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Abstract  

In the past century, the population explosion and economic development have resulted in 

global warming, which has raised a series of concerns, such as sea-level rise, food security, and 

water resources management. The water flow patterns and features experience both short-term 

and long-term changes in responses to the changes in the hydrologic processes and meteorologic 

conditions. On a watershed scale, it is crucial to understand, quantify, and attribute the influences 

of climate change on the local water resources system. Such understanding can be of great help 

to undertake local water management tasks, such as flood control, reservoir operation, ecosystem 

services, and water quality analysis. 

The typical General Circulation Model (GCM) simulation products are too coarse for a 

local meteorologic study and local hydrologic responses to climate change, such as in the 

Lehman Creek watershed. Additionally, the Lehman Creek recharge the groundwater system that 

is a potential source of future water supply to Las Vegas Valley. An evaluation of the influences 

of groundwater pumping on the local water system is necessary for the purpose of environmental 

conservation.  

To bridge these study gaps, three tasks were proposed. First, the Quantile-Quantile 

Mapping method was employed to further bias correct the downscaled GCM data from a 12-km 

resolution to a local resolution, and long-term changes were evaluated. Next, a physically-based 

parameter-distributed hydrologic model was developed and calibrated using the 

Precipitation-Runoff Modeling System (PRMS). By driving the developed PRMS with the 

bias-corrected GCM data, and the streamflow changes over the 21st century were analyzed in 

terms of rates and timings. Finally, a groundwater flow system model was developed using the 

three-dimensional finite-difference groundwater-flow system (MODFLOW). By coupling the 
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developed PRMS model with MODFLOW model, the streamflow variation under climate 

change and groundwater-withdrawal influences were evaluated from the integrated physical 

perspective. 

The results indicated that, in the study area, there was an increase of 2.3 °C, 2.2 °C, and 

35.1 mm in maximum temperature, minimum temperature, and precipitation, respectively, which 

were mean annual differences from period of 2011-2099 when compared to the mean annual 

average of 1980-2010 in the study area (Great Basin NP station), by considering all potential 

climate scenarios. These meteorologic alternations would result in uncertain annual streamflow 

changes but featured monthly variations regarding timing and rates in both PRMS and GSFLOW 

model simulations. The integrated GSFLOW model showed a similar but mitigated features in 

streamflow simulation results, compared to the PRMS model simulation results. There were 

earlier time-shift in streamflow up to 30 days and 26.3 days by the end of this century, resulting 

from the PRMS and GSFLOW simulations, respectively. These finding were also supported by 

the monthly streamflow change pattern found in both models’ simulation results, as the 

streamflow tend to increase during the period of later-spring to early-summer (December to 

May) and tend to decrease during the summer-to-winter period (June to November). 

Additionally, the groundwater-pumping influence study showed 11.7 meters drawdown at a rate 

of 510 m3/d after 50-year water withdrawals, based on the hydraulic conductivity estimations in 

this study. 

The long-term estimates of climate change and the variations observed in the hydrologic 

responses found in this research can help local water managers to better understand changes in 

the water resources in responses to future climate variability and groundwater pumping within 

the Lehman Creek watershed. 
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1 Chapter 1 Introduction 

1.1  Climate Change and Influences 

1.1.1 Climate change background 

The greenhouse effect is a natural mechanism that is essential to life on Earth. The 

radiant energy, emitted from the sun, passes through the earth’s atmosphere and reaches the 

earth’s surface; some radiant energy gets reflected back to the atmosphere and gets absorbed by 

gasses. Since the pre-industrial era, anthropogenic greenhouse gas emissions have been 

increasing and currently at their highest level. This has resulted in the amplification of the 

greenhouse effect and an increase in the atmosphere temperature. Studies based on instrumental 

observations showed that the surface temperatures have increased globally with great variations 

among regions. With an increasing rate, the average global warming was found to be 0.35 °C 

from the 1910s to the 1940s and 0.55 °C after 1970s (IPCC, 2007). There is impelling evidence 

that the population growth and economic development alter the energy balance of the 

atmosphere and are the dominant causes of the observed warming since the 1950s (IPCC, 2014). 

1.1.2 Climate change observations 

Changes in climate have been observed to have widespread impacts on human society 

and environmental systems across the oceans and the continents (Thakali et al., 2016). The 

impact on environmental systems is the strongest and most comprehensive with the evidence 

from observations (IPCC, 2014). The changing precipitation, increasing temperature extremes, 

and melting snow and ice are observed in many regions and are altering the hydrologic system 

and influencing water resources in terms of quantity and quality (Tamaddun et al., 2017a, 2017b, 

2017c; Kalra et al., 2017). Several studies covering large regions found shifting in seasonal 

activity patterns, migration patterns, and biological interactions among many species attributed 



 

2 

to the ongoing climate change (Dullinger et al., 2012; Urban et al., 2012 Settele et al., 2014; 

Tamaddun et al., 2015). An overall negative impact of warming climate on agriculture was 

demonstrated, which affects the growth of crops and yields of staple cereals with variations in 

regions and latitudes (Porter et al., 2014). The increased carbon dioxide also causes acidification 

of the ocean, and hence influences the marine organisms by lowering oxygen level (Millero, 

1995; Brewer & Peltzer, 2009). 

1.1.3 Future climate changes, risks, and impacts 

Under future climate change predictions, the surface temperature will likely rise ranging 

between 0.3°C to 4.8 °C by the end of the 21st century (2081-2100) when compared to the period 

of 1986-2005, depending on different emission scenarios (Collins et al., 2013). Along with the 

global mean temperature increases, higher frequency of hot temperature extremes will occur over 

most land areas daily and seasonally. Uniform changes in precipitation will occur with a likely 

increase in the high latitudes and the equatorial Pacific areas and decrease in the mid-latitudes 

and the subtropical dry areas. In the mid-latitude wet regions, average precipitation will likely 

increase under the highest emission scenario (IPCC 2014). 

Studies indicate that the risks of climate change will be amplified in the future and new 

challenges will arise (Kalra & Ahmad 2009; Pathak et al., 2017). A variety of risks results from 

social and environmental interactions of climate-related hazard with the vulnerability of 

exposure to human and natural systems (IPCC, 2014). The raised risk rates and magnitudes differ 

by regions (IPCC, 2014). 

Through the interaction with climate stressors, a large fraction of species faces an 

increasing extinction risk due to the insufficiency of keeping up with the ecosystem shift brought 

by the changing climate (Dullinger et al., 2012; Urban et al., 2012; Settele et al., 2014; Kalra et 
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al., 2013a). Food security is projected to be undermined with both crop yields, especially in 

tropical and temperate regions (Baldocchi & Wong, 2008; Farag et al., 2010; Settele et al., 

2014), and fishery productivities that are accompanied with the marine biodiversity reduction 

(Bell et al. 2011; Pratchett et al. 2011). With combined factors including feeding forage, living 

temperature, water availability, and indirect factors related to diseases, livestock is likely to have 

mixed influences, differing in regions (Porter et al., 2014). The global temperature increase of ~4 

°C or more in the late 20th century levels, combined with increasing food demand, will pose large 

risks to food security globally (IPCC, 2014). Some studies show that with increasing 

temperatures, the aggregated economic losses accelerate (Hsiang, 2010; Dell et al., 2012; Porter 

et al., 2014). These climate change impacts are projected to slow down economic growth and 

make it difficult for poverty reduction (IPCC, 2014).  

Water, through its movement in the hydrological cycle, determines the effects on 

water-related hazards such as floods and droughts with its high vulnerabilities to the climate. 

Furthermore, it delivers the impacts of climate change to human society with diverse influences 

and risks through the interactions with non-climatic drivers such as population, economic 

growth, and urbanization (Dawadi & Ahmad, 2013). In this context, the study of water 

availability under climate change can contribute to improving the human adaptation strategies 

(Jiménez Cisneros et al., 2014). 

1.1.4 Climate change influences on hydrologic processes  

Global water circulation makes atmosphere and hydrology closely interact with fluxes of 

water and energy, which has immediate and long-term effects on water systems, both on the 

surface and subsurface. The global influences of increasing temperature directly change the 

atmospheric moisture, precipitation, and the whole hydrologic system, e.g., the accumulation and 
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ablation of snow, and evapotranspiration (IPCC, 2007 & 2014). Additionally, the changes in 

precipitation primarily determine the total water received from the atmospheric system and also 

results in changes in spatiotemporal flow patterns (Nijssen et al., 2008). 

While the global trends in precipitation showed insignificance during 1901-2005 (Bates 

et al., 2008; Trenberth et al., 2007), regional observations showed more severe extreme events 

occurred during the 1990s and 2000s compared to the 1950s (Arndt et al., 2010) with certain 

trends in total volumes and extreme measurements (Trenberth et al., 2007). Along with the 

warming observations, the snowfall seasons became shorter with an earlier start of snowmelt in 

north Hemisphere (Takala et al., 2009) and a reduction of Snow Water Equivalent in Norway 

(Skaugen et al., 2012). Through the study of regional soil moisture, a prolongation of dry periods 

was concluded, which shows the presence of more severe and frequent droughts (Gemmer et al., 

2011; Fischer et al., 2011; Fischer et al., 2013). 

In streamflow, the trend detections show its consistency with regional observations in 

precipitations and temperature since the mid-century (Jiménez Cisneros et al., 2014) with 

significant differences among regions (Sagarika, Kalra, & Ahmad, 2014, 2015, 2016). In North 

America, decreases were observed in the southern Atlantic-Gulf regions and U.S. Pacific 

Northwest during the period of 1951-2002, whereas in Mississippi basin, increases were 

observed (Kalra et al., 2008; Jiménez Cisneros et al., 2014). In China, there was a small increase 

in annual streamflow in Yangtze River and a decrease in the Yellow River during 1960-2000 due 

to the great seasonal changes, especially in summer (Piao et al., 2010). A study by Dai et al. 

(2009) shows decreasing trends in 45 rivers and increasing trends in 19 rivers among one-third of 

the top 200 rivers in a global analysis of streamflow simulations (1948-2004).  
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At short time scales, from days to months, changes in weather patterns can result in 

changes in the incidences of floods. On longer time scales, from seasons to years, changes in 

climate can lead to the time shift and trend change of water availability. At annual to decadal 

time scales, teleconnections in global atmospheric circulation patterns, caused primarily by the 

dynamic interaction between ocean and atmosphere, strongly affect the hydrology in certain 

regions of continents. For example, the Pacific decadal oscillation (PDO), North Atlantic 

oscillation (NAO), Atlantic multi-decadal oscillation (AMO), and El Niño–southern oscillation 

(ENSO) have been linked to the changes in streamflow (Kalra et al., 2013b), and to the annual 

precipitation in the southwest of US (Kalra & Ahmad, 2011, 2012). 

Direct attributions of climate change to groundwater systems is uncertain, while as an 

important water recharge, in some regions, the precipitation decreases were attributed to the 

decreases in the discharge of groundwater-fed springs (Jeelani, 2008; Aguilera & Murillo, 2009) 

and to a progressive decline in a fraction of precipitation to groundwater recharge, indicating an 

increasing trend in evapotranspiration process (Aguilera & Murillo, 2009). 

1.1.5 Future climate changes - on a watershed scale 

In 1998, the Intergovernmental Panel on Climate Change (IPCC) was set up by the 

United Nations and brought the world’s leading experts to assess the condition of the Earth’s 

climate system. Thereafter, Global Climate Models (GCMs) were outlined, which try to simulate 

the functional interactions between atmosphere and oceans and to predict the anticipated climate 

patterns under likely future emission scenarios, and a series of meteorological model simulations 

were produced.  

However, the spatial scales of meteorological model simulations, resolved from GCMs, 

are usually around 10 to 100 km or beyond. With high spatial heterogeneities in geology, 
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ecology, and topography, the meteorological conditions have profound impacts on regional water 

systems with great interactions among each other and with other parallel systems (Maxwell et al., 

2007; Weigel et al., 2007). For example, the increased intensity and variability as predicted in 

precipitation will likely increase the frequencies and risks of droughts and floods in many 

regions (Bates et al., 2008). During the seasons with above-average precipitation, the water 

demand, especially for agricultural irrigation, will decline due to the combined factors of lower 

solar radiation and temperature and higher humidity (Rosenberg et al., 1999). 

It is crucial to understand, quantify, and attribute the impacts of extreme weather and 

climate change at a finer scale where general meteorological climate data is too coarse for 

regional water resources studies, such as in flood control, reservoir operation, ecosystem services, 

and water quality analysis, especially in the estimation of streamflow for water resources 

management. 

1.1.6 Future hydrologic responses - on a watershed scale 

The global climate change is generally known as global warming, to which the 

phenomenon is normally identified as the changes in the energy balance and the increased 

temperature in the atmosphere (Hashmi et al., 2012). The alternations and variations in 

meteorological condition are scientifically acknowledged to alter the water balance in the 

hydrologic cycle (Eslamian, 2014). Due to the determinant correlation between meteorological 

conditions and water resources availability through the hydrologic cycle, the impacts of 

alternations in the precipitation patterns and other climatic variables are considered to impose 

significant impacts on a regional water cycle and particularly watershed hydrology (Lambert & 

Boer, 2001). 
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Studies showed warmer weather tends to affect the precipitation as more days of 

temperature above zero degree Celsius results in more rainfall events in winters. The following 

consequences are not only concerning to the snow season length, but also to runoff formation 

with related snowmelt features such as snow accumulations, heat exchanges between atmosphere 

and ground, and soil freezing depth (Whitfield et al., 2003; Zhang, 2005; Lawrence & Slater, 

2010; Bailey et al., 2015). Even the modest increases in air temperature, especially in 

snow-dominant areas, will alter the hydrologic cycle through shifts in streamflow because of the 

role snowpack plays as a water-storage reservoir (Mote et al., 2005; Barnett et al., 2008; Tague et 

al., 2008; Zhang et al., 2014). In a study of mountainous regions in central Europe by Eckhardt 

and Ulbrich (2003), a small ratio of precipitation was predicted falling as rain instead of snow 

due to warming trends, and it resulted in a reduction in the spring-snowmelt peak with an 

increase in flood risk in the winter. Thus, to regulate the earlier snowmelt runoff and the lower 

streamflow in upcoming seasons, corresponding reservoir regulation rules should be justified to 

fulfill the consequences as brought by the climate change. 

For the purposes of water resources planning, and management, reliable estimation of 

streamflow from a watershed, which is the main water source for local users, is required. 

Streamflow characteristics such as rate, volume, peak flow, peak time, flow duration, 

spatiotemporal distributions, and probability distributions are critical parameters in the decision 

making for water and especially irrigation management (Eslamian, 2014).  

1.1.7 Surface water and groundwater interaction - on a watershed scale  

Due to the more direct visibility, easier accessibility, and more obvious recognition of 

surface water being affected by global climate, researches have focused more on surface 

hydrology compared to groundwater systems. Nevertheless, studies of groundwater systems, 

http://www.sciencedirect.com/science/article/pii/S0022169411004276#b0240
http://www.sciencedirect.com/science/article/pii/S0022169411004276#b0250
http://www.sciencedirect.com/science/article/pii/S0022169411004276#b0145
http://www.sciencedirect.com/science/article/pii/S0022169411004276#b0145
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compared to the effect of climate change on surface water, have increased in past decades 

recognizing the importance of the interaction with surface water and water-supply withdrawals 

(Green et al., 2011).  

The global warming and precipitation changes are expected to alter the subsurface-water 

processes that result from the interactions between surface water and groundwater. The concepts 

of groundwater discussed in this study are adopted from Green et al. (2011), which considers 

subsurface water that includes soil water, vadose-zone water, and water within unconfined and 

confined aquifers (saturated-zone water). 

The features of soil water include components of infiltration, evapotranspiration, and soil 

water capacity (SWC) (Van Dijck et al., 2006). Infiltration and evapotranspiration have more 

obvious influences from the changes in precipitation and air temperature, which are the two main 

factors in the interaction and feedbacks between climate and SWC (Seneviratne et al., 2010). For 

example, under higher air temperature, the evapotranspiration is likely to increase and may result 

in a reduction in SWC along with the decreases in runoff (Chiew & McMahon, 2002). 

The vadose zone is the soil region between the land surface and the saturated zone, where 

the groundwater recharge occurs. Both water quality and quantity could be affected by the 

changes in climate that slowly propagate through the vadose zone (Glassley et al., 2003). Studies 

in some semiarid and arid regions found a great importance in understanding the effects of 

climate change and variability in the vadose zone and its consequent effects on groundwater 

(Phillips, 1994; Glassley et al., 2003). 

Groundwater in the saturated zone is an important component in the hydrological cycle 

and contributes an important component to the streamflow as baseflow. Due to the large water 

storage capacity, baseflow is expected to vary the least (Winter, 2007). It is considered that with 
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the storage mechanism, groundwater can mitigate the influence brought by global warming and 

climate change impacts on the water resource availability and the baseflow rate (Ghasemizade & 

Schirmer, 2013). However, in some semiarid and arid regions, the dry season may be extended, 

influenced by climate change, which can have substantial effects on the overall water resources 

if no deep or reliable groundwater resources are available in the region (Giertz et al., 2006). 

A study of climatic impacts on the interactions between surface and groundwater requires 

an understanding of the dynamic interactions between them with local characteristics. 

Nevertheless, surface water and groundwater systems are usually considered separately and with 

independent analysis, despite the hydro-geological interconnections. The separation is partially 

because of the greater time scale due to the slow water movement in the groundwater flow 

system compared to the free water flow on the land surface, and partially due to the fact that 

there are difficulties in measuring and modeling the interactions between them. There are 

numbers of hydrodynamic models for surface flow and groundwater flow simulation 

independently. However, to capture the dynamics between surface water and groundwater, the 

integrated models, which couple surface water and groundwater, are becoming increasingly 

important (Winter et al., 1998; Weill et al., 2011). 

1.2 Research Motivations and Questions 

Along with the reduction in Colorado River flow in recent years, which Southern Nevada 

is heavily relying on, and the rapid growth in population and business in the southwestern US, 

the Colorado River has been threatened to water over-use (Dawadi & Ahmad, 2012). Besides, 

the droughts since 1999 were further exacerbated under the climate change influences. Serious 

concerns were raised regarding the heavy reliance of water supply from Colorado River (Dawadi 

& Ahmad, 2013). Thus, since 2004, the Southern Nevada Water Authority (SNWA) has 
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proposed a Groundwater Development (GWD) Project that can meet the water demand and 

ensure the water supply for customers in the Las Vegas Valley and Boulder City, Clark County.  

In Snake Valley, SNWA proposed 62.5 × 106 m3/year (50,679 acre-ft/year) of the 

groundwater withdrawal, which could be a potential water source supply to Las Vegas, NV 

(SNWA, 2012; Volk, 2014) to meet the future water need in southern Nevada. The Lehman 

Creek watershed, the study area in this study, is one of the critical water sources for local 

irrigation and for water recharge to the basin-fill aquifer in Snake Valley. A better understanding 

of future climate changes and its mechanisms in hydrologic responses would provide information 

to help local water resources management and evaluate the GWD for Las Vegas water supply. 

This study will focus on three research questions:  

Research Question # 1: What are the long-term changes in meteorological conditions on 

a watershed scale with respect to Global Circulation Models? 

Hypothesis: Temperatures and precipitation would change on a watershed scale based on 

bias-corrected results from the Global Circulation Models, and the results are reliable and can be 

further applied to a watershed hydrologic study. 

Research Question # 2: How do the climatic changes affect the streamflow on a 

watershed scale? 

Hypothesis: Through dynamic interaction between meteorologic variables and 

hydrologic processes, the streamflow would change in terms of rates and timing, responding to 

local climate change.  

Research Question # 3: How do integrated hydrologic processes respond to external 

stresses from meteorologic changes and human interference of groundwater pumping? 
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Hypothesis: The water flux interaction between surface water and groundwater would 

show varying trend under the climate change and the groundwater would drawdown under the 

influence of groundwater pumping. 

1.3 Importance of This Study  

A better understanding of the hydrologic responses to climate change impacts on a 

watershed scale could better help local water resources managers to make long-term decisions to 

efficiently utilize limited water resources. The projected meteorological changes and 

corresponding hydrologic responses in both surface water and groundwater in the Lehman Creek 

watershed have rarely been studied, especially the mechanisms in a snow-dominant area with 

high elevation differences. 

Due to the coarse resolution of climate change projections, their employment in a small 

watershed scale, are limited with scaling issues of high heterogeneities, nonlinearities, and 

non-local transport processes (Gentine et al., 2012). However, as a statistical downscaling and 

bias-correction method, the Quantile-Quantile Mapping (QM), provides a way to narrow down 

the data differences between two scales, approaching to a representation of local climate 

characteristics and assessing the climate changes at a local scale. This could lay groundwork for 

other studies such as the local ecology, which may be affected as other pine and fir species 

encroach and outcompete the local species under the local climate change (Volk, 2014). 

Studies have shown that climate change impact on water resources may differ from 

region to region depending on the geographic characteristics and meteorological conditions 

(Arnell et al., 1992; Huntington & Niswonger, 2012). An integrated hydrologic model can 

provide a better representation for the study of local hydrologic processes on the land surface and 

subsurface, as well as the interactions between them. By forcing expected global climate change 
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projections of meteorological factors, e.g., precipitation, temperature, to watershed scale 

hydrologic models, the hydrologic processes can be simulated and evaluated with changing 

trends in water availability for the 21st century. Results can provide scientific insights into future 

water resources alternations and help water managers to make adaptive water utilization 

strategies, such as reservoir regulations, irrigation management, and groundwater withdrawal.  

Though there has been an earlier study using one GCM (Volk, 2014), it was the first time 

the climate change evaluation was performed on a watershed scale in the Lehman Creek 

watershed with all climate change models considered. It provided comprehensive assessments of 

meteorological trends and variations among different time periods in the 21st century. Based on 

that, the hydrologic responses were assessed correspondingly, providing a unique evaluation of 

the surface water changes under the potential climate change. Additionally, it was the first study, 

in the watershed, of a groundwater flow system model development and coupling with the 

surface hydrologic model using GSFLOW model. Groundwater pumping influences on the local 

water resources system were evaluated and more importantly, it provided insights into water 

resource availability in responses to the potential climate change for the first time. 

1.4 Research Goal and Outline 

The goal of this research was to evaluate the hydrologic responses to the changing 

climate at the Lehman Creek on a watershed scale, which would help to develop a better 

understanding of the long-term meteoro-hydrologic influences. The quantitative assessment of 

streamflow changes can improve the regional water resources management in the Lehman Creek 

watershed and the surrounding areas. This study aimed at meeting three research objectives 

(Figure 1). 
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Objective 1 was titled “Long-term Meteorological Changes on a Watershed Scale with 

Respect to Global Circulation Models”, discussed in Chapter 2. It focused on developing the 

meteorological data on a watershed scale based on coarse-resolute climate change data obtained 

from downscaled CMIP5, from which the climate change could be evaluated at a fine resolution. 

Objective 2 was titled “Surface Hydrologic Responses to Climatic Changes in the Lehman Creek 

Watershed”, discussed in Chapter 3. It focused on developing a hydrologic model using the 

Precipitation-Runoff Modeling System (PRMS) and to drive the model with the climate change 

data from Objective 1 to simulate and assess the surface hydrologic processes, e.g., streamflow. 

Objective 3 was titled “Global Climate Change Influences on the Interactions between Surface 

and Groundwater in Lehman Creek on a Watershed Scale”, discussed in Chapter 4. It focused on 

developing a groundwater-flow system using the three-dimension finite-difference 

groundwater-flow system (MODFLOW) and to couple the developed PRMS model with this 

MODFLOW model using the coupled groundwater flow and surface-water flow model 

GSFLOW. This could help to better understand the interactions between surface water and 

groundwater in snow dominant areas. Chapter 5 summarized the results and conclusions and 

provided recommendations for future research.  
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Figure 1. Workflow Diagram of the Study with Three Objectives and the Corresponding Tasks. 
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2 Chapter 2 Future Long-Term Meteorological Changes on a Watershed Scale 

2.1 Research Objective 1 

Research Question # 1: What are the long-term changes in meteorological conditions on 

a watershed scale with respect to Global Circulation Models? 

The climatic variables of precipitation, maximum temperature, and minimum temperature 

were extracted from the PRISM dataset at the station of Great Basin NP, for the historical period 

of 1981-2010, and from the CMIP5 dataset at 12 km resolution, for the periods of 1981-2010 and 

2011-2099. As PRISM data was considered as historical observations, the CMIP5 data used 

PRISM data as a reference to identify the bias in historical period of 1981-2010. Assuming these 

bias were constant in future periods, they were used to correct the CMIP5 data for the period of 

2011-2099. The QM bias-correction method was employed to bias correct the climatic variables 

of precipitation and temperature. The employed technique was intended to resolve the drizzle 

effect in precipitation and physical unrealistic effect in temperature. Under four likely climate 

change scenarios, RCP 2.6, 4.5, 6.0, and 8.5, precipitation and temperature data were analyzed at 

a station scale. The alternations and change trends of the climatic condition at Lehman Creek 

watershed were evaluated in the 21st century for the three divided periods: 2011-2039 (Period 1), 

2040-2069 (Period 2), and 2070-2099 (Period 3), using bias-corrected CMIP5 data.  

2.2 Introduction 

2.2.1 Climate change influences on the Great Basin  

Due to human activity and increasing greenhouse gasses, significant changes in the 

climate were experienced during the last century and will continue in the future (Chambers, 

2008). 
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In the Great Basin, where the study area is located, the observations in the 20th century 

show a warming trend of a 0.3 to 0.6° C (0.6° to 1.1 °F) increase region-wide, which has resulted 

in an increasing probability of warm years and a decreasing probability of cold years. Since the 

middle of the last century, an increase of annual precipitation, ranging between 6 to 16%, was 

detected, with specifications in inter-annual variability and extreme events; the snowpack 

observations on 1 April show an overall decreasing trend with spatial discrimination across the 

basin. Compared to the 1950s, the timing of the snowmelt in snowmelt dominant regions shows 

10-15 days earlier. An increasing streamflow was reflected across the region, especially in 

winters and springs (Baldwin et al., 2003). 

As global warming continues, it is projected with a 2 to 5 °C (3.6 to 9 °F) temperature 

increase in the west ranges of the US. Due to the large difference in topography, the degree of 

change will be distinctive (Cubashi et al., 2001). Additionally, snowpack declines and snow 

water losses are likely to continue and will even be accelerated in a warmer climate (Mote et al., 

2005). 

2.2.2 Bias correction techniques  

The meteorological conditions are the most critical input data in the hydrologic models 

for the determination of volume and timing of the water flow. Before any downscaled data is 

forced into a model to estimate the specific impact of climate change on small scales, some 

adjustments should be included to count for the bias within GCMs resulting from resolution 

differences and model systems, such as systematic bias induced by inadequate terrain resolution 

(Haerter et al., 2011; Thrasher et al., 2012).  

Bias correction, as a concept, was introduced in weather forecasting and later used in 

climate study (Maraun et al., 2010; Maraun, 2013). It is a variant of Model Output Statistics that 
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is meant to correct the long-term climate means, variance, and quantile-based biases and to be 

used to downscale the simulated climate variables averaged in a grid box to point values 

(Maraun, 2013). This can be done by a variety of downscaling techniques, classified as the 

dynamic downscaling technique and statistical downscaling technique. 

The dynamic technique is a model-based method that tends to increase the resolution of 

physical models by nesting a finer-scale regional climate model within a global-scale model 

(Giorgi et al., 1991). It provides a more accurate description of important model components 

such as cloud physics and terrain height (Hay & Clark, 2003), while demanding copious 

computational resources (Takle et al., 1999; Hay et al., 2002). 

The statistical downscaling technique uses statistical correlations derived from history to 

describe regional climates (Benestad, 2001; Wood et al., 2004), and encompasses linear and 

nonlinear methods. Kilsby et al. (1998) and Huth (1999) used Multiple Linear Regression (MLR) 

models for statistically downscaling GCM data, and based on that, von Storch (1999) proposed 

Multiple Linear Regression with Randomization (MLRR) to recover the original data variability. 

Conditioned on atmospheric status, a resampling approach was used to capture the uncertainties 

in the downscaling process termed the Analogue Method (AM) (Zorita & von Storch, 1999). 

Brandsma and Buishand (1998), Mehrotra and Sharma (2006) and Moron et al. (2008) extended 

AM with probability distributions and developed the Nearest Neighbor Analogue Method 

(NNAM). Schmidli et al. (2006) extended the downscaled procedure from monthly to daily by 

Local Intensity Scaling (LOCI) approach, and wet-day intensity ratio was applied on the basis of 

data frequencies. Different from LOCI, Quantile Mapping (QM) method employed the entire 

empirical cumulative distribution for each day instead of only wet days (Panofsky & Brier, 1968; 

Dettinger et al., 2004; Wood et al., 2004; Boé et al., 2007).  
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2.2.3 Quantile-Quantile Mapping technique 

Not without controversy, the QM technique has been widely used in the bias correction 

of GCM or RCM products and corrects the bias between model simulations and observations. It 

assumes a relationship between local scale and large scale predictors being linked to point 

observations with nearby grid values (Maraun, 2013; Smith et al., 2014; Mishra & Herath, 2015). 

QM generally adjusts the long-term simulations by adding the difference between observations 

and simulations that were derived from a same reference period based on the quantile. With 

various downscaling and error correction methods, Themeßl et al. (2011) showed that the QM 

method performs best for one of the most critical variables - precipitation; Räisänen and Räty 

(2013) also demonstrated QM as the best-performing technique in mean temperature for far 

future evaluation. 

The QM technique was initially proposed by Panofsky and Brier (1968), was later 

modified by Themeßl et al. (2011), and has been employed to climate change studies as a 

common component (Hay & Clark 2003; Boé et al., 2007; Maraun et al., 2010; Ehret et al., 

2012; Maraun, 2013; Sippel et al., 2015). The process combines downscaling aspects with model 

error correction and is termed as “bias correction.” The corrections of implicit differences 

between GCM simulations and observations are included. 

As described by Cannon et al. (2015), QM is based on the Cumulative Distribution 

Functions (CDFs) 𝐹𝑜,ℎ and 𝐹𝑚,ℎ, respectively, of observed data (𝑥𝑜,ℎ) and modeled data (𝑥𝑚,ℎ), 

for the historical period denoted by the subscription ℎ. The bias correction of 𝑥𝑚,𝑝, which is the 

modeled data for the projected period denoted by the subscription 𝑝, can be expressed by the 

transfer function as follows: 

�̂�𝑚,𝑝(𝑡) = 𝐹𝑜,ℎ
−1{𝐹𝑚,ℎ[𝑥𝑚,𝑝(𝑡)]}                                            (1) 
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Where 𝐹𝑜,ℎ
−1 is inverse CDFs with observed data in a historical period, 𝑡 is a time in the 

projected period. When CDFs (and inverse CDFs) are estimated from empirical data, the 

algorithm expressed in Eq. (1) can be illustrated via quantile-quantile plots. The QM plots are 

scatter plots of data values (observed and modeled data) versus corresponding empirical 

quantiles. With a same data number, the QM plots resulting from observed data and modeled 

data amount to a lookup table wherein a observed value can be found with an entry of modeled 

value under the same quantile (Figure 2). The construction of transfer function is based on the 

historical period exclusively, with no future model projected included.  

  
Observed data series                           Modeled data series 

Figure 2. Example Illustration of Quantile Mapping Method. �̂�𝑚,𝑝 Is the Modeled Value after Bias Correction, 

Found in the Observed Data Series; 𝑥𝑚,ℎ Is the Modeled Value before Bias Correction, Found in the Modeled Data 

Series; Through Tracing the Same Value in the Cumulative Density Function, the Bias Correction is Performed for 

Each of the Modeled Data. 

The time variable in the equation and the data used for the construction of CDF are both 

for representations of concepts from data to be bias corrected, which are meteorologic variables 

in the study. Depending on the specific study interests, the QM method has been used 

extensively for downscaling in monthly average temperature and precipitation (Wood et al., 

2004; Maurer & Duffy, 2005; Hayhoe et al., 2008), and in recent years, it has been employed in 

daily data (Maurer et al., 2010; Abatzoglou & Brown, 2012). Depending on the research 

purpose, data availability, and corresponding time scale, the data for each representative time 
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period can be collected by different means. For example, monthly values are extracted from each 

continuous year with an annual cycle for a determined month. For a representative day, the 

time-series can treat each day separately with an annual cycle, or include a moving window 

(1day ± 15days) considering seasonal variability.  

Much like all statistical downscaling approaches, the biases in GCMs are assumed as 

constant during the projections relative to historical observations. Thus, the biases can be further 

employed and corrected for future periods of GCM data, such as in the studies of Hagemann et 

al. (2011) and Thrasher et al. (2012). 

2.3 About Study Area 

Lehman Creek is a 23.6 km2 (5,839 acres) portion of the southern Snake Range of 

east-central Nevada, on the north side of Wheeler Peak and Jeff Davis Peak, southeast of Bald 

Mountain (Error! Reference source not found.). This is the drainage area above the Lehman 

Creek Cave stream gauge station (#10243260, LEHMAN CK NR BAKER, NV, from October 1, 

1947, to November 4, 2012). The streamflow, mainly consisting of snowmelt originating from a 

higher-elevated region, coupling with rainfall, flows from west to east across an alluvial fan 

recharging to the groundwater of Snake Valley (Volk, 2014; Prudic et al., 2015). From 

December 1947 through September 1955, the mean annual water yield of Lehman Creek was 4.4 

×106 m3 (3,570 ac-ft), with peak runoff occurring in June, and the lowest flows were recorded in 

January and February. This observation gauge was re-established in the fall of 1992 (Volk, 2014; 

Prudic et al., 2015). 
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2.4 Data 

2.4.1 Meteoro-hydrologic Data 

There are four daily measurement stations within and close to the watershed at different 

resolutions and with different observation periods (Error! Reference source not found.). Two 

of these stations were parts of the Western Regional Climate Change’s Remote Automated 

Weather Station and have precipitation, temperature, and solar radiation data at one-hour 

resolutions. The Nevada Climate-ecohydrology Assessment Network (NevCAN) has a new 

station (built in 2011) for observations of precipitation, temperature, solar radiation, etc. Daily 

measurements of Great Basin NP (#263340) from the National Weather Service’s Cooperative 

Observer Program are available for precipitation and temperature data (Table 1). 

 
Universal Transverse Mercator projection, Zone 11, NAD 83 

Figure 3. The Lehman Creek Watershed and Hydrologic and Meteorological Observation Stations 

Nearby. 
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Table 1  

Basic Information of the Data Measurement Stations Used in the PRMS Model Developed Calibration and 

Validation, including Three Meteorological Observation Stations and One Streamflow Gauging Station. 

Data 

Source 

Station 

name 
Lat. Long. 

Elev. 

(m) 

Related 

variables 

measured 

Start time 

WRCC 

RAWS 

Baker Flat 

Nevada 
39.0019 -114.218 2085 p,t,sr,w,st,h 4/1/2000 

Mather 

Nevada 
39.0228 -114.272 2825 p,t,w,sr,h 6/1/1998 

WRCC 

NevCAN 

Subalpine 

(east) 

Nevada 

39.0010 -114.309 3081 p,t,w,sr,st,h,sd 8/24/2011 

NWS 

COOP 

Great Basin 

NP 
39.0330 -114.221 2088 p,t 7/1/1948 

USGS 

NWIS 

Lehman Ck 

Nr Baker, 

NV 

39.0117 -114.214 2042 discharge 10/1/1947 

NevCAN: Nevada Climate-ecohydrology Assessment Network; COOP (COoperative Observer Program); WRCC: 

Western Regional Climate Center; RAWS: Remote Automated Weather Station; NRCS: National Resources 

Conservation Service; USGS NWIS: U.S. Geological Survey National Water Information System; DRI: Desert 

Research Institute. The codes abbreviation: sr for solar radiation; w for wind speed and direction; t for air 

temperature; st for soil temperature; h for relative humidity; p for precipitation; sd for snow depth; swe for snow 

water equivalent. 

Based on the observation location, length, resolution, and continuity of the available time 

series datasets, the meteorology stations of Great Basin NP, Baker Flat Nevada and Mather 

Nevada, and the streamflow gage of Lehman CK NR were chosen and used. The modeling 

simulation are for water years from 2003 to 2012. Data of precipitation and temperature from 

Great Basin NP were used as driving input for the model. Potential evapotranspiration (PET) and 

solar radiation data from these three meteorological sites, as well as streamflow data from 

Lehman CK NR Baker (#10243260), were used in the model calibration and validation. 

2.4.2 PRISM Dataset 

Long time-series data were required to capture the climatic features on a local scale. Due 

to the data shortage in length, instead of using breaking periods of observations, we used the 

products of Parameter-Elevation Regressions on the Independent Slopes Model (PRISM) to 
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represent observations (Appendix A-2). It contains a continuous time-series daily dataset at high 

resolution (AN81D), which resulted from observation networks and showed high reliability and 

high proximity with observations (Di Luzio et al., 2008; PRISM Climate Group, 2004; PRISM, 

2016). 

The PRISM Climate Data were developed by the Northwest Alliance for Computational 

Science and Engineering (NACSE), based at Oregon State University, PRISM Climate Group. 

For the development of spatial climate datasets that reveal both short-term and long-term climate 

patterns, climate observations from a variety of monitoring networks were collected and a series 

of sophisticated quality controls were applied. The product datasets incorporate a variety of 

modeling techniques and are available at multiple spatial and temporal resolutions, from 1895 to 

the present. The time series datasets used were modeled using the climatologically-aided 

interpolation method. 

In this study, time series data of daily maximum temperature, minimum temperature, and 

precipitation at Great Basin NP (#263340) were collected from 1981 to 2010 from PRISM 

Climate Data (30-Year Normals, PRISM). The data originated from a standard 4km resolution 

grid cell and was interpolated using the inverse-distance-squared weighting method from 

surrounding grid cell centers. Gridded data use the climatologically-aided interpolation (CAI) 

method for point interpolations within a grid, which uses DEM as the predictor to assess the 

spatial pattern of climatic conditions on specific days over a long-term average pattern (PRISM, 

2016). Time-series data at Great Basin NP (#263340, Elev. 2088 m) was interpolated from a 4km 

resolute grid with an elevation of 2069 m. 
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2.4.3 Climate change data - CMIP5 

As the latest global climate projections, the Coupled Model Intercomparison Project 

(CMIP) released during 2012-2013 was developed by the World Climate Research Program 

(WCRP). It coupled the Atmospheric Model Intercomparison Project (AMIP), a standard 

experimental protocol for the global Atmospheric General Circulation Models (AGCMs) with 

ocean-atmosphere models (coupled GCMs). Products of four Representative Concentration 

Pathways (RCP 2.6, 4.5, 6.0 and 8.5) simulation from the coupled GCMs were obtained from the 

Coupled Model Intercomparison Project phase 5 (CMIP5) multi-model ensemble (Taylor et al., 

2011; Braconnot et al., 2011; Appendix A-1). It has been widely used in various assessments, 

research, and educational activities related to climate change processes and outcomes. The 

selected data are 12 km resolution products of bias-corrected constructed analogs (BCCA) with 

67 models: 16 from RCP 2.6, 19 from RCP 4.5, 12 from RCP 6.0, and 20 from RCP 8.5 

(Appendix A-1). Full details about climate change models and scenarios were discussed in detail 

by Taylor et al. (2011) and Brekke et al. (2013). In this study, the gridded climate scenarios data 

under four RCPs for the historical period of 1981-2010 and the projected period of 2011-2099 

were used, which presented the output of various models under four likely future Greenhouse 

Gas (GHG) emission scenarios over the Lehman Creek watershed. 

2.5 Method 

The study approach consisted of two steps, as follows: 

Step 1. The procedure was validated using PRISM data as observations by means of statistical 

comparisons with historical records. In this way, the practice of QM in Step 2 was 

reliable when using PRISM data as the reference data (Section 2.5.1).  

Step 2. The QM technique was applied to bias-correct the GCM data onto a station scale, with 
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three meteorological variables on a daily scale: precipitation, maximum temperature, and 

minimum temperature (Section 2.5.2). 

In Section 2.5.3, methods to assess results were described for validating the use of the PRISM 

data as observations in the study area (Step 1), evaluating the performance of QM bias correction 

(Step 2) and long-term meteorological conditions (Step 2). 

2.5.1  PRISM Data Validation 

There was a shortage of meteorological observations in the study area, and the longest 

continuous data started as late as 1998. This limited the long-term trend capture in the study area 

and the data implementations in related hydrologic studies, such as the bias correction of the 

climate-change products. Instead of using short-period observation records, 30 years of PRISM 

products (AN81D) were used in this study, better representing the fitting of a frequency function 

and avoiding significant uncertainties (Ford et al., 2008). The PRISM dataset has been widely 

used for a variety of meteoro-hydrological studies (Leibowitz et al., 2012; Lafontaine et al., 

2015).  

In order to validate the implication of the PRISM data in the study area, comparisons 

were performed on the climatic variables between the PRISM data and historical records, and the 

longest overlapping period of 2003-2012 (water years) was selected. Data were compared for 

precipitation and temperature with the featured statistics of mean, variance, and standard 

deviation. While data consistency was usually expected for the temperature (Nijssen et al., 2008; 

Rahmstorf, 2012), a detailed comparison was also performed on the more uncertain variable of 

precipitation. 

http://onlinelibrary.wiley.com/doi/10.1002/joc.4015/full#joc4015-bib-0036
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2.5.2 GCM bias correction and downscaling 

The bias-correction technique that was applied in this study was a merged QM method, 

which combined the downscaling aspects with error correction of the model (Wilcke et al., 

2013). The altitude difference between the GCMs and the observation orography was included 

implicitly. Similar to all downscaling approaches, this method assumed that the biases relative to 

historic observations would be consistent in the model projections. It corrected the errors in the 

shape of the data distribution, and thus was capable of correcting errors in variability. This 

quantile-based approach originated from the empirical transformation of Panofsky and Brier 

(1968), and was successfully implemented in studies of hydrologic and biological effects under 

climate change (Maraun, 2013; Wilcke et al., 2013; Sippel et al., 2015).  

In this study, modifications were made on the basis of previous studies (Ines & Hansen, 

2006). Instead of being applied to only wet days, QM was applied to daily values to correct the 

biases and errors in precipitation and temperature (Tmax and Tmin). It resulted in a resolution 

change from a 12-km grid to an individual station (Mejia et al., 2012) for all 67 GCM projections 

from four climate change scenarios archived in the CMIP5 multiple-model dataset (Maurer, 

2007). The QM technique was based on cumulative distribution functions (CDF) that were 

constructed daily from modeled and observed datasets. The difference between the two quantile 

maps in the same referenced period were used to bias-correct the simulated projections of 

climate change for future periods.  

For each day of the year, a moving window of ±15 days was used to select the 

candidates for the representative day in order to produce the empirical cumulative distribution 

functions (ECDF) for two datasets, one for PRISM observations and one for CMIP5 GCMs. For 

this study, the period of 1981-2010 was used as the baseline period from which the bias 
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correction relationship was derived. Thus, there would be 31 days in the moving window and 30 

years in the baseline period, resulting in 930 values to define the ECDF for each day. Future 

daily bias-corrected data of GCMs were searched through the ECDF of GCMs to determine the 

quantile with the corresponding value, and then the ECDF observation on the same day from the 

same quantile was looked up. For example, a 50% value for April.15 in the GCM projections 

was translated into the same 50% value in observation for April.15; the 50% means that the daily 

value cannot be exceeded by 50% of the dataset of the 930 days that defined the ECDFs for April 

15 (Figure 4). A linear interpolation was applied between two percentiles.  

 

Figure 4. Sample Illustration of the Quantile Mapping Bias Correction Method. Two Empirical Cumulative Density 

Functions (ECDFs) Resulted from the Observed Data and the Determined Data on April 15 th. The Bias-Corrected 

Value Was Determined by Looking Up the Observation ECDF with the Same Cumulative Density (e.g., 50%) as the 

Determined Value X0 for the Determined ECDF. 

Nevertheless, there were some issues to be dealt with when dealing with the different 

variables. Regarding precipitation, one fact in the bias correction is that the drizzle effect tends to 

occur in most models because the probability of little precipitation in the model results is greater 

than that in the observations (Gutowski et al., 2003). Thus, in this study, precipitation thresholds 

were defined so that ‘zero precipitation’ had the same probability in GCMs as in the 

observations. Values below the thresholds were considered as ‘no precipitation’. To determine 

the extreme values in the GCM projections that exceed the greatest value in the control 

simulation with the referenced period, the differences between the greatest value in the control 
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simulation and the corresponding observation were extended and applied to those values 

outrange of the control simulations (Belprat et al., 2013). Regarding temperature, traditionally, 

when the maximum temperature (Tmax) and minimum temperature (Tmin) are implemented 

independently, the procedure can change the Diurnal Temperature Range (DTR). In some cases, 

this can result in a physically unrealistic correlation between Tmax and Tmin, which makes Tmax < 

Tmin. Therefore, in this study, QM was applied to Tmax and DTR, with Tmin calculated as Tmax – 

DTR, in order to improve the performance of bias correction for temperature (Thrasher et al., 

2012). 

2.5.3 Validation of Q-Q Bias Correction 

In order to validate the QQ bias-correction method, a validation procedure was performed 

on a time period of Jan.1 2011- Dec.31 2016, which is beyond the period of 1981-2010 used for 

bias-correction procedure. Bias-corrected variables of precipitation, maximum temperature, and 

minimum temperature were compared between bias-correction results and the observations from 

the PRISM data. The PRISM data were from the same source as the data used for the bias 

correction, which were point-interpolated values from the 4-km grid where the Great Basin NP 

station was located.  

On a mean monthly scale, the bias-corrected CMIP5 data, i.e., Prcp, Tmax, and Tmin, 

were compared to the observation to evaluate the performance of the QQ bias-correction method 

on monthly scale and variation. All climate change models under each potential climate change 

scenarios were analyzed as an ensemble to evaluate the uncertainties and variances resulting 

from difference climate models. 
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2.5.4 Result assessment 

In order to evaluate the changes among time periods more easily, the entire simulation 

period was separated into smaller periods. Bias correction and hydrologic simulation were 

implemented from the past to the end of this century (1981-2099), which was split up into a 

baseline period of 1981-2010 and a future projected period of 2011- 2099. The future projection 

period was split into three periods: 2011-2039 (Period 1), 2040-2069 (Period 2), and 2070-2099 

(Period 3). In order to assess the results from the two steps, several indices were used. 

For the Step 1, the validation of PRISM data was done by comparing PRISM data and 

historical records during the overlapping period of 2003-2012 (water years). All three climate 

variables – precipitation, maximum temperature, and minimum temperature – were compared to 

the mean monthly values. In particular, the daily precipitation values (unit in mm/day) were 

examined statistically both on a monthly scale and a daily scale. 

For the Step 2, the bias correction results were assessed by comparing the datasets of 

before bias correction and after bias correction with observations for the baseline period of 

1981-2010 (Wilcke et al., 2013). Thus, the differences (before bias correction) and fitness (after 

bias correction) with the observations could be observed. The mean monthly bias and daily data 

frequencies of time-series data were used. Additionally from Step 2, the results of bias-corrected 

climate projections were assessed on a mean annual scale. Climate during the three future 

periods (i.e., 2011-2039, 2040-2069, and 2070-2099) was compared with the baseline period 

(1981-2010) for the four potential climate change scenarios and multiple models (Appendix 

A-1). Specifically, this assessment was performed on the mean monthly precipitation to detect 

the monthly changes. 



 

30 

2.6 Results 

Because the study was done in two steps, the results of each step are presented in separate 

sections as follows:  

Section 2.6.1: Validation of using PRISM data as observations  

Section 2.6.2: Evaluation of bias-correction performance using results from the baseline 

period, and assessment of climate change in the study area using results from the projected 

period.  

2.6.1 Validation of PRISM Data 

Long time-series data were required for the development of the long-term features, which 

were used in the procedure of bias correction. Thus, instead of short period observational 

records, the PRISM data of 1981-2010 were used, which were on a daily scale with point 

interpolation from the 4-km grid at Great Basin NP (#263340, Elev. 2088 m). 

The mean monthly values of maximum temperature, minimum temperature, and 

precipitation were compared between the PRISM dataset and historical records (Figure 5a,b&c). 

All three variables showed great consistency especially in temperature, which reached 32.8 °C at 

the highest (during the summer) and -10.9 °C at the lowest (during the winter). For precipitation, 

a detailed comparison was made with featured statistics: mean, variance, and standard deviation, 

on both a monthly scale and daily scale (Table 2). Daily mean precipitation was 1.02 mm/day for 

both the PRISM dataset and historical records. The variance of precipitation was the same at 

0.001 on the monthly scale, while as expected, on the daily scale, historical records showed a 

higher variance (i.e., 0.020) than the PRISM dataset (i.e., 0.014). The standard deviation was 

very close at 0.73 and 0.78 mm/day on the monthly scale, and at 3.00 and 3.58 mm/day on the 

daily scale both corresponding to the PRISM dataset and historical records. Besides, the 
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distribution of daily and monthly values, examined by box plots (Figure 6), showed great 

uniformity between those two datasets. 

 

Figure 5. Climatic Variable Comparisons between Point Data Interpolated from PRISM and Meteorological 

Observations on Monthly Mean Scale during the Same Period of 2003-2012 (Water Years) in: (A) Maximum 

Temperature , (B) Minimum Temperature, and (C) Precipitation. 

 

Table 2  

Mean Daily Statistic Comparisons of Precipitation between Interpolated PRISM Data and Observations at the 

Great Basin NP (#263340) On Monthly and Daily Scales during the Period of 2003-2012 (Water Years) (Unit: 

mm/d). 

Index 
Monthly  Daily 

PRISM Observations PRISM Observations 

Mean 0.96 1.07 0.96 1.06 

Maximum 4.10 4.28 42.16 48.26 

Standard Deviation 0.73 0.78 3.00 3.57 
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Figure 6. Comparisons of Precipitation between the PRISM Dataset and Observation at Great Basin NP (#263340) 

on Daily and Monthly Mean Scales, for the Period of 2003-2012 (Water Years). 

 

2.6.2 Validation of Q-Q Mapping Bias Correction 

While the PRISM data from period of 1981-2010 were used as observations in the 

bias-correction procedure, the data from the subsequent period of 2011-2016 were used for the 

validation. The validation results were presented by comparisons between bias-corrected results 

and observations, as the goodness of fitness between them represents the goodness of 

performance of the QQ bias-correction procedure. The Value distribution of Prcp, Tmax, and 

Tmin were analyzed on mean monthly scale as shown in Figure 7 with comparisons with PRISM 

observations. Specifically for Prcp, the basic statistics were performed on both daily and mean 

monthly scales as shown in Table 3 and Table 4. 

Regarding mean monthly temperatures, the results showed narrow distributions, and the 

PRISM observations were well contained within the bias-corrected CMIP5 data for both 

maximum temperature and minimum temperature. This indicated a well bias correction 

procedure – QQ Mapping method - was performed on the temperature. 

Regarding the mean monthly precipitation, validation results showed that most PRISM 

observations were contained within the 5%-95% distributed bias-corrected values; the majority 
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contained within value ranging between 25% and 75%. Exceptions were mean monthly values at 

June, RCP 2.6 and December, RCP 8.5. As indicated by the large range of value distribution 

(Figure 7), the bias-corrected precipitation have high standard deviation ranging between 12.3 

and 13.4 with a comparison of 8.8 in PRISM (Table 3).  

Regarding the daily precipitation, mean values from the bias-corrected CMIP5 data were 

all 1.0 mm/d for all climate scenarios, resulting in less than 11% difference from 0.9 mm/d in the 

PRISM observations. Nevertheless, comparing to 2.9 mm/d in the PRISM observation, the 

standard deviation reached 3.1-3.4 mm/d in the bias-corrected CMIP5 data with less than 17% of 

differences between them. This included the days with high precipitation reaching as high as 

55.2-66.1 mm/d, while the maximum daily precipitation was 32.8 mm/d in PRISM observation. 
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Figure 7. Validation Results of Quantile-Quantile Mapping Method: Comparisons between Bias-Corrected Results 

and Observations over the Time Period of 2011-2016. Variables of Precipitation (Left) and Maximum & Minimum 

Temperature (Right) were Analyzed for All Four Potential Climate Change Scenarios: RCP 2.6, RCP 4.5, RCP 6.0, 

and RCP 8.5. The Box Plot Represents the Result from Different Climate Models. 
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Table 3  

Mean Monthly Statistic Comparisons of Precipitation between Interpolated PRISM Data and Bias-Corrected 

CMIP5 Data at the Great Basin NP (#263340) during the Period of 2011-2016 (Water Years) (Unit: mm /month). 

 

PRISM 
Bias-corrected Data  

RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5 

Mean 28.5 31.7 31.1 29.6 30.5 

Maximum 40.4 85.2 88.4 77.2 74.1 

Minimum 8.7 7.3 5.0 1.9 4.3 

Standard Deviation 8.8 13.4 13.2 12.3 13.1 

 

Table 4 

Daily Statistic Comparisons of Precipitation between Interpolated PRISM Data and Bias-Corrected CMIP5 Data at 

the Great Basin NP (#263340) during the Period of 2011-2016 (Water Years) (Unit: mm /day). 

 

PRISM 
Bias-corrected Data  

RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5 

Mean 0.9 1.0 1.0 1.0 1.0 

Maximum 32.8 58.7 55.2 59.7 66.1 

Minimum 0.0 0.0 0.0 0.0 0.0 

Standard Deviation 2.9 3.4 3.3 3.1 3.2 

 

2.6.3 Bias Correction 

Baseline Period (1981-2010) 

The performance of QM bias correction was evaluated by comparing the mean monthly 

data distributions and daily data density distributions (Figure 9 &Figure 10), during the bias 

correction period of 1981-2010.  

Figures 8 &Figure 9 compared the meteorological data among the datasets of before bias 

correction and after bias correction with observations on a mean monthly scale for all scenarios. 

Box plots were used for aggregations of the multiple GCMs under each climate change scenario, 

during the overlapping period of 2003-2012 (water years). Results showed success in correcting 

the features of temperature (Figure 8) and precipitation (Figures 9), and the observations from 

PRISM were well contained within the 5% - 95% range of multiple GCMs after bias correction. 
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Temperature results showed a 0.1°C -3.5°C reduction (median value) on a mean monthly scale. 

Peak temperature occurred in July, and the lowest values occurred during December and 

January. For precipitation, an overall increase of 8.3 to 22.0 mm/month resulted from the bias 

corrections in mean monthly precipitation. In particular, a seasonal pattern was formed of higher 

precipitation during spring and fall than the rest of the year. 

The density distributions of daily meteorological data were compared in Figure 10 during 

the baseline period of 1981-2010 under each emission scenario. The bias-corrected results of 

both temperature and precipitation had quite similar shapes in density distribution as those 

corresponding observations (Gaussian distribution, R 3.3.0) (Läuter, 1988; Sheather & Jones, 

1991; Scott, 1992). As shown in Figure 10, a leaning towards higher values than the observations 

was corrected for temperature, especially minimum temperature. Regarding precipitation, the 

high density of low values (< 38.1 mm/month) tended to dominate the entire precipitation data, 

and the corresponding density reached as high as twice of those for the observations. This 

resulted in lower probabilities of middle to high events (> 38.1 mm/month). After bias 

correction, the high density of low precipitation was flattened and shifted towards higher values, 

with extreme events occurring at the tail end of the distribution (Figure 10). 

Projected Period (2011-2099)  

As suggested in Maurer et al. (2007), a comparison of results over a range of time could 

better support the conclusions than that of a specific month or day. In this study, the changes 

were summarized for the three periods: 2011-2039, 2040-2069, and 2070-2099, represented as 

Period 1, Period 2, and Period 3, respectively, in the 21st century. The bias-corrected climate 

variables of Prcp, Tmax, and Tmin were aggregated on a mean annual scale for the three periods, 

for the four potential climate change scenarios (Figure 11). All scenarios showed general 
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increasing trends in Prcp, Tmax, and Tmin from Period 1 to Period 3, at different levels. 

Specifically, changes in precipitation were aggregated on a mean monthly scale to investigate the 

monthly variability (Figure 12). 
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Figure 8. Comparisons of Datasets from Before Bias-Correction, After Bias-Correction, and Observations (PRISM) 

during the Historical Period of 1981-2010. Each Sub-Figure Shows Two Sets of Variable, i.e., Maximum 

Temperature and Minimum Temperature. The Boxplot Represents the Variation of Multiple Climate Change 

Models under Each Scenario: RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5.  
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Figure 9. Comparisons of Precipitation Data from Before Bias-Correction, After Bias-Correction, and Observations 

(PRISM) during the Historical Period of 1981-2010. The Boxplot Represents the Variation of Multiple Climate 

Change Models under Each Scenario: RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5. 
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Figure 10. Comparison of the Density Distribution among the Monthly Mean Values for the Dataset Before Bias 

Correction, After Bias Correction and Observations (PRISM) during the Historical Period of 1981-2010, Using 

Multiple Projected Models Of RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 for (A) Maximum Temperature and 

Minimum Temperature And (B) Precipitation. 



 

41 

 

Figure 11. Annual Changes of Climatic Variables: (A) Prcp, (B) Tmax, and (C) Tmin in Three Future 

Periods: Period 1 (2011-2039), Period 2 (2040-2069), and Period 3 (2070-2099), based on Baseline Period 

(1981-2010) for Each Climate Change Scenario (i.e., RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5). 
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Figure 12. Mean Monthly Precipitaion Changes for Three Future Periods: Period 1 (2011-2039), Period 2 

(2040-2069), and Period 3 (2070-2099), based on Baseline Period (1981-2010), for Each Climate Change Scenario 

(I.E., RCP 2.6, RCP 4.5, RCP 6.0, And RCP 8.5). 

 

On the mean annual scale, Tmax and Tmin shared similar patterns in long-term changes, which 

showed distinctive increases from low-level RCP to high-level RCP and from Period 1 to Period 

3. The increase of mean annual Tmax was at 1.1oC - 1.4°C at the beginning of the century (Period 

1), and reached 1.6oC -5.4 °C by the end of the century (Period 3); this increase varied for 

different climate change scenarios. At the same time, the increase of mean annual Tmin changed 

from 1.0oC - 1.4 °C (Period 1) to 1.5oC - 5.2 °C (Period 3) for different climate change scenarios.  

Precipitation projections had an overall tendency for an increase, however, trends and 

uncertainties showed irregularities among periods and scenarios. A mild increase during the 

three periods was found in RCP 4.5 and RCP 6.0, while uncertain changes were found in RCP 

2.6 and RCP 8.5, with an annual Prcp in Period 2 either higher or lower than that in Period 3 

(Figure 11). Regarding the mean annual Prcp, the increases changed from 13.1 mm - 33.2 mm to 
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39.2 mm - 60.8 mm, corresponding to the increases in Periods 1 and 3 (Figure 11). For mean 

monthly Prcp (Figure 12), there was no evidence of an inter-scenario pattern. However, 

increasing changes could be observed during winter seasons (i.e., October - April) and 

decreasing changes during summer seasons (i.e., May – September), with indistinguishable 

variations in the months in-between. The mean monthly increase in precipitation could reach as 

high as 14.0 mm (RCP 2.6, Period 3, October), and the decrease could be as low as 5.6 mm 

(RCP 8.5, Period 3, May). 

2.7 Discussion 

Prior to applying a bias-correction method or other similar statistical transformations, it is 

important to understand the limitations or assumptions of the design technique. The differences 

between GCM products and observations were stationary throughout the bias-correction period, 

which meant that past correlations were also applicable to the future. The validity of this 

assumption could not be fully assessed because the observed variables of interest (e.g., 

precipitation or temperature) may be exceeded under climate change (Gudmundsson et al., 

2012). Additionally, some temporal cross-correlation properties may not have been corrected; for 

example, a duration of wet days that is too short still may exist after correction. In addition, 

inter-variable dependencies were not considered when using the QM method. For instance, the 

bias in precipitation may have correlations with a bias in temperature, which might not be 

corrected independently (Boe et al., 2007). While future climate might never be forecasted 

accurately, due to the sophisticated dynamic interactions in the large Earth system, an estimation 

limited by the assumptions could provide an idea of future trends under certain conditions. The 

bias correction procedure of GCM products is critical in maintaining local climate features and 
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characteristics, which are important for understanding the trends in alterations under the effects 

of climate change. 

As stated in the description of the data construction, the PRISM dataset resulted from an 

observation network. When the observation network repository is expanded or reduced due to the 

addition of new stations or the closing of old stations, it leads to changes in the PRISM data over 

the time. In this case, the data consistency, long-term trends, and features may not have been 

well preserved. Therefore, the PRISM dataset typically may not be a good choice for long-term 

uses, such as bias correction. However, in the study area of the Lehman Creek watershed, the 

long-term features were well maintained since there was no observation stations added or 

removed during the period of 1981-2010, the period for which the PRISM data were constructed. 

Therefore, it was appropriate to implement the PRISM data for observations in the study area, 

even though this procedure may need further evaluation when used in other areas. 

The daily-based bias correction performed on Prcp, Tmax, and Tmin showed good results 

with well-maintained features of the density distribution and mean monthly distribution for all 

emission scenarios and models (Appendix A-1). As the study area was located in a desert, the 

datasets with coarse resolution, which were averaged over a larger region, tended to have higher 

temperatures and less precipitation than those on a local scale, especially in mountainous areas. 

This feature was well observed in the CMIP5 dataset on a 12-km grid, and showed both dry and 

hot climate conditions with rare precipitation. The QM technique effectively corrected the bias, 

and resulted in precipitation and temperature congruent with the observations. Therefore, the 

climate-determinant indexes of elevation and land cover were successfully converted after bias 

correction, and thus resulted in cooler and wetter weather in the study area. 
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By comparison, the bias-corrected CMIP5 dataset showed increases in the mean annual 

precipitation ranging from 13.1 mm to 33.2 mm at the beginning of this century to 39.2 mm - 

60.8 mm by the end of this century. At the same time, great increases occurred to the mean 

annual maximum and minimum temperatures, which changed from 1.1°C -1.4 °C (Tmax) and 

1.0°C - 1.4 °C (Tmin) in Period 1 to 1.6°C - 5.4 °C (Tmax) and 1.5°C - 5.2 °C (Tmin) in Period 3, 

correspondingly. Among the time periods and four emission scenarios, the increasing 

temperature differed with certain patterns, with the highest increase occurring in the last period 

with the highest emission scenario (Period 3, RCP 8.5), and the lowest increase appearing during 

the first period (Period 1) with a slight difference among emission scenarios. Substantial 

variations were found when comparing the mean monthly precipitation among periods and 

emission scenarios; this may be the result of the uncertainties in the QM technique, which relied 

significantly on the data frequencies. 

A previous study indicated considerable discrepancies and varying reliabilities among 

different GCM products (Mohammed et al., 2015). In comparison to a previous study (Volk, 

2014), which only used one GCM product (CCSM4) for the study of warming climate influences 

on water resources, all GCMs were weighted equally and were used in an ensemble in the 

current study. Potentially, this approach could be a cause of the uncertainties in the GCM 

precipitation products, apart from procedures of the bias correction method (Mejia et al., 2014). 

However, it is reasonable to consider the study results a plausible indication of future changes 

and which the hydrologic processes over the next century should be capable of responding to. 

This study laid solid groundwork for future analysis, using the PRISM data as observations on a 

local scale. Besides, comparisons and evaluations of the future meteorological condition, 

streamflow alterations, and uncertainties can help to more clearly understand the potential 
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influences of changing climate on water resources. A further extension of the study might look 

into the snow process, including annual changes and seasonal patterns. 

2.8 Conclusions 

This study focused on the quantitative assessment of climate changes on a 

watershed-scale area, the Lehman Creek watershed in Great Basin National Park, Nevada. 

Downscaled GCM data from the CMIP5 BCCA dataset were used, which provided the 

meteorological conditions under four potential climate change scenarios: RCP 2.6, RCP 4.5, 

RCP 6.0, and RCP 8.5 with resolution at 1/8° (12 km). Instead of 10-year observation records, a 

30-year PRISM dataset (1981-2010) was used for the long-term feature capture and the QM bias 

correction of the CMIP5 dataset in the study area. Evaluation of the results was performed as a 

relative alteration from the projected period (i.e., 2011-2099) on the basis of a baseline period 

(i.e., 1981-2010). Three future time periods were defined as 2011-2039, 2040-2069, and 

2070-2099.  

On the basis of the study results, the following conclusions were made: 

1. The PRISM data preserved the value scale, distribution, and long-term features in the 

observations at Great Basin NP station. This indicates the PRISM data can be applicable, 

with effective replication of observations in areas that have issues in long-time shortage of 

data. 

2. Results of QM bias correction fit the observations well in monthly distribution and density 

distribution during a same historical period. This indicates that this approach can be used to 

correct the combined errors from spatial resolution differences and model systems.  

3. Under the influences of climate change, the average value of mean annual ensembles over 

the entire projected 21st century showed an increase of 2.3 °C, 2.2 °C, and 35.1 mm in 
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maximum temperature, minimum temperature, and precipitation, respectively, in the study 

area (Great Basin NP station). 

This study could contribute to increase the understanding of water resource alternation 

with regard to rates and timing by responding to all potential climate change scenarios using 

downscaled CMIP5 products. During the study, a 30-year PRISM dataset (AN81d) was used to 

represent observations in order to solve the conflict between the need for observation data to 

downscale the climate change products and the data shortage that existed at the station. The 

PRISM data successfully captured the long-time features of local climate statistically, and 

demonstrated its capability as a valid substitution for missing meteorological observations in the 

study area. This could provide useful insights if observations are missing in other study areas 

when needed. The approaches employed in this study provided solid foundation with the 

implementation of QM for downscaling climate change products.   
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3 Chapter 3 Surface Hydrologic Responses to Climatic Changes in Lehman Creek 

Watershed 

3.1 Research Objective 2  

Research Question # 2: How do the climatic changes affect the streamflow on a 

watershed scale? 

This study was to develop a hydrologic model for the study area at Lehman Creek 

watershed using PRMS. The model development includes data collection, watershed delineation, 

model construction, parameter estimation, and sensitivity analysis. The model calibration and 

validation were performed through comparisons of the principal hydrologic processes: solar 

radiation, potential evapotranspiration, and streamflow for the period of 2003-2012 (water 

years). Especially, the streamflow simulation results were compared to the observations of the 

annual, mean monthly, monthly mean, and daily scale. 

The calibrated model was driven by bias-corrected CMIP5 data for both the baseline 

period of 1981-2010 and projected three periods during 2011-2099. On the basis of status in the 

baseline period (1980-2010), the long-term changes, trends, and seasonal variations of 

streamflow in three projected periods were assessed in both timing and rate. 

3.2 Introduction  

3.2.1  Hydrologic models 

During the last few decades, the study of hydrometeorology has experienced tremendous 

progress thanks to extensive establishments of observational stations and platforms, the 

development of new theories and models, and great improvement in computation. As one of the 

most critical factors in the hydrological cycle, the meteorological system has been studied, 

extended and coupled with hydrologic processes. Thus, the model predictions of future climatic 
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conditions can be used as the input to hydrologic models and to investigate the impact of the 

predicted climate changes to hydrologic processes quantitatively, which helps to identify the 

potential issues and to support making better management strategies. 

Hydrologic models, as widely used tools, provide cost efficient means to study the 

hydrologic processes and evaluate the water resources within a watershed to support the best 

water resources management and utilization. While there are so many rainfall-runoff hydrologic 

models, it is important for the selection of an appropriate model that satisfies both study purposes 

and data availability. 

As classified and described by Beven (2000), one basic classification of model types is 

by lumped model or distributed model. Lumped models treat the watershed catchment as a single 

calculation unit, with all variables that represent average levels over the entire catchment area, 

such as the soil water capacity in the saturated zone. Distributed models make simulations that 

are distributed in space, with variables that represent a local scale, by spatially discretizing the 

catchment into a large number of calculation elements. Each of the elements is an average 

representation of a local space, where equations are solved respectively as parameters are 

specified for each associated element. Lumped models usually use a number of storages to 

control the water exchange functionally. Examples are the Hydrological Simulation 

Program-Fortran (HSPF) model from the USA, the Hydrologiska Byrans Vattenbalansavdelning 

(HBV) model from Sweden, and the Tank model from Japan, etc. On another hand, distributed 

models attempt to describe all water flow in the catchment by nonlinear partial differential 

equations, describing components of interception, evapotranspiration, and snowmelt. A better 

representation of heterogeneity can be reached through parameters defined for every element. 

Examples are Système Hydrologique Européen (SHE) model by European organizations, 
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Institute of Hydrology Distributed Model (IHDM) by the UK, Waterloo Flood Forecasting 

Model (WFFM) by Canada, and Precipitation-Runoff Modeling System (PRMS) by the USA, 

etc. Additionally, there is also a range of models that uses a distributed function of catchment 

characteristics to interpret the surface runoff generation components, such as the Xinanjiang 

model from China (Ren-Jun, 1992), Variable Infiltration Capacity (VIC) model from the USA 

(Gao et al., 2010), and the Arno model from Italy (Todini, 1996), which are called 

semi-distributed models.  

Hydrologic models can also be mainly classified by deterministic model or stochastic 

model, described by Beven (2000), depending on whether or not the model outputs are 

associated with some variance or uncertainties. The vast majority of models use the deterministic 

approach, such as physically based models (Ahmad & Simonovic 1999; Mosquera-Machado & 

Ahmad 2007; Forsee & Ahmad 2011). Additionally, there are many other different ways of 

hydrologic model classifications, such as empirical models (Ahmad et al., 2009, 2010, Zhang et 

al., 2014) and data driven models (Ahmad and Simonovic 2005; Ahmad et al., 2010; Stephen et 

al., 2010a; Stephen et al., 2010b; Puri et al., 2011a and 2011b; Melesse et al., 2011; Carrier et al., 

2013; Choubin et al., 2014). More can be found in O’Connell (1991), Wheater et al. (1993), and 

Singh (1995).  

System dynamics approach (Sterman, 2000; Mirchi et al., 2012) has also been used to 

model streamflow and water resources systems. Some applications include flood management 

(Ahmad & Simonovic 2000, 2001a, 2001b, 2001c, 2001d, 2005, 2006), river flow changes in 

response to climate change (Dawadi & Ahmad 2012), urban water system planning and 

management (Shrestha et al., 2011, 2012; Qaiser et al.,2011, 2013; Dawadi & Ahmad 2013), 

regional water system planning (Ahmad & Prashar 2010; Wu et al., 2013; Chen et al., 2015a, 
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2017a) hydrology (Zhang et al., 2017) and water quality management (Venkatesan et al., 2011a, 

2011b; Rusuli et al., 2015; Amoueyan et al., 2017).  

Eslamian (2014) summarized some climate change studies on regional or watershed 

scales using different models for various purposes. For an assessment of regional water resources 

management (Liu et al., 2011; Chen et al., 2011), monthly rainfall-runoff models were generally 

used for evaluating regional hydrologic consequences to the changes in precipitation, 

temperature, and other climatic variables (Gleick, 1986; Mimikou et al., 1991; Arnell, 1992; Xu 

& Singh, 1998). For detail assessment of surface runoff, conceptual models are useful, such as 

the Sacramento Soil Moisture Accounting model (Burnash et al., 1973), which has been widely 

used by many studies of climate change impacts (Gleick, 1987; Schaake, 1990; Cooley, 1990; 

Lettenmaier & Gan, 1990; Nash & Gleick, 1991). For the evaluation of impacts on the potential 

evapotranspiration in arid and semi-arid regions, the Penman-Monteith Potential 

Evapotranspiration model was used (Schaake, 1990). For estimations of general annual runoff 

under different climate scenarios, simple empirical and regression models were chosen in 

previous studies (Revelle & Waggoner, 1983; Arnell & Reynard, 1989). While, for simulations 

of spatial patterns of hydrologic responses to climate changes on watershed scales, 

physical-based distributed-parameter models are required (Arnell & Reynard, 1989; Thomsen, 

1990; Running & Nemani, 1991). 

3.2.2 Precipitation-Runoff Modeling System 

The Precipitation-Runoff Modeling System (PRMS) described by Markstrom et.al (2005) 

is a watershed-scale, physically based, and distributed- parameter model designed for 

precipitation and snowmelt runoff. As a part of the Modular Modeling System (MMS) 

(Leavesley et al., 1996), PRMS uses a module library that contains compatible modules of a 
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variety of process simulations, including water, energy, and biogeochemistry (Leavesley et al., 

1996). 

The program version under description in this section is PRMS 3.0.5, which was released 

on April 24, 2013 (PRMS, USGS). A series of mathematical algorithms are used to simulate the 

hydrologic processes based on physical laws or empirical rules. On daily step, the principle 

hydrologic processes are simulated ,which include canopy interception; snowmelt and snow 

accumulation; evapotranspiration; infiltration; and the forming and routing processes of surface 

flow, subsurface flow, and groundwater flow (Figure 13). The module library provides several 

options for each hydrologic component with different calculation algorithms. The hydrologic 

Response Unit (HRU) is a user-defined area unit, in which hydrologic process calculations are 

performed, on both temporal and spatial scales. The modular deterministic feature enables PRMS 

to evaluate the effects of meteorological and geographical factors with various combinations on 

each HRU. 

 

Figure 13. Hydrologic Processes Simulated in the Precipitation-Runoff Modeling System (Modified from 

Markstrom et al., 2015). 
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PRMS has been successfully employed in multiple areas of various studies. Through the 

PRMS simulation of physical processes of surface hydrology and sediment production, Rankl 

(1987) evaluated the interaction between runoff and sediment load. Dressler et al. (2006) 

evaluated the experimental, gridded snow cover area (SCA), and snow water equivalent (SWE) 

products in the upper Rio Grande River basin and the Black River basin through a comparison 

with PRMS simulations. With a physical-based hydrologic simulation, the streamflow in 

ungauged areas was assessed with an index comparison in gauged areas with similar hydrologic 

characteristics in the Lake Tahoe Basin, California, and Nevada (Jeton, 1999). For the 

development of operating criteria for the interstate allocation of water in the Truckee River and 

Carson River Basin of western Nevada and eastern California, the precipitation-runoff model 

helped to estimate three ungauged daily streamflows that were used as inputs to the USGS 

Truckee River operation model (Jeton, 2000). In 2012, led by the U.S. Department of Interior 

and U.S. Geological Survey, integrated watershed-scale responses to climate change were 

studied in 14 regions across the United States: Black Earth Creek, Wisconsin (Hunt et al., 2012); 

Cathance Stream, Maine (Dudley et al., 2012); Clear Creek, Iowa (Christiansen et al., 2012); 

East River, Colorado (Battaglin et al., 2012); Feather River, California (Koczot et al., 2005); 

South Fork Flathead River, Montana (Chase et al., 2012); Flint River, Georgia (Hay & 

Markstrom, 2012); Naches River, Washington (Maurer et al., 2012); Pomperaug River, 

Connecticut (Bjerklie et al., 2012); Sagehen Creek, California (Markstrom et al., 2005); Sprague 

River, Oregon (Risley et al., 2012); Starkweather Coulee, NorthDakota (Vining et al., 2012); 

Trout Lake, Winsconsin (Walker et al., 2012); and Yampa River, Colorado (Hay et al., 2012) 
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3.2.3 Previous studies 

In the study area of the Lehman Creek watershed, Volk (2014) used PRMS for 

hydrologic simulation in a larger area that included the Lehman Creek watershed. Additionally, a 

series of studies with different research focuses have been accomplished, which included the 

Lehman Creek watershed area. 

Volk (2014) studied potential effects of a warming climate on water resources within the 

Lehman and Baker drainages using PRMS. The study area included the Lehman Creek Drainage, 

Baker Creek Drainage, and Rowland Spring. In his study, the products from one climate change 

model, Community Climate System Model version 4.0 (CCSM4) from CMIP5 (BCCA) dataset, 

were used as the PRMS driving forces to simulate the hydrologic responses. In the model 

simulation, the projected daily temperature products after bias correction were used, while the 

bias-corrected daily precipitation products came from the archived measurements of 30-year 

period 1970–1999 (in water years) from BCCA. The archived measurements came from a 

retrospective period dataset and then were repeated three times into the future (water years 

2009-2038, 2039-2068, and 2069-2098) as the precipitation input for this century. Discontinuous 

periods of data were used for the model calibration and simulation, where the period of 

1993-1996 (water years) was used for model calibration and the period of 2003-2010 (water 

years) was used for model validation. Volk (2014) found temperature sensitivity in the Lehman 

and Baker drainages, an increased streamflow with an earlier snowmelt timing shift from May to 

April, temperature increases of 5.5 degrees Fahrenheit by the end of this century, streamflow 

reduction by 10% with decreases in peak snowpack, and reductions in soil moisture and 

evapotranspiration in July and August. 
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A report on the eastern part of the Great Basin National Park and the surrounding areas, 

where the Lehman Creek watershed is located, summarized the previous studies in the region 

(Prudic et al., 2015). In Snake Valley, the surface-water and groundwater resources were 

evaluated by Hood and Rush in 1965; the hydrogeologic conditions were studied by the SNWA, 

which included water chemistry, characterization of streams and springs, and characterization of 

geology and hydrogeology (as cited in Prudic et al., 2015). A collaborative study, done by the 

USGS, the Desert Research Institute, and the State of Utah (Welch et al., 2007), evaluated the 

aquifer system, aquifer water quality, basin recharge and discharge, inter-basin groundwater 

flow, regional groundwater flow, and regional water budget in the basin and range 

carbonate-rock aquifer system in parts of Nevada and Utah. A conceptual model of the Great 

Basin carbonate and alluvial aquifer system was developed by Heilweil and Brooks (2011), 

which assessed the regional groundwater availability quantitatively on the basis of a steady-state 

numerical groundwater flow model (Brook et al., 2014). Prudic and Glancy (2000) investigated 

the source of the Cave Spring using geochemical assessments. Additionally, a study done 

between September 2011 and April 2012 to evaluate the connection between the water in Baker 

Creek and Pole Canyon with the water in caves and at springs in the Baker and Lehman Creek 

drainage basins using fluorescent dyes (as cited in Prudic et al., 2015). Masbruch et al., (2014) 

constructed a 3-D groundwater flow model with a transport model in Snake Valley and 

surrounding areas to predict the impact to the groundwater discharges if well withdrawals 

increase. 
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3.3 About Study Area 

3.3.1 Geographic Data 

The physical geographic and geomorphic conditions of the study area, Lehman Creek 

watershed, were delineated using elevation, land cover land use, and soil types. These data were 

obtained from the Digital Elevation Model (DEM) of the National Elevation Dataset portal 

(DEM, 2013), the National Land Cover Database (Homer et al., 2015; Figure 17a), and the Soil 

Survey Geographic of the Natural Resources Conservation Service (SSURGO, 2013; Figure 17b) 

with a 30-m resolution. The Lehman Creek watershed is elevated between 2038 m and 3978 m. 

The fractured quartzite beneath a thin layer of a coarse glacial deposit dominates the largest 

portion of the study area. The land cover is dominant by evergreen forests (70%) with deciduous 

forests, shrubs, and some other mix forests (10%). There are 17% barren area mainly located 

around Wheeler Peak in southwestern with 2% perennial snow/ice. The only area with relative 

low permeability is the park roads that are used for visitors’ transportation.  
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Universal Transverse Mercator projection, Zone 11, NAD 83 

Figure 14 Lehman Creek Watershed in the Great Basin National Park, White Pine County Nevada (NPS Geologic 

Resources Inventory Program, 2014). 

3.3.2 Hydrogeologic Characteristics 

In the Lehman Creek watershed, the large altitude differences, topographic relieves, and 

geologic condition make the great differentiation in climate, vegetation, and water flow path, 

which divide the study area into two parts: Mountain-Upland Zone and Karst Limestone Zone 

(Prudic et al., 2015). 

As described by Prudic et al. (2015), the Mountain-Upland Zone was defined as the area 

where the elevation is greater than 2134 m (7,000 ft) with steep slopes and a thin layer of soil. 

High-density conifer forest covers the area between the elevation of 2134 - 3353 m 

(7,000-11,000 ft), with bare land and tundra covering beyond 3353 m (11,000 ft) (Houghton et 
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al., 1975). As the only water source in the zone, precipitation is mostly lost to evapotranspiration 

(over 50%) and the rest forms the water flow. Glacial and alluvial deposits, which resulted from 

the active erosion, overlay the thick layer of granite, quartzite, and shale with low permeability. 

Therefore, most of the water flow (over 90%) is surface runoff. The groundwater flow passes 

through the large pores in the glacial deposits and through small pores in the thin layer of alluvial 

deposits or consolidated rocks, which helps maintain perennial flow downstream. 

At the lower part of the mountain and beneath the thin alluvial deposits, karst and 

limestone formation makes Lehman Creek a losing stream. The dissolution of circulation of 

shallow groundwater develops the large cave system and more permeable limestone. Consistent 

water loss occurs in the karst limestone zone (Prudic et al., 2015). 

3.4 Method  

3.4.1 PRMS 

Principal hydrologic processes 

The PRMS uses compatible modules to compute the simulation of hydrologic processes. 

The main components of the simulated hydrologic processes include Solar Radiation Process, 

Potential Evapotranspiration Process, Canopy Interception Process, Snow Process, Cascading 

Flow Process, Surface Runoff, Soil-Zone Process, Groundwater Process, and Streamflow 

Process. The following descriptions of the hydrologic process simulation are from Markstrom et 

al. (2015), where detail simulation equations can be found. 

The Solar Radiation Process calculates 366 values for days of clear-sky solar radiation 

and daylight length for each of the hydrologic Response Unit (HRU) according to the basic 

topography information, e.g. latitude, aspect, and slope. Based on the availability of data 
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observation in the study area, solar radiation can either be direct input by users with 

pre-distributed data or computed by the PRMS module. 

The Potential Evapotranspiration Process is computed for each HRU with 

user-specified method options. Depending on the requirement of data observations and the 

sophistication of method algorithms, seven options are available: the modified Jensen-Haise 

formulation (Jensen & Haise, 1963; Jensen et al., 1969), the empirical Hamon formulation 

(Hamon, 1961), the Hargreaves-Samani formulation (Hargreaves & Samani, 1985), the 

Priestley-Taylor formulation (Priestley & Taylor, 1972), the Penman-Monteith formulation 

(Penman, 1948; Monteith, 1965), pan-evaporation measurement-based method (Markstrom et al., 

2015), and user defined input file with pre-distributed data. 

The Canopy Interception Process is simulated for calculations of intercepted rainfall 

and snowfall, evaporation from the intercepted water, and the throughfall reaching to the 

snowpack or soil. The canopy density by the dominant vegetation in each HRU is a determinant 

factor. 

The Snow Process is computed through two balance processes: energy balance and 

water balance. Energy is calculated between the atmosphere and snowpack through the 

conduction, convection, and radiation. With an isothermal condition of 0 degree Celsius, energy 

budget is calculated as snow pack melts when energy is above the status, and snow pack 

accumulates when heat deficit exists. Water balances among the throughfall precipitation, 

snowpack storage, sublimation, and melt. 

The Cascading Flow Process is the flow routing simulation for surface water and 

groundwater. It routes flows from/to contiguous HRU, from upslope to downslope, and 

terminates in streams, lakes, or swales. The specification of directed, acyclic-flow network is 
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required to define the flow path in the domain. Complex routing paths with both one-to-one 

routing (to one downslope neighbor) and many-to-many routing (to many downslope neighbors) 

are allowed. 

The Surface Runoff Process partitions water from net precipitation, snowmelt, and any 

upslope cascading flow into infiltration and infiltration-excess runoff. On the basis of the fraction 

of impervious area and depression area for each calculation unit, several components are 

calculated: retention storage, evaporation, infiltration, water exceeding infiltration capacity from 

pervious areas, and direct runoff generated from impervious areas. 

The Soil-Zone Process computes all the inflows, outflows, and storage changes in the 

soil zone of each HRU. While taking the same physical space, three reservoirs are 

conceptualized in the soil zone: preferential-flow reservoir, capillary reservoir, and gravity 

reservoir. The conceptualizations are meant to simulate the water status and flow direction. In 

this process, the infiltration is the main inflow, apart from lateral water inflows, and the outflows 

are evapotranspiration, fast flow, slow flow, and Dunnian runoff (Figure 15). The soil-water 

processes are calculated in a sequence as illustrated in Table 5. 
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Figure 15. Inflow and Outflow Diagram of Three Conceptualized Reservoirs In Soil-Zone: Capillary, Gravity, and 

Preferential-Flow Reservoirs in PRMS for a Single HRU. 

Table 5 

Sequence of Steps Used in the Computation of Flow into and out of the Soil Zone Used in PRMS (Markstrom et al., 

2015).  

Sequence No. Description of flow into and out of soil zone 

1 Partition infiltration between capillary and Preferential-flow Reservoir. 

2 Calculate Dunnian surface runoff (part 1) from preferential-flow reservoir. 

3 Add interflow and Dunnian runoff (Dunne & Black, 1970) from upslope to Capillary Reservoir. 

4 
Add maximum inflow to the recharge zone of the Capillary Reservoir up to the recharge-zone 

storage capacity. 

5 Add excess inflow to the Capillary Reservoir up to the maximum storage capacity. 

6 
Add excess inflow from the Capillary Reservoir to the Groundwater Reservoir up to a recharging 

threshold; move the remaining excess inflow to the Gravity Reservoir. 

7 
Calculate Gravity Reservoir storage up to the preferential-flow threshold; move the rest to the 

Preferential-flow Reservoir.  

8 
Calculate storage of Preferential-flow Reservoir up to its maximum storage capacity; set the 

remaining excess water to Dunnian surface runoff (part 2). 

9 Calculate slow interflow from gravity reservoirs. 

10 Calculate gravity drainage from the Gravity Reservoir to the Groundwater Reservoir. 

11 Calculate fast interflow from Preferential-flow Reservoir. 

12 Calculate the total Dunnian runoff as the sum of part 1 from step 2 and part 2 from step 8. 

13 Calculate the outflows of current HRU to downslope HRUs 

14 

Calculate and remove the evapotranspiration from upper zone of Capillary Reservoir up to the 

recharge-zone storage; calculate and remove the transpiration from lower zone of Capillary 

Reservoir up to the lower zone storage. 
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The Groundwater Process in PRMS has been simplified as groundwater storage, 

receiving water from soil zone and giving water through groundwater flow and baseflow as 

contributed to streamflow. 

The Streamflow Process calculates the total streamflow flowing out of the model 

domain with components of baseflow, interflow, and surface runoff. 

Other task processes are also included to help the realization of simulation algorithms of 

principle hydrologic processes, such as the Transpiration Period Process, which determine the 

period of active transpiration during the model simulation. 

Model files and executions 

As described in the PRMS user manual (Markstrom et al., 2015), PRMS is a stand-alone 

executable program for a physical-based distributed-parameter hydrologic model. The 

physical-based hydrologic processes are represented by algorithms that are based on physical 

laws or empirical studies. The capability of distributed parameters is enabled by the 

discretization of HRUs in a watershed with physical features. 

Prior to PRMS simulation execution, three basic input files are required: the Control File, 

the Data File, and the Parameter File. The following descriptions are from Markstrom et al. 

(2015), where detailed explanations can be found. 

The Control File specifies the control parameters that control a course of model 

simulations, regarding the model executions, model input, model output, initial conditions, and 

the active modules that are in use. Particularly, it defines the file names and paths for model 

inputs and outputs, the variables chosen to output, simulation time period, and the active 

modules in use. 
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The Data File is to specify the measured time-series data that are used in PRMS model 

simulations. On daily time step, the daily measurements, based on the user-selected 

modules/algorithms, may contain variables of precipitation, maximum temperature, minimum 

temperature, solar radiation, pan evaporation, humidity, wind speed, snow water equivalent, and 

streamflow. Specifically, the precipitation, maximum temperature, and minimum temperature are 

the minimum input requirements for a running PRMS, and they can also be defined in separate 

files if needed (see Markstrom et al., 2015). 

The Parameter File contains all the parameters that are used in the equations of 

algorithms for the selected modules, and it is the file where the sensitivity analysis and model 

adjustments are performed. 

Without a user-friendly interface, it is important to acquire the operation sequence of the 

model execution, which mainly includes 12 steps of reading, assigning, and computing: 

1. Read the Control File and assign the specified modules as active modules to the 

corresponding processes. 

2. Declare the parameters and variables used in the selected module simulation and allocate 

arrays. 

3. Read parameters from the Parameter File as required for each selected module. 

4. Set up model initialization. 

5. Run time-step loop. 

6. Read data input from the Data File. 

7. Execute model simulation for each active module, starting with the spatial distribution 

modules for climate and energy information, such as precipitation, maximum temperature, 

and minimum temperature. 

8. Compute states and fluxes on HRU from land surface processes to subsurface; from the 

Canopy Interception Process, Snow Process, and Surface runoff Process to the Soil-zone 

Process and Groundwater Process. 
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9. Compute streamflow network and lake related processes if included. 

10. Summarize output and export to output files. 

11. Execute the next time step and repeat steps 6-10 until the last one is completed. 

12. Close all output files. 

3.4.2 Model Development in Lehman Creek Study 

Watershed delineation  

The Lehman Creek watershed was delineated from the DEM) with 30-m resolution of 1 

arc-second (2013) from the U.S. Geological Survey (USGS), which defined the elevation of the 

entire Lehman Creek watershed ranging from 2040 m in the east plain area to 3980 m on the 

Wheeler Peak in the southwestern point (Error! Reference source not found.). The watershed 

surface boundary, stream flow path, and primary topographic characteristics of the watershed 

were depicted (Figure 16). The resulted watershed area was 23.7 km2. Five tributaries along with 

one main stream were delineated based on the watershed topography with considerations of 

seasonal streams and potential groundwater flow impacts. The Lehman Creek originates from 

high-elevated mountain in the west, passing the gauging station Lehman Creek Nr Baker (USGS 

# 10243260), and flows to the plain area in the east towards the town of Baker. 
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Figure 16. Resulted Watershed Delineation with Watershed Boundary ad Water Flow Path Defined Using the USGS 

National Elevation Dataset (DEM, 2013). 

 

 

Figure 17. (A) Land Cover of the Study Area, Sourced from National Land Cover Database (2011); (B) Soil Type 

Of The Study Area, Sourced from Soil Survey Geographic (SSURGO) Database. 
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Watershed discretization 

In order to represent the spatial discrepancies in the hydrologic simulation, the delineated 

watershed was then discretized into 96 columns and 49 rows using 100 m2 square-size cells, 

covering the entire defined watershed. Cells within the watershed were active during model 

simulation, which were counted to be 2516 out of the total of 4704 cells (Figure 18). 

 

Figure 18. Discretization of the Study Area By 96 Columns and 49 Rows In Cell Sized 100m by 100m. 

Hydrologic Process Simulations 

Apart from the functional modules for basic definitions of the model along with the 

summary, the principle hydrologic-process modules used in this model have been discussed in 

sub-section 3.2.2, which includes: the Cascading Flow, Precipitation Distribution, Solar 

Radiation, Potential Evapotranspiration (PET), Canopy Interception, Snow Computation, Soil 

Zone Computation, Surface Runoff, Groundwater Flow, and Streamflow Routing (Table 6). 
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Table 6 

Modules Used in the PRMS Model Development in Lehman Creek Watershed. 

Process simulated Module used 

Cascading Flow cascade 

Precipitation Distribution precip_1sta 

Temperature Distribution temp_1sta 

Solar Radiation soltab, ddsolrad 

Potential Evapotranspiration potet_jh 

Canopy Interception intcp 

Snow Computation snowcomp 

Soil Zone Computation soilzone 

Surface Runoff srunoff_smidx 

Groundwater Flow gwflow 

Streamflow Routing strmflow 

Basics and summary basin, basin_sum 

 

The Cascade Flow process was specified through one-to-one routing between neighbored 

HRUs. The four directions for each HRU to be routed were determined by the slope of the flow 

(Figure 19). The modules of Precipitation Distribution and Temperature Distribution were 

distributing processes based on points of data input that were performed on the entire watershed 

and on each HRU. In this study, due to the shortage of data availability, one point of 

meteorological observations was used, which provided the related precipitation and temperature 

information at one single location. Thus, for each HRU, the value of precipitation or temperature 

was calculated by the point observation with an adjusted coefficient that considered location 

differences that differed from the observation point and the calculated HRU. The Solar Radiation 

process was simulated using a modified degree-day method (Leavesley et al., 1983), which was 

on the basis of potential solar radiation, a ratio of actual to potential daily solar radiation, and the 

slope of the calculated HRU. The potential solar radiation was available through the calculation 

of a solar table with the solar radiation and daylight length for every day of a year considering 
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the factors of slope, aspect, and latitude. The PET was simulated using the modified 

Jensen-Haise formulation (Jensen & Haise, 1963; Jensen et al., 1969), which is a function of 

solar radiation, air temperature, and two coefficients related to the regional air temperature, 

elevation, and saturation vapor pressure. The Canopy Interception was a result of vegetation 

density and the water storage, where four types of vegetation were classified: bare land, grass, 

shrubs, and trees. As to account for the seasonal variations, summer and winter were considered 

with variability in the vegetation canopy density and the corresponding water storage. The Snow 

process was combined with balances in water and energy (affected by factors and processes of 

precipitation, snow-cover area, albedos, energy, melt, and sublimation). For example, the effects 

of rainfall and snowfall were applied first with heat transference between snow pack and 

precipitation; then, the snow-cover area was determined from the snow water equivalent by a 

depletion curve. After this step, the energy balance was computed as a sum of net long-wave 

radiation, short-wave radiation, convection, and the latent heat during condensation. They were 

mainly determined by factors of the air temperature, vegetation canopy density, and snow 

albedo; and by parameters involved with convection and latent heat related. Soil Zone 

computation relied on the conceptualization of soil-water storage, where subsurface flows were 

generated (see Chapter 2). In the Surface Runoff module, a non-linear variable-source-area 

method was used, which considered surface-runoff generation from pervious areas and 

impervious areas. The estimation of pervious runoff generation used non-linear equations. The 

streamflow was calculated as the sum of the surface runoff, interflow, and groundwater 

discharge reaching the streamflow network. The Groundwater Flow was simulated through a 

conceptualization of a groundwater reservoir for each HRU. Water balance was computed with 

inflows of gravity drainage, excess soil water, seepage, and cascading flow from upslope 
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groundwater; with outflows of baseflow and groundwater sink; and with groundwater storage 

changes. 

  

Figure 19. Determination of Cascade Flow Paths for Grid-Based Watershed Models Using Cascade Routing Tool 

(CRT, USGS). 

Parameter initializations 

Distributed parameters were defined for each HRU for geographical characteristics such 

as elevation, aspect, and slope, which were used in algorithms of hydrologic process simulations, 

such as interception, snowmelt, and infiltration, and for meteorological information distribution. 

Non-distributed parameters were kept constant throughout the watershed. Both the parameters 

could be either related to model definitions, such as the number of HRUs, or related to model 

algorithms, such as the Julian date. Nevertheless, there were some determinant parameters, 

which were directly used in the simulation algorithms, and they were initialized with their 

default values or from previous studies (Hay et al., 2007; Volk, 2014; Martkstrom et al., 2015). 

Model calibrations were performed to finalize these parameters. 

3.4.3 Sensitivity Analysis of Model Parameters 

The sensitivity analysis was performed on the parameters from the selected modules for 

the simulation of each hydrologic component. The initial estimations of parameters were based 
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on previous studies (Hay et al., 2007; Volk, 2014; Martkstrom et al., 2015). Only 

process-determinant parameters were selected and tested in this study, while keeping 

watershed-delineated parameters unchanged, such as elevation, soil type, and land cover land 

use. The simulations to determine the sensitivity of parameters were performed through 

multiplying the initial parameter estimations by a 10% increase. 

The sensitivity analysis was performed on the model for the period from October 1, 2002 

to September 30, 2007 to evaluate the fitness between the streamflow simulations and 

observations, identifying the most influential parameters that influence the characteristics in the 

basin hydrograph. Evaluations were made by comparing two streamflow simulations, resulted 

from different setups: the initial parameter and the adjusted parameter with a 10% increment. 

Absolute changes of Sum of Square Error (SSE) was used to describe the parameter sensitivities 

affecting the hydrograph, measuring the differences between daily simulations and observations. 

A higher value indicates greater sensitiveness for the determined parameter.  

3.4.4 Model Calibration 

On the basis of the longest continuing streamflow observation records for the period of 

2003 to 2012 (water years), the interpolated daily PRISM dataset (see Chapter 2.5.1) was split 

into two parts: data from 2003 to 2007 (water years) were used for model calibration, and data 

from 2007 to 2012 (water years) were used for model validation. The principle hydrological 

processes of solar radiation (SR), potential evapotranspiration (PET), and streamflow were 

compared and calibrated with mean monthly observation values where records are available.  

A step-wise multi-objective calibration procedure was applied to the model calibration, 

which uses the Shuffled Complex Evolution technique as the optimization algorithm (Hay & 

Umemoto, 2006; Hay et al., 2007). The optimization algorithms were performed for each step 
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until the convergence criteria were met, and the next step would be executed, as in order of SR, 

PET, streamflow volume, and streamflow timing, similar to the study of Hay et al. (2007) 

(Figure 20). The number of rounds/iterations was set to 4, and when one round ended at step 4, 

the calibration would continue and start from step 1 again. 

 

Figure 20. A Step-Wise Multi-Objective PRMS Model Calibration Scheme Performed for the Lehman Creek 

Watershed Using Luca, for the Calibration Period of 2003-2007 (Water Years). 

As listed in Table 7, corresponding to each calibration step in Figure 20, sensitive 

parameters were selected with defined value ranges and objective functions. For each calibration 

step, the model simulation results were compared with measured data for (1) mean monthly solar 

radiation, (2) mean monthly potential evapotranspiration, (3) streamflow volumes on annual, 

monthly mean, and mean monthly scales, and (4) streamflow timing on monthly mean and daily 

scales. 

 

 



 

72 

Table 7 

Parameters Calibrated in Step-Wise Multi-Objective Procedure for the PRMS Model Developed in the Lehman Creek Watershed (Adapted From Lauren E Hay 

et al., 2007). 

Calibration dataset Objective function 
PRMS 

parameter 
Value range 

Calibrated 

values 
Parameters Description 

1. Solar Radiation  

•Mean monthly 

Sum of absolute difference in 

observed and simulated values 

dday_intcp -70 to 10 individual  Intercept in temperature degree-day equation for 

determining the ratio of actual to potential daily solar 

radiation 

dday_slope 0.2 to 0.9 mean Slope in temperature degree-day equation for 

determining the ratio of actual to potential daily solar 

radiation 

tmax_index 50 to 90 mean Index temperature used to determine precipitation 

adjustments to solar radiation  

2. Potential 

evapotranspiration 

•Mean monthly  

Sum of absolute difference in 

observed and simulated values 

jh_coef 0.001 to 0.09  individual  Coefficient in Jensen-Haise PET computation 

3. Streamflow 

(volume) 

•Annual Mean 

•Mean Monthly 

•Monthly Mean 

Normalized Root Mean Square 

Error 

rain_adj 0 to 2 mean Adjustment factor for rain days 

snow_adj 0 to 2 mean Adjustment factor for snow days 

rad_trncf 0 to 1 mean Transmission coefficient for short-wave radiation 

through the winter vegetation canopy 

tmax_lapse -10 to 10  individual  Maximum air temperature change per 1,000 

elev_units of elevation change 

tmin_lapse -10 to 10  individual  Minimum air temperature change per 1,000 

elev_units of elevation change 
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Table 7  

Parameters Calibrated in Step-Wise Multi-Objective Procedure for the PRMS Model Developed in the Lehman Creek Watershed (continued). 

Calibration dataset Objective function PRMS parameter Value range Calibrated values Parameters Description 

4. Streamflow 

(timing) 

•Daily 

•Monthly Mean 

Normalized Root Mean 

Square Error adjmix_rain 0.6 to 1.4 mean 
Factor to adjust the rain proportion in a mix rainfall 

and snowfall event 

cecn_coef 0 to 20 mean 
Convection condensation energy coefficient 

emis_noppt 0.757 to 1 individual  
Emissivity of air on days without precipitation 

freeh2o_cap 0.01 to 0.2 mean 
Free water holding capacity of snowpack 

gwflow_coef 0 to 0.3 mean 
Groundwater routing coefficient 

potet_sublim 0.1 to 0.75 mean 
Proportion of PET that is sublimated from snow 

surface 

smidx_coef 0.0001 to 1 mean 
Coefficient in nonlinear surface runoff contributing 

area algorithm 

smidx_exp 0.2 to 0.8 mean 
Exponent in nonlinear surface runoff contribution 

area algorithm 

soil_moist_max 0 to 20 mean 
Maximum available water-holding capacity in soil 

soil_rechr_max 0 to 20 mean 
Maximum available water holding capacity for soil 

recharge zone 

soil2gw_max 0 to 0.5 mean 
Maximum rate of soil water excess moving to ground 

water 

tmax_allrain 50 to 75 mean 
Rainfall occurs when maximum temperature exceeds 

this value 

tmax_allsnow 30 to 40 mean 
Snowfall occurs when maximum temperature is 

under this value 
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3.4.5 CMIP5-Driven PRMS Simulation 

The bias-corrected CMIP5 data resulting from Research Objective 1 (Chapter 2) 

represents both the retrospective and projected meteorologic condition in the study area. They 

were used to drive the calibrated hydrologic PRMS model in order to evaluate the corresponding 

streamflow changes (Chen et al., 2016). As both retrospective and projected meteorologic data 

were from the same data source CMIP5, the system errors/bias that were generated during 

climate model simulations can be avoided when relative changes, differentiation between these 

two datasets, were used. Through comparing the streamflow simulations, driven by retrospective 

and projected CMIP5 data (bias-corrected), the corresponding differences between these two 

periods of datasets were evaluated as the results of meteorologic alternation from climate change.  

3.4.6 Assessment of Model Results 

First, the hydrologic model was calibrated and validated by comparing model simulations 

with streamflow gauging observations during the available period of 2003-2012 (water years). 

Indicators of the square of correlation (R2), percent bias (PBIAS), and Nash-Sutcliffe efficiency 

(NSE), following Santhi et al. (2001) and Moriasi et al. (2007 & 2015), were used to assess the 

daily streamflow simulation during calibration and validation (Shi et al., 2011, 2013; Guo et al., 

2012).  

The PBIAS measures the average data trend of the model simulations to be smaller or 

larger than the observations. A positive value indicates an overestimation of model simulations 

while a negative value means underestimations (Gupta et al., 1999). It was calculated as: 

𝑃𝐵𝐼𝐴𝑆 = (∑ (𝑄𝑠,𝑡 − 𝑄𝑜,𝑡)/ ∑ 𝑄𝑜,𝑡
𝑇
𝑡=1 ) ∗ 100𝑇

𝑡=1                                     (1) 

where, 𝑄𝑠,𝑡 and 𝑄𝑜,𝑡 are simulated values and observed values at time t (from 1 to T), 

respectively. 
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The NSE describes the fitness between the plot of model simulations versus observations 

and the linear line of y equals x, which ranges from -∞ to 1. The larger the NSE the better the 

model performance is (Nash & Sutcliffe, 1970). It was calculated as: 

𝑁𝑆𝐸 = 1 − ∑ (𝑇
𝑡=1 𝑄𝑜,𝑡 − 𝑄𝑚,𝑡)2/ ∑ (𝑄𝑜,𝑡 − 𝑄𝑜

̅̅̅̅ )2𝑇
𝑡=1                                (2) 

where, 𝑄𝑜
̅̅̅̅  is the average observation over the entire time period T. 

The R2 is the square of correlation between modeled data and observed data. R2 ranges 

between 0 and 1, and higher values indicate better performance. It was calculated as: 

𝑅2 = {
∑ (𝑄𝑜,𝑡 − 𝑄𝑜

̅̅̅̅ )𝑇
𝑡=1 (𝑄𝑚,𝑡 − 𝑄𝑚

̅̅ ̅̅ )

[∑ (𝑄𝑜,𝑡 − 𝑄𝑜
̅̅̅̅ )

2𝑇
𝑡=1 ]

0.5

[∑ (𝑄𝑚,𝑡 − 𝑄𝑚
̅̅ ̅̅ )

2𝑇
𝑡=1 ]

0.5⁄ }

2

 (3) 

where, 𝑄𝑚
̅̅ ̅̅  is the average model simulation over the entire time period T. 

Changes in streamflow simulation regarding the baseline period were assessed. 

Comparisons were performed on both mean annual and mean monthly scales for multiple 

scenarios and models. An important feature of global climate change in a snow-dominant region, 

the timing shift of peak flow occurrences, was assessed quantitatively using a winter-spring 

center of volume (WSCV) (Hodgkins & Dudley, 2006). This was improved on the basis of a 

study by Court (1962) for a robust measure of streamflow timing: the center of volume (CV) date 

was calculated as the time when the cumulative streamflow volume reached half of the year’s 

total streamflow volume, starting from the beginning to the end of the year. In this study, 

seasonal WSCV (from January 1 – June 30) were used to evaluate the changes in snowmelt 

streamflow, with no disturbances from fall precipitation. 
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3.5 Results 

3.5.1 Sensitivity Analysis  

Among 58 tested parameters, the top 20 were selected based on the values of the absolute 

change of SSE in responses of 10% of parameter value increase (Figure 21). The results show 

the selected parameters had an absolute SSE change value greater than 0.58%, against which the 

developed PRMS model was most sensitive. However, during the analysis, the sensitive 

parameters might have some differences based on the selected model initial condition.  

 

Figure 21. Results of Sensitivity Analysis for the PRMS Model Parameters in terms of the Percentage Variation in 

Absolute Value of Objective Function SSE. 

3.5.2  Model Calibration 

Solar radiation and potential evapotranspiration 

As the two main components calibrated in the model, the model simulation results of 

Solar Radiation (SR) and Potential Evapotranspiration (PET) were compared with the 

observations to investigate the performance of the developed model. At the station Subalpine 
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(east) where the corresponding HRU was HRU 1934, the values were compared between 

observations and model simulations on mean monthly scale. As shown in Figure 22 and Figure 

23, the SR and PET processes were well simulated as the simulations matched with observations 

on mean monthly scales at HRU 1934.  

 
(a)                                      (b) 

Figure 22. Model Results of Solar Radiation where the Subalpine (East) Station is Located: (A) Mean Monthly 

Comparison Between Station Records and Simulated Values at Corresponding HRU 1934, (B) Exemplary Spatial 

Distribution on October 1, 2002. 

 
(a)                                       (b) 

Figure 23. Model Results of Potential Evapotranspiration where the Subalpine (East) Station is Located: (A) Mean 

Monthly Comparison Between Station Records and Simulated Values at Corresponding HRU 1934, (B) Exemplary 

Spatial Distribution on October 1, 2002. 

Annual water balance 

The annual water balance for the study area is shown in Table 8. Relative error was 

computed between model simulations and observations for each water year. During the model 

calibration period (2003-2007, water years), relative errors in streamflow were between 0.02 to 
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0.19, and during the validation period (2008-2012, water years), relative errors ranged from -0.36 

to 0.31. 

Figure 24 shows an annual comparison between simulated runoff and measured runoff. 

Model results showed a good model performance from 2003 to 2012 (water years). However, in 

2011, the overestimated model simulation was not able to reproduce the peak flow in the 

observation (Prudic et al., 2015; Chen et al., 2015), which resulted in the high relative error of 

-0.31.  

Table 8  

The Annual Water Balance Among Precipitation, Evapotranspiration, Water Storage, and Runoff, during 2003 to 

2012 (Water Years) in the Study Area of the Lehman Creek Watershed. (Unit: inches, 1 inch= 25.4 mm). 

Year Prcp. ET Storage S-Runoff O-Runoff Relative Error 

2003 23.1 19.4 3.8 5.8 5.6 0.02 

2004 24.3 17.2 4.9 6.0 4.9 0.19 

2005 42.4 19.4 8.4 19.6 19.1 0.02 

2006 22.6 16.9 4.4 9.6 8.0 0.17 

2007 20.7 15.1 5.8 4.2 3.9 0.07 

2008 16.0 14.6 4.2 3.1 4.2 -0.36 

2009 25.7 17.1 4.4 8.4 7.1 0.15 

2010 20.7 15.1 4.2 5.9 5.7 0.04 

2011 40.3 19.0 8.1 17.4 11.9 0.31 

2012 21.9 17.2 6.6 6.2 4.6 0.26 

Prcp.: precipitation; ET: evapotranspiration; Storage: water storage; S-Runoff: simulated runoff; O-Runoff: 

observed runoff. 

  

Figure 24. Annual Runoff Comparisons between Observations and Model Simulations for the Period of 2003-2012, 

Water Years. 
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Mean monthly streamflow 

Combined with both model calibration and validation periods, the mean monthly 

streamflow were compared between model simulations and observations (Figure 25). The model 

was able to replicate the shape and magnitude of runoff at Lehman Creek and capture the peak 

flow during summer in June and low flows from late fall to early spring, which is consistent with 

the features in a snow-dominated area. 

 

Figure 25. Comparison of Model Simulations and Observations with Mean Monthly Runoff over the Simulation 

Period of 2003-2012 (Water Years) at Lehman Creek Gauging Station. 

3.5.3 Model Calibration and Validation for PRISM Driven Model 

A comparison of the monthly hydrograph was performed between the PRMS simulations, 

driven by PRISM data and the observation records, for the period of 2003-2012 water years 

(Table 9). The results indicated a good match, as was evident by the statistical performance 

during both the periods of calibration and validation. Indicators of PBIAS, R2, and NSE were 

used to examine the daily streamflow simulations. During the calibration and validation periods, 

results showed that both R2 and NSE were above 0.64, and PBIAS was -9.8% and 2% for these 

two evaluation periods. Previous studies (Santhi et al., 2001; Moriasi et al., 2007 & 2015) 

suggested model simulations were beyond satisfactory when NSE was higher than 0.5, R2 greater 
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was than 0.6, and PBIAS was below ±10%. For detailed model calibration procedures, refer to 

Chen et al. (2015). 

Table 9 

Statistical Comparison of Observed and Simulated Daily Streamflow at Lehman Creek for Calibration (2003-2007, 

Water Years) and Validation Period (2008-2012, Water Years). 

Index Calibration Period Validation Period 

PBIAS (%) -9.8 2.0 

R2 0.85 0.69 

NSE 0.82 0.64 

3.5.4  Hydrologic Simulation – Long-term Changes in Streamflow 

Periodic variation 

The streamflow simulations, driven by bias-corrected CMIP5, were analyzed using the 

simulation differences in the future periods (Period 1, Period 2, and Period 3) based on the 

baseline period, for each of the emission scenarios. As shown in Figure 26, the changes in annual 

streamflow varied from -14.3% to 32.8% (1st quarter to 3rd quarter), depending on the emission 

scenarios and time periods. The highest range (from the first quartile to the third quartile) was 

found in RCP 8.5, Period 3, and the lowest range was found in RCP 6.0, Period 1.  

Similar patterns were found between precipitation and streamflow. A gradually 

increasing trend was seen along multi-decadal periods in emission scenarios RCP 4.5 and RCP 

6.0. In RCP 2.6 and RCP 8.5, a decrease occurred from Period 1 to Period 2, and an increase 

from Period 2 to Period 3. RCP 2.6 had the highest median value of 13.3%, 12.6%, and 16.3% 

for the three corresponding time periods, respectively, and RCP4.5, RCP 8.5, and RCP 6.0 had 

the lowest median values during these time periods. 
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Figure 26. Comparisons of the Annual Streamflow Change Simulated by PRMS Model, Assessed at: (A) Absolute 

and (B) Ratio/Percentage among Four Climate Change Scenarios: RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5, during 

Three Future Periods of 2011-2039, 2040-2069, and 2070-2099. 
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Monthly pattern 

Changes in the simulated mean monthly streamflow, with regard to the baseline period, 

were compared with different scenarios among the three future periods (Figures 27 & 28). 

Variations among the multiple projections are presented by means of box plots. Positive values 

indicate streamflow increases and negative values signify decreases. In a calendar year, a 

distinguishing time point was found between May and June that showed an increase of mean 

monthly streamflow during the winter (December to May) and a decrease during the summer 

(June to November).  

As shown in Table 10, changes in the mean monthly streamflow (in percentage), during 

the increasing trend before May and decreasing trend after June, gradually became obvious from 

Period 1 to Period 3 (Figures 27 & 28). Additionally, an increasing variation in the value of 

changes was found among the time periods. The largest discrepancy ranged from 0.01 m3/s to 

0.25 m3/s in May for RCP 2.6 during Period 3. When comparing the results among the emission 

scenarios, the differentiation might not be evident during the first two periods. Nevertheless, 

great increases in streamflow changes, especially during January to April, were observed 

(Figures 27 & 28). 
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Figure 27. Mean Monthly Streamflow Changes on the basis of Baseline Period (1981-2010), Resulting from the PRMS Model Simulation. Three Periods were 

Compared: Period 1 (2011-2039), Period 2 (2040-2069), and Period 3 (2070-2099), under all Climate Change Scenarios of RCP 2.6 and RCP 4.5. 
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Figure 28. Mean Monthly Streamflow Changes on the Basis of Baseline Period (1981-2010), resulting from the PRMS Model Simulation. Three Periods were 

Compared: Period 1 (2011-2039), Period 2 (2040-2069), and Period 3 (2070-2099), under All Climate Change Scenarios of RCP 6.0 and RCP 8.5. 
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Table 10.  

The PRMS Model Results from the CMIP5-Driven Simulation: Median Values of Mean Monthly Streamflow 

Changes based on the Baseline Period for Each RCP, in Percentage (%). 

Emission 

scenario 

Time 

period 
Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

RCP 2.6 

Period 1 22.6 45.4 31.3 32.7 13.2 -3.9 -18.8 -17.8 -9.3 0.3 7.6 10.9 

Period 2 28.0 34.0 46.7 50.3 19.0 -14.7 -28.1 -16.5 -6.3 -4.0 2.7 17.2 

Period 3 20.3 36.3 33.2 48.2 13.4 -7.5 -18.0 -15.2 -10.9 -10.5 6.5 9.9 

RCP 4.5 

Period 1 13.7 18.2 37.4 39.9 9.7 -22.3 -34.3 -25.2 -16.6 -4.5 12.7 22.4 

Period 2 34.4 53.2 63.5 50.0 10.9 -27.2 -38.6 -27.9 -16.9 -10.4 -5.7 19.1 

Period 3 27.6 51.6 72.3 69.7 16.2 -19.3 -38.1 -27.0 -16.5 -12.5 -4.4 3.2 

RCP 6.0 

Period 1 -8.7 5.7 27.8 26.4 8.0 -15.1 -24.8 -20.9 -11.9 -3.4 -3.4 -13.7 

Period 2 13.8 39.5 63.0 52.6 9.4 -23.2 -35.1 -28.9 -15.3 -13.0 -6.6 18.4 

Period 3 53.7 81.4 94.0 90.8 10.3 -38.7 -48.1 -32.8 -18.3 -12.6 -9.5 24.7 

RCP 8.5 

Period 1 7.1 32.5 51.6 44.7 9.9 -7.7 -20.0 -16.1 -11.0 0.4 5.7 5.7 

Period 2 12.1 46.2 75.2 68.9 8.7 -34.4 -46.7 -38.7 -28.1 -22.1 -6.5 -0.5 

Period 3 58.0 105.5 145.0 114.6 1.2 -58.2 -58.1 -43.6 -32.0 -28.0 -19.6 18.4 

 

Timing shift 

The date changes for WSCV were analyzed among the various projections and scenarios 

on the basis of the baseline period (Figure 29). Positive values indicate a time lag when the 

WSCV date was late relative to the WSCV in the baseline period. Negative values mean earlier 

occurrences of the WSCV date relative to that in the baseline period. The results showed 

negative values, overall, in the changes during all the periods and emission scenarios, which 

meant that the WSCV date tended to shift earlier than in the baseline period.  

Furthermore, early shifts of the WSCV date were intensified with increased variances 

along the time periods. Median values for the WSCV date shifts over four climate change 

scenarios showed a range from 2.9 to -9.1 days for the different scenarios during Period 1, -10.1 

to -16.1 days during Period 2, and -10.1 to -30 days during Period 3. Comparisons of the results 

from the different emission scenarios showed an increase trend in the date shift, in an order of 
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RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 in Period 3. No certain pattern was found during the 

first two periods. 

 

Figure 29. Comparisons of Winter-Spring Center Of Volume (WSCV) Date-Shifting among Four Climate Change 

Scenarios: RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5, during Three Future Periods: 2011 to 2039 (Period 1), 2040 to 

2069 (Period 2), and 2070 to 2099 (Period 2). The WSCV Values Calculated using PRMS Streamflow Simulations, 

and the Box Plot Represents Results from Multiple Climate Models of Each Scenario. 

3.6 Discussion 

The PRMS model was used to simulate the physical processes and to represent 

combination effects from distributed land cover land use (Wu et al., 2016), soil information, and 

climatic information. One important assumption is that the geomorphic condition maintains 

consistent and with no changes in land cover land use throughout the model simulation from 

1981 to 2099. This limitation could be out of the study region in this paper, and further studies 

could be extended into modeling the dynamic changes in the geomorphic status of the study area 

along with a modification in PRMS modules. Additionally, the current practice of hydrologic 

modeling uses PRMS, and selecting an alternative hydrologic model may lead to different 

uncertainties due to the different algorithms that each model employs (Najafi et al., 2011). 

Volk (2014) studied potential effects of a warming climate on water resources within the 

Lehman and Baker drainages using PRMS. The study area included the Lehman Creek drainage, 

Baker Creek Drainage, and Rowland Spring. In his study, the products from one climate change 

model, Community Climate System Model version 4.0 (CCSM4) from CMIP5 (BCCA) dataset, 
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were used as the PRMS driving forces to simulate the hydrologic responses. In the model 

simulation, the projected daily temperature products were directly used after bias correction, 

while the daily precipitation products came from the archived measurements from BCCA after 

bias correction. The archived measurements came from a retrospective period dataset and used as 

a reference dataset and then were repeated three times into the future as the precipitations for this 

century. Discontinuous periods of data were used for the model simulation, where the period of 

1993-1996 (water years) was used for model calibration and the period of 2003-2010 (water 

years) was used for model validation. Volk (2014) found temperature sensitivity in the Lehman 

and Baker drainages, an increased streamflow with an earlier snowmelt timing shift from May to 

April, and temperature increases of 5.5 degrees Fahrenheit by the end of this century, streamflow 

reduction by 10% with decreases in peak snowpack, and reductions in soil moisture and 

evapotranspiration in July and August. 

Comparing to Volk’s study, this study differs in multiple ways. In this study only a 

portion of study area was considered compared to Volk’s study, because NevCAN observations 

were only available for the Lehman Creek watershed and were used for model calibration 

procedure. Regarding the climate change evaluation, instead of only using CCSM4 model data, 

the current study used data from 67 GCM models under 4 emission scenarios to consider 

uncertainties from different climate models. Moreover, while Volk used historical precipitation 

of CMIP5 as future projections for climate change evaluations, which excluded the factor of 

potential future precipitation change due to climate change influences; the current study included 

this factor by using projected precipitation data of CMIP5. This resulted subsequent differences 

in streamflow during the 21st century: 1) the annual streamflow increased resulting from current 

study and decreased resulting from Volk’s study; 2) by using different indicators, the timing of 
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streamflow showed different results. Additionally, the current study focused on streamflow in 

terms of rates and timing, and Volk focused on water components in terms of evapotranspiration, 

snowmelt, and streamflow, as well as future trend detection. 

Finally, as the PRMS model is a physically based, parameter distributed hydrologic 

model, a large set of parameters was required to represent the non-linearity, spatial and temporal 

dependencies, and heterogeneity in the hydrologic processes (Fatichi et al., 2016). This brings 

the challenges in study areas where limited observation records are available, such as the study 

area of Lehman Creek watershed. Thus, with improved observation datasets in both quantity and 

quality, the model performance can always further be enhanced.  

3.7 Conclusions  

The data for bias-corrected climate change were forced to drive the hydrologic model, 

PRMS, which was calibrated using PRISM data. The changes in annual streamflow responses 

resulted in an increasing trend from -2.0% ─ 13.3% during Period 1 to 6.3% ─ 16.3% in 

Period 3 for the various emission scenarios. The variation among the emission scenarios was not 

consistent with the emission levels, which showed a decrease in RCP 4.5 and RCP 6.0 and an 

increase in RCP 2.6 and RCP 8.5 during the first study period. This pattern also could be found 

for precipitation, and could be a potential cause for the streamflow changes. As climate change 

continued during the three time periods, the signals of a warming climate were so strong that, by 

the end of the 21st century, they would offset the signal differences in Period 1. The greatest 

streamflow decreases occurred in June (-3.9 to -58.2%), July (-18.0 to -58.1%), and August 

(-15.2 to -43.6%). During late winter, the greatest increase in streamflow could be greater than 

100% due to an early snowmelt resulting from the increased temperature. An overall increase in 

precipitation was derived from the bias-corrected CMIP5 data with seasonal patterns (higher 
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during spring and fall, and lower during summer and winter). This pattern was compared with 

the streamflow changes. The streamflow changes had very different responses, showing a 

decrease from the summer until mid-winter. As a result of the temporal distribution changes in 

streamflow volume, an earlier shift of the WSCV date could be found that ranged from 10 to 30 

days by the end of this century, depending on emission levels. 

On the basis of the study results, the following conclusions were made: 

 With the combined effects of precipitation and temperature, a distinguishing point could be 

identified between May and June: before May, the streamflow increased and after June, the 

streamflow decreased. This conclusion is supported by an earlier WSCV date, which showed 

an intensifying trend during the 21st century. 

 A wide range of variance was found in both precipitation and streamflow. This variance 

became larger during the three time periods in the 21st century, indicating increasing 

uncertainties in the estimation results. 

By using a physically based parameter-distributed hydrologic model, the snow process 

was simulated with a two-layer simulation of energy and water balance. Consequently, the 

modeling results were more reliable, especially in a snow-dominant area. Finally, simulation of 

the streamflow responses to climate change, with regard to rates and timing, provided useful 

information. There have been several attempts on this topic at regional scale, but fewer efforts 

have focused on watershed hydrology. 

As the temperature keeps rising during the 21st century (as projected), the results showed 

an increasing streamflow was expected from the Lehman Creek. This was primarily due to 

earlier snowmelt driven by the increasing temperature and secondarily due to the increasing 

precipitation. Additionally, decreases in the late-spring and summer flows were expected, along 
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with an earlier arrival time for peak flow and less water storage in the snowpack by the end of 

the winter season. The degree of these changes varied with the emission scenarios, and was 

highly correlated with the GCMs that were used. The quantitative evaluations of the ensemble 

changes under each emission scenario in this study, provided insight regarding the effects of 

climate change on a watershed scale that has known and unknown uncertainties. By providing a 

better understanding and assessment of the changing trends of the local streamflow under the 

long-term climate change in this century, this study could help local water resource management 

to devise more adaptive water strategies. 
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4 Chapter 4 Global Climate Change Influences on the Integrated Water System of 

Lehman Creek on a Watershed Scale 

4.1 Research Objective 3  

Research Question # 3: How do integrated hydrologic processes respond to external 

stresses from meteorologic changes and human interference of groundwater pumping? 

The proposed Research Question 3 included two studies. The first study was on the basis 

of MODFLOW model development, and the groundwater flow system in the study area was 

evaluated. This study provided detailed procedures of groundwater model development and 

calibration, with an emphasis on future coupling processes with the surface hydrologic model 

(PRMS), in terms of data linkages in soil percolation, unsaturated water, and streamflow. The 

second study was to couple the developed PRMS model with MODFLOW model to build up the 

GSFLOW model. Through GSFLOW model simulation, the integrated water responses to the 

groundwater pumping and potential climate change were evaluated, in terms of 

groundwater-level drawdowns and hydrologic components variations.  

In the following sections, the contents are organized as follows: 

4.2 Introduction of integrated modeling - the development of the groundwater model and 

the coupling process in an integrated modeling; 

4.3 Geologic condition in the study area - additional background information for the 

model development; 

4.4 Integrated modeling of GSFLOW – groundwater modeling using MODFLOW and 

the coupling processes between PRMS model and MODFLOW; 

4.5 Study 1: MODFLOW modeling to evaluate the groundwater flow system in the study 

area; 
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4.6 Study 2: GSFLOW modeling to evaluate the potential climate change effects on the 

water system. 

4.2 Introduction  

Interactions between surface water and subsurface water occur in most rivers. Depending 

on the hydraulic connectivity and geologic features, the water interaction usually is complex 

(Scanlon et al., 2007) and affects variations in baseflow and streamflow (Ghasemizade & 

Schirmer, 2013; Kalra et al., 2013c; Sagarika et al., 2016). This interaction may be influenced by 

climate, environmental factors, and human activities, resulting in spatial and temporal changes in 

water resources (Sophocleous, 2002; Furman et al., 2007; Pathak et al., 2016a, 2016b; Tamaddun 

et al., 2016a, 2016b). 

Integrated hydrologic models usually are used to better understand the exchange of water 

between surface and subsurface sources, interpret the water flow path, and predict water-system 

behavior (Kim et al., 2008; Xu et al., 2012). These types of models result from the integration of 

a surface water system and a groundwater flow system (Prudic et al., 2015), and the coupling 

between surface water and subsurface flow is the core of the model (Carrier et al., 2016; 

Ghasemizade & Schirmer, 2013).  

4.2.1 Groundwater Modeling 

There are several types of models that have been used in the simulation of groundwater 

flow systems. They can be categorized into three types (Prickett, 1975; Wang & Anderson, 

1982): sand tank models, analog models, and mathematical models. 

As described by Wang and Anderson (1982), a tank model is a physical model that is 

based on a laboratory experiment, which consists of a tank filled with an unconsolidated porous 

medium with induced water to pass through it. However, due to the scaling difference between a 
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field situation and a laboratory dimension, the phenomena measured in the laboratory model are 

usually different from the field observations. The difficulties lie in the instrumentation of a small 

time scale for a small vertical depth, the enlarged capillarity measurement in the capillary rise, 

and the artificial homogeneous and isotropic medium creation (Prickett, 1975). These are the 

major drawbacks of this model, from which the conclusions made should always be qualified 

when used as of a field representation. 

Analog models mainly include two types: viscous fluid models and electrical models. 

The viscous fluid models are also known as Hele-Shaw or parallel-plate models. The model uses 

a viscous fluid, such as oil, to flow between two parallel plates in a narrow space to analog the 

water flow in porous medium. One big disadvantage concerns the complexities of the model 

construction and operational procedures. The electrical models are expressed in mathematical 

forms to simulate the similarities between Ohm’s law for the flow of electricity and Darcy’s law 

for the groundwater flow. It uses voltage changes to analog the changes in groundwater heads. 

As a drawback in both of these analog models, an analog model is designed for a unique aquifer 

system; thus, when the studied aquifer changes, the entire electrical model must be rebuilt 

(Prickett, 1975; Wang & Anderson, 1982).  

The mathematical models consist of a set of differential equations to govern the 

groundwater flow in the system. While simplified assumptions should always be made, the 

reliability of a groundwater model performance depends on how closely the assumptions can be 

made to represent the real groundwater flow system. With fairly restricted assumptions, such as 

homogeneity and isotropy, analytical solutions are not widely used in practical applications 

(Anderson & Woessner, 1991). To deal with more realistic and relatively flexible assumptions, 

such as heterogeneity and anisotropy, numerical solutions are usually preferred, especially since 
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high-speed digital computers have become available. With differences in mathematical-handling 

methods, finite difference models and finite element models are the principal types currently 

used, depending on the study purpose and personal preference.  

Considered as the international standard for the groundwater system simulation, the 

MODFLOW is the most popular and well-known program for a three-dimensional (3D) 

finite-difference groundwater model simulation (McDonald & Harbaugh, 1984). Developed by 

the USGS in 1984, MODFLOW has been updated since then, and the latest version is 

MODFLOW-2005, written in standard FORTRAN language (Harbaugh, 2005). The robust 

framework the model was constructed in provides a great flexibility for model improvement and 

integration of additional model capability. This leads to an extensive development of 

groundwater-related programs with capabilities in broader areas, such as solving techniques, 

study focuses, and processing utilities. Examples include: MODFLOW-NWT, developed by the 

USGS, which uses Newton formulation to calculate unconfined groundwater flow; 

MODFLOW-USG, which uses unconstructed-grid method for the discretization of groundwater 

flow; MODFLOW-LGR, which uses grid refinement in a local domain of interests; 

MODFLOW-OWHM, which analyzes interactive correlations between human and groundwater 

systems; and Groundwater Management (GWM) Process, which supports groundwater 

management with decision-making variables (MODFLOW and related Programs, USGS). There 

are a variety of commercial programs available that are based on the open-sourced MODFLOW 

codes. Examples include MODFLOW-SURFACT Flow and Visual MODFLOW Flex developed 

by Waterloo Hydrogeologic, Groundwater Modeling System (GMS) developed by Aquaveo, 

MODHMS developed by HydroGeoLogic, and the Processing MODFLOW for Windows 

(PMWIN) released by Simcore Software. 
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Besides MODFLOW, other groundwater simulation models in different spatial 

dimensions include: the Prickett-Lonnquist Aquifer Simulation (PLASM) (Prickett & Lonnquist, 

1971), originally developed by the Illinois State Water Survey, is a two-dimensional (2D) finite 

differences groundwater flow model, and the Multi-Layered Finite-Element Aquifer Flow Model 

(AQUIFEM-N) (Townley, 1990), which can additionally simulate 2D contaminant transport, is a 

quasi-three-dimensional groundwater flow model evolved from one finite element model 

AQUIFEM-1 (Townley & Wilson, 1980).  

Since the water quality is not considered in this study, groundwater models for particle 

tracking and solute transportation simulations are not discussed here.  

4.2.2 Integrated Models 

As integrated hydrologic models examine and simulate the dynamic water interaction 

between surface and groundwater they have been widely used in the studies of hydrologic 

mechanisms (Gilbert & Maxwell, 2017; Huntington & Niswonger, 2012; Hwang et al., 2015) 

and water system responses to external stresses by natural or human interferences, e.g., climate 

change (Gamvroudis et al., 2017; Huntington & Niswonger, 2012) and water policies 

(Brookfield et al., 2017; Hwang et al., 2015). 

Various algorithms and techniques are used to describe the groundwater-surface water 

interactions (Furman, 2008), ranging from conceptual models (Arnold et al., 1993; Ponce et al., 

1999; Osman & Bruen, 2002) to physical-based models of varying complexity (Abbott et al., 

1986; Moussa et al., 2002). In recent years, more rigorous physically-based integrated models 

have been developed, which couple one-dimensional or two-dimensional surface flow with a 

three-dimensional subsurface flow (Kollet & Maxwell, 2006; Moussa et al., 2002; Weill et al., 

2009). MODFLOW, has been widely used in such integrated models as SWAT-MODFLOW 
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(Kim et al., 2008), HSPF-MODFLOW (Davis, 2001), SWAP-MODFLOW (Xu et al., 2012), 

TOPNET-MODFLOW (Guzha, 2008), MODHMS (Tang et al., 2014), and GSFLOW 

(Markstrom et al., 2005). 

The Coupled Groundwater and Surface-Water Flow (GSFLOW) model integrates the 

Precipitation-Runoff Modeling System (PRMS) with MODFLOW (Harbaugh, 2005; Markstrom 

et al., 2005; Regan et al., 2016), simulating both the surface hydrology and groundwater flow 

systems. It has been widely used in a variety of studies, such as water management alternatives, 

surface hydrologic responses to climate change, and the surface and subsurface water 

interactions (Ely & Kahle, 2012; Huntington & Niswonger, 2012; Volk, 2014). Depending on 

the study objectives, an integrated model can operate at various temporal scales (e.g., hours, 

days, or months) and spatial scales (e.g., hillslope or watershed) (Goderniaux et al., 2011). This 

adds the complexity to the model development, calibration, and especially integration. Due to the 

mathematical difficulties during the model simulation for coupled processes, it is common to 

simplify the model development processes by starting with a decoupled surface model and 

groundwater model. However, developing separate models without considering future coupling 

could result in several integration challenges in the following procedures. Extensive research 

efforts have focused on the coupling processes (Panday & Huyakorn, 2004), such as linking the 

channel flow regime with groundwater domains (Prudic, 1989; Swain & Wexler, 1996; Walton 

et al., 1999), linking the overland flow with the unsaturated and saturated subsurface flow (Akan 

& Yen, 1981; Pinder & Sauer, 1971), and linking overland flow, channel flow, and subsurface 

flow to examine interactions between them (Govindaraju & Kavvas, 1991; Refsgaard & Storm, 

1995). Fewer studies are available in the literature on the coupling procedure, especially 

regarding the MODFLOW component in the GSFLOW model.  
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4.3 About Study Area 

4.3.1  Geology 

The Great Basin National Park is located in the southern Snake Range, which is part of a 

metamorphic core complex that was uplifted and exposed by erosion during extensional faulting 

from the Tertiary period (Miller et al., 1999; Elliott et al., 2006). It resulted in the east tilting of 

the southern Snake Range: a mild slope on the east side, and a steep slope on the west side 

(Orndorff et al., 2001; Elliott et al., 2006). The uplifting is much greater on the north side of the 

park, where the core complex is exposed with Lehman Creek formed, than on the south. As the 

processes of erosion and fill continue, the detritus eroded from the uplifted mountains partially 

fill the adjacent valleys, such as in the Lehman Creek watershed (Figure 30). 

The surface geology of the Lehman Creek watershed shown in Figure 30 is sourced from the 

Data Store of the National Park Service (NPS, 2014). The bedrock geology of the study area 

consists of metamorphic, sedimentary, and igneous rocks aged from the Late Proterozoic to the 

Quaternary periods (Elliott et al., 2006). Quartzite, argillite, and shale are most of the 

undifferentiated rocks from the Late Proterozoic and the Lower Cambrian periods with 

correspondence to McCoy Creek Group, Prospect Mountain Quartzite, and Pioche Shale (Misch 

& Hazzard, 1962; Whitebread, 1969; Hose & Blake, 1976; McGrew et al., 1995; Miller et al., 

1995a & 1995b; Elliott et al., 2006). The McCoy Creek Group generally combines 

metamorphosed quartzite, argillite, and siltstone with about 1097 m (3,600 ft) thickness (Misch 

& Hazzard, 1962; Miller et al., 1995a). The Prospect Mountain Quartzite is grained from fine to 

coarse with crossbeddings and fine joints, thickening around 1524 m (5,000 ft) at most (Misch & 

Hazzard, 1962; McGrew et al., 1995). The Pioche Shale is fine-grained calcareous quartzite with 
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lenses of sandy limestone, siltstone, and sandy siltstone with 137 m (450 ft) in thickness at most 

(Whitebread, 1969; Hose & Blake, 1976; McGrew et al., 1995; Miller et al., 1995a). 

Limited by the geologic properties of older undifferentiated rocks of the Late Proterozoic 

and the Lower Cambrian, the groundwater flow is impeded and restricted as little water is stored 

and transmitted unless the rock is highly fractured (Harrill & Prudic, 1998). 

The highly fractured Pole Canyon Limestone, where serious dissolution along the fracture 

resulted in high porosity and allows a large quantity of water passing through, forms the Lehman 

Cave system as one of the largest cave systems in Nevada (Halladay & Peacock, 1972). 

The alluvial and glacial deposits consist of unconsolidated gravel, sand, silt, and clay that 

eroded from the adjacent mountains (Elliott et al., 2006). The glacial deposits mostly come from 

two stages of ground moraine (Whitebread, 1969; Miller et al., 1995a). Depending on the age of 

the alluvium deposits, the soil status can range between unconsolidated and consolidated. As 

stated by Thornbury (1969) and Elliott (2006), alluvium and glacial deposits can be at a status 

from poorly sorted to well sorted. Thus, the hydrogeologic properties of water storativity, 

hydrologic conductivity, and transmissivity can be largely various depending on the material 

size, sorting, and the status of cementation (Elliott et al., 2006). 
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Figure 30. (A) The Surface Geology Map in the Lehman Creek Watershed, Great Basin National Park, Nevada and 

(B) an Interpretive Geologic Cross-Section with Location Indications for Cave Springs and Lehman Caves (Adapted 

from Prudic et al., 2015). 
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4.4 GSFLOW Model 

4.4.1 Modular three-dimensional (3D) finite-difference ground-water flow model- 

MODFLOW 

The modular ground-water model - MODFLOW- was developed by the U.S. Geological 

Survey in 1984 (McDonald & Harbaugh, 1984), which is a consolidation of all previously 

developed capabilities of computer simulation of ground-water flow. It has been improved and 

revised 4 times, i.e., MODFLOW-88, 96, 2000 and 2005, and it is widely used and considered 

the standard code for ground-water simulation as well as the best tool to meet the challenge of its 

prediction. 

Different from surface hydrology, MODFLOW simulates the subsurface hydrologic 

processes with potential ground-water interferences both naturally, such as lakes, seawater 

intrusion, geological formation, and artificially, such as wells and reservoirs. It is a mathematical 

model that simulates the groundwater flow by means of a governing equation to represent the 

physical processes that occur in the system. In order to help decision-making or geologic 

judgment, ground-water models intend to describe spatial variability and temporal trends in 

hydrologic stresses and past and future trends in water levels.  

By using a modular structure of grouped functions, the specified computational and 

hydrologic processes are described independently, which enables MODFLOW to have the option 

of different combinations of modules, and thus makes it easier for a connection with further 

extensions of functionalities. With a definition of ‘package’, the model is divided into several 

aspects of simulations, which include Basic package, Groundwater Flow package, Multiplier, 

Zone arrays, Boundary Condition package, Solvers, Output Control, and Subsidence packages. 

Under each of the functional packages, subroutines are further divided: the Well Package, for 
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example, simulating the effect of wells, and the River Package simulating the influence of rivers, 

are options in Boundary Condition packages; the Strongly Implicit Procedure Package, solving 

the system of simultaneous finite-difference equations, is one option in Solvers. The main 

program calls the various subroutines of the packages in a proper sequence to simulate 

ground-water flow. The descriptions of Mathematical Model, Discretization Convention, and 

Finite-different Equation from Harbaugh et al. (2005) were summarized in Appendix. 

4.4.2 Coupled Groundwater and Surface-water Flow Model - GSFLOW 

GSFLOW is a coupled Groundwater and Surface-water FLOW model based on the 

integration of the U.S. Geological Survey (USGS) Precipitation-Runoff Modeling System 

(PRMS) and the USGS Modular Groundwater Flow Model (MODFLOW). Due to the excessive 

complexity of problems with water resources faced by society, an integrated hydrologic model is 

more useful for considering and analyzing the dynamic interactions between surface water and 

subsurface water that affect the timing and rates of such processes as surface runoff, 

evapotranspiration, soil-zone flow, and groundwater flow (Markstrom et al., 2005).  

GSFLOW was developed to simultaneously model water flow both underground and on 

the surface through simulations of overflow crossing the land surface; interflow within 

subsurface, saturated or unsaturated media; and water flow in rivers and lakes. As such, it is used 

to evaluate the influences and effects of such factors as climate variability, land-surface change, 

and groundwater withdrawals on the spatial and temporal distribution of water resources for 

regions ranging from a few square kilometers to thousands of square kilometers, for time periods 

ranging from months to decades. For example, to better understand the groundwater system in 

Chamokane Creek basin, Ely and Kahle (2012) constructed a numerical model for a 

surface-water flow and groundwater-flow system in three dimensions and with transient 
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processes, which tend to help water-management agencies and stakeholders with a quantitative 

understanding of the effects resulting from the potential increase of groundwater pumping on the 

regional water resources. Others developed transient, integrated hydrologic models to provide an 

understanding of dynamic interactions between surface water and groundwater in seasonal 

changes at montane meadows (Essaid & Hill, 2014) and in a complex hard rock system (Hassan 

et al., 2014). Considering climate change influences, quantitative assessments were made for the 

evaluation of hydrologic responses (Mejia et al., 2012; Huntington & Niswonger, 2012; Hunt et 

al., 2013) , which would help water resources policy makers, natural resources managers, 

stakeholders and the public to better understand the corresponding alternations in the water 

resources availabilities and the increasing risks of extreme events (e.g. winter storm and flood). 

It could further improve the regional water resources management with better policies 

(Woolfenden & Nishikawa, 2014; Allander et al., 2014; Niswonger et al., 2014; Fulton et al., 

2015; Albano et al., 2016). An integrated hydrologic model could be a better representation for 

the study of regional hydrologic processes on the land surface and subsurface, especially the 

interactions between them. In Huntington and Niswonger's paper (2012), a GSFLOW model was 

used to study the causality of observed decreasing summer flow. Through the interactive 

investigation of the groundwater recharge and discharge to the streamflow, the role the 

groundwater plays in the formation of a snow-dominated runoff was clarified (Huntington & 

Niswonger, 2012). 

Coupling of PRMS and MODFLOW 

The typical hydrologic processes in land surface and subsurface is shown in Figure 31, 

where the interactive water flows occur between surface and subsurface through soil, streams, 

and lakes. The vadose zone connects surface water and groundwater, which simulates the water 
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flow from infiltration to the formation of subsurface flow until it reaches the saturated zone 

(groundwater system). The vadose zone simulated in GSFLOW is split into two parts: Soil Zone 

and Unsaturated Zone.  

 

Figure 31. Hydrologic Cycle For Surface-Water and Groundwater Integration (Modified from Markstrom et al., 

2005). 

Soil zone is simulated in PRMS. It is the area where horizontal flow and 

evapotranspiration occur, based on soil properties and water content status. Excess water in the 

form of gravity drainage goes into the Unsaturated Zone, simulated in MODFLOW, where water 

penetrates vertically in the form of a water wave until it reaches the saturated zone. The 

schematic diagram of the exchange of flow between PRMS and MODFLOW in GSFLOW is 

shown in Figure 32. Detailed calculation algorithms of water flux between two models are from 

Marstrm et al. (2005), which were summarized in Appendix. 

 

Figure 32. The Schematic Diagram of the Exchange of Flow between PRMS and MODFLOW in GSFLOW 

(Adapted from Markstrom et al., 2005). 
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4.4.3 Steady State and Transient State 

Steady state and transient state are two important status of a system. In a hydrologic 

system, the steady state describes an unvarying status that the system behavior does not change 

with time and so do the water flow magnitude and direction. On the other hand, the transient 

state describes a varying status, under which the system behavior changes with time. Different 

from surface hydrology, the groundwater usually has a hindrance feature as it flows through the 

porous media. This hindrance feature can be represented as the hydraulic conductivity and 

storativity, which describes the easiness of fluid passes through porous media, and the porous 

media’s storage feature, respectively. These are important parameters to describe the 

hydrogeologic features.  

The steady state represents the condition in a regimented system, in which inflows 

balance with outflows. In MODFLOW, this equilibrium indicates water head is independent of 

time. It is usually used to determine the initial condition for the transient-state model. Assuming 

water is incompressible and with no sources or sinks, the water head distribution is determined 

by hydraulic gradient and hydraulic conductivity (Eq.(4). 

𝑄𝑖 = 𝑆𝑆
∆ℎ

∆𝑡
∆𝑉 

(4) 

The transient state represents a condition, under which variable is time dependent, which 

means the water head changes with time. In the derivation of the governing equation (Anderson 

et al., 2015; Eq. 19), an expression for the water release rate from the aquifer storage is 

introduced, which is described as aquifer storativity: the water volumes released from aquifer 

storage per unit area of aquifer per unit head decline (Wang & Anderson, 1995). It is another 

important geologic feature describing the aquifer ability of storing and releasing water. 
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4.5 MODFLOW Model Development 

The model development of GSFLOW model includes two components: surface 

hydrologic model (PRMS) and the groundwater flow model (MODFLOW), which simulates the 

surface hydrologic processes on physical bases and the groundwater flow system in three 

dimensions. As the surface hydrologic modeling using PRMS was introduced in Chapter 3, in 

this chapter, the focuses were on a steady-state groundwater flow system development (Chen et 

al., 2017b). Before that, the concept of model state was introduced, which are steady state and 

transient state. 

4.5.1 Groundwater Flow System Modeling – Steady State 

The steady-state MODFLOW simulation includes: (1) building a conceptual model – 

defining hydrostrategraphic units, preparing the water budget, and defining the flow system 

(Anderson et al., 2015; Kuzara, 2011); (2) classifying the groundwater flow model as well as 

spatial and temporal discretization; (3) using the trial-and-error method to calibrate model 

parameters with hydrogeologic features and water budget components. 

Hydrogeology Conceptualization 

Hydrostrategraphic Units  

In order to couple with the surface hydrologic model PRMS, the realm of the 

groundwater system simulation was kept consistent with the realm of the PRMS model. The 

boundary of the realm was defined by topographic divides by using a digital elevation model 

(Anderson et al., 2015). This boundary definition usually is used in surface hydrologic studies; 

most of the time, the boundary of groundwater flow system is not the same as the surface 

hydrology. Nevertheless, it was important to define a realm with an overlapping area in which 

surface and subsurface water interacted.  
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Within the simulation realm, the geologic units of similar hydrogeologic properties were 

broken into hydrostrategraphic units (Maxey, 1964; Seaber, 1988) to simplify the modeling 

system while still retaining the hydrologic features. Thus, a two-layer groundwater flow system 

was defined. Layer 1 consisted of glacial and alluvial deposits and Layer 2 consisted of fractured 

quartzite in the upper stream, limestone downstream, and granite and shale intrusions in between 

(Figure 33). 

 

Figure 33. Geological Conceptualization of the Study Area in Hydrogeologic Profile. Layer 1 Represents Glacial 

and Alluvial Deposits; and Layer 2 Includes Fractured Quartzite, Limestone, and the Granite and Shale Intrusion in 

between. (The Diagram is not to the Scale, and is modified from Prudic et al., 2015). 

Water Budget 

Taking into consideration accommodating the PRMS model in the integrated GSFLOW, 

the water balance of the simulated groundwater flow system consisted of one inflow and three 

outflows. The model inflow was initiated using the results from the surface hydrologic model 

PRMS, which was the vertical water recharge to the groundwater flow system. The vertical water 

recharge was the excess water after the fast interflow and slow interflow were generated, and 

entered the unsaturated zone in the simulated groundwater system (Figure 33). The three 

outflows leaving the simulated groundwater system consisted of spring discharges (Cave 

Springs), stream baseflow (Lehman Creek), and the groundwater outflows through the limestone 

formation to adjacent areas. Evapotranspiration was not considered in the groundwater system 

but was considered in the integrated GSFLOW model. The three outflows that left the 
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groundwater system were Cave Springs, the Lehman Creek baseflow, and the groundwater 

flows. 

Flow System 

According to Prudic et al. (2015), in the area where the geology is dominated by quartzite 

and glacial deposits (Figure 30 & Figure 33), most of precipitation forms into surface runoff, 

with minor groundwater flow occurring. Groundwater flow receives a recharge from 

macrofractures as well as coarse sediment in the glacial deposits and alluvium with small 

storativities. Impervious quartzite and granite impede the groundwater flow and force it into the 

spring discharge (Figure 33). In the area between the intrusion and the watershed boundary, the 

losing-stream recharges the groundwater by means of both glacial and alluvial deposits as well as 

the underlying karst limestone. 

Model Setup 

Modular Modeling 

To model the groundwater system in this study, MODFLOW-NWT was used. This model 

uses the Newton-Raphson formulation for MODFLOW-2005 to improve the solution of 

unconfined groundwater-flow problems (Niswonger, Panday, & Ibaraki, 2011). The selected 

modules are summarized in Table 11. The Discretization File (DIS) was used to specify temporal 

and spatial discretization. Basic model settings related to each cell, such as active simulation 

cells and initial heads, were set up in the Basic Package (BAS6). Layer properties were specified 

in the Upstream Weighting Package (UPW), which controlled the flow between cells. By 

defining data and parameters related to the hydraulic properties of the unsaturated zone, 

evapotranspiration, and infiltration, the Unsaturated-Zone Flow Package (UZF) was used to 
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simulate the vertical flow from the unsaturated zone to the saturated zone. The Stream-Routing 

Package (SFR) was used to simulate the streamflow routing process with a kinematic wave 

equation. Regarding the groundwater outflows from the study area, the General-Head Boundary 

package (GHB) was used to calculate the water flux, depending on head differences. The Well 

Package (WEL) was used to simulate the influences of groundwater pumping on the 

groundwater system.  

Table 11   

Summary of Lehman Creek Watershed MODFLOW Model Designed as a Coupling Component in the Integrated 

GSFLOW Model. 

Category Content Details 

Model description MODFLOW version MODFLOW-NWT 

Model setup Groundwater flow process Basic Package (BAS6) 

Discretization File (DIS) 

Groundwater flow package Upstream Weighting Package (UPW) 

Unsaturated-Zone Flow Package (UZF) 

Boundary condition package Streamflow-Routing Package (SFR) 

General-Head Boundary (GHB) 

Well Package (WEL) 

Solver Newton Solver (NWT) 

 

Since the MODFLOW developed in this study was a groundwater component in the 

GSFLOW model, the development required not only a basic understanding of the groundwater 

flow system in the study area, but also needed to take into consideration the coupling processes 

regarding the water interaction with the surface water system. As represented in the selected 

modeling packages, the main data linkages between the two single-regime components included: 

 Water infiltration from the surface water components, recharging to the groundwater 

component; 

 Storage changes in the unsaturated zone that affect vertical infiltration to the saturated zone, 

evapotranspiration, corresponding consequences in the runoff; and 
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 Groundwater discharges to and recharges from streams, which influence water-flow paths and 

hydrogeologic features. 

For water percolation, as horizontal flows, i.e., fast flow and slow flow, were simulated in 

the soil zone of the surface hydrologic model PRMS, only the vertical flow left the surface 

hydrologic system and percolated into the deeper unsaturated zone, as simulated in the 

groundwater flow system (Figure 34). This water percolation was computed as the gravity 

drainage that exceeded the fulfillment of the horizontal flow in the soil layer by PRMS; it was 

used as the input for water recharge to the groundwater model, MODFLOW. Thus, during this 

process, this water percolation as an intermediate variable was not required in the integrated 

model. However, in the independent MODFLOW model developed in this study, this vertical 

recharge input, which was the water percolation derived from the PRMS model, was required.  

 

 

Figure 34. Schematic Diagram of Water Interactions between a Surface Hydrologic Model (PRMS) and a 

Groundwater Flow Model (MODFLOW). 
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Also simulated by the UZF package, the unsaturated water was assumed only to flow 

vertically with the homogeneous unsaturated zone (Niswonger et al., 2006). The diffusive 

gradients and capillary pressure gradient were negligible, and the capillary fringe was not 

simulated. On the basis of these assumptions, a one-dimension finite-difference form of 

Richards’ equation was used with a kinematic-wave approximation, taking into consideration 

evapotranspiration (ET) losses (Niswonger et al., 2006). Additionally, ET in the unsaturated zone 

could be set up and calculated as a function of three factors: the potential evapotranspiration 

(PET) that could not be satisfied from the soil zone, the water content in the unsaturated zone 

within the reach of root depth, and the water table of the saturated zone. In this study, the results 

of percolation, subtracting ET, was used as vertical recharge; therefore, the ET process was not 

considered separately.  

In streamflow simulation, the recharges and discharge through the streambed facilitated 

streams, both gaining and losing features (Figure 34). Regarding the relative relationship 

between stream head at the midpoint of the stream reach and the groundwater head at the center 

of grid (higher or lower), the SFR package calculated the water flow rate (losing or gaining) by 

using Darcy’s Law (Prudic et al., 2004). In this study, the streamflow routing process was set to 

the sum of all the inflows, as it is a small watershed. While, this algorithm required input of 

precipitation, ET, and surface runoff computed by PRMS (Prudic et al., 2004), no value was 

initiated in this steady state model, as the conceptualized model assuming all outflows were 

balanced with vertical recharges. Furthermore, the precipitation and ET could be ignored in both 

steady state and transient state model. 
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Spatial and Temporal Discretization 

A major difference that exists in the development of a surface water and groundwater 

model is the spatial and temporal discretization. In the surface hydrological model, PRMS, the 

entire model domain can be differentiated into either sub-basins or grids; however, the 

groundwater model, MODFLOW uses only a finite-difference grid to describe the model 

domain. A different computation unit requires extra transformation to smooth the water 

connections between the two systems; for further details, refer to Markstrom et al. (2015).  

Thus, before developing an integrated model, model conceptualizations for both the 

surface water system and the groundwater flow system are important. In this study, the 

same-sized grid was employed that was used to delineate the PRMS model also was used to 

represent the finite-difference grid. The horizontal spatial discretization was kept consistent with 

the PRMS model in order to facilitate the coupling process. The study area was delineated using 

100-m by 100-m cells, which resulted in 96 columns and 49 rows (Figure 35). Out of a total of 

4704 cells, 2516 cells were within the study area, and were active. Vertically, the top surface and 

the first layer was lined with topographic reliefs, using the digital elevation model (DEM). For a 

convenient coupling process in future GSFLOW modeling, where the top layer is the soil zone 

base contacting with the PRMS model, the layers were defined considering the thickness of the 

soil zone. In this study, 4-m soil zone was defined. Layer 1 was defined as a 10-m-deep layer 

beneath the soil zone. The formula used for defining Layer 1 was: 

model_upper_aquifer_top = land_elevation – soil_zone_thickness (5) 

model_upper_aquifer_bottom = land_elevation – soil_zone_thickness – 10 m (6) 

Layer 2 was defined as a 350-m-deep layer underlying Layer 1, using the formula of: 

model_lower_aquifer_top=model _upper__aquifer bottom (7) 

model_lower_aquifer_bottom= model _upper_aquifer _bottom – 350 m (8) 
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Figure 35. The Spatial Discretization of the Study Area with a 100-m by 100-m Grid, with Conceptualized 

Hydrostrategraphic Units. 

The granite and shale that underlie the quartzite only was represented in the intrusion at 

the contact where the quartzite meets the limestone formation. They were not simulated as a 

defined layer due to their low permeability and storativity. These geologic formations were 

considered as no-flow boundaries for purposes of model simplification (Figure 33; Table 12). 

Time steps of interest for surface water and groundwater may have differences that could 

be in terms of hours, days, or months. Nevertheless, since the PRMS model only supports the 

daily time step for a PRMS-IV simulation (Markstrom et al., 2015), the daily step was used for 

both surface and groundwater modeling systems in order to keep the temporal consistency in this 

study.  
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Table 12   

Aquifer Units and Corresponding Hydrogeologic Characteristics as Simulated in Groundwater Model Layers. 

Layer Hydrogeologic Unit Thickness (m) Hydrogeologic Characteristics 

1 The glacial and young 

alluvial deposits 
10 Most groundwater passes through these layers where the 

glacial deposits sit in the mountain upland zone and 

alluvial deposits are located in the karst limestone. 

2 The mountain quartzite and 

karst limestone, with the 

biotite granite intrusion 

350 The thick mountain quartzite dominates the upper 

watershed, with karst limestone simulated within the same 

layer. The granite intrudes between the mountain upland 

zone and the karst limestone zone, and introduces the 

groundwater flow to the surface. 

Model Calibration 

The calibration procedure for a component of an integrated hydrologic model requires a 

different approach than the more traditional single-regime model. The dynamic interactions 

between surface water and groundwater indicate that the parameters and variables in both 

systems should be adjusted for integration. Simplifying assumptions were made that took into 

consideration the potential interactions with water levels, flows, and water budgets (Davis, 

2001). In this study, the model was calibrated using a trial-and-error technique, using water 

balance and hydrogeologic features as the two main indices to estimate the hydraulic 

conductivity for each hydrostrategraphic unit. 

First, the developed MODFLOW model was set up and calibrated under steady-state 

conditions, which meant that during the entire simulation period, the water flow rate, path, and 

scale did not change. The total water inflow, i.e., vertical water recharge, equaled the total water 

outflows, i.e., springs, baseflow, and groundwater outflows; no storage changed, and the storage 

term equaled to 0. The water balance for each component was estimated from the literature 

review (“Aquifer tests at Baker,” 2016; Elliott et al., 2006; Prudic et al., 2015; Scanlon et al., 

2002). As the model inputs were derived from the surface hydrologic model, PRMS – and were 

scaled to match with the inflow of the groundwater flow system – the model was calibrated 
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against the outflows of the groundwater flow system. For a groundwater model, the aquifer 

hydraulic conductivity and storativity are the primary calibration parameters (Kim et al., 2008). 

Under the current steady-state simulation, only the hydraulic conductivity values were estimated. 

For each hydrostrategraphic units and streambeds, the hydraulic conductivity values were 

adjusted until water budget results matched with the estimated flow rates within a ±10% range. 

The calibration technique performed in this study was a manual calibration process, 

which involved iterative parameter changes according to the evaluation of model responses. The 

value scale, spatial distribution, and value scale correlations among parameters were the 

principal concerns when iterative adjustments were performed. The gravity drainage resulting 

from the PRMS simulation was used as the infiltration inflow in the MODFLOW model. By 

scaling its spatial distribution and the hydraulic conductivity distribution, a balance with 

estimated water budgets was sought, while maintaining a reasonable groundwater level 

distribution that fits the hydrogeologic features in the study area. 

It was important that the spatial distribution of hydrogeologic features were reasonably 

approximated. This occurs at Cave Springs at the contact where the quartzite meets the granite 

intrusion 1 mi east of the Lehman Caves Visitor Center. The baseflow, mainly maintained by 

groundwater recharge, leaves the watershed through the outlet. The groundwater outflows 

through the alluvial deposits and limestone, leaving the simulated area. Additionally, the water 

head distribution generally should be consistent with topographical reliefs, especially in 

mountainous areas underlain with low permeable rock. 

Sensitivity Analysis 

The sensitivity analysis was carried out for the estimated hydraulic conductivity of each 

hydrostrategraphic unit in order to assess the effects on the water-balance estimation. The model 
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simulations were conducted for 14 different values of hydraulic conductivity, ranging from 0.2 to 

10 times the estimated value. For each run, the Root Mean Square Error (RMSE) was calculated 

(9), which measures the error of the fit of the estimation to the data (Kenney, 2013). The lower 

value of RMSE meant a better model simulation with fewer errors. Accordingly, the sensitivity 

of the hydraulic conductivity values could be estimated by corresponding changes in the model 

errors. RMSE for each tested run was expressed as: 

𝑅𝑀𝑆𝐸 = √
∑ (ℎ𝑐,𝑖 − ℎ𝑡,𝑖)2𝑛

𝑖=1

𝑛
 (9) 

 

where, hc and ht represented the calibrated and tested results of the water-balance components (i). 

The value n was 4 under this study as there are 4 water-balance components.  

4.5.2 Results 

Water balance simulation 

One important target for the development of a groundwater flow system is to establish a 

good estimation of water budgets, as this is fundamental for water management plans. The water 

budget quantitatively describes the hydrogeologic water balance, which reflects the equality 

between the total inflows and the total outflows in the groundwater system. Table 13 summarizes 

the water balance in the study area, using data obtained from previous studies; these data were 

used in the model development as boundary conditions. The estimation of vertical infiltration, 

derived from the PRMS model, was 1010 m3/d. Driven by input of this inflow, the outflows were 

simulated, and components were described as follows. 
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Table 13  

Water Budget Estimations of the Conceptualized Groundwater Flow System in the Lehman Creek Watershed under 

Steady-State Simulation. 

 

  
Water Budget Component 

Flow Rate 
Estimation Source 

(m3/d) 

Inflow Vertical infiltration 1010 Water balance estimation 

Outflow Streamflow baseflow 450 Between 3% of 5.3 cfs and 415 m3/d estimated 

from Prudic et al. (2015) 

Spring discharge 245 (David E. Prudic & Glancy, 2009) 

Groundwater flow 315 Estimation according to Prudic et al. (2015) 

 

Stream baseflow  

For the water balance estimation, studies have indicated that the base flow is recharged 

by the groundwater (Hall, 1968; Smakhtin, 2001; Hamel et al., 2013). On the basis of a 

hydrogeologic study from Prudic and Sweetland (2011), the groundwater flow takes about 2% - 

3% of the total precipitation, while the streamflow takes 45% of the precipitation. The historical 

streamflow records showed an average daily flow rate of 5.3 cfs during 2003 to 2012 water 

years, and so the baseflow was estimated to be 538 m3/d (0.22 cfs). The baseflow from Prudic et 

al. (2015),was used to estimate the baseflow of 415 m3/d in Lehman Creek. Thus, the estimation 

of 450 m3/d, which is between 415 m3/d and 538 m3/d was used as the baseflow rate in the 

current study.  

Spring discharge  

According to previous studies at Cave Springs (Halladay & Peacock, 1972; Prudic & 

Glancy, 2009), four springs emerge at the contact area where the quartzite meets granite at the 

downstream side of Lehman Creek. Spring water is collected at a rate of around 245 m3/d (0.1 

cfs). 
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Groundwater outflow  

The groundwater flux from the southeast side of the Lehman Creek watershed to the 

adjacent area was difficult to estimate due to its complex geologic formation of caves. In this 

model, constant heads at specific location cells were specified to simulate the water outflows’ 

variation with the water heads’ change. An estimation of 315 m3/d of groundwater flux was 

simulated through the boundary cells for the steady-state simulation in this study. Figure 36 

shows the position where the boundary flow occurred.  
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Figure 36. Water-Level Distribution of the Top View (Layer 1) and the Front-View Cross-Section of Cave Springs 

(Layers 1 and 2), using the Modelmuse Tool: (A) with Initialized Hydraulic Conductivity Values before Model 

Calibration; (B) with Hydraulic Conductivity Values after Model Calibration; (C) Detailed Cross-Section of Cave 

Springs. 
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Model calibration 

The groundwater model calibration involved determining the magnitude and spatial 

distribution of the model parameters. These parameters reproduced the observed system state 

with hydraulic heads and groundwater flows (Kim et al., 2008). Within the region of the study 

area, there were no drill holes or well observations; therefore, the traditional method for 

parameter identification could not be used. Instead, hydrogeologic features and components in 

water balance were used to calibrate the hydraulic conductivity. 

Hydrogeologic features 

In order to compare the effects of hydraulic conductivity on the simulated 

groundwater-flow model, water head distribution was compared between the initial condition 

and simulated steady-state condition, by using estimated parameters and calibrated parameters, 

respectively. As shown in Figure 36a, the overall water level ranged between 2041.3 m at low 

elevations and 2928.9 m at high elevations. However, in the western region, where the land 

surface elevation was higher than 2805 m, results for the water level were within a relatively 

narrow range of 2810 m to 2900 m. This was in a contrast to the high variation in land surface, 

which ranged between 2805 m and 3980 m. This indicated a deep water level with low spatial 

variability in the mountainous area, which did not capture the features of high topographic 

reliefs. This also could be observed from the front view of the water level (Figure 36a), as both 

water levels from Layer 1 and Layer 2 were deep below the land surface. However, with 

calibrated parameters, the water level was adjusted (Figure 36b), resulting in the water levels 

being a subdued replica of the topography. The front view of the cross section at Cave Springs 

shows the groundwater flow was impeded by low permeable granite (and shale) intrusion, where 
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the water level was raised, resulting in the groundwater being discharged to the land surface. 

Additionally, the groundwater outflows at the defined boundary cells. 

Hydraulic conductivity 

As summarized in Table 14, hydraulic properties for each hydrostrategraphic unit were 

initialized, estimated from a groundwater study at Baker Creek (“Aquifer tests at Baker,” 2016; 

Haitjema & Mitchell-Bruker, 2005). By trial and error, the hydrologic conductivity was adjusted 

to minimize the error within 10% (Table 14). During this process, the hydrogeologic features 

were maintained because the direction of groundwater flow was a crucial indication to 

groundwater levels. Results showed that in Layer 1, the coarse glacial deposits sitting in the 

center of the valley and along the streams has a relative higher horizontal hydraulic conductivity 

(5E-2 m/d) than the vertical value (3E-2 m/d), and around the downstream side, the alluvial 

deposits had a higher vertical hydraulic conductivity (2 m/d) than horizontal value (5E-2 m/d). 

Underneath this, in Layer 2, the fractured Prospect mountain quartzite formation had a low 

hydraulic conductivity of 5E-7 m/d; meanwhile, the granite (and Pioche shale) intrusion had an 

even lower value of 1E-7 m/d. The limestone were with 1E-2 m/d and 4E-4 m/d for the 

horizontal and vertical hydraulic conductivities, respectively. In the model, the Brooks-Corey 

exponent and horizontal anisotropy were 3.5 and 1, respectively.  

Table 14 

Hydraulic Conductivity of Each Hydrostrategraphic Unit in the MODFLOW Model (Unit: m/d) 

 
Horizontal Vertical Value Ranges of selected rocks (Heath 1983) 

Glacial deposits 5E-02 3E-02 Value range for Glacial Till 1E-7 to 0.3 

Alluvial deposits 5E-02 2 Value range for Silty, Loess, Silty 

Sand, Clean Sand, Gravel 

1E-3 to 5E3 

Quartzite 5E-7 5E-7 Value range for Igneous and 

Metamorphic Rock 

1E-8 to 5 

Limestone 1E-02 4E-04 Value range for Carbonate Rocks 1E-4 to 5E3 

Granite and Pioche shale 1E-7 1E-7 Value range for Shale 1E-8 to 1E-4 
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Sensitivity analysis  

The sensitivity analysis was carried out to analyze the influences of tested parameters on 

the model-simulated water balance. Both horizontal and vertical hydraulic conductivities for 

each hydrostrategraphic unit – i.e., glacial deposits, alluvial deposits, granite, and limestone – 

were selected. Hydraulic conductivities were changed by using a coefficient that ranged between 

0.2 to 10, and the error indicator RMSE was used to evaluate the model performance regarding 

the water balance calibration.  

As shown in Figure 37, among all the hydrostrategraphic units, the hydraulic conductivity 

in glacial deposits had the greatest influence on the model results, as the greatest increase was 

found in the RMSE values for glacial deposits. This was followed by horizontal hydraulic 

conductivity in alluvial deposits, horizontal hydraulic conductivity in limestone, and vertical 

hydraulic conductivity in limestone. While the model was most sensitive to these mentioned 

parameters, the current steady-state model was not sensitive to hydraulic conductivities of 

granite and quartzite formations, as the RMSEs did not change much when the parameters 

changed. 

 

Figure 37. Results of a Sensitivity Analysis for the Hydraulic Conductivity of Each Hydrostrategraphic Unit 

Influencing the Model Results. Root Mean Square Error (RMSE) (HK = Horizontal Hydraulic Conductivity; VK= 

Vertical Hydraulic Conductivity). 
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As RMSE is an absolute measure of fitness, the value ‘0’ indicates the best fit, and had 

the same unit as the response variable, which was m3/d or m3 as model ran on daily basis. The 

RMSE plot (Figure 37) showed a range of 0 to 240 m3/d for all 10 parameters that were tested, 

using different coefficients. The point where the multiplying coefficient was 1 represents the 

calibrated model, and other points represent SA tested models. 

4.5.3 Discussion 

The primary objective of the current study was to better understand the role MODFLOW 

plays in integrated GSFLOW modeling from the perspective of model development. When 

developing GSFLOW model, there were some assumptions, limitations, and uncertainties related 

to the groundwater flow system in the Lehman Creek watershed study area. For example, it was 

assumed that the vegetation roots were within the soil layer overlaying the MODFLOW 

simulation region, the evapotranspiration process was considered in the surface hydrologic 

PRMS model and thus was not considered in the MODFLOW model developed in this study. 

Additionally, an evenly distributed thickness of every defined layer was assumed, using a unique 

value among all the hydrostrategraphic units. For example, the thickness of alluvial deposits 

downstream was 3 m (10 ft) (Prudic et al., 2015); however, it was assumed to be 10 m in the 

model because of the uniform thickness of Layer 1. This simplification may result in an 

underestimation of hydraulic conductivity. Nevertheless, on the basis of current available 

hydrogeographic conditions, this assumption was reasonable for a conceptual simulation of the 

groundwater flow system. 

The groundwater contours portrayed the integrated nature of the geography, lithology, 

and effects of weathering and fracturing on rocks. In the modeling results, the highest 

groundwater levels were at Wheeler Peak, where land elevations are the highest; the lowest 



 

123 

groundwater level was at the eastern watershed, close to the stream outlet. This steady-state 

results are consistent with the commonly accepted premise in hydrogeology that a water table in 

unconfined aquifers often is a subdued replica of the topography or land surface (Haitjema & 

Mitchell-Bruker, 2005). Nevertheless, the groundwater recharges not only the streamflow, but 

also recharges the springs and groundwater outflows at the southeastern boundary of the study 

area. With a steady-state calibration, the MODFLOW model could not be used because a 

transient-state model calibration also was required to further estimate the storativity of the 

hydrostrategraphic unit and refine the corresponding hydraulic properties. The process used in 

this study illustrates the use of a preliminary model in an interpretive sense and demonstrates the 

strength of a groundwater-flow model as a framework for organizing the available hydrogeologic 

information.  

Regarding the sensitivity analysis with all 10 tested parameters, the vertical and 

horizontal hydraulic conductivity of glacial deposits and horizontal alluvial deposits are the most 

sensitive parameters because the RMSE showed the largest variation with the parameter changes. 

This is reasonable as glacial and alluvial deposits are beneath the streams, where the hydraulic 

conductivities substantially influence the water exchange between streams and groundwater. 

However, the vertical hydraulic conductivity of alluvial deposits is not a sensitive parameter. 

This is because, the vertical hydraulic conductivity is high enough that all the water infiltration 

was able to be passing through the groundwater system. The local value variation would not 

change this fact or the resulting water balance simulation.  

The model simulation performance could be improved further by aquifer pumping tests 

and improved configurations of the boundary groundwater flux. The complex cave system at the 

east side of the watershed results in complex groundwater flow, with nonlinearity and uncertain 
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groundwater outflows to the adjacent region. In this study, the groundwater outflow, as a 

boundary condition, was simulated by using the GHB package, which treated the water flux as 

linearly correlated with the head differences between the defined values and model simulations. 

This simplification could not represent well the complexity and nonlinearity of the groundwater 

flow in this diluted limestone formation. Moreover, according to two piezometers tests of the 

streambed at karst-limestone zone (2009 and 2010) in a nearby watershed, the hydraulic 

conductivity tremendously varied from one to the other, as did the ratio of vertical value versus 

horizontal (Prudic et al., 2015). In this study, the spatial variation was represented by defined 

hydrostrategraphic units instead of grids, thus an averaged value was calibrated which was able 

to capture the water-losing features at downstream and the boundaries with the best knowledge 

currently available. 

4.5.4 Conclusions 

In this study, a MODFLOW model was developed for the Lehman Creek watershed, to 

be coupled with the PRMS model in an integrated surface and groundwater flow system. With 

the available data from adjacent areas and water balance estimations from available literatures, 

the groundwater system was conceptualized. The MODFLOW model was calibrated under a 

steady state using boundary conditions of streams, springs, and groundwater outflows. 

The main conclusions drawn from the study are: 

 There are three data linkages between the surface hydrologic model PRMS and the 

groundwater flow model MODFLOW, i.e., direct vertical recharges, unsaturated-zone 

features, and streamflow-aquifer interactions, as they were the critical water-flow features in 

the coupling processes where the two subsystems interacted.  
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 The water budget estimation with a consideration from the PRMS modeling results plays a 

critical role in the coupling process with the surface hydrologic processes in the GSFLOW 

model, such as vertical infiltration and stream baseflow. 

 The hydraulic conductivity of glacial deposits, and alluvial deposits sitting in the central 

valley and having frequent interactions with the streamflow, have the greatest influences on 

the groundwater flow system simulation. 

Based on the documented literature and the author’s knowledge, this research sets up the 

fundamentals of MODFLOW development and its integration with surface water modeling in the 

study area of Lehman Creek watershed. The current study produced a model that can provide 

understanding of existing hydrogeologic conditions within the watershed. More importantly, the 

model development process presented in the current study highlights the compatibility 

consideration with the PRMS model, serving the future integration of the MODFLOW and 

PRMS models. This will enhance the capability of addressing the climatic variability effects on 

the hydrologic system of Lehman Creek and provide useful information to other similar model 

coupling attempts. 

4.6 Meteorologic Change Influences on an Integrated Hydrologic System 

In this section, the integrated model GSFLOW (v. 1.1.6; GSFLOW Release Note, 2016), 

which coupled the surface hydrologic model PRMS and groundwater flow system MODFLOW, 

was introduced. It includes two parts: model calibration and model implementation.  

The purpose of this study was to evaluate the influences on the local water resources 

system by potential external stresses from groundwater pumping and climate change. These two 

cases capture the impacts of typical human interferences and natural variations, which have 

implication for groundwater management and hydrologic process research. 
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4.6.1 Integrated Hydrologic Modeling –Transient State 

Groundwater flow system modeling – transient state 

The model integration includes two parts: first, the simulation role changes, i.e., the 

streamflow simulation changes from PRMS model to MODFLOW model; second, water 

exchanges, i.e., the one-way water flow in the PRMS model into the two-way interactive water 

exchanges between surface and subsurface within PRMS model and MODFLOW model. Such 

changes could result in substantial differences in the model simulation results; thus, further 

model calibration is required for a successful integration of two sub-systems.  

Furthermore, the transient-state model simulation is necessary to capture system 

variations when external stresses change, i.e., to analyze the time-dependent problems. It is more 

complicated and requires additional parameters related to hydraulic information. As suggested by 

Anderson and Woessner (2002), a transient model simulation requires specifications of storage 

parameters, initial conditions, i.e., heads and boundaries, and time discretization. 

Storage parameters 

During a transient-state simulation, the storage feature in the porous medium allows 

water to be taken in or released. As a result of the water transfer, the water heads change over 

time. In order to specify the capability of an aquifer to transfer water from the storage or to the 

storage, parameters that are usually used include: specific storage (Ss), specific yield (Sy), or 

storage coefficient (S) (Anderson & Woessner, 2002). 

The storage coefficient (S), also termed storativity, is the volume of water that a 

permeable unit will absorb or expel from storage per unit surface area per unit change in head. In 

a confined aquifer, owing to the compressibility of the mineral skeleton, the water volume stored 

or expelled from the storage in a unit volume of porous material per unit change in head is 
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defined as specific storage (Ss). Thus, the storativity of a confined aquifer is defined as the 

product of the specific storage (Ss) and the aquifer thickness (b) (Eq. (10). In an unconfined 

aquifer, the water level rises and falls with water-storage changes in the porous medium, and this 

water storage change includes two components. One is caused by gravity, termed specific yield 

(Sy). The other one is the specific storage of the unit. Thus, the storativity in an unconfined 

aquifer is found by the formula in Eq. (11. 

𝑆 = 𝑏𝑆𝑠 (10) 

𝑆 = 𝑆𝑦 + 𝑏𝑆𝑠 (11) 

where, S is the storativity, dimensionless; 

    Ss is the specific storage, (1/L); 

    b is the thickness of the saturated zone (L); 

    Sy is the specific yield, dimensionless. 

For an unconfined aquifer, the value of Sy is several orders of magnitude greater than bSs, thus 

the estimation of Sy is more important as it is the predominant weight in the storativity. 

Initial conditions 

The phrase initial conditions refer to the initial head distribution over the entire 

simulation region, which means there is a head value for each grid cell, including boundaries. It 

is standard procedure to use the water-head results from a calibrated steady-state model 

simulation as the initial condition in a transient-state simulation. As explained by Franke et al. 

(1987), this ensures the consistency between model inputs and the initial head during the 

beginning of the model simulation. 

In this study, water heads from steady state were used, which were constant values over 

time with spatial variations that include the boundary cells. 
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Time discretization 

The model simulation time period was the same as in the PRMS model, which was from 

October 1, 2002 to September 30, 2012 (2003-2012, water years). The calibration period was 

from 2003 to 2007 (water years), and the validation period was from 2008 to 2012 (water years). 

One steady-state stress period and one transient-state stress period were included. The 

one-day steady-state model simulation was used to initialize conditions for the model. The 

following transient-state model simulation had 1825 one-day time steps. The time period is the 

same as in the PRMS model. 

Coupling procedures of surface-water and groundwater systems 

With the developed PRMS model for the surface hydrology simulation and steady-state 

MODFLOW model, the development of the transient-state GSFLOW model required two 

additional steps: 1) modifications in the parameters of the MODFLOW model to transition from 

the steady state to a transient state, and 2) the modification in the PRMS model to facilitate the 

coupling processes. 

Transient-state Model Modifications in MODFLOW 

The first step was to change the steady-state simulation to a transient-state simulation in 

MODFLOW. The steady-state MODFLOW simulation could help to determine the hydraulic 

conductivities by means of the equilibrium between inflows and outflows of the system. 

However, most of the time, this equilibrium is disturbed by external stresses, such as water 

recharge variations. Such stresses affect the groundwater-flow system through the hydrogeologic 

features, especially aquifer storativity and stream conductance. In GSFLOW, a transient-state 

model simulation was required to improve the reliability of the model simulation.  
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As documented in the MODFLOW-NWT guide (“Online Guide to MODFLOW-NWT,” 

2016), several modifications were required to the four packages used in the current steady-state 

MODFLOW model. 

For the Discretization File (DIS) package:  

 The number of stress periods (NPER) was updated from 1, which was only a steady-state 

simulation, to 2 for one steady-state and one transient-state simulation. 

 The length of a stress period (PERLEN) and the number of time steps in a stress period 

(NSTP) was changed. For first stress period, the setup of PERLEN and NSTP, which were 

both defined as “1”, maintained as the steady-state simulation. For the second stress period, 

the NSTP was the same as PRMS running step, which was the daily step; therefore, the 

PERLEN was pertained the same length of simulation days.  

 Variable (Ss/tr) was coded as a transient state (tr) for the second stress period, and steady 

state (Ss) simulation was kept the same for the first stress period. 

For the UPW package: 

 The specific storage (Ss) and specific yield (Sy) were initiated with estimations for each layer 

in defined grids, which represented the storage capability of aquifers. 

For the UZF Package: 

 For the steady-state period, the integer values – indicating reusing or reading the infiltration 

rates (NUZF1) – and corresponding infiltration rate input (FINF) remained the same. 

 For the transient-state period, NUZF1, NUZF2, NUZF3, and NUZF4 were specified as 

negative values (< 0), which meant that the infiltration-related parameters (i.e., FINF, PET, 

EXTDP, and EXTWC) were the same as previous stress period (i.e., steady-state stress 

period). 
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For the SFR package: 

 Basic stream parameters were required to be defined for each stress period; thus, no changes 

were needed for the first period, as that already was defined in the previous steady-state 

simulation. 

 During the steady-state simulation, the streamflow, initiated at the beginning of each tributary 

by variable FLOW, was set to zero, as it would be simulated by PRMS model. 

 During the transient-state simulation, the parameter ITMP was used and defined as a negative 

value (< 0), indicating that the stream-segment data were defined as the same as for the 

previous stress period, which was the steady-state period.  

Hydrologic-process Modifications in PRMS 

As mentioned in previous sections, there were changes in the roles played by the 

hydrologic processes in the PRMS-only simulation and the GSFLOW integrated simulation. Two 

critical components which link the data across the two systems, the streamflow routing process 

and the groundwater flow beneath the soil zone, change substantially. The streamflow routing 

process was included in the PRMS simulation when focusing only on the surface hydrologic 

model. Nevertheless, in the integrated GSFLOW, this process simulation was performed instead 

by a MODFLOW package (SFR in this study); thus, it was removed from the PRMS simulation. 

In addition, the groundwater flow simulated in the PRMS simulation, which used a concept of 

stock and flow, was replaced by the MODFLOW simulation, which simulated detailed 

unsaturated flow, saturated flow, and additional ET. Therefore, in the previous PRMS model, 

some modules and related parameters were no longer required (Table 15). 

To perform the integration functionality of directing data results from the PRMS model 

as the data input to the MODFLOW model, additional modules were used. The integration 
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process was determined primarily by two modules in GSFLOW (Markstrom et al., 2005; Regan 

et al., 2016): gsflow_prms2mf and gsflow_mf2prms. The gsflow_modflow2 module was used to 

direct the PRMS results to the MODFLOW model, which included distributing the gravity 

drainage and unsatisfied ET to the MODFLOW UZF package as well as allocating the surface 

runoff, i.e., overland flow, Dunnian runoff, and Hortonian runoff, and subsurface interflow from 

Hydrologic Response Units (HRUs) to stream segments ("GSFLOW Input Instructions", 2015). 

The gsflow_mf2prms module was used to distribute the groundwater discharges from the 

MODFLOW cells to PRMS HRUs as the soil-zone input. Additional parameters, which were 

required for these two modules, were summarized in Table 16.  

Additionally, in the Control File, where the parameters related to each run were defined 

as a model input file for PRMS, the module definition for the streamflow simulation was 

removed, and the model mode was changed from ‘PRMS’ to ‘GSFLOW’. 
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Table 15 

Modules and Related Parameters Removed for Model Transformation from a PRMS Model Run to a GSFLOW Model Run, as Defined in the Parameter File 

(Cited from Table 1, GSFLOW Input Instruction 2015; Table 1-3, PRMS Manual (Markstrom et al., 2015)). 

Module Name Module Description Related Parameter Parameter Description 

gwflow Sums inflow to and outflow from PRMS 

groundwater reservoirs. Outflow can be routed to 

downslope groundwater reservoirs and stream 

segments. 

hru_gwres Identifier of groundwater reservoir associated with an HRU. 

gwflow_coef Linear coefficient in the equation to compute groundwater 

discharge for each GWR. 

gwsink_coef Linear coefficient in the equation to compute outflow to the 

groundwater sink for each GWR. 

gwstor_init Storage in each GWR at the beginning of a simulation. 

gwstor_min Minimum storage in each GWR to ensure that storage is 

greater than the specified value in order to account for inflow 

from deep aquifers or injection wells with the water source 

outside the basin. 

ssr_gwres Index of the GWR that receives flow from each associated 

subsurface or gravity reservoir. 

gw_pct_up Fraction of GWR area used to compute flow contributed to a 

downslope GWR or stream segment for the cascade area. 

gw_strmseg_down_id Index number of the stream segment to which the cascade area 

contributes flow. 

gw_up_id Index of GWR containing the cascade area. 

gw_down_id Index number of the downslope GWR to which the upslope 

GWR contributes flow. 

strmflow Computes daily streamflow as the sum of surface 

runoff, shallow-subsurface flow (interflow), 

detention reservoir flow, and groundwater flow 

- No related parameters removed since they are used in other 

modules as well. 
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Table 16 

Modules and Related Parameters Required for Model Transformation from a PRMS Model Run to GSFLOW Model Run, as Defined in Parameter File (Cited 

From Table 1, GSFLOW Input Instruction 2015; GSFLOW Manual (Markstrom et al., 2005) ). 

 

 

Module 

Name 
Module Description Related Parameter Parameter Description 

gsflow_mf2prms Distributes computed groundwater discharge from 

MODFLOW cells to HRUs for input to the PRMS 

soil-zone module at the end of each time step. 

gvr_cell_id Index of the grid cell associated with each 

gravity reservoir. 

gsflow_prms2mf At the end of each time step, distributes: 

The gravity drainage and unsatisfied potential 

evaporation from HRUs to MODFLOW cells, 

computed from  the PRMS soil-zone module for 

input to the UZF Package, and  

The Hortonian and Dunnian surface runoff and 

interflow from HRUs to stream segments and 

lakes and precipitation and evaporation to lakes, 

computed by the PRMS surface- runoff and 

soil-zone module for input to the SFR and LAK 

Packages. 

gvr_cell_pct Proportion of the grid-cell area associated with 

each gravity reservoir. 

gvr_hru_id Index of the HRU associated with each gravity 

reservoir. 

gvr_hru_pct Proportion of the HRU area associated with each 

gravity reservoir. 

id_obsrunoff Index of measured streamflow station 

corresponding to the basin outlet. 

mnsziter Minimum number of iterations for which 

soil-zone states are computed. 

mxsziter Maximum number of iterations for which 

soil-zone states are computed. 

Szconverge Significant difference for checking soil-zone 

states. 
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Model calibration  

After composing the GSFLOW model with PRMS and MODFLOW models, the 

calibrated parameters from the PRMS were used as initial values for the parameters in the 

GSFLOW model. Most parameters can remain unchanged in the GSFLOW model, while 

focusing on a few parameters that determine the amount and timing of water flux exchanges 

between surface and subsurface. Through GSFLOW model calibration, these parameters were 

adjusted and calibrated from perspectives of water balance and water transference through 

porous medium. The objective of the integrated model calibration is to match the observed and 

simulated hydrographs both in flow rates and timing. 

Regarding the water balance, two principal factors were considered in the calibration of 

the integrated hydrologic system: 1) the evapotranspiration within the soil zone where water 

loses from capillary reservoir of the surface hydrologic system and 2) gravity drainage 

recharging the groundwater system. Firstly, adjustment to the evapotranspiration was performed, 

which was overestimated in the PRMS model to compensate the missing representation of 

groundwater outflow losses. During this process, the parameter (jh_coef) determining the 

potential evapotranspiration was adjusted. Secondly, as the groundwater discharges, either to the 

surface or out of the water system, the gravity drainage was increased to remain the groundwater 

level and in balance with the groundwater level from steady state. In this process, the adjusted 

parameters (ssr2gw_rate, ssr2gw_exp) were coefficients that determine the gravity drainage rate 

from the gravity reservoir in soil zone simulated in PRMS model.  

Regarding the water transference through porous medium, secondary model calibrations 

were performed to further improve the hydraulic conductivity values to improve the integrated 

model’s performance. Seasonal features of groundwater discharge and recharge were calibrated 
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by adjusting the hydraulic conductivity, storage property for hydrostrategraphic units and 

streambeds. 

Sensitivity analysis 

A sensitivity analysis was performed to determine the effects of changes in the 

determinant parameters on the streamflow rates and timing. There are several methods for 

sensitivity analysis, such as Morris screening method and Sobol’s method, which are widely 

used in global sensitivity analysis (Morris, 1991; Campolongo et al., 2007; Song et al., 2015). 

Compared to their relative high computation size and costs, the sensitivity analysis method used 

in this study employed the one-at-a time sampling design and analyzed the sensitiveness of 

parameters to the modeling results, which qualitatively captured the sensitivity characteristics 

with high reliability and low computation costs.  

The storativity and the streambed conductivity were the two principal parameters 

analyzed in this transient model. In the study area, the only hydrological observations available 

are the streamflow gauging records. Thus, by varying the selected parameter estimates of 

specific yield, specific storage, and streambed hydraulic conductivity, the uncertainty in the 

calibrated GSFLOW model were quantified. 

Based on one-at-time (OAT) method, local sensitivity analysis was performed with 

estimated initial values, which could substantially reduce the computation cost while retaining 

high reliability (Song et al., 2015). In this study, a sequence of perturbation in forms of 

coefficients was selected. For each hydrostrategraphic unit, the model simulations were 

conducted for 14 different values of pre-determined parameters, ranging from 0.2 to 10 times the 

estimated value. Relative to calibrated model results, the root mean square error (RMSE) (Eq. (9) 
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and Mean Absolute Error (MAE) (Eq. (12) were calculated and measure the error of the fit of the 

estimation to the data (Kenney John, 1939). MAE was calculated for each tested run as: 

𝑀𝐴𝐸 =
∑ |𝑄𝑐,𝑖 − 𝑄𝑡,𝑖|

𝑛
𝑖=1

𝑛
 

(12) 

Different from previous steady-state sensitivity analysis, i indicates the number of sample 

size, which is the number of streamflow days since the streamflow calibration results were used 

for evaluation (n=1826). 

For each hydrostrategraphic unit, by multiplying 14 coefficients, the model simulations 

were conducted for 14 different values of each selected parameter of specific yield, specific 

storage, and streambed hydraulic conductivity. Specific yield, specific, horizontal hydraulic 

conductivity, and vertical hydraulic conductivity were tested for 5 hydrostrategraphic units, and 

whereas, streambed hydraulic conductivity was tested for 11 stream segments. One set of 

parameter took 13.35 minutes for 1,826 days/steps of model simulation, resulting in 96.565 

hours of total running time (Duo CPU E7600, 4 GB RAM, and 64-bit Operation System). 

Model result evaluation 

Same as the evaluation methods used in the PRMS model, the developed integrated 

hydrologic model was calibrated and validated by comparing model simulations with streamflow 

gauging observations during the available period of 2003-2012 (water years). The indicators of 

the square of correlation (R2), percent bias (PBIAS), and Nash-Sutcliffe efficiency (NSE), were 

used to assess the daily streamflow simulation during calibration and validation, which are the 

same as used in the PRMS model. 

More importantly, the integrated model results were compared to the results of PRMS 

model to evaluate the model performance. In addition to comparisons of model evaluation 
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indexes, i.e., R2, PBIAS, NSE, the hydrographs were compared on mean monthly and monthly 

mean scales. 

GSFLOW simulation 

Well pumping 

Because the Lehman Creek study area is in southern Snake Valley, where the 

groundwater could be a potential water supply source to support Las Vegas for future social and 

economic development, it is important to understand the potential influences on the local water 

resources system. Although groundwater withdrawal from Lehman Creek is not a realistic 

scenario, it was introduced as a what-if scenario to better understand groundwater responses to 

pumping. The location of the pumping well was selected at the downstream of Lehman Creek 

close to the stream. Vertically, it extends to the second layer of the geological formation, where 

complex limestone hydrostrategraphic unit is located. The total water application from Snake 

Valley is 1.7 × 105 m3 per day (50,679 afy) (SNWA, 2012). The Lehman Creek watershed is 

23.6 km2 (5,839 acres) in area, which takes 0.3% of the total 9013.2 km2 (3,480 mi2) area of the 

Snake Valley (Hood & Rush, 1965; Masbruch & Gardner, 2014). Based on the share of the area, 

the groundwater potentially to be pumped from the study area is 510 m3 per day. Therefore, in 

this study, water pumping rates of 50% (255 m3 per day), 100% (510 m3 per day), and 200% 

(1020 m3 per day) of the share of Lehman Creek watershed in total application were evaluated.  

A 70-year period of the GSFLOW model, starting from 1980- 2049, ran prior to the start 

of the designed groundwater withdrawals; thus, the groundwater flow system was brought to a 

stable condition before the water was pumped. Starting from 2050, a 50-year groundwater 

withdrawal was introduced until year 2099. The consequent effects on the groundwater-flow 

system were assessed regarding the water-level changes.  



 

138 

Hydrologic modeling 

In this study, instead of using the surface hydrologic PRMS model, the integrated 

hydrologic GSFLOW model was used to evaluate the hydrologic processes. Further assessments 

were performed on the water alternation in hydrologic components, regarding the water flux 

exchange between land surface and subsurface, and corresponding variations in the related 

storage. 

The main water balance components in the entire integrated hydrologic system included 

the inflow of precipitation, and the outflows of evapotranspiration, streamflow, and groundwater 

boundary flow. The precipitation occurred as rainfall, snowfall, and a mix of the two forms. 

Evapotranspiration occurred throughout the year, reaching the highest rates during the summer 

especially when sufficient water was available in the soil zone. The streamflow was composed of 

surface runoff, soil interflow, and groundwater discharge. The surface runoff in the study area of 

Lehman Creek watershed was mostly Dunnian runoff, which occurs when soil is saturated. The 

soil interflow continually contributing to the streamflow, whether or not the soil was saturated or 

unsaturated. While it was the predominant water component of Lehman Creek, surface runoff 

could become significant and surpass the maximum soil interflow when great precipitation 

occurs The groundwater flow both contributed to the streamflow as baseflow and flows leave the 

system through the watershed boundary. 

Several factors affect the water flux between surface water and groundwater: 1) the 

storage in soil zone, 2) the groundwater level relative to the soil-zone base, and 3) the vertical 

hydraulic conductivity. The determinant influence on the water flux varies with climate, 

topography, and subsurface properties (Markstrom et al., 2005). In this model, there were two 

places where water exchanges between surface and underground: 1) areal water-flux exchange 
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and 2) streamflow water exchange. The areal water exchange occurs through two forms. The first 

is gravity drainage, which is the water exceeds from the soil- zone and recharges the 

groundwater system through unsaturated or saturated zone. The second is the groundwater 

discharge, which is groundwater replenishes the soil-zone when groundwater level is higher than 

the soil-zone base. The streamflow water exchange occurs when there is a water level difference 

between the streamflow level and the groundwater level. Streamflow loses water when its water 

level is physically higher than the groundwater level and gains when it is lower. 

The bias-corrected CMIP5 data resulting from the Research Question 1 (Chapter 2) 

represent both the retrospective and projected meteorologic conditions in the study area. They 

were used to drive the calibrated integrated model to evaluate the corresponding changes. 

Regarding the four climate change scenarios (i.e., RCP 2.6, 4.5, 6.0, and 8.5), there are results 

from 16, 19, 12, and 20 models corresponding to each scenario (Appendix A-1). As the total 

model run number was 67, and each model run from 2010 to 2099 on a daily basis took 4.095 

hours, total running time for all 67 climate model results was 274.365 hours (11.43 days) using 

Windows 10 64-bit Operating System, Intel ® Core™ i7-4785T CPU @ 2.20 GHz, and 8.0 GB 

RAM. 

4.6.2 Results 

Integrated model calibration and validation 

The GSFLOW model-calibration period was from 2003 to 2007 (water years), and the 

model calibration period was from 2008 to 2012 (water years). Because these are the longest 

continuous data available for streamflow, they were used to assess the hydraulic properties and 

model-simulation performance. The storativity, basedflow, and streamflow were evaluated in the 

following sections.  
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Storativity 

Regarding aquifer storage properties, specific yield (Sy) and specific storage (Ss) are two 

parameters that determine the water storage feature in the unconfined aquifer and confined 

aquifer, respectively, as they were defined in the developed groundwater model. As summarized 

in Table 17 of each hydrostrategraphic unit, the specific yield for glacial deposits and alluvial 

deposits are 4E-2 and 3E-2, which are the principal formations of the unconfined aquifer; the 

specific storage for limestone and granite are 1.8E-1 and 1E-6, respectively, which were defined 

in the confined aquifer. The quartzite formation dominates the mountain upland from the deep 

level to land surface. Both specific yield and specific storage of the quartzite formation were 

defined and read by the MODFLOW program as this formation was defined both in unconfined 

aquifer in Layer 1 and confined aquifer in Layer 2, which are 2E-6 and 5E-7, respectively. 

Compared to values of selected rocks suggested by Heath (1983), the calibrated values of 

storage-related parameters are reasonable as they fell into the value ranges of each suggested 

rock. 

Table 17 

Comparisons of Storage-Related Parameters Between Model Calibration Estimations and Reference Values 

Selected for Each Hydrostrategraphic Unit in the MODFLOW Model (Ss = Specific Storage; Sy = Specific Yield, 

Dimensionless).  

Hydrostrategraphic unit Ss Sy Value Ranges of selected rocks (Heath 1983) 

Glacial deposits NA(1E-5) 4E-2 Value range for Glacial Till 1E-7 to 0.3 

Alluvial deposits NA(1E-5) 3E-2 
Value range for Silty, Loess, Silty 

Sand, Clean Sand, Gravel 
1E-3 to 5E3 

Quartzite 2E-6 5E-7 
Value range for Igneous and 

Metamorphic Rock 
1E-8 to 5 

Limestone 1.8E-1 NA(1.8E-1) Value range for Carbonate Rocks 1E-4 to 5E3 

Granite (and shale) 1E-6 NA(1E-3) Value range for Shale 1E-8 to 1E-4 

Baseflow 

The baseflow, which was estimated as the annual minimum daily streamflow in this 

study, was compared between observations and simulations (Figure 38). The calibrated model 



 

141 

simulation was able to capture the variation in wet years and dry years caused by above-average 

and below-average precipitation. In the comparison of the estimated baseflow between 

observation and model simulation, the high precipitation in water year 2005 resulted in high 

baseflow. This high baseflow receded annually until year 2011 when another wet year occurred. 

The 2011 flow recorded by the Lehman Creek gauging station was underestimated due to the 

high overland runoff, and some flow bypassed the gauging station (Prudic, 2012). Because the 

precipitation in 2011 was similar to the precipitation in 2005, the baseflow in 2011 is expected to 

be close to the baseflow value in 2005. Additionally, at the first year of model simulation, the 

baseflow estimation from the model simulation was underestimated compared to the estimation 

from observation records. This underestimation suggested the initial model condition was not 

well captured and simulated by the current model. 

 

Figure 38. Baseflow Comparisons Between GSFLOW Model Simulations and Observations for Water Years 

2003-2012, Estimated from the Annual Minimum Streamflow at the Gauging State of Lehman Creek. 

Streamflow 

Streamflow, as the critical evaluation variable available are in observation records of the 

study area, was used to evaluate the performance of the integrated model. The hydrographs 

resulted from the PRMS model and the GSFLOW model were compared with observations for 

both calibration and validation periods (Figure 39 a, b & c). On all evaluated annual, mean 
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monthly, and monthly mean scales, the streamflow simulation results from PRMS model and 

GSFLOW model are quite similar with slight differences in temporal distribution of mean 

monthly values. Compared to the PRMS model simulation results, the mean monthly streamflow 

resulting from the GSFLOW model tend to fit more closely with observations during months 

before peak and after streamflow peaks (Figure 39b). 

  
(a)                                             (b) 

 

(c) 

Figure 39. Streamflow Results Comparisons of GSFLOW Model Simulations, PRMS Simulations, and 

Observations on: A) Annual Scale, B) Mean Monthly Scale, and C) Monthly Mean Scale.  

 

In addition to the hydrograph comparisons, the model evaluation indexes were calculated 

and compared to provide a quantitative evaluation of the performances of these two models 

(Table 18). For calibration period, the performance of the PRMS model was evaluated as good 

based on PBIAS, good based on R2, and very good based on NSE, suggested by Moriasi et al.’s 
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(2015) watershed-scale model evaluation criteria. Similarly, for the validation period, the 

performance of the PRMS model was evaluate as very good based on PBIAS, satisfactory based 

on R2, and satisfactory based on NSE. Regarding the GSFLOW model performance, for the 

calibration period, it was evaluated as very good based on PBIAS, good based on R2, and good 

based on NSE; for the validation period, it was evaluated as very good based on PBIAS, good 

based on R2, and good based on NSE. 

Table 18  

Statistical Comparisons between PRMS Model Simulation and GSFLOW Model Simulation Regarding the Observed 

and Simulated Daily Streamflow at Lehman Creek for Calibration (2003-2007, Water Years) and Validation Period 

(2008-2012, Water Years). 

Index 
Calibration Period Validation Period 

PRMS GSFLOW PRMS GSFLOW 

PBIAS (%) -9.8 -0.19 2.0 -0.09 

R2 0.85 0.76 0.69 0.81 

NSE 0.82 0.74 0.64 0.75 

 

Sensitivity analysis 

Sensitivity analysis was performed on the parameters determining the hydraulic 

properties. The parameters include horizontal and vertical hydraulic conductivity, specific yield 

and specific storage for each hydrostrategraphic unit, and streambed conductivity for each stream 

segment. The evaluation indexes of RMSE, NSE, R2, and PBIAS were calculated by comparing 

observations and model simulations resulting from varying parameters. Results showed that, by 

multiplying the parameters with values ranging from 0.2 to 10, the calculated values of RMSE, 

NSE, R2, and PBIAS varied between 6.21 to 6.31, 0.73 to 0.74, 0.75 to 0.76, and -20.4% to 

-17.3%, respectively (Appendix A-3). 

The sensitivity analysis results show the streambed conductivity for each stream segment 

is not sensitive to the GSFLOW streamflow simulations, as indicated by lack of substantial 

variation anywhere except the last stream segment, i.e., segment 11, right before the watershed 
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outlet, overlaying the alluvial deposits and karst-limestone (Appendix A-3). By multiplying a 

coefficient of 10, the calculated indicator values for this streamflow segment have -40% (NSE), 

-13% (PBIAS), -34% (R2), and 45% (RMSE) differences from the values resulting from the 

calibrated parameters, which indicates substantial reduction in the model’s performance. 

The SA results of the indicators for specific yield, specific storage, horizontal hydraulic 

conductivity, and vertical hydraulic conductivity in each defined hydrostrategraphic unit, are 

shown in the Figure 40. As the figure shows, in all indicator results, the specific yield of glacial 

deposits, the horizontal hydraulic conductivity of glacial deposits, and the vertical hydraulic 

conductivity of karst-limestone were the most sensitive parameters, as the results changed when 

these parameters changed. Variations of more than 5% were found in resulting outcomes when 

comparing to the calibrated model results. 
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Figure 40. Results of a Sensitivity Analysis for the Hydraulic Conductivity of Each Hydrostrategraphic Unit 

Influencing the Transient-State Model Results, by Nash-Sutcliff Coefficient (NSE), Percentage of Bias (PBIAS), 

Square of Correlation (R2), and Root Mean Square Error (RMSE) (HK = Horizontal Hydraulic Conductivity; VK= 

Vertical Hydraulic Conductivity). 

GSFLOW simulation 

Well pumping influences on the local water system 

In order to evaluate the responses of the water resource system to the water pumping, a 

designed pumping rate proportional to the total water application in the Snake Valley was 

applied to the groundwater-flow system. On the basis of area ratio taken in the entire Snake 

Valley, different water pumping rates of 50% (255 m3/d), 100% (510 m3/d), and 100% (1020 

m3/d) were used as the external stresses to the groundwater system. Water level responses at the 
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pumping location and adjacent areas were evaluated by the groundwater-level changes, which 

were the water-level differences comparing to groundwater-level at the water-pumping starting 

time, especially at the location of the assumptive pumping location (column 86, row 11). As the 

Figure 41 indicated, the water-level drawdown increases tremendously with the water pumping 

increases as the water drawdown get to 5.3 m by the 50% of the designed withdrawal, 11.7 m by 

the 100% of the designed withdrawal, and 24.0 m by the 200% of the designed withdrawal by 

the end of 50-year continuous groundwater withdrawal. 

Comparing the water-level drawdown among the neighboring grids, the water-level 

drawdown increased over the pumping time and showed non-linear increases with the increase in 

the water withdrawal (Table 19). The largest water drawdown occurred for the largest pumping 

rate (i.e., 200% of designed pumping rate), reaching to 0.46 m by the end of the 50-year 

simulation period. Additionally, the results showed that at the lower groundwater withdrawal 

(50% of designed pumping rate, 255 m3/s), the groundwater drawdown is negligible (i.e., 7E-5 

meter).  

 

Figure 41. Results of Water-Level Drawdown with Different Pumping Rates, I.E., 50%, 100%, and 200% at the 

Pumping Location – South of Downstream Lehman Creek Watershed (Column 86, Row 11, Layer 2), Reported 

Annually with 50-Year Withdrawal. 
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Table 19 

Results of Water-Level Drawdown at Simulation Cells Surround the Assumptive Pumping Location at Different 

Pumping Rates, i.e., 50%, 100% , and 200% of the Design Rate, Reported Annually with 50-Year Withdrawal. 

 

Left (85,11,2) Right (87,11,2) 

 

50%  100% 200% 50%  100% 200% 

1 0 0 0 0 0 0 

2 0 0 1E-05 0 0 1E-05 

3 0 1E-05 1E-05 1E-05 1E-05 1E-05 

4 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 

5 1E-05 1E-05 2E-05 1E-05 1E-05 2E-05 

6 1E-05 1E-05 2E-05 1E-05 1E-05 2E-05 

7 1E-05 1E-05 2E-05 1E-05 1E-05 2E-05 

8 1E-05 1E-05 2E-05 1E-05 1E-05 3E-05 

9 1E-05 1E-05 3E-05 1E-05 2E-05 3E-05 

10 1E-05 2E-05 3E-05 1E-05 2E-05 3E-05 

11 1E-05 2E-05 3E-05 1E-05 2E-05 3E-05 

12 1E-05 2E-05 4E-05 1E-05 2E-05 4E-05 

13 1E-05 2E-05 4E-05 1E-05 2E-05 4E-05 

14 1E-05 2E-05 4E-05 1E-05 2E-05 4E-05 

15 1E-05 2E-05 5E-05 2E-05 2E-05 5E-05 

16 1E-05 2E-05 5E-05 2E-05 3E-05 5E-05 

17 1E-05 3E-05 5E-05 2E-05 3E-05 5E-05 

18 2E-05 3E-05 5E-05 2E-05 3E-05 6E-05 

19 2E-05 3E-05 6E-05 2E-05 3E-05 6E-05 

20 2E-05 3E-05 6E-05 2E-05 3E-05 6E-05 

21 2E-05 3E-05 6E-05 2E-05 3E-05 6E-05 

22 2E-05 3E-05 7E-05 2E-05 3E-05 7E-05 

23 2E-05 4E-05 7E-05 2E-05 4E-05 7E-05 

24 2E-05 4E-05 7E-05 2E-05 4E-05 7E-05 

25 2E-05 4E-05 7E-05 2E-05 4E-05 8E-05 

26 2E-05 4E-05 8E-05 2E-05 4E-05 8E-05 

27 2E-05 4E-05 8E-05 2E-05 4E-05 8E-05 

28 2E-05 4E-05 8E-05 2E-05 4E-05 8E-05 

29 2E-05 4E-05 8E-05 2E-05 4E-05 9E-05 

30 2E-05 5E-05 9E-05 2E-05 5E-05 9E-05 

31 2E-05 5E-05 9E-05 2E-05 5E-05 9E-05 

32 2E-05 5E-05 9E-05 2E-05 5E-05 9E-05 

33 2E-05 5E-05 9E-05 2E-05 5E-05 1E-04 

34 2E-05 5E-05 1E-04 2E-05 5E-05 1E-04 

35 2E-05 5E-05 1E-04 3E-05 5E-05 1E-04 

36 2E-05 5E-05 1E-04 3E-05 5E-05 1E-04 

37 3E-05 5E-05 1E-04 3E-05 6E-05 1E-04 

38 3E-05 6E-05 1.10E-04 3E-05 6E-05 1.10E-04 

39 3E-05 6E-05 1.10E-04 3E-05 6E-05 1.10E-04 

40 3E-05 6E-05 1.10E-04 3E-05 6E-05 1.10E-04 

41 3E-05 6E-05 1.10E-04 3E-05 6E-05 1.10E-04 

42 3E-05 6E-05 1.20E-04 3E-05 6E-05 1.20E-04 

43 3E-05 6E-05 1.20E-04 3E-05 6E-05 1.20E-04 

44 3E-05 6E-05 1.20E-04 3E-05 6E-05 1.20E-04 

45 3E-05 6E-05 1.92E-02 3E-05 6E-05 1.20E-04 

46 3E-05 6E-05 1.08E-01 3E-05 6E-05 8.65E-02 

47 3E-05 6E-05 1.97E-01 3E-05 7E-05 1.76E-01 

48 3E-05 7E-05 2.87E-01 3E-05 7E-05 2.65E-01 

49 3E-05 7E-05 3.76E-01 3E-05 7E-05 3.54E-01 
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50 3E-05 7E-05 4.65E-01 3E-05 7E-05 4.43E-01 

 

Front (86,10,2) Back (86,12,2) 

 

50%  100% 200% 50%  100% 200% 

1 0 0 0 0 0 0 

2 0 0 0 0 0 1E-05 

3 0 0 1E-05 0 1E-05 1E-05 

4 0 1E-05 1E-05 1E-05 1E-05 1E-05 

5 0 1E-05 1E-05 1E-05 1E-05 2E-05 

6 1E-05 1E-05 2E-05 1E-05 1E-05 2E-05 

7 1E-05 1E-05 2E-05 1E-05 1E-05 2E-05 

8 1E-05 1E-05 2E-05 1E-05 1E-05 2E-05 

9 1E-05 1E-05 3E-05 1E-05 1E-05 3E-05 

10 1E-05 1E-05 3E-05 1E-05 2E-05 3E-05 

11 1E-05 2E-05 3E-05 1E-05 2E-05 3E-05 

12 1E-05 2E-05 3E-05 1E-05 2E-05 4E-05 

13 1E-05 2E-05 4E-05 1E-05 2E-05 4E-05 

14 1E-05 2E-05 4E-05 1E-05 2E-05 4E-05 

15 1E-05 2E-05 4E-05 1E-05 2E-05 5E-05 

16 1E-05 2E-05 5E-05 2E-05 3E-05 5E-05 

17 1E-05 2E-05 5E-05 2E-05 3E-05 5E-05 

18 1E-05 3E-05 5E-05 2E-05 3E-05 5E-05 

19 1E-05 3E-05 6E-05 2E-05 3E-05 6E-05 

20 2E-05 3E-05 6E-05 2E-05 3E-05 6E-05 

21 2E-05 3E-05 6E-05 2E-05 3E-05 6E-05 

22 2E-05 3E-05 6E-05 2E-05 3E-05 7E-05 

23 2E-05 3E-05 7E-05 2E-05 4E-05 7E-05 

24 2E-05 4E-05 7E-05 2E-05 4E-05 7E-05 

25 2E-05 4E-05 7E-05 2E-05 4E-05 7E-05 

26 2E-05 4E-05 8E-05 2E-05 4E-05 8E-05 

27 2E-05 4E-05 8E-05 2E-05 4E-05 8E-05 

28 2E-05 4E-05 8E-05 2E-05 4E-05 8E-05 

29 2E-05 4E-05 8E-05 2E-05 4E-05 8E-05 

30 2E-05 4E-05 9E-05 2E-05 5E-05 9E-05 

31 2E-05 5E-05 9E-05 2E-05 5E-05 9E-05 

32 2E-05 5E-05 9E-05 2E-05 5E-05 9E-05 

33 2E-05 5E-05 9E-05 2E-05 5E-05 9E-05 

34 2E-05 5E-05 1E-04 2E-05 5E-05 1E-04 

35 2E-05 5E-05 1E-04 2E-05 5E-05 1E-04 

36 2E-05 5E-05 1E-04 3E-05 5E-05 1E-04 

37 2E-05 5E-05 1E-04 3E-05 6E-05 1E-04 

38 2E-05 5E-05 1.10E-04 3E-05 6E-05 1.10E-04 

39 2E-05 6E-05 1.10E-04 3E-05 6E-05 1.10E-04 

40 3E-05 6E-05 1.10E-04 3E-05 6E-05 1.10E-04 

41 3E-05 6E-05 1.10E-04 3E-05 6E-05 1.10E-04 

42 3E-05 6E-05 1.10E-04 3E-05 6E-05 1.20E-04 

43 3E-05 6E-05 1.20E-04 3E-05 6E-05 1.20E-04 

44 3E-05 6E-05 1.20E-04 3E-05 6E-05 1.20E-04 

45 3E-05 6E-05 1.20E-04 3E-05 6E-05 1.11E-02 

46 3E-05 6E-05 8.70E-02 3E-05 6E-05 1.00E-01 

47 3E-05 6E-05 1.76E-01 3E-05 6E-05 1.89E-01 

48 3E-05 6E-05 2.65E-01 3E-05 7E-05 2.78E-01 

49 3E-05 7E-05 3.54E-01 3E-05 7E-05 3.68E-01 

50 3E-05 7E-05 4.43E-01 3E-05 7E-05 4.57E-01 
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CMIP5-driven GSFLOW model simulation 

Streamflow – mean annual changes 

The streamflow simulations, driven by bias-corrected CMIP5 data, were analyzed using 

the simulation differences in the future periods (Period 1, Period 2, and Period 3) based on the 

baseline period, for each of the emission scenarios. It used the same methods and scales that 

were used for the PRMS model simulations for easier comparisons with the PRMS simulation 

results (Figure 42). On the basis of baseline period, the absolute changes and percentage changes 

of mean annual streamflow simulations over three future time periods were compared. Results 

showed substantial uncertainties regarding the changing trends over time periods and among the 

four potential climate change scenarios. From Periods 1, 2, and 3, the mean annual streamflow 

 under RCP 2.6, increases 5.4%, increases 2.5%, and increases 1.0%, respectively;  

 under RCP 4.5, decreases 8.7%, decreases 5.2%, and decreases 6.8%, respectively;  

 under RCP 6.0, it decrease 7.8%, decrease 3.9%, and increase 5.9%, respectively;  

 under RCP 8.5, it increases 0.7%, decreases 7.0%, and decreases 8.3%, respectively. 
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(a) 

 
(b) 

Figure 42. Comparisons of the Annual Streamflow Change Simulated by GSFLOW Model, Assessed at: (A) 

Absolute and (B) Percentage among Four Climate Change Scenarios: RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5, 

during Three Future Periods of 2011-2039, 2040-2069, and 2070-2099. 

Streamflow – mean monthly changes 

Changes in the simulated mean monthly streamflow, with regard to the baseline period, 

were compared for different scenarios during the three future periods (Figure 43& Figure 44). 

Variations among the multiple projections are presented by means of box plots. Positive values 

indicate streamflow increases, and negative values signify decreases. Results similar to the 

results from the PRMS simulation were found: There was a distinguishing time point between 

May and June that showed an increase of mean monthly streamflow during the winter 

(December to May) and a decrease during the summer (June to November).  

The changes in percentage were calculated, based on the absolute difference with 

baseline scenarios (Figure 45 & Figure 46). Evaluated by median values (Table 20), the largest 

increases occurred were during April and May, which reached to 27.5% - 129.4% and 26.6% - 



 

151 

117.2 %, respectively; the largest decreases occurred during July and August, which reached 

23.1% - 85% and 221.% - 85 %, respectively. Different from the simulation results of the 

CMIP5-driven PRMS modeling, the median increases in April and May were 27.8%-145.0% and 

26.4%-114.6%; the median decreases in July and August were 18.0% - 58.1% and 15.2 % and 

43.6%. This means the results from the GSFLOW model simulation have larger changes in mean 

monthly flow than the results from the PRMS model simulations. Additionally, during 

September and October, immediately after the largest mean monthly streamflow decreases 

occurred in July and August, the changes in streamflow are still higher than results from the 

PRMS model simulations. The streamflow change decreases during September and October are 

23.5% - 74.4% and 7.1% - 35.5%, respectively, resulting from the GSFLOW model simulations; 

they were 6.3% - 32% and 0.4% - 28.0%, resulting from the PRMS model simulations. (Table 

10). 
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Figure 43. Mean Monthly Streamflow Changes on the Basis of Baseline Period (1981-2010), Resulting fromthe GSFLOW Model Simulation. Three Periods 

were Compared: Period 1 (2011-2039), Period 2 (2040-2069), and Period 3 (2070-2099), under All Climate Change Scenarios of RCP 2.6 and RCP 4.5. 
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Figure 44. Mean Monthly Streamflow Changes on the Basis of Baseline Period (1981-2010), Resulting from the GSFLOW Model Simulation. Three Periods 

were Compared: Period 1 (2011-2039), Period 2 (2040-2069), and Period 3 (2070-2099), under All Climate Change Scenarios of RCP 6.0 and RCP 8.5. 

.
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Figure 45. Mean Monthly Streamflow Percentage Changes on the Basis of Baseline Period (1981-2010), Resulting from the GSFLOW Model Simulation. Three 

Periods were Compared: Period 1 (2011-2039), Period 2 (2040-2069), and Period 3 (2070-2099), under All Climate Change Scenarios of RCP 2.6 and RCP 4.5. 
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Figure 46. Mean Monthly Streamflow Percentage Changes on the Basis of Baseline Period (1981-2010), Resulting from the GSFLOW Model Simulation. Three 

Periods were compared: Period 1 (2011-2039), Period 2 (2040-2069), and Period 3 (2070-2099), under All Climate Change Scenarios of RCP 6.0 and RCP 8.5. 
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Table 20.  

The GSFLOWS Model Results from the CMIP5-Driven Simulation: Median Values of Mean Monthly Streamflow 

Changes based on the Baseline Period for Each RCP, in Percentage (%). 

Emission 

scenario 

Time 

period 
Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

RCP 2.6 

Period 1 16.5 32.4 38.4 30.9 23.7 -2.5 -23.1 -36.6 -33.8 -14.0 -1.5 -0.5 

Period 2 16.0 27.3 56.8 40.2 17.4 -14.8 -33.4 -22.1 -24.8 -15.0 0.3 8.2 

Period 3 19.1 31.2 59.1 48.4 23.1 -5.4 -29.0 -32.1 -24.2 -19.8 -0.6 8.5 

RCP 4.5 

Period 1 3.2 6.0 29.8 34.5 13.1 -17.3 -42.2 -43.5 -32.6 -19.3 -5.4 5.5 

Period 2 11.0 33.5 49.1 56.6 23.5 -26.0 -49.3 -52.7 -27.8 -16.8 -6.7 -3.7 

Period 3 3.2 28.9 64.4 69.2 27.2 -25.1 -48.9 -54.2 -47.5 -20.4 -9.3 -12.0 

RCP 6.0 

Period 1 1.7 13.2 27.5 26.6 13.0 -15.3 -32.1 -37.4 -29.7 -7.1 -1.0 -2.7 

Period 2 8.7 24.0 54.7 50.5 19.5 -23.9 -49.1 -64.4 -62.3 -24.9 -1.0 3.7 

Period 3 24.0 61.1 86.8 91.5 13.3 -42.6 -71.0 -53.2 -52.8 -26.4 2.3 3.6 

RCP 8.5 

Period 1 4.5 23.1 44.5 39.9 14.1 -13.7 -29.3 -26.7 -23.5 -12.5 -6.0 -0.2 

Period 2 7.1 27.5 69.4 93.8 12.2 -36.2 -61.6 -68.5 -54.4 -25.8 -13.1 -5.1 

Period 3 25.7 89.1 129.4 117.2 4.3 -66.3 -85.0 -85.0 -74.4 -35.5 -11.7 -4.9 

 

Streamflow – Winter-Spring Center of Volume (WSCV) dates 

The date changes for WSCV were analyzed among the various projections and scenarios 

on the basis of the baseline period (Figure 47). Positive values indicate a time lag when the 

WSCV date was late relative to the WSCV in the baseline period. Negative values mean earlier 

occurrences of the WSCV date relative to that in the baseline period. Similar to the results from 

the CMIP5-driven PRMS model simulation, the WSCV date change results showed negative 

values generally during all the periods and emission scenarios, indicating an earlier occurrence of 

snowmelt.  

The same as results from the PRMS model simulation, the streamflow shifted earlier. 

Median changes for the WSCV date shifts over four climate change scenarios showed a range 

from -3.7 to -8.1 days, -9.6 to -13.4 days, and -9.3 to -26.3 days during Period 1, 2, and 3, 

respectively, comparing to 2.9 to -9.1 days, -10.1 to -16.1 days, and -10.1 to -30 days during the 

corresponding period resulting from the PRMS model simulation. This means the GSFLOW 
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model simulation show milder changes regarding the WSCV date, compared to the PRMS 

model. Moreover, among all three time periods, the increasing tendency over the potential 

climate change scenarios in Period 3 was more apparent than in Period 1 and 2. 

 

Figure 47. Comparisons of Winter-Spring Center of Volume (WSCV) Date-Shifting among Four Climate Change 

Scenarios: RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5, during Three Future Periods: 2011 to 2039 (Period 1), 2040 to 

2069 (Period 2), and 2070 to 2099 (Period 2). The WSCV Values Calculated using GSFLOW Streamflow 

Simulations, and the Box Plot Represents Results from Multiple Climate Models of Each Scenario. 

Water balance 

The main water balance components in the entire integrated hydrologic system included 

the inflow of precipitation, and the outflows of evapotranspiration, streamflow, and groundwater 

boundary flow. By comparisons of three periods, the future variations of the principal water 

balance components over the time period of 2011-2099 were plotted using box plots in Figure 

48. For each period, the mean annual value was calculated over the 29/30 years for each climate 

change model, and the box plot represented the value distribution of different climate change 

models under each potential climate change scenario (Figure 48). 

The results showed gradual increases in annual precipitation and annual 

evapotranspiration over three future periods (Figure 48). The increasing precipitation results 

were consistent with the climate change evaluation from the Research Objective 1. The 

increasing evapotranspiration results were reasonable as the temperatures keep rising as the 

results from Research Objective 1 indicated.  
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Figure 48. Comparisons of: (A) Annual Precipitation, (B) Evapotranspiration, (C) Streamflow, and (D) 

Groundwater Outflow over the Three Future Periods of 2011-2039, 2040-2069, and 2070-2099 for Four Climate 

Change Scenarios: RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5. 

Water exchange 

In this study, two forms of surface-subsurface water interactions were evaluated: 1) areal 

water flux between the soil zone and groundwater-flow system, which used variables of 

net_sz2gw and basingw2sz; the streamflow water interaction with the groundwater-flow system, 

which were stream_leakage and gwflow2strms (Markstrom et al., 2005). The net_sz2gw is the 

gravity drainage from the soil zone to the unsaturated/saturated zone, indicating the actual water 

volume leaves the soil zone of the surface hydrology and enters the groundwater-flow system. 

The basin_gw2sz is the groundwater discharge from saturated zone to the soil zone, representing 

the areal water recharge to the soil zone of the surface hydrology. The stream_leakage is the 

streamflow leakage to the groundwater-flow system, and the gwflow2strms is the streamflow 

recharge from the groundwater-flow system. The results of the changes in water exchange were 

presented on annual scale, which were the mean annual water volume averaged over each 

analysis time period, e.g., Period 1, 2, and 3 (Figure 48 & Figure 49). Multiple climate change 

models were considered and represented by box plots under each potential climate change 
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scenario. As the figures showed, positive values in changes mean increase and negative values in 

changes mean decrease, while the negative values in stream_leakage stream water gaining. 

As shown in Figure 49, the areal water interaction increased comparing to the baseline 

period in both groundwater recharge from the soil zone (Figure 49a) and groundwater discharge 

to soil zone (Figure 49b), as the resulting water-change values were positive. However, these 

increasing changes showed a declining trend over three time periods in a long term, which was 

especially noticeable under climate change scenario RCP 8.5. Apart from the changing trend 

over the time periods, the results showed that the groundwater recharge from the soil zone 

(Figure 49a) were higher than and groundwater discharge to soil zone (Figure 49b), which means 

in the long-term future, more water would enter the groundwater-flow system from soil zone 

than the water leave to soil zone. 

 

Figure 49. Comparisons of Changes in Areal Water Interactions using Variables of Net_Sz2gw and Basingw2sz, 

over the Three Future Periods of 2011-2039 (Period 1), 2040-2069 (Period 2), and 2070-2099 (Period 3) for Four 

Climate Change Scenarios: RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5. (A) net_Sz2gw, Water Volume from Soil 

Zone to Groundwater System; (B) basingw2sz, Water Volume from Groundwater System to Soil Zone. 

The stream-water interactions were shown in Figure 50. While the negative values shown 

in changes of stream_leakage mean water gaining, both groundwater recharge from the streams 

(Figure 50a) and groundwater discharge to the streams (Figure 50b) increased, comparing to the 

baseline period. Similar to the results from the area water-interaction change, there was a 

declining trend in the increases in the water flux between streams and the groundwater.  
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Figure 50. Comparisons of Changes in Stream Water Interactions Using Variables of stream_leakage and 

gwflow2strms, over the Three Future Periods of 2011-2039 (Period 1), 2040-2069 (Period 2), and 2070-2099 (Period 

3) for Four Climate Change Scenarios: RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5. (A) stream_leakage, Water 

Volume from Streams to Groundwater System; (B) gwflow2strms, Water Volume from Groundwater System to 

Streams. Negative Sign in stream_leakage Means Stream Water Gaining. 

4.6.3 Conclusions and Discussion  

In this study, a GSFLOW model was developed for the Lehman Creek study area. The 

GSFLOW model coupled the developed surface hydrologic PRMS model and groundwater-flow 

MODFLOW model. Detailed coupling procedures were implemented regarding the module 

changes in the streamflow routing process, MODFLOW package change, and related parameter 

modifications. Furthermore, the GSFLOW model was further implemented in 

groundwater-withdrawal and climate-change studies.  

The results of groundwater withdrawal indicate a groundwater-level drawdown of 11.7 m 

was found with a 50-year water-withdrawal at the designed rate of 510 m3/d. The withdrawal rate 

was estimated using the SNWA water application and the share of study area in the Snake Valley  

The major findings from the CMIP5-driven GSFLOW model during the 3 time periods of 

the 21st century (2011-2039, 2040-2069, and 2070-2099) include: 

 The projected annual streamflow during the 21st century showed no certain trends under 

conditions of increasing precipitation and evapotranspiration, which are the major 

components in the water-balance budget. 

 Similar to the CMIP5-driven PRMS model simulation results, the changes in mean monthly 
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streamflow, a distinguishing point was identified where the increasing and decreasing trend 

occurred before May and after June, respectively. However, the streamflow results from 

GSFLOW model show larger decreases than the results from the PRMS model, especially 

during months of July, August, September, and October. 

 The peak of the streamflow shifted earlier for 3.7 to 26.3 days during the 21st century, and it 

is less than the days shifted resulting from the CMIP5-driven PRMS model simulation, i.e., 

-2.9 to 30 days. 

 The water exchange between the surface water and groundwater in the future projections 

were found to be higher compared to the baseline scenario, and this increasing water 

exchange became less as the time progressed in the future (from Period 1 to Period 3). 

The hydrologic responses to the climate change resulting from the GSFLOW modeling 

were similar overall to the results from the PRMS modeling. The GSFLOW modeling results 

show lesser changes compared to the PRMS modeling results. Additionally, the GSFLOW model 

simulation provided results regarding the dynamic water exchange between systems of surface 

hydrology and groundwater hydrology, even though the value was relatively small in the overall 

water budget.  

The development of an integrated hydrologic model can better represent the dynamic 

surface-and-subsurface water interaction. Since the groundwater-flow system was 

conceptualized as a water storage in the surface hydrologic PRMS model (section 3.4.), the 

resulting one-way vertical water flow from surface and underground may be unrealistic. 

However, by considering a detailed groundwater-level fluctuation using MODFLOW model, the 

GSFLOW model can simulate the two-way water flux interactions between surface water and 

groundwater from a physical hydrogeologic perspective. In this way, the integrated GSFLOW 
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model can better capture and represent hydrologic processes, and thus it can be performed 

reliably for future hydrologic studies. 

However, there were several limitations in the current study. First, the sensitivity analysis 

results may be limited by the data availability for streamflow used in the objective function and 

the use of local sensitivity analysis approach. Second, the amount of water exchanged between 

surface water and groundwater was small comparing to the total water budget, thus they were not 

further analyzed in terms of seasonal variations. Third, the grid used in the MODFLOW 

simulation needs further refinement to capture the detail drawdown propagation around the 

pumping well.  
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5 Chapter 5 Contribution of Current Research 

5.1 Summary 

Water, one of the most critical components of life on Earth, limits the 

social-environmental development. With the increasing water demand, Las Vegas Valley (LVV) 

is close to suing its allocation from the Colorado River. Southern Nevada Water Authority 

(SNWA) is responsible for water supply in the LVV, meeting water needs for residents, 

businesses, and tourists. SNWA hold an application for 50,679 afy in Snake Valley, where the 

groundwater could potentially support LVV for future development (SNWA, 2012). Variables of 

precipitation, temperature, streamflow, and groundwater are critical indicators to evaluate 

regional climate and water resources. Thus, to evaluate water resources, it is important to 

understand the meteorological conditions, hydrologic processes, and corresponding influences by 

natural changes and human disturbances, especially in the areas that can potentially supply water 

to LVV.  

Climate change is an important fact that was, is, and will continue to be studied. Results 

from climate change, spatially and temporally distributed meteorological variations, 

corresponding hydrologic alternations, and complex interactions between surface water and 

groundwater, make physically based modeling a very data intensive and demanding task, 

especially in snow-dominant areas.  

In this study, an integrated hydrologic model was developed and used as a tool to 

evaluate the impacts of climate change on water resources. The area of interest in this study was 

the Lehman Creek watershed in the Great Basin National Park, Nevada. In order to help provide 

scientific support for local water resources management, the hydrologic evaluation of climate 

change influences was performed. Three research questions were addressed towards this goal. 
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Research Question # 1: What are the long-term changes in meteorological conditions on 

a watershed scale with respect to Global Circulation Models? 

Research Question # 2: How do the climatic changes affect the streamflow on a 

watershed scale? 

Research Question # 3: How do integrated hydrologic processes respond to external 

stresses from meteorologic changes and human interference of groundwater pumping? 

To address the first question, the hypothesis tested was that the Quantile-Quantile 

Mapping method, used to bias correct the meteorological data from a coarse scale to a watershed 

scale, can keep the statistical characteristics of the data consistent with regional observations and 

result in reliable meteorological data that can be used for further watershed hydrologic study. 

The biases were identified from a statistical comparison between tested dataset and observed 

dataset during the same historical period, and then the biases were removed from the future-test 

dataset. In this way, the future-test dataset can be bias corrected and used for further hydrologic 

study. The downscaled GCM data from the CMIP5 BCCA dataset were used as a tested dataset, 

which provided the meteorological variables, i.e., daily precipitation (Prcp), maximum 

temperature (Tmax), and minimum temperature (Tmin), under four potential climate change 

scenarios: RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 at the resolution of 1/8° (12 km). Instead of 

10-year observation records, a 30-year PRISM dataset (1981-2010) was used to represent the 

observed dataset.  

Before the PRISM data was used for bias correction procedure, the data validation 

procedure was performed using mean monthly comparisons with observations for all three 

variables, i.e., Prcp, Tmax, and Tmin, during the overlapping period of 2003-2012 (water years). 

Then, after verifying the PRISM dataset as a reliable replication of observations, it was used to 
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capture the statistical long-term features and to bias correct the CMIP5 dataset in this study. 

Evaluation of the results was performed as a relative difference between the projected period, 

i.e., 2011-2099 and the baseline period, i.e., 1981-2010. Three future time periods were defined 

as 2011-2039, 2040-2069, and 2070-2099. Results showed that the PRISM data well preserved 

the meteorological features both in terms of values and distributions; thus, it was an effective 

replication of the meteorological observations in the study area. It helps resolving the issue of 

long-time data shortage. Additionally, the results of QM bias correction fit the observations well 

in terms of monthly distribution and density distribution during the same historical period. It 

indicates that this approach can be used to correct the combined errors from spatial resolution 

differences and model systems. Lastly, under the influences of climate change, the average value 

of mean annual ensembles over the entire projected 21st century showed an increase of 2.3 °C, 

2.2 °C, and 35.1 mm in maximum temperature, minimum temperature, and precipitation, 

respectively, in the study area (Great Basin NP station). 

To address the second question, the hypothesis tested was that through dynamic 

interaction between meteorologic variables and hydrologic processes, the streamflow would 

change in terms of rates and timing, responding to local climate change. In the study area of 

Lehman Creek watershed, snow-dominant runoff was simulated using the physically based 

parameter distributed hydrologic model PRMS. In order to retain data consistency when 

comparing the climate change results, the same PRISM dataset used for CMIP5 bias correction 

in the Research Question 1, was used as the driving force for the hydrologic model PRMS 

simulation for model calibration and validation. After the development of a valid hydrologic 

PRMS model, the bias-corrected CMIP5 climate-change data drove the model to simulate the 

corresponding streamflow. The model simulation results indicated that, as the temperature keeps 
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rising during the 21st century (projected results from Research Question 1), an increase in 

streamflow was expected from Lehman Creek. This was primarily due to the earlier snowmelt 

driven by increasing temperatures and secondarily due to the increasing precipitation. 

Additionally, decreases in the late-spring and summer flows were expected, along with an earlier 

arrival time for peak flow and less water storage in the snowpack by the end of the winter 

season. The degree of these changes varied with emission scenarios, and was highly correlated 

with the GCMs that produced the meteorological projections. The quantitative evaluations of the 

ensemble changes under each emission scenario provided insights regarding the effects of 

climate change on a watershed scale that has both known and unknown uncertainties. By 

providing a better understanding based on the assessment of the changing trends in the local 

streamflow under the long-term climate change in this century, this study could help local water 

resources management to devise more adaptive water strategies. 

The hypothesis tested to address the third question was that the water flux interaction 

between surface water and groundwater would show varying trend under the climate change and 

the groundwater would drawdown under the influence of groundwater pumping. To simulate the 

dynamic water interactions between the surface water and groundwater, a groundwater flow 

system model was developed using the three-dimensional finite-difference groundwater flow 

system (MODFLOW). Next, the MODFLOW model was coupled with the surface hydrologic 

model PRMS to develop the integrated hydrologic model GSFLOW. However, there were no 

hydraulic measurements within and around the study area of the Lehman Creek watershed. Due 

to an observation data shortage, the hydraulic properties, including hydraulic conductivity, 

specific yield, specific storage, and streambed hydraulic conductivity were estimated using a 

steady-state MODLFOW model and further improved using a transient GSFLOW model. By 
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using the developed GSFLOW model, two model implementations were made: 1) groundwater 

pumping influences and 2) evaluation of hydrologic responses to potential climate change. 

Different from PRMS-only modeling, the climate change evaluation using the GSFLOW model 

provided an integrated hydrologic view toward the water flow system, which includes surface 

and subsurface water systems, rather than the surface water system only. GSFLOW model 

results were assessed using the same approach used for the PRMS model. Comparisons were 

made between these two model evaluation results.  

Furthermore, with consideration of groundwater flow system in the GSFLOW model, 

evaluation of groundwater pumping effects on the local groundwater system becomes possible. 

On the basis of share of Lehman Creek watershed area in the entire Snake Valley, different water 

pumping rates of 50% (255 m3/d), 100% (510 m3/d), and 200% (1020 m3/d) were used as the 

external stresses to the groundwater system. They were simulated by 50-year groundwater 

pumping simulations at the cell at column 86, row 11, and layer 2. A 70-year period of the 

GSFLOW model ran prior to the start of the groundwater withdrawals to stabilize the 

groundwater condition before the water was pumped. Results showed that the water-level 

drawdown increased significantly with the water pumping increases; water drawdown was 5.3 m 

for the 50% withdrawal, 11.7 m for the 100% withdrawal, and 24.0 m for the 200% withdrawal 

by the end of 50 year of continuous groundwater pumping. Regarding the climate change 

influences on hydrologic processes, the projected annual streamflow during the 21st century 

showed no clear trends under conditions of increasing precipitation and evapotranspiration, 

which are the major components in the water balance. For the changes in mean monthly 

streamflow, similar to the CMIP5-driven PRMS model simulation results, a distinguishing point 

was identified where the increasing and decreasing trend occurred before May and after June, 
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respectively. However, the streamflow results from GSFLOW model show larger decreases than 

the results from the PRMS model, especially during July, August, September, and October. 

Moreover, the peak of the streamflow shifted earlier from 3.7 to 26.3 days during the period of 

2011-2099, and it is less than the days shifted resulting from the CMIP5-driven PRMS model 

simulation, i.e., -2.9 to 30 days, where the negative value means a delayed shift. Overall, the 

GSFLOW modeling results show lesser changes than the PRMS modeling results. However, 

GSFLOW provided results regarding the dynamic water exchange between surface and 

groundwater systems, even though the value of this exchange was relatively small in the entire 

water budget. The study results can provide integrated assessment of water resource changes 

regarding potential climate change and potential groundwater pumping in the study area. 

5.2 Contribution 

There are two main contributions from the Research Question 1. Firstly, this is the first 

time in the Lehman Creek that all 67 GCM models and scenarios (Appendix A - 1) were 

considered as an ensemble to evaluate climate change trends and variations among different time 

periods in the 21st century. Results showed increases in both precipitation and temperatures in 

the study area of Lehman Creek watershed, which lays solid groundwork that can help to provide 

a clearer understanding of the potential influences of changing climate on water resources and 

other disciplines. Secondly, the PRISM dataset was validated as a representation of observations 

in the study area, which indicates it can help resolve the data-shortage issue in areas where 

limited observation stations are available. 

The results from Research Question 2 could contribute to a better understanding of 

streamflow change in response to the climate change in Lehman Creek. Through the model 

simulation of meteor-hydrologic correlation in the study area, a platform was built to assess the 
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hydrologic processes, especially snow processes which are important in snow-dominant Lehman 

Creek watershed. Secondly, by using the bias-corrected CMIP5 datasets, it was the first time in 

the study area to consider all GCMs in the evaluation of corresponding streamflow changes 

under different climate change scenarios. The results of earlier-shift in streamflow peak-time and 

uncertainty in annual streamflow rates provide useful information for evaluation of future water 

resources. Based on this information different options can be considered for better water 

resources management. 

The results from question 3 could contribute to an improvement in the hydrologic 

evaluation in the study area responding to the external stresses: potential climate change and 

potential groundwater pumping. Considering three-dimensional groundwater-flow system, the 

GSFLOW model completes the water flow system by coupling the groundwater-flow system 

model with the surface hydrologic model PRMS. It fills a gap because the PRMS model only 

considers the groundwater flow system as a one-way water storage with no groundwater 

discharging to or influencing the surface water, such as the deeper root transpiration, 

groundwater outflow, and well pumping. As the dynamic water interactions between the 

unsaturated zone and streamflow, and soil zone and groundwater were simulated, the GSFLOW 

modeling improves the hydrologic simulation with a better representation. This is the first study 

in the Lehman Creek watershed that uses GSFLOW to evaluate climate change influences. 

Moreover, it was the first time that groundwater-pumping influences within the study area of 

Lehman Creek watershed were evaluated as a what-if scenario. The GSFLOW model developed 

built a valuable platform for groundwater studies, such as the influences by groundwater 

pumping/recharging with varied rates and locations.  
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Furthermore, in this study, through the development and calibrations of a steady-state 

MODFLOW model and a transient-state GSFLOW model, the hydraulic conductivity and 

specific storage of each hydrostrategraphic unit were estimated. This estimation of hydraulic 

properties in this area is useful, because there are no or limited groundwater observation sites 

around the study area. Last, but not the least, the groundwater pumping influences on the local 

groundwater system was assessed with the evaluated groundwater-head drawdown. This study is 

the first to explore how groundwater-head responses at different pumping rates in a simulated 

well that sits within the study area. These study results could help local water resources 

managers to better comprehend the water resources alternations under conditions of climate 

change and groundwater pumping.  

5.3 Limitations 

Like most statistical downscaling techniques, the Quantile-Quantile Mapping method 

kept the differences between GCM products and observations stationary throughout the 

bias-correction period and did not consider future variation. Additionally, the cross-correlation 

within each variable and between variables may not have been corrected. As the local climate 

change study heavily relies on the global climate change products, the uncertainties resulting 

from these limitations may add to the uncertainties within climate change forecast products, 

which users should be aware of when implementing in the future. 

An important assumption during PRMS model simulation is that the geomorphic 

condition remains consistent, as no changes in land-cover and land use are considered throughout 

the model simulation. Furthermore, in PRMS, the vertical flows in the soil go only one way. This 

could limit the simulation of water interactions between surface and sub surface, such as springs 



 

171 

and groundwater outflows, and thus influence the model simulation results. However, the 

MODFLOW model improved upon the PRMS model simulation. 

In the MODFLOW model simulation, there was no groundwater observation information 

available within the study area. This caused the greatest uncertainties in the hydraulic property 

estimation and groundwater flow evaluation. Furthermore, in the model set up, an evenly 

distributed thickness of every defined layer was assumed, which was a simplification of the 

geologic formation with similar hydraulic features. This further increases the uncertainties in the 

estimation of hydraulic properties and their spatial distribution in the study area. When the 

groundwater component is small relative to the surface flow and soil-zone flow, the estimation of 

the hydraulic properties becomes more challenging and uncertain when using streamflow for 

model calibration. 

In the GSFLOW model simulation, the interactive water-flux exchanges water between 

soil zone and unsaturated zone/saturated zone, and between streamflow and the groundwater. As 

the water exchange is highly correlated with the hydraulic properties and its spatial distribution, 

the uncertainties in the hydraulic property estimation will further disseminate to the GSFLOW 

model simulation. This uncertainty may not be detectable in the streamflow simulation because 

the groundwater component is small. 

Overall, this study - ‘Understanding the Long-term Changes in Hydrologic Processes on 

a Watershed Scale due to Meteorological Influences under Climate Change’ relied heavily on 

numerical model simulations. There are uncertainties when modeling physical processes, 

including uncertainties in input data, model calibration, and post-processing. Considering that 

two models were combined in this study, the resulting uncertainties may be significant, which 

will require additional attention when interpreting the results. 
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5.4 Recommendations 

In the study area of Lehman Creek watershed, the observation data are very limited. It is 

a typical snow-dominant area that plays an important role in the recharge of the local 

groundwater system, the Lehman Creek watershed is such a small area that it is typically called 

Lehman Creek drainage. The number of observation stations within the watershed, is not enough 

to represent the spatial distribution of the meteoro-hydrologic conditions. Courtesy of the 

NevCAN stations built in recent years, in the future, new measurements taken at these stations 

can substantially improve the hydrologic model performance with a long-term observation 

records used in the model development. 

The current study was based on the performance of hydrologic models, which directly 

determine the study results. The conceptualization of hydrologic procedures, one of the most 

important steps in the model development, has substantial effects on the model simulation. For 

example, while the evapotranspiration process was conceptualized within the soil zone simulated 

by the PRMS model, the deep root transpiration was not considered separately. In future, this can 

be further improved with the consideration of potential evapotranspiration in the unsaturated 

zone simulated by the MODFLOW model. The hydrogeological properties were conceptualized 

into 5 hydrostrategraphic units in this study, the spatial heterogeneity can be further improved by 

a more detailed classification of hydrostrategraphic units. In that case, the global optimization 

method, by using tools such as Parameter EStimation Tool (PEST), could be employed to 

explore the best parameter values and distributions instead of manual trial-and-error method used 

in this study.  
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6 Appendix 

A - 1 Coupled Model Intercomparison Project (CMIP5) Groups and Models.1,2 

No. Modeling Center (or Group)  Institute ID Model Name 
Available 

Scenarios 

1 

Commonwealth Scientific and Industrial Research 

Organization (CSIRO) and Bureau of Meteorology 

(BOM), Australia 

CSIRO-BOM ACCESS1.0 rcp4.5,rcp8.5 

2 
Beijing Climate Center, China Meteorological 

Administration 
BCC BCC-CSM1.1 

rcp2.6, rcp4.5, 

rcp6.0, rcp8.5 

3 
Canadian Centre for Climate Modelling and 

Analysis 
CCCMA CanESM2 

rcp2.6, rcp4.5, 

rcp8.5 

4 National Center for Atmospheric Research NCAR CCSM4 
rcp2.6, rcp4.5, 

rcp6.0, rcp8.5 

5 Community Earth System Model Contributors NSF-DOE-NCAR CESM1(BGC) rcp4.5, rcp8.5 

6 

Centre National de Recherches Météorologiques 

/Centre Européen de Recherche et Formation 

Avancée en Calcul Scientifique 

CNRM-CERFAC

S 
CNRM-CM5 rcp4.5, rcp8.5 

7 

Commonwealth Scientific and Industrial Research 

Organization in collaboration with Queensland 

Climate Change Centre of Excellence 

CSIRO-QCCCE CSIRO-Mk3.6.0 
rcp2.6, rcp4.5, 

rcp8.5 

8 

NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL 

GFDL-CM3 
rcp2.6,rcp6.0, 

rcp8.5 

9 GFDL-ESM2G 
rcp2.6, rcp4.5, 

rcp6.0, rcp8.5 

10 GFDL-ESM2M 
rcp2.6, rcp4.5, 

rcp6.0, rcp8.5 

11 Institute for Numerical Mathematics INM INM-CM4 rcp4.5,rcp8.5 

12 

Institut Pierre-Simon Laplace IPSL 

IPSL-CM5A-LR 
rcp2.6, rcp4.5, 

rcp6.0, rcp8.5 

13 IPSL-CM5A-MR 
rcp2.6, rcp4.5, 

rcp6.0, rcp8.5 

14 
Japan Agency for Marine-Earth Science and 

Technology, Atmosphere and Ocean Research 

Institute (The University of Tokyo), and National 

Institute for Environmental Studies 

MIROC 

MIROC-ESM 
rcp2.6, rcp4.5, 

rcp6.0, rcp8.5 

15 
MIROC-ESM-C

HEM 

rcp2.6, rcp4.5, 

rcp6.0, rcp8.5 

16 

Atmosphere and Ocean Research Institute (The 

University of Tokyo), National Institute for 

Environmental Studies, and Japan Agency for 

Marine-Earth Science and Technology 

MIROC MIROC5 
rcp2.6, rcp4.5, 

rcp6.0, rcp8.5 

17 
Max-Planck-Institut für Meteorologie (Max Planck 

Institute for Meteorology) 
MPI-M 

MPI-ESM-LR 
rcp2.6, rcp4.5, 

rcp8.5 

18 MPI-ESM-MR 
rcp2.6, rcp4.5, 

rcp8.5 

19 Meteorological Research Institute MRI MRI-CGCM3 
rcp2.6, rcp4.5, 

rcp6.0, rcp8.5 

20 Norwegian Climate Centre NCC NorESM1-M 
rcp2.6, rcp4.5, 

rcp6.0, rcp8.5 

                                                 
1 http://cmip-pcmdi.llnl.gov/cmip5/docs/CMIP5_modeling_groups.pdf. 
2 The products used in this study were resulted from the first initial condition (run) for each model.  
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A - 2 Descriptions of Station Networks Used In PRISM Spatial Climate Datasets.3 4 

Stations Descriptions Focus 

AGRIMET Bureau of Reclamation Agricultural Weather Network Prcp, Temp 

AGWXNET Washington State University’s Agricultural Weather Network Prcp, Temp 

ASOS/ISH 

Automated Surface Observing System and related networks (e.g., AWOS), and 

Integrated Surface Hourly network Notes: ASOS network began installation in 

1996, with poor instrumentation for measuring snowfall. 

Prcp, Temp 

CIMIS California Irrigation Management Information System Temp 

COAGMET Colorado Agricultural Meteorological Network Prcp, Temp 

COCORAHS 
Community Collaborative Rain, Hail and Snow Network. Notes: Currently the 

largest ppt observing network in the US. 
Prcp 

COOP 

National Weather Service Cooperative Observer Program. Notes: These stations 

are part of the GHCN-D database. COOP is the longest-running climate network 

(US). 

Prcp, Temp 

EC Environment Canada Prcp, Temp 

FAWN Florida Agricultural Weather Network Prcp, Temp 

HDSC 

NOAA Hydrometeorological Design Studies Center. Notes: A collection of ppt 

stations in California used by HDSC and PRISM to produce the NOAA Atlas 14 

ppt frequency maps. Period of record ends in 2010. 

Prcp 

HJA 

HJ Andrews Experimental Forest, Oregon, NSF Long Term Ecological Research 

Site (LTER); benchmark sites, reference stands, cold air transects 

Notes: Data lag time is currently longer than 6 months, which is our cutoff for 

operational inclusion; this means that at present, HJA data can be included only 

when new versions of the datasets are created. 

Prcp, Temp 

HYD 

Advanced Hydrologic Prediction Service River Forecast Centers 

Notes: Selected stations from a combination of many different networks. Stations 

available from networks for which we have direct feeds are excluded (difficulties 

identifying the source networks in HYD produce occasional duplications). 

Prcp 

LUKEAFB Luke Air Force Base network, SW Arizona Prcp, Temp 

MEXICO 
Global Historical Climate Network – Mexico. Notes: These stations are part of the 

GHCN-D database 
Prcp, Temp 

MN 
Minnesota Climatology Working Group, previously called Minnesota HiDen, now 

called MNGage 
Prcp 

NEVCAN Nevada Climate-Ecohydrological Assessment Network Prcp, Temp 

NDAWN North Dakota Agricultural Weather Network Prcp, Temp 

NDSWC North Dakota State Water Commission Prcp 

NDBC 
National Data Buoy Center. Notes: Used to characterize near-coastal air 

temperature and humidity 
Temp 

RAWS 
U.S. Forest Service and Bureau of Land Management Remote Automated 

Weather Stations 
Prcp, Temp 

SCAN USDA NRCS Soil Climate Analysis Network Prcp, Temp 

SFWMD South Florida Water Management District Prcp 

SNOTEL 
Natural Resources Conservation Service Snowpack Telemetry 

Notes: The main high elevation network in western mountains. 
Prcp, Temp 

WBAN 
Weather Bureau, Army, Navy. Notes: These stations are part of the GHCN-D 

database. In 1996, many WBAN stations converted to ASOS instrumentation. 
Prcp, Temp 

WRCC Western Regional Climate Center Prcp, Temp 

OKMESONET Oklahoma Mesonet Temp 

AHPS RADAR  Advanced Hydrometeorological Prediction System (Stage 2 and 4 grids) Prcp 

                                                 
3 AN81d data, from 1 Jan, 1981-ongoing, daily step, at 2.5 min (4 km) resolution. http://prism.oregonstate.edu 
4 Data station used in AN81d varied due to the station equipment and location changes, opening and closing. 
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A - 3 Sensitivity Analysis Results of NSE for Specific Storage, Specific Yield, Horizontal and Vertical Hydraulic Conductivity in Each Hydrostrategegraphic 

Unit (i.e., GD - Glacial Deposit; AD – Alluvial Deposits; MQ - Mountain Quartzite; KL – Karst Limestone; BG – Biotite Granite). 

 

multiply  

coefficient 

Ss Sy HK VK 

GD AD MQ KL BG GD AD MQ KL BG GD AD MQ KL BG GD AD MQ KL BG 

0.2 0.749 0.749 0.746 0.745 0.749 0.750 0.749 0.749 0.749 0.749 0.749 0.740 0.749 0.749 0.749 0.749 0.749 0.749 0.743 0.749 

0.3 0.749 0.749 0.749 0.746 0.749 0.751 0.749 0.749 0.749 0.749 0.749 0.740 0.749 0.749 0.749 0.749 0.749 0.749 0.744 0.749 

0.4 0.749 0.749 0.749 0.748 0.749 0.751 0.749 0.749 0.749 0.749 0.749 0.740 0.749 0.749 0.749 0.749 0.749 0.749 0.746 0.749 

0.5 0.749 0.749 0.749 0.748 0.749 0.751 0.749 0.749 0.749 0.749 0.749 0.740 0.749 0.749 0.749 0.749 0.749 0.749 0.747 0.749 

0.6 0.749 0.749 0.749 0.749 0.749 0.750 0.749 0.749 0.749 0.749 0.749 0.741 0.749 0.749 0.749 0.749 0.749 0.749 0.747 0.749 

0.7 0.749 0.749 0.749 0.749 0.749 0.750 0.749 0.749 0.749 0.749 0.749 0.741 0.749 0.749 0.749 0.749 0.749 0.749 0.748 0.749 

0.8 0.749 0.749 0.749 0.749 0.749 0.750 0.749 0.749 0.749 0.749 0.749 0.741 0.749 0.749 0.749 0.749 0.749 0.749 0.748 0.749 

0.9 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.741 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 

1 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.741 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 

2 0.749 0.749 0.749 0.749 0.749 0.746 0.749 0.749 0.749 0.749 0.749 0.741 0.749 0.749 0.749 0.749 0.748 0.749 0.746 0.749 

4 0.749 0.749 0.749 0.749 0.749 0.743 0.749 0.749 0.749 0.749 0.749 0.741 0.749 0.749 0.749 0.749 0.747 0.748 0.741 0.749 

6 0.749 0.749 0.749 0.749 0.749 0.742 0.749 0.749 0.749 0.749 0.749 0.741 0.749 0.749 0.749 0.749 0.747 0.748 0.741 0.749 

8 0.749 0.749 0.749 0.749 0.749 0.742 0.748 0.749 0.749 0.749 0.749 0.742 0.749 0.749 0.749 0.749 0.746 0.749 0.741 0.749 

10 0.749 0.749 0.749 0.749 0.749 0.742 0.748 0.749 0.749 0.749 0.749 0.742 0.749 0.749 0.749 0.749 0.746 0.748 0.741 0.749 
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A - 4 Sensitivity Analysis Results of PBIAS For Specific Storage, Specific Yield, Horizontal and Vertical Hydraulic Conductivity in Each Hydrostrategegraphic 

Unit (i.e., GD - Glacial Deposit; AD – Alluvial Deposits; MQ - Mountain Quartzite; KL – Karst Limestone; BG – Biotite Granite). 

multiply  

coefficient 

Ss Sy HK VK 

GD AD MQ KL BG GD AD MQ KL BG GD AD MQ KL BG GD AD MQ KL BG 

0.2 -11.4 -11.4 -11.2 -17.1 -11.4 -11.1 -11.3 -11.4 -11.4 -11.4 -11.4 8 -11.4 -11.4 -11.4 -11.4 -10 -11.4 -18.5 -11.4 

0.3 -11.4 -11.4 -11.3 -16.3 -11.4 -11.1 -11.3 -11.4 -11.4 -11.4 -11.4 8 -11.4 -11.4 -11.4 -11.4 -9.5 -11.4 -17.8 -11.4 

0.4 -11.4 -11.4 -11.4 -14.6 -11.4 -11.2 -11.3 -11.4 -11.4 -11.4 -11.4 8 -11.4 -11.4 -11.4 -11.4 -9.5 -11.4 -17.2 -11.4 

0.5 -11.4 -11.4 -11.4 -12.5 -11.4 -11.2 -11.4 -11.4 -11.4 -11.4 -11.4 7.9 -11.4 -11.4 -11.4 -11.4 -9.8 -11.4 -16.5 -11.4 

0.6 -11.4 -11.4 -11.4 -12.1 -11.4 -11.3 -11.4 -11.4 -11.4 -11.4 -11.4 7.9 -11.4 -11.4 -11.4 -11.4 -10.1 -11.4 -15.6 -11.4 

0.7 -11.4 -11.4 -11.4 -11.8 -11.4 -11.3 -11.4 -11.4 -11.4 -11.4 -11.4 7.9 -11.4 -11.4 -11.4 -11.4 -10.4 -11.4 -14.6 -11.4 

0.8 -11.4 -11.4 -11.4 -11.6 -11.4 -11.3 -11.4 -11.4 -11.4 -11.4 -11.4 7.9 -11.4 -11.4 -11.4 -11.4 -10.8 -11.4 -13.5 -11.4 

0.9 -11.4 -11.4 -11.4 -11.5 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 7.9 -11.4 -11.4 -11.4 -11.4 -11.1 -11.4 -12.5 -11.4 

1 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 7.9 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 

2 -11.4 -11.4 -11.4 -11.3 -11.4 -11.6 -11.4 -11.4 -11.4 -11.4 -11.4 7.7 -11.4 -11.4 -11.4 -11.4 -13.5 -11.4 -1.5 -11.4 

4 -11.4 -11.4 -11.4 -11.2 -11.4 -12 -11.4 -11.4 -11.4 -11.4 -11.4 7.5 -11.4 -11.4 -11.4 -11.4 -15.3 -11.4 6.8 -11.4 

6 -11.4 -11.4 -11.4 -11.2 -11.4 -12.1 -11.4 -11.4 -11.4 -11.4 -11.3 7.3 -11.4 -11.4 -11.4 -11.4 -16 -11.5 7 -11.4 

8 -11.4 -11.4 -11.4 -11.2 -11.4 -12.3 -11.4 -11.4 -11.4 -11.4 -11.3 7.2 -11.4 -11.4 -11.4 -11.4 -16.3 -11.4 7.2 -11.4 

10 -11.4 -11.4 -11.4 -11.2 -11.4 -12.3 -11.4 -11.4 -11.4 -11.4 -11.3 7.1 -11.4 -11.3 -11.4 -11.4 -16.5 -11.4 7.5 -11.4 
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A - 5 Sensitivity Analysis Results of R2 for Specific Storage, Specific Yield, Horizontal and Vertical Hydraulic Conductivity in Each Hydrostrategegraphic Unit 

(i.e., GD - Glacial Deposit; AD – Alluvial Deposits; MQ - Mountain Quartzite; KL – Karst Limestone; BG – Biotite Granite). 

multiply  

coefficient 

Ss Sy HK VK 

GD AD MQ KL BG GD AD MQ KL BG GD AD MQ KL BG GD AD MQ KL BG 

0.2 0.762 0.762 0.758 0.763 0.762 0.763 0.762 0.762 0.762 0.762 0.762 0.752 0.762 0.762 0.762 0.762 0.761 0.762 0.762 0.762 

0.3 0.762 0.762 0.762 0.763 0.762 0.764 0.762 0.762 0.762 0.762 0.762 0.752 0.762 0.762 0.762 0.762 0.761 0.762 0.763 0.762 

0.4 0.762 0.762 0.762 0.763 0.762 0.764 0.762 0.762 0.762 0.762 0.762 0.752 0.762 0.762 0.762 0.762 0.761 0.762 0.763 0.762 

0.5 0.762 0.762 0.762 0.762 0.762 0.764 0.762 0.762 0.762 0.762 0.762 0.752 0.762 0.762 0.762 0.762 0.761 0.762 0.763 0.762 

0.6 0.762 0.762 0.762 0.762 0.762 0.763 0.762 0.762 0.762 0.762 0.762 0.752 0.762 0.762 0.762 0.762 0.761 0.762 0.763 0.762 

0.7 0.762 0.762 0.762 0.762 0.762 0.763 0.762 0.762 0.762 0.762 0.762 0.752 0.762 0.762 0.762 0.762 0.761 0.762 0.763 0.762 

0.8 0.762 0.762 0.762 0.762 0.762 0.763 0.762 0.762 0.762 0.762 0.762 0.752 0.762 0.762 0.762 0.762 0.762 0.762 0.763 0.762 

0.9 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.752 0.762 0.762 0.762 0.762 0.762 0.762 0.763 0.762 

1 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.752 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 

2 0.762 0.762 0.762 0.762 0.762 0.759 0.762 0.762 0.762 0.762 0.762 0.752 0.762 0.762 0.762 0.762 0.763 0.762 0.756 0.762 

4 0.762 0.762 0.762 0.762 0.762 0.756 0.762 0.762 0.762 0.762 0.762 0.752 0.762 0.762 0.762 0.762 0.763 0.762 0.752 0.762 

6 0.762 0.762 0.762 0.762 0.762 0.756 0.761 0.762 0.762 0.762 0.762 0.752 0.762 0.762 0.762 0.762 0.763 0.761 0.753 0.762 

8 0.762 0.762 0.762 0.762 0.762 0.756 0.761 0.762 0.762 0.762 0.762 0.753 0.762 0.762 0.762 0.762 0.763 0.762 0.753 0.762 

10 0.762 0.762 0.762 0.762 0.762 0.757 0.761 0.762 0.762 0.762 0.762 0.753 0.762 0.762 0.762 0.762 0.763 0.762 0.753 0.762 
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A - 6 Sensitivity Analysis Results of RMSE for Specific Storage, Specific Yield, Horizontal and Vertical Hydraulic Conductivity in Each Hydrostrategegraphic 

Unit (i.e., GD - Glacial Deposit; AD – Alluvial Deposits; MQ - Mountain Quartzite; KL – Karst Limestone; BG – Biotite Granite). 

multiply  

coefficient 

Ss Sy HK VK 

GD AD MQ KL BG GD AD MQ KL BG GD AD MQ KL BG GD AD MQ KL BG 

0.2 6.123 6.122 6.161 6.169 6.122 6.104 6.124 6.122 6.122 6.122 6.123 6.226 6.122 6.123 6.122 6.121 6.121 6.120 6.192 6.122 

0.3 6.122 6.122 6.127 6.152 6.122 6.103 6.124 6.122 6.122 6.122 6.123 6.225 6.122 6.123 6.122 6.122 6.122 6.120 6.177 6.122 

0.4 6.122 6.122 6.125 6.138 6.122 6.103 6.123 6.123 6.122 6.122 6.123 6.225 6.122 6.123 6.122 6.122 6.123 6.121 6.163 6.122 

0.5 6.122 6.122 6.123 6.130 6.122 6.103 6.123 6.123 6.122 6.122 6.123 6.225 6.122 6.123 6.122 6.122 6.123 6.121 6.152 6.122 

0.6 6.122 6.122 6.122 6.127 6.122 6.105 6.123 6.123 6.122 6.122 6.123 6.225 6.122 6.123 6.122 6.122 6.122 6.121 6.143 6.122 

0.7 6.122 6.122 6.122 6.125 6.122 6.108 6.123 6.123 6.122 6.122 6.123 6.225 6.122 6.123 6.122 6.122 6.122 6.122 6.135 6.122 

0.8 6.122 6.122 6.122 6.124 6.122 6.112 6.123 6.123 6.122 6.122 6.123 6.224 6.122 6.123 6.122 6.122 6.122 6.122 6.129 6.122 

0.9 6.122 6.122 6.122 6.123 6.122 6.117 6.122 6.122 6.122 6.122 6.123 6.224 6.122 6.122 6.122 6.122 6.122 6.122 6.124 6.122 

1 6.122 6.122 6.122 6.122 6.122 6.122 6.122 6.122 6.122 6.122 6.123 6.224 6.122 6.122 6.122 6.122 6.122 6.122 6.122 6.122 

2 6.123 6.122 6.123 6.121 6.122 6.164 6.123 6.123 6.122 6.122 6.122 6.222 6.122 6.122 6.122 6.123 6.129 6.124 6.153 6.122 

4 6.124 6.122 6.123 6.121 6.122 6.198 6.125 6.123 6.122 6.122 6.121 6.218 6.122 6.122 6.122 6.123 6.140 6.128 6.214 6.122 

6 6.124 6.122 6.123 6.121 6.122 6.206 6.127 6.123 6.122 6.122 6.121 6.214 6.122 6.121 6.122 6.123 6.148 6.131 6.215 6.122 

8 6.124 6.122 6.123 6.121 6.122 6.207 6.128 6.123 6.122 6.122 6.120 6.211 6.122 6.121 6.122 6.124 6.153 6.128 6.216 6.122 

10 6.125 6.122 6.123 6.121 6.122 6.208 6.129 6.123 6.122 6.122 6.119 6.208 6.122 6.120 6.122 6.124 6.157 6.130 6.220 6.122 
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A - 7 Sensitivity Analysis Results of PBIAS For Streambed Hydraulic Conductivity in Each Stream Segment.  

multiply coefficient strmseg1 strmseg2 strmseg3 strmseg4 strmseg5 strmseg6 strmseg7 strmseg8 strmseg9 strmseg10 strmseg11 

0.2 -11.4 -11.4 -11.3 -11.4 -11.4 -11.3 -11.1 -11.4 -11 -10.7 -11 

0.3 -11.4 -11.4 -11.3 -11.4 -11.4 -11.4 -11.2 -11.4 -11.1 -11 -11.4 

0.4 -11.4 -11.4 -11.3 -11.4 -11.4 -11.4 -11.3 -11.4 -11.2 -11.1 -11.6 

0.5 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.3 -11.4 -11.2 -11.2 -11.6 

0.6 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.3 -11.4 -11.3 -11.3 -11.6 

0.7 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.3 -11.4 -11.3 -11.3 -11.6 

0.8 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.3 -11.3 -11.5 

0.9 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.5 

1 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 

2 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.5 -11.5 -10.9 

4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.5 -11.4 -11.5 -11.6 -10.7 

6 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.5 -11.4 -11.6 -11.6 -10.7 

8 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.5 -11.4 -11.6 -11.6 -10.9 

10 -11.4 -11.4 -11.4 -11.4 -11.4 -11.4 -11.5 -11.4 -11.6 -11.6 -11.1 

 

 



 

180 

A - 8 Sensitivity Analysis Results of R2 For Streambed Hydraulic Conductivity in Each Stream Segment.  

multiply 

coefficient 
strmseg1 strmseg2 strmseg3 strmseg4 strmseg5 strmseg6 strmseg7 strmseg8 strmseg9 strmseg10 strmseg11 

0.2 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.763 0.762 

0.3 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.763 0.762 

0.4 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 

0.5 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 

0.6 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 

0.7 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 

0.8 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 

0.9 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 

1 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 

2 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 

4 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 

6 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.761 

8 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.761 

10 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.761 
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A - 9 Sensitivity Analysis Results of RMSE For Streambed Hydraulic Conductivity in Each Stream Segment. 

multiply 

coefficient 
strmseg1 strmseg2 strmseg3 strmseg4 strmseg5 strmseg6 strmseg7 strmseg8 strmseg9 strmseg10 strmseg11 

0.2 6.123 6.122 6.122 6.122 6.122 6.119 6.116 6.123 6.116 6.106 6.108 

0.3 6.123 6.122 6.122 6.122 6.122 6.121 6.118 6.123 6.118 6.112 6.113 

0.4 6.123 6.122 6.122 6.122 6.122 6.120 6.120 6.123 6.119 6.115 6.117 

0.5 6.123 6.122 6.122 6.122 6.122 6.120 6.120 6.123 6.120 6.118 6.119 

0.6 6.123 6.122 6.122 6.122 6.122 6.121 6.121 6.123 6.121 6.119 6.120 

0.7 6.123 6.122 6.122 6.122 6.122 6.121 6.121 6.123 6.121 6.120 6.121 

0.8 6.122 6.122 6.122 6.122 6.122 6.122 6.122 6.122 6.122 6.121 6.122 

0.9 6.122 6.122 6.122 6.122 6.122 6.122 6.122 6.122 6.122 6.122 6.122 

1 6.122 6.122 6.122 6.122 6.122 6.122 6.122 6.122 6.122 6.122 6.122 

2 6.122 6.122 6.122 6.123 6.122 6.123 6.124 6.122 6.124 6.125 6.124 

4 6.122 6.122 6.122 6.123 6.122 6.123 6.125 6.122 6.125 6.127 6.127 

6 6.122 6.123 6.122 6.123 6.122 6.123 6.126 6.122 6.126 6.127 6.130 

8 6.122 6.123 6.122 6.123 6.122 6.124 6.126 6.122 6.126 6.128 6.132 

10 6.122 6.123 6.123 6.123 6.122 6.124 6.126 6.122 6.126 6.128 6.135 
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A - 10 Sensitivity Analysis Results of NSE For Streambed Hydraulic Conductivity in Each Stream Segment.  

multiply 

coefficient 
strmseg1 strmseg2 strmseg3 strmseg4 strmseg5 strmseg6 strmseg7 strmseg8 strmseg9 strmseg10 strmseg11 

0.2 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.750 0.750 0.750 

0.3 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.750 0.750 

0.4 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.750 0.749 

0.5 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 

0.6 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 

0.7 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 

0.8 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 

0.9 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 

1 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 

2 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 

4 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 

6 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.748 

8 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.748 

10 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.748 
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6.1 Model simulation algorithms in MODLFOW 

The following descriptions of Mathematical Model, Discretization Convention, and 

Finite-different Equation are from Harbaugh et al. (2005). 

6.1.1 Mathematical Model 

The three-dimensional movement of groundwater with constant density through porous 

media is described using a partial-differential equation:  

𝜕

𝜕𝑥
(𝐾𝑥𝑥

𝜕ℎ

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐾𝑦𝑦

𝜕ℎ

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝐾𝑧𝑧

𝜕ℎ

𝜕𝑧
) + 𝑊 = 𝑆𝑠

𝜕ℎ

𝜕𝑡
                       (13) 

Where,  

𝐾xx, 𝐾yy, and 𝐾zz are hydraulic conductivity along the x, y, and z coordinate axes, in 

unit of length per time (L/T); 

h is the potentiometric head, in unit of length (L); 

W is a volumetric flux per unit volume, representing sources and/or sinks, with W<0 for 

flow out of the groundwater system, and W>0 for flow into the groundwater system (T-1); 

𝑆s is the specific storage of the porous material (L-1); 
t is time (T). 

 

The equation above describes the groundwater flow under non-equilibrium conditions in 

a heterogeneous and anisotropic medium, with which the principal axes of hydraulic 

conductivity are aligned with the coordinate direction. A mathematical representation of a 

groundwater flow system includes the general governing equation above with the specifications 

of flow and/or head conditions at the boundaries of an aquifer system and specification of 

initial-head conditions. See Rushton and Redshaw (1979) for the derivation of the equation. 

6.1.2 Discretization Convention 

An analytical solution for the equation above is rarely possible, so numerical methods are 

employed to gain an approximated solution. Figure 51shows the spatial discretization of an aquifer 

system in three dimensions with a block gridded into cells. The aquifer block is described in 

terms of rows, columns, and layers, with i, j, k indexes representing the locations in three 

directions (Figure 51). 
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---      Aquifer boundary 

        Active cell 

Δci    Width of cell in column direction, i indicates the number of the row 

Δrj    Width of cell in row direction, j indicates the number of the column 

Δvk   Width of cell in vertical direction, k indicates the number of the layer 

 
Figure 51. Discretization of Hypothetical Aquifer (Adapted from Mcdonald & Harbaugh, 1988; Harbaugh et al., 

2005). 

 

Each grid is defined to be rectangular both horizontally and vertically. In the column 

direction, the width of cells at a given row i is designated Δci; in the row direction, the width of 

cells at a given column j is designated Δrj; in the layer direction, the thickness of cells at a given 

layer k is designated Δvk.  

6.1.3 Finite-Difference Equation 

The finite- difference equation of groundwater flow is following the law of continuity: 

The sum of the inflow and outflow of a cell must be equal to the rate of the storage change 

within the cell. With an assumption of constant water density, the continuity equation of a single 

cell is: 

∑ 𝑄𝑖 = 𝑆𝑆
∆ℎ

∆𝑡
∆𝑉                              (14) 
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Where, 

𝑄𝑖 is a flow rate into the cell (L3T-1); 
SS  is specific storage, which is the volume of water that can be injected per unit volume 

of aquifer per unit change in head (L-1); 

∆𝑉 is the volume of the cell (L3); 

∆ℎ is the head change over the time interval of ∆𝑡. 

 

Figure 52 shows the indices of cells that are used for the calculation of flow between 

adjacent cells. 

 
Figure 52. Indices of the Hypothetic Cell (i,j,k) and Its Surrounding Cells (Adapted from Mcdonald & Harbaugh, 

1988; Harbaugh et al., 2005). 

 

 
Figure 53. Flow from Cell i,j-1,k To Cell i,j,k (Adapted from Mcdonald & Harbaugh, 1988; Harbaugh et al., 2005). 

 

According to Darcy’s law, a one-dimensional stead-state flow passes through a block of 

aquifer from cell i, j-1, k to cell i, j, k with the cross section area of ΔciΔvk is shown below 

(Figure 53): 
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𝑞𝑖,𝑗−1/2,𝑘 = 𝐾𝑅𝑖,𝑗−1/2,𝑘∆𝑐𝑖∆𝑣𝑘
(ℎ𝑖,𝑗−1,𝑘−ℎ𝑖,𝑗,𝑘)

∆𝑟𝑗−1/2
               (15) 

Where, 

𝑞𝑖,𝑗−1/2,𝑘 is the volumetric flow rate passing from cell i,j,k to cell i,j-1,k (L3T-1); 

ℎ𝑖,𝑗−1,𝑘 is the head at the node i,j-1,k; 

∆𝑐𝑖∆𝑣𝑘 is the cross section area that the flow passes through the row direction; 

∆𝑟𝑗−1/2 is the distance between node i,j,k and node i,j-1,k (L). 

 

Taking into account the flows from the six adjacent cells, the continuity equation with 

consideration of external rate yields: 

𝑞𝑖,𝑗−1/2,𝑘 + 𝑞
𝑖,𝑗+

1

2
,𝑘

+ 𝑞
𝑖−

1

2
,𝑗,𝑘

+𝑞
𝑖+

1

2
,𝑗,𝑘

+ 𝑞𝑖,𝑗,𝑘−1/2 + 𝑞𝑖,𝑗,𝑘+1/2 + 𝑃𝑖,𝑗,𝑘ℎ𝑖,𝑗,𝑘 + 𝑄𝑖,𝑗,𝑘 =

𝑆𝑆𝑖,𝑗,𝑘(∆𝑟𝑗∆𝑐𝑖∆𝑣𝑘)
∆ℎ𝑖,𝑗,𝑘

∆𝑡
                                                       (16) 

Where, 

𝑆𝑆𝑖,𝑗,𝑘 is the specific storage at cell i,j,k (LT-1); 

∆𝑟𝑗∆𝑐𝑖∆𝑣𝑘 is the volume of cell i,j,k (L3); 
∆ℎ𝑖,𝑗,𝑘

∆𝑡
 is the finite-difference approximation of head change with respect to time (LT-1); 

 

Thus, the approximation of finite-differences for cell i, j, k is: 

𝐶𝑅
𝑖,𝑗−

1

2
,𝑘

(ℎ𝑖,𝑗−1,𝑘 − ℎ𝑖,𝑗,𝑘) + 𝐶𝑅
𝑖,𝑗+

1

2
,𝑘

(ℎ𝑖,𝑗+1,𝑘 − ℎ𝑖,𝑗,𝑘) + 𝐶𝐶
𝑖−

1

2
,𝑗,𝑘

(ℎ𝑖−1,𝑗,𝑘 − ℎ𝑖,𝑗,𝑘) +

𝐶𝐶
𝑖+

1

2
,𝑗,𝑘

(ℎ𝑖+1,𝑗,𝑘 − ℎ𝑖,𝑗,𝑘) + 𝐶𝑉
𝑖,𝑗,𝑘−

1

2

(ℎ𝑖,𝑗,𝑘−1 − ℎ𝑖,𝑗,𝑘) + 𝐶𝑉
𝑖,𝑗,𝑘+

1

2

(ℎ𝑖,𝑗,𝑘+1 − ℎ𝑖,𝑗,𝑘) +

𝑃𝑖,𝑗,𝑘ℎ𝑖,𝑗,𝑘 + 𝑄𝑖,𝑗,𝑘 = 𝑆𝑆𝑖,𝑗,𝑘(∆𝑟𝑗∆𝑐𝑖∆𝑣𝑘)
∆ℎ𝑖,𝑗,𝑘

∆𝑡
 

∆ℎ𝑖,𝑗,𝑘

∆𝑡
                                 (17) 

Where, 

𝑞𝑖,𝑗−1/2,𝑘 = 𝐶𝑅
𝑖,𝑗−

1
2

,𝑘
(ℎ𝑖,𝑗−1,𝑘 − ℎ𝑖,𝑗,𝑘) 

𝑞𝑖,𝑗+1/2,𝑘 = 𝐶𝑅
𝑖,𝑗+

1
2

,𝑘
(ℎ𝑖,𝑗+1,𝑘 − ℎ𝑖,𝑗,𝑘) 

𝑞𝑖−1/2,𝑗,𝑘 = 𝐶𝐶
𝑖−

1
2

,𝑗,𝑘
(ℎ𝑖−1,𝑗,𝑘 − ℎ𝑖,𝑗,𝑘) 

𝑞𝑖+1/2,𝑗,𝑘 = 𝐶𝐶
𝑖+

1
2

,𝑗,𝑘
(ℎ𝑖+1,𝑗,𝑘 − ℎ𝑖,𝑗,𝑘) 

𝑞𝑖,𝑗,𝑘−1/2 = 𝐶𝑉
𝑖,𝑗,𝑘−

1
2

(ℎ𝑖,𝑗,𝑘−1 − ℎ𝑖,𝑗,𝑘) 

𝑞𝑖,𝑗,𝑘+1/2 = 𝐶𝑉
𝑖,𝑗,𝑘+

1
2

(ℎ𝑖,𝑗,𝑘+1 − ℎ𝑖,𝑗,𝑘) 
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In order to predict groundwater level at successive times, the transient simulation is 

considered with a reformulation of the finite-difference equation: 

𝐶𝑅
𝑖,𝑗−

1

2
,𝑘

(ℎ𝑖,𝑗−1,𝑘
𝑚 − ℎ𝑖,𝑗,𝑘

𝑚 ) + 𝐶𝑅
𝑖,𝑗+

1

2
,𝑘

(ℎ𝑖,𝑗+1,𝑘
𝑚 − ℎ𝑖,𝑗,𝑘

𝑚 ) + 𝐶𝐶
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1

2
,𝑗,𝑘
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2
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𝑚 − ℎ𝑖,𝑗,𝑘
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1

2

(ℎ𝑖,𝑗,𝑘−1
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𝑚 ) + 𝐶𝑉
𝑖,𝑗,𝑘+

1
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(ℎ𝑖,𝑗,𝑘+1
𝑚 − ℎ𝑖,𝑗,𝑘

𝑚 ) +

𝑃𝑖,𝑗,𝑘ℎ𝑖,𝑗,𝑘
𝑚 + 𝑄𝑖,𝑗,𝑘 = 𝑆𝑆𝑖,𝑗,𝑘(∆𝑟𝑗∆𝑐𝑖∆𝑣𝑘)

ℎ𝑖,𝑗,𝑘
𝑚 −ℎ𝑖,𝑗,𝑘

𝑚−1

𝑡𝑚−𝑡𝑚−1
                                  (18) 

Where, 

tm refers to the end of the interval at time step m. 

 

This is the backward-difference equation used as the basis for a simulation of the partial 

differential equation of groundwater flow. The seven head in the equation is unknown, and thus 

cannot be solved independently; however, the equation can be written for each cell, which will 

make only one unknown in one cell. In the system there are “n” equations with “n” unknowns, 

therefore, the system can be solved simultaneously, given the initial head distribution, the 

boundary condition, the hydraulic parameters, and external stresses. 
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6.2 Coupling algorithms in GSFLOW 

6.2.1 Soil Zone 

The Soil Zone in PRMS is defined as the area between land surface and vegetation root 

depth, and the vegetation root depth is termed soil-zone base. Soil Zone is the region where 

evapotranspiration and horizontal subsurface flow occur. On the basis of physical mechanisms, it 

is conceptualized into three reservoirs to represent pore-space volumes for a given volume of 

soil: the capillary, gravity, and preferential reservoirs. All three reservoirs are contained within 

the same physical space, but they represent different soil-water processes with different 

soil-water content thresholds. 

As shown in Figure 54a, the capillary reservoir is defined by the water content between 

wilting point to field capacity threshold. The gravity reservoir is defined by the water content 

between field capacity and soil saturation. The preferential-flow reservoir is that part of the 

gravity reservoir from which fast interflow occurs, and it is defined by the preferential-flow 

threshold. Preferential flow refers to the uneven and often rapid water movement through porous 

media, such as wormholes, root holes, and racks (Markstrom et al., 2005).  

Through defying the water-content thresholds, which are determined by soil types 

combined with wilting point, field capacity, preferential-flow threshold, and saturation threshold, 

water storage and water flow features can be determined for each reservoir (Figure 54b). 
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(a) 

 
(b) 

Figure 54. The Conceptualization in Soil Zone Consists of Three Reservoirs: Capillary, Gravity, and 

Preferential-Flow. They Represent the Pore-Space Volumes for a Given Volume of Soil, Which Can Be Defined by: 

(A) Physical And Mathematical Definition Of Each Reservoir (Markstrom et al., 2005), and (B) Soil Content 

Definition for Each Reservoir Using Soil Moisture Retention Curve (Modified based on Soil Science, Lajos, 2008). 
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Different from the PRMS model (Figure 15 & Table 5), the soil zone simulation in 

GSFLOW model has considerable changes. The procedure of 1st part Dunnian runoff generation 

from the Preferential-flow Reservoir was removed. Regarding the interactive flows of recharges 

and discharges between surface water and groundwater, the GSFLOW model uses two-way 

water flows instead of one-way water flow in the PRMS model. The two-way water flow not 

only allows water flowing downward from soil zone to unsaturated zone, but also allows the 

groundwater replenish upward from unsaturated zone to soil zone. It includes, as shown in Table 

21 & Figure 54, the computation of groundwater replenishment from groundwater to Gravity 

reservoir (step 4) and the computation of Capillary Reservoir replenishment from Gravity 

Reservoir (step 5). 

Table 21 

Sequence of Steps Used in the Computation of Flow into and out of the Soil Zone Used in GSFLOW (Markstrom et 

al., 2005).  

Sequence No. Description of flow into and out of soil zone 

1 Partition infiltration between capillary and Preferential-flow Reservoir. 

2 Add interflow and Dunnian runoff (Dunne & Black, 1970) from upslope to Capillary Reservoir. 

3 
Add excess inflow from the Capillary Reservoir to the Groundwater Reservoir up to a recharging 

threshold; move the remaining excess inflow to the Gravity Reservoir. 

4 Add groundwater from MODFLOW discharge to the Gravity Reservoir 

5 
Replenish Capillary Reservoir from  Gravity Reservoir when Capillary Reservoir storage is below 

field capacity 

6 Move a fraction of water in the Gravity Reservoir to the Preferential-flow Reservoir 

7 Calculate slow interflow from gravity reservoirs. 

8 Calculate gravity drainage from the Gravity Reservoir to the Groundwater Reservoir. 

9 
Partition Capillary Reservoir into two zones: upper zone and lower zone, where occurs 

evapotranspiration and transpiration, respectively. 

10 Calculate the transpiration from the lower zone of the Capillary Reservoir. 

11 Calculate the evapotranspiration from the upper zone of the Capillary Reservoir. 

12 
Calculate Dunnian runoff from Preferential-flow Reservoir when its storage is none zero, or directly 

from Gravity Reservoir when the storage is zero 

13 Compute fast interflow from Preferential-flow Reservoir. 
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Figure 55. Inflow and Outflow Diagram of Three Conceptualized Reservoirs in Soil-Zone: Capillary, Gravity, and 

Preferential-Flow Reservoirs in PRMS for a Single HRU. 

 

A main assumption in the soil zone is that the soil type is uniformly simulated in the 

calculation unit –Hydrologic Response Unit (HRU) - throughout the simulation period, which 

means the parameters that define the flow and storage are constant for each of the HRU during a 

simulation. Other important assumptions include: the soil parameters, due to the processes of 

temperature change, e.g. freezing and thawing, are not affected during a simulation; the 

water-flow features in the capillary reservoir, which are defined by a constant value of root 

depth, is not affected by the changes in vegetation, e.g., growing and dying; the soil perturbation 

results in preferential flow remaining constant during a model simulation. 
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6.2.2 Unsaturated Zone5 

The Unsaturated Zone is simulated using the Unsaturated-Zone Flow (UZF1) package in 

MODFLOW, which simulates water flow and storage in the unsaturated zone and is partitioned 

into evapotranspiration and groundwater recharge. The water flow in the unsaturated zone, on a 

larger scale, such as a watershed scale, is dominated by vertical flow. Thus, one assumption is 

that the unsaturated zone is homogeneous in the vertical direction. Besides, the diffusive 

gradients and capillary pressure gradients are negligible, and capillary fringe is not simulated.  

On the basis of these assumptions, a one dimension finite-difference form of Richards’ 

equation is used with kinematic-wave approximation, considering evapotranspiration losses: 

𝜕𝜃

𝜕𝑡
+

𝜕𝐾(𝜃)

𝜕𝑧
+ 𝑖 = 0 (19) 

where, 

𝜃 is the volumetric water content, in volume of water per volume of rock (L3/L3); 

z is the altitude in the vertical direction in length (L); 

K(𝜃) is the unsaturated hydraulic conductivity as a function of water content and is equal 

to the vertical flux in length per time (L/T); 

i is the evapotranspiration rate beneath the soil-zone base per unit depth in length per 

time per length (LT-1/L) and; 

t is time (T). 

 

The resulted characteristic equations are: 

𝑑𝑧

𝑑𝑡
=

𝜕𝐾(𝜃)

𝜕𝑧
= 𝑣(𝜃) 

(20) 

𝑑𝜃

𝑑𝑧
=

−𝑖

𝑣(𝜃)
 

(21) 

𝑑𝜃

𝑑𝑡
= −𝑖 

(22) 

 

where,  

                                                 
5 The descriptions and equations in this subsection are sourced from Niswonger et al. (2006), where details 

can be found. 
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𝑣(𝜃) is the characteristic velocity restricted to the downward (positive z) direction, in 

length per time (L/T). 

The wetting front velocity can be derived by the following equation with a control 

volume integrated that contains the wetting front, and details of derivation can be found in 

Niswonger et al. (2006):  

𝑑𝑧𝑓

𝑑𝑡
= 𝑢𝑠(𝜃𝑧1

, 𝜃𝑧2
) =

𝐾(𝜃𝑧1
) − 𝐾(𝜃𝑧2

)

𝜃𝑧1
− 𝜃𝑧2

 (23) 

 

where, 

𝑢𝑠 is the velocity of the wetting front, in length per time (L/T); 

z1 and z2 are the points before and after the wetting front at a distance far enough that 
𝜕𝜃

𝑑𝑧
≈ 0, in length (L). 

 

In order to estimate the unsaturated hydraulic conductivity, the Brooks-Corey method is 

used (Brooks & Corey, 1966): 

𝐾(θ) = 𝐾𝑠 [
𝜃 − 𝜃𝑟

𝜃𝑠 − 𝜃𝑟

]
𝜀

 (24) 

 

where,  

𝐾𝑠 is the saturated hydraulic conductivity (L/T);  

𝜃𝑟 is the residual water content, in volume of water per volume of rock (L3/L3);  

𝜃𝑠 is the saturated water content, in volume of water per volume of rock (L3/L3); and 

𝜀  is the Brooks-Corey exponent, dimensionless.  

6.2.3 Interactions between Soil Zone and Unsaturated Zone6 

The gravity drainage from Soil Zone to Unsaturated Zone is calculated on the basis of the 

storage of gravity reservoir and the hydraulic conductivity (𝐾𝑠) of the unsaturated zone. 

First, potential gravity drainage is defined based on the groundwater head and the vertical 

hydraulic conductivity of the connecting face: 

𝑞𝑔𝑑,𝑝𝑜𝑡
𝑚,𝑛 = 𝑐𝑜𝑒𝑓𝑙𝑖𝑛 [

𝐷𝐺𝑉𝑅
𝑚,𝑛

𝐷𝑚𝑥
]

𝑐𝑜𝑒𝑓𝑒𝑥

 
(25) 

 

                                                 
6 Descriptions and equations are sourced in this subsection are from Markstrom et al. (2008), where details 

can be found. 
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where, 

𝑞𝑔𝑑,𝑝𝑜𝑡
𝑚,𝑛

 is the potential gravity drainage for time step m, iteration n, per unit area, in 

inches per day; 

𝑐𝑜𝑒𝑓𝑙𝑖𝑛 is the linear coefficient used to compute gravity drainage from the gravity 

reservoir, in inches per day; 

𝑐𝑜𝑒𝑓𝑒𝑥 is the exponent coefficient used to compute gravity drainage from the gravity 

reservoir, dimensionless; 

𝐷𝑚𝑥 is the maximum gravity drainage from the gravity reservoir, in inches. 

 

Second, the actual gravity drainage to the unsaturated zone depends on the conditions in 

the unsaturated zone. That means the actual gravity drainage equals to potential gravity drainage, 

or equals to the hydraulic conductivity when the potential gravity drainage exceeds the hydraulic 

conductivity in the unsaturated zone. 

The volumetric water content at the top of the unsaturated zone is calculated from 

potential gravity drainage and the Brooks-Corey equation (1966): 

𝜃𝑚,𝑛 = (
𝑞𝑔𝑑,𝑝𝑜𝑡

𝑚,𝑛

𝐾𝑠

)

1/𝜀

(𝑆𝑦) + 𝜃𝑟 0 < 𝑞𝑔𝑑,𝑝𝑜𝑡
𝑚,𝑛 < 𝐾𝑠 (26) 

 

 𝜃𝑚,𝑛 = 𝜃𝑠 𝐾𝑠 < 𝑞𝑔𝑑,𝑝𝑜𝑡
𝑚,𝑛

  (27) 

 

Where, 

𝜃𝑚,𝑛 is the water content at the top of the unsaturated zone for time step m, iteration n, 

dimensionless; 

𝑆𝑦 is the specific yield, approximated by 𝜃𝑠 − 𝜃𝑟, dimensionless; 

𝜃𝑟 is the residual water content, in volume of water per volume of rock (L3/L3); and 

𝜃𝑠 is the saturated water content, in volume of water per volume of rock (L3/L3). 
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