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ABSTRACT 

 

The past several decades have witnessed civil infrastructure design and assessment shift 

from deterministic methodology to probabilistic methodology. Structural Health 

Monitoring develops so rapidly that it is likely to become a predominant emerging 

technology to challenge and improve traditional way of design, assessment and 

management of civil infrastructure. 

      The objective of this study is to explore the approaches combining the monitoring 

technology with the reliability method to assess and predict the structural performance 

under uncertainty. Concepts and different approaches have been applied on two steel 

trusses and two existing bridges to reach the objective.  

      The time-dependent component reliability is investigated in the first two truss models 

to determine the most critical member. It is assumed that components with different 

material properties will deteriorate with various rates. Time-variant reliability is 

computed at discrete times. Reliability index, as one of the performance indicators 

including the uncertainties in resistance and loads, is used to estimate the component 

performance during its lifespan. Performance thresholds are established as the warning 

which provides the reference for scheduling monitoring inspection and making 

maintenance decisions. Due to the high cost of using monitoring technology, the search 

of an optimal balance between economic budget and safe performance is in great demand.  

      In the study of Commodore Barry Bridge, field monitoring data is used to find 

probability density functions of equivalent stress range to assess and predict the bridge’s 

fatigue reliability. Three distribution types are compared by using goodness-of-fit test and 
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the optimum one is selected to determine the parameters for reliability computation. The 

lifetime performance of six critical bridge members and their effects on the whole 

structure are investigated. 

      The concept of the statistics of extremes is applied in the I-39 Northbound Wisconsin 

River Bridge to improve the performance prediction and assessment based on monitoring 

data. Two methods to account for the epistemic uncertainty based on 80 days of 

monitoring data are used in the reliability analysis. 
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CHAPTER 1         

INTRODUCTION 

 

1.1 Background 

      Civil infrastructure subjected to time-dependent loading and strength deterioration 

processes will experience changes due to internal and external factors. Some of these 

changes would make serious impact on the serviceability and the ultimate capacity of 

structures. The uncertainties associated with structural descriptive parameters and 

deterioration processes cannot be ignored. Structural Health Monitoring (SHM) 

technologies, which are popularly used and extensively researched, are anticipated to be 

cost-effective. The SHM data should be utilized in the reliability-based design and 

assessment. There are great potentials to adopt these technologies into structural 

engineering and reliability with special emphasis on life-cycle cost and performance 

prediction. (Frangopol et al. 2008b) 

      It is necessary to find out how the components make impact on the system for 

determining the monitoring priority. The strength properties of the components and the 

system model types are the two main factors for the researchers to make decisions on 

which component should receive monitoring priority. In consideration of environmental 

effect, deterioration process should be added into the analysis to decide when monitoring 

is appropriate. 

      The next step after determining what and when to monitor at the structural level is to 

integrate the monitoring information into the structural design and assessment. The 
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framework of bridge monitoring system consists of global monitoring and local 

monitoring. Global monitoring can be used in the analysis of acoustic emissions, 

deformations and displacements, frequency variations, model shape changes, dynamic 

flexibility and physical integrity; while local monitoring is applicable in research on 

cracking, corrosion, physical integrity and structural capacity. This study will focus on 

cracking with emphasis on fatigue in the existing bridges.  

1.2 Research Objectives 

      The purpose of the study is to find out the most critical member in the system and 

integrate field test monitoring information into the probabilistic approach of structural 

assessment and performance prediction.  

      For truss structures, the effect of component failure on the system depends on many 

factors, such as material properties, deterioration rate, structural configuration and live 

loads. The behavior of perfectly brittle and ductile trusses will be investigated to find out 

how components will respond due to different ductilities and make impact on the system 

under various deterioration rates. As a result, the determination on monitoring scheduling 

can be made based on the time-dependent reliability study. 

      There are eight components of the Commodore Barry Bridge having the potential for 

crack growth. The fatigue reliability of the components is assessed using the PDFs of 

equivalent stress range based on the monitoring data provided by the ATLSS Research 

Center at Lehigh University. The deterioration of the bridge is analyzed by using annual 

accumulated number of stress cycles which is a time-dependent quantity. Due to loading 

uncertainties, the appropriate PDF for the stress range bin histogram based on monitoring 
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data is selected to provide parameters in determining fatigue life. The performance 

indicator to judge the lifetime behavior of the critical members is the system reliability 

index, which predicts how the system performs during the lifetime.  

      The monitoring data can also be integrated into the reliability assessment and 

performance prediction by introducing the concepts of the statistics of extremes. The I-39 

Northbound Wisconsin River Bridge is studied by using this approach to formulate the 

PDF distributions of extreme value distributions (EVDs) in a selected timeframe based on 

daily maximum stress data obtained from field test monitoring. The effect of the 

epistemic uncertainty on the calculated reliability index is investigated by comparing two 

methodologies.   

1.3 Organization of the Study 

      This thesis contains seven chapters including this introductory chapter. The following 

is a brief summary of the chapters. 

      Chapter 1 is introduction. 

      Chapter 2 introduces some background information. The concepts of reliability                         

on the component and system levels are both reviewed. The time-variant reliability is 

emphasized. 

      Chapter 3 introduces the role of monitoring in bridge assessment. Some examples 

are given to explain the decision making on the timeline and location to monitor. 

      Chapter 4 analyzes two trusses with time-variant reliability of the components. The 

effects of the different positions of live loads, variations of the live loads and 

deterioration rates over time are investigated. 
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      Chapter 5 presents an approach of analyzing available data to find the appropriate 

PDFs for the corresponding loading. The PDFs are formulated for three different 

distribution types based on developed stress-range bin histograms from the collected field 

monitoring data. Then the most suitable distribution type is determined by Goodness-of-

fit test. The following fatigue reliability analysis is performed by using the reliability 

software RELSYS.  

      Chapter 6 presents a method of using the maximum observed stress value in a 

specified timeframe in a 93 days monitoring period. Type I EVDs are utilized to 

transform the PDF of EVDs during the monitoring period to the one at a series of discrete 

time points spanning the rest of its lifetime. Then the reliability for each girder and that of 

the whole bridge can be computed. Different cases for the lifetime system reliability are 

handled. 

      Chapter 7 provides the conclusions drawn from previous chapters and 

recommendations for further studies. 
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CHAPTER 2 

TIME-INDEPENDENT & TIME-DEPENDENT RELIABILITY 

 

2.1. Introduction 

      Civil engineers are always making effort to improve their designs to satisfy the 

budget and also assure the structural performance. The structural performance is one of 

the principal responsibilities for engineers to take. It is usual that complete information 

cannot be provided during the planning and design processes. Moreover, uncertainties 

existed along the process of design and assessment. Consider a beam example; its safety 

depends on both resistance and maximum load effect. The structural material properties, 

like strength, are not constant during its design life. The actual maximum applied load is 

also impossible to be predicted exactly. Therefore, probabilistic concepts and methods 

have to be used in a reliability-based approach.  

2.2. Component reliability 

       The reliability of a component is usually related to the probability of occurrence of 

safe event, which can be defined by performance function of component as follows 

	�����,� = 
����,� − �����,�																																									(2.1)	 
       where �����,�  stands for component performance function under the limit state i, 


����,� stands for the resistance of component with limit state i, �����,� means load effect 

associated with limit state i. When the load effect is larger than the resistance, the failure 

event occurs. Due to uncertainties associated with the component resistance and load 

effect, both resistance and load effect are treated as random variables. The probability of 
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failure of the component is predicted as  

�� = �(−�)																																																														(2.2) 
      where �  is the cumulative Gaussian probability distribution function, �  is the 

reliability index which usually is a quantitative measure of the safety, being expressed as  

� = �� − ��
���� + ���

																																																									(2.3) 

       where both R and S are normally distributed, ��  and ��  are corresponding mean 

values, and �� and �� are the standard deviations for R and S, respectively. 

      If the resistance, R, and load effect, S, are lognormally distributed, the reliability 

index � is approximated as: 

� =
ln	(���� )

�!�� + !��
																																																									(2.4) 

      where !� = ��/��  is the coefficient of variation (COV) of resistance, and !� =
��/�� is the COV of component load effect. 

2.3. System reliability 

       The reliability of a structural system is defined as the survival probability of a system, 

which is also a complementary part of probability of system failure, ��(�$�) = 1 − ��(�$�). 
The violation of any limit state function result in the probability of failure of a system. 

One failure mode consists of a limit state function. The probability of failure of the 

system with n failure modes is expressed as: 

��(�$�) = �%&'(	�� < 0+, , = 1,2, … , '																																										(2.5)       
      where �� is the ith failure mode.  



9 

 

      An exact calculation of ��(�$�) can only be carried out by performing an integration of 

the joint probability density function /01,02,…,03(45, … , 46)  of the random variables 

7 = {75, 7�, … , 76}  involved in the problem over the failure region defined by the 

aforementioned performance functions (Ang and Tang 1984).  

��(�$�) = : :/01,02,…,03(45, … , 46(;1⋃…⋃;=)
)>45…>46 																								(2.6) 

      where @� is the event of occurrence of ith failure mode. The failure of a system is a 

combination of all failure modes.  

      The First-order (FORM) or second-order (SORM) moment method is usually used to 

calculate the reliability of individual limit states. The lower and upper bounds for system 

probability of failure can be obtained as first-order bounds (Cornell 1967), or second-

order bounds (Ditlevsen 1979). Another method to obtain the probability of failure of the 

system is by using Monte Carlo simulation. This simulation requires large number of 

samples and numerous repetitions to estimate system reliability.  

2.4. Time-variant component and system reliability 

      The assumption that both loads and resistances are time-independent can simplify the 

calculation process. However, in reality, the probability density functions of resistances  

and load effects are experiencing changes during the structural life. The effects of 

corrosion, erosion and degradation make great impact on resistances of structural 

components. The live loads applied on the structure may also change over time.  Ghosn et 

al. (2010) conclude that the connection between system safety and component safety 

depends on the system’s topology, system model types (series, parallel, series-parallel), 
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member ductility and the statistical correlation between the strengths of the members. 

Combined these factors with the time effects, the components experiencing deterioration 

process may fail during the structural life. The failure of some components may result in 

the failure of system models or force redistribution in the system. Therefore, 

identification of the system model types and their members is essential for further time-

variant reliability study. 
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CHAPTER 3 

THE ROLE OF MONITORING IN BRIDGE ASSESSMENT 

 

3.1 Introduction 

      According to NBI (National Bridge Inventory, www.fhwa.dot.gov/bridge/britab.cfm) 

data obtained from the U.S. Federal Highway Administration, it is found that the 

construction of bridges is developing rapidly since 1950s. Figure 3.1 shows the numbers 

of total bridges and deficient bridges constructed by year. From the figure, it is shown 

that the construction of bridges develops rapidly during 1960s-1970s. Figure 3.2 shows 

that many old bridges are now in need of maintenance, and that percentage of deficient 

bridges is growing.  

      Both figures indicate that there is an emerging need of maintenance, repair and 

replacement for deficient bridges. The research in establishing a practical and economic 

maintenance strategy by searching methods and applying technologies to assess deficient 

structures is in great demand. 

3.2 Structural Health Monitoring Strategies 

     Structural health monitoring (SHM) is an area with growing concern and extending 

potential of exploring innovative approaches. The United States government makes an 

expense of more than $200 billion every year on maintenance and repair for facilities, 

plant and equipment (Balageas, 2006). As a process of implementing inspection and 

maintenance strategy on structures, SHM includes the observation and collection of data 

on a system during a period of time from an array of sensors, the extraction of related 
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data of damage-sensitive features from these measurements, and the statistical analysis of 

these data to determine the current state of structural health (Frangopol and Messervey, 

2009).  

      For numerical structural analysis, structural responses such as displacement and strain 

at certain locations can be measured continuously or in intervals. The data obtained from 

monitoring can be applied to update reliability profiles of structure components and 

systems. However, the cost of SHM is expensive. Thus, making good use of monitoring 

data to enhance the reliability analysis to set up appropriate maintenance strategies within 

the budget is necessary and crucial. 

3.3 Decision making about the timeline and location to monitor  

      Consideration of the uncertainty associated with critical loading and structural 

parameters is one of the most critical issues in assessing the condition of existing civil 

infrastructure (Catbas et al. 2008). Uncertainties are classified in two main categories: 

aleatory and epistemic. Aleatory uncertainty characterizes the inherent randomness in the 

behavior of the system under study. Epistemic uncertainty characterizes the lack of 

knowledge in monitoring (Frangopol & Messervey, 2009). The existence of these two 

types of uncertainties will probably result in the occurrences of many events, such as 

some component failure, monitoring data reading error. In order to prevent and minimize 

the economic loss due to these events, field monitoring data is used to update structural 

profiles and decisions have to be made on when and where to monitor based on updated 

monitoring information. 
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3.4 Time-dependent structural performance 

     It is common sense that structural reliability is decreasing during time. Therefore, the 

performance function changes over time. 

݃௜ሺݐሻ ൌ ሺܴ௦ሺݐሻሻ௜ െ ൫ܳሺݐሻ൯௜                                                             ሺ3.1ሻ                         

      where ݃௜ሺݐሻ is performance function of failure mode i at the time of t. ܴ௦ሺݐሻሻ௜ and 

ሺܳሺݐሻሻ௜  are the corresponding values of component resistance and load effect, 

respectively. The data obtained from monitoring can be used to update the performance 

function. Before obtaining the data, one important thing is to determine where to focus on 

the monitoring priority. For example, Figures 3.3 and 3.4 show a three-component series 

and parallel system, respectively. In Figure 3.3, components 1, 2 and 3 are in a series 

with probability of failure 0.002, 0.006 and 0.004, respectively. For series system, any 

member failure will result in the failure of system. So the member with the highest 

probability of failure should receive the monitoring priority. In Figure 3.4, components 1, 

2 and 3 are in parallel. For the parallel system, the failure of all members results in 

system failure. That is to say, the strongest member with the lowest probability of failure, 

which is the most critical member, should receive monitoring priority.  

      Various deterioration rates can be another factor affecting the monitoring priority. 

Figures 3.5 and 3.6 show series system and parallel system which are both comprised of 

three bars with variation in geometry and material properties. There is a concentrated 

load P applied on the three bars. It is assumed that the horizontal bar linking the three 

bars in the parallel system in Figure 3.6 is perfectly rigid and constrained to remain 

horizontal. Bars 1, 2 and 3 have the initial cross section areas of 2 in2, 4 in2 and 3 in2, 
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respectively. All of the bars have the same mean value of yield stress 10 ksi. The standard 

deviations of resistances for the three bars are 2 ksi. Deterioration rates applied on bars 1, 

2 and 3 are 0.01 in2/year, 0.04 in2/year and 0.04 in2/year, respectively. The mean of 

applied load P is 5 kips. All the random variables in this example are assumed normally 

distributed.  

      The effects of time and deterioration rates on component reliability are investigated. 

Figure 3.7 presents the performance of three bars connected as a series system in a 

lifetime of 50 years. A reliability index threshold βmin = 3.0 is established for further 

study on maintenance and monitoring inspection schedule. It is shown that reliability of 

component 2 with the largest deterioration rate decreases sharply from the most reliable 

member in the system to the least reliable one. The more economical way to monitor the 

three bars is to give monitoring priority to the weakest member having the highest 

probability of inducing system failure. Therefore, the monitoring priority is given to 

component 1 initially, then moves to component 3 and shifts to component 2 at last. 

However, different from series system, Figure 3.8 indicates a different critical monitoring 

path for parallel system. For system safety, it is supposed to find the strongest member 

whose failure will probably result in the system failure. Component 2 is selected to 

receive monitoring priority until point A, then the priority shifts to component 1. Both 

cases show that monitoring priority is changing due to different deterioration rates. 

      In general, thresholds of performance indicators are helpful in making inspection and 

maintenance decisions. Being able to provide data to formulate time-variant performance 

indicators, SHM is a potential important technology optimizing allocation of available 
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funds via assessing structures accurately and prioritizing repairs and maintenance 

(Frangopol and Messervey, 2009). 
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Component 1 Component 2 Component 3

Pf = 0.002 Pf = 0.004Pf = 0.006
 

Figure 3.3 Three-component-series system with probabilities of failure of 0.002, 0.006 

and 0.004 respectively 

 

 

                                               

Component 1
Pf = 0.002

Component 2
Pf = 0.006

Component 3
Pf = 0.004

 

Figure 3.4 Three-component-parallel system with probabilities of failure of 0.002, 0.006 

and 0.004 respectively 
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Bar 1

Bar 3

Bar 2

P
 

                                             Figure 3.5 Three bar series system  

 

                                 

Bar 1Bar 3Bar 2

P
 

                                           Figure 3.6 Three bar parallel system 
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                  Figure 3.7 Time-variant component reliability of series system 
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                     Figure 3.8 Time-variant component reliability of parallel system 
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CHAPTER 4 

APPLICATIONS TO TRUSSES 

 

4.1. Ten Bar Truss 

      The time effect on structural reliability will be studied in this chapter. Consider the 

ten-bar symmetric truss system shown in Figure 4.1. The truss is subjected to three load 

cases. Some bars are assumed to have different deterioration rates (DR) in each case. The 

strength of all the components is supposed in a normal distribution with initial mean and 

standard deviation of 36 ksi and 2.88 ksi, respectively. The coefficient of variation of the 

strength is 0.08. The applied load P is also supposed normally distributed with initial 

mean and standard deviation of 20 kips and 2 kips. Its coefficient of variation remains 0.1. 

The annual live load increase rate (LIR) is assumed to be a constant value of 0.01 kips 

/year. All the bars are assumed to have the same initial cross section areas 2 in2 and 

modulus of elasticity E = 29000 ksi.  

      The purpose here is to compute the time-variant component reliability index of each 

bar for every load case and find the most critical member for different reliability index 

thresholds under the various deterioration rates.   

      Consider the effect of load and environment on component reliability. Predictive 

models for live load and resistance deterioration are introduced in detail below.  

Live load predictive model: 

(1) Vertical load P (case 1 & case 2):  

      The vertical load P is assumed to be normally distributed and has an initial mean 
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value ߤ௣ሺ0ሻ ൌ  with a constant annual increase rate (LIR) of 0.01kips/year. The ݏ݌݅݇ 20

mean of the time-variant load is given by:  

                               ( ) (1 ) ( 1) (1 ) (0)t
P P Pt LIR t LIRμ μ μ= + × − = + ×                               (4.1) 

      where ( ), ( 1)  (0)P P Pt t andμ μ μ− is the mean value of vertical load P at time t, t-1 and 

0, respectively. 

      The standard deviation of the vertical load P is also assumed to increase over time 

with a constant annual increase rate IR = 0.01 kips /year. Initial standard deviation of 

vertical load P is (0) 0.2 kipPσ = . The standard deviation of the time-variant load is given 

by: 

                        ( ) (1 ) ( 1) (1 ) (0)t
P P Pt IR t IRσ σ σ= + × − = + ×                                           (4.2) 

      The coefficient of variation (COV) is useful because the standard deviation must 

always be understood in the context of the mean of the load. For the vertical load P, its 

COV is given by: 

                                             

( ) 0.1
( )

P
P

P

tCOV
t

σ
μ

= =
                                                           (4.3)                      

 
(2) Horizontal load H (case 2 & case 3): 

      Assume the horizontal load H is normally distributed and has an initial mean value 

(0) 20 kipHμ = with a constant annual increase rate (LIR) of 0.01 kips /year. The mean of 

the time-variant load is given by: 

                             ( ) (1 ) ( 1) (1 ) (0)t
H H Ht LIR t LIRμ μ μ= + × − = + ×                                (4.4)                       
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       The standard deviation of the horizontal load H is also assumed to increase over time 

with a constant annual increase rate IR=0.01 kips /year. Initial standard deviation of 

horizontal load H is (0) 0.2 kipHσ = . The standard deviation of the time-variant load is 

given by: 

ሻݐுሺߪ ൌ ሺ1 ൅ ሻܴܫ ൈ ݐுሺߪ െ 1ሻ ൌ ሺ1 ൅ ሻ௧ܴܫ ൈ  ுሺ0ሻ                            ሺ4.5ሻߪ

      For the horizontal load H, its COV is given by: 

                                                     

( ) 0.1
( )

H
H

H

tCOV
t

σ
μ

= =
                                                  (4.6)          

 

 
      Time-variant mean, standard deviation and COV for the vertical load P are shown in 

Figure 4.2.  

Resistance degradation predictive model: 

(1) Cross section area of the component 

      The truss system is assumed to begin to deteriorate the day it is placed in service, 

which means deterioration begins when t = 0. A predictive model is needed to estimate 

how the resistance changes over time. The resistance deterioration model is usually 

derived theoretically, obtained from laboratory data or extrapolated from the behavior of 

similar structures under the same conditions (Estes and Frangopol 2005). The resistance 

deterioration model used in this example is deterministic. It is assumed that the resistance 

deterioration is due to the loss of cross section area over time. The remaining cross 

section area of component i at time t is given as: 

                              ( ) (1 ) ( 1) (1 ) (0)t
i i i i iA t DR A t DR A= − × − = − ×                                    (4.7) 
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      where DR is the deterioration rate of component i , ( ), ( 1)  (0)i i iA t A t and A− is the 

cross section area of the component i at time t, t-1 and 0, respectively. 

(2) Mean of the resistance 

      The mean of the resistance of component at time t  is described as follows: 

                                                   ( ) ( ) ( )Ri i Fy it A tμ μ= ×                                                     (4.8) 

       where ( )Fy iμ is the mean of the random yield stress Fy of component. For ductile 

structure, the member will still carry loads when its strength reaches its yield stress. For 

brittle structure, the member will fail completely, and it stops carrying any load after 

failing. 

(3) Standard deviation of the resistance 

      The standard deviation of the resistance is assumed to change over time with a 

constant rate of 0.01, due to existed uncertainties. The standard deviation of resistance of 

component i at time t is described as: 

                               ( ) (1 ) ( 1) (1 ) (0)t
Ri i Ri i Rit DR t DRσ σ σ= + × − = + ×                             (4.9) 

      where ( ), ( 1)  (0)Ri Ri Rit t andσ σ σ− stands for the standard deviation of the resistance 

of component i at time t, t-1 and 0, respectively.  

      The components are considered to deteriorate in different rates. Figure 4.5 shows 

eight deterioration rates ranging from 0.01 in2/year to 0.08 in2/year will be used during 

the truss design life of 50 years. 

      Three load cases are described below, the behavior of components under different 

reliability index thresholds are studied. 



26 
 

Load case 1: 

      In Figure 4.6, the truss is subjected to two concentrated loads P. Three situations are 

considered: 1. Only one bar is deteriorating; 2. Two bars are deteriorating with different 

deterioration rates; 3. Three bars are deteriorating with different deterioration rates. For 

all the situations considered, the other members remain intact. The forces in each member 

are shown in Table 4.1.  

      Figure 4.7 shows the time-variant component reliability for load case 1 when a 

deterioration rate of 2% is imposed on bar 4. Statistical independence is assumed among 

the resistances of all the bars. When a bar begins to deteriorate, the truss is not assumed 

symmetric due to the changes occurred on the stiffness of the bars.  

      It is seen from Figure 4.7 that bar 4 deteriorates so fast that its component reliability 

index decreases far beyond bars 1 and 9 which have the lowest initial reliability index β. 

The reliability index threshold is set as β = 6.08. With the establishment of the reliability 

threshold, it is found that the most critical member is bars 1 and 9 before year 12. After 

that, the critical member is bar 4. After bar 4 fails, the critical members become to be bars 

1 and 9 again. It is interesting to find out that bars 5 and 6 become more reliable since 

their member forces decrease after first member fails. 

       Consider bars 3 and 4 which deteriorate with different rates 0.03 in2/year and 0.04 

in2/year, respectively, and a constant live load increase rate of 0.01 kips/year. Figure 4.8 

shows how damages on bars 3 and 4 make impact the variation of the reliability indices 

of the other bars when symmetric loads P are applied on ductile members. Two reliability 

index thresholds are set: β1 = 6.04, where the reliability indices of member 4 and 



27 
 

members 1 and 9 are equal and β2 = 2.67, where the reliability indices of bars 3 and 4 are 

equal at year 27.  

      Finally, the case of three bars with different deterioration rates is shown in Figure 4.9. 

Bars 4, 5 and 6 deteriorate with individual rates of 0.05 in2/year, 0.07 in2/year and 0.04 

in2/year, respectively. Before the component with lowest reliability index reaches the first 

threshold β1 = 6.5, the critical members are 1 and 9. Then bar 4 becomes the most critical 

one until its failure. Bars 1 and 9 are critical members again until bar 6 deteriorates faster 

and its component reliability becomes the most critical after the second reliability index 

threshold β2 = 4.2 is reached at year 41. 

Load case 2: 
                                
      Figure 4.10 shows the truss subjected to the horizontal load H. Three situations are 

considered: 1. Only one bar is deteriorating; 2. Two bars are deteriorating with different 

deterioration rates; 3. Three bars are deteriorating with different deterioration rates. For 

all the situations considered, the other members remain intact. The member forces are 

shown in Table 4.2.  

      Figure 4.11 indicates that bar 4 deteriorates with a rate of 0.02 in2/year, live load 

increases with a constant annual rate of 0.01 kips/year. With only one horizontal load 

applied, the initial component reliability indices of most bars are higher than in the first 

case.  

      Figure 4.12 shows the second situation of load case 2: bars 3 and 4 deteriorate with 

rates 0.02 in2/year and 0.03 in2/year, respectively, live load increases with an annual rate 
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of 0.01 kips/year. The change of bar 3’s reliability index over time is not as obvious as 

that of bar 4. 

      Figure 4.13 shows the third situation considered for load case 2: bars 4, 5 and 6 

deteriorate with individual deterioration rates: 0.05 in2/year, 0.07 in2/year and 0.04 

in2/year, respectively, and live load increases with a rate of 0.01 kips/year. Obviously, 

bars 4 and 5 become much less reliable than other members due to their large 

deteriorating rates, and bar 5 becomes the critical member after the failure of bar 4. 

Load case 3:         

      Figure 4.14 shows the truss subjected to load case 3: two symmetric concentrated 

vertical loads P plus one horizontal load H. The same three situations are considered: 1. 

Only one bar is deteriorating; 2. Two bars are deteriorating with different deterioration 

rates; 3. Three bars are deteriorating with different deterioration rates. For all the 

situations considered, the other members remain intact. The forces in each member are 

shown in Table 4.3. 

      Figure 4.15 shows the effect of bar 4 with a deterioration rate of 0.02 in2/year on the 

variation of component reliability indices of all members. Compared with Figures 4.7 and 

4.11, the third load case is much more critical regarding the reliability loss. The reliability 

index threshold is set as 4.18 in this case. Bars 1 and 9 are the critical members before the 

failure of member 4 and become the most critical after the failure of bar 4. The reliability 

index of bar 2 increases after the first member fails.  

      Comparing intact member forces in Tables 4.1, 4.2 and 4.3, it is found that member 

forces in Table 4.3 are the sum of forces in Tables 4.1 and 4.2. Figure 4.15 indicates that 
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component reliability indices are not simply the sum of reliability indices associated with 

cases 1 and 2.  

       The second situation considered for load case 3 is that two bars are deteriorating, 

DR3 (deterioration rate) = 0.03 in2/year, DR4 = 0.02 in2/year, and the load annual 

increase rate is 0.01 kips/year. At the beginning, bar 9 is the most critical member in the 

system, then the effect of deterioration on bar 4 makes its reliability decrease very fast 

until reaching the first threshold 4.20.  

       Figure 4.17 shows the effect of various deteriorating rates of bars 4, 5 and 6 on time-          

variant reliability indices: DR4 = 0.05 in2/year, DR5 = 0.07 in2/year and DR6 = 0.04 

in2/year. Member force in bar 6 changes from compression force to tension force after the 

failure of bar 4.  

4.2. 11 Bar Truss 

      A second example is shown in order to demonstrate the effect of resistance 

deterioration and live loads on structural reliability. Consider the 11 bar truss in Figure 

4.18, including loading, deterioration, geometry and strength characteristics. The cross 

section areas of bars 1 to 7 are 1 in2 and bars 8 to 11 are 0.25 in2. Yield stresses and live 

load are assumed random variables with a normal distribution. The mean of yield stresses 

for bars 1 to 7 are 20 ksi in tension and 10 ksi in compression, for bars 8 to 11 are 10 ksi 

in tension and 5 ksi in compression. The coefficient of variation (c.o.v) for all the 

resistances of components is 0.1. The applied loads increase constantly by 0.01 kips/year, 

its initial mean value is 1 kip with a constant c.o.v 0.1. Modulus of elasticity E = 29000 

ksi. Two load cases applied on the truss are studied to investigate the effect of time and 
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deterioration on structural reliability, respectively. The situations of time-independent 

and time-dependent are both considered. 

      For the time-independent case, two unsymmetrical loads increase constantly from 

zero are applied. The truss members will be analyzed by brittle and ductile behaviors. 

Compute component reliability index for each bar when loads P increase constantly. Five 

categories of member damage states considered are shown in Table 4.6. 

      Figures 4.19 and 4.20 show component reliability index of each bar versus mean 

value of loads P applying on the intact truss. Two assumptions are made: First, the 

member is assumed to fail when its reliability index drops to zero. Second, all the 

components are considered as perfectly ductile or brittle. Ductile members will carry 

their mean load-carrying capacity after failure. Brittle members cannot carry any load 

after β reaches zero. 

     Figures 4.21 and 4.22 show the effect of “moderate damage” (DF = 0.50) applied on 

member 5, which causes variation of reliability indices on the other members for brittle 

and ductile failure of components. 

     Figures 4.23 and 4.24 show the case when “complete damage” (DF = 1.0) is applied 

on member 5 and member 10 of the truss for brittle components, respectively.  

      For the time-dependent case, Figure 4.25 presents that a horizontal load P which 

increases nonlinearly is applied on the truss, as indicated in Equation (4.4).  

Case 1: in Figure 4.26, it is assumed that bar 9 deteriorates with a rate of 0.02 in2/year 

and the load increases with the rate 0.01 kips/year. Before the failure of first member, the 
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reliability indices of bars 9 and 11 decrease faster than the other bars due to their smaller 

cross section areas and lower yield stresses of compression members. 

Case 2: Figure 4.27 shows case 2 with two deteriorating bars: bars 8 and 9 deteriorate 

with rates of 0.03 in2/year and 0.02 in2/year, respectively. After the failure of members 9 

and 11, the truss becomes deterministic structure. The member forces on bars 8 and 10 

increase so rapidly that their reliability indices decrease to zero until the truss fails. 

Case 3: it shows three bars deteriorating with deterioration rates of DR1 = 0.05 in2/year, 

DR8 = 0.04 in2/year and DR9 = 0.02 in2/year. From Figure 4.28, bar 1, which has the 

greatest deteriorates rate, becomes the most critical member after the failure of bars 9 and 

11 until its failure induces system failure. Bar 10’s reliability index value fluctuates due 

to increasing applied load and member force redistribution. 

4.3. Conclusions 

       This chapter proposes an approach to examine the effects of structural deterioration 

and load increase on the time-variant reliability of truss members and systems. 

      From the results obtained from different load cases applied on two deteriorating truss 

structures, the time-variant reliability of structural members may decrease, remain the 

same or even increase, depending on member forces, material properties, cross section 

areas, deterioration rates, component ductility and structural configuration. 

      Member forces may experience sudden changes due to force redistribution after 

failure of some component. Ductile members are more reliable than brittle members. 

      Reliability index can be used to evaluate structural lifetime performance by weakest-

link systems. The component with the lowest value of reliability index should receive 
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monitoring priority. Conversely, in parallel fail-safe systems, the most reliable 

component should also receive monitoring priority.  
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          Figure 4.1 Ten-bar one-story truss example (From Frangopol and Curley, 1987) 

 

 

                                   Figure 4.2 Time-variant mean of vertical load P      
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                       Figure 4.3 Time-variant standard deviation of vertical load P      

Figure 4.4 Time-variant coefficient of variation of vertical load P 
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                           Figure 4.5 Time-variant cross section area of component i 
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Figure 4.6 Load case 1: two symmetric concentrated loads 
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Figure 4.7  Effect of deterioration on bar 4 and load increase on the time-variant 

component reliability index β  

Figure 4.8  Effect of deterioration on bars 3 and 4 and load increase on the time-variant 

component reliability index β  
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Figure 4.9  Effect of deterioration on bars 4, 5 and 6 and load increase on the time-variant 

component reliability index β  
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                              Figure 4.10 Load case 2: one horizontal load 
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Figure 4.11  Effect of deterioration on bar 4 and load increase on the time-variant 

component reliability index β 

Figure 4.12  Effect of deterioration on bars 3 and 4 and load increase on the time-variant 

component reliability index β 
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Figure 4.13  Effect of deterioration on bars 4, 5 and 6 and load increase on the time-

variant component reliability index β 
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      Figure 4.14 Load case 3: two symmetric concentrated loads plus one horizontal load 
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Figure 4.15  Effect of deterioration on bar 4 and load increase on the time-variant 

component reliability index β 

Figure 4.16  Effect of deterioration on bars 3 and 4 and load increase on the time-variant 

component reliability index β 
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Figure 4.17  Effect of deterioration on bars 4, 5 and 6 and load increase on the time-

variant component reliability index β 
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  Figure 4.18 11 bar truss example applied with two vertical loads 
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Figure 4.19 Component reliability index versus mean value of load applied on undamaged 

nondeterministic 11 bar truss example- Brittle Components 
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Figure 4.20 Component reliability index versus mean value of load applied on 

undamaged nondeterministic 11 bar truss example – Ductile Components 
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Figure 4.21 Component reliability index versus mean value of load applied on “moderate 

damaged” of member 5 on nondeterministic ten-bar two-story truss example – Brittle 

Components 
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Figure 4.22 Component reliability index versus mean value of load applied on “moderate 

damaged” of member 5 on nondeterministic 11 bar truss example – Ductile Components 
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Figure 4.23 Member reliability index versus mean value of load applied on 

nondeterministic. 11 bar truss with brittle components- "complete" damage of member 5 
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Figure 4.24 Member reliability index versus mean value of load applied on 

nondeterministic. 11 bar truss with brittle components- "complete" damage of member 10 
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                  Figure 4.25 11 bar truss example applied with one horizontal load 
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Figure 4.26  Effect of deterioration on bar 9 and load increase on the time-variant 

component reliability index β 

Figure 4.27  Effect of deterioration on bars 8 and 9 and load increase on the time-variant 

component reliability index β 
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Figure 4.28  Effect of deterioration on bars 1, 8 and 9 and load increase on the time-

variant component reliability index β 
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Table 4.1 Intact member forces for load case 1:  (When P=1, unit: kip) 

Bar No. 1 2 3 4 5 6 7 8 9 10 

Force -1.414 -0.036 0.893 -1.107 0.152 0.152 -0.072 0.893 -1.414 -0.036 
 

Table 4.2 Member forces for load case 2:  (When P=1, unit: kip) 

Bar No. 1 2 3 4 5 6 7 8 9 10 

Force 0.471 0.149 -0.113 -0.446 -0.312 0.160 0.036 0.220 -0.471 -0.185 
 

Table 4.3 Member forces for load case 3:  (When P=1, unit: kip) 

Bar No. 1 2 3 4 5 6 7 8 9 10 

Force -0.943 0.185 0.780 -1.554 -0.160 0.312 -0.036 1.113 -1.886 -0.149 
 

Table 4.4 Information for the two situations considered 

  

Time-independent Time-dependent 

Bar 1 to 7 Bar 8 to 11 Bar 1 to 7 Bar 8to 11 

T C T C T C T C 

A (in2) 1 1 0.25 0.25 1 1 0.25 0.25 

μFy (ksi) 20 10 20 10 10 5 10 5 

σFy (ksi) 2 1 2 1 1.6 0.8 1.6 0.8 

c.o.v (Fy) 
(ksi) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
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Table 4.5 Intact member forces:  (When P=1, unit: kip) 

Bar No. 1 2 3 4 5 6 7 8 9 10 

Force 2.250 0.763 -0.737 -2.250 -0.491 0.008 0.885 -0.918 0.902 -0.901 
 

 

Table 4.6 Categories of member damage states             

1 Intact member No reduction Damage factor = 0 

2 Slight damage of a member 25% reduction in load capacity Damage factor = 0.25 

3 Moderate damage of a member 50% reduction in load capacity Damage factor = 0.50 

4 Severe damage of a member 75% reduction in load capacity Damage factor = 0.75 

5 Complete damage of a 
member total reduction in load capacity Damage factor = 1.00 
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CHAPTER 5 

FATIGUE RELIABILITY ASSESSMENT USING MONITORING DATA 

 

5.1 Introduction 

      Bridge structures subjected to various loads during their design life experience 

strength deterioration. Fatigue is one of the primary reasons for the failure of structural 

components. Due to unexpected increase of traffic, uncertainties in environmental and 

mechanical stressors, errors made during the construction or fabrication, fatigue crack 

initiation will probably propagate which may induce fracture at the end (Kwon and 

Frangopol, 2010). For steel bridge structures experiencing cyclic loads, prediction and 

decisions of assessment and maintenance should be made steadily based on structure 

performance. Therefore, the concept of reliability has to be used. 

      Structural reliability concentrates on probabilistic description of phenomena and 

application to code-oriented safety design. Its concept has been used in the industry and 

specially emphasized in the academic field. To estimate fatigue reliability of the structure, 

resistance and load effects considered as random variables have to be evaluated. The sum 

of the elapsed cycles demanded for a fatigue crack initiation and crack propagation from 

subcritical dimensions to the critical size are the two major reasons to determine the 

fatigue lives of structural components. The fatigue reliability is evaluated based on the S-

N curves provided in the AASHTO Specifications and field monitoring data. AASHTO 

Specifications provides the classification information for AASHTO Category of the 

structural detail, from which fatigue resistance of structural components can be decided. 
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The history of loading afforded by the structure is obtained by field monitoring data.  

      Two methods are utilized to estimate fatigue reliability of the structure using 

measured data associated with monitoring systems. One method (Frangopol et al., 2008) 

is based on predictive models with the resistance and load effects normally distributed, 

two predictive models are established based on whether the measured effective stress 

range will be less than one-half of the constant amplitude fatigue (CAF) threshold during 

the structure’s design life; the other method (Kwon and Frangopol, 2010) is applying 

PDFs (probability density function) of several distribution types based on field 

monitoring data into the predictive models. For the determination of parameters of 

different distribution types, fatigue detail coefficient A and equivalent stress range Sre are 

two essential parameters. To consider reliable fatigue assessment performance under 

uncertainty, A and Sre are both defined as random variables. Fatigue is a phenomenon that 

is very complex and subject to a great deal of uncertainty. The uncertainties introduced 

due to external factors, such as fatigue loading and environmental conditions, and internal 

factors such as the fatigue capacity of details make deterministic fatigue analyses less 

reliable in estimating the fatigue lives of details in steel bridges (Chung, 2004). The 

information to determine the parameters of random variables for the estimation of fatigue 

reliability is obtained from AASHTO Specifications and field monitoring data. Fatigue 

reliability analysis for the second method can be conducted by using the reliability 

softwares CalREL and RELSYS.  

5.2 Fatigue 

      The metals under the action of cyclic load will experience fatigue in a three 
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continuous stages (crack initiation, crack propagation and fracture). The most common 

type of structures which are susceptible to fatigue cracking is steel bridges.  

      Material fatigue strength can be tested under cyclic stresses. The fatigue resistance 

above the constant amplitude fatigue threshold, in terms of cycles, is inversely 

proportional to the cube of the stress range. 

      Figure 5.1 shows nominal fatigue resistance for Categories A to E based on AASHTO 

Specifications. This is a graph of the magnitude of a cyclic stress Sre against the 

logarithmic scale of cycles to failure N. In high-cycle fatigue situations, materials 

performance is usually characterized by an S-N curve. S-N curves are derived from 

samples of the material which is characterized by a testing machine applying a regular 

sinusoidal stress can also count the number of cycles to failure. The S-N curve graph can 

be used to predict total fatigue life including both crack initiation and crack propagation. 

      In 1945, Miner states that if there are k different stress levels and the average number 

of cycles to failure at the ith stress, Si, is Ni, then the damage fraction, D, is: 

෍
݊௜

௜ܰ

௞

௜ୀଵ

ൌ  ሺ5.1ሻ                                                               ܦ

      where ݊௜ is the number of cycles accumulated at stress ௜ܵ, D is the fraction of life 

consumed by exposure to the cycles at the different stress levels. In general, when the 

damage fraction reaches 1, failure occurs.  

5.3 Field monitoring data 

      Field monitoring data plays a very important role in fatigue life assessment of bridges. 

For long-term monitoring system, strain gages are installed to automatically record and 
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store the data on the hour, as well as when heavy vehicles cross the bridge. External 

factors, such as the effects of sustained load, temperature, environmental conditions, and 

bridge’s performance under live load effects, can all be assessed by using the information 

provided by the monitoring system.  

      Stress range histogram data can be developed from the continuous time-history data 

collected during the long term monitoring, thus equivalent stress range and average daily 

truck traffic are obtained. Equivalent stress range can be estimated approximately by 

using the moment ranges from calculation. The parameters computed from PDFs are used 

in the reliability analysis. 

5.4 Application to Commodore Barry Bridge 

5.4.1 Introduction 

      A long span bridge is analyzed to determine its structural reliability based on field 

monitoring data. The Commodore Barry Bridge is a cantilever bridge that spans the 

Delaware River from Chester, Pennsylvania, to Bridgeport, in Logan Township, New 

Jersey, USA (Wikipedia,  http://en.wikipedia.org/wiki/Commodore_Barry_Bridge). It is 

the fourth longest cantilever truss bridge in the world and the longest one in the United 

States. Owned by the Delaware River Port Authority (DRPA), the bridge was originally 

opened to traffic in 1974. The bridge includes five traffic lanes and currently serves an 

annual traffic flow of more than six million vehicles of which heavy truck vehicles take 

up a significant percentage. The bridge with a total bridge length of 13912 feet has a 

main span length of 1644 feet and side spans of 822 feet. Figure 5.2 shows the overview 

of the bridge. (Catbas et al., 2008).  
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5.4.2 Monitoring program 

      A long-term monitoring program was implemented in order to measure the in-situ 

live load stresses in the truss members. There were more than 1000 electroslag welds 

over the bridge. Based on the test results, previous analysis done by research staffs and 

faculty found out there were eight critical welds having the potential for fatigue crack 

growth. AECOM (formerly known as DMJM Harris) and the ATLSS Center of Lehigh 

University were both contracted by DRPA to reassess the potential for fatigue crack 

propagation. (Hodgson et.al, 2008) 

      The basic identification information for eight previously identified electroslag is 

described in the Table 5.1. Figures 5.3 and 5.4 show a 3-D graphic view of the 

Pennsylvania back span and the New Jersey back span of the bridge indicating the truss 

members with critical welds. Figures 5.5 to 5.7 show the detailed location of the critical 

members in the north and south truss respectively in a 2-D format.  

      The monitoring program was implemented in two phases. Phase 1 monitoring started 

on October 17, 2007. Stress-time history data was not collected continuously during this 

period. Phase 2 monitoring commenced on November 28, 2007 until December 7, 2007. 

Data was collected continuously from all the sensors with a rate of 10 Hz during this 

period. The data in Phase 2 was used to build the stress-range histograms used in the 

reliability assessment. Detailed information is available in ATLSS Report 08-04 

(Hodgson et al, 2008). 

      A threshold was established that only the data value above the threshold can be 

recorded. Due to a large amount of spurious signals in the data collected in Phase 1, the 
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data from Phase 2 was finally utilized for fatigue reliability analysis of this example. It is 

assumed that the measured stress during the monitoring period is applicable. 

5.4.3 Reliability assessment for fatigue behavior based on monitoring measurements  

5.4.3.1. Reliability method integrated with monitoring data 

      The approach utilized was investigated by Frangopol, Strauss and Kim (2008a). First-

order reliability method (FORM) and Second-order reliability method (SORM) are two 

methods to calculate the structural reliability. The limit state function used in this 

approach is described as: 

݃ሺܺሻ ൌ ܴ െ ܳ ൌ 0                                                            ሺ5.2ሻ 

      where ܺ ൌ ሼ ଵܺ, ܺଶ, … , ܺ௡ሽ் ൌ  ,g(X) = 0 = limit state .ݏ݈ܾ݁ܽ݅ݎܽݒ ݉݋݀݊ܽݎ ݂݋ ݎ݋ݐܿ݁ݒ

g(X) < 0 = failure state. The reliability index is defined as 

ߚ ൌ
ோߤ െ ொߤ

ටߪோ
ଶ ൅ ொߪ

ଶ
                                                                      ሺ5.3ሻ 

      where ߤோ and ߤொ is the mean of resistance and load effect respectively, ߪோ and ߪொ is 

the standard deviation of the resistance and load effect, respectively.  

      Integrated with monitoring into structural reliability, the limit state function can be 

expressed as: 

݃ሺܺሻ ൌ ܴ െ ܯ ൌ 0                                                              ሺ5.4ሻ 

      where M is the monitored load effect. 

      The reliability index can be defined as 

ߚ ൌ
ோߤ െ ெߤ

ඥߪோ
ଶ ൅ ெߪ

ଶ
                                                                     ሺ5.5ሻ 
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      where ߤெ  and ߪெ  are the mean and standard deviation of monitored load effect, 

respectively. Due to the arrangement of sensors on various locations of the structure and 

the fact that monitoring data could be negative or positive, the possibility of 

misinterpretation does exist. For this reason, the reliability index associated with sensor i 

can be modified as 

ߚ ൌ
ோߤ െ ெ೔ߤ

ටߪோ
ଶ ൅ ெ೔ߪ

ଶ
                                                                     ሺ5.6ሻ 

      where ߤெ೔  and ߪெ೔  are the mean value and standard deviation of monitored load 

associated with sensor i. In this example, the recorded maximum value of load effect 

during the entire monitoring period is considered as a random variable. The relation 

between mean and standard deviation is defined as 

ெ೔ߪ
௢ ൌ ெ೔ߤ

௢ ·
ோߪ

ோߤ
                                                       ሺ5.7ሻ 

      The corresponding reliability index is 

 

௜ߚ
௢ ൌ

ோߤ െ ெ೔ߤ
௢

ோඨ1ߪ ൅ ቆ
ெ೔ߤ

௢

ோߤ
ቇ

ଶ
                                                      ሺ5.8ሻ 

      A large amount of measurements have to be verified via establishment of mechanical 

models, this process in general contains substantial errors. Even errors have to be taken 

into account in the interpretation of results from the monitoring system. Uncertainties 

݁௦ሺ%ሻ generated by three types of errors associated with the sensors can be considered 

into the reliability index computation by defining the factor (Frangopol et al. 2008a) 
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௦݂ ൌ 1 ൅ ݁௦                                                             ሺ5.9ሻ 

      The component reliability index of sensor i including  ݁௦ is defined as: 

௜,௘ߚ
௢ ൌ

ோߤ െ ெ೔ߤ
௢ ൈ ௦݂

ோඨ1ߪ ൅ ቆ
ெ೔ߤ

௢

ோߤ
ቇ

ଶ
                                                     ሺ5.10ሻ 

5.4.3.2. Fatigue reliability assessment 

      The fatigue reliability of the Commodore Barry Bridge under traffic load will be 

investigated in accordance with AASHTO 2007. The seven members with critical welds 

are considered a Fatigue Category B per the AASHTO LRFD Specifications (AASHTO 

2007) with a fatigue threshold of 16 ksi. Only one of the eight members (Number 244) 

was tested to have rejectable flaws and cannot be considered as Category B.  

      Two strain gages A and B were installed at each tested electroslag weld of the 

member. One gage was installed one inch away from the edge of the weld, the other gage 

was installed one inch away from the edge of the member. Field monitoring data has been 

collected for both gages for each member. Based on the data obtained from field testing, 

it is found that the data from strain gages A_448 and B_448 are not included in the 

analysis due to excessive noise in the data. (Hodgson et.al, 2008) 

      According to AASHTO 2007, it is considered as infinite lifetime, in terms of fatigue, 

if investigated detail of design stress range is provided less than one-half of the constant 

amplitude fatigue (CAF) threshold. From Figure 5.8, the constant amplitude fatigue (CAF) 

threshold for Category B is 16 ksi. The mean and standard deviation of effective stress 

range and number of cycles for each member are in Table 5.2. As Figure 5.8 shows that 
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the effective stress range with descending branch is only effective when it is above the 

one-half of the CAF threshold. According to the data provided by Table 5.2, since the 

assumption is made that effective stress range and the number of cycles per day are 

constant over the lifetime, the fatigue lifetime of the bridge is infinite. Two predictive 

models are made based on the established CAF threshold for Category B. 

Predictive Model I: 

      The fatigue life for the bridge in is infinite, which indicates that the measured 

effective stress range is less than one half of the constant amplitude fatigue (CAF) during 

its lifetime. The fatigue reliability will be assessed in accordance with descending stress 

range with increasing number of cycles until the corresponding number of cycles ௦ܰ to 

the CAF threshold is reached. The ௦ܰ for Category B is 3.93 ൈ 10ଵଶ. If the number of 

cycles exceeds the specified ௦ܰ, the fatigue reliability is computed based on the constant 

amplitude fatigue (CAF). 

Predictive Model II: 

      The fatigue life for the bridge is finite, which indicates that the measured effective 

stress range is larger than one half of the constant amplitude fatigue (CAF) during its 

lifetime. The fatigue reliability will be assessed in accordance with descending stress 

range with increasing number of cycles during the lifetime of the bridge.  There is an 

assumption made for this model, that is, the number of cycles and the stress range 

increases by the same rate during the bridge’s lifetime.  

      Table 5.2 provides the information of mean and standard deviation of effective stress 

range in different units and numbers of cycles for each seven members with critical welds.    



63 
 

Take sensor A_44 for example, Figure 5.9 shows the histogram created from sensor 

measurements of the number of cycles N versus the stress range for sensor A_44 located 

on member 44.  Figure 5.10 shows increases in the number of cycles by three different 

rates: 3.5%, 4.5% and 5.5%. For all the increasing rates, the number of cycles approaches 

the specified number of cycles ௦ܰ  2.93 ൈ 10଺ corresponding to the constant amplitude 

fatigue (CAF) threshold for Category B. So the reliability assessment will be performed 

with respect to the CAF limit when the number of cycles is larger than ௦ܰ  in the Model I.  

       The component fatigue reliability integrated with monitoring sensor reading is 

assessed based on the reliability index ߚ௜,௘,௙
௢ , which is obtained by the equation as follows: 

௜,௘,௙ߚ
௢ ൌ

௙ߤ െ ெ೔ߤ
௢ ൈ ௦݂

ටߪ௙
ଶ ൅ ൫ߪெ೔

௢ ൯ଶ
                                        ሺ5.11ሻ 

      where ߤ௙ = the allowed effective stress range regarding AASHTO guidelines with 

respect to the aforementioned predictive models I and II; ߪ௙ ൌ ݒ ൈ ௙ߤ  stands for the 

standard deviation of the allowed effective stress range where the coefficient of variation 

ݒ ൌ ఙೃ
ఓೃ

ൌ ெ೔ߤ ,0.08
௢ ൌ the mean of effective stress range associated with sensor i; and 

ெ೔ߪ
௢ ൌ the standard deviation of effective stress range associated with sensor i; and ௦݂ ൌ 

factor assigned to sensor errors. 

      Predictive model I is assessed based on the mean effective stress range ߤெ೔
௢  and the 

standard deviation ߪெ೔
௢  of sensor i. For predictive model II, ߤெ೔

௢  has been increased by 

three various rates arranged from 3.5% to 5.5% per year and ߪெ೔
௢  keeps constant over the 

bridge’s lifetime. 
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      Figure 5.11 shows the component fatigue reliability index for member 44 with 

monitoring reading from sensor A_44 in the prediction of 50 years. Variance from the 

predicted reliability indices is caused by different effective stress ranges based on the 

assumptions made in the predictive model I and II. In Figure 5.11 which presents 

component fatigue reliability of member 44, the assumption is made that the 

measurements of physical quantities provided by the monitoring system have no error. 

Figure 5.12 shows component reliability index of member 44 for models I and II with 

assumed 0%, 5%, 20% and 35% sensor reading error.  

      From the reliability assessment results, monitoring system is used to record and store 

the data of daily traffic, a rainflow cycle counting is utilized after the data had been 

collected using a PC to run MATLAB. Noise signals from the data were removed by 

using the digital signal processing techniques. Effective stress range and number of 

cycles are two very crucial parameters in assessing the fatigue performance. The 

monitoring system is of great significance to acquire and update information of 

magnitude and frequency of the traffic load which is changing over the lifetime of the 

structure. 

5.4.4. Summary 

      The approach used in the Commodore Barry Bridge is to investigate fatigue reliability 

for the members with critical welds in the lifetime of the structure with different 

assumptions made for two predictive models. The most critical member can be identified 

from the predictive reliability index values.  
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      From the figures shown previously, the effective stress range and numbers of cycles 

play an important role to predict fatigue performance and traffic loads having been 

always changing during the lifetime of the structure, so the application of monitoring 

system can update the information of traffic loads by using the effective stress range and 

number of cycles on a time-variant base to improve the probabilistic prediction models. 

      In reality, the consideration of sensor errors should be included in the assessment of 

the structure. These errors are generated in the process of verifying a great number of 

measurements to idealize mechanical models and using redundant used sensors. 

5.4.5 Reliability assessment for fatigue behavior using probability density functions of 

equivalent stress range 

       Since reliability index is one of primary indicators to evaluate and predict structural 

performance, resistances and applied load effect are both treated as random variables in 

the limit state function. The parameters, which decide the probability density function 

(PDF) of the random variables, are used in the reliability index calculation. The 

formulation of PDF can be based on the field monitoring data, which has been conducted 

by Kwon and Frangopol (2010). The procedures of this approach are explained as follows.  

5.4.5.1  Estimation of structural members 

Based on the inspection and research done by Hodgson, Professor Yen and Bowman 

(2008), seven of the eight members are considered as Category B with a fatigue threshold 

of 16 ksi according to AASHTO. The fatigue detail coefficient A, material constant and 

constant amplitude fatigue limit (CAFL) can be obtained from AASHTO Specification. 

The only one could not be estimated by AASHTO due to its existence of rejectable flaws. 
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5.4.5.2 Selection of probability density function (PDF) 

The relation between stress range and number of cycles shown by Figure 5.1 is obtained 

based on the scattered data from numerous experiments. As indicated before, the S-N 

curves and Miner’s rule are used to investigate structural total fatigue life. So consider 

the load effects, the evaluation of fatigue life must take into account of variable 

amplitude loadings, such as stress range (Kwon and Frangopol, 2010). The PDF 

providing parameters for the reliability analysis is formulated by one of the best fit three 

distribution types, which are lognormal, weibull and gamma distribution, respectively. 

The PDFs and moments for the corresponding distribution types are briefly introduced as 

below (Kwon and Frangopol, 2010): 

(1) Lognormal distribution 

PDF:      ௦݂ሺݏሻ ൌ ଵ
ሺ௦ି௦೎ሻ·఍·√ଶగ

· exp ሾെ ଵ
ଶ

· ቀ୪୬ሺ௦ି௦೎ሻିఒ
఍

ቁ
ଶ

                                                     ሺ5.13ሻ 

For ݏ െ ௖ݏ ൐ 0 

The mean and standard deviation of the stress range is 

ሺܵሻܧ ൌ expሺߣ ൅ 0.5 · ଶሻߞ ൅  ௖                                        ሺ5.14ሻݏ

ሺܵሻݎܸܽ ൌ ሾܧሺܵሻ െ ௖ሿଶݏ · ሾexpሺߞଶሻ െ 1ሿ                       ሺ5.15ሻ 

(2) Weibull distribution 

PDF:                        ௦݂ሺݏሻ ൌ ఉ
ఈ

· ቀ௦ି௦೎
ఈ

ቁ
ఉିଵ

· exp ሾെ ቀ௦ି௦೎
ఈ

ቁ
ఉ

                                           ሺ5.16ሻ 

For ݏ െ ௖ݏ ൐ 0 

The mean and standard deviation of the stress range is 
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ሺܵሻܧ ൌ ߙ · Γ ൬
1
ߚ ൅ 1൰ ൅  ௖                                               ሺ5.17ሻݏ

ሺܵሻݎܸܽ ൌ ଶߙ · ቈΓ ൬
2
ߚ ൅ 1൰ െ ൤Γ ൬

1
ߚ ൅ 1൰൨

ଶ

቉                              ሺ5.18ሻ 

(3) Gamma distribution 

PDF:     ௦݂ሺݏሻ ൌ ఒ·ሾఒ·ሺ௦ି௦೎ሻሿೖషభ

୻ሺ୩ሻ
· expሾെߣ · ሺݏ െ  ௖ሻሿ                                                          ሺ5.19ሻݏ

For ݏ െ ௖ݏ ൐ 0 

The mean and standard deviation of the stress range is 

ሺܵሻܧ ൌ
݇
ߣ ൅  ௖                                                        ሺ5.20ሻݏ

ሺܵሻݎܸܽ ൌ
݇
ଶߣ                                                           ሺ5.21ሻ 

The equivalent stress range Sre derived from the m-th moment of the stress range for the 

distribution types are expressed as: 

ሺܵ௠ሻܧ ൌ න ௠ݏ · ௦݂

ஶ

଴
ሺݏሻ ·  ሺ5.22ሻ                                            ݏ݀

ܵ௥௘ ൌ ቈන ௠ݏ · ௦݂

ஶ

଴
ሺݏሻ · ቉ݏ݀

ଵ
௠

ൌ ሾܧሺܵ௠ሻሿ
ଵ
௠                   ሺ5.23ሻ 

5.4.5.3 Construction of stress range bin histograms 

      The stress range bin histograms are constructed based on available monitoring data 

from six critical members. The data from strain gage 448 is checked to contain a big 

amount of noise, so member 448 is excluded from constructing stress range histograms. 

Tables 5.3 and 5.4 show the maximum recorded stress range SRmax and histogram 

presented with all cycles for six members with critical welds. Figures 5.13 to 5.15 present 
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stress range bin histograms for six critical members based on the data collected by rain-

flow counting method from Tables 5.3 and 5.4. The fatigue lives of the six critical 

members are accordingly theoretically expected as infinite. The equivalent stress range 

Sre, which is one of the random variables, is calculated from stress range bin histogram, is 

described as 

ܵ௥௘ ൌ ൤෍
݊௜

௧ܰ௢௧௔௟
· ܵ௥௜

ଷ ൨
ଵ
ଷ

                                      ሺ5.24ሻ 

or  

ܵ௥௘ ൌ ቈන ଷݏ · ௦݂

ஶ

଴
ሺݏሻ · ቉ݏ݀

ଵ
ଷ

                                ሺ5.25ሻ 

      where ݊௜ = number of observations in the predefined stress-range bin, ௧ܰ௢௧௔௟ = total 

number of observations during the monitoring period, ܵ௥௜ is the number of cycles for each 

stress range (Kwon and Frangopol, 2010). 

Figure 5.16 represents the effect of different stress range cut-off levels on fatigue 

reliability of members installed with strain gages A_444 and B_302, respectively. It is 

shown that higher stress range cut-off level indicates more critical reliability index. 

5.4.5.4  The selection of distribution type and estimation of its mean and standard 

deviation 

     Since Figures 5.13 to 5.15 presented the stress range histograms for six critical 

members, the live load effects at the sensor locations are recorded continuously during a 

certain period of time. The stress range cut-off threshold sc = 0 is taken for the two-

parameter PDFs which provides the parameters for further reliability assessment and 
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estimation of estimate equivalent stress range. Figures 5.19 and 5.20 present the 

distribution type fitting of stress range histograms for member 302 and 444 on the 

distribution types: Lognormal, Gamma, Weibull, respectively. It was researched by 

Kwon and Frangopol (2010) that Anderson-Darling test is a best fit to assess the 

probability of failure since it would receive more contributions from the tails of a 

distribution in terms of the logarithm of the probabilities. Figure 5.22 shows the 

comparison of three selected distribution types tested by goodness-of-fit test on a 

particular strain gage A_291. As shown, lognormal PDF is the best fit of the stress range 

data obtained from field monitoring. The fatigue life of the Commodore Barry Bridge 

will be investigated by using Lognormal PDFs in the further study.  

5.4.5.5 Prediction of annual cumulative number of cycles 

   The value of Average Daily Truck Traffic (ADTT) for each critical member was 

computed based on total number of cycles during the monitoring period from inspection 

results obtained by Hodgson et al (2008). The annual traffic increase rate is assumed. The 

predicted cumulative number of cycles is computed as (Kwon and Frangopol 2010) 

ܰሺݕሻ ൌ 365 · ܶܶܦܣ · න ሺ1 ൅ ሻ௬ߙ
௬

଴
ݕ݀ ൌ 365 · ܶܶܦܣ ·

ሺ1 ൅ ሻ௬ߙ െ 1
ln ሺ1 ൅ ሻߙ           ሺ5.26ሻ 

      where y is the number of years, ߙ is the annual traffic increase rate. N is used as the 

only time-variant quantity in the prediction of reliability index.  

Table 5.2 represents the ADTT estimated by the assumed PDFs at each strain gage. 

Figure 5.23 shows time-variant cumulative stress number of cycles for strain gages on 

each critical member. 
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5.4.5.6 Fatigue reliability analysis at system level 

      It requires a system reliability approach to estimate how all the members with critical 

welds make effect on the overall reliability of the bridge. The system reliability models 

are classified as three models including all the available estimated components: parallel 

system model (six components), series system model (six components), series-parallel 

system model (five components).  

Model I: Parallel system model, which means the failure of all the connected components 

result in the failure of the bridge. The system reliability index decreases from 11.79 to 

6.15 in an expected lifetime of 50 years.  

Model II: Series system model, that is, any failure of the six members will result in the 

system failure. The reliability index results range from 6.77 to 1.77.  

Model III: Series-Parallel system model, which the failure of any parallel part will result 

in the system failure. This bridge model can be simplified as a model containing five 

main components connected as series, critical members will be classified based on these 

five main parts to form a series-parallel model. As shown in Figures 5.5, 5.6 and 5.7, all 

the critical members are noticed to be located in the anchor span part. Only member 44 is 

not included in this model since only its failure cannot make the bridge fails. Figure 5.27 

represents the system classification of the bridge. In the expected lifespan of 50 years, the 

system reliability index decreases rapidly from 10.28 to 4.32. 

      Figure 5.28 shows three system predictive models under the different assumptions. 

Figure 5.29 represents time-dependent system reliability indices for the three system 
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models in a 50-year expected time. It indicates that parallel system is the most reliable 

one among the three and series system is the least reliable one.  
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             Figure 5.1  Stress Range Versus Number of Cycles (From AASHTO 2007) 
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Figure 5.2  Overview of the Commodore Barry Bridge (From Wikipedia, 

http://en.wikipedia.org/wiki/Commodore_Barry_Bridge) 
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Figure 5.3  Photographic view of Pennsylvania back span looking upstream showing 

instrumented truss members (green = upstream; yellow = downstream) (From Hodgson et. 

al, 2008) 
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Figure 5.4 Photographic view of New Jersey back span looking upstream showing 

instrumented truss members (green = upstream; yellow = downstream) (From Hodgson et. 

al, 2008) 
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Figure 5.5  Detail of welds in the south truss (From Hodgson et. al, 2008) 
 
 

 
                             
Figure 5.6  Detail of welds in the north truss (From Hodgson et. al, 2008) 
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Figure 5.7  Detail of welds in the north truss (From Hodgson et. al, 2008) 
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Figure 5.8 Stress range versus number of cycles (From Frangopol et.al, 2008) 
 



79 
 

 
 
                                    Figure 5.9  Stress range histogram of sensor A-44 
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                        Figure 5.10 Increase in the number of cycles for the sensor A_44 
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                           Figure 5.11 Fatigue reliability prediction for the sensor A_44 
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Figure 5.12 Sensor errors affecting the prediction models for the fatigue behavior of 

sensor A_44 
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                   Figure 5.13 Stress range bin histogram for member 273 and 291 
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               Figure 5.14  Stress range bin histogram for member 302 and 44 
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                 Figure 5.15  Stress range bin histogram for member 418 and 444 
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Figure 5.16 Effect of the predefined cut-off thresholds on fatigue reliability of A_444 and 

B_302 
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Figure 5.17  PDFs according to the predefined cut-off thresholds of strain gage B-302 for 

three distribution types 
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Figure 5.18 PDFs according to the predefined cut-off thresholds of strain gage A-444 for 

three distribution types 
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                Figure 5.19 Stress-range bin histogram and PDFs at the member 302 
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       Figure 5.20 Stress-range bin histogram and PDFs at the member 444 
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Figure 5.21 Probability density function of resistance and load effect (From Frangopol 

and Messervey, 2009) 
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                   Figure 5.22 Goodness-of-fit tests on the strain gage A_291 
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        Figure 5.23 Time-variant cumulative stress numbers of cycles for each strain gage 
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                          Figure 5.24  Fatigue reliability for six members with critical welds 
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                           Figure 5.25  Fatigue reliability evaluation on sensor A_44 
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                Figure 5.26 Fatigue reliability evaluation on sensor A_44 and A_444 
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         Figure 5.27  System classification for the bridge (From Catbas et.al, 2008) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



98 
 

               

273 291 302 44 418 444 448

 
Series System 

 

                                              

273

291

302

418

444

 
Series-Parallel System 

 

                                                              

273

291

302

44

418

444

448
 

Parallel System 
 

Figure 5.28 System models 
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                     Figure 5.29 Fatigue reliability evaluations on three system models 
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Table 5.1 Summary of bars with critical welds (From Hodgson et.al, 2008) 
  

Weld ID Truss Member Type Span 
44 North Diagonal NJ back span 
244 North Diagonal PA back span 
273 North Diagonal PA back span 
291 North Upper chord PA back span 
302 North Upper chord PA back span 
418 South Lower chord NJ back span 
444 South Diagonal NJ back span 
448 South Diagonal NJ back span 

 

Table 5.2  Summary of key stress range histogram parameters 
 

Strain 
Gage 

Location 

SR,max 
(ksi) 

SR,max 
(MPa) 

SR,eff 
(ksi) 

SR,eff 
(MPa) 

σR,eff 
(ksi) 

σR,eff 
(MPa) 

Number of 
cycles per day 

A_44 2.5 17.24 0.73 5.01 0.22 1.50 2180 

B_44 2.3 15.86 0.65 4.49 0.26 1.79 1887 

A_418 1.8 12.41 0.52 3.57 0.16 1.07 1166 

B_418 1.5 10.34 0.44 3.04 0.18 1.21 475 

A_444 3.5 24.13 0.67 4.64 0.20 1.39 2122 

B_444 2.5 17.24 0.57 3.95 0.23 1.57 1631 

A_244 2.3 15.86 0.66 4.55 0.26 1.82 2036 

B_244 2.3 15.86 0.64 4.41 0.26 1.77 2036 

A_273 2.3 15.86 0.55 3.81 0.17 1.14 1215 

B_273 2.3 15.86 0.55 3.81 0.22 1.52 1226 

A_291 2.8 19.31 0.70 4.86 0.21 1.46 1440 

B_291 2.5 17.24 0.65 4.49 0.26 1.79 1315 

A_302 2.8 19.31 0.72 4.98 0.22 1.49 775 

B_302 3 20.69 0.74 5.10 0.22 1.53 - 
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Table 5.3  Stress range histogram for Pennsylvania back span members (From Hodgson 

et.al, 2008) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Min Max A_244 B_244 A_273 B_273 A_291 B_291 A_302 B_302

0.00 0.25 354175 357572 495999 504554 405940 419762 466277 491246
0.25 0.50 10862 11380 7173 7239 7129 6842 3664 4895
0.50 0.75 3789 3412 2720 2733 3008 2793 1717 2111
0.75 1.00 1866 2091 604 637 1587 1325 871 1066
1.00 1.25 1163 861 153 131 606 426 350 472
1.25 1.50 193 133 38 32 205 122 130 207
1.50 1.75 36 31 4 7 63 37 52 67
1.75 2.00 6 7 3 6 41 16 19 44
2.00 2.25 1 2 1 1 20 7 7 13
2.25 2.50 0 0 0 0 8 1 8 12
2.50 2.75 0 0 0 0 1 0 1 1
2.75 3.00 0 0 0 0 0 0 0 1
3.00 3.25 0 0 0 0 0 0 0 0
3.25 3.50 0 0 0 0 0 0 0 0
3.50 3.75 0 0 0 0 0 0 0 0
3.75 4.00 0 0 0 0 0 0 0 0
4.00 4.25 0 0 0 0 0 0 0 0
4.25 4.50 0 0 0 0 0 0 0 0
4.50 4.75 0 0 0 0 0 0 0 0
4.75 5.00 0 0 0 0 0 0 0 0

2.25 2.25 2.25 2.25 2.75 2.50 2.75 3.00

Stress Range (ksi) Number of Cycles

SRmax (ksi) = 
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Table 5.4  Stress range histogram for New Jersey back span members (From Hodgson 

et.al, 2008) 

 

 
 

 

 

 

 

 

 
                        

Min Max A_44 B_44 A_418 B_418 A_444 B_444

0.00 0.25 357844 364660 488200 493156 355623 369753
0.25 0.50 10827 10222 7447 3704 11557 10101
0.50 0.75 4241 3230 2202 406 3748 2735
0.75 1.00 1694 2015 519 53 1928 1232
1.00 1.25 1741 958 85 19 1136 186
1.25 1.50 535 143 6 1 213 51
1.50 1.75 111 26 2 0 54 27
1.75 2.00 35 8 0 0 13 9
2.00 2.25 1 1 0 0 15 8
2.25 2.50 1 0 0 0 6 1
2.50 2.75 0 0 0 0 2 0
2.75 3.00 0 0 0 0 2 0
3.00 3.25 0 0 0 0 1 0
3.25 3.50 0 0 0 0 1 0
3.50 3.75 0 0 0 0 0 0
3.75 4.00 0 0 0 0 0 0
4.00 4.25 0 0 0 0 0 0
4.25 4.50 0 0 0 0 0 0
4.50 4.75 0 0 0 0 0 0
4.75 5.00 0 0 0 0 0 0

2.50 2.25 1.75 1.50 3.50 2.50

Stress Range (ksi) Number of Cycles

SRmax (ksi) = 
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Table 5.5 Summary of deterministic and random variables for fatigue reliability 

assessment 

Parameter Notation Distribution type Source 

Fatigue detail 
coefficient A 

Lognormal 
(25.0291, 
0.3316) 

AASHTO Specifications,Chung 
[5], and Keating and Fisher [20] 

Equivalent stress 
range Sre Lognormal Field monitoring data 

Miner's critical 
damage accumulation 
index 

 

Lognormal LN 
(1.0, 0.3) 

Wirsching [24] 

Measurement error e Lognormal LN 
(1.0, 0.03) 

Frangopol et al. [18] 

Material constant m Normal (3.0, 
0.01) AASHTO Specifications [1] 

Average daily truck 
traffic ADTT Deterministic 

Connor et al. [8,9] 

Field monitoring data 
 

 

 

 

 

 

 

 

 

 

 

 

∆
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CHAPTER 6 

STRUCTURAL RELIABILITY ASSESSMENT AND PERFORMANCE 

PREDICTION USING THE STATISTICS OF EXTREMES 

 

6.1 Introduction 

      Long term Structural Health Monitoring (SHM), which makes a time-based 

continuous history of structural responses under the live load effects at specific locations, 

can update and provide the information of structural aging and deterioration process in 

real time. However, long term monitoring is not cost-effective. The data compression and 

selection of quality data is time-consuming. To further aid in handling the collected data, 

the characteristics of statistics of extremes should be realized to use in the condensation 

process. The features of extreme values are of great significance in many engineering 

applications. In the field of civil engineering, the monitoring data can be used to update 

established finite element models and track structural performance over time. For 

reliability based structural safety evaluation, the probability that resistances are larger 

than applied loads is highly relevant to the extreme values.  

      The application of statistics of extremes integrated with field monitoring data will be 

used in the I-39 Northbound Wisconsin River Bridge which is a five span continuous 

steel girder bridge. The monitoring period of this bridge was 95 days which is long 

enough to collect certain amount of data for the extreme value extraction. The controlled 

load test consists of crawl tests and dynamic tests has been conducted to measure the 
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maximum stress of structural members, while the uncontrolled load test is conducted to 

record stresses at sensor locations under the live loads. Both the data acquisition and 

length of the monitoring period are applicable for the following study. 

      In the performance function, live load considered as a random variable needs further 

investigation to improve the accuracy of the models. Messervey (2009) summarizes 

several compelling advantages of SHM technologies: First, based on the more complete 

up-to-date data, the existing models and code provisions can be more accurate. Second, 

monitoring data providing real traffic condition avoid a lot of efforts and also improve the 

accuracy. The third advantage leveraging SHM is to specialize the study from a general 

level to a local level, that is, for a specific bridge performance assessment. The fourth 

advantage is the established models can be updated and changes are tracked over the 

structural lifetime span if the monitoring based live load distribution is defined. The last 

advantage of SHM technology is the continuous monitoring data may be available to use 

to warn decision makers if the target threshold levels are approached (Messervey, 2009). 

      This chapter indicates the method of integrating the extreme values and monitoring 

data to simplify and improve the accuracy of prediction on bridge safety evaluation based 

on a reliability analysis. There is a big amount of data recorded during the monitoring 

period, but only daily maximum values are considered to use in the analysis. A specific 

sample size and timeframe are used in the transformation of defining the distribution for 

large sample size in a long period. Once the distribution of live loads can be determined, 

the method of identifying the aleatoric or epistemic uncertainty based on monitoring data 
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will be applied in the bridge reliability assessment.  

6.2 Theoretical background (A review of Messervey (2009) ) 

      The study of extreme values statistics in this chapter is to predict live load effects in 

the reliability estimation. Daily maximum stress values will be initially collected as the 

resource of extreme values being estimated, a determination on the optimum length of 

timeframe will be made. Due to the collection of only maximum values, the amount of 

data for analysis has been tremendously reduced. Messervey (2009) investigates an 

approach using the features of extreme values from live load stress including the 

uncertainty of errors in the structural lifetime performance evaluation.  

      Assume X is the initial random variable with known initial distribution function Fx(x). 

There are sample sizes of n are taken from the sample space of X. Each sample is 

indicated as a set of observations (x1, x2, …, xn) which means the first, second,…, nth 

observed values. Each observed value is a random variable and random variables (X1, 

X2,…, Xn) are extreme values obtained from samples of observations (x1, x2, …, xn). The 

maximum values of random variables (X1, X2,…, Xn) are also random variables, which 

can be described as 

௡ܻ ൌ maxሺ ଵܺ, ܺଶ, ܺଷ, … , ܺ௡ሻ                                              ሺ6.1ሻ 

      Yn’s probability distributions can be applied in the transformation of probability 

distribution, which means the largest value from samples of size n taken from random 

variables (X1, X2,…, Xn) are also random variables whose probability distributions may 

be derived from the initial variate X. 
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      If the distribution of random variables (X1, X2,…, Xn) has an exponentially decaying 

upper tail, its cumulative distribution function and the probability density function of the 

distribution of the extremes Y can be explained respectively as 

ሻݕ௒೙ሺܨ ൌ ሾܨ௫ሺݕሻሿ௡                                                   ሺ6.2ሻ 

௒݂೙ሺݕሻ ൌ ݊ሾܨ௫ሺݕሻሿ௡ିଵ
௫݂ሺݕሻ                                                ሺ6.3ሻ 

      Equations (6.2) and (6.3) express that the distribution of the extreme values Y is only 

relevant with distribution of initial variate X and the number of sample size n. With its 

asymptotic characteristic, the distribution can be transformed from one timeframe to 

another if the extreme phenomenon can be defined in a specific timeframe. There are 

three asymptotic distribution types classified by the tail behavior of the initial PDFs: (1) 

Type I for the largest value which is the double exponential form is well known as the 

Gumbel distribution; (2) Type II the single exponential form is often referred to as the 

Fisher-Tippett distribution; (3) Type III the exponential form with an upper or lower 

bound is well known as the Weibull distribution. Compare these three distribution types, 

only the PDF of the largest value from Gumbel distribution will keep the same shape as 

that of the initial value, the location of its PDF will change when the most probable value 

of Yn varies. Researchers conducting a reliability analysis can leverage this asymptotic 

behavior to consider the time effect of any recurring live load with the transformation 

defining the distribution of the most likely maximum value (Messervey, 2011).  

      The use of extreme value statistics is already well established in the design and 
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assessment of highway bridges for the calibration of load factors, resistance factors, load 

combination factors and the treatment of design trucks (Ghosen et al. 2003, Ghosn and 

Moses 1986). The application of extreme value statistics utilizing structure specific data 

in a probabilistic analysis can consistently account for uncertainties at the local level and 

develop essentially what could be termed a ‘bridge-specific’ code (Enevoldsen 2008). 

The extreme distribution is formed based on picking maximum values from on-site 

monitoring data. The selection of the most appropriate distribution type can be 

determined by using the approach goodness-of-fit. Compared with other two asymptotic 

distributions, the Gumbel distribution has two more advantages: one is the EVD 

parameters determining the distribution can be decided from the mean and standard 

deviation of the maximum values of recorded data avoiding complicated numerical 

calculations or tables; the other one is the factor determining the shape of PDF 

distribution is constant, so the transformation of the PDF of the maximum live load from 

current state to its end of lifetime 75th year only needs a simple shift without any shape 

change. Advantages of characterizing a monitoring based live load include ensuring that 

live load parameters are reflective of modern truck weights, passing from a general to a 

structure specific analysis, and replacing the difficult modeling of a traffic simulation that 

incorporates vehicle speeds, vehicle spacing, and multiple lane side-by-side truck 

occurrences (Messervey 2011). The practical example will use the method specific to the 

Type I EVD for reliability analysis. 

      In order to obtain greater accuracy, more information is needed and characterizing a 

monitoring based distribution is very sensitive to the available on site monitoring data. 
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Messervey(2007) conducted research on characterizing monitoring based EVDs and their 

use in a reliability analysis. In this research, why to choose type I EVD distribution and 

how to determine its parameters is based on simulations. 

      The transformation of type I Gumbel distribution is identified by picking up 

maximum monitoring data, which has been researched to quantify in improving 

efficiency and accuracy of the transformation. The cumulative distribution function (CDF) 

and probability density function (PDF) defined for the double exponential type I Gumbel 

distribution is explained respectively as 

ሻݔ௒೙ሺܨ ൌ exp൫െ݁ିఈ೙ሺ௫ି௨೙ሻ൯                                ሺ6.4ሻ 

௒݂೙ሺݔሻ ൌ ௡݁ିఈ೙ሺ௫ି௨೙ሻߙ exp൫െ݁ିఈ೙ሺ௫ି௨೙ሻ൯                                 ሺ6.5ሻ 

      Where n means the number of times the initial distribution X is sampled, ߙ௡ is the 

shape factor, ݑ௡ is the characteristic value. The mean value ߤ௒೙ and standard deviation 

 ௒೙ of maximum values ௡ܻ are used to define the parameters of the type I Gumbel EVDߪ

௡ߙ ൌ
ߨ

௒೙ߪ6√

                                                              ሺ6.6ሻ 

௡ߤ ൌ ௒೙ߤ െ
ߛ

௡ߙ
                                                         ሺ6.7ሻ 

      Where ߛ ൌ 0.5772  is Euler’s number. If the considered number of samples is 

infinitely large, the distribution obtained via “peak picking” will match the asymptotic 

transformation of the initial distribution defined as (Ang and Tang, 1984) 
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௒೙ߤ ൌ ௫ߤ ൅
lnሺ݊ሻ

ߙ                                                     ሺ6.8ሻ 

      For the Gumbel distribution, the standard deviation and shape factor are constant and 

there is no need to transform these quantities using equations. 

      There are three findings from Messervey (2009): First, the variability of both the 

mean and standard deviation parameters is approximately equal, 

ఓೊ೙ߪ
ൎ ఙೊ೙ߪ

                                                             ሺ6.9ሻ  

      Second, according to the Central Limit Theorem, the variability of both parameters is 

inversely proportional to the number of maximum values using the standard deviation of 

the underlying distribution  

ఓೊ೙ߪ
ൌ

௑ߪ

√݉
                                                             ሺ6.10ሻ 

ఙೊ೙ߪ
ൌ

௒೙ߪ

√݉
                                                             ሺ6.11ሻ 

      Where m is the number of observations of the maximum value.  

      Third, the assumption is made as follows 

௒೙ߪ ൎ  ௑                                                              ሺ6.12ሻߪ

      So the variability of both Gumbel EVD parameters can be estimated directly from 

monitoring data as 
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ఓೊ೙ߪ
ൌ ఙೊ೙ߪ

ൌ
௒೙ߪ

√݉
                                                            ሺ6.13ሻ 

      By using transformation calculations and picking up maximum values, the extreme 

value distribution can be predictable for a sufficient number of n observations. However, 

the simulation will be more complicated than a single known distribution in consideration 

of changes in daily traffic, side-by-side truck occurrence, vehicle speed, wind load, 

temperature, and extreme events. The appropriate observation timeframe and suitable 

number of observations should be determined to investigate the changes in structural 

performance by changing distribution parameters. More reasonable results can be 

obtained by balancing the selection of the observation period and number of observations 

during the period, the structural future performance can be predicted by repeating the 

process. In some cases, the study may be constrained for limited amount of monitoring 

data. A method considering both the availability of amount of data and uncertainty is 

presented in the application example. 

6.3 Numerical example 

6.3.1 Description of I-39 Northbound Wisconsin River Bridge 

      The I-39 Northbound Bridge was built in 1961 in Wausau, Wisconsin, USA. The 

bridge carries the northbound traffic of the interstate I-39. According to Mahmoud et al., 

it is a five span continuous steel plate girder bridge. The alignment of the horizontal 

curved girders is symmetric with respect to the mid-point of the third span. The bridge 

spans are: 30.40m (109.6 ft) for the lateral spans, 42.64m (139.9 ft) for the second and 

fourth spans, and 42.67m (140 ft) for the middle span. The total length of the bridge is 
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188.81m (619.45 ft). The horizontal curved bridge has two northbound traffic lanes with 

four steel plate girders spacing at 2.74m (9.0 ft) equally. The built-up steel girders are a 

combination of the top and bottom flange plates and a typical 132.1 cm (52 in.) high web 

plate. The steel flange plates vary from 38.1 cm (15 in.) to 45.7 cm (18 in.) in width, and 

3.175 cm (1.25 in.) to 4.445 cm (1.75 in.) in thickness. The steel used in the girders is 

M270 Grade 50 W with the nominal yield strength of 345 MPa (50 ksi). The bridge was 

opened to traffic in 1961, and carries the average daily traffic (ADT) from 2165 to 14,500 

during the period from 1964 to 2001. (Wisconsin department of transportation.2002). 

6.3.2 Monitoring Program 

      The monitoring program was operated between July and November 2004 by 

researchers from ATLSS Center. The objectives of this program are (Mahmoud et al. 

2005): First, assessing the serviceability of the bridge by conducting a complete fatigue 

evaluation of various fatigue prone details. Second, estimating remaining fatigue life of 

the details in question. Third, monitoring the overall behavior and the global response of 

the bridge for a period of up to 3 or 4 months. There were 24 resistance strain gauges 

fully temperature compensated by applying the recommended thermal expansion 

coefficients for structural steel and two linear variable differential transformers installed 

at 24 locations on the bridge. The controlled load tests including crawl test [speed up to 8 

km/h (5 mph)] and dynamic tests [speed up to 108 km/h (65 mph)] were performed 

between 9 a.m. and 11 a.m. on July 28, 2004, by employing two triaxle dump trucks with 

the gross vehicle weights of 296.5 kN (67.2 kips) and 329.2 kN (74.6 kips), respectively. 

The monitored strain data from the uncontrolled load tests were extensively collected and 
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investigated during the period of 95 days from July 29 to November 3, 2004. It should be 

noted that all the monitored strain data used in this study are converted into the stress data 

under the assumption that these strain data follow Hooke’s law. The details about the 

monitoring are reported in Mahmoud et al. (2005). (Liu, M., Frangopol, D.M. and Kim, S. 

2009b). 

6.3.3 Monitoring data collection and selection 

      Twenty four strain gages and two Linear Variable Differential Transformers (LVDT) 

are selected to collect data. The long term monitoring program commenced on July 29, 

2004 until November 3, 2004, for a total of approximately 95 days. For each sensor, 82 

days of data are available to use. A predefined stress limit was used to minimize the 

volume of recorded data from the stress-time-history files. So the data history is not 

continuous. Two test trucks were used to do the controlled load test including a series of 

crawl and dynamic tests. A logger used to collect data is a high speed, multi-channel, 16-

bit system configured with digital and analog filters to assure noise-free signals. Table 

6.1 shows the statistical information of daily maximum live load stress for the four 

estimated strain gages. (Mahmoud et al., 2005) 

      The study focuses on data recorded from four strain gages installed in span 2 at four 

girders respectively. Daily maximum data during the whole monitoring period is selected 

for the application of the statistics of extremes. Figure 6.1 shows the structural response 

of strain gage CH_19 on July 29, 2004. It is shown that the maximum stress which is 

nearly 40 MPa occurred around 7:05pm at night. In this way, the daily extreme stress 
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values for strain gages CH_17, CH_18, CH_19 and CH_20 are selected to find most 

critical members for reliability analysis. Figure 6.2 represents the top view of the bridge 

and detailed sensor locations.    

6.3.4 EVD parameter determination and observation timeframe optimization 

      The four girders which are installed with strain gages CH_17 to CH_20 will all be 

selected for the reliability analysis. The data provided in Table 6.2 can be applied to 

characterize the daily EVD for the four sensors, however, there is still the possibility that 

some longer observation timeframe is more appropriate to decrease the uncertainty of the 

characterization of the EVDs. Therefore, the new parameters for determining distribution 

of PDFs are created by picking up maximum stress values from a series of timeframe 

length (one day, two days, three days, six days, nine days and twelve days). Since new 

maximum values are verified by various timeframe lengths, corresponding EVDs can be 

defined by Equations (6.6) and (6.7). Mean value and standard deviation of daily 

maximum stress can be calculated from daily maxima record during monitoring period. 

Figure 6.3 shows distribution of PDFs for the selected timeframe lengths for the sensor 

CH_19 in span 2. It is seen that the shapes for 2 day and 3 day maxima EVDs experience 

large changes than daily maxima EVD, which indicates daily maximum values fluctuate 

routinely in a short period. The EVDs are better defined for longer timeframe, such as 6 

days, 9 days and 12 days, the shapes for these timeframes are very similar. (Messervey, 

2009) 

      Table 6.2 reports the EVD parameters on different timeframes for sensor CH_18. The 

9 day length of timeframe is selected as the most appropriate timeframe length because it 
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has lower value of coefficient of variation than the others and maximizes number of 

available daily maxima observations. Another approach can be applied is to compare the 

experimental cumulative frequency with the CDF of an assumed theoretical distribution. 

Figure 6.4 displays empirical cumulative distribution function and the best fit Type I 

EVD for sensor CH_19 in span 2. It is seen that the selection of optimum timeframe of 

EVD is reasonable although the amount of extreme data is limited. 

      The lifespan of the bridge is defined as 75 years and the bridge was opened to traffic 

in 1961, so there are 32 years left since the year of 2004 when monitoring program 

started. Table 6.3 has the results for the 9 day and 32 year prediction parameters of the 

type I Gumbel distribution. Figure 6.5 shows the transformation from 1 day and 9 day 

timeframe to 32 year EVDs respectively. It also reports that the 32 year predicted EVD 

for 9 day timeframe of EVD has a smaller mean value and standard deviation than those 

of daily timeframe.  

      The 9 day EVDs for sensors CH_17 to CH_20 are illustrated in Figure 6.6. Sensor 

CH_17 has greater mean value than the other three sensors which means the girder 

installed with sensor CH_17 is afforded much more load than the other three girders. For 

sensor CH_20, it has the lowest standard deviation but similar mean value as sensor 

CH_19. The impact of the selection of 9 day maxima EVD as the optimum one is 

illustrated in Figure 6.7 which shows the transformation of daily maxima EVDs to 32 

year EVDs for four investigated sensors. It is shown that sensor CH_17 has a much 

higher mean value for 9 day maxima than the other sensors and its mean of 32 year EVD 

is also the highest. The mean maximum stress values for the other three sensors are 
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nearly close prior to transform, but the variation of the means between these three sensors 

increases after the transformation due to different standard deviations which increase in 

proportional to the location factors. 

6.3.5 Variation of parameters for EVDs 

      Since the 9 day timeframe is selected as the optimal choice for EVD, the variety of 

mean and standard deviation for 9 day EVD is estimated by observations. Figures 6.8 and 

6.9 display how the mean and standard deviation will change with the number of 

observations, respectively. Both of these figures indicate that the mean and standard 

deviation fluctuate in the scale of observation times.  

6.3.6 Two approaches applied in the reliability analysis 

      Two methodologies (Messervey, 2009) which are error-based and treating 

monitoring-based parameters as random variables can quantify the uncertainty of 

characterizing live load distribution.  

6.3.6.1 Monitoring based distribution parameters as random variables approach 

     During the process of obtaining live load data, the occurrence of errors is very likely 

to happen. How to account for the uncertainty of error into live load defined as a random 

variable will make great effect on the value of the reliability index. The mean of the mean 

maximum stress value ߤ௒೙ in a selected timeframe is computed by Equations (6.7) and 

(6.8). The mean of its standard deviation ߪ௒೙ equals standard deviation of the maximum 

stress in the selected timeframe. Regarding to variability of mean ߤ௒೙ and standard 

deviation ߪ௒೙, it is can be estimated by Equations (6.10) to (6.13) with the assumption 

that these two parameters are approximately equivalent when the parameters are 
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proportional to the amount of available monitoring data. Both the random variables ߤ௒೙ 

and ߪ௒೙  are treated as normally distributed, the parameters ߤ௒೙  and ߪ௒೙  defined as the 

parameters to determine the PDF distributions of EVDs are computed according to the 

Type I Gumbel distribution characterization, which can be used to transform the 

distribution to any timeframe. 

      The performance function of this approach is described as 

݃ ൌ ܴ െ ஽ௌܮ െ ஽஼ܮ െ  ௅                                                  ሺ6.14ሻܮ

௅ܮ

ە
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௒೙ߪ ൜
ఙೊ೙ߤ
ఙೊ೙ߪ

 

It is defined that the two parameters themselves are random variables with computed 

mean and standard deviation. 

      Because ߤ௒೙ and ߪ௒೙ are both random variables, the reliability index derived from this 

approach is also a random variable. A Monte Carlo simulation is conducted to 

incorporate the uncertainty of the two parameters into the reliability analysis. The 

simulation is conducted 2000 iterations to get 2000 values of the reliability indices. 

Figure 6.10 shows the histogram of the reliability index simulated from collected live 

load data in sensor CH_19.  

6.3.6.2 Error based approach 

      In order to quantify the uncertainty of error related with the available monitoring data 

and selected observation timeframe separately, this approach considers the effect of error 

as two additional terms. The performance function for the bridge is described as 
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݃ ൌ ܴ െ ஽ௌܮ െ ஽஼ܮ െ ൫ܮ௅ ൅ ௢௕௦ߝ ൅  ௧௜௠௘௙௥௔௠௘൯                                   ሺ6.15ሻߝ

      Where R indicates the member resistance, ܮ஽ௌ means the dead load caused by steel, 

 ௅ means the monitoring-based EVD liveܮ ,஽஼ means the dead load caused by concreteܮ

load, ߝ௢௕௦ is the error term associated with the available data, ߝ௧௜௠௘௙௥௔௠௘ is the error term 

associated with timeframe of EVD. All the terms excluding ܮ௅ are assumed as normally 

distributed. The nominal steel strength as mentioned is 345 MPa (50 ksi), but 

probabilistic values have to be determined. Strauss et. al have done an extensive research 

to exam the steel yield strength, tensile strength and their correlation of the probabilistic 

models (Strauss A et. al, 2006) Based on the investigations from Strauss et al., the 

probabilistic descriptor for the I-39 Northbound Bridge is derived as having a mean value 

of 380 MPa (55.11 ksi) and a standard deviation of 26.6 MPa (3.86 ksi), which are 

symbolized as ߤோ  and ߪோ . The mean values for dead load stress caused by steel and 

concrete are ߤ஽ௌ ൌ ஽஼ߤ  and ܽܲܯ 116.3 ൌ  respectively. The coefficients of ,ܽܲܯ 108.8

variation for the resistance and dead load (concrete and steel included) are 0.07 and 0.04, 

respectively. So the standard deviations for resistance and dead load are computed as: 

ோߪ ൌ 380 ൈ 0.07 ൌ ܽܲܯ 26.6 ஽ௌߪ , ൌ 116.3 ൈ 0.04 ൌ ܽܲܯ 4.65 ஽஼ߪ , ൌ 108.8 ൈ

0.04 ൌ  Both the error terms are taken a mean value of zero which means the .ܽܲܯ 4.35

two error types have the same weighted average value zero indicating the same 

probability of overestimating or underestimating the magnitude of live load. The standard 

deviations of two error terms are computed as the product of the coefficient of variation 

and average daily maximum stress value ߤ௒೙, which can be obtained by Equations (6.6) 

and (6.8). The coefficients of variation are assumed as 0.22 and 0.03, respectively, which 
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are derived based on Messervey’s research. Table 6.4 reports all the random variables 

regarding to their distribution types, parameters in terms of mean and standard deviation, 

symbols and sources used in the error based approach.  

6.3.6.3 Results 

     The reliability analysis is conducted on both component and system level.  The system 

models are created based on the different failure modes: First, system model I - Series 

system, the most conservative one which assumes that any failure of the girder will 

induce system failure; Second, system model II – Series-Parallel system I, which is 

assumed any two girder fail will result in system failure; Third, system model III – 

Series-Parallel system II, assume the failure of any three girders will induce failure of the 

system. The three system models are presented from Figures 6.11 to 6.13.  

6.3.6.3.1. Reliability analysis by using the first approach 

     For the component level analyzed by using the first approach, Figure 6.14 indicates 

the reliability indices for the four girders installed with sensors CH_17, CH_18, CH_19 

and CH_20 from year 2004 until the end of its lifespan of 75 years. It is seen that the 

girder with sensor CH_17 has the lowest value of reliability index from the year of 

monitoring until the end of lifespan. The reliability indices of the other three girders are 

very close at the beginning, but the girder with sensor CH_20 decreases the most rapidly 

during the lifetime and the girder with sensor 18 is the most reliable one. Figure 6.15 

shows the system reliability indices for the three models for the rest of its lifetime. Series-

Parallel system II assuming the failure of any three girders has the highest reliability 

index value among the models during the lifetime, while the reliability index for series 
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system is much lower than the other two models. Figures 6.16 to 6.18 compare the 

component reliability indices of four girders with each system model, respectively. It is 

shown that the time-variant reliability index of series system is the same as the girder 

with sensor CH_17. As the most critical member with the lowest reliability index, the 

girder installed with sensor CH_17 should receive the monitoring priority. Figures 6.17 

and 6.18 display system reliability indices of the two series-parallel systems are nearly 

the same as sensor CH_19 and CH_20.  

6.3.6.3.2. Reliability analysis by using the second approach 

      Figures 6.19 and 6.20 show the time-variant reliability indices of the four girders 

estimated by the second approach during the rest of its lifetime on component and system 

level, respectively. The results obtained from the two figures are very close to the ones by 

the first approach. Figures 6.21 and 6.22 compare reliability indices estimated by using 

two approaches at the component and system level, respectively.  
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                   Figure 6.1 Structural response of strain gage CH_19 on July 29, 2004 
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Figure 6.2 The top view and sensor locations on the I-39 Northbound Wisconsin River 

Bridge (From Mahmoud et al. 2005) 
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Figure 6.3 Distribution of PDFs for the selected timeframe lengths for the sensor CH_19  
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             Figure 6.5 Simulation based daily and 9 day EVDs and their associated 32 yr EVD 

 



128 
 

10090807060504030

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

Stress (MPa)

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n

CH_17

CH_18

CH_19

CH_20

 

                          Figure 6.6 The 9 day EVDs for sensors CH_17 to CH_20 
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Figure 6.7 9 Day and associated 32 ys. EVDs for sensor CH_17, CH_18, CH_19 and 

CH_20 
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Figure 6.8 Mean of the maximum stress value vs. number of observations for sensor 

CH_19 

 

Figure 6.9 Standard deviation of the maximum stress value vs. number of observations 

for sensor CH_19 
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                   Figure 6.10 Reliability index distribution for sensor CH_19 

 

 

 

 

 

 

 

 

 

 

 

3.9 3.95 4 4.05 4.1 4.15 4.2 4.25 4.3
0

1

2

3

4

5

6

7

Reliability Index of Sensor CH 19, β

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n

 

 

Number of observations: 2000
Interval: 0.0005



132 
 

                   

g1 g2 g3 g4

 

                                Figure 6.11 System model I: series system 
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                           Figure 6.12 System model II: series-parallel system I 
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                      Figure 6.13 System model III: series-parallel system II 
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Figure 6.14 Component reliability evaluation by the first approach for sensors CH_17, 

CH18, CH_19 and CH_20 
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Figure 6.15 System reliability evaluation by the first approach for three system models 

 

Figure 6.16 Component reliabilities of four sensors vs. series system reliability 
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Figure 6.17 Component reliabilities of four sensors vs. series-parallel system I reliability 

 

Figure 6.18 Component reliabilities of four sensors vs. series-parallel system II reliability 
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Figure 6.19 Component reliability evaluation by the second approach for sensors CH_17, 

CH18, CH_19 and CH_20 
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Figure 6.20 System reliability evaluation by the second approach for three system models 
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                  Figure 6.21 Comparison between two approaches on component level 
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                   Figure 6.22  Comparison between two approaches on system level 
 

 

 

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30 31 32

Sy
st

em
 re

lia
bi

lit
y 

in
de

x 
β s

ys

Time after monitoring at year 2004 (t) [years]

Error based

Monitoring based

Series  System

Series - Parallel System I

Series - Parallel System II



140 
 

Table 6.1 Statistical information of daily maximum live load stress for the four estimated 

strain gages 

          

Descriptor CH_17 CH_18 CH_19 CH_20 

Number of days monitored 82 82 82 82 

Average daily maximum stress, μYn (Mpa) 56.03 35.23 31.47 26.82 
Std. dev. of the daily maximum stress, σYn 

(Mpa) 9.24 5.20 6.83 11.90 

Maximum recorded daily maximum stress 
(Mpa) 76.39 48.09 54.43 56.81 

 

Table 6.2 Parameters for selected timeframes of EVDs for sensor CH_18 

            

  
Average daily 

maximum stress, 
μYn (Mpa) 

Std. dev. of the 
daily maximum 
stress, σYn (Mpa) 

Coefficient 
of variation  

Location 
factor 

Shape 
factor 

1 Day EVD 35.23 5.20 0.15 32.89 4.06 

2 Day EVD 38.10 4.44 0.12 36.10 3.46 

3 Day EVD 39.34 4.32 0.11 37.40 3.37 

6 Day EVD 41.93 3.36 0.08 40.41 2.62 

9 Day EVD 43.82 2.96 0.07 42.49 2.30 

12 Day EVD 43.96 3.29 0.07 42.47 2.57 
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Table 6.3 9 day and 75 year prediction parameters of the type I Gumbel distribution 

            

  Sensor CH_17 CH_18 CH_19 CH_20 

Daily EVD 
Mean of mean (Mpa) 56.026 35.230 31.471 26.818 

Mean of standard 
deviation (Mpa) 9.237 5.201 6.833 11.897 

9-day EVD 
Mean of mean (Mpa) 71.047 43.817 42.516 46.397 

Mean of standard 
deviation (Mpa) 5.654 2.955 4.753 6.135 

32-year EVD 

Mean of mean (Mpa) 102.589 60.303 69.029 80.622 

Mean of standard 
deviation (Mpa) 5.654 2.955 4.753 6.135 

 
Table 6.4 Random variables used in the error based approach 

          

Random variable Notation Distribution type Parameters (Mpa) Source 

Steel yield strength R Normal (380, 26.6) Frangopol, 
et.al (2008) 

Dead load of steel LDS Normal (116.3, 4.65) Frangopol, 
et.al (2008) 

Dead load of 
concrete LDC Normal (108.8, 4.35) Frangopol, 

et.al (2008) 

Available data 
error εobs Normal (0, 0.22μYn) Estimated 

Observation 
timeframe error εtimeframe Normal (0, 0.03μYn) Estimated 
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 CHAPTER 7        

CONCLUSIONS 

7.1. Conclusions 

The following conclusions can be drawn from this study: 

1. The time-variant reliability of structural members may decrease, remain the same or 

even increase, depending on member forces, material properties, cross section areas, 

deterioration rates, component ductility and structural configuration. 

2. Member forces may experience sudden changes due to force redistribution after 

failure of one or more components. 

3. The component with the lowest reliability index in a weakest-link system should 

receive monitoring priority. Conversely, in parallel fail-safe systems, the most 

reliable component should receive monitoring priority. 

4. The monitoring data can be used to develop prediction models for fatigue sensitive 

structures by changing the effective stress range and the number of cycles per year. 

5. The application of statistics of extremes combined with the monitoring data is useful 

in process of handling a large amount of data in bridge reliability analysis. 

6. The selection of most appropriate observation timeframe for the PDF of EVDs 

depends not only on the numbers of available maximum value observations, but also 

on standard deviation of EVD. 
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7.2. Notations 

CHAPTER 2 

�����,�: Component performance function under limit state i 

�����,�: Resistance of component with limit state i 

	����,�: Load effect associated with limit state i 


�: Probability of failure 

�: Cumulative Gaussian probability distribution function 


: Reliability index 

��: Mean value of resistance 

��: Mean value of load effect 

��: Standard deviation of resistance 

��: Standard deviation of load effect 

��: Coefficient of variation (COV) of component resistance 

��: Coefficient of variation (COV) of component load effect 


�(���): Probability of failure of the system 


�(���): Survival probability of a system 

��: The ith failure mode 

��: Event associated with the occurrence of ith failure mode 

CHAPTER 3 

��(�): Performance function of failure mode i at time t 

��(�))�: Component resistance of failure mode i at time t 
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(�(�))�: Load effects of failure mode i at time t 

CHAPTER 4 

��: Deterioration rate 

���: Load increase rate 

�: Modulus of elasticity 


: Vertical load 

��(�): Mean value of vertical load P at time t 

��(� − 1): Mean value of vertical load P at time t-1 

��(0): Mean value of vertical load P at time 0 

��(�): Standard deviation of vertical load P at time t 

��(� − 1): Standard deviation of vertical load P at time t-1 

��(0): Standard deviation of vertical load P at time 0 

 !��: Coefficient of variation (COV) of vertical load P 

": Horizontal load 

�#(�): Mean value of horizontal load H at time t 

�#(� − 1): Mean value of horizontal load H at time t-1 

�#(0): Mean value of horizontal load H at time 0 

�#(�): Standard deviation of horizontal load H at time t 

�#(� − 1): Standard deviation of horizontal load H at time t-1 

�#(0): Standard deviation of horizontal load H at time 0 

 !�#: The coefficient of variation (COV) of horizontal load H 
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$�(�): Cross section area of the component i at time t 

$�(� − 1): Cross section area of the component i at time t-1 

$�(0): Cross section area of the component i at time 0 

��%(�): Mean of the resistance of component at time t  

(�&')�: Mean of the random yield stress Fy of component i  

��%(�): Standard deviation of the resistance of component i  at time t  

��%(� − 1): Standard deviation of the resistance of component i  at time t - 1 

��%(0): Standard deviation of the resistance of component i  at time 0 

CHAPTER 5 

$: Fatigue detail coefficient 

	(): Equivalent stress range 

*�: Number of cycles accumulated at stress 	� 

�: Fraction of life consumed by exposure to the cycles at the different stress levels 

+�: Critical damage accumulation index 

�(,): Performance function 

, = {,/, ,0, … , ,2}
4: Vector of random variables 

�5: Mean value of load effect 

�5: Standard deviation of load effect 

6: Monitored load effect 

�7: Mean value of monitored load effect 

�7: Standard deviation of monitored load effect 
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�7%
: Mean value of monitored load associated with sensor i 

�7%
: Standard deviation of monitored load associated with sensor i 

8�: Number of cycles 

9�: Sensor error 


�,),�
� : Component i fatigue reliability integrated with monitoring sensor reading 

��: Allowed effective stress range regarding AASHTO guidelines 

��: Standard deviation of the allowed effective stress range 

:: COV of the allowed effective stress range 

�7%

� : Mean value of effective stress range associated with sensor i 

�7%

� : Standard deviation of the effective stress range associated with sensor i 

;�: Factor assigned to sensor errors 

<: Material constant 

△ >: Nominal fatigue resistance 

8?: Fatigue life in terms of cycles to failure 

△: Miner’s critical damage accumulation index 

@�: Cut-off threshold 

A: Location parameter of lognormal’s PDF 

B: Scale parameter of lognormal’s PDF 

�(	): Mean of the stress range 

�CD(	): Standard deviation of the stress range 

E: Scale parameter of Weibull distribution 
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: Shape parameter of Weibull distribution 

A: Rate parameter of Gamma distribution 

F: Shape parameter of Gamma distribution 

*�: Number of observations in the predefined stress-range bin 

8?�?GH: Total number of observations during the monitoring period 

	(�: Number of cycles for each stress range 

$�II: Average Daily Truck Traffic 

8(J): Cumulated stress number of cycles 

J: Number of years 

E: Traffic increase rate per year 

ΦL/(∙): Inverse standard normal cumulative distribution function 

9: Error factor of loading considered as a random variable 

8�NO: Number of cycles to failure 

8GPQ: Average daily number of stress cycles 

�: Component fatigue life 

 $>�: Constant amplitude fatigue limit 

8RS&T: Number of cycles corresponding to the CAFL 


T: Lower bound for reliability index 


U: Upper bound for reliability index 

CHAPTER 6 

*: Sample size 
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,: Initial random variable 

>V(W): Initial distribution function 

X: Extreme value 

X2: Maximum values of random variables (X1, X2,…, Xn) 

E2: Shape factor of type I Gumbel distribution 

Y2: Characteristic value of type I Gumbel distribution 

�Z[: Mean value of maximum values X2 

�Z[: Standard deviation of maximum values X2 

\: Euler’s number 

�]^[ : Standard deviation of mean value of maximum values X2 

�_^[ : Standard deviation of standard deviation of maximum values X2 

<: Number of observations of the maximum value 

�]^[ : Mean of mean value of maximum values X2 

�_^[ : Mean of standard deviation of maximum values X2 

�`�: Dead load caused by steel 

�`R: Dead load caused by concrete 

�T: Monitoring-based EVD live load 

a�b�: Error term associated with the available data 

a?��)�(G�): Error term associated with timeframe of EVD 

�`�: Mean value for dead load stress caused by steel 

�`R: Mean value for dead load stress caused by concrete 
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�`�: Standard deviation for dead load stress caused by steel 

�`R: Standard deviation for dead load stress caused by concrete 
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