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ABSTRACT 

The primary objective of the work presented in this dissertation was to evaluate the 

change patterns, i.e., a gradual change known as the trend, and an abrupt change known as the 

shift, of multiple hydro-climatological variables, namely, streamflow, snow water equivalent 

(SWE), temperature, precipitation, and potential evapotranspiration (PET), in association with 

the large-scale oceanic-atmospheric climate signals. Moreover, both observed datasets and 

modeled simulations were used to evaluate such change patterns to assess the efficacy of the 

modeled datasets in emulating the observed trends and shifts under the influence of uncertainties 

and inconsistencies. A secondary objective of this study was to utilize the detected change 

patterns in designing data-driven prediction models, e.g., artificial neural networks (ANNs), 

support vector machines (SVMs), and Gaussian process regression (GPR) models, coupled with 

data pre-processing techniques, e.g., principal component analysis (PCA) and wavelet transforms 

(WTs). The study was not solely limited to the hydrologic regions of the conterminous United 

States (U.S.); rather it was extended to include an analysis of northern India to appraise the 

differences in the spatiotemporal variation on a broader scale.  

A task was designed to investigate the significant spatiotemporal variations in continental 

US streamflow patterns as a response to large-scale climate signals across multiple spectral 

bands (SBs). Using non-parametric (long-term) trend and (abrupt) shift detection tests, coupled 

with discrete wavelet transform, 237 unimpaired streamflow stations were analyzed over a study 

period of 62 years (1951 to 2012), looking at the water year and seasonal data, along with three 

discrete SBs of two, four, and eight years. Wavelet coherence analysis, derived from continuous 

wavelet transform, determined the association between the regional streamflow patterns and 

three large-scale climate signals, i.e., El Niño Southern Oscillation (ENSO), Pacific Decadal 
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Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO), across continuous SBs 

ranging from two to 16 years. The results indicated significant positive (negative) trends and 

shifts in the northeastern and north-central (northwestern) regions with an increase in the number 

of stations as the SB durations increased. The spatiotemporal association between regional 

streamflow and climate signals varied significantly (from no correlation, Rn
2 ~ 0, to perfect 

correlation, Rn
2 ~ 1.0) even amongst adjacent regions. Among the climate signals, ENSO showed 

the highest association (Rn
2 ~ 1.0), having a consistent phase relationship with regional 

streamflow patterns, especially in the higher SBs. PDO (with the least influence among the three 

signals) and AMO showed stronger associations, in the lower SBs. These results may help 

explain the teleconnections between the climate signals and the US streamflow variations across 

multiple SBs, which may lead to improved regional flow regulations. The comparison among 

several data-driven models, e.g., ANN, SVM, and GPR models, preceded by PCA and WT, 

produced comparable results with significant accuracy (with R2 above 0.90) in short-term 

prediction of streamflow. 

Later, the correlations between the western U.S. snow water equivalent (SWE) and the 

two major oceanic-atmospheric indices originating from the Pacific Ocean, namely, ENSO and 

PDO, were evaluated using continuous wavelet transform and its derivatives. Snow Telemetry 

(SNOTEL) data for 1 April SWE from 323 sites (out of which 258 are in six hydrologic regions) 

were obtained for a study period of 56 years (1961 2016). The results showed that ENSO had a 

much higher influence than PDO throughout the western U.S. SWE across the study period. Both 

ENSO and PDO showed a higher correlation with SWE at multiple timescale bands across 

different time intervals, although significant intervals in the higher timescales were of longer 

duration. ENSO showed a higher correlation in the 10-to-16-year band across the entire study 
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period as well as in the lower timescales. PDO showed a higher correlation below the 4-year 

band. The relative phase relationship suggested that ENSO led SWE, with certain lags, while 

both were moving in the same direction in many instances. The lag-response behavior of SWE 

and PDO was not found to be uniform. Regional analyses, based on the western U.S. hydrologic 

regions, suggested significant variation across adjacent regions in terms of their correlation with 

ENSO/PDO. Association with ENSO was also observed to be higher compared to PDO among 

the regions. Regions close to the ocean and at lower elevation showed higher correlation 

compared to the inland regions with higher elevation. 

The influence of ENSO on the north Indian temperature, precipitation, and PET change 

patterns was evaluated during the monsoon season across the last century. Trends and shifts in 

146 districts were assessed using non-parametric statistical tests. To quantify their temporal 

variation, the concept of apportionment entropy was applied to both the annual and seasonal 

scales. Results suggest that the El Niño years played a greater role in causing hydro-

climatological changes compared to the La Niña or neutral years. El Niño was more influential in 

causing shifts compared to trends. For certain districts, a phase change in ENSO reversed the 

trend/shift direction. The all-year (century-wide) analysis suggested that the vast majority of the 

districts experienced significant decreasing trends/shifts in temperature and PET. However, 

precipitation experienced both increasing and decreasing trends/shifts based on the location of 

the districts. Entropy results suggested a lower apportionment of precipitation compared to the 

other variables, indicating an intermittent deviation of precipitation pattern from the generic 

trend. The findings may help understand the effects of ENSO on hydro-climatological variables 

during the monsoon season. Practitioners may find the results useful, as monsoon, among the 

Indian seasons, experience the largest climate extremes. 
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A final task was designed that evaluated Coupled Model Intercomparison Project 5 

(CMIP5) 

and persistence in their data distributions. A total of 41 temperature and 25 precipitation CMIP5 

simulation models across 22 grid cells (2.5° x 2.5° squares) within the Colorado River Basin 

were analyzed and compared against the Climate Research Unit Time Series (CRU-TS) observed 

datasets over a study period of 104 years (from 1901 to 2004). Both the model simulations and 

observations were tested for shifts, and the time series before and after the shifts were analyzed 

separately for trend detection and quantification. Effects of several types of persistence were 

accounted for prior to both the trend and shift detection tests. The mean significant shift points 

(SPs) of the CMIP5 temperature models across the grid cells were found to be within a narrower 

range (between 1960 and 1970) compared to the CRU-TS observed SPs (between 1930 and 

1980). Precipitation time series, especially the CRU-TS dataset, had a lack of significant SPs, 

which led to an inconsistency between the models and observations since the numbers of grid 

cells with a significant SP were not comparable. The modeled CMIP5 temperature trends, under 

the influence of shifts and persistence, were able to match the observed trends quite satisfactorily 

(within the same order and consistent direction).  

Unlike the temperature models, the CMIP5 precipitation models detected the SPs earlier 

than the observed SPs found in the CRU-TS data. The direction (as well as the magnitude) of 

trends, before and after significant shifts, were found to be inconsistent between the modeled 

simulations and observed precipitation data. Shifts, based on their direction, were found to either 

strengthen or neutralize pre-existing trends both in the model simulations as well as in the 

observations.  
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The results also suggest that the temperature and precipitation data distributions were 

sensitive to different types of persistence. Such sensitivity was found to be consistent between 

the modeled and observed datasets. The study detected certain biases in the CMIP5 models in 

detecting the SPs (a tendency of detecting shifts earlier or later than the observed shifts) and also 

in quantifying the trends (overestimating the trend slopes). Such insights may be helpful in 

evaluating the efficacy of the simulation models in capturing observed trends under uncertainties 

and natural variabilities. 
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CHAPTER 1: INTRODUCTION 

1.1. Research Background 

Climate warming has affected hydrologic processes in various ways  one of them 

involves changes in the behavior and intensification of the hydrologic cycle (Durdu, 2010). The 

adverse consequences of these changes have increased under the changing climate, as the rapid 

increase in population stresses limited water resources (Wu et al., 2013). A detailed description 

of such adversities can be found in the assessment reports (AR5 and AR6) of the 

Intergovernmental Panel on Climate Change (IPCC) (IPCC, 2014 and 2019). Water managers 

have expressed concerns regarding the aftermath associated with access to fresh water as a 

response to the change in climate (Dawadi and Ahmad, 2013; Kandissounon et al., 2018). In a 

study of global and continental flow behaviors in relation to temperature increase by Labat et al. 

(2004), climate change was found to have a severe impact on North American streams. Studies 

indicate a considerable change in the intensity of flow behavior across the United States (U.S.), 

especially in the last century (U.S. EPA, 2012). As a consequence of the increasing temperature, 

flow regimes of the northern rivers in the U.S. have experienced major changes (Boyer et al., 

2010). Hence, evaluating the change in flow behavior, along with other hydrologic variables, has 

become crucial to determining the effects of climate variability and change on limited water 

resources (Birsan et al., 2005). Changes in the intensity and frequency of flow events can 

potentially endanger critical infrastructures and the natural environment (Burn et al., 2010). 

Besides restricting access to potable water for future generations, with the escalating growth in 

the energy sector, the challenge becomes even more critical for water managers (Melesse et al., 

2011; Bukhary et al., 2018). Therefore, quantification of streamflow change behavior across the 
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U.S. can be of utmost interest for a safe and sustainable future. A more recent approach focuses 

on the integration of multiple non-parametric methods to render better results, not only in terms 

of detection of change patterns but also to predict their behavior using data-driven models (Ahn 

and Palmer, 2015; Belayneh et al., 2016; Tiwari and Adamowski, 2017). Studies suggest that 

application of state-of-the-art machine learning techniques (intelligent models) can significantly 

increase the accuracy of hydro-climat

2017). Coupling of pre-processing techniques, e.g., principal component analysis (PCA) and 

wavelet transforms (WTs), with intelligent models has also been found to increase the accuracy 

of time-series forecasting (Belayneh et al., 2016).  

Among the various hydro-climatological variables, snow water equivalent (SWE) has 

been used as a common measurement of the snowpack. According to the Natural Resources 

Conservation Service (NRCS), SWE refers to the amount of water that is 

snowpack

instantaneous melting of the entire snowpack. Hence, snowpack in terms of SWE is considered a 

vital source of runoff in the water supply system across North America (Hunter et al., 2006; 

McCabe and Dettinger, 2002). The relative contributions of snowpack to water yield are much 

greater in the mountainous regions of the western U.S. than many other regions of the country. In 

these regions, approximately 50%-70% of the annual precipitation falls as snow, and is stored 

during the winter as snowpack (Palmer, 1988; Serreze et al., 1999); eventually, it affects the 

runoff of the succeeding seasons. The beginning of April is the time when snow courses attain 

maximum SWE. The 1 April SWE is used extensively in the western U.S. as an estimate to 

forecast the spring-summer runoff, and ultimately can be used to predict the annual runoff 

behavior in the surrounding regions. Understanding the relationships among the factors 
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influencing SWE could be beneficial to forecasters and water managers dealing with critical 

infrastructure management and irrigation practices (Hunter et al., 2006). 

Studies on extreme climate events, i.e., droughts and floods, across the world, have found 

that such extremes are likely to be associated with the anomalies in zonal sea surface temperature 

(SST) fluctuations observed in the oceans. In turn, these fluctuations, coupled with the changes 

in global and regional atmospheric pressure systems, formation of surface winds, and moisture 

sources & evaporative demand, cause severe changes in the temperature and precipitation 

patterns (Diffenbaugh et al., 2015; Seager et al., 2015). Studies also suggest that these extremes 

are likely being aggravated by global warming (Williams et al., 2015; Yoon et al., 2015). The 

recent California drought has been of great interest to many climate researchers, (e.g., Griffin 

and Anchukaitis, 2014; Robeson, 2015). A study by Wei et al. (2016) identified major 

atmospheric circulation patterns affecting precipitation in California. However, the authors 

indicated that the contributions from the various components of the hydrologic cycle are yet to 

be properly understood. As a result, besides analyzing SST anomalies and precipitation patterns, 

recent studies have incorporated hydro-climatological variables like moisture sources, 

evaporative demand, and temperature in order to understand these climate extremes more 

thoroughly (Shukla et al., 2015; Pathak et al., 2016; Wei et al., 2016). In addition, various 

combinations of these variables have been found to show significantly different and sometimes 

inverse correlations with certain climate extremes. A few cases  for example, lower moisture 

with higher temperature  found to affect the extremes even more severely (Shukla et al., 2015). 

Hence, quantifying the changes in various hydro-climatological variables as a response to large-

scale oceanic-atmospheric climate signals has become a significantly important topic of research 

for regional water managers and predictive climate data modelers.  
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1.2. Research Motivation 

Studies show that changes in streamflow in the U.S. have experienced significant 

variations depending on the type of flow measurement, e.g., low flow, moderate flow, and peak 

flow (McCabe and Wolock, 2002). The variations were also found to be significant across 

different regions (Groisman et al., 2001) and at different temporal scales, e.g., annual and 

seasonal flows (Small et al., 2006). Studies also suggest that many of the traditional trend 

detection tests may not be resilient against nonlinearity (McBean and Motiee, 2006). Hence, 

those tests are often coupled with other analytical tools that are capable of dealing with nonlinear 

trends (Nalley et al., 2012), since such trends are relatively frequent in hydro-climatological data 

distributions. Over the past few decades, wavelet transforms (WTs), which can be either discrete 

or continuous in nature, have been used as an analytical tool in several studies that involved 

feature detection in frequency components (Partal and Küçük, 2006). Discrete wavelet transform 

(DWT), more precisely multi-resolution analysis (MRA), a derivation from DWT, has been used 

for spectral analysis in signal processing with the ability to decompose a signal into a set of high- 

to low-frequency components, referred to as spectral bands (SBs) in the following sections, 

which can assist in the analyses to detect the underlying features. A classification of streamflow 

into distinct hydro-climatic categories was provided by Smith et al. (1998) using DWT. 

Coulibaly and Burn (2004) explored the dynamic link between different climate signals and 

streamflow in the Northern Hemisphere by using continuous wavelet transform (CWT). The new 

WT analyses methods used in the field of hydrology have been reviewed and explained by Labat 

(2005). Pagano and Garen (2004) studied the western U.S. streamflow and suggested the use of 

WT for time-series analysis across multiple SBs for a better understanding of the less frequent 
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technique compared to classical methods, e.g., Fourier transform (FT). Bayazit and Aksoy 

(2001), Drago and Boxall (2002), and Gaucherel (2002) also explored the use of WTs (both 

CWT and DWT) on nonstationary hydro-meteorological data at multiple temporal scales and 

recommended the WT approach over the traditional FT or derivatives of FT.  Based on the 

documented literature, it was found that WT serves as a robust analytical tool in evaluating the 

change in hydro-climatological data. To explore the coupling of DWT and CWT, on a 

continental scale, to determine the association between large-scale oceanic-atmospheric climate 

signals across multiple temporal resolutions, and to utilize the detected associations in predictive 

models, was considered a major motivation of the study. Studies suggest that application of state-

of-the-art machine learning techniques (intelligent models) can significantly increase the 

accuracy of hydro-

of pre-processing techniques, e.g., PCA and WT, with intelligent models has also been found to 

increase the accuracy of time-series forecasting (Belayneh et al., 2016). Hence, this study also 

tested the efficacy of several data-driven models preceded by PCA and WT.  

As with studies dealing with snow derived data, besides analyzing the direct influence of 

climate on the western U.S. snowpack, studies have also examined the role of major climate 

indices on the hydrology of the western United States (Carrier et al., 2016; Kahya and Dracup, 

1993). The El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), 

both resulting from the Pacific Ocean, are considered to be two of the major large-scale oceanic-

atmospheric climate signals that affect the western U.S. hydrology (Barnett et al., 1999; Beebee 

and Manga, 2004). Shifts in pressure cell locations and changes in their intensities cause trade 

winds to get stronger or weaker. This results in changes in the locations and velocities of oceanic 

currents  both of these cause upwelling of colder water from the bottom of the ocean, and move 
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warmer ocean-surface-water in specific directions, for example, east or west near the equator in 

the case of ENSO. Hence, SST fluctuations in multiple locations of the Pacific Ocean are 

initiated. The variations in pressure cells, coupled with the SST fluctuations, affect the direction, 

movement, and productivity of the storm tracks by affecting rates of oceanic evaporation and 

atmospheric moisture content. ENSO, a natural cycle observed in the eastern Pacific Ocean with 

a periodicity of two to seven years, alternates between two distinct phases, El Niño (positive or 

warm phase) and La Niña (negative or cold phase) (Redmond and Koch, 1991). PDO, which 

occurs on a timescale of 25 to 50 years, originates from the North Pacific Ocean, has a larger 

zone of influence compared to ENSO (Trenberth and Fasullo, 2007). Similar to ENSO, PDO also 

varies between warm and cold phases. Studies observing climate indices have also emphasized 

the teleconnection between the oceanic climate systems and the global hydrologic processes 

(Coscarelli et al., 2013; Sagarika et al., 2016). SST fluctuation alters the availability of moisture 

from the oceanic surface currents and eventually affects the formation of storm systems. Hence, 

SST fluctuations have the potential to influence hydro-climatological variables such as 

precipitation, snowpack, streamflow, runoff, and soil moisture. As a result, quantification of the 

associations between climate signals originating from the Pacific Ocean and the western U.S. 

SWE across multiple temporal resolutions was considered a major motivation of the study, since 

such an approach has not been adopted with snow derived data. 

Outside the U.S. region, more specifically in the Indian sub-continent, the India 

Meteorological Department has observed and recorded monsoon patterns for several decades and 

has developed multiple stochastic models to forecast the initiation, recession, and strength of the 

Indian Summer Monsoon Rainfall (ISMR). Out of the many different factors affecting ISMR, 

ENSO has been considered to be one of the most significant large-scale forces that influence the 
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behavior of ISMR (Ju and Slingo, 1995; Kumar et al., 1999). As mentioned earlier, ENSO is a 

natural cycle originated from the tropical Pacific with two distinct phases. It is represented by an 

index, which records the SST fluctuations originating from the strengthening and weakening of 

the trade winds (Tamaddun et al., 2017a). Each phase of ENSO can last from a few months to a 

year, and they occur every two to seven years. From 1950 to 2012, ISMR was found to be above 

average or around average in almost all the La Niña years (negative or cold phase). Contrarily, 

five of the most prominent droughts in India during that period coincided with the El Niño years 

(positive or warm phase) (Kumar et al., 2006). A monsoon followed by El Niño does not 

necessarily result in poor rainfall all the time; however, as studies suggest, there might be other 

climate and weather factors, e.g., the extent of Himalayan/Eurasian snow, which influences the 

circulation of monsoon (Kumar et al., 1999). Studies have also suggested that other 

complementary factors to ENSO may affect ISMR, e.g., the Indian Ocean Dipole, complex 

coupling and dynamics of multiple variables, and variations in heat flux over different land 

masses (Webster and Yang, 1992; Ashok et al., 2001; Wang et al., 2005). Therefore, providing 

an in-depth analysis of the change patterns in multiple hydro-climatological variables of India 

during the monsoon season as a response to the phases of ENSO was considered a major 

motivation of the study. 

1.3. Research Objectives 

The primary objective of the work presented in this dissertation was to evaluate the 

change patterns, i.e., a gradual change known as the trend, and an abrupt change known as the 

shift, of multiple hydro-climatological variables, namely, streamflow, snow water equivalent 

(SWE), temperature, precipitation, and potential evapotranspiration (PET), in association with 

the large-scale oceanic-atmospheric climate signals. Moreover, both datasets and modeled 
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simulations were used to evaluate such change patterns to assess the efficacy of the modeled 

datasets in emulating the observed trends and shifts under the influence of uncertainties and 

inconsistencies. A secondary objective was to utilize the detected change patterns in designing 

data-driven prediction models, e.g., artificial neural networks (ANNs), support vector machines 

(SVMs), and Gaussian process regression (GPR) models, coupled with data pre-processing 

techniques, e.g., PCA and WT. The study was not solely limited to the hydrologic regions of the 

conterminous U.S.; rather it was extended to include an analysis of northern India to appraise the 

differences in the spatiotemporal variation on a broader scale. To attain the aforementioned 

objectives, the study was divided into four distinct tasks.  

The first task detected the spatiotemporal trend and shift patterns of the conterminous 

U.S. streamflow across multiple frequency bands. Detection of change patterns across the 

frequency bands was expected to provide greater insight into the temporal variation of the 

streamflow patterns. Later, the changes in streamflow (along with their frequency bands) were 

associated with three large-scale oceanic-atmospheric climate signals, namely ENSO, PDO, and 

Atlantic Multi-decadal Oscillation (AMO). Later in this task, data-driven models were tested, 

preceded by PCA and WT, to evaluate the confidence in such models while predicting short-term 

streamflow behavior.  

The second task detected the multi-resolution spatiotemporal association between the 

western U.S. SWE and the large-scale oceanic-atmospheric climate signals originating from the 

Pacific Ocean, i.e., ENSO and PDO. Since both these signals originate from the Pacific Ocean, 

which is relatively in closer vicinity to the western U.S., compared to the Atlantic Ocean, AMO 

was excluded from the analyses. Similar to the first task, this task also hypothesized that the 
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salient features of the association between the western U.S. SWE and the climate signals were 

better explained in their frequency components. 

The third task extended the scope of the study by focusing on evaluating the trend and 

shift patterns of temperature, precipitation, and PET across northern India during the monsoon 

season. The change patterns were compared against the various phases of ENSO to weigh their 

influence on the Indian climate extremes. The spatiotemporal relationships among the variables, 

i.e., temperature, precipitation, and PET, were investigated as well across the last century. 

Moreover, this task also intended to determine the apportionment entropy, i.e., distribution of 

trends over the years or the months of a season, to provide greater insights into the trend 

quantification process.  

In the final task, observed and modeled (Coupled Model Intercomparison Project Phase 5 

 referred to as CMIP5 in the following sections) temperature and precipitation trends, for the 

Colorado River Basin, were compared under the influence of change (abrupt shift) points and 

several autocorrelation types (known as persistence in the hydrology literature) to determine the 

in the modeled datasets, and the obtained results may be helpful in adjusting the models, 

especially when used for predicting future scenarios. Choice of the appropriate model, among a 

large pool of available models for a particular region, can also be beneficial for regional water 

management. The formulations of each of the tasks were based on the following set of questions, 

which were supported by their respective research basis.  

Task 1: Multi-scale spatiotemporal change analysis and short term projection of the conterminous 

U.S. streamflow in response to large scale climate variability. 
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Research Questions: 

 What are the spatiotemporal trend and shift patterns of the conterminous U.S. streamflow 

in association with large-scale oceanic-atmospheric climate signals across multiple 

frequency bands? 

 How effective are data-driven models, e.g., ANN, SVM, and GPR, when coupled with 

data pre-processing techniques, e.g., PCA and WT, in predicting short-term streamflow 

behavior? 

Research Basis: Detection of trends and shifts across multiple frequency bands may provide a 

better understanding of the nature of the change patterns, especially when such changes have 

been found to be associated with the oscillatory behavior of large-scale oceanic-atmospheric 

climate signals such ENSO, PDO, and AMO. Since these signals contain multiple frequency 

components and alternating phases when changing over a long time, associating the streamflow 

change patterns with these signals across various frequency bands can be of significant 

importance. The detected intra-variation and inter-covariation between streamflow and the 

climate signals across multiple frequency bands may have the potential to improve the predictive 

ability of the data-driven models, e.g., ANN, SVM, and GPR, when coupled with pre-processing 

techniques and designed/optimized properly. 

Major Contributions: 

 Detection of trends and shifts of the conterminous U.S. streamflow in the original as well 

as decomposed time series of the water year and seasonal data using non-parametric 

statistical tests.  



11 
 

 Determination of spatiotemporal association between the regional streamflow and large-

scale oceanic-atmospheric climate signals originating from both the Pacific and Atlantic 

Oceans. 

 Testing of data-driven models coupled with data pre-processing techniques to predict 

short-term streamflow behavior. 

 Evaluation of relative phase relationships (lag-response behavior) between the climate 

signals and the regional streamflow across multiple time scales along the study period.  

Task 2: Multi-scale correlation between the western U.S. snow water equivalent and large-scale 

climate variability of the Pacific Ocean. 

Research Questions: 

 How do the large-scale oceanic-atmospheric climate signals originating from the Pacific 

Ocean affect the western U.S. SWE across multiple frequency bands? 

 Which regions of the western U.S. have maintained a consistent phase relationship, in 

terms of SWE, with the large-scale climate signals originating from the Pacific Ocean; 

and how does the lag-response behavior change across multiple frequency bands? 

Research Basis: Association between regional western U.S. SWE and the large-scale oceanic-

atmospheric climate signals originating from the Pacific Ocean, e.g., ENSO and PDO, can be 

better explained in their frequency components since these signals contain multiple frequency 

components. Such signals also alternate between phases when changing over a long time. The 

detected correlation between SWE and the climate signals across multiple frequency bands may 

provide a better insight into their spatiotemporal relationships and may explain their phase 

relationships with greater detail. 
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Major Contributions: 

 Multi-scale correlational analysis of the western U.S. SWE, both state-wise and 

hydrologic region-wise, in response to Pacific Ocean climate signals. 

 Evaluation of relative phase relationships (lag-response behavior) between the climate 

signals and the regional western U.S. SWE across multiple time scales along the study 

period. 

Task 3: Spatiotemporal trend, shift, and entropy analyses of temperature, precipitation, and 

potential evapotranspiration of north Indian monsoon during the ENSO phases. 

Research Questions: 

 What are the spatiotemporal trends and shift patterns of temperature, precipitation, and 

potential evapotranspiration in the north Indian monsoon (and its comprising months) 

across the last century during the phases of ENSO? 

 What is the rate of change (slope) of the trends and how are the trends distributed 

(apportioned) along the years and through the months of monsoon? 

Research Basis: Large-scale oceanic-atmospheric climate signals, such as ENSO and their 

phases have been found to influence global hydro-climatological patterns in various ways based 

on the geography and the seasonal variation of a region. Among the different regions of India, 

the northern part of the country has been observed to experience many different climate 

extremes, e.g., storms, droughts, and floods, over the years. Since monsoon is the single most 

important season for the region, evaluation of the temperature, precipitation, and PET patterns 

(both trends and shifts) across the last century, especially during the various phases of ENSO, 
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can be of great value to regional water management. A proper quantification, e.g., the rate of 

change and apportionment, of the trends can also be helpful in evaluating temporal variation 

across the years and through the months of monsoon, which lasts from June to September. 

Moreover, as the literature suggests, the multi-variable analyses approach to be adopted in the 

study may help investigators to understand the response of regional hydrology to large-scale 

climate signals such as ENSO.  

Major Contributions: 

 Evaluation of the long-term trend and abrupt shift patterns of temperature, precipitation, 

and PET across north India at the various ENSO phases using non-parametric statistical 

tests. 

 Determination of the spatiotemporal relationships between the selected variables during 

monsoon and at each of the monsoonal months over a century-wide period. 

 Comparison between the major shift points during monsoon and the phases of ENSO, 

which might have resulted in extreme events, e.g., flood or drought, throughout the study 

period. 

 Analyses of entropy (apportionment entropy) to quantify how the detected variations 

were distributed temporally over the years (annually) and during the months (seasonally) 

of monsoon along the study area. 

Task 4: Comparison of trends and shifts in the observed and modeled temperature and 

precipitation patterns of the Colorado River Basin under shifts and persistence. 
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Research Questions: 

 What are the direction and magnitude of temperature and precipitation trends in the 

Colorado River Basin along the last century in the observed and modeled (CMIP5) 

gridded datasets? 

 How do the shifts alter the direction and magnitude of the trends and what are the 

influences of various types of persistence, e.g., short and long-term autocorrelation, on 

the observed and modeled trends? 

Research Basis: Comparison between observed and modeled datasets provides a set of 

qualitative and quantitative metrics to evaluate the accuracy of the modeled datasets, especially 

when such modeled datasets are heavily used for hydro-climatological prediction, such as the 

CMIP5. Assessment of trends (both in direction and magnitude) in the observed and modeled 

datasets can be helpful in correcting the bias (if any) in the modeled datasets. Moreover, such 

trends can highly be influenced by the presence of shifts, which can alter or moderate an existing 

trend. An undetected shift may result in poor estimation of a trend. Besides, the presence of 

persistence, i.e., autocorrelation in data, can overestimate a trend unless it is removed before the 

application of trend detection tests. 

Major Contributions: 

 Adoption of a shift-trend approach where the direction and magnitude of the trends are 

evaluated independently before and after significant shift points for both the modeled and 

observed datasets.  

 A thorough examination of the effect of persistence not only for the trend tests but also 

for the detection of shift points.  
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 Determination of the inconsistencies detected between the CMIP5 and observed datasets 

 under the influence of shift points and persistence. 

1.4. Research Tasks 

The tasks conducted are presented in manuscript formats. The current chapter contains 

the introduction and formulates the research questions for the study. Chapter 2 is a manuscript 

-scale spatiotemporal change analysis and short term projection of the conterminous 

U.S. streamflow in response to la

research questions based on the underlying basis discussed earlier. This task investigated the 

significant spatiotemporal variations in the continental U.S. streamflow patterns as a response to 

large-scale climate signals across multiple spectral bands. Chapter 3 is a manuscript titled 

-scale correlation between the western U.S. snow water equivalent and large-scale climate 

t of the research questions based 

on the associated research basis. This task determined the correlations between the western U.S. 

SWE and the two major oceanic-atmospheric indices originating from the Pacific Ocean, 

namely, ENSO and PDO, were evaluated using continuous wavelet transform and its derivatives. 

temperature, precipitation, and potential evapotranspiration of north Indian monsoon during the 

 which addresses the third set of research questions based on their underlying 

basis. This task determined the influence of ENSO on the north Indian temperature, precipitation, 

and PET change patterns were evaluated during the monsoon season across the last century. 

modeled temperature and precipitation patterns of the Colorado River Basin under shifts and 

ns based on their research basis 
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capture the observed trends under the influence of shifts and persistence in their data 

distributions. Each of the chapters associated with the manuscripts also has its own introduction, 

study area and data, methodology, results, discussion, and conclusions sections. Chapter 6 

summarizes all the tasks along with their major contributions and limitations. It also contains 

recommendations for future work. 
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CHAPTER 2: MULTI-SCALE SPATIOTEMPORAL CHANGE ANALYSIS AND 

SHORT-TERM PREDICTION OF THE CONTERMINOUS U.S. STREAMFLOW IN 

RESPONSE TO LARGE SCALE CLIMATE VARIABILITY 

2.1. Introduction 

Climate warming has affected hydrologic processes in various ways  one of the most 

prominent involves changes in the behavior and intensification of the hydrologic cycle (Durdu, 

2010). The adverse consequences of these changes have increased under the changing climate, as 

the rapid increase in population stresses limited water resources (Wu et al., 2013). A detailed 

description of such adversities can be found in the assessment reports (AR5 and AR6) of the 

Intergovernmental Panel on Climate Change (IPCC) (IPCC, 2014 and 2019). Water managers 

have expressed concerns regarding the aftermath associated with access to fresh water as a 

response to the change in climate (Dawadi and Ahmad, 2013; Thakali et al., 2016 and 2018). In a 

study of global and continental flow behaviors in relation to temperature increase by Labat et al. 

(2004), climate change was found to have a severe impact on North American streams. Studies 

indicate a considerable change in the intensity of flow behavior across the United States (U.S.), 

especially in the last century (U.S. EPA, 2012). As a consequence of the increasing temperature, 

flow regimes of the northern rivers in the U.S. have experienced major changes (Boyer et al., 

2010). Hence, evaluating the change in flow behavior, along with other hydrologic variables, has 

become crucial to determining the effects of climate variability and change on water resources 

(Birsan et al., 2005). Changes in the intensity and frequency of flow events can potentially 

endanger critical infrastructures and the natural environment (Burn et al., 2010; Tamaddun et al., 

2015). Besides restricting access to potable water for future generations, with the escalating 

growth in the energy sector, the challenge becomes even more critical for water managers 
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(Melesse et al., 2011). In previous studies (Tamaddun et al., 2016a and 2016b), the changes in 

flow were divided into two broad categories, namely, the long-term trend, a gradual and 

monotonic change that was observed in the past, and the abrupt shift, a sharp change in the flow 

regime. Inattention to such changes may result in poor decision making in water resources 

management (Mirchi et al., 2012). As a result, besides emphasizing the knowledge of the 

regional trends and shifts as a response to large-scale climate variabilities (Clark et al., 2000), 

studies have suggested modifications of regional public policies to cater to these changes (Nalley 

et al., 2012). 

Studies show that changes in streamflow in the U.S. have experienced significant 

variations depending on the type of flow measurement, e.g., low flow, moderate flow, and peak 

flow (McCabe and Wolock, 2002; Jobe et al., 2018). The variations were also found to be 

significant across different regions (Groisman et al., 2001) and at different temporal scales, e.g., 

annual and seasonal flows (Small et al., 2006). Studies also suggest that many of the traditional 

trend detection tests may not be resilient against nonlinearity (McBean and Motiee, 2006). 

Hence, those tests are often coupled with other analytical tools that are capable of dealing with 

nonlinear trends (Nalley et al., 2012), since such trends are relatively frequent in hydro-

climatological data. Over the past few decades, wavelet transforms (WTs), which can be either 

discrete or continuous in nature, have been used as an analytical tool in several studies that 

involved feature detection in frequency components (Partal and Küçük, 2006). Discrete wavelet 

transform (DWT), more precisely multi-resolution analysis (MRA), a derivation from DWT, has 

been used for spectral analysis in signal processing with the ability to decompose a signal into a 

set of high- to low-frequency components, referred to as spectral bands (SBs) in the following 

sections, which can assist in the analyses to detect the underlying features. A classification of 
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streamflow into distinct hydro-climatic categories was provided by Smith et al. (1998) using 

DWT. Coulibaly and Burn (2004) explored the dynamic link between different climate signals 

and streamflow in the Northern Hemisphere by using continuous wavelet transform (CWT). The 

new WT analyses methods used in the field of hydrology have been reviewed and explained by 

Labat (2005). Pagano and Garen (2004) studied the western U.S. streamflow and suggested the 

use of WT for time-series analysis across multiple SBs for a better understanding of the less 

fre

detection technique compared to classical methods, e.g., Fourier transform (FT). Bayazit and 

Aksoy (2001), Drago and Boxall (2002), and Gaucherel (2002) also explored the use of WTs 

(both CWT and DWT) on nonstationary hydro-meteorological data at multiple temporal scales 

and recommended the WT approach over the traditional FT or derivatives of FT.  Based on the 

documented literature, it was found that WT serves as a robust analytical tool in evaluating the 

change in hydro-climatological data. 

The primary objective of the current study was to evaluate the effects of SBs on the 

spatiotemporal trends and shifts of the continental U.S. streamflow across hydrologic regions and 

to determine their association with large-scale climate signals. Hence, streamflow data from 237 

unimpaired stations were obtained and decomposed into multiple low-resolution subseries using 

DWT. The original time series along with their decompositions were then analyzed using non-

parametric tests that are not limited to any particular probability distributions. Trends and shifts 

were detected using the Mann-Kendall (MK) (Mann, 1945; Kendall, 1975) test and the Pettitt's 

test (Pettitt, 1979), respectively. Later, wavelet coherence (WTC) analysis, derived from CWT, 

was used to determine the spatiotemporal association between regional streamflow and three 

large-scale climate signals, i.e., El Niño Southern Oscillation (ENSO) and Pacific Decadal 
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Oscillation (PDO), representing the sea-surface temperature (SST) fluctuations originating from 

the Pacific Ocean; and Atlantic Multi-decadal Oscillation (AMO), representing the SST 

fluctuation originating from the Atlantic Ocean. The analyses were conducted over a study 

period of 62 years, i.e., from 1951 to 2012. Emphasis on applying multiple statistical methods 

found in the literature (Ahn and Palmer, 2015), while analyzing hydro-climatological data, 

motivated the current study to adopt such an extensive analyses approach to provide an in-depth 

analysis on a continental scale, which is novel to the current study.  

In a previous effort, Sagarika et al. (2014) assessed the trends and shifts of the U.S. 

streamflow accounting for autocorrelation (known as persistence in the hydrology literature) in 

data. The current study extended the depth of analyses by incorporating the effects of spectral 

frequencies in determining the streamflow variability. Besides the water year, this study also 

determined the seasonal trends and shifts, since the seasons play a significant role in the demand 

sector, especially in arid regions. Pathak et al. (2016) used trend analysis, coupled with DWT, to 

evaluate the hydrologic changes in the mid-western United States. In addition to applying DWT 

on a continental scale, the current study broadened the scope further by applying WTC in order 

to evaluate the association between regional streamflow patterns and large-scale climate signals. 

As many of the climate signals exhibit oscillatory behavior, application of WTs in understanding 

the effects of their frequency components in association with the U.S. streamflow was 

considered pivotal to the study. Even though removal of persistence before analyzing trends in 

data is found in the literature and is considered to be important (Serinaldi and Kilsby, 2016), 

studies suggest that the performance of the commonly used methods may not be satisfactory 

enough, and therefore, can produce biased results (Khaliq et al., 2009). Moreover, the MRA 

approach utilized in this study involves the application of high and low pass filters; hence, the 
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removal of persistence from the decomposed components was considered to be redundant. The 

data used in the study were obtained from unimpaired streamflow stations only; such stations can 

better represent the effects of climate variability since they are free from anthropogenic 

interference, meaning the flow paths of the selected streams on which the stations were located 

had not been modified by human activity. As decomposed time series are of lesser complexity 

than the originals, the salient features of the location of data variability, e.g., more frequent 

events or more uncommon extremes, are better represented in the decomposed series (Restrepo 

et al., 2014; Bhandari et al., 2018; Tamaddun et al., 2019a). As a result, the current study 

hypothesized that the spectral components can better explain the relationship between the local 

variations and large-scale climate variability. This is the first study in the documented literature 

that couples trend and shift detection tests with spectral component (frequency) analyses on a 

continental scale, and analyzes the change patterns in association with multiple large-scale 

climate signals. Such robust analyses may help explain the physical mechanisms of the oceanic-

atmospheric systems that affect the U.S. streamflow. A more recent approach focuses on the 

integration of multiple non-parametric methods to render better results, not only in terms of 

detection of change patterns but also to predict their behavior using data-driven models (Ahn and 

Palmer, 2015; Belayneh et al., 2016; Tiwari and Adamowski, 2017). Studies suggest that 

application of state-of-the-art machine learning techniques (intelligent models) can significantly 

increase the accuracy of hydro-climatological models  (Tiwari and Adamowski, 2017; 

Ateeq-ur-Rauf et al., 2018; Bhandari et al., 2019). Coupling of pre-processing techniques, e.g., 

principal component analysis (PCA) and WT, with intelligent models have also been found to 

increase the accuracy of time-series forecasting (Belayneh et al., 2016). Hence, this study also 

tested the efficacy of multiple data-driven models preceded by PCA and DWT. Besides 
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quantifying trends and shifts in association with large-scale climate signals, the results of this 

study may also be useful in improving forecasting models based on the detected multi-resolution 

associations, which may lead to making better water management decisions. 

2.2. Study Area and Data 

Out of the 704 unimpaired streamflow stations across the 18 hydrologic regions of the 

continental U.S. listed in the Hydro-Climatic Data Network (HCDN)-2009 (Lins, 2012) 

published by the United States Geological Survey (USGS) (http://water.usgs.gov/GIS), 237 

stations were selected, each having 62 years of continuous monthly mean data from 1951 to 

2012. To avoid spatial bias, in cases of streams with multiple stations, the stations at upstream 

locations were selected. Figure 2.1 (left) shows the locations of the stations across the hydrologic 

regions. The water-

September, and the seasonal means, i.e., fall (Oct-Dec), winter (Jan-Mar), spring (Apr-Jun), and 

summer (Jul- Sept), were used for the analyses. Figure 2.1 (inset table in the middle) shows the 

number of stations in each region along with the abbreviations used in the text to refer to the 

regions. 

The monthly ENSO and AMO indices were obtained from the National Oceanic and 

monthly PDO indices were obtained from the Joint Institute for the Study of the Atmosphere and 

between the University of Washington and NOAA.  
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2.3. Methods 

Trend and shift detection tests were applied on the original as well as on the decomposed 

time-series. Characteristics of the test methods, such as the ability to analyze skewed (non-

normal) distributions, resistance to outliers, and sensitivity to non-stationarity in hydro-climatic 

data (Lins and Slack, 1999), dictated the choice of these two test methods (Önöz and Bayazit, 

2003; Villarini et al., 2009). DWT, with MRA being used as the design method, was applied to 

obtain the time series at discrete scales (DSs). WTC, preceded by CWT, was used to determine 

the spatiotemporal association between the regional streamflow and the climate signals across 

continuous scales (CSs). In the following sections, brief descriptions of the MK and Pet

tests, followed by discussions of DWT, MRA, CWT, and WTC have been provided based on the 

previous literature. Please refer to the original sources for the fundamental theories and 

mathematics behind each test. 
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2.3.1. Trend and shift tests 

The MK trend test (Mann, 1945; Kendall, 1975) is based on the null hypothesis that there 

is no trend in the time series. The test determines the direction of the trend, which can either be 

an increase (positive), decrease (negative), or absence of a trend, from the sign of a signum 

function. The Pettitt's test (Pettitt, 1979) detects the shift in a time series by testing the anomaly 

between the mean of two independent samples from the same time series. The direction of the 

shift, which can be either positive, negative, or an absence of a shift, is determined from the 

maximum and minimum probability estimates based on the significance level used. More details 

about and applications for these two tests can be found in the work of Villarini et al. (2009). The 

test (Wilks, 2006) was used to estimate the field significance of the individual regions 

depending on the number of significant stations within the region. This test uses the binomial 

distribution to determine if the number of significant trends observed could have happened by 

chance. A detailed discussion on regional trends can be found in the work of Helsel and Frans 

of 10% significance level ( ). 

2.3.2. Wavelet transforms 

The original streamflow time-series were decomposed using the wavelet toolbox found in 

the software package of MATLAB. For DWT, Coiflet was used as the mother wavelet function, 

which is symmetric in nature and is desirable for a linear response of the filter, which relates to 

the stability of the filter and helps in analyzing the trend in a robust way. For more details on 

choosing a wavelet function, readers may refer to Torrence and Compo (1998). MRA, which is a 

one-dimensional wavelet decomposition technique, was used as the design method of DWT. 
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MRA uses a sub-band coding technique for multiple wave reconstruction. Dilates and translates 

are generated by using the mother wavelet function to decompose the time domain into lower to 

higher spectral frequency bands (Karthikeyan and Nagesh Kumar, 2013), which are useful in 

representing the multiple resolutions of the time-frequency domain (Tan et al., 2011). More 

details on the wavelet transform used in this study can be found in Appendix 2.A. 

The CWT approach, followed by the WTC analyses adopted in the study, was based on 

the works of Jevrejeva et al. (2003) and Grinsted et al. (2004). Morlet was used as the wavelet 

function for CWT. CWT determines the variance in a time series across the SBs, while WTC 

quantifies the correlation between two time series across the SBs. Readers may also refer to 

Tamaddun et al. (2017a and 2017b) for further explanation of each of the steps adopted in the 

study. CSs ranging from two to 16 years were considered in the analyses since the amount of 

uncertainty increased as the resolution decreased beyond the SBs of 16 years. DSs at two, four, 

and eight years were also chosen for the same reason, as can be seen in Figure 2.1 (right)  after 

three decompositions, little resolution remained in the time series. The following sections use the 

terms DS and CS to refer to the time series at different SBs associated with the discrete and 

continuous scales, respectively. For example, CS8 to CS16 refers to the time series associated 

with the continuous SBs ranging from eight to16 years, while DS4 refers to the four-year discrete 

SB. The CWT and WTC were analyzed with a minimum of 5% significance level against red 

noise. The non-stationary behavior of hydro-climatic variables in time-series analysis and the use 

of wavelets to address such behavior have been discussed in the works of Karthikeyan and 

Nagesh Kumar (2013)  this work also suggests the type of significance tests to be used in a 

hydro-climatic time-series analysis. 
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2.3.3. Wavelet artificial neural network (WANN) modeling 

The final step of the study was to incorporate all the findings from the previous steps and 

combine them in artificial neural network (ANN) models to be used for short-term prediction. In 

this step, the discretized subseries (the first three details, i.e., DS2, DS4, and DS8 and the third 

approximation, i.e., AC3, as shown in Figure 2.1) of the regional streamflow patterns as well as 

of the three climate signals were fed into a set of ANN learning algorithms. PCA was conducted 

to determine the inputs that are statistically independent of each other. Moreover, the most 

efficient (or optimal) number of hidden neurons for each of the region was determined based on 

the guidelines provided by Belayneh et al. (2016). The data sets were divided into two 

independent segments before training the models. The first segment consisted of 50 years of data 

ranging from 1951 to 2000, which were used for training and validation. The second segment 

consisted of the remaining 12 years of data, i.e., 2001 to 2012, which were used for testing (with 

unseen data). Besides validation with 20% random sampling, K-fold cross-validation technique 

was adopted to train and validate the models, where at each fold, 20% of the data were left out 

for validation, while the remaining 80% of the data were used for training (resulted in a total of 5 

folds). The training and validation of the models are discussed in the results section. Three 

groups of algorithms were tested in this study: (i) backpropagation training function with 

Jacobian derivative, (ii) backpropagation training function with gradient derivative, and (iii) 

supervised weight/bias training functions. A total of 17 learning algorithms were tested from 

these three groups. More details on ANN models coupled with wavelets (WANN) can be found 

in Belayneh et al. (2016), Tiwari and Adamowski (2017), and Worland et al. (2018). Similar 

training, validation (K-fold cross-validation), and testing were conducted using support vector 
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machines (SVMs) and Gaussian process regression (GPR) models to compare them against the 

WANN models. The final results have been reported in the results section. 

2.4. Results 

The study analyzed the continental U.S. streamflow trends and shifts (in the original time 

series and in their DSs), as well as quantified the spatiotemporal association between the regions 

experiencing significant shifts and three large-scale climate signals across the CSs. Figure 2.2 

illustrates the location of the stations with significant trends and shifts in water year and their 

DSs. Figures 2.3 and 2.4 show the WTC results that quantified the correlation (wavelet squared 

coherency, Rn
2) between the regional streamflow and the climate signals. Additional tables 

(Tables A2.B1 and A2.B2) are provided in Appendix 2.B, while both Appendices A2.C and 

A2.D contain additional figures and their descriptions. Results of the short-term (one step ahead) 

prediction with SVM, GPR, and WANN for the regions MA, MO, PN are provided in Figures 

2.5 to 2.7. Additional figures (Figures A2.E1 to A2.E21) and tables (Tables A2.E1 to A2.E6), 

containing the results of PCA, effect of hidden neurons on model performance, selected WANN 

model architecture, validation with random sampling, K-fold cross-validation, and comparison 

among several models and learning algorithms are provided in Appendix A2.E. 

2.4.1. Trends and shifts in water years and seasons 

In a water year and its DSs, positive trends were observed in the northeastern and north-

central regions, while negative trends were located in the northwestern region (Figure 2.2). NE, 

MA, GL, OH, UMS, SRR, MO, AWR, TXG, and RG showed a significant number of stations 

with positive trends, while negative trends were observed in PN and CA. The number of stations 
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with significant trends and regions with field significance increased as the decomposition level 

increased (DSs increased) (Table A2.B1). 

Stations with positive shifts, in water years and their DSs, followed similar spatial 

patterns to the ones with positive trends. However, stations with negative shifts were found to be 

more spatially dispersed (Figure 2.2). A steady increase in the number of stations with significant 

shifts, with an increase in DSs, was noticeable (Table A2.B2), which was not so evident for the 

stations with trends. Among the regions, NE, MA, SAG, GL, OH, UMS, MO, AWR, and TXG 

showed positive shifts, while negative shifts were observed in SAG, PN, and CA. In the higher 

DSs, all regions showed field significance.  

Trends and shifts at each of the seasons, along with their DSs, were also evaluated 

(Appendix 2.C). The results showed a unique spatial pattern of stations with significant trends 

and shifts during each season. Fall (winter) showed similarity with summer (spring) in terms of 

the spatial pattern of significant stations. The increase in the number of significant stations with 

the increase in DSs was also noticeable in each of the seasons.
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Figure 2. 3: Wavelet coherence spectra between regional streamflow of (1st row) New England, (2nd row) Mid-

Atlantic, (3rd row) Great Lakes, and (4th row) Ohio and the climate signals of (1st column) ENSO, (2nd column) 

PDO, and (3rd column) AMO. Red (blue) represents a stronger (weaker) correlation (wavelet squared coherency, 

Rn
2). 5% significance zones against the red noise are delineated by the thick black contour lines. Arrows show the 

relative angular phase relationships between regional streamflow and the climate signals. Right (left) pointing 

arrows depict in-phase (anti-phase) relationship. Vertically upward (downward) arrows depict a lead of 90° or one-

quarter (270° or three-quarter) between the climate signal and regional streamflow. 
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2.4.2. Concurrence of Shifts and the Climate Signals 

Further analyses revealed that the number of stations with significant shifts over the study 

period experienced oscillating patterns  a series of positive shifts followed by a series of 

negative shifts, especially in the higher DSs (Appendix 2.D).  This finding led the researchers to 

hypothesize that shifts can be explained better in their DSs, and such periodic behavior of shifts 

might be associated with large-scale climate signals since such signals also show periodic 

behavior with multiple frequency components. Hence, the study identified the regions that 

showed significant shifts during the coupled phases of the climate signals (Appendix 2.D). The 

regions of NE, MA, GL, OH, UMS, SRR, MO, and PN (shown as hatched regions in Figure 2.1) 

were found to experience significant shifts either at one or multiple coupled phases of the climate 

signals. To determine the variance of streamflow in each of these regions across multiple CSs, 

CWT was applied to the individual regional time series. CWT was also applied to each of the 

climate signals to determine their variance across the CSs (Appendix 2.D). Then using WTC, 

which is a complex conjugation of two individual CWTs, the correlation between the regional 

streamflow and the climate signals were quantified across the CSs (Figures 2.3 and 2.4)  where 

the higher power (wavelet squared coherency, Rn
2) in the WTC spectrum represented a higher 

correlation between the two time series. The relative phase relationships, which represent the 

lag-response behavior between regional streamflow and climate signals, across the CSs, were 

also plotted using arrows in the figures. 

2.4.3. Correlation between regional streamflow and climate signals 

The WTC analyses between regional streamflow and the climate signals revealed that 

each of the regions experienced a significantly different association with the climate signals. The 
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differences observed were found to be high even among adjacent regions. Correlation or the 

n
2 

(1999). All regions showed a high correlation (0.7 to ~ 1.0) with ENSO in CS8 to CS16. 

Regions, such as NE, SRR, MO, and PN showed a higher correlation (0.8 to ~1.0) with ENSO 

across the entire study period in the higher CSs. The correlations were found to strengthen after 

the 1990s for all the regions, as zones with higher correlations also started to show up in the 

lower CSs, e.g., below CS4 and between CS4 and CS8 (Figures 2.3 and 2.4). PDO showed a 

relatively higher correlation (0.8 to ~1.0) with the eastern regions, e.g., NE, MA, GL, and OH, 

compared to the central and western regions. MA and OH showed a higher correlation (0.9 to ~ 

1.0) with PDO beyond CS16 across the entire study period. A higher correlation was also 

observed in the lower CSs for some regions; though the zones of significant correlation were 

observed to be of longer duration in the higher CSs (Figures 2.3 and 2.4). AMO showed 

intermittent zones of higher correlation (0.7 to ~ 1.0) with all of the regions at multiple intervals 

during the study period. Most of the significant zones with higher correlation (0.8 to ~ 1.0) were 

found between in CS2 and CS4 or between CS4 and CS8. MA, OH, and PN showed higher 

correlations (0.9 to ~ 1.0) with AMO across the entire study period beyond CS16 (Figures 2.3 

and 2.4).  
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Figure 2. 4: Wavelet coherence spectra between regional streamflow of (1st row) Upper Mississippi, (2nd row) 

Souris-Red-Rainy, (3rd row) Missouri, and (4th row) Pacific Northwest and the climate signals of (1st column) 

ENSO, (2nd column) PDO, and (3rd column) AMO. Red (blue) represents a stronger (weaker) correlation (wavelet 

squared coherency, Rn
2). 5% significance zones against the red noise are delineated by the thick black contour lines. 

Arrows show the relative angular phase relationships between regional streamflow and the climate signals. Right 

(left) pointing arrows depict in-phase (anti-phase) relationship. Vertically upward (downward) arrows depict a lead 

of 90° or one-quarter (270° or three-quarter) between the climate signal and regional streamflow. 
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The relative phase relationships, represented by the arrows in the WTC power spectra, 

suggested that the lag-response behavior between regional streamflow patterns and ENSO were 

more consistent, compared to the phase relationships between regional streamflow and 

PDO/AMO. In cases of ENSO, the majority of the significant zones with higher correlations 

either showed an in-phase relationship (arrows pointing right) or a 90° difference (arrows 

pointing straight up). A 90° difference meant ENSO led the streamflow variation by a quarter, 

which is equivalent to six months to four years, depending on the CS of interest. The angular 

phase relationships between regional streamflow and PDO/AMO did not show any noticeable 

patterns, as they were found to be in opposing phases even within significant CSs bands. 

2.4.4. Short-term prediction using data-driven models 

Short-term (one step ahead) prediction using ANN, SVM, and GPR (preceded by WT) 

required determination of statistically independent inputs to avoid overfitting and to minimize 

autocorrelation. Hence, PCA was conducted for the selected regions. MA, MO, and PN were 

selected as the regions to be tested since these regions showed significant association with the 

climate signals across multiple SBs as was discussed in the previous section. Moreover, these 

three regions also represent the eastern, central, and western regions, respectively, of the 

conterminous United States. As shown in Figure 2.1, each time series was decomposed using 

DWT to obtain three details (i.e., DS2, DS4, and DS8) and the final approximation (i.e., AC3). 

Hence, the regional streamflow patterns were represented by four discretized sub-series. 

Similarly, each of the climate signals was also decomposed using DWT and four sub-series from 

each of the climate signals were obtained. Therefore, a total of 16 possible inputs (four from the 

regional streamflow and four from each of the climate signals) were obtained. Using PCA, 
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statistically independent inputs (orthogonally transformed features) were obtained. The results of 

PCA for MA, MO, and PN are shown in Figure A2.E1. 

Once the optimum number of inputs, which are statistically independent of each other, 

was determined for each of the regions, the most efficient number of hidden neurons, which 

produced the least error, were selected based on the guidelines provided by Belayneh et al. 

(2016). The effect of hidden neurons on the model performances for the regions MA, MO, and 

PN are provided in Figure A2.E2. Figure A2.E3 shows the optimized ANN model architecture 

for the selected regions. The optimum number of inputs (statistically independent features) for 

MA, MO, and PN was found to be 11, 12, and 11, respectively. The most efficient number of 

hidden neurons for these three regions were found to be three, seven, and two, respectively. For 

MO and PN, seven and two were selected as the most efficient number of hidden neurons instead 

of 14 and 17 (which suggested least error) since even with seven and two neurons, the errors 

were comparable up to three decimal places with the errors obtained using 14 and 17 neurons as 

can be seen from Figures A2.E2b and A2.E2c. The optimum ANN model architecture for each of 

the selected regions also showed the optimum delayed response (lag-response relationship) of the 

outputs as compared to the inputs. 

As mentioned in the methodology section, the input data were divided into two segments. 

The first segment contained data from 1951 to 2000 (a total of 50 years). The second segment 

contained data from 2001 to 2012. The first segment was used for training and validation (which 

involved adjustments of the model parameters) of the models, while the second segment was 

used for testing (with unseen data). Two approaches were tested to validate the models: (i) with a 

20% random sampling and (ii) with K-fold cross-validation (with 5 folds). Results of training 

and validation using a 20% random sampling are provided in Figure A2.E4 for the three selected 
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regions. Results of the K-fold cross-validation are provided in Figures A2.E5 to A2.E13. 

Validation with both the approaches was found to be quite satisfactory with R2 (coefficient of 

determination) close to or higher than 0.90 in almost every fold. Similar to ANN, K-fold cross-

validation was also adopted with several SVM and GPR models. The pooled results of K-fold 

cross-validation (using 5 folds) are tabulated in Tables A2.E1 to A2.E3. Comparison among the 

various SVM models suggested that quadratic SVM produced the best training and validation 

performance, while comparison among the various GPR models suggested that Matern 5/2 

produced the best training and validation performance. Hence, the quadratic SVM and Matern 

5/2 GPR were selected to be evaluated in the testing phase with unseen data as inputs. 

Once the training and validation phases were completed, testing with the unseen data was 

employed. In this phase, the unseen data (i.e., from 2001 to 2012) were tested with one step 

ahead prediction at every simulation (run). The performances of the testing phases are shown in 

Figures 2.5 to 2.7. The performances of SVM, GPR, and ANN, preceded by PCA and WT, were 

found to highly comparable. In all the cases, the fitted models predicted with significant accuracy 

(with R2
 above 0.90). 

To test the accuracy of several learning algorithms available with the ANN models in 

MATLAB 2018a, a further comparison was made in the testing phase among 17 learning 

algorithms. For both MA and MO, Bayesian regularization backpropagation produced the best 

result, while for PN, cyclical order weight/bias training produced the best result. The 

performances of all the algorithms are provided in Tables A2.E4 to A2.E6. Three performance 

ratings, namely, Nash-Sutcliffe efficiency, percent bias, and RMSE-observations standard 

deviation ratio, were determined based on Moriasi et al. (2007). The results indicated good  to 

very good  performance ratings in all the cases.
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2.5. Discussion 

The original water year and its DSs (Figure 2.2) showed a tendency of having either the 

positive or negative trends within a region, except for a few central regions where both 

directional trends were present in close vicinity. The generic patterns of trends and shifts were 

found to be consistent with previous studies (Sagarika et al., 2014; Tamaddun et al., 2016). A 

strong coherence in the regional flow behavior was observed across the DSs as well. Smith et al. 

(1998) indicated that WTs, besides explaining the underlying trends, also provide important 

insight into the variability and mechanisms of river systems. The current analyses found an 

increase in the number of stations with trends as the DSs went higher. Noting such behavior of 

trends may help in understanding the periodic nature of the associated streams. Moreover, the 

strengthening of trends in higher DSs validates the need for the analysis approach adopted in this 

study. Though a single station on each stream was selected to avoid spatial bias, results suggest 

that the directions of trends were usually consistent within a hydrologic region. Assessing 

multiple stations on a single stream may provide a better understanding of the accompanying 

river system. 

Compared to trends, stations with shifts were more spatially dispersed across the regions 

(Figure 2.2). Though the locations and directions of shifts were found to be similar to trends in 

general, a significant number of stations with shifts were found in the central and southern U.S., 

which was not observed with trends. Similar to trends, the number of stations with shifts also 

increased as the DSs went higher. Consistency between the trend and shift spatial patterns was 

observed, even though the former occurs over a long period of time, while the latter indicates an 

abrupt change. Villarini et al. (2009) determined the direction of trends before and after a shift 

and found that shifts can strengthen, weaken, or neutralize an existing trend  this explains why 
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trends and shifts may have a similar spatial pattern. Moreover, the number of shift points across 

the study period showed an oscillatory alternating pattern in the higher DSs, especially in DS8 

(Appendix 2.D)  this behavior was hypothesized to be associated with the climate signals in 

their SBs and was later evaluated using WTC analyses. 

The seasonal analyses revealed a similarity in the spatial patterns of trends and shifts, 

between fall (winter) and summer (spring) (Appendix 2.C)  which indicated a behavioral 

change at the end of fall (the beginning of winter) and at the end of spring (the beginning of 

summer). Like water year, the number of stations with trends and shifts in each season also 

increased as the DSs went higher. Similar to McCabe and Wolock (2015), this study also found 

seasonal flows to have strong coherence in terms of trend direction within each region, except for 

a few central regions where both directional trends and shifts were found in the same season. The 

change in seasonal trends and shifts can be attributed to the variation in temperature, 

precipitation, evapotranspiration, and contributions from snow and ice, as suggested by Dettinger 

and Diaz (2000) and Hamlet et al. (2005). The observed trends and shifts also became stronger as 

the DSs went higher. Such behavior can be the result of variability in lags (lags in response to 

large-scale climate variability) that affect seasonal flow behavior (Dettinger and Diaz, 2000). 

Regions with both directional trends and shifts require further investigation to understand the 

mechanisms of the conveying river(s). 

The multi-resolution trend and shift analyses, discussed so far, suggest the following: (a) 

more stations of significance as the DSs went higher; (b) concurrence of shift years with the 

coupled phases of climate signals; (c) tendency of periodic shifts in the higher DSs (Appendix 

2.D). Hence, the study hypothesized that such behavior may be attributed to the association 

between streamflow and the climate signals at their frequency components. Previous studies 
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exploring large-scale climate signals and their teleconnections, such as the studies by Redmond 

and Koch (1991) and Kahya and Dracup (1993), suggested a strong correlation between ENSO 

and the streamflow patterns of the northwestern, northeastern, and north-central regions, which 

confirm the findings of the current study. McCabe et al. (2007) analyzed the Upper Colorado 

River Basin (UCRB) flows and concluded that the UCRB flow behavior is associated with 

several oceanic signals  among them, North Atlantic Ocean has the highest influence. Though 

the current study did not include any station from the UCRB, a unique association, with 

significant variation in correlation, was observed between the river basins (hydrologic regions) 

and each of the climate signals. Stewart et al. (2005) concluded that the variance in streamflow in 

snowmelt-dominated regions, e.g., western U.S., is highly associated with the phases of PDO. 

The current study found that ENSO and AMO influence the western regions, e.g., GB and 

documenting reasonable physical mechanisms of the oceanic-atmospheric systems, Labat (2008) 

emphasized the need for WT-based analyses, as attempted in the study, to investigate the 

teleconnection between climate signals and the hydro-climatological variables. Similar to the 

current study, Tootle et al. (2005) also found significant coherence between AMO and the 

eastern U.S. streamflow patterns. Hence, the study made an effort to better explain the 

associations observed in the previous studies by evaluating coherency in the most significant 

SBs.  

The results showed that ENSO had a higher correlation, compared to PDO and AMO, 

with the selected regions during the study period across the SBs. For a few regions, the 

correlations were found to be significantly high (Rn
2 ~ 1.0) in certain CS bands, even across the 

entire study period. This was also observed with the other two climate signals, but with ENSO, 
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the presence of such higher correlation was more frequent (Figures 2.3 and 2.4). The results also 

indicated that ENSO had a higher correlation with all the regions, irrespective of their 

geographic locations in the higher CSs, while AMO had a higher correlation with most of the 

regions in the lower CSs. Even though PDO originates from the Pacific Ocean, which is located 

on the west of the U.S., it showed a higher correlation with the eastern regions of the United 

States. For both PDO and AMO, it is possible that significantly higher correlations were present 

beyond CS16, as suggested by a few regions since both of these signals oscillate over a decadal 

to a multi-decadal scale.  

The spatiotemporal association between regional streamflow patterns and the climate 

signals across the CSs, along with their relative phase relationships, may help in understanding 

some of the physical relationships that were not completely explained in the previous studies. 

The current study found significantly high correlations between regional streamflow patterns and 

climate signals in their decomposed time series, which supports the initial hypothesis of the 

study that such an association can be better explained in their frequency components. The 

variations in the associations between streamflow patterns and climate signals may help explain 

some of the unique local phenomena. Regional climate (streamflow) modelers, working on the 

concepts of lag/lead time approach as a function of large-scale climate variability, may also find 

the results useful. 

Comparison among the ANN, SVM, and GPR models, preceded by PCA and WT 

suggested comparable results both in the training and validation phase as well as in the testing 

with unseen data phase. Among the SVM models, quadratic SVM was found to be producing the 

best results in all the cases tested in the study, while Matern 5/2 was found to be the best 

performer among the tested GPR models. The ANN models were found to be highly sensitive to 
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Bayesian regularization backpropagation learning algorithm, among the other 17 algorithms 

tested, was found to be producing consistently good results for all the three cases tested in the 

study. The delayed response (lag-response relationship) of the outputs with respect to the inputs 

observed in the ANN models were found to be comparable with the lags obtained from the WTC 

analyses between the climate signals and regional streamflow patterns. 

2.6. Conclusions 

The study analyzed water year and seasonal trends and shifts (along with their DSs) in 

237 unimpaired streamflow stations across the continental U.S. from 1951 to 2012. The 

spatiotemporal association between regional streamflow patterns and three large-scale climate 

signals were assessed using WTC. The major findings, some of which confirm the findings of 

previous works discussed earlier, and the summary results of the study are listed below: 

 Positive (negative) trends and shifts in the water year and its DSs were significant in the 

northeastern and north-central (northwestern and southeastern) regions. 

 A few central regions showed both directional trends and shifts  which was not common 

since most of the regions showed spatial coherency in terms of the trend and shift 

direction.   

 Seasonal trends and shifts suggested unique spatial patterns in the original time series as 

well as in their DSs. Fall and spring showed the highest positive and negative trends and 

shifts, respectively, suggesting a behavioral change at the end of these two seasons.  

 The number of significant stations with trends and shifts increased as the DSs went 

higher, with the maximum in DS8. Shifts showed an oscillating behavior in DS8  which 
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led to the hypothesis that such behavior at higher SBs was correlated to the frequency 

components of the climate signals. 

 ENSO showed a higher correlation with the regional streamflow in CS8 to CS16, while 

both PDO and AMO showed higher correlations in the lower CSs (below CS4) and 

beyond CS16.  

 The relative phase relationship suggested a uniform lag-response behavior (either in-

phase or a lag of one quarter) between significant regional streamflow patterns and 

ENSO. For PDO and AMO, no such consistency was observed. 

 Comparison among ANN, SVM, and GPR models, preceded by PCA and WT, produced 

comparable results with significant accuracy in short-term prediction of regional 

streamflow behavior. 

Data availability restricted the current study to analyze with high certainty (or adequate 

resolution) beyond DS8 for DWT and beyond CS16 for WTC. Decomposing to higher SBs can 

be helpful in associating streamflow variations with climate signals having multidecadal 

frequency components. In addition, working with a higher number of stations with longer 

records may provide a better explanation of the regional change patterns. Considering these 

limitations, the study attempted to provide an in-depth analysis of the continental U.S. 

streamflow in response to large-scale climate signals in order to help improve the current 

understanding of the oceanic-atmospheric systems and their underlying teleconnections with 

regional streamflow patterns. The multi-resolution associations observed in the study may help 

improve forecasting models, which may lead to better estimation and regulation of regional 

flows. 
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CHAPTER 3: MULTI-SCALE CORRELATION BETWEEN THE WESTERN U.S. 

SNOW WATER EQUIVALENT AND LARGE-SCALE CLIMATE VARIABILITY OF 

THE PACIFIC OCEAN 

3.1. Introduction 

Snow water equivalent (SWE) is a common measurement of the snowpack. According to 

the Natural Resources Conservation Service (NRCS), SWE refers to the amount of water that is 

SWE can be thought of as the theoretical depth of water 

resulting from an instantaneous melting of the entire snowpack. Hence, snowpack in terms of 

SWE is considered a vital source of runoff in the water supply system across North America 

(Hunter et al., 2006; McCabe and Dettinger, 2002). The relative contributions of snowpack to 

water yield are much greater in the mountainous regions of the western United States (U.S.) than 

many other regions of the country. In these regions, approximately 50%-70% of the annual 

precipitation falls as snow, and is stored during the winter as snowpack (Palmer, 1988; Serreze et 

al., 1999); eventually, it affects the runoff of the succeeding seasons. The beginning of April is 

the time when snow courses attain maximum SWE. The 1 April SWE is used extensively in the 

western U.S. as an estimate to forecast the spring-summer runoff, and ultimately can be used to 

predict the annual runoff behavior in the surrounding regions. Understanding the relationships 

among the factors influencing SWE could be beneficial to forecasters and water managers 

dealing with critical infrastructure management and irrigation practices (Hunter et al., 2006). 

Previous studies have examined the relationship between long-term climate variability 

and the western U.S. snowpack accumulation using various datasets. Cayan (1996) used snow 

course data of 60 years from 11 western U.S. states and observed significant anomalies in SWE 
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across spatial and topographical variations in the western U.S. mountainous regions. The study 

also found that precipitation had a much higher influence on SWE compared to temperature, 

which only influenced low-altitude stations. A study by McCabe and Legates (1995) analyzed 

atmospheric circulation and spatiotemporal patterns of snowpack accumulation in the western 

U.S. using 700-hectopascal (hPa) height anomalies and 1 April snowpack measurements over a 

study period of 40 years. They found a strong negative correlation between the variables studied. 

Another study found that 1 April SWE showed more than a 100% coefficient of variance, which 

was comparable with variation in seasonal precipitation patterns in some of the western states 

(Changnon et al., 1991). The study also suggested that snow course records could be used as a 

regional climate indicator of snow accumulation during the spring in the Rocky Mountains. 

Besides analyzing the direct influence of climate on the western U.S. snowpack, studies 

have examined the role of major climate indices on the hydrology of the western United States 

(Kahya and Dracup, 1993; Carrier et al., 2016; Pathak et al., 2018). The El Niño Southern 

Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), both resulting from the Pacific 

Ocean, are considered to be two of the major large-scale oceanic-atmospheric climate signals 

that affect the western U.S. hydrology (Barnett et al., 1999; Beebee and Manga, 2004; Sagarika 

et al., 2015). Shifts in pressure cell locations and changes in their intensities cause trade winds to 

get stronger or weaker. This results in changes in the locations and velocities of oceanic currents 

 both of these cause upwelling of colder water from the bottom of the ocean, and move warmer 

ocean-surface-water in specific directions, for example, east or west near the equator in the case 

of ENSO. Hence, sea-surface temperature (SST) fluctuations in multiple locations of the Pacific 

Ocean are initiated. The variations in pressure cells, coupled with the SST fluctuations, affect the 

direction, movement, and productivity of the storm tracks by affecting rates of oceanic 
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evaporation and atmospheric moisture content. ENSO, a natural cycle observed in the eastern 

Pacific Ocean with a periodicity of two to seven years, alternates between two distinct phases, El 

Niño (positive or warm phase) and La Niña (negative or cold phase) (Redmond and Koch, 1991). 

PDO, which occurs on a timescale of 25 to 50 years, originates from the North Pacific Ocean, 

has a larger zone of influence compared to ENSO (Trenberth and Fasullo, 2007). Similar to 

ENSO, PDO also varies between warm and cold phases. Studies observing climate indices have 

also emphasized the teleconnection between the oceanic climate systems and the global 

hydrologic processes (Coscarelli et al., 2013; Sagarika et al., 2016). SST fluctuation alters the 

availability of moisture from the oceanic surface currents and eventually affects the formation of 

storm systems. Hence, SST fluctuations have the potential to influence hydro-climatological 

variables such as precipitation, snowpack, streamflow, runoff, and soil moisture. 

Time series associated with hydro-climatological variables are complex in nature, as they 

are nonlinear and usually do not follow a normal probability distribution (Jevrejeva et al., 2003). 

Several studies have focused on understanding the change patterns and frequencies 

(periodicities) of such time series (Cheo, 2016; Tamaddun et al., 2016). Among the various 

methods for analyzing non-normal distributions having complex periodicities, wavelet 

transforms (WTs) have been suggested as useful tools to extract information from a complex 

time series (Lau and Weng, 1995). WTs determine the most significant frequencies influencing a 

time series while simultaneously preserving the time dimension (Percival and Walden, 2000). 

The history, classification, and theory of WTs can be found in the works of David and 

Rajasekaran (2009) and Torrence and Compo (1998).  

Considering the advantages of using WT (Yiou et al., 2000), in order to observe 

variability in data, this study adopted the concept of continuous wavelet transform (CWT), a 
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method used for feature extraction (Foufoula-Georgiou and Kumar, 1995). To understand how 

two time series are correlated, concepts of cross wavelet transform (XWT) and wavelet 

coherency (WTC) were adopted. Details regarding XWT and WTC can be found in Tang et al. 

(2014) and Torrence and Webster (1999). Previous studies examining the relationship of ENSO 

and PDO to the western U.S. precipitation mostly have focused on winter precipitation in 

particular rather than on snowpack. Since water from snowpack is the most significant water 

resource for many western U.S. river systems, SWE is selected as the primary focus of this 

study. Data were utilized from 323 Snow Telemetry (SNOTEL) sites (stations) of the western 

U.S. for a study period of 56 years covering 1961 to 2016. This record length is a major 

extension in terms of the number of stations and the length of data analyzed, compared to 

previous studies using similar datasets. CWT was used to observe the variability in data, and 

XWT and WTC were used to illustrate and quantify, respectively, the high common power 

(association) between the representative time series of the variables. Such an approach has not 

been used previously with SWE data. This study also compared the association of ENSO/PDO 

across the western U.S. hydrologic regions, which broadened the scope of the study since the 

results can be beneficial to regional water managers as well. 

3.2. Study Area and Data 

The SNOTEL online database of NRCS (http://www.wcc.nrcs.usda.gov/snow/) contains 

1 April SWE data for the western United States. The website combines the SNOTEL data, 

obtained from telemetry systems, and snow course data, obtained from manual snow 

measurements. NRCS uses several meteor burst communications technology (existing from 

about 50 to 75 miles above the earth), e.g., radio wave communications, cellular model, satellite, 

and line of sight, to collect and disseminate data, which are recorded every 15 minutes. Data 
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were obtained from 323 western U.S. SNOTEL stations from 1961 to 2016, a total of 56 years. 

Figure 3.1 (bottom left) shows the SNOTEL stations in each state of the western United States. 

Figure 3.1 (right) shows the stations in each of the six hydrologic regions representing the 

western United States; these regions are delineated by United States Geological Survey (USGS) 

in their hydrologic unit map (http://water.usgs.gov/GIS/regions.html).  

 

Figure 3. 1: (Bottom left) Map showing states of the western U.S. and the 323 SNOTEL stations selected for this 

study. (Right) Map showing the spatial distribution of 258 SNOTEL stations across the hydrologic regions 

representing the western United States.  
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The selected regions were Pacific Northwest (PN), California (CA), Great Basin (GB), 

Lower Colorado (LC), Upper Colorado (UC), and Rio Grande (RG). Out of the 323 stations 

chosen for the study, 258 stations were found to be in these six hydrologic regions (Table 3.1). 

ENSO (NIÑO 3.4) and PDO indices were obtained for the same historical period as 

SWE. ENSO was represented by the December-January-February (DJF) mean. Two different 

PDO indices were considered for the analyses. PDO1 represented the DJF mean; while PDO2 

represented the October to March (Oct-Mar) mean. ENSO and PDO data were accessed through 

the online databases of the U.S. National Oceanic and Atmospheric Administration (NOAA) and 

the Joint Institute for the Study of the Atmosphere and Ocean (JISAO), respectively. Positive and 

negative indices refer to the warm and cold phases, respectively, for both ENSO and PDO. The 

analyses were conducted with a monthly lead-time approach, e.g., the DJF (Oct-Mar) means of 

ENSO/PDO1 (PDO2) of 2015-2016 were used against the 1 April SWE of 2016, which resulted 

in pre-lagged time series.  

 

Table 3. 1: The number of SNOTEL sites in each hydrologic region along with the average elevation (in ft.) of the 

sites, the standard deviation of the elevation (in ft.) in a particular region, and the percentage of variance explained 

by the first principal component (PC1) for that region. The values are rounded to the nearest whole number. 

Hydrologic Region 
Number of 

SNOTEL Sites 
Average 

Elevation (ft.) 
Std. Dev. Of 

Elevation (ft.) 
% SWE Variance 

Explained by the PC1 

Pacific Northwest (PN) 144 6204 1324 65% 

California (CA) 5 6641 1200 79% 

Lower Colorado (LC) 6 8261 1032 78% 

Great Basin (GB) 46 8322 928 64% 

Upper Colorado (UC) 49 9324 883 60% 

Rio Grande (RG) 8 9749 795 80% 

Total 258    
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3.3. Methodology 

The following sections contain brief descriptions of CWT, XWT, and WTC, based on the 

works of Grinsted et al. (2004) and Tang et al. (2014). For further details on the application of 

WT in the various fields of hydrology as well as for the mathematical formulations, readers may 

refer to Jevrejeva et al. (2003), Torrence and Compo (1998) and Torrence and Webster (1999). 

The analyses process adopted in this study are as follows: first, each of the time-series 

dataset (in their standardized form) was decomposed using CWT, which showed the variability 

in the data, represented by the wavelet power spectrum. Second, XWTs were constructed using 

individual CWTs obtained from the first step. The XWTs illustrated the covariance between the 

time series involved. Third, significant correlations were determined using WTC, which 

quantified the correlation using the Monte Carlo approach. All the analyses were conducted 

using the programming platform MATLAB. Each step and the methods used are described in the 

following sub-sections.  

3.3.1. Observation of Variance in the Data 

CWT showed the variability of a time-series dataset at multiple frequency bands across 

the time period to understand the periodic nature of the time series (if present) (Foufoula-

Georgiou and Kumar, 1995). Out of the many wavelet functions, the Morlet wavelet function has 

been considered to be the most appropriate one for geophysical signal processing (Percival and 

Walden, 2000), and therefore was chosen for the current study. The first principal component 

(PC1), refer   obtained from a principal component 

analysis (PCA) using the MATLAB routine  was chosen to represent the variability of data 

from the 323 stations. This PC1 explained 52% variability of all the stations. For each hydrologic 
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region, a similar approach was adopted where the PC1 of each region represented the variability 

of the respective region as shown in Table 3.1. 

3.3.2. Detection of Covariance between Time-Series 

The formation of an XWT, obtained from a complex conjugation of two CWTs, revealed 

the high common power (covariance) and the relative phase relationship of the two time series in 

the time-frequency domain (Grinsted et al., 2004). The relative phase angle provided information 

regarding the lag-response behavior between the two time series in the time-frequency domain 

(Jevrejeva et al., 2003). The statistical significance of covariance between two time series was 

determined against a red noise background (Torrence and Compo, 1998). 

3.3.3. Quantification of correlation between time-series 

Besides showing significant common frequency bands at different time intervals, WTC 

quantified the correlation between the two time series. Unlike XWT, WTC was capable of 

determining significant coherency at low common power. In this study, the Monte Carlo 

approach (Wallace et al., 1993) was adopted to calculate significant wavelet coherence at a 

significance level of 5% against the red noise. Details about how to calculate significance levels 

against red noise can be found in the works of Torrence and Compo (1998). 

3.4. Results 

Figure 3.2 contains the individual CWTs that explain the variability in data, using a 

wavelet power spectrum and a global wavelet spectrum. Figure 3.3 shows the XWTs and WTCs 

between SWE1 and ENSO/PDO. Figures 3.4 and 3.5 show the WTCs between the regional SWE 

and ENSO and the regional SWE and PDO, respectively, for each of the hydrologic regions. The 
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edge effects, shown by the cone of influence (COI) in the XWTs and WTCs, represent the region 

of reliability. Since wavelets are not completely localized in time and need to be padded with 

zero, the results within the COI are more reliable (Grinsted et al., 2004). 

3.4.1. Variability (High Power) of Data in SWE1 and ENSO/PDO 

From the standardized time series of SWE1 (Figure 3.2a), it was observed that SWE 

across the western U.S. experienced large fluctuations during the study period. The wavelet 

power spectrum (Figure 3.2a) generated from the CWT showed higher variability with 

significance around the 2-year band in 1963, in the 2-to-3-year band from 2008 to 2013, in the 3-

to-5-year band from 1974 to 1982, and in the 11-to-15-year band from 1973 to 2011. The 

significant variability observed in the 11-to-14-year band showed the highest power in the 

wavelet power spectrum. This was also observed in the global wavelet spectrum, which showed 

a spike near the 11-to-14-year band. 

The wavelet power spectrum (Figure 3.2b) resulting from the CWT of ENSO showed the 

presence of a few discrete but significant intervals during the study period. Significant variability 

was observed in the 2-to-4-year band from 1995 to 2000 and from 2008 to 2012, in the 3-to-4-

year band from 1969 to 1971, in the 3-to-6-year band from 1977 to 2007, and in the 11-to-13-

year band from 1990 to 2011. The highest power was observed in the 3-to-6-year band. In 

addition, the global wavelet spectrum picked higher power in the 3-to-6-year band and around 

the 11-to-13-year band. 

 

  



56 
 

 

Figure 3. 2: Standardized time series, wavelet power spectra, and global wavelet power spectra of a) SWE1, b) 

ENSO, c) PDO1, and d) PDO2. Red (blue) represents stronger (weaker) power. The thick black contour line marks 

the 5% significance level against red noise. 
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PDO1 and PDO2 both showed similar bands of significance across the study period 

(Figures 3.2c and 3.2d). Significant high power was observed in the 2-to-4-year band from 1968 

to 1977, in the 2-to-3-year band from 1997 to 2002, and in the 8-to-10-year band from 1990 to 

2011 (from 2003 to 2013 in PDO2). PDO2 also showed the presence of significantly high power 

in the 5-to-6-year band from 1991 to 1998. PDO1 showed high power in this band as well but 

was not found to be significant. Global wavelet spectra picked the higher power around the 8-to-

10-year band for both PDO1 and PDO2. The PDO2 global spectrum showed a small peak near 

the 5-to-6-year band. Both PDO1 and PDO2 showed higher power above the 16-year band, 

which were observed in the wavelet power spectra and global wavelet spectra; however, they 

were not found to be significant. Comparison among the independent datasets, i.e., SWE1, 

ENSO, and PDO, showed that there is considerable overlap in terms of the time and frequency of 

their higher variability zones. To detect their common power or covariance, XWT was applied 

between SWE1 and ENSO, SWE1 and PDO1, and SWE1 and PDO2. 

3.4.2. Covariance (High Common Power) between SWE1 and ENSO/PDO 

The XWT between ENSO and SWE1 (Figure 3.3a) showed presence of significantly high 

common power in the 2-to-3-year band from 1973 to 1977, from 1994 to 2000, and from 2007 to 

2012, in the 3-to-6-year band from 1968 to 1985, in the 5-to-7-year band from 2001 to 2012, and 

in the 10-to-15-year band from 1973 to 2012. The relative phase relationship between the two 

time series is shown by the arrows in the XWT power spectrum. Except for a significant period 

from 2007 to 2012 in the 2-to-3-year band, all the other timescale bands across different time 

intervals had arrows pointing towards the right. A rightward (leftward) arrow indicates an in-

phase (anti-phase) relationship between the two time series. Figure 3.3a indicates that during the 

study period, an in-phase relationship between ENSO and SWE1 was dominant, which suggests 
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they were moving in the same direction at the same time. The arrows in the significant intervals 

showed a tendency of pointing upwards, indicating a lag between ENSO and SWE1. A vertical 

upward-pointing arrow meant that ENSO led SWE1 by 90° or one-quarter (six months to 4 years 

depending on the timescale band). Whereas, a vertical downward-pointing arrow indicates a lag 

of 270° or three-quarter (18 months to 12 years depending on the timescale). As it takes time for 

the atmosphere to adjust and for storm tracks to redirect and change their productivity, the 

detected lead reasonably aligns with the currently-understood physical mechanism. 

From the XWT between PDO1 and SWE1, high common power was observed around the 

3-year band from 1962 to 1965, in the 2-to-3-year band from 1971 to 1979 and from 1997 to 

2004, in the 5-to-7-year band from 2009 to 2012, and in the 9-to-12-year band from 1989 to 

2010 (Figure 3.3b). High common power in the 12-to-16-year band (and beyond) was present 

from 1975 to 1995 but was not found to be statistically significant. The arrows indicating a phase 

relationship were mostly observed to be pointing right (indicating an in-phase relationship), 

except for an interval from 1962 to 1965. The presence of arrows that had a tendency of pointing 

upwards suggested that PDO1 led the SWE1 in many instances.  

The results suggested that the phase relationship between PDO1 and SWE1 was not 

consistent or uniform, as the direction of the arrows varied across the study period. The XWT of 

PDO2 and SWE1 did not reveal any new information as they were quite identical in terms of the 

location of significant covariance and relative phase relationships. Hence, those results have not 

been reported in the manuscript. 
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Figure 3. 3: Cross wavelet spectra between a) SWE1 and ENSO and b) SWE1 and PDO1. Wavelet coherence 

spectrum between c) SWE1 and ENSO and d) SWE1 and PDO1. The thick black contour line delineates a 5% 

significance level against red noise. Red (blue) represents stronger (weaker) power. The COI, which potentially 

could distort the picture around the edges, is shown by lighter shades. The arrows represent the relative phase 

relationship between the two time series. Right (left) pointing arrows show an in-phase (anti-phase) relationship, 

while vertically upward (downward) arrows show that ENSO/ PDO1 leads SWE1 by 90° or one-quarter (270° or 

three-quarter). 
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3.4.3. Coherency (Significant Correlation) between SWE1 and ENSO/PDO 

The WTC between ENSO and SWE1 showed the presence of high correlation in the 10-

to-16-year band throughout the entire study period, i.e., 1961 to 2016 (Figure 3.3c). Correlations 

varied from 0.8-to-1.0 in this continuous zone. At the significance level chosen in this study (5% 

against the red noise), a correlation of 0.7 was considered to be significantly high. Correlations 

as high as 1.0 also was observed in the lower bands, e.g., in the 2-3-year band from 1971 to 1979 

and from 1998 to 2001. High correlation values, in the range of 0.7-to-0.8, were observed in the 

6-to-8-year band from 2007 to 2016. Instances of high correlation  in the range of 0.6-to-0.7  

were observed at multiple intervals across the study period, especially in the 4-to-6-year band; 

however, they were not found to be statistically significant against the red noise using the Monte 

Carlo approach. The arrows, during the significant intervals, were all observed to point towards 

the right, indicating an in-phase relationship between ENSO and SWE1. In addition, arrows were 

observed to show a higher tendency to point upwards, especially from 2000 to 2016. The results 

indicated that ENSO led SWE1 by a phase angle of as high as 90°. Results also indicated that an 

increase (decrease) in the ENSO index caused an increase (decrease) in SWE1 across significant 

intervals with high correlation. 

The WTC between PDO1 and SWE1 (Figure 3.3d) did not show the presence of a 

continuous significant band as it was observed in the WTC between ENSO and SWE1. PDO1 

and SWE1 were found to be highly correlated in the lower bands, mostly below the 4-year band. 

The highest correlation  in the range of 0.8-to-1.0  was observed in the 2-to-3-year band from 

1972 to 1979, from 2001 to 2003, from 2011 to 2016, and in the 2-to-4-year band from 1961 to 

1964. A high correlation in the range of 0.7-to-0.8 was observed in the 8-to-10-year band from 

1988 to 1994. There were instances of higher correlation in the range of 0.6-to-0.8 in the 2-to-3-
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year band, in the 6-to-8-year band, and beyond the 16-year band; however, they were not found 

to be statistically significant. The arrows were observed to point towards the right, except for a 

significant interval from 1961 to 1964. There were instances where arrows pointed vertically up, 

which indicated that PDO1 led SWE1 by a phase angle of 90°. In a few instances, the arrows 

pointed slightly downward. The results suggest that PDO1 and SWE1 changed simultaneously in 

some of the significant intervals where PDO1 led SWE1, though the relative phase relationships 

were not consistent or uniform. The WTC of PDO2 and SWE1 (not shown here) did not reveal 

any new information  in fact, the WTC of PDO2 and SWE1 was found to be quite identical to 

the WTC of SWE1 and PDO1. 

3.4.4. Coherency (Significant Correlation) between regional SWE and ENSO/PDO 

Similar to the WTC between ENSO and SWE1, WTCs between ENSO and the regional 

SWEs revealed the presence of higher correlation across the entire study period for PN and CA 

in the 8-to-16-year band (Figure 3.4). Unlike SWE1, GB and UC showed the presence of higher 

correlation (as high as approximately 1.0) of longer duration (at multiple intervals from 1961 to 

2000) in the lower timescale bands (below and around the 4-year band). LC and RG showed a 

similar pattern of correlation with ENSO as was observed with SWE1, though the regional 

correlation bands showed less duration and lower correlation values. The relative phase 

relationships across different regions were observed to vary significantly. The direction of the 

arrows did not show any recognizable pattern, though the arrows in the significant zone of a 

particular region were observed to be showing the tendency of pointing towards the same 

direction.  
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WTCs between PDO1 and the regional SWEs of GB, UC, and RG showed a similar 

pattern (Figure 3.5) to what was observed in the WTC between PDO1 and SWE1. PN showed 

much higher correlation compared to any other region in the lower timescale bands (in the 2-to-

4-year and 4-to-6-year band) at multiple intervals. The presence of high correlation  as high as 

approximately 1.0  was observed in the 2-to-6-year band from 2010 to 2016 in PN. CA and LC 

showed the presence of higher correlation of significant intervals (from 1970 to 1988, from 1973 

to 1982, and from 1990 to 2000) around the 4-year and 8-year bands, which were not observed 

with SWE1. The relative phase relationships were observed to vary across the regions without 

showing any recognizable pattern. GB, UC, and RG did not show much presence of higher 

correlation. Regions with a lower elevation of stations and close to the ocean, e.g., PN, CA, and 

GB, were observed to show a higher correlation with both ENSO and PDO1 compared to the 

regions with a higher elevation of stations and far from the ocean (inland), e.g., UC and RG 

(Figures 3.1, 3.4, and 3.5). 
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3.5. Discussion 

From the CWT analyses, it was observed that SWE1 had the highest variability in the 11-

to-15-year band during a significantly longer duration, from 1973 to 2011 (Figure 3.2a); 

however, the power was observed to reduce gradually near both the tails of the time series, 

suggesting less variation during those intervals; the results near the ends of a wavelet power 

spectrum are also less reliable due to the effect of COI (Grinsted et al., 2004). In addition, there 

was the presence of higher variability in the lower bands, but of much less duration. It can be 

inferred from these results that SWE in the western U.S. experienced the highest variation every 

11-15 years.  A similar pattern of high power was observed across the study period in the ENSO 

CWT (Figure 3.2b). Although the duration of significant variability was less in the ENSO CWT 

 from 1990 to 2011  the entire study period showed high variability in the 10-to-16-year band.  

Moreover, the patterns observed in the time-frequency power spectrum were similar in the higher 

bands for SWE1 and ENSO CWTs (Figures 3.2a and 3.2b). ENSO showed the highest variability 

in the 3-to-6-year band, which may be attributed to the frequency of the ENSO cycle (Bayazit, 

2015). Both PDO1 and PDO2 showed the highest variability in the 8-to-10-year band and also 

beyond the 16-year band; although bands beyond the 16-year were not found to be statistically 

significant. The tendency of showing variability in the higher bands could be explained by the 

decadal nature of PDO cycle (Trenberth and Fasullo, 2007). The results indicated overlaps in the 

time-frequency spectra of SWE1 and ENSO/PDO variability across the study period, especially 

in the higher bands. 

The XWT between ENSO and SWE1 had the highest covariance in the 10-to-15-year 

band from 1973 to 2012 (Figure 3.3a). This was inferred from their individual CWTs. The results 

showed high common power in the 3-to-6-year and the 5-to-7-year bands. The relative phase 
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relationship showed that ENSO led SWE1 in all the significant intervals at different frequency 

bands. The arrows also suggested that in the majority of the cases, the change in SWE1 and 

ENSO were in-phase, suggesting a simultaneous change. Hence, it can be interpreted that change 

in the ENSO index, with a certain lag, caused SWE to change in the same direction across the 

western U.S. over a long duration. 

The XWT between PDO1 and SWE1 revealed that these two time series experienced the 

highest covariance in the 9-to-12-year band and beyond the 16-year band (Figure 3.3b); 

although, the bands beyond the 16-year were not found to be statistically significant. PDO2 had 

similar results as PDO1. The relative phase relationship between PDO1 and SWE1 was not 

found to be as uniform as ENSO and SWE1. The lag-response behavior of PDO1 and SWE1 did 

not show any particular pattern. There were instances where PDO1 led SWE with opposing 

arrows suggesting in-phase and anti-phase relationships in the same frequency band. It was not 

possible to make any conclusions about the phase relationship of PDO1 and SWE1 from the 

obtained results. There were certain intervals in the 8-to-12-year band and in the 2-to-3-year 

band where both ENSO and PDO1 were observed to show high covariance with SWE1; 

however, the duration of intervals in the lower bands was much less compared to the higher 

bands. 

The results of ENSO and SWE1 WTC revealed that the most significant timescale band 

influencing the two time series was the 10-to-16-year band. The entire study period was found to 

be significant in that particular frequency band. Lower bands, e.g.., the 2-to-3-year and the 6-to-

8-year bands, also showed a high correlation (Figure 3.3c); although the durations were not 

found to exceed 10 years in any of the instances. A high correlation was observed in the 4-to-6-

year band as well but was not statistically significant. There was much similarity between the 
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XWT and the WTC of ENSO and SWE1, except for the presence of a continuous zone in the 10-

to-16-year band that lasted across the entire study period observed in the WTC. Correlation in 

certain intervals  e.g., all of the 10-to-16-year and in some 2-to-3-year band  was as high as 

approximately 1.0. This suggested a direct relationship between ENSO and the western U.S. 

SWE. The relative phase relationship suggested that ENSO led SWE1 by certain lag; in many 

cases, they both changed simultaneously in the same direction. This relationship also was 

observed in the XWT analysis of SWE1 and ENSO.  

The WTC between PDO1 and SWE1 did not show much presence of significant intervals 

across the study period (Figure 3.3d). PDO2 had similar results as PDO1. There were intervals of 

high correlation  as high as approximately 1.0  in the lower bands (below the 4-year band); 

however, the duration of the intervals was not found to be more than 7 years in any of the 

instances. The 8-to-9-year band showed the presence of high correlation, in the range of 0.7-to-

0.8; though, the duration was only a few years. Bands beyond the 16-year also showed the 

presence of high correlation but were not found to be significant.  

The comparison between the two WTCs revealed that ENSO and PDO were both 

correlated to SWE1 only in the lower timescale bands (below the 4-year band). The results 

revealed that ENSO had a much higher correlation with SWE1 than did PDO throughout the 

study period. The results obtained in the study supports the findings of Beebee and Manga 

(2004), who studied the relationship of ENSO and PDO with the runoff generated from 

snowmelt in the state of Oregon and found ENSO to have a higher correlation than PDO. 

The WTCs obtained from ENSO/PDO1 and the regional SWEs suggested significant 

variation in terms of their association at various timescales across the study period (Figures 3.4 



68 
 

and 3.5). The regional analyses suggested that even though ENSO/PDO1 was correlated with 

SWE1 in certain timescale bands across the study period, the individual hydrologic regions 

experienced a unique association with both ENSO and PDO1. Hydrologic regions comprising of 

PN, GB, and CA showed a much higher correlation with ENSO compared to the other regions. 

PN was found to be most significantly correlated with PDO1. Also, it was noted that the regions 

having stations at lower elevations (Figure 3.1) had a higher correlation (stronger association) 

compared to the regions with stations at a higher elevation. Besides the effect of elevation, such 

outcome may also be the result of other factors such as the number of stations per region, the 

percentage of data variability explained by the PC1, and the spatial location of the region (close 

to the ocean or inland). Studies suggest that the elevation of the basins, which is sensitive to both 

air temperature and precipitation, also affect the accumulation of snow and the timing of 

snowmelt (Cayan, 1996; Dudley, 2017). Analyses of the individual stations within a region can 

provide a better explanation of the effect of elevation on the observed correlation.  

The current analysis did not calculate the exact time lag between ENSO/PDO and SWE 

from the relative phase relationship indicated in the wavelet power spectra though the results 

showed that both the indices, especially ENSO, had a uniform lagged relationship with the 

western U.S. SWE. ENSO, and in some cases PDO, was found to be leading SWE by a few 

months to close to a decade. Cayan et al. (1999) and Hanson et al. (2004) studied these lag-

response behaviors and concluded that the major reasons causing these lags were the cumulative 

effects of the nature of oceanic-atmospheric fluctuations, the formation and dynamics of winds, 

and the time required for the formation and melting of snow. Some studies (Trenberth and 

Hurrell, 1994; Pozo-Vázquez et al., 2001) investigated these lags between climate indices and 

surface hydrology and found delays from a few months to a few years. Since a lead-time 
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approach was adopted (the time series were pre-lagged) in this study  e.g., DJF mean of 

ENSO/PDO and 1 April SWE  the underlying lag expressed by a 90° phase difference did not 

exactly express a quarterly lag (six months to 4 years depending on the timescale band), rather 

expressed a lag of slightly higher duration. 

The presence of the high correlation in the 10-to-16-year band between ENSO and the 

western U.S. SWE suggests that they both changed in the same direction (with certain lags) 

across the entire study period. The presence of such temporal relationship may be attributed to 

the frequency of the ENSO cycles. On the other hand, PDO was not found to be highly 

correlated with SWE except for a few short intervals. The results suggested the presence of 

higher association beyond the 16-year band in PDO; however, they were not found to be 

statistically significant. It should be noted that phases of PDO change over multiple decades; 

therefore, it is possible that timescales at higher bands may have higher correlations with SWE. 

Since this study analyzed timescales up to the 16-year band only, significant intervals at higher 

timescales may have been missed. The current study did not analyze beyond the 16-year band 

since the results beyond this band had high uncertainty due to the limitation of the length of the 

period of record. Analyzing a longer-reconstructed time series may allow evaluating the 

associations at higher timescales with greater certainty. The findings of the current analyses may 

result in future research to help better understand the lag-response behavior between the climate 

indices and SWE at each timescale band. Additionally, the sites (stations) within a particular 

hydrologic region may be analyzed independently to evaluate the effect of topography in greater 

details. Methods, such as coupling of wavelet with the artificial neural network, which allows 

multiple inputs to understand the response of a signal, can be an option for such analysis. 

Understanding the relationship between other regions of the Pacific Ocean and the western U.S. 
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SWE can also be potential future research. Since the obtained results are purely statistical in 

nature, they need to be interpreted in context and with a proper understanding of wavelet power 

spectra before concluding any specific physical relationship. 

Based on the results obtained from the analyses, the major contributions of the study are: 

 Use of SNOTEL (1 April SWE) data from 323 western U.S. stations with a time period 

spanning 56 years: a major extension in the number of stations covered and the length of 

data analyzed compared to previous studies using similar datasets. 

 A wavelet approach in evaluating the correlation between ENSO/PDO and the western 

U.S. SWE at multiple frequency bands: an approach that has not received much attention 

with such datasets in the documented literature. 

 A hydrologic-region-based analysis to evaluate the regional change of SWE as a response 

to the change in ENSO/PDO: the results showed how significantly the response of SWE 

may vary among the adjacent regions. 

3.6. Conclusions 

The study examined the correlation between ENSO/PDO and the western U.S. SWE over 

a study period of 56 years using CWT and its derivatives. Application of such methods allowed 

the study to analyze and correlate regional SWE with oceanic-atmospheric climate indices across 

multiple timescale bands. The analysis revealed the following: 

 ENSO, compared to PDO, had a much higher influence on SWE.  

 The temporal associations were observed to be stronger in the higher timescale (lower 

frequency) bands.  
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 The effect of ENSO/PDO varied significantly across the adjacent hydrologic regions. 

 Regions close to the ocean (inland) and lower (higher) in elevation were observed to 

show a higher (lower) correlation with ENSO/PDO.  

The analyses conducted in this study highlighted the need to work with snow data at even 

finer spatial resolution since the variation in response among the adjacent regions were observed 

to be significantly high across the mountainous western United States. Understanding such 

relationship of snowpack formation and climate indices can be beneficial to climate forecasters 

and regional water managers.  
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CHAPTER 4: SPATIOTEMPORAL TREND, SHIFT, AND ENTROPY ANALYSES OF 

TEMPERATURE, PRECIPITATION, AND POTENTIAL EVAPORATION OF NORTH 

INDIAN MONSOON DURING THE ENSO PHASES 

4.1. Introduction 

Studies on extreme climate events, i.e., droughts and floods, across the world, have found 

that such extremes are likely to be associated with the anomalies in zonal sea surface temperature 

(SST) fluctuations observed in the oceans. In turn, these fluctuations, coupled with the changes 

in global and regional atmospheric pressure systems, formation of surface winds, and moisture 

sources & evaporative demand, cause severe changes in the temperature and precipitation 

patterns (Diffenbaugh et al., 2015; Seager et al., 2015). Studies also suggest that these extremes 

are likely being aggravated by global warming (Williams et al., 2015; Yoon et al., 2015). The 

recent California drought has been of great interest to many climate researchers, (e.g., Griffin 

and Anchukaitis, 2014; Robeson, 2015). A study by Wei et al. (2016) identified major 

atmospheric circulation patterns affecting precipitation in California. However, the authors 

indicated that the contributions from the various components of the hydrologic cycle are yet to 

be properly understood. As a result, besides analyzing SST anomalies and precipitation patterns, 

recent studies have incorporated hydro-climatological variables like moisture sources, 

evaporative demand, and temperature in order to understand these climate extremes more 

thoroughly (Shukla et al., 2015; Wei et al., 2016; Bhandari et al., 2018). In addition, various 

combinations of these variables have been found to show significantly different and sometimes 

inverse correlations with certain climate extremes. A few cases  for example, lower moisture 

with higher temperature  found to affect the extremes even more severely (Shukla et al., 2015). 



73 
 

Several studies have presented ample evidence to support that climate change has 

immensely intensified the hydrologic cycle (IPCC, 2013, 2014, and 2019; Carrier et al., 2016; 

Tamaddun et al., 2018a). This intensification has raised questions (Dirmeyer and Brubaker, 

2006; Huntington, 2006; Kramer et al., 2015; Tamaddun et al., 2018b) such as, what is the 

distribution of this intensification across the different components of the water cycle? How do 

changes in the amount of precipitation affect other components? What are the consequences of 

these changes in climate patterns? Some researchers have suggested that increased (decreased) 

precipitation can cause increased (decreased) vegetation, which in turn may cause an increase 

(decrease) in evapotranspiration (Levis et al., 2000; Bounoua et al., 2010). Other studies have 

suggested that increased evapotranspiration resulting from increased vegetation may potentially 

affect the CO2 concentration, which in turn can act as a cooling mechanism to reduce the 

temperature (Sellers et al., 1996; Guillevic et al., 2002; Bonan, 2008). These studies have shown 

how the dynamics among hydro-climatological variables might bring about a change in the long-

term patterns and have reinforced the need for multi-variable analyses to predict and confront 

climate extremes (Ahmed et al., 2018; Tamaddun et al. 2019c). 

Out of the many different regions of India, the northern region, named as North India in 

the following sections, currently is of particular interest to many climate researchers (Tiwari et 

al., 2016a and 2016b; Khare et al., 2016)

temperate zone (Singh, 2010), and has experienced major climate diversity over the years 

(Dimri, 2013; Rathore et al., 2013; Abeysingha et al., 2016). Temperatures in North India have 

been recorded as varying over a wide range, from below freezing temperatures in some states to 

over 50 °C in the deserts (Singh, 2003; Kaul, 1998; Rowell, 1980). Rainfall and snow in North 

India result from two major weather patterns, i.e., the western disturbances and the Indian 
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monsoon. The western disturbances, originating from the Atlantic Ocean as well as the Caspian 

and the Mediterranean Seas, are called extratropical weather phenomena; they carry moisture 

towards the east over North India (Datta and Gupta, 1968; Dimri, 2004; Wang, 2006). On the 

other hand, monsoon, a large-scale circulation pattern lasting from June through September each 

year, carries moisture of the humid southwest summer wind from the Indian Ocean towards the 

north and provides the vast majority of the annual rainfall to the entire Indian subcontinent. As a 

result, understanding the behavior of monsoon has been of major interest to climatologists for 

many years. 

The India Meteorological Department (IMD) has observed and recorded monsoon 

patterns for several decades and has developed multiple stochastic models to forecast the 

initiation, recession, and strength of the Indian Summer Monsoon Rainfall (ISMR). Out of the 

many different factors affecting ISMR, the El Niño Southern Oscillation (ENSO) has been 

considered to be one of the most significant large-scale forces that influence the behavior of 

ISMR (Ju and Slingo, 1995; Kumar et al., 1999). ENSO is a natural cycle, represented by an 

index, which records the SST fluctuations originating from the strengthening and weakening of 

the trade winds (Tamaddun et al., 2017a and 2019b). It is observed in the tropical Pacific and 

affects the surrounding oceanic-atmospheric systems (Ropelewski and Halpert, 1986: Kahya and 

Dracup, 1993; Tamaddun et al., 2017b and 2017c). Shifts in pressure cells and changes in their 

intensity cause trade winds to get stronger or weaker. This results in changes in the locations and 

velocities of oceanic currents  both of these cause upwelling of colder water from the bottom of 

the ocean, and move warmer ocean-surface-water in specific directions, for example, east or west 

near the equator in the case of ENSO. Hence, SST fluctuations in multiple locations of the 

Pacific Ocean are initiated. ENSO consists of two phases, namely, El Niño, which is the warmer 
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(positive) phase, and La Niña, which is the cooler (negative) phase (Sagarika et al., 2016). Each 

phase can last from a few months to a year, and they occur every two to seven years. From 1950 

to 2012, ISMR was found to be above average or around average in almost all the La Niña years. 

Contrarily, five of the most prominent droughts in India during that period coincided with the El 

Niño years (Kumar et al., 2006). A monsoon followed by El Niño does not necessarily result in 

poor rainfall all the time; however, as studies suggest, there might be other climate and weather 

factors, e.g., the extent of Himalayan/Eurasian snow, which influences the circulation of 

monsoon (Kumar et al., 1999; Tamaddun et al., 2017d). Studies have also suggested that other 

complementary factors to ENSO may affect ISMR, e.g., the Indian Ocean Dipole (IOD), 

complex coupling and dynamics of multiple variables, and variations in heat flux over different 

land masses (Webster and Yang, 1992; Ashok et al., 2001; Wang et al., 2005). 

The tropical Indian Ocean experiences a basin-wide change after an ENSO event. In the 

north equatorial Indian Ocean, this change starts in late winter (early spring) and continues until 

summer. The prolonged influence of ENSO continues into the following seasons, and eventually 

causes climate anomalies in Southeast Asia, especially during summer (Yang et al., 2007; Xie et 

al., 2009). Analyzing the phase relationships between ENSO and ISMR, Torrence and Webster 

(1999) found significant correlations across several timescales, with stronger coherence during 

intervals of higher variance. Ashok et al. (2001) found that ENSO, along with IOD, affected the 

rainfall amount immensely from 1958 to 1997. Other researchers observed that IOD could 

reduce the effect of ENSO on ISMR based on the different phased relationships (Saji et al., 1999; 

Ashok et al., 2004). This explains why all the years associated with El Niño did not cause a 

drought in India. Krishnamurthy and Goswami (2000) found a strong correlation between inter-

decadal ISMR and ENSO variations. In addition, this study explained the possible reasons for 
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major regional and equatorial circulation patterns, e.g., Hadley circulation and Walker 

circulation, and how their anomalies caused these variations. 

Kumar et al. (2006) suggested that the SST anomalies in the central (eastern) equatorial 

Pacific strengthen (weaken) the likelihood of droughts during the monsoon. Other studies 

observed multi-scale, e.g., interannual, quasi-decadal, and decadal variations, relationships 

among ISMR, Indian Ocean oscillations, and the ENSO phases (Reason et al., 2000; Allan et al., 

2003; Gadgil et al., 2004). Besides monsoon rain, temperature variations of the tropical Indian 

Ocean, along with the prolonged effects of ENSO and the associated heat flux over India, were 

studied by Wang et al. (2005) and Xie et al. (2009). Yang et al. (2007) concluded that El Niño 

not only affects SST fluctuations of the Indian Ocean but also plays an important role in the 

summer climate variability across the Indo-Western Pacific basins. Klein et al. (1999) found that 

El Niño alters the cloud cover and evaporation configuration of atmospheric circulations, which 

in turn affect the heat flux of the surrounding basins. Loo et al. (2015) observed major shifts in 

the intensity and initiation of monsoon after the 1970s, which likely were affected by anomalies 

in global temperature and precipitation.  

Analyzing anomalies in pressure, temperature, wind, and cloud cover over the Indian 

Ocean in the different phases of ENSO during monsoon, Reason et al. (2000) emphasized that 

multi-variable analyses need to be conducted across various temporal scales, e.g., annual and 

seasonal, for a better understanding of the physical relationships and correlation patterns. Some 

combinations of the interconnected hydro-climatological variables and their extremes, such as 

lower precipitation levels with higher temperatures, have the potential to cause severe adversity 

on the hydro-ecological as well as on the socio-economic systems, even though the individual 

variables may not indicate extreme conditions (Mazdiyasni and AghaKouchak, 2015; Tamaddun 
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et al., 2017e). Considering the advantages of multi-variable analyses as a major motivation, the 

current study focused on understanding the influence of ENSO on the spatiotemporal change 

patterns of three hydro-climatological variables  temperature, precipitation, and potential 

evapotranspiration (PET)  during the monsoon season across North India. In addition, this study 

determined the all-year (century-wide) trend and shift patterns of the selected variables from 

1901 to 2002. The Mann-Kendall test (Mann, 1945; Kendall, 1975) (Pettitt, 

1979)  both nonparametric in nature  were used to detect the presence of trends and shifts, 

respectively. To evaluate the distribution (apportionment) of the temporal variability of the 

historical changes on an annual and seasonal scale, the concept of entropy was applied, which 

quantitatively measured the dispersion, disorder, and variability in the long-term trends 

(Shannon, 1948). Moreover, the study provided an extensive literature review of the relevant 

studies highlighting the relationships between monsoonal change patterns and the ENSO phases 

and applied the multi-variable analyses approach to provide insights that may explain some of 

the research questions discussed earlier. The obtained results may help practitioners to prepare 

for flood and drought risks as a response to the changes in ENSO phases. The major 

contributions of the study are: 

 Evaluation of the long-term trend and shift patterns of temperature, precipitation, and 

PET across North India at various ENSO phases using non-parametric statistical tests. 

 Determination of the spatiotemporal relationships between the selected variables during 

monsoon and at each of the monsoonal months over a century-wide period. 

 Comparison between the major shift points during monsoon and the phases of ENSO, 

which might have resulted in extreme climate events, throughout the study period. 
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 Analyses of apportionment entropy to quantify how the detected variations were 

distributed temporally over the years (annually) and during the months (seasonally) of 

monsoon along the study area. 

4.2. Study Area and Data 

According to the Geological Survey of India (GSI, 2016), eight states, namely, 

Chandigarh, Delhi, Haryana, Himachal Pradesh, Jammu & Kashmir, Punjab, Uttarkhand, and 

Uttar Pradesh, officially form the northern region of India. These eight states consist of 147 

districts. Appendix 4 (Table A4.1) contains the names of the individual districts in each of the 

states. As reported by the IMD, the monsoon or the rainy season lasts from June to September. 

Temperature, precipitation, and PET data were obtained from 1901 to 2002 on a monthly mean 

basis for 146 districts as data for one of the districts were unavailable (Figure 4.1). The data were 

accessed through the online database of the India Water Portal (IWP, 2016). IWP database 

- own as the 

CSV format) after initial error correction. Later, the downloaded data were standardized by 

subtracting the mean and dividing by the standard deviation. Moreover, the methods used in the 

study (described in the next section) are resilient against outliers and missing data points, which 

makes them appropriate for the type of analyses adopted in the study. The trend (shift) patterns 

of the selected variables were evaluated during monsoon at four different combinations of the 

ENSO phases, namely, (1) the El Niño years, (2) the La Niña years, (3) the non-El Niño years 

(either the La Niña or neutral years), (4) and the non-La Niña years (either the El Niño or neutral 

years). The ENSO (Niño 3.4) indices used in this study (Figure 4.2) were accessed through the 

online database of the United States National Oceanic and Atmospheric Administration (NOAA, 

2015). During the study period of 102 years, there were 37 instances that were found to be 
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neutral years, 32 years were found to be El Nino years, and 33 instances were found to be La 

Nina years. Hence, a total of 70 instances were non-El Niño years, while a total of 69 instances 

were non-La Niña years.  

Besides the trend and shift patterns of the selected variables at each of the four ENSO 

phases mentioned earlier, the all-year trend and shift patterns during the monsoon as well as 

during each of the monsoonal months were evaluated. For the temperature and PET trends and 

shifts, the monthly mean of the monsoon and of each of the monsoonal months was analyzed. 

For precipitation, the monthly totals were used. The annual and seasonal apportionment entropy 

were evaluated using the annual data  the sum of all the monthly means, and the seasonal data  

the monthly means of each of the monsoonal months. 
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4.3. Methodology 

4.3.1. Trend and Shift Tests 

Two non-parametric tests  namely, the Mann-Kendall (MK) trend test (Mann, 1945; 

Kendall, 1975) and the  were used to detect the presence of trends 

and shifts, respectively. A trend shows the past behavior of a variable that is more likely to be of 

a monotonic nature and may continue in the future unless an anomaly occurs (Zhang et al., 2001; 

Tamaddun et al., 2016). The MK trend test is based on the null hypothesis that there is no trend 

in the time series. The test determines the direction of the trend, which can either be an increase 

(positive), decrease (negative), or absence of a trend, from the sign of a signum function. In 

contrast, a shift is an abrupt change in the data distribution, which remains unaltered until the 

next change occurs (Mauget, 2003; Kalra et al, 2017). Pettitt's test detects the shift in a time 

series by testing the anomaly between the mean of two independent samples from the same time 

series. The direction of the shift, which can be either positive (increasing), negative (decreasing), 

or an absence of a shift, is determined from the maximum and minimum probability estimates 

based on the significance level used. Non-parametric tests are better suited for hydro-

climatological data distributions since such data distributions are more likely to be nonstationary 

and nonlinear in nature. The resilience against missing data points and robustness against the 

initial assumption of a normal distribution makes non-parametric tests a preferred choice over 

traditional statistical tests that have an inherent assumption of nonstationarity and nonlinearity 

(Milly et al., 2008; Sagarika et al., 2014). Both the tests have been recommended in earlier 

studies due to their advantages over the other test methods as well as for their higher accuracy. 

Further remarks about these tests can be found in the works of Lins and Slack (1999), Önöz and 

Bayazit (2003), Burn (2008), and Villarini et al. (2009). Several modified versions of the MK 
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test, named MK2, MK3, and MK4, accounting for different types of autocorrelation or 

persistence, are found in the literature (Tamaddun et al., 2016; Sagarika et al., 2014; Kumar et 

al., 2009). These modified MK tests were also utilized in this study to analyze the trends. 

However, the results did not produce noticeable differences from the original results. Hence, 

descriptions of such methods have been omitted from the study. The lack of noticeable 

differences from the original test method suggests that autocorrelation or persistence had 

minimal influence on the datasets used in the study. 

To calculate the slope (rate of change or change per unit time) of the observed trends, the 

Theil-Sen approach (TSA) was employed (Theil, 1950; Sen, 1968). The TSA is nonparametric in 

nature, which makes it appropriate to be applied in conjunction with the MK test. Moreover, the 

TSA determines the median slope of all possible pairs, which makes the test robust against 

possible outlie

significance of each of the eight states consisting of multiple districts. A confidence interval of 

90% ( ) was used for the statistical significance tests performed in this study. All the 

analyses were conducted using the programming platform MATLAB. 

4.3.2. Entropy Test 

Entropy measures the variance in the temporal distribution of a variable (Mishra et al., 

2009). According to Shannon (1948), entropy measures the dispersion (range), uncertainty, 

anomaly, and variation in data. Such a measure can help distinguish between trends of similar 

types based on their uniformity over time. A review of entropy applications in the field of 

hydrology and water resources can be found in the work of Singh (1997). Several indices of 

entropy can be calculated to measure variability in data (Mishra et al., 2009). For example, while 
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studying the dynamics in complex systems, such as climate, recent studies have used a new time 

domain termed natural time (Sarlis et al., 2013; Varotsos et al., 2013) in which the entropy is 

defined as a dynamic property that captures the time arrow, while the corresponding entropy 

change under time reversal is used to identify the occurrence (from approaching state to critical 

state) of extreme scenarios including earthquakes (Sarlis et al., 2018a and b), ENSO events 

(Varotsos et al., 2016a and b), and quasi-biennial oscillations (Varotsos et al., 2018). In this 

study, apportionment entropy was used to evaluate the variability in the annual and seasonal 

(monsoonal) temperature, precipitation, and PET data. The following formulations are based on 

the works of Shannon (1948) and Mishra et al. (2009). The analyses were conducted using the 

programming platform MATLAB.  

The total annual (seasonal) aggregate, R  aggregated over the study period of 102 years 

(over the 4 months of monsoon)  of a variable, (i.e., temperature, precipitation, and PET) can be 

expressed as: 

 (4.1) 

where ri is the annual aggregate amount of a variable during the ith year of the study 

period (monthly amount of a variable during the ith month of the season), with i = 1 to 102 for 

annual apportionment (i = 1 to 4 for seasonal apportionment). 

The apportionment entropy (AE) of a variable can be written as: 

 (4.2) 
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The annual apportionment entropy (AEa) measured the temporal variability in the annual 

dispersion of the variable over the study period. Equation 4.2 denotes that when a variable was 

evenly distributed, on an annual scale, over the study period of 102 years, with a probability of 

1/102, AEa had the maximum value of log2102 (or 6.6724). If the apportionment occurred during 

only one out of the 102 years, with a probability of 1, AEa would take the minimum value of 

zero. 

Similarly, the seasonal apportionment entropy (AEs) for the monsoon season was 

calculated using the June through September monthly mean data. This value varied from zero to 

log24 (or 2.0). AEs for all the districts were calculated for each of the 102 years during the study 

period. For the purpose of representation, the mean AEs of the 102 years for each of the districts 

are reported in the study. 

4.4. Results and Discussion 

This study investigated the change patterns in North Indian hydro-climatological 

variables  i.e., temperature, precipitation, and PET  influenced by the various ENSO phases 

during the monsoon season. Initially, trend (shift) patterns were determined in order to observe 

how the different combinations of the ENSO phases were associated with the change patterns. 

Later in the study, the all-year trend (shift) patterns were detected during monsoon and at each of 

the monsoonal months. Finally, to quantify the spatiotemporal variation of the variables, annual 

and seasonal (monsoonal) apportionment entropies were calculated. Modified MK tests, adjusted 

for persistence as per Kumar et al. (2009), were applied to the data as well. The results did not 

show any significant deviation from the standard (original) test results. Hence, only the findings 

from the standard methods are reported in the study. 
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4.4.1. Temperature Change Patterns 

4.4.1.1. Changes Associated with ENSO 

The spatial distribution of trends suggested that the western regions, i.e., Chandigarh, 

Haryana, and Punjab, as well as a significant portion of Uttar Pradesh, experienced a decreasing 

trend in all the ENSO phases (Figure 4.3). States, such as Himachal Pradesh, Jammu and 

Kashmir, and Uttarkhand, did not show much of a presence of significant trends except during 

the El Niño years. The spatial distribution of districts with significant trends during the El Niño 

(La Niña) and non-La Niña (non-El Niño) years were found to be comparable. Districts with 

significant decreasing trends during the El Niño (La Niña) years were found to be the maximum 

(minimum) among the four ENSO phases analyzed in the study. An increasing trend was 

observed only during a neutral year. Table 4.1 summarizes the results in terms of the number of 

districts with significant trends. It can be inferred from the results that the El Niño years, 

compared to other phases of ENSO, had a higher influence on the decreasing trends in 

temperature during the monsoon season. The prolonged effect of El Niño on temperature 

variations of the Indian Ocean and the resulting heat fluxes among various land masses can be 

attributed as one of the major reasons for the observed variations (Wang et al., 2005; Xie et al., 

2009).  

The spatial pattern of shifts suggested that the El Niño (La Niña) and non-La Niña (non-

El Niño) years had a similar influence on the study area. All the states  or a large portion of 

them except for Jammu and Kashmir, and Uttarkhand  had significant negative shifts during the 

El Niño and non-La Niña years (Figure 4.4). Districts in Uttarkhand and Uttar Pradesh, which 

did not show the presence of shifts during the El Niño or non-La Niña years, were found to be 
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significant during the La Niña and non-El Niño years. This feature of the shift patterns suggested 

that the two opposing phases of ENSO influenced certain regions of North India in distinct ways 

(Figure 4.4). The El Niño (La Niña) years showed similar spatial patterns as the non-La Niña 

(non-El Niño) years. The maximum (minimum) number of districts with significant negative 

shifts was observed during the non-La Niña (La Niña) years (Table 4.1). 

4.4.1.1. All-Year Change Patterns 

The all-year trend patterns suggested that the entire states of Haryana and Punjab, as well 

as the western regions of all the remaining states, experienced decreasing trends either during the 

entire four-month summer monsoon or in any of the monsoonal months (Figure 4.5). The eastern 

regions of Himachal Pradesh, Jammu and Kashmir, Uttarkhand, and Uttaranchal did not show a 

significant presence of trends. The monthly variation of trends showed that from June to 

September, the spatial location of districts with significant trends shifted from the southwest 

towards the north, then shifted back towards the southwest (Figure 4.5). This change in spatial 

distribution could be explained by the direction of the monsoon circulation, which carries humid 

summer winds from the southwest direction in June and sweeps across the Indian subcontinent 

by moving north; eventually, these winds move back to the southwest of India in September. 

Table 4.2 lists the number of districts with significant trends during the monsoon and in each of 

the monsoonal months. The range of TSA slopes during the monsoon and the monsoonal months 

also showed the overall inclination towards decreasing trends (Table 4.3). The TSA slopes 

suggest that the month of June experienced the highest variation in temperature over the study 

period. Decreasing trends in temperature in many parts of North India also were observed in the 

mean temperature trends from 1951 to 2010 by Rathore et al. (2013), which support the findings 

of the current study. 
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The all-year shift patterns suggested that except for a few districts in the eastern part of 

Jammu and Kashmir and Uttar Pradesh, the remainder of North India experienced negative shifts 

either during the monsoon or in any of the monsoonal months (Figure 4.6). Similar to the trends, 

the shift patterns showed a northbound movement followed by a southbound movement in 

districts having significant shifts during the individual monsoonal months. Table 4.2 summarizes 

the results in terms of the number of districts with significant shifts. Table 4.4 shows the earliest 

and latest shift along with the major intervals having a higher number of shift points in 

temperature during the study period. A comparison of the shift points (Table 4.4) with the ENSO 

indices (Figure 4.2) showed that most of the shift points coincided with the El Niño and non-La 

Niña years. Previous studies and historical events (Kumar et al., 1999; Kumar et al., 2006), 

causing climate extremes, were found to be consistent with the major shift points detected in the 

current study. For both the trend and shift patterns, states with field significance were observed 

to vary across the months (Figures 4.5 and 4.6). 
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4.4.2. Precipitation Change Patterns 

4.4.2.1. Changes Associated with ENSO 

A distinct separation across North India was observed between the districts with 

increasing and decreasing trends in the spatial patterns of trends. During the various ENSO 

phases, the western regions, i.e., Delhi, Haryana, and Punjab, a significant portion of Jammu and 

Kashmir, and a few districts in Himachal Pradesh and Uttar Pradesh, experienced increasing 

trends (Figure 4.3). Decreasing trends were localized in the eastern regions, i.e., significant 

portions of Himachal Pradesh, the entire state of Uttarkhand, and the eastern part of Uttar 

Pradesh. The maximum numbers of districts with increasing (decreasing) trends were observed 

during the El Niño (non-El Niño) years (Table 4.1). In some instances, the direction of the trends 

reversed when the ENSO phase changed from El Niño to non-El Niño. As suggested by previous 

studies, these variations could be explained by factors that either could strengthen or weaken the 

effects of ENSO on the monsoon (Saji et al., 1999; Ashok et al., 2004; Charles, 1997). Other 

studies suggest that the teleconnection has different correlations based on the time scales (i.e., 

interannual, quasi-decadal, or decadal), which might affect long-term trend patterns (Torrence 

and Webster, 1999; Reason et al., 2000; Gadgil et al., 2004). 

Similar to the trend patterns, shift patterns of precipitation also showed a spatial 

separation between the districts with positive and negative shifts (Figure 4.4). Spatial patterns in 

the various ENSO phases showed that both the El Niño and neutral years played a significant 

role in the precipitation shift patterns across North India. In the various ENSO phases, the 

western regions, i.e., Delhi, Haryana, and Punjab, as well as a few western districts of Jammu 

and Kashmir and Uttar Pradesh, showed positive shifts (Figure 4.4). Negative shifts were 
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observed only in the eastern part of Uttar Pradesh and in a few districts of Uttarkhand. This 

showed that North India experienced both positive and negative shifts during the various ENSO 

phases even though the shifts were spatially separated and localized to certain regions. In the 

precipitation trends, there were instances in which the direction of the trend reversed with the 

change of the ENSO phase from El Niño to La Niña; however, precipitation shift patterns did not 

show such a reversal in direction. The La Niña (non-La Niña) years had the minimum 

(maximum) number of districts with significant shifts (Table 4.1). 

4.4.2.2. All-Year Change Patterns 

In the all-year trend patterns, the western regions, i.e., Delhi, Haryana, and Punjab as well 

as a few western districts of Jammu and Kashmir, and Uttar Pradesh, experienced increasing 

trends either during the monsoon or in any of the monsoonal months (Figure 4.5). Decreasing 

trends were observed in the eastern districts of Uttarkhand and Uttar Pradesh and in a few of the 

western districts of Uttar Pradesh. (Figure 4.5). A greater tendency towards decreasing trends in 

the eastern regions was observed by Rathore et al. (2013). Monthly trends followed similar 

spatial patterns, although the number of districts with trends varied significantly across the 

monsoonal months (Table 4.2). July and August showed a higher number of districts with 

significant trends compared to June. This monthly variation could be explained by the timing of 

the monsoon circulation. Since the monsoon season starts in June and ends in September, it can 

be inferred that the effects of the monsoon developed fully during July and August. Since the 

monsoon recedes in September, it might be possible that the change in wind direction does not 

result in causing significant change. This also was observed in the TSA slope values for 

September (Figure 4.5), as the slopes during September did not follow any spatial pattern; rather, 
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they were quite arbitrary in nature (Table 4.3). Comparison of TSA values suggested that July 

and August experienced a higher change over the study period.  

Similar to the all-year trend patterns, the all-year shift patterns also showed a separation 

in the locations of districts with significant positive and negative shifts (Figure 4.6). 

Southwestern districts of Uttar Pradesh showed positive shifts but did not show increasing trends 

in the trend pattern. Similar to the trend pattern, September did not show significant shifts except 

for a single district with a negative shift in Uttar Pradesh. The northbound movement followed 

by a southbound movement of the districts with significant trends (shifts) occurring from June to 

August could also be explained by the direction of the monsoon circulation as discussed earlier. 

The monthly variation (Table 4.2) showed a similar generic spatial pattern of positive and 

negative shifts  for the western and the eastern regions, respectively  but varied significantly in 

terms of the number of districts with significant shifts (Figure 4.6). Table 4.4 shows the locations 

of the major shift points in precipitation during the study period. The shift points observed 

mostly coincided with the non-La Niña years, as was observed by comparing the results with 

Figure 4.2. States with field significance were observed to vary across the various monsoonal 

months in both the trend and shift patterns. 
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4.4.3. Potential Evapotranspiration Change Patterns 

4.4.3.1. Changes Associated with ENSO 

All the states of North India, or a significant portion of them, were observed to 

experience decreasing trends during the El Niño years in the PET trend patterns (Figure 4.3). The 

states showed hardly any significant trends during the La Niña and non-El Niño years, except for 

a portion of Jammu and Kashmir and a district each in Himachal Pradesh, Punjab, and Uttar 

Pradesh. This suggested that the effect of ENSO phases on PET was not evenly distributed 

across the districts. With fewer districts of significance in Uttar Pradesh, the non-La Niña years 

had a similar spatial pattern as the El Niño years. The La Niña years and non-El Niño years also 

showed similar spatial patterns. The maximum (minimum) number of districts with decreasing 

trends was observed during the El Niño (La Niña and non-El Niño) years (Table 4.1). Similar to 

the temperature trends, the effect of neutral years, compared to the El Niño and La Niña years, 

on the change patterns of PET was observed to be less significant (Figure 4.3). Previous studies 

have suggested that El Niño has a much higher potential of altering the evaporation configuration 

around Indian Ocean basins, which eventually could affect the temperature of those basins (Klein 

et al., 1999), as was found in the current study, especially during the El Niño and non-La Niña 

years. 

The spatial distribution of PET shift patterns revealed that all the districts, except for a 

few districts in Uttar Pradesh, experienced negative shifts either during the El Niño or the La 

Niña years (Figure 4.4). The comparisons revealed that the neutral phases did not play a 

significant role in the shifts, as the El Niño (La Niña) years had exactly the same spatial patterns 

as the non-La Niña (Non-El Niño) years. This suggested that the districts experiencing shifts 
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during the El Niño and La Niña years were mutually exclusive (Figure 4.4). The El Niño (non-La 

Niña) years had a higher number of districts with negative shifts compared to the La Niña (non-

El Niño) years (Table 4.1). In the PET trend patterns, the same districts showed the presence of 

trends during both the El Niño and La Niña years. This was not observed in the shift patterns of 

PET, which suggests that the El Niño and La Niña years were associated with or influenced the 

PET shifts of the northern and southern regions of North India mutually exclusively. 

4.4.3.2. All-Year Change Patterns 

The all-year trend patterns revealed that most of the decreasing trends were observed in 

the northwestern regions, i.e., Himachal Pradesh, Punjab, and Jammu and Kashmir, as well as in 

the southeastern districts of Uttar Pradesh either during the monsoon or in any of monsoonal 

months (Figure 4.5). The central part of Uttar Pradesh and the entire state of Uttarkhand did not 

show much presence of trends in any of the monsoonal months. The monthly variation (Table 

4.2) of trend patterns showed that June and July had districts with decreasing trends, mostly in 

the northern regions; meanwhile, August and September had decreasing trends both in the 

northern and southern regions (Figure 4.5). Compared to the temperature and precipitation trend 

patterns, the change in PET across the months did not follow a northbound and a subsequent 

southbound movement. However, northern regions showed a higher number of districts with 

trends in the first half of the season, while southern regions had a higher number of districts with 

trends in the second half of the season. The TSA values (Table 4.3) suggested that June 

experienced the greatest change in PET over the study period (Figure 4.3). Moreover, the results 

suggested that the decreasing trend in temperature did not necessarily cause a decreasing trend in 

PET  at least not during all the months of the monsoon (Figure 4.5). The decreasing trends in 
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PET and its anomaly with temperature trends could be explained by the stressed crops and 

reduced vegetation across India (Singh et al., 2003; Kohli et al., 2006).  

In the all-year shift patterns, all the districts of North India were observed to experience 

negative shifts either during monsoon or in any of the monsoonal months. Some mid-

southeastern and southeastern districts of Uttar Pradesh did not show the presence of a trend 

during June, July, and August (Figure 4.6). However, during September, all of North India 

experienced negative shifts. Except for one district in June, which could be considered as an 

anomaly, no presence of positive shifts was observed across the study period during the monsoon 

season or in any of the monsoonal months. The locations of the major shift points in PET during 

the study period are shown in Table 4.4. Comparing the results with Figure 4.2 showed that the 

shift points coincided with both the El Niño and La Niña years, but not so much with the neutral 

years. Districts all across North India experienced shifts, while mostly northern and southern 

regions showed the presence of trends  which was a significant difference between the PET 

trend (Figure 4.3) and PET shift patterns (Figure 4.5). For both the all-year trend and shift 

patterns, states with field significance were observed to vary across the monsoonal months. 

4.4.4. Entropy 

4.4.4.1. Temperature Entropy 

The AEa suggested that the temperature change was distributed quite evenly over the 

study period (102 years) across most of North India (Table 4.5), except for a few northeastern 

regions that experienced apportionment over approximately 98 years (Figure 4.7). The spatial 

distribution suggested that the southeastern and northwestern regions had higher AEa values 

compared to the rest of the study area. The AEs of temperature suggested that the temperature 
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change also was quite uniform across the monsoonal months, with the lowest AEs value referring 

to a change apportioned over 3.86 months (Table 4.5). The spatial pattern of AEs was found to be 

more dispersed across the different districts compared to the AEa pattern. This variation was 

more prominent in the comparison between the standardized AEa and AEs values (Figure 4.7). 

For most districts, annual variation was observed to be close to the mean value, which was not 

the case for seasonal variation. The results showed that a variation in AEs was much higher than 

in AEa, even among nearby districts. This suggests that the different months of monsoon affected 

change patterns differently for each district; however, on an annual scale, the change was much 

more uniform across years. A comparison between the trends in temperature (Figure 4.3) and the 

entropy distribution of temperature (Figure 4.7) suggested that many districts with significant 

decreasing trends had higher entropy values, indicating an even distribution of change over the 

study period. 

4.4.4.2. Precipitation Entropy 

The values of the precipitation AEa were found to be apportioned over approximately 97 

to 100 years (Table 4.5) across the districts, which suggested that the variation in precipitation 

was less evenly distributed over the study period compared to the variation in temperature 

(Figure 4.7). On the other hand, the AEs of precipitation was found to be apportioned over 3.00 

to 3.67 months, indicating higher monthly variation across the monsoonal season (Table 4.5). 

The spatial distribution of both the AEa and AEs were found to be similar for the mid-eastern and 

southeastern regions having higher entropy values, and the mid-western and northwestern 

regions having lower entropy values. This similarity of apportionment was evident when 

comparing the standardized AEa and AEs values (Figure 4.7), which suggested that the nearby 

districts had similar temporal variations. A comparison between the precipitation trend patterns 
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(Figure 4.5) and precipitation entropy distribution (Figure 4.7) suggested that districts with 

increasing (decreasing) trends had lower (higher) entropy. This could be an important feature 

when trying to understand trend patterns. The results imply that even though some districts 

showed increasing trends, their temporal distribution was less evenly distributed over the years, 

as well as across the monsoonal months when compared to the districts with decreasing trends. 

This suggested that the overall trend pattern of precipitation has decreased with much greater 

uniformity, compared to the increase, during the study period. This could be an important insight 

regarding the increasing trends observed during the El Niño years. Although the difference in 

apportionment was found to be only three years (97 and 100 years for districts with the lowest 

and highest entropy, respectively), the results certainly showed how apportionment entropy 

could explain trend patterns with greater insight.   

 

  



10
3 

 

 

F
ig

ur
e 

4.
 7

: 
(T

op
) 

M
ap

s 
sh

ow
in

g 
th

e 
sp

at
ia

l d
is

tr
ib

ut
io

n 
of

 th
e 

an
nu

al
 a

nd
 s

ea
so

na
l a

pp
or

tio
nm

en
t e

nt
ro

py
 f

or
 (

a)
 te

m
pe

ra
tu

re
, (

b
) 

pr
ec

ip
ita

tio
n,

 a
nd

 (
c)

 

po
te

nt
ia

l e
va

po
tr

an
sp

ir
at

io
n.

 (
B

ot
to

m
) 

P
lo

ts
 s

ho
w

in
g 

th
e 

va
ri

at
io

n 
in

 th
e 

st
an

da
rd

iz
ed

 a
nn

ua
l a

nd
 s

ea
so

na
l v

ar
ia

ti
on

 o
f 

th
e 

ap
po

rt
io

nm
en

t e
nt

ro
py

 in
de

x 
ac

ro
ss

 

al
l t

he
 d

is
tr

ic
ts

 f
or

 th
e 

ch
os

en
 v

ar
ia

bl
es

. A
pp

en
di

x 
4 

(T
ab

le
 A

4.
1)

 c
on

ta
in

s 
th

e 
na

m
es

 a
nd

 n
um

be
rs

 o
f 

th
e 

in
di

vi
du

al
 d

is
tr

ic
ts

 in
 e

ac
h 

of
 th

e 
st

at
es

.



104 
 

Table 4. 5: The range of annual and seasonal apportionment entropy of temperature, precipitation, and potential 

evapotranspiration across the study period of 102 years and along four months of monsoon. 

 

Annual Apportionment Entropy 
(AEa) 

Seasonal Apportionment Entropy 
(AEs) 

 

Range 
(from 0 to 6.6725) 

Apportionment 
(years) 

(from 1 to 102) 

Range 
(from 0 to 2) 

Apportionment 
(months) 

(from 1 to 4) 

Temperature 
(95% confidence interval) 

 
6.6187 to 6.6723 

 
98.27 to 101.99 
(101.89 to 101.99) 

1.9481 to 1.9985 

 

3.86 to 3.99 

(3.98 to 3.99) 

Precipitation 
(95% confidence interval) 

 
6.6007 to 6.6506 

 
97.05 to 100.47 
(98.82 to 99.09) 

1.5982 to 1.8742 

 
3.02 to 3.67 
(3.29 to 3.34) 

Pot. Evap. 
(95% confidence interval) 

 
6.6701 to 6.6724 

 
101.84 to 101.99 
(101.98 to 101.99) 

1.9787 to 1.9973 

 

3.94 to 3.99 

(3.963 to 3.965) 

 

4.4.4.3. Potential Evapotranspiration Entropy 

On an annual scale, the AEa of PET showed that the variations observed were quite 

evenly distributed (apportionment of approximately 102 years) over the study period (Table 4.5). 

The AEs of PET showed higher values of apportionment over almost all the months of monsoon; 

however, the spatial distribution was found to be quite different than what was observed in the 

AEa (Figure 4.7). Even though the actual range within which the values varied (1.9787 to 

1.9973) was quite narrow (Table 4.5), the variation was quite high among the adjacent districts. 

The results showed that the spatial pattern of districts with higher and lower apportionment 

indices was quite opposite in the AEa and AEs. Higher AEa values were observed in the mid-

western and southern regions, while the northeastern regions showed lower AEa values. This 

pattern was reversed in the AEs distribution (Figure 4.7). The reversed behavior was more 

evident when comparing the standardized AEa and AEs values (Figure 4.7). Although both the 

annual and the seasonal variations suggested an even distribution temporally, the reversal in their 
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spatial distribution suggested that the variation in PET during monsoonal months was opposite 

from the long-term annual variation. A comparison of PET trend patterns (Figure 4.5) and PET 

entropy distribution (Figure 4.7) revealed that many of the districts with significant decreasing 

trends showed higher AEa values, indicating that the change was fairly even.  

The analyses of entropy for each of the variables showed how the change patterns were 

distributed temporally across the years and the monsoon season. In the cases when a variable 

experienced both the increasing and decreasing trends, the entropy revealed if one of the trends 

was more prevalent over the years (or across the season) or both had similar temporal 

distribution. Thus, the conjunction of the entropy analysis with the trend test (coupled with slope 

detection) provides greater insight into the nature of a trend.    

4.5. Conclusions 

In this study, three hydro-climatological variables, i.e., temperature, precipitation, and 

PET, were analyzed over century-wide data (from 1901 to 2002) to evaluate the influence of 

various ENSO phases on the change patterns across North India during the monsoon season. 

Trend and shift patterns in 146 districts in eight North Indian states were analyzed, and the 

annual and the seasonal (monsoonal) apportionment entropy that quantified the temporal 

distributions of the change patterns were evaluated. Besides the effects of ENSO, the all-year 

(century-wide) monsoonal change patterns were analyzed to determine the effect of each of the 

monsoonal months on the long-term patterns. Results suggested that the El Niño years, compared 

to the La Niña and neutral years, had a much greater influence on the change patterns of the 

variables. The all-year change patterns suggested a significant decrease in the temperature and 

PET trends and shifts across North India, while the precipitation change patterns (both increasing 
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and decreasing) were found to be region-specific. The entropy analyses suggested that the 

highest variation in the long-term change pattern occurred in precipitation data, whereas 

temperature and PET experienced more variation during the monsoon season compared to 

changes over the years. 

Major physical and dynamic relationships affecting the monsoon season due to the 

change in ENSO phases in the Indian subcontinent were compiled and discussed in this study 

based on the previous literature. By analyzing multiple hydro-climatological variables of North 

India, the study illustrated how various variables can be affected by the different phases of 

ENSO. Climate researchers and policymakers may find the results useful to understand the 

variability resulting from the various ENSO phases during the north Indian monsoon season. 

Such understanding may help devise strategies to mitigate the adverse effects of climate 

extremes. 
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CHAPTER 5: COMPARISON OF TRENDS AND SHIFTS IN THE OBSERVED AND 

MODELED (CMIP5) TEMPERATURE AND PRECIPITATION PATTERNS OF THE 

COLORADO RIVER BASIN UNDER SHIFT AND PERSISTENCE 

5.1. Introduction 

Understanding of trends in various hydro-climatological data, under the influence of 

climate change, to yield practical solutions to the existing and imminent threats, is a major topic 

of research in the scientific community, especially among the climate data modelers (Asrar et al., 

2012; Arnell, 2011; Shakya et al., 2019). The recent assessment reports (AR5 and AR6) of the 

Intergovernmental Panel on Climate Change (IPCC) (IPCC, 2014 and 2019) has provided a 

synthesis of results for policymakers based on simulation results provided by phase five of the 

Coupled Model Intercomparison Project (CMIP5) (Taylor et al., 2012). Many studies, both on 

the continental and regional scales, have focused on historical as well as projected temperature 

and precipitation trends in the multi-model CMIP5 data to examine extreme climate conditions 

(Wuebbles et al., 2014; Lynch et al., 2016; Nyaupane et al., 2018; Chen et al., 2019). A study by 

Kumar et al. (2013) evaluated the effects of persistence, i.e., clustering behavior in the hydro-

climatological observations, in the long-term trends on a global scale and compared the results 

against multiple observed datasets. The study suggested that the CMIP5 models are capable of 

capturing the effects of persistence in temperature better than precipitation. Presence of 

persistence, e.g., positive serial correlation, has been considered as one of the major reasons of 

uncertainty in hydro-climatological data since it reduces the effective sample size, which leads to 

an overestimation of variance, and overestimates the probability of a significant trend (Hamed 

and Rao, 1998; Yue et al., 2002; Koutsoyiannis, 2003). Another important feature of 

nonstationary hydro-climatological data is the presence of shifts (abrupt changes) in the data 
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distributions (Villarini et al., 2009). A non-stationary time series experiences changes in the 

distribution function over time, which may lead to a significant change in variance. Villarini et 

likely to continue in the future

shift from one regime to another, and the status is likely to remain the same until 

a new regime shift occurs

to ambiguous results. Figure 5.1 (left) shows an example of how ignoring an SP in the data 

distribution may lead to erroneous detection of trends (a similar example was shown by Villarini 

et al. (2009) to illustrate that performing a trend test before considering the SP may result in a 

detection of erroneous significant trend). However, if the presence of an SP was considered, the 

two subseries  before and after the SP  independently do not suggest statistically significant 

trends (note the horizontal slopes in Figure 5.1). More details on the importance of detecting SPs 

in association with trends can be found in the works of Villarini et al. (2009) and Mallakpour and 

Villarini (2016). Studies like Kalra et al. (2008), Miller et al. (2008), and Sagarika et al. (2014) 

have also used trend and shift detection tests  however, these studies considered trends and 

shifts to be independent of each other, at least when applying the tests. A recent study by 

Serinaldi and Kilsby (2015) suggests that the shift detection tests are also affected by the 

presence of trends and persistence, especially by the short term persistence (STP). Hence, de-

trending the data (if required) and removal of persistence, before the trend and/or shift detection 

tests, becomes imperative to produce results with higher reliability.  

In this study, simulated temperature and precipitation time series of CMIP5 (referred to 

as CMIP5 temperature and precipitation models in the later sections of the manuscript) for the 

Upper and Lower Colorado River Basins (UCRB and LCRB, respectively) were analyzed to 

determine the presence of significant trends and shifts with respect to persistence. A total of 41 
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temperature and 25 precipitation CMIP5 models were analyzed over a study period of 104 years, 

i.e., from 1901 to 2004. For each model, a significant SP was detected (if present) using the 

, 1979), followed by the analyses of trends before and after the significant SP 

using the Mann-Kendall (MK) test (Mann, 1945; Kendall, 1975). Both the P

tests are of nonparametric in nature, which makes them appropriate for climate data distributions 

that are often subject to non-stationarity and non-normality (Kumar et al., 2009). Villarini et al. 

(2009) compared among multiple parametric and non-parametric tests to detect both shifts and 

shifts and trends, respectively. For the shift detection test, trend-free-pre-whitening (TFPW), 

based on Yue et al. (2002), was applied as suggested by Serinaldi and Kilsby (2015), to remove 

the effect of STP from the models. Several modified MK tests were applied, based on Kumar et 

al. (2009), to determine the effects of both the long-term persistence (LTP) and STP on the 

identified trends. To evaluate the ability of CMIP5 models to capture the observed trends, under 

the influence of SPs and persistence, data from the Climate Research Unit Time Series version 

3.10 (CRU-TS) were analyzed. Both the CMIP5 and CRU-TS datasets were analyzed at identical 

spatial and temporal resolutions.  

Based on literature review of the recent studies (Villarini et al., 2009; Venema et al., 

2012; Williams et al., 2012), this study hypothesized that trend analyses are better explained if 

SP detection tests are included prior to the trend tests as was explained earlier with the example 

in Figure 5.1. Hence, the first objective of the study was to detect SPs in both the modeled and 

observed datasets and to evaluate the presence of trends independently before and after the SPs. 

Studies also suggest the importance of the removal of persistence preceding both the trend and 

shift detection tests. Therefore, as the second objective, the study evaluated the effects of 



110 
 

persistence on the detected trends and shifts. As the final objective, the efficacy of CMIP5 

models to match the observed trends, considering both the significant SPs and persistence, was 

evaluated across the Colorado River Basin (CRB). 

5.2. Study Area and Data 

Data from 41 temperature and 25 precipitation CMIP5 models (https://cmip.llnl.gov/) 

were obtained (in terms of anomalies calculated with respect to 1961-1990 mean to be consistent 

with the observed data) from 1901 to 2004 for the UCRB and LCRB. The basin boundaries were 

obtained from the USGS hydrologic unit map (https://water.usgs.gov/GIS/huc.html). For each 

model, only the first ensemble member was considered in the analyses. The obtained data were 

re-gridded (as suggested by Kumar et al. (2013) using an area-average preserving method) to a 

common spatial resolution of 2.5° x 2.5°, which resulted in a total of 22 grid cells (boxes or 

squares) for the entire CRB (Figure 5.1). Grid cells 1 to 10, 14, and 15 had the majority of their 

portions in LCRB, while grid cells 11 to 13, and 16 to 22 had the majority of their portions in 

UCRB (Figure 5.1). The observed CRU-TS temperature and precipitation time series data (in 

terms of anomalies with respect to 1961-1990 mean) (https://crudata.uea.ac.uk/cru/data/hrg/) 

were up-scaled from 0.5° x 0.5° to 2.5° x 2.5° using an area-average preserving method as well, 

as suggested by Kumar et al. (2013) and Mitchell and Jones (2005), to match the modeled data 

resolution. For both the datasets, mean annual time series data were produced by aggregating the 

monthly temperature and precipitation data. Appendix 5 (Table A5.1) lists the names of all the 

CMIP5 models analyzed in the study. Figure A5.1 (Appendix 5) shows the temperature and 

precipitation anomaly data obtained from the CMIP5 model simulations (as multi-model 

averages) and CRU-TS observations across the study period for each of the grid cells. 
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5.3. Methodology 

For the trend analyses, four different versions of the MK test (Mann, 1945; Kendall, 

1955), adopted from Kumar et al. (2009), were applied. Similar modified versions of the MK test 

were found in the literature relating to determination and quantification of trends (Tamaddun et 

al., 2016). The first version, referred to as the MK1 in the following sections, is the original form 

of the MK test (Lettenmaier et al., 1994). The second version, referred to as the MK2, is a 

modified MK test with TFPW, as explained by Yue et al. (2002), and considers the effect of STP 

or lag-1 autocorrelation in the data distribution. The third version, referred to as the MK3, is a 

modified MK test that takes into account all the significant autocorrelation structures present in a 

time series (Hamed and Rao, 1998). The fourth version, referred to as the MK4, is a modified 

MK test that considers the effect of LTP, also known as the Hurst phenomenon (Hamed, 2008) in 

the hydrology literature (Koutsoyiannis, 2003). The MK test, at its core, is based on the null 

hypothesis that the time series has no trend. The test determines the direction of a trend, which 

can be either positive, negative, or absence of a trend, based on the first MK test statistic 

(obtained from a signum function). Later, another test statistic is determined (from the first test 

statistic), which gives the significance level of rejecting the null hypothesis. The modified 

versions of the MK test, as mentioned earlier, checks for the presence of autocorrelation (Kumar 

et al., 2009), and based on the type of autocorrelation, either modifies the time series (MK2 

applies prewhitening) before determining the significance of the MK test, or adjusts the formula 

to determine the test statistic (MK3 and MK4). Hence, a time series under MK1 may suggest a 

trend at a certain significance level, however, the same time series may not be statistically 

significant under MK2, MK3, or MK4, or vice versa. Besides the MK test, Theil-Sen approach 

(TSA) (Theil, 1950; Sen, 1968) was adopted to quantify the magnitude of the trends. TSA is 
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nonparametric in nature, hence it is considered appropriate to be applied in conjunction with the 

MK test. TSA determines the median slope of all the possible pairs in a time series. Thus, the test 

is robust against possible outliers.  

, 1979), with and without TFPW (Yue et al., 2002), was used to 

determine the presence of significant SPs in the data distributions, as was suggested by Serinaldi 

and Kilsby (2015). The Pettitt's test (Pettitt, 1979), at its core, detects the shift (using a signum 

function similar to the MK test) in a time series by testing the anomaly between the mean of two 

independent samples from the same time series. The detected shift, which can be either positive, 

negative, or an absence of a shift, is then tested for a probability estimate based on the 

significance level used. The TFPW process removes the trend (de-trending) from a time series by 

subtracting the slope of the trend (Yue et al., 2002) and then removes the serial correlation from 

the de-

of time series with underlying trends. Depending on the presence of a significant SP, each of the 

time series was divided at the SP, and all the MK tests were applied before and after the SP 

separately. This approach of detection of an SP and then applying the MK tests prior to and after 

-

(significance level of 10% or 0.10) was used for the significance of all the tests. 

5.4. Results 

5.4.1. Shift-Trends in Temperature Data 

The majority of the CMIP5 temperature models at each of the grid cells suggested a 

positive shift (Appendix 5, column four (+/-) of Table A5.2) between 1940 and 1980 (according 

to the SPs one standard deviation above and below the mean SP) (Figure 5.2a). The overall range 
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of the SPs was found to be slightly wider (around 1920 to 1980). The mean SPs of all the CMIP5 

models had a significantly narrow range, i.e., between 1960 and 1970, except for the grid cell 11, 

which experienced an earlier shift. The mode of SPs across the CMIP5 models (Table A5.2) 

suggest that almost all the grid cells had shift points between 1960 and 1980. A few models at 

each grid cells showed negative shifts, but the numbers were very few compared to the positive 

shifts (Table A5.2). The effect of STP on the SPs was found to vary across the grid cells  for 

some grid cells, the mean SP was shifted by more than a decade (e.g., grid cell 3, and 13-15) 

(Figure 5.2a).  

Comparison between the trends before and after the shifts showed that the total number 

of models at each grid cells with the positive trends increased by approximately a factor of three 

after the shifts (last row of Table A5.2). On the contrary, negative trends were hardly observed 

after positive shifts, even though there were models with negative trends before the shifts. Both 

MK3 and MK4 had a smaller number of models with trends, whereas MK2 had a higher number 

of models with trends compared to MK1 (both before and after the SPs) (Table A5.2). The 

LCRB had a higher number of models with positive trends compared to the UCRB, both before 

and after the SPs. Contrarily, UCRB had a higher number of models with negative trends 

compared to the LCRB before the shifts. There was only one model with a negative trend after 

the SP in the UCRB (under MK1 and MK2), while the negative trends in the LCRB were all 

neutralized after the SPs (Table A5.2). The effect of positive shifts in the detected trends was 

also evident from the TSA trend slopes evaluated before and after the shifts. Figures 3a and 3b 

show that the mean trend slope across the grid cells increased by a factor of 10 after the shift. 

The median TSA slopes, both before and after SPs, were all found to be positive across the 

models at each grid cell. 
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The CRU-TS temperature data showed a higher variation among the SPs across the grid 

cells as compared to the mean SPs of the modeled data. Almost all the grid cells had a positive 

SP between 1930 and 1980 (Figure 5.2b). The effect of STP was found to be higher in the CRU-

TS data since the majority of the grid cells did not show significant SPs after applying TFPW. 

Grid cells without a significant SP were infilled by the average of the significant SPs found 

across the basin (named as the basin-mean-SP) in Figure 5.2b. The effect of shifts in the detected 

trends was found to be less in the CRU-TS temperature data  especially in MK3 and MK4  as 

the total number of grid cells with significant trends were comparable before and after the 

significant shifts (Appendix 5, Table A5.3). In MK1 and MK2, the number of grid cells with 

positive trends was close to double after the positive shifts. Except for the two grid cells in the 

LCRB, the direction of the trends in all the other grid cells was positive, both before and after the 

positive shifts (Table A5.3). The UCRB had a higher number of grid cells with positive trends 

compared to the LCRB, which was opposite of what was found among the CMIP5 models. The 

mean TSA trend slopes across the grid cells showed a significant rise, an increase by a factor of 

4, after the positive shifts (Figures 5.3c and 5.3d). The rate of increase in the slope values, from 

before the shifts to after the shifts, was found to be higher in the central grid cells compared to 

the eastern and western grid cells. 

A basin-wide analysis revealed a noticeable increase in the basin-mean trend slope 

(obtained by averaging the slopes of all the grid cells within the CRB) after a significant shift  

both in the modeled and observed datasets (Figure 5.3e). Though the modeled mean shift (1962) 

(obtained from averaging all the SPs within the CRB) occurred a decade later than the observed 

mean shift (1952), the increase in slope after the shift was found to be quite comparable (within 

the same order and consistent direction) with the observed data. The modeled mean slope 
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changed from +0.0023 to +0.0232 (increased by a factor of 10), while the observed mean slope 

changed from +0.0038 to +0.0157 (increased by a factor of 4) (Figure 5.3). 

5.4.2. Shift-Trends in Precipitation Data 

In the CMIP5 precipitation models, it was difficult to conclude on the general direction of 

the shifts since the number of models with positive and negative shifts at many of the grid cells 

was comparable (equal in some instances) (Appendix 5, column four (+/-) of Table A5.4). 

Besides, only a small proportion of the precipitation models showed a significant shift compared 

to the temperature models (last row of Table A5.4). However, for the entire CRB, a higher 

tendency towards negative shifts was observed from the analyses. The SPs at each grid cells 

across the majority of the models were found between 1920 and 1980 (according to the SPs one 

standard deviation above and below the mean SP as well as in the overall range) (Figure 5.2c). 

The mean SPs among the models at each grid cells were found within a narrower range (i.e., 

between 1930 and 1960). There was no significant mode among the SPs across the models 

(Table A5.4). The effect of STP was found to be higher among the CMIP5 precipitation models, 

as TFPW shifted the mean SPs by more than a decade for some of the grid cells, e.g., cells 3-5, 

cell 11, and cells 14-16 (Figure 5.2c).  

A neutralizing tendency, in terms of the direction of the trends, was observed between the 

trends before and after the shifts. The number of models with positive trends after the shifts was 

reduced to close to one half compared to before the shifts (last row of Table A5.4). Models with 

negative trends were hardly present after the shifts, except for one model under the MK3 in the 

UCRB. MK1, MK2, and MK4 had comparable results  both before and after the shifts (Table 

A5.4). MK3 had the highest number of models both with positive and negative trends. The  
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LCRB had a higher number of models with positive trends both before and after the shifts than 

the UCRB (Table A5.4). The LCRB also had a higher number of models with negative trends 

before the shifts, but all the trends were neutralized after the shifts. From the TSA trend slopes, it 

was difficult to determine the general direction of the precipitation trends across the grid cells 

(Figures 4a and 4b). Before the shifts, the mean TSA slope was found to be slightly above zero, 

with the eastern and western grid cells having relatively positive slopes and the central grid cells 

having relatively negative slopes. After the shifts, the mean TSA slope was found to increase, but 

that increase can be attributed to the absence of significant SPs in many of the modeled data 

distributions  which overestimated the overall mean trend across the CRB. The TSA slopes 

after the shifts showed a higher rate of increase among the central grid cells compared to the 

eastern and western grid cells. 

The effect of STP was not conclusive as for the majority of the grid cells (Appendix 5, 

Table A5.5)  both with and without TFPW  did not show significant SPs in the CRU-TS 

precipitation data (Figure 5.2d). The results of the different versions of the MK tests were quite 

similar and showed only negative trends both before and after the shifts. In fact, MK1, MK2, and 

MK4 had exactly the same results (Table A5.5). The majority of the shifts were found to be 

positive, which neutralized the pre-existing negative trends and resulted in the absence of trends 

after the shifts. The LCRB had a higher number of grid cells with negative trends compared to 

the UCRB  both before and after the shifts (there was only one grid cell with negative shift in 

the LCRB after the shift) (Table A5.5). The mean TSA slope across the grid cells before the 

shifts was close to zero (slightly negative) (Figure 5.4c). Many of the grid cells did not have a 

significant shift, which produced inconsistency in the estimation of trend slopes. As the grid cells 

without significant shifts had no trend after the shift (such grid cells had a trend for the entire 
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study period represented as a trend before the shift in Figure 5.4c), those cells did not contribute 

in calculating the mean slope after the shift  and hence, those cells fell on the no trend line in 

Figure 5.4d (shown by unfilled symbols). Therefore, the mean slope was found to decrease after 

the shift since the negative slopes were found to be of higher magnitude compared to the positive 

slopes among the grid cells with significant shifts (Figure 5.4d). A higher magnitude of negative 

slopes among a handful number of grid cells (all the grid cells did not have a significant shift) 

may have created a negative bias in the mean slope after the shift. The eastern grid cells, both 

before and after the shifts, showed fewer slopes compared to the western grid cells. Many of the 

grid cells that did not show a significant SP had positive trends across the entire study period. 

The basin-wide analysis did not produce a satisfactory comparison as the basin-mean 

slopes (obtained by averaging the slopes of all the grid cells within the CRB) were found to be 

inconsistent between the modeled and observed datasets. The modeled data showed an increase 

(from 0.0091 mm/year to 0.0195 mm/year) in the basin-mean slope (obtained from averaging all 

the SPs within the CRB) while the observed data suggested a decrease (from -0.0039 mm/year to 

-0.0109 mm/year) (Figure 5.4e). Unlike the temperature models, precipitation models 

experienced the mean shift (obtained from averaging all the SPs within the CRB) earlier (1951) 

than the observed shift (1958) (Figure 5.4e). The distribution of the observed data revealed that 

the grid cells with decreasing trends had a higher influence on the basin-wide mean.  
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Figure 5. 3: Box plots showing the distribution of the Theil-Sen approach (TSA) trend slopes across the CMIP5 (a 

and b) and CRU-TS (c and d) temperature data before and after a significant shift at each of the selected grid cells. 

across all the grid cells. (e) Plots showing the basin-mean TSA slope before and after the shift in the CMIP5 and 

CRU-TS temperature data. The orange line connecting the basin means, before and after the shift, shows the change 

in slope due to the shift. The box plots in (e) show the distribution of the SPs across all the grid cells for visual 

comparison. The box plots show the 25th, 50th, and 75th percentile, while the whiskers represent the minimum and 

maximum values. Grid cells 1-10, 14, and 15 are located in LCRB, while grid cells 11-13, and located 16-22 are in 

UCRB. (e) 95% confidence intervals of the basin mean slope for the CRU-TS data (CMIP5 models) before and after 

the shift were -0.0027 to 0.0104 (0.0019 to 0.0027) and 0.0097 to 0.0216 (0.0223 to 0.0241) oC/year, respectively. 
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5.5. Discussion 

The ability of CMIP5 simulation models to match the observed trends under the influence 

et al., 2002) was used to detect the significant SPs, as was suggested by Serinaldi and Kilsby 

(2015). Compared to the CMIP5 temperature models, the precipitation models experienced a 

higher influence of STP (Figures 2a and 2c) as the mean SP of some of the grid cells moved by 

more than a decade after the TFPW. Such movement in SP can be attributed to the absence of 

significant SPs in some of the modeled data distributions after applying TFPW  which can 

produce a bias in the mean SP. In the observed data distributions, the effect of STP was higher as 

the majority of the grid cells did not show any significant SP after TFPW (Figures 2c and 2d). 

However, for such grid cells having SPs both before and after TFPW, the locations of the SPs 

were found to be comparable. The results suggest that the effect of STP was higher in both the 

modeled and observed precipitation data compared to the temperature data. Other prewhitening 

techniques, e.g., AR(1)-based prewhitening and fGn-based prewhitening, can be evaluated in 

future studies to verify the obtained results. However, the results may not vary significantly as 

was suggested by Serinaldi and Kilsby (2015). 

The CMIP5 temperature models had a narrower range of mean SPs compared to the 

observed data (Figure 5.2). Furthermore, the temperature models showed the tendency of 

detecting significant SPs at a later date compared to the observed data. The variation of SPs 

among the adjacent grid cells was much higher in the CMIP5 precipitation models compared to 

the temperature models. The results of the modeled and observed precipitation datasets were not 

highly comparable as many of the grid cells in the observed data did not have a significant SP. 

Contrary to the temperature models, the precipitation models detected the SPs earlier than the 
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observed SPs. Such a tendency was also evident from the basin-wide shift of temperature and 

precipitation (Figures 3e and 4e). This suggests an overall bias (a tendency of detecting shifts 

earlier or later than the observed shifts) in the modeled data distributions. 

 

Figure 5. 4: As in Figure 5.3, but for precipitation data. For visual comparison, grid cells without a significant SP, at 

, in (d), were infilled with zero slopes (no trend), as shown by unfilled symbols. Grid cells 1-10, 14, and 15 

are located in LCRB, while grid cells 11-13, and 16-22 are located in UCRB. (e) 95% confidence intervals of the 

basin mean slope for the CRU-TS data (CMIP5 models) before and after the shift were -0.0201 to 0.0124 (0.0026 to 

0.0155) and -0.0522 to 0.0305 (-0.0027 to 0.0416) mm/year, respectively. 



123 
 

The analyses suggest that the SPs across the grid cells (also the basin-mean-SP) were 

located within a range of a few decades for both the temperature and precipitation models. 

Previous studies have looked into the correspondence between the phases of large-scale climate 

variabilities originating from the SST fluctuations (i.e., El Niño Southern Oscillation, Pacific 

Decadal Oscillation, and Atlantic multidecadal oscillation) and the station-based hydro-

climatological data of the CRB (Tamaddun et al., 2017; Kalra et al., 2017; Nowak et al., 2012). 

The obtained results were found to be fairly consistent with the shifts observed in the previous 

studies (Pathak et al., 2017; Rahaman et al., 2019). The range of results among the models and 

their inherent uncertainty due to natural climate variability was discussed by Deser et al. (2012a 

and b), which may explain the comparable SPs across the models. The study also mentions the 

importance of large-scale fields on the downscaled local climate models. Future studies may 

consider the findings of the study in inter-model and inter-variable analyses of the models as a 

response to large-scale climate variabilities.  

The effect of persistence on trends was found to be consistent between the variables in 

the modeled and observed datasets. Both the temperature datasets (modeled and observed) were 

more greatly influenced by STP as TFPW (MK2) increased the number of significant models 

when compared to MK1, while the numbers of significant models were fewer in MK3 and MK4 

(Tables A5.2 and A5.3). The precipitation data distributions were found to be highly influenced 

by the significant autocorrelation structures with a higher number of significant models in MK3 

compared to the other MK tests (Tables A5.4 and A5.5). Studies suggest that the effect of 

persistence can have different associations among correlated variables even within a particular 

region (Kumar et al., 2009). The consistency between the modeled and observed datasets 
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observed in the persistence of a variable can be compared to other hydrologic basins to evaluate 

its uniformity across a larger study area in future studies.  

The effect of shifts on the detected trends was found to be much higher in temperature 

compared to the precipitation datasets. The positive shifts in the temperature datasets increased 

the trend slopes significantly after the shifts. The slopes  both before and after the shifts  were 

found to be fairly consistent between the modeled and observed datasets. However, the rate of 

increase, from before the shift to after the shift, was higher in the CMIP5 models. Before the 

shifts, the slopes varied from the eastern to the western grid cells, but they were found to be 

consistent (all positive) after the shifts, which suggests a basin-wide shift towards a positive 

trend in both the modeled and observed datasets. Though CMIP5 temperature models 

overestimated the magnitude of the trend, both before and after the shifts, the models 

satisfactorily captured the observed trend slopes.  

In the precipitation datasets, the absence of significant SPs may have led to a bias in the 

estimation of trends since the effective number of grid cells (while calculating the mean slope) 

was inconsistent between the modeled and observed distributions as well as between before the 

shift cases and after the shift cases (Figure 5.4). Some of the CMIP5 models did not have a 

significant SP, which overestimated the variance of the trend slopes and may have produced 

biased results. A similar occurrence of bias was found in the observed data as many of the grid 

cells did not have a significant SP. Though the trend slopes between the modeled and observed 

datasets were incomparable (and hence inconsistent), both the datasets showed a lack of SPs in 

their distributions. This suggests that the precipitation and temperature trends in the CRB did not 

experience identical changes over the study period. The presence of shifts, in strengthening or 

neutralizing an existing trend, was much higher in the temperature trends compared to the 
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precipitation trends. The influence of modeled and observed datasets varied across the UCRB 

and LCRB without any noticeable consistency within the variables. However, before the shifts, 

especially in the temperature data, the eastern and western grid cells showed higher slopes, while 

after the shifts, the central grid cells showed higher slopes. The observed variation from east to 

west can be a scope of research for future studies. 

5.6. Conclusions 

This study evaluated the effects of SPs and persistence on the trend analyses of the 

CMIP5 temperature and precipitation models for the entire CRB across 104 years. The obtained 

results were compared against the observed CRU-TS datasets. The results showed that the trends 

in temperature models were relatively consistent with the observed trends  both in the direction 

and magnitude. For both the precipitation datasets, the absence of significant SPs in many of the 

grid cells led to incomparable and inconsistent results. The variation in SPs among the adjacent 

grid cells was higher in the modeled precipitation and observed temperature data. Both the 

temperature datasets showed a higher influence of STP in their detected trends (MK2), while 

both the precipitation datasets were highly influenced by the significant autocorrelation 

structures of the time series (MK3). 

The major contributions of this study are: 

 A shift-trend approach was adopted where the direction and magnitude of the trends were 

evaluated independently before and after significant SPs for both the modeled and 

observed datasets. This allowed the current study to evaluate the effect of shifts in 

strengthening or neutralizing the pre-existing trends. 
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 The effect of persistence was thoroughly examined not only for the trend tests but also 

for the detection of SPs. The trend analyses revealed that the effects of persistence varied 

between the variables, but they were consistent between the modeled and observed 

datasets. The SPs were found to be influenced by persistence in both the datasets with 

higher influence on the observed datasets.  

 The inconsistencies detected between the CMIP5 and observed datasets  under the 

influence of SPs and persistence  can be helpful in improving the models. The observed 

biases can be helpful to practitioners who highly depend on data-driven modeling.  

Future studies may look into the uncertainties related to large-scale climate variability 

and the modeled distributions. The inclusion of multiple ensemble members can also be another 

scope of research. Comparing the results with adjacent hydrologic basins may provide important 

insights regarding other possible biases in the CMIP5 models. 
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CHAPTER 6: CONTRIBUTIONS AND RECOMMENDATIONS 

6.1. Summary 

Climate warming has affected hydrologic processes in various ways  one of them 

involves changes in the behavior and intensification of the hydrologic cycle. The adverse 

consequences of these changes have increased under the changing climate as the rapid increase 

in population stresses limited water resources. Water managers have expressed concerns 

regarding the aftermath associated with access to fresh water as a response to the change in 

climate. Hence, the primary objective of the work presented in this dissertation was to evaluate 

the change patterns, i.e., a gradual change known as the trend, and an abrupt change known as 

the shift, of multiple hydro-climatological variables, namely, streamflow, SWE, temperature, 

precipitation, and PET, in association with the large-scale oceanic-atmospheric climate signals. 

Moreover, both observed datasets and modeled simulations were used to evaluate such change 

patterns to assess the efficacy of the modeled datasets in emulating the observed trends and shifts 

under the influence of uncertainties and inconsistencies. A secondary objective was to utilize the 

detected change patterns in designing data-driven prediction models, e.g., ANN, SVM, and GPR 

models, coupled with data pre-processing techniques, e.g., PCA and WT. The study was not 

solely limited to the hydrologic regions of the conterminous U.S.; rather it was extended to 

include an analysis of northern India to appraise the differences in the spatiotemporal variation 

on a broader scale.  

The first task examined two research questions: (1) What are the spatiotemporal trend 

and shift patterns of the conterminous U.S. streamflow in association with large-scale oceanic-

atmospheric climate signals across multiple frequency bands? (2) How effective are data-driven 
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models, e.g., ANN, SVM, and GPR, when coupled with data pre-processing techniques, e.g., 

PCA and WT, in predicting short-term streamflow behavior? The task was based on the research 

basis that detection of trends and shifts across multiple frequency bands may provide a better 

understanding of the nature of the change patterns, especially when such changes have been 

found to be associated with the oscillatory behavior of large-scale oceanic-atmospheric climate 

signals such ENSO, PDO, and AMO. Since these signals contain multiple frequency components 

and alternating phases when changing over a long time, associating the streamflow change 

patterns with these signals across various frequency bands can be of significant importance. The 

detected intra-variation and inter-covariation between streamflow and the climate signals across 

multiple frequency bands may have the potential to improve the predictive ability of the data-

driven models, e.g., ANN, SVM, and GPR, when coupled and designed properly. Hence, the 

study analyzed water year and seasonal trends and shifts (along with their DSs) in 237 

unimpaired streamflow stations across the continental U.S. from 1951 to 2012. The 

spatiotemporal association between regional streamflow patterns and three large-scale climate 

signals were assessed using WTC. The major findings and the summary results of this task were: 

positive (negative) trends and shifts in the water year and its DSs were significant in the 

northeastern and north-central (northwestern and southeastern) regions; a few central regions 

showed both directional trends and shifts. This was not common since most of the regions 

showed spatial coherency in terms of the trend and shift direction; seasonal trends and shifts 

suggested unique spatial patterns in the original time series as well as in their DSs. Fall and 

spring showed the highest positive and negative trends and shifts, respectively, suggesting a 

behavioral change at the end of these two seasons. The number of significant stations with trends 

and shifts increased as the DSs went higher, with the maximum in DS8. Shifts showed an 
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oscillating behavior in DS8  which led to the hypothesis that such behavior at higher SBs was 

correlated to the frequency components of the climate signals; ENSO showed a higher 

correlation with the regional streamflow in CS8 to CS16, while both PDO and AMO showed 

higher correlations in the lower CSs (below CS4) and beyond CS16; the relative phase 

relationship suggested a uniform lag-response behavior (either in-phase or a lag of one quarter) 

between significant regional streamflow patterns and ENSO. For PDO and AMO, no such 

consistency was observed. Comparison among the ANN, SVM, and GPR models, preceded by 

PCA and WT, produced comparable results with significant accuracy in predicting short-term 

streamflow behavior. 

The second task inspected two research questions: (1) How do the large-scale oceanic-

atmospheric climate signals originating from the Pacific Ocean affect the western U.S. SWE 

across multiple frequency bands? (2) Which regions of the western U.S. have maintained a 

consistent phase relationship, in terms of SWE, with the large-scale climate signals originating 

from the Pacific Ocean; and how does the lag-response behavior change across multiple 

frequency bands? This task was formulated based on the assumption that association between 

regional western U.S. SWE and the large-scale oceanic-atmospheric climate signals originating 

from the Pacific Ocean, e.g., ENSO and PDO, can be better explained in their frequency 

components since these signals contain multiple frequency components. Such signals also 

alternate between phases when changing over a long time. The detected correlation between 

SWE and the climate signals across multiple frequency bands may provide a better insight into 

their spatiotemporal relationships and may explain their phase relationships with greater detail. 

Hence, the study examined the correlation between ENSO/PDO and the western U.S. SWE over 

a study period of 56 years using CWT and its derivatives. Application of such methods allowed 
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the study to analyze and correlate regional SWE with oceanic-atmospheric climate indices across 

multiple timescale bands. The analysis revealed the following: ENSO, compared to PDO, had a 

much higher influence on SWE. The temporal associations were observed to be stronger in the 

higher timescale (lower frequency) bands. The effect of ENSO/PDO varied significantly across 

the adjacent hydrologic regions; regions close to the ocean (inland) and lower (higher) in 

elevation were observed to show a higher (lower) correlation with ENSO/PDO. 

The third task investigated two research questions: (1) What are the spatiotemporal trends 

and shift patterns of temperature, precipitation, and potential evapotranspiration in the north 

Indian monsoon (and its comprising months) across the last century during the phases of ENSO? 

(2) What is the rate of change (slope) of the trends and how are the trends distributed 

(apportioned) along the years and through the months of monsoon? Large-scale oceanic-

atmospheric climate signals, such as ENSO and their phases have been found to influence global 

hydro-climatological patterns in various ways based on the geography and the seasonal variation 

of a region. Among the different regions of India, the northern part of the country has been 

observed to experience many different climate extremes, e.g., storms, droughts, and floods, over 

the years. Since monsoon is the single most important season for the region, evaluation of the 

temperature, precipitation, and PET patterns (both trends and shifts) across the last century, 

especially during the various phases of ENSO, can be of great value to regional water 

management. A proper quantification, e.g., the rate of change and apportionment, of the trends 

can also be helpful in evaluating temporal variation across the years and through the months of 

monsoon, which lasts from June to September. Moreover, as the literature suggests, the multi-

variable analyses approach adopted in this task may help investigators to understand the response 

of regional hydrology to large-scale climate signals such as ENSO. Hence, in this task, three 
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hydro-climatological variables, i.e., temperature, precipitation, and PET, were analyzed over a 

century-wide period (from 1901 to 2002) to evaluate the influence of various ENSO phases on 

the change patterns across North India during the monsoon season. Trend and shift patterns in 

146 districts in eight North Indian states were analyzed, and the annual and the seasonal 

(monsoonal) apportionment entropy that quantified the temporal distributions of the change 

patterns were evaluated. Besides the effects of ENSO, the all-year (century-wide) monsoonal 

change patterns were analyzed to determine the effect of each of the monsoonal months on the 

long-term patterns. Results suggested that the El Niño years, compared to the La Niña and 

neutral years, had a much greater influence on the change patterns of the variables. The all-year 

monsoonal change patterns suggested a significant decrease in the temperature and PET trends 

and shifts across North India, while the precipitation change patterns (both increasing and 

decreasing) were found to be region-specific. The entropy analyses suggested that the highest 

variation in the long-term change pattern occurred in precipitation data, whereas temperature and 

PET experienced more variation during the monsoon season compared to changes over the years. 

The fourth and final task examined two research questions: (1) What are the direction and 

magnitude of temperature and precipitation trends in the CRB along the last century in the 

observed and modeled (CMIP5) gridded datasets? (2) How do the shifts alter the direction and 

magnitude of the trends and what are the influences of various types of persistence, e.g., short 

and long-term autocorrelation, on the observed and modeled trends? Comparison between 

observed and modeled datasets provides a set of qualitative and quantitative metrics to evaluate 

the accuracy of the modeled datasets, especially when such modeled datasets are heavily used for 

hydro-climatological prediction, such as the CMIP5. Assessment of trends (both in direction and 

magnitude) in the observed and modeled datasets can be helpful in correcting the bias (if any) in 
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the modeled datasets. Moreover, such trends can highly be influenced by the presence of shifts, 

which can alter or moderate an existing trend. An undetected shift may result in a poor 

estimation of a trend. Besides, the presence of persistence, i.e., autocorrelation in data, can 

overestimate a trend unless it is removed before the application of trend detection tests. Hence, 

this study evaluated the effects of SPs and persistence on the trend analyses of the CMIP5 

temperature and precipitation models for the entire CRB across 104 years. The obtained results 

were compared against the observed CRU-TS datasets. The results showed that the trends in 

temperature models were relatively consistent with the observed trends  both in the direction 

and magnitude. For both the precipitation datasets, the absence of significant SPs in many of the 

grid cells led to incomparable and inconsistent results. The variation in SPs among the adjacent 

grid cells was higher in the modeled precipitation and observed temperature data. Both the 

temperature datasets showed a higher influence of STP in their detected trends (MK2), while 

both the precipitation datasets were highly influenced by the significant autocorrelation 

structures of the time series (MK3). 

6.2. Contributions 

The first task analyzed water year and seasonal trends and shifts (along with their DSs) in 

237 unimpaired streamflow stations across the continental U.S. from 1951 to 2012. The 

spatiotemporal association between regional streamflow patterns and three large-scale climate 

signals were assessed using WTC. Major contributions of this task are: detection of trends and 

shifts of the conterminous U.S. streamflow in the original as well as decomposed time series of 

the water year and seasonal data using non-parametric statistical tests; determination of 

spatiotemporal association between the regional streamflow and large-scale oceanic-atmospheric 

climate signals originating from both the Pacific and Atlantic Oceans; testing of data-driven 
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models coupled with data pre-processing techniques to predict short-term streamflow behavior; 

and evaluation of relative phase relationships (lag-response behavior) among the climate signals 

and the regional streamflow across multiple time scales along the study period. This is the first 

study in the documented literature that couples trend and shift detection tests with spectral 

component (frequency) analyses on a continental scale, and analyzes the change patterns in 

association with multiple large-scale climate signals. Such robust analyses may help explain the 

physical mechanisms of the oceanic-atmospheric systems that affect the U.S. streamflow. The 

results may also be useful in developing forecasting models based on the multi-resolution 

associations observed in the study, which may lead to making better water management 

decisions. 

The second task examined the correlation between ENSO/PDO and the western U.S. 

SWE over a study period of 56 years using CWT and its derivatives. Application of such 

methods allowed the study to analyze and correlate regional SWE with oceanic-atmospheric 

climate indices across multiple timescale bands. Major contributions of this task are: multi-scale 

correlational analysis of the western U.S. SWE, both state-wise and hydrologic region-wise, in 

response to Pacific Ocean climate signals; and evaluation of relative phase relationships (lag-

response behavior) among the climate signals and the regional western U.S. SWE across 

multiple time scales along the study period. The record length used in this study is a major 

extension in terms of the number of stations and the length of data analyzed, compared to 

previous studies using similar datasets. CWT was used to observe the variability in data, and 

XWT and WTC were used to illustrate and quantify, respectively, the high common power 

(association) between the representative time series of the variables. Such an approach has not 

been used previously with SWE data. This study also compared the association of ENSO/PDO 
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across the western U.S. hydrologic regions, which broadened the scope of the study since the 

results can be beneficial to regional water managers as well. 

In the third task, three hydro-climatological variables, i.e., temperature, precipitation, and 

PET, were analyzed over a century-wide data (from 1901 to 2002) to evaluate the influence of 

various ENSO phases on the change patterns across North India during the monsoon season. 

Trend and shift patterns in 146 districts in eight North Indian states were analyzed, and the 

annual and the seasonal (monsoonal) apportionment entropy that quantified the temporal 

distributions of the change patterns were evaluated. Besides the effects of ENSO, the all-year 

monsoonal change patterns were analyzed to determine the effect of each of the monsoonal 

months on the long-term patterns. Major contributions of this study are: evaluation of the long-

term trend and abrupt shift patterns of temperature, precipitation, and PET across north India at 

the various ENSO phases using non-parametric statistical tests; determination of the 

spatiotemporal relationships between the selected variables during monsoon and at each of the 

monsoonal months over a century-wide period; comparison between the major shift points 

during monsoon and the phases of ENSO, which might have resulted in extreme events, e.g., 

flood or drought, throughout the study period; and analyses of entropy (apportionment entropy) 

to quantify how the detected variations were distributed temporally over the years (annually) and 

during the months (seasonally) of monsoon along the study area. Moreover, major physical and 

dynamic relationships affecting the monsoon season due to the change in ENSO phases in the 

Indian subcontinent were compiled and discussed in this task based on an extensive literature 

review. The obtained results may help practitioners to prepare for flood and drought risks as a 

response to the changes in ENSO phases.
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The final task evaluated the effects of SPs and persistence on the trend analyses of the 

CMIP5 temperature and precipitation models for the entire CRB across 104 years. The obtained 

results were compared against the observed CRU-TS datasets. The major contributions of this 

task are: adoption of a shift-trend approach where the direction and magnitude of the trends are 

evaluated independently before and after significant shift points for both the modeled and 

observed datasets; a thorough examination of the effect of persistence not only for the trend tests 

but also for the detection of shift points; and determination of the inconsistencies detected 

between the CMIP5 and observed datasets  under the influence of shift points and persistence. 

This task detected certain biases in the CMIP5 models in detecting the SPs (tendency of 

detecting shifts earlier or later than the observed shifts) and also in quantifying the trends 

(overestimating the trend slopes)  such insights may be helpful in evaluating the efficacy of the 

simulation models in capturing observed trends under uncertainties and natural variabilities. 

6.3. Limitations 

Though all the tasks attempted to take a robust approach when it came to formulating the 

underlying research basis and in selecting and designing the appropriate methods to analyze the 

data, certain limitations were still unavoidable. Data availability restricted the first task to 

analyze with high certainty (or adequate resolution) beyond DS8 for DWT and beyond CS16 for 

WTC. Hence, associating streamflow variations with climate signals having multidecadal 

frequency components was not possible in this task. Moreover, not all the hydrologic regions had 

a sufficient number of stations within them to provide an explanation of the regional change 

pattern.  
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Similar to the first task, since the second task analyzed timescales up to the 16-year band 

only, significant intervals at higher timescales may have been missed. This task also did not 

analyze beyond the 16-year band since the results beyond this band had high uncertainty due to 

the limitation of the length of the period of record. Analyzing a longer-reconstructed time series 

may allow evaluating the associations at higher timescales with greater certainty.  

For the third task, the relationships obtained and the trends detected were purely based on 

the analyses of obtained data  which are in many cases subject to collection and calibration 

error (especially for the regions outside the U.S.).  Even though the obtained results were 

compared against some of the studies concerning with the major physical and dynamic factors 

affecting the monsoon season, none of those factors were directly considered in the study. Other 

variables, which may affect the Indian monsoon, e.g., wind direction and velocity, heat fluxes 

over land masses, and coupling of multiple climate signals originating from different oceans, 

were not considered in the study. 

In the fourth task, the uncertainties related to large-scale climate variability were not 

considered while comparing the modeled and observed distributions. Besides, among the many 

ensemble members of the CMIP5 simulation models, only the first ensemble members from each 

model were tested. The inclusion of multiple ensemble members could be a task for future 

research. Moreover, comparisons were only made between the modeled and observed datasets of 

the CRB  other hydrologic regions may not show similar associations and biases in the modeled 

datasets under uncertainties. 

Finally, the results reported are statistical in nature; hence, in some cases, the detected 

relationships or the evaluated change patterns may be counter-intuitive. The outcomes of 
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statistical tests are helpful in understating the relationships. However, one must be cautious while 

interpreting the results, as outcomes from statistical tests 

. 

6.4. Recommendations for future work 

The primary objective of the work presented in this dissertation was to evaluate the 

change patterns, i.e., a gradual change known as the trend, and an abrupt change known as the 

shift, of multiple hydro-climatological variables, namely, streamflow, SWE, temperature, 

precipitation, and PET, in association with the large-scale oceanic-atmospheric climate signals, 

i.e., ENSO, PDO, and AMO. Moreover, both observed datasets and modeled simulations were 

used to evaluate such change patterns to assess the efficacy of the modeled datasets in emulating 

the observed trends and shifts under the influence of uncertainties and inconsistencies. A 

secondary objective of this study was to utilize the detected change patterns in designing data-

driven prediction models, e.g., ANN, SVM, and GPR, coupled with data pre-processing 

techniques, e.g., PCA and WT. However, there are a few aspects of the study that could be 

improved for greater validity in the results or to apply the results in future work. Future 

extension or replication of similar techniques should consider the following improvement 

opportunities: 

 For both the first and the second tasks, decomposing to higher SBs can be helpful in 

associating streamflow or SWE variations with climate signals having multidecadal 

frequency components. In addition, working with a higher number of stations with longer 

records may provide a better explanation of the regional change patterns. 
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 Application of data-driven models coupled with data pre-processing techniques could be 

replicated for other regions and with different hydro-climatological variables to test the 

effectiveness of the methods, algorithms, and model architectures. 

 For the third task, other factors, which may affect the Indian monsoon, e.g., wind 

direction and velocity, heat fluxes over land masses, and coupling of multiple climate 

signals originating from different oceans, could be considered to increase confidence in 

the obtained relationships.  

 For the fourth task, future studies may look into the uncertainties related to large-scale 

climate variability and the modeled distributions. The inclusion of multiple ensemble 

members could be a task for research. Comparing the results with adjacent hydrologic 

basins may provide important insights regarding other possible biases in the CMIP5 

models. 

 The detected associations among the climate signals and multiple hydro-climatological 

variables can be evaluated and/or simulated with physically-based or pseudo-physically-

based models to understand the underlying mechanisms with higher precision. 

 As all the results reported in these tasks are statistical in nature and are based completely 

on the quality of the obtained data and the accuracy of the methods used in the respective 

tasks, any extension in terms of data availability, and/or modification of test methods for a 

more robust and comprehensive analysis is always a future prospect of research. 
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APPENDICES 

Appendix 1 

Chapter 1 has no additional/supplementary material. 

Appendix 2.A 

The original water-year and seasonal data were decomposed into a set of relatively 

simpler subseries known as approximation coefficients (AC) and detail coefficients (DC) by 

putting them through a low pass and high pass filter, respectively. The resulting subseries 

corresponded to the lower frequencies and higher frequencies of the original time series. At each 

decomposition level, the resulting DC corresponded to the lower DS, while the resulting AC was 

further decomposed to obtain a new set of DC and AC. This process was continued until the ACs 

produced a sufficient resolution (certainty). Three DSs, named as DS2, DS4, and DS8 

represented the time-series data at the SBs of two, four, and eight years, respectively. Based on 

the literature cited in the main text, the SBs were obtained at every 2n scale, where n is the 

decomposition level with an initial value of n = 1.0. Hence, two, four, and eight years 

corresponded to the first three decomposition levels for this study. Figure 2.1 (right) shows that 

after three decompositions, the time series associated with the third AC hardly showed any 

presence of periodic behavior. In other words, the resolution or the amount of certainty in the 

wavelet time-frequency spectrum diminished as the decomposition levels (DSs) went higher. 

Readers may also refer to Karthikeyan and Nagesh Kumar (2013) for more explanations 

regarding wavelet approximations and details. 
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Appendix 2.B 

Table A2.B 1: Number of stations with significant positive (Pos.) and negative (Neg.) trends under the Mann-

Kendall (MK) test in water-year and seasonal data along with their decompositions. 

 Number of Stations with Significant Trends 

Time-series  
Data 

Original 
Pos. (Neg.) 

DS2 
Pos. (Neg.) 

DS4 
Pos. (Neg.) 

DS8 
Pos. (Neg.) 

Water year 46 (11) 69 (17) 93 (31) 93 (46) 

Fall 67 (9) 97 (12) 126 (29) 134 (36) 

Winter 52 (9) 62 (31) 87 (28) 83 (40) 

Spring 28 (25) 40 (39) 55 (47) 66 (71) 

Summer 39 (20) 62 (32) 76 (32) 82 (45) 

 

Table A2.B 2: 

in water year and seasonal data along with their decompositions. 

 Number of Stations with Significant Shifts 

Time-series  
Data 

Original 
Pos. (Neg.) 

DS2 
Pos. (Neg.) 

DS4 
Pos. (Neg.) 

DS8 
Pos. (Neg.) 

Water year 77 (23) 93 (41) 136 (63) 150 (72) 

Fall 105 (12) 120 (14) 151 (45) 174 (60) 

Winter 68 (36) 76 (54) 110 (57) 126 (74) 

Spring 36 (40) 49 (61) 77 (90) 100 (106) 

Summer 55 (35) 73 (50) 112 (61) 147 (66) 
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Appendix 2.C 

The spatial pattern of trends was more irregular with the seasons when compared to the 

water year trends. Nevertheless, seasons showed the presence of spatial coherence or region-

specific trends (Figure A2.C1). In fall and its DSs, positive trends were mostly observed in the 

northeastern regions, whereas negative trends were prevalent in the northwestern regions (Figure 

A2.C1). Trends located on the extreme east and west regions, i.e., NE, MA, and PN, showed a 

higher rate of increase in the number of stations with trends compared to the central regions as 

the DSs went higher. Consequently, regions with field significance also increased as the DSs 

went higher. During winter and its DSs, besides the northwestern regions, negative trends were 

also observed in some of the mid-eastern regions, while positive trends mostly were located in 

the northeastern and central regions (Figure A2.C1). The increase in the number of stations with 

trends was observed to be higher in the western regions, i.e., PN and CA, compared to the 

eastern and central regions as the DSs went higher. At DS4 and DS8, all the regions showed field 

significance. 

In spring and its DSs, stations with trends showed quite a different pattern when 

compared to the other seasons. Stations with negative trends were found in the eastern regions; 

such trends were almost absent during the other seasons (except for a few stations during winter) 

(Figure A2.C1). With the increase in DSs, NE, MA, SAG, PN, and CA showed a higher increase 

in negative trends compared to the other regions, while the central regions showed an increase in 

stations with positive trends. In summer and its DSs, stations with positive trends mostly were 

located in the northeastern and north-central regions, while negative trends were prevalent in the 

northwestern regions (Figure A2.C1). Eastern regions, e.g., NE, MA, and OH, showed the 

maximum increase in stations with positive trends, while the increase in negative trends was 
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found to be the highest in PN as the DSs went higher. In both spring and summer, with the 

increase in DSs, more regions showed field significance. 

Stations with shifts during the seasons (Figure A2.C2) followed similar patterns as the 

trends during the seasons. In fall and its DSs, positive shifts were found in the northeastern 

regions, while negative shifts were located in the western regions (Figure A2.C2). The increase 

in stations with negative shifts was higher in the western regions, e.g., PN; while stations with 

positive shifts were observed to increase in the eastern regions, e.g., NE and MA. All the regions 

showed field significance in DS4 and DS8. In winter and its DSs, negative shifts were observed 

in the southeastern regions, which were not present in fall, while positive shifts were located in 

the northeastern and central regions (Figure A2.C2). The rate of increase in the number of 

stations with negative shifts was higher compared to the rate of increase in stations with positive 

shifts as the DSs went higher. The majority of the stations with negative shifts were located in 

SAG and PN, while stations with positive shifts were more spatially dispersed across the regions 

with a higher concentration in the eastern regions, i.e., NE and MA. Similar to fall, all the 

regions showed field significance in DS4 and DS8. 
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In spring and its DSs, negative shifts were observed in the eastern and northwestern 

regions, while positive shifts were found in the north-central regions (Figure A2.C2). The results 

show that similar to fall and winter, with the increase in DSs, stations with significant shifts also 

increased. A high concentration of stations with negative shifts was observed in NE, SAG, GL, 

and PN. MA, OH, and UMS showed a high concentration of stations with positive shifts. The 

number of regions with field significance was fewer compared to fall and winter in the lower 

DSs. However, all the regions showed field significance in DS8. In summer and its DSs, positive 

shifts were observed in the northeastern regions, while negative shifts were predominant in the 

northwestern regions (Figure A2.C2). The number of stations with negative shifts showed a 

much higher increase in PN, while positive shifts increased in NE and MA as the DSs increased. 

Similar to spring, all the regions were found to be field significant in DS8. 
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Appendix 2.D 

The number of stations with significant shifts during the study period in water year and 

its DSs is shown in Figure A2.D1. A higher number of stations with shifts were found from the 

1960s to 1980s in all the time series. The results showed that the location in time and direction of 

the shifts varied across the DSs. DS2 and DS4 showed similarity in their shifts distributions, 

while DS8 showed an oscillatory alternating reverse pattern  a series of years with positive 

shifts followed by a series of years with negative shifts. Moreover, in DS2 and DS4, there were 

instances where both directional shifts occurred in the same year, which was rarely observed in 

the original water year and DS8.  

As seen in Figure A2.D1, the occurrence of shifts showed an oscillating tendency in the 

higher SBs, especially in DS8. As a result, the shift years were compared against the years 

associated with the coupled phases of the climate signals, i.e., ENSO, PDO, and AMO, to detect 

their concurrency during the study period, since climate signals also show oscillating trends. 

Both the ENSO (El Niño and La Niña) phases were compared against the PDO (warm or cold) 

and AMO (positive or negative) phases to observe their coupled effects on the regional 

streamflow. The majority of the stations with shifts that coincided with the PDO cold years were 

found to shift during the La Niña years (Figure A2.D2). Both positive and negative shifts were 

found during the La Niña years, while only positive shifts were found during the El Niño years. 

During the PDO warm years, both positive and negative shifts were observed during the El Niño 

and La Niña years, though the number of stations with significant shifts was much less when 

compared to the PDO cold years. The remaining stations with shifts were spread out across the 

study area without any visible spatial pattern. 
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Figure A2.D 1: Number of stations with significant shifts in water year and its DSs. Blue (red) bars indicate positive 

(negative) shifts. Blue (red) lines represent the 2-year-moving-average trend lines for positive (negative) shifts. 

 

During the AMO positive (warm) years, positive shifts were more prevalent compared to 

negative shifts (Figure A2.D2). Also, the majority of the stations during the AMO warm years 

coincided with the El Niño years across the continental US, while only one station coincided 

with a La Niña year. A few stations were found not to coincide neither with the El Niño nor the 

La Niña years, but no pattern was observed among them. During the AMO negative (cold) years, 
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both positive and negative shifts were observed across the US, with the majority of the stations 

coinciding with the La Niña years. Similar to the AMO warm years, a few stations were found to 

coincide neither with the El Niño nor the La Niña years. The comparison of PDO and AMO 

phases showed similar locations of stations with shifts  the similarity was found to be higher 

during their cold phases. 

Figure A2.D2 shows that NE, MA, GL, OH, UMS, SRR, MO, and PN had a significant 

number of stations with shifts at one or more of the coupled phases of the climate signals, i.e., El 

Niño/La Niña phase during PDO warm/cold years, and/or El Niño/La Niña phase during AMO 

positive/negative years. All these regions also showed field significance during the DSs of the 

water year (Figure 2.2). The concept of CWT was applied to evaluate the variance of these 

(PC1), obtained from the principal component analysis (PCA) of all the stations in a region, was 

used to represent the regional streamflow time series. Table A2.D1 lists the percentage of 

variability explained by the PC1 from the PCA analysis for each region. The CWTs explained 

how these individual time series have varied over time across the CSs (Figures A2.D3 and 

A2.D4), where the higher power in the wavelet power spectrum represents higher variability.  
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Figure A2.D 2: (1st row) Location of stations with significant shifts coinciding with the PDO warm (left) and cold 

(right) years, in conjunction with the ENSO (El Niño or La Niña) years. (2nd row) Location of stations with 

significant shifts coinciding with the AMO warm (left) and cold (right) years, in conjunction with the ENSO (El 

Niño or La Niña) years. Upward (downward) pointing triangles indicate positive (negative) shifts. The blue and red 

shades indicate the increasing and decreasing slope of trends, respectively. 
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Table A2.D 1: Percentage of variance explained by the first principal component (PC1) obtained from the principal 

component analysis (PCA) of the selected regions. 

Hydrologic Region Name 
Number 

of Stations 
Variance of data Explained 

by the PC1 

New England (NE) 18 87.62% 

Mid-Atlantic (MA) 39 71.29% 

Great Lakes (GL) 10 67.03% 

Ohio (OH) 20 64.96% 

Upper Mississippi (UMS) 19 67.05% 

Souris-Red-Rainy (SRR) 3 86.79% 

Missouri (MO) 21 66.41% 

Pacific Northwest (PN) 37 80.22% 

 

The CWTs of the climate signals revealed that each of them experienced higher variance 

at different CSs during various time intervals. The highest significant variance for ENSO was 

observed in CS4 to CS8 between 1980 and 1990 (Figure A2.D3). For PDO, the highest 

significant variance was observed in CS8 to CS12 from 1995 to 2005. For AMO, there was a 

higher variance after CS16 but it was not found to be statistically significant. The highest 

significant variance for AMO was found below CS4. The global wavelet spectra for each of the 

climate signals also showed similar higher power as was observed in their wavelet power 

spectra. The three-to-six-year-scale-average for each of the climate signals showed their periodic 

nature over the study period (Figure A2.D3).  
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The results showed that ENSO had a much better-defined periodicity, which was less 

than a decade, compared to PDO and AMO. For PDO, there was no definite periodicity during 

the study period. Though AMO showed cyclic behavior, the periodicity varied from a decade to 

more than a decade over the study period.  

The CWTs of the regional streamflow showed significant variation among them (Figure 

A2.D4). There was a definite presence of higher variance after 1970 for the majority of the 

regions, though the ranges of CSs varied. From the global wavelet spectra, it was observed that 

the majority of the regions experienced higher variance in CS8 to CS16. Higher variance beyond 

CS16 was also observed for certain regions. All the regions, except for MO, had more than one 

significant zone of noticeable duration (Figure A2.D4). 
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Appendix 2.E 

 

Figure A2.E 1: Principal component analyses (PCA) of the (a) Mid-Atlantic (MA), (b) Missouri (MO), and (c) 

Pacific Northwest (PN) region. (Left) The 3D plots show the first three principal components and their projections. 

(Right) Plots showing percentage of individual and cumulative variance explained by the principal components. For 

MA, MO, and PN, the number of principal components explaining more than 95% of the variability was 11, 12, and 

11, respectively, out of the total 16 possible inputs. 
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Figure A2.E 5: Model fitting (training and validation) of the K-fold cross-validation (5 folds as shown in a through 

e) for the Mid-Atlantic (MA) region. 

 
 

 

Figure A2.E 6: Error histogram (training and validation) of the K-fold cross-validation (5 folds as shown in a 

through e) for the Mid-Atlantic (MA) region. 
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Figure A2.E 7: Best validation performance (training and validation) of the K-fold cross-validation (5 folds as 

shown in a through e) for the Mid-Atlantic (MA) region. 

 

 

Figure A2.E 8: Model fitting (training and validation) of the K-fold cross-validation (5 folds as shown in a through 

e) for the Missouri (MO) region. 
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Figure A2.E 9: Error histogram (training and validation) of the K-fold cross-validation (5 folds as shown in a 

through e) for the Missouri (MO) region.  

 
 

 

Figure A2.E 10: Best validation performance (training and validation) of the K-fold cross-validation (5 folds as 

shown in a through e) for the Missouri (MO) region. 
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Figure A2.E 11: Model fitting (training and validation) of the K-fold cross-validation (5 folds as shown in a through 

e) for the Pacific Northwest (PN) region. 

 
 

 

Figure A2.E 12: Error histogram (training and validation) of the K-fold cross-validation (5 folds as shown in a 

through e) for the Pacific Northwest (PN) region.  
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Figure A2.E 13: Best validation performance (training and validation) of the K-fold cross-validation (5 folds as 

shown in a through e) for the Pacific Northwest (PN) region. 
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Table A2.E 4: Comparison of various learning algorithms during the testing phase (unseen data) for the Mid-

Atlantic (MA) region.  

Group Training Function - Learning Algorithm R2 RMSE 

1.0 Backpropagation training function with Jacobian derivative     
 1.1 trainbr   - Bayesian Regularization backpropagation 0.9786 0.0864 
 1.2 trainlm   - Levenberg-Marquardt backpropagation 0.9565 0.1231 

2.0 Backpropagation training function with gradient derivative     
 2.1 trainbfg  - BFGS quasi-Newton backpropagation 0.9565 0.1231 
 2.2 traincgb  - Conjugate gradient backpropagation with Powell-Beale restarts 0.9645 0.1112 
 2.3 traincgf  - Conjugate gradient backpropagation with Fletcher-Reeves updates 0.9662 0.1085 
 2.4 traincgp  - Conjugate gradient backpropagation with Polak-Ribiere updates 0.9643 0.1115 
 2.5 traingd   - Gradient descent backpropagation 0.5940 0.3761 
 2.6 traingda  - Gradient descent with adaptive lr backpropagation 0.9306 0.1555 
 2.7 traingdm  - Gradient descent with momentum _ _ 
 2.8 traingdx  - Gradient descent w/momentum & adaptive lr backpropagation _ _ 
 2.9 trainoss  - One step secant backpropagation 0.9741 0.0950 
 2.10 trainrp   - RPROP backpropagation 0.7169 0.3140 
 2.11 trainscg  - Scaled conjugate gradient backpropagation 0.9588 0.1198 

3.0 Supervise weight/bias training functions     
 3.1 trainb    - Batch training with weight & bias learning rules _ _ 
 3.2 trainc    - Cyclical order weight/bias training 0.9646 0.1111 
 3.3 trainr    - Random order weight/bias training 0.8952 0.1911 
 3.4 trains    - Sequential order weight/bias training 0.8451 0.2323 
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Table A2.E 5: Comparison of various learning algorithms during the testing phase (unseen data) for the Missouri 

(MO) region.  

Group Training Function - Learning Algorithm R2 RMSE 

1.0 Backpropagation training function with Jacobian derivative     
 1.1 trainbr   - Bayesian Regularization backpropagation 0.9891 0.0441 
 1.2 trainlm   - Levenberg-Marquardt backpropagation 0.8986 0.1344 

2.0 Backpropagation training function with gradient derivative     
 2.1 trainbfg  - BFGS quasi-Newton backpropagation 0.8854 0.1429 
 2.2 traincgb  - Conjugate gradient backpropagation with Powell-Beale restarts 0.8849 0.1432 
 2.3 traincgf  - Conjugate gradient backpropagation with Fletcher-Reeves updates 0.8883 0.1411 
 2.4 traincgp  - Conjugate gradient backpropagation with Polak-Ribiere updates 0.8670 0.1539 
 2.5 traingd   - Gradient descent backpropagation 0.7016 0.2306 
 2.6 traingda  - Gradient descent with adaptive lr backpropagation 0.8219 0.1781 
 2.7 traingdm  - Gradient descent with momentum 0.7034 0.2299 
 2.8 traingdx  - Gradient descent w/momentum & adaptive lr backpropagation 0.8652 0.1550 
 2.9 trainoss  - One step secant backpropagation 0.8869 0.1419 
 2.10 trainrp   - RPROP backpropagation 0.8272 0.1755 
 2.11 trainscg  - Scaled conjugate gradient backpropagation 0.8892 0.1405 

3.0 Supervise weight/bias training functions     
 3.1 trainb    - Batch training with weight & bias learning rules 0.7034 0.2299 
 3.2 trainc    - Cyclical order weight/bias training 0.8756 0.1489 
 3.3 trainr    - Random order weight/bias training 0.6622 0.2453 
 3.4 trains    - Sequential order weight/bias training 0.7234 0.2220 
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Table A2.E 6: Comparison of various learning algorithms during the testing phase (unseen data) for the Pacific 

Northwest (PN) region.  

Group Training Function - Learning Algorithm R2 RMSE 

1.0 Backpropagation training function with Jacobian derivative     
 1.1 trainbr   - Bayesian Regularization backpropagation 0.8960 0.1242 
 1.2 trainlm   - Levenberg-Marquardt backpropagation 0.8518 0.1483 

2.0 Backpropagation training function with gradient derivative     
 2.1 trainbfg  - BFGS quasi-Newton backpropagation 0.8670 0.1405 
 2.2 traincgb  - Conjugate gradient backpropagation with Powell-Beale restarts 0.8853 0.1305 
 2.3 traincgf  - Conjugate gradient backpropagation with Fletcher-Reeves updates 0.8311 0.1583 
 2.4 traincgp  - Conjugate gradient backpropagation with Polak-Ribiere updates 0.9039 0.1194 
 2.5 traingd   - Gradient descent backpropagation _ _ 
 2.6 traingda  - Gradient descent with adaptive lr backpropagation _ _ 
 2.7 traingdm  - Gradient descent with momentum _ _ 
 2.8 traingdx  - Gradient descent w/momentum & adaptive lr backpropagation _ _ 
 2.9 trainoss  - One step secant backpropagation _ _ 
 2.10 trainrp   - RPROP backpropagation 0.8175 0.1646 
 2.11 trainscg  - Scaled conjugate gradient backpropagation 0.6274 0.2351 

3.0 Supervise weight/bias training functions     
 3.1 trainb    - Batch training with weight & bias learning rules _ _ 
 3.2 trainc    - Cyclical order weight/bias training 0.9052 0.1186 
 3.3 trainr    - Random order weight/bias training _ _ 
 3.4 trains    - Sequential order weight/bias training _ _ 
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Appendix 5 

Table A5. 1: List of CMIP5 temperature and precipitation models used in the study. 

CMIP5 Temperature Models  
CMIP5 Precipitation Models 

1 ACCESS1-0  
1 bcc-csm1-1 

2 bcc-csm1-1  
2 CanESM2 

3 CanESM2  
3 CCSM4 

4 CCSM4  
4 CESM1-CAM5 

5 CESM1-CAM5  
5 CNRM-CM5 

6 CNRM-CM5  
6 CSIRO-Mk3-6-0 

7 CSIRO-Mk3-6-0  
7 GFDL-CM3 

8 GFDL-CM3  
8 GFDL-ESM2G 

9 GFDL-ESM2G  
9 GFDL-ESM2M 

10 GFDL-ESM2M  
10 GISS-E2-H 

11 GISS-E2-H  
11 GISS-E2-R 

12 GISS-E2-R  
12 HadCM3 

13 HadCM3  
13 HadGEM2-CC 

14 HadGEM2-CC  
14 HadGEM2-ES 

15 HadGEM2-ES  
15 inmcm4 

16 inmcm4  
16 IPSL-CM5A-LR 

17 IPSL-CM5A-LR  
17 IPSL-CM5A-MR 

18 IPSL-CM5A-MR  
18 MIROC5 

19 MIROC5  
19 MIROC-ESM 

20 MIROC-ESM  
20 MPI-ESM-LR 

21 MPI-ESM-LR  
21 MRI-CGCM3 

22 MRI-CGCM3  
22 NorESM1-M 

23 NorESM1-M  
23 MRI-ESM1 

24 ACCESS1-3  
24 NorESM1-ME 

25 CESM1-BGC  
25 MPI-ESM-MR 

26 CESM1-FASTCHEM  
  

27 CESM1-WACCM  
  

28 CMCC-CESM  
  

29 CMCC-CM  
  

30 CMCC-CMS  
  

31 CNRM-CM5-2  
  

32 FGOALS-s2  
  

33 GFDL-CM2p1  
  

34 GISS-E2-H-CC  
  

35 GISS-E2-R-CC  
  

36 HadGEM2-AO  
  

37 IPSL-CM5B-LR  
  

38 MIROC-ESM-CHEM  
  

39 MPI-ESM-P  
  

40 MRI-ESM1  
  

41 NorESM1-ME    
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