, with the accession number listed next to the name in the tree, and have been published in one or more peer-reviewed journal articles. Only

Figure 4: Parsimony phylogenetic tree for all Cryptosporidium sequences found in samples. (GenBank accession numbers of known genotypes are listed on the tree). Bootstraps numbers greater than 50 are shown from 1000 pseudoreplicates. The key describes the color-coding system for the types of samples.

Figure 4: Parsimony phylogenetic tree for all Cryptosporidium sequences found in samples. (GenBank accession numbers of known genotypes are listed on the tree). Bootstraps numbers greater than 50 are shown from 1000 pseudoreplicates. The key describes the color-coding system for the types of samples.

Cryptosporidium species and genotypes accepted as valid names were included in the phylogenetic analysis. "Cryptosporidium and Cryptosporidiosis" served as a reference for valid classification of species and genotypes. (Fayer 2008)

4.2.2 Species/Genotype Identification

The phylogenetic comparison of all of the sequences from September 2006 to March 2008 showed 12 different species/genotype groupings. In a phylogenetic tree, a clade is every isolate that descends from the same ancestor. The species or genotype of each sample is identified by a closely related known species/genotype that is included in the same clade. All of the samples fall within 10 clades with known genotypes and two clades without any known sequence. The genotypes include C. parvum (5 sequences), C. hominis (13), C. bovis (1), cervine genotype (7), squirrel genotype (3), skunk genotype(4), muskrat genotype I (2), goose genotype I (1), deer mouse genotype III (3), goose-type genotype (3), unknown genotype 1 (4), and unknown genotype 2 (2).

4.2.3 Bootstraps

From the bootstrap values, some grouping relationships with known genotypes are stronger than others. Bootstrap values indicate the percentage of time that those sequences group together in 1000 different configurations of the tree. The sequences identified in the tree as unknown genotype 1 , cervine genotype, C. bovis, squirrel genotype, muskrat genotype I, and goose genotype I all have bootstrap numbers
greater than 70 and therefore are closely related to that species or genotype. The sequences identified as goose-type genotype, skunk genotype, and deer mouse genotype III all have bootstrap numbers between 70 and 50 , so their relationship with those genotypes is close but not strong. The rest of the genotypes, including C.
parvum, C. hominis, and unknown genotype 2 , do not have bootstrap values listed because they are less than 50 and not statistically significant. One reason for the uncertainty in these relationships could be the genetic similarity between C. parvum and C. hominis, which were considered the same species until a few years ago. (Fayer 2008)

4.2.4 Unknown Genotypes

Several sequences were not closely related to any known sequences and consequentially were labeled as an unknown genotype. The sequences labeled unknown genotype 1 are considered all one genotype based on the bootstrap value of 92. Although compared against numerous known genotypes, none were the same as this genotype. Conversely, the two sequences labeled unknown genotype 2 are not very closely related based on the bootstrap value less than 50 . Goose-type genotype could also be considered an unknown. Although closely related to other isolates from geese, such as the KLJ5 isolate AY324639 (Jellison 2004), it is not one of the two accepted goose genotypes (Xiao 2008). So either this genotype is yet unnamed or is associated with a different animal host.

4.2.5 Main sources types

The dominant sources of Cryptosporidium spp. found in the Wissahickon Creek watershed appear to be humans and wildlife. Human associated species detected include C. hominis and C. parvum. Wildlife associated species found in the watershed include cervine genotype, squirrel genotype, skunk genotype, muskrat genotype I, deer mouse genotype III, goose genotype I, and goose-type genotype. Agriculture species, C. bovis and some C. parvum genotypes, were not identified very frequently in the watershed. C. parvum is categorized as a human and agriculture type because it is associated with cattle, sheep, goats, deer, and horses. (Xiao Ryan 2004)

4.2. 6 Human Health Risk Evaluation

The only species found in the watershed that are a human health risk are C. parvum and C. hominis. Unfortunately, these two species are also the most prevalent types found in the watershed, as shown in Table 2. Eighteen isolates or 37.5% of all of the Cryptosporidium sequences found are one of these two genotypes, broken down into 27% C. hominis and 10% C. parvum. Twenty-four isolates or 50% found carry no known human health risk. Six isolates could not be identified.

Table 2: Percent of genotypes carrying human health risk

		Number of Sequences	Percentage	
Human health risk genotypes	C. hominis	13	27.1%	
	C. parvum	5	10.4%	
No known human health risk genotypes	24	50%		
Unknown genotypes (unknown risk)	6	12.5%		
Totals				48
(100%)				

4.2.7 Unusual genotype hosts

Of the animal samples analyzed, most of the genotypes are commonly found in the hosts sampled but there were some unexpected genotype associations. C. hominis and muskrat genotype I are not commonly found in geese. C. hominis was found in several geese on two different sampling dates and two different sampling locations on one date. Finding these genotypes in animals other than their primary hosts is proof that determining the source from an environmental sample based solely on the genotype is not a perfect science.

4.3 Distribution of genotypes by sample type

No strong distribution patterns by the type of sample can be seen in the comparison in Table 3. The two genotypes with a human health risk, C. parvum and C. hominis, are found in almost every type of sample. Geese especially appear to be a major source for these genotypes. Not surprisingly, the human genotype C. hominis appeared in wastewater effluents on a few dates.

Ten of the twelve genotypes found in the watershed were also found in the river water samples. Most of the genotypes found in animals and wastewater treatment plant effluents were also present in the creek. Therefore, as expected, animals and wastewater treatment plants contribute to the Cryptosporidium present in the source water for Philadelphia's drinking water.

Table 3: Distribution of genotypes by sample type

4.4 Distribution of genotypes by seasons

A seasonal comparison of the genotypes found in the watershed shows some interesting differences in Table 4. The seasons here are defined by the official astronomical start days for that year. Certain genotypes are seen more often during certain times of the year, such as skunk genotype in the fall, C. parvum in the summer, muskrat genotype I in the winter, and unknown genotype 1 in the spring.

Cervine genotype however was seen year round. A lot of the genotypes though cannot be considered a trend because not enough sequences were found. One interesting observation is the appearance of C. hominis only in the summer and fall of 2007 more frequently than any other genotype. This doesn't seem to be a seảsonal difference but a single outbreak. More evidence for this theory is examined in section 4.5. Any of the seasonal differences seen during the time period of this study could be from individual outbreaks of those genotypes. Migration, hibernation, and other seasonal behavior in the animal hosts could also cause some of these trends. Conversely though, genotypes associated with geese, who migrate south during the winter, were seen in the summer, fall, and winter. Looking at genotyping data for at least three years would be necessary to establish definite seasonal trends.

Table 4: Seasonal distribution of genotypes

Summer		Fall	Winter	Spring
2006 Unknown Genotype 2 C. parvum	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2006 Skunk genotype 1 Goose genotype KLJ5 1 Cervine genotype 2 Deer mouse genotype III 1	2007 Cervine genotype 1 Deer mouse genotype III 1 Squirrel genotype 1	2007 C. bovis 1 Cervine genotype 1 C. parvum 1 Squirrel genotype 2 Unknown genotype 13 Unknown genotype 21
	2	5	- 3	9
2007 Cervine genotype C. hominis Goose genotype I C. parvum Unknown genotype 1	$\begin{aligned} & 1 \\ & 7 \\ & 1 \\ & 3 \\ & 1 \end{aligned}$	2007 Deer mouse genotype III 1 C. hominis 6 Skunk genotype 3 Goose genotype KLJ5 1	2008 Muskrat genotype I 2 Cervine genotype 2 Goose genotype KLJ5 1	
	13	11	5	

4.5 Pennsylvania Cryptosporidiosis Outbreak

On August 16, 2007, the Pennsylvania Department of Health issued a health advisory for a cryptosporidiosis outbreak in Chester and Montgomery Counties. The majority of the Wissahickon Creek watershed is located in Montgomery County. There were over 300 cases confirmed in late June for Chester County followed by over 60 cases in Montgomery County. The source of the outbreaks was determined to be local public swimming pools. (Pennsylvania Department of Health) The seasonal distribution of genotypes shows that that there was increased occurrence of Cryptosporidium spp. known to cause human infections in August and September 2007, possibly related to the outbreak. All C. hominis found in the watershed was from the summer and fall of 2007 at almost all of the sampling locations. During this period of time, C. hominis was detected more often than any other genotype in any season (thirteen samples total). C. parvum, the other species infectious to humans, also peaked during the summer of 2007 with three samples. The possibility that the observed spike in C. hominis and C. parvum is a result of the reported outbreak seems likely but needs to be corroborated with sequence data from the outbreak. The species - or genotype of the Cryptosporidium involved in this outbreak is unknown at this time.

5. Conclusions

5.1 Summary of Findings:

Cryptosporidium was detected at every water and wastewater sampling location, with the exception of the Upper Gwynedd wastewater treatment plant. Detection at the two water sites was higher (20%) than at the two wastewater effluents (8%).

Approximately 10% of all fecal samples were positive for Cryptosporidium, with the most found in geese (16.7%).

Twelve different species or genotypes of Cryptosporidium were detected in the Wissahickon Creek watershed. Of those, the most common types were from human and wildlife sources. Agriculture sources do not seem to be a significant contributor in the watershed. There is a significant human health risk present from C. hominis or C. parvum accounting for 37.5% of all the sequences. All of the wildlife genotypes, accounting for 50% of all the samples, carry no known risk to humans. Geese, however, were shown to be a source for human infectious species.

All twelve genotypes were found in the water samples and are a risk to enter the water treatment plants downstream. No pattern was seen in the distribution of genotypes by sample type. However there were some seasonal differences in some genotypes detected. C. hominis was only seen in the summer and fall of 2007, which is possibly related to a reported outbreak of cryptosporidiosis in Montgomery County.

5.2 Recommendations

Some changes to the sampling plan would improve the already existing database of Cryptosporidium. Wastewater effluent sampling from Upper Gwynedd should be discontinued, and possibly switched to another wastewater treatment plant located within the watershed. Additional fecal sampling could improve the understanding of where the genotypes found in the water are coming from. Several, such as the cervine genotype, were not detected in any animals. More sampling of deer and agricultural sources would help the most.

Since geese were shown to be a significant source of human infectious genotypes, interventions to keep them away from the creek could be beneficial.

Additionally, it would be valuable to determine the genotype that caused the outbreak in Chester and Montgomery County. The genotype data may be already known by the health department or testing could be performed if any oocysts from infected individuals were kept.

II. Fecal Prep Optimization

1. Objective

A supplemental project to the Wissahckon source tracking project was undertaken to determine the procedure with the best recovery of oocysts from fecal samples. The goal is to optimize the amount of a fecal sample processed and the percent recovery of oocysts.

2. Project Justification

The method currently used in the Wissahickon source tracking study for preparing fecal samples for IMS has not been validated as the best method. The detection sensitivity is unknown also. Initial steps are required to reduce the amount of debris and clean up the sample before IMS without a losing any Cryptosporidium oocysts present in the sample.

3. Procedure

The current procedure, as previously described in section 2.1.2, mixes about 1.5-2 grams of each sample into 40 milliliters of distilled water. After settling for about one minute, 20 milliliters are removed from the middle suspension.

Additionally two other methods were tested: (i) adding kaolin and Tween 80 and (ii) filtering through gauze first.

The first procedure (Tween 80 and kaolin) was adapted from one used for influent wastewater samples (McCuin and Clancy 2005). All of the steps are the same as the current protocol except the addition of Tween 80, a surfactant, and Kaolin, a type of clay. A 20\% Tween 80 solution (for a final concentration of 1% in the sample) is added at the beginning along with the fecal sample, followed by five minutes on a wrist-action shaker. Right before IMS, 0.5 milligrams of kaolin is added.

For the second procedure, all of the vortexed sample is filtered through gauze to remove the large particles. The sample is treated the same for rest of the procedure. This procedure was adapted from one used for isolating oocysts from intestinal samples in Giovanni Widimer's lab at Tufts University Veterinary School in Grafton, MA.

For all of the testing 3 grams of deer fecal samples were used. ColorSeed was used to determine the oocyst recovery. ColorSeed (BTF Precise Microbiology, Inc., Sydney, Australia) contains 100 gamma-irradiated oocysts, pre-stained with Texas Red dye, to be added to each sample. Additionally, Meriflour FITC stain (Meridian Biosiciences, Inc. Cincinnati, OH) was used to help identify the oocysts under the microscope.

4. Results

A test of the procedure, using only IMS with no fecal sample, found 59% oocyst recovery. The rest of the testing results for the three procedures are listed in Table 5.

Table 5: Fecal prep protocol testing results

	IMS alone (current protocol)	IMS with Tween 80 and Kaolin	Gauze and IMS
23	15	6	
26	20^{*}	5	
5	9	10	
2		14.667	
Average	18	5.508	2.646
Std Dev.	10.756		

5. Discussion

None of the procedures tested had high recoveries. The protocol currently used has been shown to deliver the highest oocyst recovery. There is a lot of variability within the results, which might be attributed to different samples characteristics or slightly different settling times. The addition of Tween 80 and kaolin is a good alternative to be used instead. The oocyst recovery average is only slightly lower when it includes the one sample without any kaolin. The gauze protocol had consistently low oocyst recovery compared to the other two methods.

6. Recommendations

Further testing is required to be confident in a procedure that will best capture any oocysts present in a fecal sample. The settling time, amount of fecal sample used, and
type of fecal sample should be varied under the current protocol to determine the reason behind the variation in the recoveries. Additionally, testing with only Tween 80 and no kaolin seems promising from the one test performed. The gauze procedure does not seem promising from these results and can be disregarded.

Continuing visualization problems using the ColorSeed and the Merifluor stain under the microscope need to be worked out for future testing as well. Some additional procedures that used by other labs and worth further investigation include using a concentration gradient with Histodenz (Sigma-Aldrich, St. Louis, MO) to separate the oocysts by density (Widmer 1998) and the QIAamp DNA Stool Kit (QIAGEN Inc., Valencia, CA). (Xiao 2008)

References

> Center for Disease Control Division of Parasitic Diseases December 18, 2007
> "Cryptosporidium Infection Cryptosporidiosis: Fact Sheet".
> http://www.cdc.gov/NCIDOD/DPD/parasites/cryptosporidiosis/factsht_crypto sporidiosis.htm

Clancy, Jennifer L. and Thomas M. Hargy. 2008. "Drinking Water." In Cryptosporidium and Cryptosporidiosis ($2^{\text {nd }}$ edition), ed. Ronald Fayer and Lihua Xiao. Boca Raton, FL: CRC Press.

Fayer, Ronald. 2008. "General Biology." In Cryptosporidium and
Cryptosporidiosis ($2^{\text {nd }}$ edition), ed. Ronald Fayer and Lihua Xiao. Boca Raton, FL: CRC Press.

Jellison, Kristen L., Daniel L. Distel, Harold F. Hemond, and David B.
Schauer. 2004. "Phylogenetic Analysis of the Hypervariable Region of the
18S rRNA Gene of Cryptosporidium Oocysts in Feces of Canada Geese
(Branta canadensis): Evidence for Five Novel Genotypes" Applied and
Environmental Microbiology 70 (1):452-8.

Jellison, Kristen L., Harold F. Hemond, and David B. Schauer. 2002.
 "Sources and Species of Cryptosporidium Oocysts in the Wachusett Reservoir Watershed." Applied and Environmental Microbiology 68(2): 569-75.

Jiang, Jianlin, Kerri A. Alderisio, and Lihua Xiao. 2005. "Distribution of Cryptosporidium Genotypes in Storm Event Water Samples from Three Watersheds in New York." Applied and Environmental Microbiology 71 (8): 4446-54.

Johnson, Calvin B. August 16, 2007. "Health Advisory \#0102:
Cryptosporidiosis in Swimming Pools in Chester and Montgomery Counties" Pennsylvania Department of Health.
http://www.dsf.health.state.pa.us/health/cwp/view.asp?A=171\&Q=248461

Maddison, David R. and Wayne P. "MacClade." Version 4.06. Sinauer Associates, Sunderland, Massachusetts.

McCuin, Randi M. and Jennifer Clancy. 2004. "Methods for the recovery, isolation, and detection of Cryptosporidium oocysts in wastewaters." Journal of Microbiological Methods 63: 73-88.

> Swofford, D. L. 2002. "PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods)." Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.
U.S. Environmental Protection Agency, Office of Water. 2006. "Long Term 2 Enhanced Surface Water Treatment Rule: A quick reference guide for schedule 1 systems." EPA 816-F-06-005.

Widmer, G., S. Tzipori, and C. J. Fitchtenbaum. 1998. "Genotypic and Phenotypic Characterization of Cryptosporidium parvum Isolates from People with AIDS." The Journal of Infectious Disease 178: 834-40.

Xiao, Lihua and Ryan, Una M. 2008. "Molecular Epidemiology." In Cryptosporidium and Cryptosporidiosis ($2^{\text {nd }}$ edition), ed. Ronald Fayer and Lihua Xiao. Boca Raton, FL: CRC Press.

Xiao, Lihua and Una M. Ryan. 2004. "Cryptosporidiosis: an update in molecular epidemiology." Current Opinion in Infectious Disease 17: 483-90.

Appendix A - Log of All Positive Samples from 8/1/06 through 3/31/08

AugF 8 AugF 10	$\begin{aligned} & 8 / 20 / 07 \\ & 8 / 20 / 07 \end{aligned}$	$\begin{aligned} & \text { sum } \\ & \text { sum } \end{aligned}$	Goose fecal from Valley Green Goose fecal from Valley Green		2 1	C. parvum C. hominls C. parvum	A	B A B
410(58)	9/4/06	sum	dry day water sample		1	C. hominis	A2	A
410(59)	9/24/07	fall	dry day water sample	GE	1	C. hominis	A1	A
WB 16	9/24/07	fall	Ambler WWTP effluent		1	C. hominis	A	A
SeptF 2	9/25/07	fall	Goose fecal from Kelley Drive		1	C. hominis	A	A
SeptF 4	9/25/07	fall	Goose fecal from Kelley Drive		1	c. hominis	A	A
WT 30	10/1/07	fall	Abbington WWTP efluent		1	C. hominis	A	A
140 (62)	11/5/07	fall	dry day water sample	GE	1	Skunk genotype	AB	F
NovF 2	11/26/07	fall	Raccoon Fecal sample		1	Skunk genotype	B	c
140 (64)	12/12/07	fall	dry day water sample		3	deer mouse III C. hominis, skunk genotype	$\begin{gathered} D \\ A, B \end{gathered}$	$\begin{gathered} F \\ A, C \end{gathered}$
140 (65)	12/20/07	fall	dry day water sample	GE	1	goose-type	G2	I
410 (67)	1/30/08	win	dry day water sample	GE	1	cervine genotype	c	D
140 (68)	2/4/08	win	dry day water sample		2	muskrat genotype	F	D
March08 F3	3/18/08	win	Goose fecal sample		2	muskrat genotype goose-type	$\begin{gathered} \mathrm{F} \\ \mathrm{G} 2 \end{gathered}$	F
TOTALS					48			

ω

U	A			A	u	U	A	U	A	A	U	\cup	A	U	A	U	A	A		U		A U		A
A	U	G		U	A	A	U	A	U	U	A												\cup	
U	A		G	A	1							A	U	U	A	A		U		A		U A	G	U
						U	A	U	A		U	U	A	A	\cup	U	A	A		U		A U		
A	U			U	A	A	U	A	U	\cup	A	A	U	U	A	A	U	U		A		\cup A		
U	A			A	U	U	A	U	A	A	U	U	A	A	U	U	G	A		U		AU	\cup	A
																		C			U			
A	U			A	U	A	U	A	U	U		A	U	A	U	U	A	A		U		A U	A	U
						U		U				U		U										
														u	U								C	
A	U			A	U	A	U	A	U	A	U	A	U	U	A	A	U	A		U		AU	A	U
				A												\cup								
A	U			U	A	A	U	A	U	A	U	G	U	C	G	A	u	U		A		UA	A	U
A																								
U	A			A	U	u	A	u	A	U	A	A	U	A	U	A	U	G		U		A U	U	A
A	U			U	A	A	U	A	U	A	u	A	U	A	U	U	A	c		6		C G	A	U
\cup	A			U	A	\cup	A	U	A	U	A	U	A	U	A	A	u	U		G	U	G	c	G
U	A			U	G	\cup	A	U	A		A	A	U	A	U	C	G	A		C		A C	C	
\cup	G			U	U	U	G	\cup	U	U	U	U	A	U	U	A	U						A	C
\cup	U			. G	A	u	U	U	U	U	U	U	G	A	\cup	U	U							
G	A	G				G	A	A	A	A		\cup	A			U	A							
												u	A											

Masked out basepairs
 Uncertain bumpouts

varlable loop

Appendix B-Helix 1 alignment

Appendix B-Helix 1 alignment

$\stackrel{\rightharpoonup}{0}$

Masked out basepairs:
 Uncertaln bumpout

variable loop

ix 2 alignment

Appendix C: Final full alignment of all sequences

Alignment Notes:

Sequences aligned and masked out exactly as input into PAUP for the phylogenetic tree, including sequence names.

Masked out base pairs are darkened.
Spaces added in are shown in white.
The base pair number is located at the top of the page.

Helix 1 is located from base pair 20 through 99.
Helix 2 is located from base pair 103 through 149.

410 (54)
Aug07 F8 c1-Goose
Aug07 F10 condensed - Goose
140 (46) c3
Summer06 f6 c3 - unknown
Lab control (1/24/07)
C. parvum L16996
C. meleagridis AF112574
C. wrairl U11440

Ambler WW 13 c3
410 (59)
Ambler UW 16 consensus
Abington WW $\mathbf{3 0}$ consensus
Septo7 Fecal 2 -Goose
Sept07 Fecal 4 consensus - Goosi 140 (64) c3
410 (58) consensus
Aug07 F2 c1-Goose
Aug07 F2 c3-Goose
Aug07 F6 c1-Goose
Aug07 F7 c1-Goose
Aug07 FB C2-Goose
Aug07 F2 c2 - Goose
410 (44) c2
AbIngton WW 17 c2
140 (47) c2
410 (47) c1
Summer06 F3-Deer
140 (62) consensus
Nov07 Fecal 2 - Racoon
140 (64) c4
140 (36) C1
Ambler WW 13 c1
140 (68) c3
410 (67) c3
140 (46) c2
410 (36) cl
410 (38) c3
Abington WW 13 c2
410 (38) c2
410 (40)
140 (64) c2
140 (40)
Abington WW 17 cl
140 (47) c3
140 (68) c2
March08 F3 cl-Goose
410 (36) c3
140 (65) c2
March08 F3 c2-Goose
April07 F4 c3-Calf
C. bovis AY120911

AugF 5 cl-Goose
Goose genotype 1 AY324642
C. hominis AF093489
C. felis AF112575
C. serpentis AF093499
C. baileyl L19068
C. andersoni AB089285
C. muris (murine) AB089284
C. canis Af112576

Cervine genotype EF641018
Deer mouse genotype III EF6410]
Muskrat genotype 1 Ef641016
Squirrel genotype DQ295014
Skunk genotype W13 AY737559
Goose genotype (KLJ-5) AY32463

INTENTIONAL SECOND EXPOSURE

AA，GTC	$A T$	A．AT ${ }^{\text {A }}$		3	ATAT	A	A
AAGCTCGTAGTTGGATTTCTGTTA	AT	A ATT		T	ATAT	A	A
A AGCTCGTAGTT\＆\＆ATTTCT反TTA	$A T$	A．ATT		1	ATAT	A	
AAGCTCGTAGTTG氏ATTTCTGTTA	$A T$	A ATT		T	ATAT	A	A．
AAGCTCGTAGTTGGATTTCTCTTA	A T	A ATT		r	ATAT	A_{2}	
AACCTCGTAGTTGGATTTCTGTTA	AT	A ATt		T	ATAT	A	
AAGCTCGTAGTTGGATTTCTGTTA	AT	A AT		7	ATAT	A	
AACCTEGTACTTGGATTTCTGTTA	AT	A ATT		T	ATAT	A r	
AAGCTCGTAGTT\＆GATTTCTGTTA	$A T$	A ATT		T	ATAT	AT	
AAGCTCGTAGTTGGATTTCTGTTA	$A T$	A AT	T	T	ATAT	A	
AAGCTCGTAGTTGUATTTCT\＆TTA	AT	A AT		T	ATAT	A	A
AAGCTCGTAGTTGGATTTCTGTTA	AT	A ATT		T	ATAT	A	A
AASCTCGTAGTTGGATTTCTGTTA	$A T$	A ATT		r	ATAT	A	
AAGCTCGTAGTTG\＆ATTTCT\＆TTA	AT	A AT		T	ATAT	A	A
AAGCTCGTAGTTGGATTTCTGTTA	AT	A ATT		T	ATAT	A	A
AAGCTCGTAGTVGGATTTCTGTTA	A r	A ATT		1	ATAT	A	A
AAGCTCGTAGTT\＆	$A T$	A AT		1	CTAT	A	A
A AGCTCGTAGTTGGATTTCTGTTA	$A T$	A AT		1	－TAT	A	A
AAGCTCGTAGTE\＆GATTTCTGTTA	$A T$	A ATT		T	ATAT	A	A
AAGCTCGTAGTTGGATTTCTGTTA	AT	A AT		1	ATAT	A	，
AACCTCGTAGTTG心ATTTCTGTTA	AT	A AT		5	ATAT	A	A
AAGCTCGTAGTTGGATTTCTGTTA	AT	A ATT		γ	ATAT	A	A
AACCTCCTAGTTG\＆ATTTCTGTTA	AT	AATT		A	TATA	A	，
AAGCTCGTAGTTEGATTTCTGTTA	AT	AATT		A	TATA	A	A
AACCTCGTAGTTGGATTTCTGTTA	${ }^{\text {A }}$ T	AATT		A	TATA	A	A
AAGCTCGTAGTTGGATTTCTGTTA	$A T$	AATT		A	TATA	A	A
AAGCTCGTAGTTAGATTT\＆TGTTA	$A T$	AATT		A	TATA	A	a
AAGCTCGTAGVTGGATTTCT\％TTA	$A T$	AATTT		A	TATA	A	A
AAGCTCGTAGTTGGATTTCTETTA	$A T$	A ATT		J	ATAT	AT	A
AABCTCGTAGTTGCATTTCTGXTA	A	A AT		f	ATAT	AT	A
AAGCTCGTAGTTGGATTTCTGTTA	$A T$	A AT		T	$A T A T$	$A T$	A
AAGCTCETAGTTGGATTTCTGTTA	AT	A AT		T	ATA	A	A
AAGCTCGTAGTTG心ATTTCTCTTA	AT	AATTI		A	TATA	T	A
AAGCTCGTAGTTGGATTTCT\＆TTA	$A T$	AATTT		A	TATA	T	A
AAGCTCGTAGTTGGATTTCTSTTA	AT	AATTT		A	TATA	\＃	A
AAGCTCGTAGTTGGATTTCTGTTA	A	AATT		A	TATA	T	A
AAGCTCGTAGTTGASTTTCTCTTA	$A T$	AATTE	F	A	TATA	T	A
AAGCTCGTAGVTGGATTTCTGTTA	$A T$	AATT	T A	A	TATA	T	A
AAGCTCGTAGTTGGATTTCTQTTA	AT	AATT	T	A．	TATA	T	A
AAGCTCGTAGTTGGATTTCTGTTA	AT	A ATT		T	ATAT	AT	A
AAGCTCGTAGTTGEATTTCTGTTA	$A T$	A ATT		\％	ATAT	AT	A
AAGCTCGTAGTV氏GATTTCTCTTA	AT	A AT	r r	T	ATAT	AT	A
A A ：CTCGTAGTTGGATTTCTGTTA	AT	A A	T T	T	TATA	A	
AAGCTCGTACTTCGATTTCTGTTA	AT	AATTT		T	TATA	A	
AAGCTCGTAGTTEGATTTCTGTTA	$A T$	AATT		r	TAYA		
AAGCTCGTAGTTGGATTTCTETTA	AT	A ATT		7	ATAT	T	a
AAGCTCGTAGTTGGATTTCTGTTA	$A T$	A ATt		T	ATAT	1	A
AACCTCGTAGTTG心ATTTCTETTA	ATTT	7 it	r	A	TATA	A	A_{2}
AAGCTCGTAGTTQ，\＆ATTTCTGTTA	ATTT	T T	T	A	YATA	A	A
AAGCTCGTAGTT\＆GATTTCTETTA	ATTT	T	r	A	TATA	A	A
AA：CTCGTAGTTGGATTTCTGTTA	ATTT	$T \quad$ T	T	A	TATAC	A	A
AAGCTCGTAGTTAAYCTTCTGTTA	ATTT	T T	－A	A	TATA	A	A
AACCTCGTAGETGGATTTCTGCTA	$A T$	T T	T	TT	$G C A T$	AC	A
AAGETCGTAGTTGGATTTCTGCTA	AT	T T	T	T	$G C A T$	$A C$	A
AAGCTCGTAGTTGGATTTCTGTTA	$A T$	A ATT		T	ATAT	A	A
AACCTCGTAGTTGGATTTCTGTTA	$A T A C C$	$C \quad T$	T	T	ATAT	A	T
AAGCTCGTAGTTGGATTTCTGTTG	T A	T T	TTTTATA	A	ATAT	T T	A
AAGCTCGTAGTTGGATTTCTGTTA	ATAC	$T . \quad T$	T	A．	TATA	c	A
AAGCTCGTAGTTGGATTTCTGTTG	AT	$A \quad A$	ATT	T	ATAA	T	A
AAGCTCGTAGTIGGATTTCTGTTGT	$A T$	A A	ATC	T	ATAA．	I	A
AAGCTCGTAGTTGGATTTCTGTTA	AT	A ATT		T	ATAT	A^{1}	A
AAGCTCGTAGTTGGATTTCTGTTA	AT	AATTT		A	TATA	A	A
AAGCTCGTACTTGGATTTCTGTTA	AT	A ATT		J	ATAT	AT	A
AAGCTCGTAGTTGGATTTCTCTTA	${ }^{\text {A }}$ T	A ATT		1	ATAT	T	A
AAGCTCGTAGTTGGATTTCtGTTA	AT	AATT		T	TATA	AT	
AACCTCGTAGTTG心ATTTCTETTA	AT	A ATE		T	ATAT	AT	A
	A $1+$				1边茴		

410 (54)
Aug07 F8 cl-Goose Aug07 F10 condensed - Goose 140 (46) c3
Summer06 F6 c3-unknown
Lab control ($1 / 24 / 07$)
C. parvum L16996
C. meleagridis AF112574
C. wrairl U11440

Ambler WW 13 c3
410 (59)
Ambler WW 16 consensus
Abington WW $\mathbf{3 0}$ consensus
Sept07 Fecal 2 -Goose
Sept07 Fecal 4 consensus - Goosı
140 (64) c3
410 (58) consensus
Aug07 F2 c1-Goose
Aug07 F2 c3-Goose
Augo7 $\mathrm{F6} \mathrm{cl}$ - Gcose
Aug07 F7 c1-Goose
Aug07 F8 c2-Gcose
Aug07 F2 c2-Goose
410 (44) c2
Abington WW 17 c2
140 (47) c2
410 (47) c1
Summer06 F3 - Deer
140 (62) consensus
Nov07 Fecal 2 - Racoon
140 (64) C4
140 (36) C1
Ambler WW 13 c1
140 (68) c3
410 (67) c3
140 (46) c2
410 (36) c1
410 (38) c3
Ablngton Ww 13 c2
410 (38) c2
410 (40)
140 (64) C2
140 (40)
Abington WW 17 cl
140 (47) c3
140 (68) c2
March08 F3 c1-Goose
410 (36) c3
140 (65) c2
March08 F3 c2-Goose
April07 F4 c3-Calf
C. bovls AY120911

AugF 5 c1-Goose
Goose genotype 1 AY324642
C. hominls AF093489
C. fells AF112575
C. serpentls AF093499
C. balleyi L19068
C. andersoni AB089285
C. muris (murine) AB089284
C. canis AF112576

Cervine genotype EF641018
Deer mouse genotype III EF64101-G
Muskrat genotype I Ef641016
Squisrel genotype DQ295014
Skunk genotype W13 AY737559
Goose genotype (KLI-5) AY32463

－ $30 \cdot 4$	AATTCATATT．A
	AATTCATATT－A
	AATTCATATT．A
	AATTCATATT．．A
	AATTCATATT－A
	AATTCATATT A
	AATTCATATT A
	AATTCATATT A
	AATTCATATT．A
	AATTCATATT A
	AATTCATATT－A
	AATTCATATT．A
	AATTCATATT A
	AATTCATATT•A
hepon recat ammensus－Gous	AATTCATATT－A
¢ Sifomes	AATTCATATT．A．
	AATTCATATT－A
	AATTCATATT．A
	AATTCATATT A
	AATTCATATT A
	AATTCATATT．A
	AATTCATATT－A
	AATTCATATT．A
209496	AATTCATATT－A
Abemstor，What 1.	AATTCATATT－A
	AATTCATATT A
4：0（a）（	AATTCATATT－A
	AATTCATATT A
	AATTCATATT ${ }^{\text {A }}$
	AATTCATATT A
740（60） 6	AATTCATATT A
7\％（Say＝	AATTCATATT A
Anmber whe ： 3 ：	AATTCATATT－A
140） 681 ：	AATTCATATT A
A 10）（6\％） 6	AATTCATATT．A
140） 460	AATTCATATTAC
alorsor	AATTCATATT A
4080：	AATTCATATT A
	AATTCATATT A
A A chat	AATTCATATT A
隹禹为	AATTCATATT－A
1s6tsha	AATTCATATT A
1－8） 0	AATTCATATT A
Atmgron wh ！：	AATTCATATT－A
140（6） 5	AATTCATATT A
3．40 68	AATTCATATTA
Anr mes：：wher	AATTCATATT．A
4：0：303：	AATTCGCATT－A
1．8ices：	AATTCGCATT．A
	AATTCGCATT A
	AATTCATATT－A
	AATTCATATT．A
	AATCCGCATT．A
	AATCCCCATT－A
－nownt उbotsut	AATTCATATT A
	AATTCATAT
6．atoments ator ix9\％	CCTTCCTATT－A
	AATTCACATT A
	CCTTCCTATT A
	CCTTCCTATT．${ }^{\text {C }}$
	AATTCATATT A
	AATTCATATT A
	AATTCATATT－A
	AATTCATATT－A
Squiral genotype DQ29501\％	AATTCATATT－A
Shunk qematyme wi 4－739550	AATTCATATT A
	AATTCGCATT．A

 1！TGACTTIUAGAAAATTAGAGTGCTTAAACCAGGGS期ATGCCTTGAATA YITTACTTTGAGAAAATTAGAG TGGTTAAAGCAGGCHAMTCCCTTGAATA

 TTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGCAYATGCCTTGAATA TTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGEC鼻解ATGCCTTGAATA TTTTACTTTGAGAAAATTAGAGTGCTTAAACCAGGC TTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGGGXATGCCTTGAATA trttacturgagaanattagactgcttanagcagGcheatcccttuanta TTTTACTTTCAGAAAATTAGAGTGCTTAAAGCAGGC期ATGCCTTGAATA TTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGCHATHCCTTGAATA

 tTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGCVMATGCCTTGAATA ttctactttcagaaaattagagtgcttanagcaggcindatgccttcaata TTCTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGG和ATGCCTTGAATA TTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGCCM鸾ATCCCTTGAATA

 TTTTACTTTGAGAAAATTAGAGTCCTTAAAGCAGGCBUTATGCCTTGAATA TTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGCM\％ATCCCTTCAATA
 TTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGCOSTATGCCTTGAATA TTTTACTTTAAGAAAAYTAGAGTGCTTAAAGCAGGC／WATGCCTTGAATA TTTTACTYTGAGAAAATTAGAGTGCTTAAAGCAGGC解ACGCCTTGAATA TTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGCACATGCCTTGAATA TTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGCKKTAGCCTTGAATA
 TTTYACTTTGAGAAAATTAGAGTGCTTAAAGCAGGCTMTTGCCTTGAATA
 tTtTACTTTGAGAAAATtagAGTGCTtaAGGCAGGc GUTAGCCTTGAATA TTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGC綂TAGCCTTGAATA TTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGCHTHAGCCTTGAATA
 TTTTACTTTGAGAAAATTAGAGTGCTTAAACCAGGCDKTAGCCTTGAATA TTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGCBTTAGCCTTGAATA ITTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGCHETAGCCTTGAATA
 TTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGCXXATGCCTTGAATA

 TTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGECDXATGCCTTGAATA
 TTCTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGCWTAGCCTTGTATA TTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGCMETAGCCTTGTATA CTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGCD期TTGCCTTGAATA CTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGC 稘TTGCCTTGAATA CTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGC，GUTTGCCTTGAATA CTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGC香斯TGCCTTGAATA CTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGC稘TTGGCCTTGAATA

 TTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGC 酸ATGCCTTGAATA TTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGC TTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGC＊世CTGCCTTGAATA CTtTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGCWTTGCCTTGAATA tTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGC GCTGCCTTGAATA CTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGCGUCTGCCTTGAATA CTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGCHETTGCCTTGAATA
 TTTTACTTTGAGAAAATTAGAGTGCTTAAAGCAGGCXUATGCCTTGAATA

CTCCABCATUI，AATAATAT CTCEAGCATi，GAATAATAT CTCCAGCATGisAATAATAG CTCCACCATKGAATAATATR CTCCAGCATGGAATAATA量 CTCCAGCATGGAATAATAH CTCCACCAT：GAATAATAM CTCCAGCATSGAATAATAM $C T C \subset A \subset C A T G G A A T A A T A B$ CTCCAGCATGG，AATAATAV CTCCACCATGGAATAATAT CTCCAGCATGGAATAGTAG CTCCAGCATGGAATAATAT CTCCAGCATGGAATAATATM CTCCACCATCCAATAATA CTCCAGCATGGAATAATA期 СTCCAGCATGGAATAATAW CTCCAGGATGGAATAAVA， TCCAधCATGGAATAATAB CTCCAGCATGGAATAATA花 CTCCAGCATGGAATAATATH CTCCAGCATGGAATAATAT tTCCAGCATGGAATAATA胃 CTCCAGCATGGAATAATA罛 CTCCAGCATGGAATAATAT CTCCAGCATGCAATAATAX CTCCAGCATGGAATAATA想 CTCCAGCATGGAATAATAX CTCCAGCATGGAATAATAT CTTCACCATGGAATAATA竞 CTTCAGCATGGAATAATA息 CTTCAGCATGGAATAATAR CTCCAGCATGCAATAATA你 CTCCAGCATGGAATAATA／T CTCCAGCATGGAATAATATT CTCCAGCATGGAATAATAT CTCCACCATCGAATAATAT CTCCAGCATGGAATAATA自 CTCCAGCATGGAATAATATH CrCCAGCATGGAATAATATH CTCCAGCATGGAATAATA宜 CTCCAGCATGGAATAATAR CTCCAC．CATGGAATAATA罟 CT CAGCATGGAATAATAG CAGCATGGAATAATAT CTACACEATGGAATAATAK゙ CTACAGCATGGAATAATA䋹 CTCCACCATCCAATAATA男 CTCCAGCATCGAATAATA CTCCAGCATGGAATAATA委学 CTCCACCATGCAATAATA蝶
 $C T C C A C C A T G G A A T A A T A{ }^{2}$ CTCCAGCATGGAATAATABS CTCCACCATCCAATAATA，魏 CTCCAGCATGGAATAATA罌 CTCCAGCATGGAATAATA盆G CTCCAGCATGGAATAATA酸 CTCCAGCATGGAATAATA組G CTCCAGCATGGAATAATA能G CTAGAGCATGGAATAATA雄 CTCGAGCATGGAATAATA顛 CTCCAGCATGGAATAATA婴量 CTACAGCATGGAATAATAH䗑 CTCCAGCATGCAATAATA期C CTTCAGCATGGAATAATA点解 e．زCCAGCAI ！：AAIAATATH

TAAAEATTTTTATCTTTCTG TAAAGATTTTTATCTTTCTT期AA\＆ATTTTTATCTTTCTI WAAAGATTTTTATCTTTCTT解AAAGATTTTTATCTTTCTT程AAGATTTTTATCTTTCTT相AAGATTTTATCTTTCTT HAAAGATTTTTATCTTTCTT שAAAGATTTTTATCTTTCTT DAAAGATTTTTATCTTTTTT MAAAGATTTTTATCTTTTTT WAAAGATTTTTATCTTTTTT朝AAAGATYTTTATCTTTTTT CAAAGATTTTTATCTCTTT？ WaAAGATTTTTATCTTTTTT宸AAAGATTTTTATCTTTTTT畳AAAGATTTTTATCTTTTTT HAAAGATTTTTATCTTTTTT HAAAGATTTTTATCTT「TTY TAAAGATTTTTATCTTTTTT WAAAGATTTTTATCTTTTTT \＆AAAGATTTTTATCTTTTTT绉AAAGATTTTTATCTTTCTT HAAAGATTTTTATCTTTCTT NAAAGATTTTTATCTTTCTT TAAAGATTTTTATCTTTCTT WAAAGATTTTTATCTTTTTT WAAAGACTTTTATCTTTCTT TAAAGATTTTTATCTTTCTT HAAAGATTTTTATCTTTCTY MAAAGATTTTTATCTTTCTT TAAACATTTTTATCTTTCTT HAAAGATTTTTATCTTTTTT AAAAGATTTTTATCTTTTTT AAAAGATTTTTATCTTTTTT WAAAGATTTT ATCTTTTTT答AAAGATTTTTATCTTTTJT AAAAGATTTTTATCTTTTTT AAAAGATTTTTATCTTTTTT TAAAGATTTTTATCTTTCTT昔AAAGATTTTTATCTTTCTT TAAAGATTTTTATCTTTCTT GAAAGATTTTTATCTTTCTT GAAAGATTTTTATCTTTCTT AAAGATTTTTATCTTTCTT AAAGATTTTTATCTTTCTTTTTTTATTGC \＆AAAGATTTTTACCTTTCTTTTTTTATTGG AACGATTTTTATCCTTCTT ATTGG aAGGATTTTTATCCTTCTT ATTGU AAGGATTTTTATCCTTCTT ATTG\＆ AAGGATTTTTATTCTTCTTATTGG AAGGATTTTTATTCTTCTT AAGGATTTTTATCCTTTTT AAGGATTTTTATCCTTTTT AAAGATTTTTATCTTTTTT AAAGATTTTTATCTTTTTTTT HAAGGCTTTTGTCTTTCTT AAAGATTTTTATCTTTCTT箱AAGGACTTTTGTCTTTCTY ＊AAGGACTTTTGTCTTTCTT AAAGATTTTTATCTTTCTT AAAGATTTTTATCTTTTTT AAAGATTTTTATCTTTCTT AAAGATTTTTATCTTTCTT

ATTGG．
ATT i．
ATTGO A_{B} TT1．： ATTGC MTTに： ATTGG ATT： ATTGG． ATVCC ATTGO ATTGG ATter． ATtGQ ATT： ATTGG． ATTr． ATTGG ATTG： ATTGG ATT： ATTGG ATTG： ATTGG ATTGG ATTGC． ATTG： ATTEC ATTGG ATTGG ATris ATTCE ATTGG ATTG： ATTGC ATTGU ATTGG ATTE： ATTGG ATTE： ATTGG： ATTG： ATTにG ATTE： ATTGG ATG ATYGC ATTG： ATtGE． ATTG ATTGG ATTE GTTGG ATTにむ ATTGC ATTGG ATTGG． ATTGG ATTG：

ITCTAACATAAGAATAATGATTABTAGGi,ACAGTT:i,i,i,CATTTiTATT TTCTAAGATAAGAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAGAATAATGATTAATAGGGACAGTTGU, i, GCATTTGTATT TTCTAAGATAAGAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAGAATAATGATTAATAGGGACAKTTGGGGGATTTGTATV TTCTAAGATAAGAATAATGATTAATAGGGACAGTTGGGEGCATTTGTATT TTCTAAGATAAGAATAATGATTAATAGGGACAGTTGQGGGCATTTGTATT TTCTAACATAAAAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAGAATAATGATTAATAGGGACAGTTGGG,GGCATTTGTATJ TTCTAAGATAAGAATAATGATTAATAGGGACAGTTGGGOQCATTTGTATT TTCTAAGATAAGAATAATGATTAATAGGGACAGTT\&ध\&G氏CATTTGTATT TICTAAGATAAGAATAATGATTAATAGGGACAGTTGGGGGGATTTGTATT TTCTAAGATAAGAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTTTAAGATAAGAATAATGATTAATAGGGACAGTTGGGGGCATTTधTATG TTTTAAGATAAGAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAGAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTTTAAGATAAGAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTTTAAGATAAGAATAATGATTAATACGGACAGTTGG\&GGCATTTGTATT TTTTAAGATGAGAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTTTAAGATAAGAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTTTAAGATAAGAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT rTTTAAGATAAGAATAATGATTAATAGGGACAGTTGEGGGCATTTGTATT TTCTAAGATAAGAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAGAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAGAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAGAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAGAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAGAATAATGACTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAGAATAATGATTAATACGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAGAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAGAATAATGATTAATAGGGACAGTT\&Gi\&GCATVTGTATT TTCTAAGATAAGAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAAAATAATGATTAATAGGGACAGTTG\&GGGCATTTGTATT TTCTAAGATAAAAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAAAATAATGATTAATACGGACAGTTG氏GLGCATTTGTATV TTCTAAGATAAAAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAAAACAATGATTAATAGGGACAGTTGCGUGCATCTGTATT TTCTAAGATAAAAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAAAATAATGATTAATAGGGACAGTTGGiGGCATTTGTATT TTCTAAGATAAGAATAATGATTAATAGGGACACTTGGGGGCATTTGTATT TTCTAAGAYAAGAATAATGATTAATAGGGACAGTTGGGGGGATTTGTATT TTCTAAGATAAGAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAAAATAATGATTAATAGGGACAGTTGG;iGCATTTGYATT TTCTAAGATAAAAATAATGATTAATAGCGACAGTTGGGGGCATTTGTATT TTCTAAGATAAAAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAAAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT CTCTAAGATAAAAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAGGATAAAAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAGGATAAAAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAGGATAAAAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATG TTCTAGAATAAAAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAGAATAAAAATGATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAGGATAAAAATAATGATTAATAGGGACAGTTGGGGUCATTTGTATT TTCTAGGATAAAAATAATGATTAATAGGGACAGTTCSGGGCATTTGTATT TTCTAAGATAAGAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAAAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAGGATAAAAGTAATGGTTAATAGGGACAGTTGGGGGCATTCGTATT TTCTAGGATAAAAATAATGATTAATAGGGACACTTGGGGGCATTTGTATY TTCTAGGACAAAAGTAATGGTTAATAGGGACAGTTGGGGGCATTCGTATT TTCTAGGACAAAAGTAATGGTTAATAGGGACAGTTGGGGGCATTCGTATT TTCTAAGATAGAAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAAAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAGAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAAAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT TTCTAAGATAAAAATAATGATTAATAGCGACAGTTGGGGGCATTTGTATT TTCTAAGATAAGAATAATGATTAATAGGGACAGTTGGGGGCATTTGTATT

410 (54)
Aug 07 F8 c1- Goose
Aug07 F10 condensed - Goose 140 (46) c3
Summer06 F6 c3-unknown
Lab control (1/24/07)
C. parvum L16996
C. meleagridis AF112574
C. wralri U11440

Ambler ww 13 c3
410 (59)
Ambler WW 16 consensus
Abington WW $\mathbf{3 0}$ consensus
Sept07 Fecal 2 -Goose
Sept07 Fecal 4 consensus - Goos: 140 (64) c3
410 (58) consensus
Aug07 F2 c1-Goose
Aug07 F2 c3-Goose
Aug07 F6 c1-Goose
Aug07 F7 c1-Goose
Aug07 F8 cz-Goose
Aug07 F2 c2-Goose
410 (44) C2
Abington WW 17 c2
140 (47) c2
410 (47) c1
Summer06 F3 - Deer
140 (62) consensus
Nov07 Fecal 2 - Racoon
140 (64) c4
140 (36) c1
Ambler WW 13 c1
140 (68) c3
410 (67) c3
140 (46) c2
410 (36) c1
410 (38) c3
Abington WW 13 c2
410 (38) c2
410 (40)
140 (64) c2
140 (40)
Abington WW 17 cl
140 (47) c3
140 (68) c2
March08 F3 cI-Goose
410 (36) c3
140 (65) C2
March08 F3 c2-Goose
Aprll07 F4 c3-Calf
C. bovis AY120911

AugF 5 c1-Goose
Goose genotype 1 AY324642
C. hominls AF093489
C. felis AF112575

C serpentis AF093499
C. balleyl L19068
C. andersonl AB089285
C. muris (murine) AB089284
C. canls AF112576

Cervine genotype EF641018
Deer mouse genorype ill EF6410] Muskrat genotype I Eff41016
Squirrel genotype DQ295014
Skunk genotype W13 AY737559
Goose genotype (KLJ-5) AY32463

IAACAGTCAGAGGTGAAATTCTTAGATTIGTTAAAGACAAACTAAYVGGA TAACACTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTCAGAGITGAAATTCTTAGATTTGTTAAAGACAAACTAATUGGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAGCAGTCAGACGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA taAcagTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA YAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAGTGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATCCGA TAACAGTCAGACGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTCAGACGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA taAcagtcagaggtcaant tcttagatt tcttanaacacaanctaatgcga TAACAGTCAGAGGTGAAATTGTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA taAcagTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTCAGAGGTGAAATTCTTACATTTGTTAAAGACAAACTAATGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGAGAAACTAATGCGA TAACAGTCGGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTCGGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTCGGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATCGGA TAACAGTCGGAGGTGAAATTCTTACATTTGTTAAAGACAAACTAATGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA taacagtcagaggtgaant tcttagatttottanagacaanctaatgcga TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAGYGCGA TAACAGTCAGAG氏TGAAATTCTTAGATTTGTTAAAGACAAACTAGTGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAGTGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAGTGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACठAGTGCGA TAACAGTCAGAGGTGAAATYCTTAGATTTGTTAAAGACAAACTAGTGCGA TAACAGTCAGAGGTGAAATTCTTAGATTYGTTAAAGACAAACTAGTGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA taAcagtcagaggtganattcttagatttgttanagacamactaatgcga TAACAGTCAGAGGTGAAATTCTTAGATTTCTTAAAGACAAACTAATGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTTAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTTAGAGGTGAGATTCTTAGATTCGTTAAAGACAAACTAATGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTACTGCGA TAACAGTCAGAGGTGAAATTCTTACATTTCTTAAAGACAAACTACTGCGA tabcagtcagaggtganattcttagatttgttanacacaggctactccea TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTACTCCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTACTGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTACTGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTACTGCGA rabcagtcacaggtganattcttagatt tgttanagacaanctant gcga TAACAGTCAGAGGTGATATTCTTACATTTCTTAAAGACAAACTAATGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACGAACTACTGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTACTGCGA TAACAGCCAGAGGTGAAATTCTTAGATTTGTTAAAGACGAACTACTGCGA TAACAGCCAGAGGTGAAATTCTTAGATTTGTTAAAGACGAACTACTGCGA TAACAGTTAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGC TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAGTGCCA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTTAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA TAACAGTCAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAATGCGA ,TAACAGTCAGAGGTLAAATTCTIAGATIIGITAAAGACAAACTACIUCGA

AAGCATTT\&CCAAGGATGTTTTCATTAATCAAGAACGAAAGTTACGGEAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGCCGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGSGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGGATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT aAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTACGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT $\because A A G C A T T T G C C A A G G A T G T T T T G A T T A A T C A A G A A C G A A A G T T A G G G G A T$ AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTCGCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTGATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATCTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATYTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTACGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAAGGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTCCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATCAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATCTTTTCATTAATCAAGAACGAAAGTTAGGGGAT aAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGCGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAY AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGAAGTTTTCATTAATCAAGAACGAAACTTAGGGGAT AAGCATTTGCCAAGGAAGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGGATTTGCCAAGGAAGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AACCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAACTTAGGGGAT AAGCATTTGGCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT AAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGAT

410 (54)
Aug07 F8 c1-Goose
Aug07 F10 condensed - Goose 140 (46) c3
Summer06 F6 c3 - unknown
Lab control ($1 / 24 / 07$)
C. parvum L16996
C. meleagridis AF112574
C. wrairl U11440

Amblet WW 13 c3
410 (59)
Ambler WW 16 consensus Abington WW $\mathbf{3 0}$ consensus
Sept07 Fecal 2 - Goose
Sept07 Fecal 4 consensus - Goosi
140 (64) c3
410 (58) consensus
Aug07 F2 c1-Goose
Aug07 F2 c3-Goose
Aug07 F6 c1-Goose
Aug07 F7 c1 - Goose
Aug07 F8 c2-Goose
Aug07 F2 c2 - Goose
410 (44) c2
Ablington WW 17 c2
140 (47) c2
410 (47) c1
Summer06 F3 - Deer
140 (62) consensus
Nov07 Fecal 2 - Racoon
140 (64) c4
140 (36) c1
Ambler WH 13 cl
140 (68) c3
410 (67) c3
140 (46) c2
410 (36) c1
410 (38) c3
Abington WW 13 c2
410 (38) c2
410 (40)
140 (64) c2
140 (40)
Abington WW 17 cl
140 (47) c3
140 (68) c2
March08 F3 c1 - Goose
410 (36) c3
140 (65) c2
March08 F3 c2-Goose
Aprilo7 F4 c3-Calf
C. bovls AY120911

AugF 5 cl-Goose
Goose genotype I AY324642
C. hominis AF093489
C. fells AF112575
C. serpentis AF093499
C. balleyi Li9068
C. andersonl AB089285
C. muris (murine) AB089284
C. canis AF112576

Cervine genotype EF641018
Deer mouse genotype III EF6410]
Muskrat genotype I Ef641016
Squirrel genotype DQ295014
Skunk genotype W13 AY737559
Goose genotype (KLJ-5) AY32463:G G

4! : \quad : 1.	COAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATCCCAACTA
	ᄃ6AAGACGATCAGATACCCTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCACATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
4 \therefore w-31...	CGAAGACGAACAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAACACGATCAGATACCGTCGCAGTCTTAACCATAAACTATGCCAACTA
サ:\%." , ध	CGAACACCATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAACACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCAGATACCGTCGTAGTCYTAACCATAAACTATGCCAACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
4:-9	CGAAGACGATCACATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
二atain it is	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAACACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
14.10t	CCAACACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CCAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
\cdots	C\&AAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
Ab.je - :	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAACACCATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
\it. . \because.	CGAAGACCATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
F 3 is +6.1. .	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCGAACTA
1.014 68	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
170:6.8: 1.7	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
1.0) 1.0	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
Achire W\% : :	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
1479:4:	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTGTGCCAACTA
1s*	CCAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
+! ! , -it	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
1:10, 1. \%	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCACATACCGTCGTAGTCTTAACCATAAACTATGCCAACCA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACCA
-1904.	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACCA
1.9)	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
Suls mex ;	CGAAGACGATCACATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCGACTA
! $1: 0.0$ ¢	C®AAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCGACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAA-CTATGCCGACTA.
\%:16 1.7. $\quad \therefore$	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCACATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCACATACCGTCGTAGTCTTAACCATAAACTATGCCGACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCGACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
(frim it :	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
θ Sequents atotates	CGAAGACGATCAGATACCCTCGTACTCTTAACCATAAACTATGCCGACTA
- batas: 111680	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCGACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCGACTA
(mumb mother nemporst	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCGACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA
Squirel genotype moz95014	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATCCCAACTA
	CGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCAACTA

：
GALATTGAAGETTGTTCCTTACTCCTTCAGCACCTTA いAGATTGE\＆\＆：TTGTTCCTTACTCCTTCAGCACCTTA （．AGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA GAGATTG\＆ACGTTGTTCCTTACTCCTTCACCACCTTA \＆AGATT\＆GAGGTTGTTCCTTACTCCTTCACCACCTTA © AGATTध\＆A\＆GTTGTTCCTTACTCCTTCAGCACCTTA \therefore AGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA いA․ ATTGGA氏\＆TTGTTCCTTACTCCTTCAGCACCTTA丹AGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA $\therefore A_{G}: A T T G \& A C G T G T T C E T T A C T C C T T C A G C A C C T Y A$ ¿AGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA 6．AGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA GAGATTGGAGCTTCTTCCTTACTCCTTCAGCACCTTA «AGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA $\because A G A T T C C A G C T T G T T C C T T A C T C C T T C A G C A C C T T A ~$ GAGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA GAGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA $\because A G A T T C \subset A G C T T G T T C C T T A C T C C T T C A G C A C C T T A$ GAGATTGGAC\＆TTGTTCCTTACTCCTTCACCACCTTA GAGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA GAGATTGGAGGTTシTTCCTTACTCCTTCAGCACCTTA ↔AGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA GAGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA GAGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA GAGATTGGAGCTTGTTCCTTACTCCTTCAGCACCTTA GAGATTCEAGGTTGTTCCTTACTCCTTCAGCACCTTA ©AGATTGGAGGTTCTTCCTTACTCCTTCAGCACCTTA \＆CGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA GAGATTGGAGCTTGTTCCTTACTCCTTCAGCACCTTA氏AGATTGGA\＆GTTGTTCCTTACTCCTTCAGCACCTTA GAGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA ；AGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA CAGATT\＆GAG\＆TTGTTCCTTACTCCTTCAGCACCTTA 6．AGATTGGAG\＆TTGTTECTTACTCCTTCAGCACCTTA氏AGATTGGAG\＆TTGTTCCTTACTCCTTCAGCACCTTA \＆AGATTGGA\＆GTTGTTCCTTACTCCTTCACCACCATA GAGATTEGAGOTTGTTCCTTACTCCTTCAGCACCTTA تAGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA GAGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA $\therefore A \& A T T G G A G T T G T T C C T T A C T C C T T C A G C A C C T T A$ GAGATTGGAGGTTGTTCLTTACTCCTTCACCACCTTA GAGATTGGACOTTGTTCCTTACTCCTTCAGCACCTTA ؛AGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA GAGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA GAGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA GAGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA与AGATTEGAGGTTGTTCCTTACTCCTTCAGCACCTTA GAGATTGGACGTTGTTCCTTACTCCTTCAGCACCTTA GAGATTGGAGCTTGTTCCTTACTCCTTCAGCACCTTA GAGATTGGAGGTTGTTCETTACTCCTTCAGCACCTTA GAGATTCCAGこTTGTTCCTTACTCCTTCAGCACCTTA $G A G A T$
GAGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA $\therefore A G A T T G G A C C T T G T T C C T T A C T C C T T C A G C A C C T T A ~$ －AGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA CAGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA GAGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA UAGATTGGACGTTGTTCCTTACTCCTTCAGCACCTTA i．AGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA GAGATTGGACGTTGTTCCTTACTCCTTCACCACCTTA GAGATTGGAGGTTGTTCCTTACTCCTTCAGCACCTTA GAGATTGGAGGTTGTTCCTTACTCCTT
C．alme tliblat

 ATtGGAGGT
GACATTGGACGTTGTTCCTTACTC
GAGATTCCAGCTTGTTCCTTACTCCTTCAGCACCTTA ：AGATTGGAGGT

About Amy Elizabeth Lynch:

Born Boston, MA on April 28, 1984 to David E. Lynch and Lorraine A. Lynch, she graduated high school from Tewksbury Memorial High School in May 2002. She graduated from Tufts University in Medford, MA with a Bachelor of Science in Environmental Engineering in May 2006. She received the Gibson Fellowship from Lehigh University Dept. of Civil and Environmental Engineering in September 2006. She completed her EIT certification in April 2006. She will go on to join Weston and Sampson Engineers, Inc. in Peabody MA as an Engineer with the completion of this thesis and graduation from Lehigh University.

