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Abstract 

In recent years, potable reuse applications have become more common due to population 

growth and increased water demand, especially in communities with limited or variable water 

resources. However, there are concerns about potential exposure to pathogens and chemical 

compounds in treated wastewater. Therefore, advanced wastewater treatment processes are of 

paramount importance in any potable reuse system. The overall aim of this study was to develop 

and implement static and dynamic QMRAs to compare public health risk in various potable 

reuse scenarios. Cryptosporidium, norovirus, adenovirus, and Salmonella were chosen as the 

target pathogens. The research evaluated the performance of full advanced treatment (FAT) 

trains consisting of reverse osmosis (RO) and advanced oxidation processes (AOPs), which are 

required in California for planned IPR systems that directly inject recycled water into local 

aquifers or discharge to surface water. The study also explored ozone-biological filtration as an 

alternative for FAT trains by comparing its public health risk to that of the RO-based treatment 

train. Treatment process performance and resultant public health risks were modeled using the 

STELLA 10.1 system dynamics software package. The system dynamics model accounted for 

the possibility of unit process failure and subsequent effects on downstream treatment process 

performance (i.e., ‘domino effects’). The model also compared typical vs. outbreak scenarios and 

identified the components and operational conditions that were most critical to minimizing 

public health risks in each of the potable reuse paradigms.  

The dynamic disease transmission model incorporated secondary transmission and 

immunity through implementing different epidemiological states. In this study, dynamic disease 

transmission model was focused on norovirus which is the most common cause of acute 

gastroenteritis diseases in the US.  
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This study indicated that combined annual risk of infection was lower in DPR systems 

with direct distribution (median risk= 5.4×10-8 and 1.2×10-6 for ozone-based DPR and RO-based 

DPR, respectively) compared to the IPR systems and DPR with blending. Generally, potable 

reuse treatment trains with surface water utilization resulted in similar risk of infection which 

exceeded the benchmark risk of 10-4. The model also identified 120 days and 150 days of storage 

time at 10°C and 20°C of temperature as the most critical parameters in de facto reuse systems 

when targeting Cryptosporidium and adenovirus, respectively. Included secondary transmission 

and immunity resulted in up to 8 orders of magnitude higher risk of norovirus than the static 

framework (depending on the treatment train). However, results of this study indicated that 

potable reuse systems were sufficiently robust to handle the high concentration of norovirus 

during outbreak conditions and that disease incidence of norovirus was mainly attributed to 

secondary transmission pathway. However, these results may change if other pathogens are 

considered in dynamic disease transmission model.  
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1 Introduction 

Climate change, population growth, urbanization, and increased water demands create 

intense pressure on finite natural water resources. Consequently, the need for more efficient use 

of water resources (i.e., conservation, reuse, and alternative water sources) is particularly critical 

for communities with limited or variable water resources (Asano et al., 2007). Recently, water 

reuse has become more common, especially in arid and semi-arid regions. It can also be 

beneficial in coastal regions with saltwater intrusion and communities with compromised water 

quality (Gerrity et al., 2013). Water reuse can be implemented to provide non-potable water for 

industry and irrigation purposes or potable water for augmenting drinking water supplies (NRC, 

2012). However, there are always concerns about potential exposure to pathogens and chemical 

compounds in treated wastewater. 

It is estimated that at least 9.1% of the global disease burden and 6.3% of all deaths are 

due to waterborne diseases that could be prevented by improved sanitation and hygiene (Pruss et 

al., 2008). It is widely recognized that water plays an important role in transporting microbial 

contamination that contributes in disease transmission and outbreaks (LeChevallier & Au, 2004). 

As a result, quantifying the microbial risk associated with exposure to contaminated water serves 

as a fundamental component of public health protection.  

Many indirect potable reuse (IPR) and direct potable reuse (DPR) projects throughout the 

world employ reverse osmosis (RO) and an advanced oxidation process (AOP) to ensure 

adequate protection of public health (CDPH, 2014). In California, this ‘full advanced treatment’ 

(FAT) train is required for direct injection in groundwater replenishment applications and for 

surface water augmentation to address both known [e.g., pathogens and carcinogenic chemicals 

such as N-nitrosodimethylamine (NDMA)] and unknown potential health risks. RO-based 
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treatment trains can achieve very low concentrations of total dissolved solids (TDS), which is 

important for systems with high TDS inputs from local source waters and/or water softeners 

(Venkatesan et al., 2011). In addition, RO is also effective in reducing the total organic carbon 

(TOC) concentration in the finished product water, which aids in meeting stringent TOC 

requirements (e.g., 0.5 mg/L of wastewater-derived TOC; CDPH, 2014). However, 

implementation of RO is hindered by its high capital and operations and maintenance costs, high 

energy consumption, and concerns related to brine disposal in inland applications. As a result, 

some communities are already employing or exploring feasibility of ozone-biological filtration 

systems as an alternative to FAT systems. Therefore, it is critical to address microbial risk 

associated with alternative ozone-biological filtration systems to ensure public health protection.  

Direct exposure to waterborne pathogenic microorganisms (i.e., primary transmission) is 

one of the most important factors in risk estimation. Risk associated with primary transmission 

can be calculated using published dose response functions coupled with pathogen doses based on 

ingestion of contaminated water. However, there are other factors that play important roles in the 

transmission of infectious diseases. Some studies have focused on secondary disease 

transmission, while also acknowledging the importance of immunity in estimating the spread of 

disease within a community (Brookhart et al., 2002; Eisenberg et al., 1996; Eisenberg et al., 

2004; Soller & Eisenberg, 2008). Secondary transmission includes person-person or person-

environment-person transmission (Soller & Eisenberg, 2008). These secondary transmission 

pathways can lead to significantly increased infection rates for certain pathogens (Eisenberg et 

al., 2004). 

The current study aimed to incorporate each of these components into a potable reuse 

QMRA. The QMRA was developed using a system dynamics platform (STELLA 10.1, ISEE 
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Systems, Lebanon, NH) and allowed for assessments of the equivalency of potable reuse systems 

and treatment trains, the relative significance of treatment failures on water quality and public 

health, and the relative significance of primary versus secondary disease transmission pathways 

in the context of potable reuse. The system dynamics model was validated based on suggestions 

in Sterman (2000). These tests included structure assessment, dimensional consistency, 

parameter assessment, integration error (time step and numerical integration method), behavior 

reproduction, extreme condition tests, and sensitivity analyses. 

This dissertation includes a literature review followed by three interdependent chapters that 

build upon information learned during earlier phases of the research:  

• Chapter 3 focused on Cryptosporidium risk associated with de facto reuse, planned IPR, 

and DPR systems employing ozone-biofiltration treatment trains. The contents of this 

chapter were published in Water Research: “Amoueyan, E., Ahmad, S., Eisenberg, J. N., 

Pecson, B., & Gerrity, D. (2017). Quantifying pathogen risks associated with potable 

reuse: A risk assessment case study for Cryptosporidium. Water Research, 119, 252-

266.” References to Amoueyan et al. (2017) throughout the dissertation refer to this 

publication and to Chapter 3 of this dissertation.  

• Chapter 4 expanded the static QMRA model to include a direct comparison of the potable 

reuse systems in Chapter 3 with RO-based treatment trains. Chapter 4 focused on four 

pathogens: Cryptosporidium, norovirus, adenovirus, and Salmonella because of their 

importance to gastroenteritis worldwide. This chapter will soon be submitted for 

publication. References to Amoueyan et al. (2018) later in the dissertation refer to 

Chapter 4 of this dissertation. 
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• Chapter 5 expanded the static QMRA framework to the dynamic level to incorporate 

multiple disease transmission pathways and time-dependent distributed delays for critical 

epidemiological states, such as post-infection immunity. This chapter focused on 

norovirus as the target pathogen because it is highly contagious so secondary 

transmission is known to be a critical factor for propagation of norovirus through a 

community. 

The following sections describe the research questions and corresponding hypotheses that 

were addressed in this study: 

1.1 Quantifying and comparing public health risks associated with different potable 

reuse treatment trains 

RQ1: How do public health risks vary by potable reuse paradigm (i.e., IPR vs. DPR), by 

treatment train (e.g., ozone-biofiltration vs. RO-based treatment trains), and by different 

target pathogens?  

H1: Potable reuse systems are safe and sustainable alternatives to conventional drinking 

water and can reliably meet a benchmark annual risk of 10-4. Also, ozone-biofiltration is 

equivalent to RO-based treatment trains with respect to public health protection. Different 

waterborne pathogens pose different risk of infection depending on the treatment unit 

processes employed in each of the potable reuse systems. As previous studies (Forss & 

Ander, 2011) reported that risk of infection in potable reuse system was driven by 

Cryptosporidium, the hypothesis is that Cryptosporidium results in higher risk than other 

pathogens in potable reuse systems.  

1.2 Evaluating the effects of unit process failures on public health risk 

RQ2: How do unit process failures affect treatment train performance and public health?  
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H2: Failure in one or more treatment barriers will adversely affect the overall performance 

of the treatment train and lead to unacceptably high risk of infection.  

Assuming the various treatment processes are operating as intended, one can estimate the 

log removal/inactivation credits expected for each pathogen in each potable reuse system 

using experimental/published data. However, failures during advanced treatment may 

have a significant detrimental impact on the total log removal/inactivation of pathogens. 

To address this issue, the potential impacts of process failures were incorporated into the 

model to evaluate whether the treatment trains are sufficiently robust to adequately protect 

public health during sub-optimal operation. The hypothesis is that IPR treatment trains are 

less sensitive to failure in treatment processes and the additional storage time provided in 

environmental buffer could compensate for the effect of failure.  

1.3 Determining critical conditions affecting public health risk 

RQ3: What are the most significant design/operational parameters affecting public health 

risk?  

H3: Sensitivity analysis can be performed to find the most significant 

parameters/operational conditions and best inform the decision-making process in 

development of design or operational criteria for different potable reuse treatment trains. 

The hypothesis is that environmental buffers in IPR systems play an important role in 

public health protection.     

1.4 Impacts of secondary disease transmission and pathogen-shedding from infected 

individuals on overall public health risk 

RQ4: How do secondary disease transmission and post-infection immunity affect public 

health?  
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H4: Inclusion of secondary disease transmission leads to an increased risk of infection due 

to a greater number of pathogen-shedding individuals in the community. Higher number of 

infectious individuals would lead to higher concentration of pathogen shedding into the 

wastewater and ultimately higher concentration of pathogen in final drinking water.  

Incorporating post-infection immunity decreases disease incidence among the community 

compared to the condition with no immunity to the disease.    

The answers to these research questions will aid in identifying the most critical 

parameters/operational conditions in implementation of potable reuse systems; therefore, 

contribute to the improvement of the decision-making processes in development, operational 

designs, and the overall reliability of potable reuse systems.  



7 
 

2 Background and literature review 

2.1 Potable reuse 

Generally, there are two types of potable reuse systems: indirect potable reuse (IPR) and 

direct potable reuse (DPR). Both systems use advanced treated wastewater for drinking purposes. 

The key difference is the use of an environmental buffer as a discharge or blending point in IPR 

systems which also acts as a psychological barrier (Khan, 2013; USEPA, 2012), while the DPR 

system utilizes additional engineered treatment processes, expanded monitoring efforts, or an 

engineered storage buffer to compensate for reduced response retention time (Tchobanoglous et 

al., 2015). In addition to providing new source of drinking water, employing advanced 

wastewater treatment processes in potable reuse applications can also decrease the adverse 

effects of discharging conventionally treated wastewater into ‘pristine’ water resources (Gerrity 

et al., 2014). A common form of IPR is known as unplanned IPR or de facto reuse (Rice et al., 

2013; Rice et al., 2015), in which intake water to drinking water treatment plants is withdrawn 

from a water body that receives effluent from an upstream wastewater treatment plant. Although 

these systems are employing potable reuse, they are not officially recognized as reuse projects. 

Therefore, they may not have plans or permits specifically addressing the augmentation of the 

downstream community’s source water with wastewater effluent (Cotruvo & Bell, 2014). Fig. 

2.1 illustrates a schematic diagram of potable reuse paradigms. 

First DPR system was implemented in Windhoek, Namibia, in which the reclaimed water 

is blended with the treated water downstream of the drinking water treatment facility and within 

the drinking water distribution system (NRC, 2012; Tchobanoglous et al., 2015). Since, no 

relationship could be found between diarrheal diseases or mortalities in the community and 
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exposure to drinking water, this system could serve as a successful development of potable reuse 

project with no environmental buffer (NRC, 2012).  

Figure 2-1. Schematic diagram of potable reuse paradigms.  

Solid lines represent travel of water through an IPR system, and dashed lines represent travel of water 

through a DPR system (Gerrity et al., 2013).  

At this time, Texas is the only state in the US with existing DPR system (Big Spring) 

(Tchobanoglous et al., 2015; WHO, 2017), while IPR systems are more widespread throughout 

the US states in California, Nevada, Arizona, Texas, Virginia, Georgia, and Florida which are 

implemented based on state regulations and guidelines or regulated on a case-by-case basis 

(Tchobanoglous et al., 2015) 

Different potable reuse systems throughout the world that are successfully implemented 

are listed in Table 2.1.  
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Table 2-1. Potable reuse projects throughout the world 

Potable Reuse Project Potable Reuse 

Application 

Treatment process 

(after secondary 

treatment) 

Reference 

Montebello Forebay, 

California, USA 

IPR with groundwater 

replenishment 

Media filtration, SAT, 

Cl2  

 

Sloss et al. (1996) 

Goreangab plant, 

Windhoek, Namibia 

DPR O3, DAF, rapid sand 

filtration, O3, BAC, 

GAC, UF, Cl2  

Tchobanoglous 

et al. (2015) 

Orange County, 

California, USA 

IPR with groundwater 

replenishment 

Cl2, MF, RO, AOP 

(UV/H2O2)  

Tchobanoglous 

et al. (2015) 

Hueco Bolson recharge 

project, El Paso Water 

Utilities, Texas, USA  

IPR with groundwater 

replenishment 

PAC, lime clarification, 

media filtration, O3, 

GAC, O3, Cl2  

Gerrity et al. 

(2013) 

NEWater, Singapore  IPR with surface water 

augmentation 

UF, RO, UV  

 

WHO (2017) 

UOSA, Fairfax county, 

Virginia, USA 

IPR with surface water 

augmentation 

Lime clarification, media 

filtration, GAC, Cl2, 

chloramination  

 

Gerrity et al. 

(2013) 

Big Spring, Texas, USA DPR MF, RO, AOP 

(UV/H2O2), blending, 

media filtration, Cl2  

Tchobanoglous 

et al. (2015) 

Beenyup groundwater 

replenishment scheme, 

Perth, Australia  

IPR with groundwater 

replenishment 

UF, RO, UV  

 

WHO (2017) 

Gwinnett County, 

Georgia, USA  

 

IPR with surface water 

augmentation 

Chemical phosphorus 

removal, UF, O3, GAC  

Gerrity et al. 

(2013) 

2.2 Microbial criteria 

One of the primary concerns in potable reuse applications is potential exposure to 

pathogenic microorganisms in the final product water. At this time, no federal regulations have 

been established specifically for DPR. The California Division of Drinking Water (DDW) and 

the National Water Research Institute (NWRI) recently established stringent 

requirements/guidelines for pathogen removal in potable reuse applications to achieve the 

benchmark risk of 10-4 per person per year (CDPH, 2014). Both frameworks specify 12-log and 

10-log reductions for viruses and Cryptosporidium, respectively, while DDW also requires 10-
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log reduction of Giardia and NWRI recommends 9-log reduction of bacteria. The recommended 

guideline may vary statewide and on a case by case basis. Although, there is no specific 

guideline in Texas for DPR projects, Texas Commission on Environmental Quality (TCEQ) 

requires at least 8- 5.5- 6 log reductions of viruses, Cryptosporidium, and Giardia, respectively, 

after secondary treatment of wastewater (TWDB, 2015). Higher log removals may be required 

based on site-specific data. For example, TCEQ requires 9- 5.5- 8 log reductions of virus, 

Cryptosporidium, and Giardia, respectively, for the Wichita Falls DPR project (Tchobanoglous 

et al., 2015). However, since the recommended guidelines by TCEQ utilizes secondary treated 

wastewater as the starting point and does not give any credit to conventional wastewater 

treatment as California and NWRI criteria do, it is likely to achieve the same quality of water as 

California and NWRI at the end point. Expert panel recommended any of these approaches (i.e., 

NWRI expert panel approach, California IPR approach, or TCEQ DPR approach) could be 

adopted by New Mexico Environment Department (NMED) for DPR projects on a case by case 

basis (NWRI, 2016b). Australian guidelines for water recycling utilizes a health target of 10-6 

DALYs pppy (Disability adjusted life years per person per year) which requires 8.1- 9.5- 8 log 

reductions of Campylobacter, viruses, and Cryptosporidium, respectively, for untreated 

wastewater. Because of these extensive levels of treatment, potable reuse systems must rely on 

robust and redundant barriers achieving high disinfectant doses, reliable physical removal (e.g., 

media or membrane filtration), and/or prolonged aquifer storage (Gerrity et al., 2014). In theory, 

many of these barriers are capable of achieving these treatment benchmarks under optimal 

conditions, but periodic operational upsets or even complete failures might have significant 

adverse impacts on public health. Moreover, there is significant uncertainty in determining 
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appropriate operational targets for certain parameters, specifically dilution ratio and storage time 

in environmental buffers.  

Depending on the process included in each treatment train, different log removals of 

pathogens may be achieved. Pathogen log reduction credits for different treatment processes are 

shown in Table 2.2. 

Table 2-2. Pathogen log removal credits for different treatment processes 

Treatment unit Process Expected Log reduction Credits 

Virus Giardia Cryptosporidium Total coliform bacteriab

Conventional activated sludge (CAS) 1b 0b 0b 2 

Microfiltration (MF) 0a 4a 4a 4 

Ultrafiltration (UF) 1a 4a 4a 4 

Reverse Osmosis (RO) 1.5a 1.5a 1.5a 2 

Biological Activated Carbon (BAC) 0a 0a 0a 0 

UV/AOP 6a 6a 6a 6 

Ozone (min CT=1 mg*min/l) 5a 3a 0a 4 

Free chlorine 6a 3a 0a 4 

aTchobanoglous et al. (2015) 
b Trussell et al. (2016) 

2.3 Reliability framework 

Many potable reuse treatment trains are capable of satisfying public health requirements 

during periods of optimal performance. However, there is always the possibility of a failure in 

one or more treatment barriers that could affect the performance of downstream processes (i.e., a 

‘domino effect’) and the overall log removals in a treatment train. With the widespread 

implementation of potable reuse, it is important to fully understand the “4Rs” framework in 

relation to public health (Fig. 2.2): reliability (providing a safe and reliable source of drinking 

water) through redundancy (multi-barrier approach based on additional treatment or monitoring), 

robustness (significant attenuation of a broad range of contaminants), and resiliency (automated 

response to failures during treatment) (Pecson et al., 2015). The fundamental goal of the 4Rs 
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approach is to reduce the frequency and severity of system failures and to properly respond to 

failures if they occur. 

Figure 2-2. Representation of a reliability framework for potable reuse systems 

Evaluating failure modes in a wastewater treatment plant and their associated 

consequences was first described in Mallory & Waller (1973). More recently, Forss & Ander 

(2011) conducted a comprehensive QMRA that studied the effects of treatment process failures 

in a DPR application. Beyond that study, there are few frameworks for incorporating treatment 

process failures into potable reuse QMRAs so the associated implications for water quality and 

public health are unclear.  

Characterizing the significance of treatment process failure is critical for comparisons of 

IPR and DPR. According to NRC (2012), environmental buffers may not always be necessary to 

provide adequate public health protection. Instead, advanced treatment processes may allow for 

purified water to be delivered directly into a drinking water distribution system. On the other 

hand, a recent study indicated that blending advanced treated water with raw surface water 

upstream of a conventional drinking water treatment plant may still offer significant reductions 

Figure 1. Representation of a reliability framework for potable 

Failure Prevention 

Failure Response 
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in public health risks (Soller et al., 2016). As a result, further investigations are required to fully 

understand the impact of environmental buffers in water quality.  

2.4 Alternative ozone-biofiltration treatment trains 

Due to sustainability concerns with RO (Gerrity et al., 2014), some communities are 

already employing or exploring the feasibility of ozone-biofiltration (Gerrity et al., 2013), as this 

treatment combination is equally capable of satisfying most public health criteria (Trussell et al., 

2016). Ozone-biofiltration is unable to remove TDS without the use of RO or significant 

blending ratios, but some systems with low-TDS source waters may not require TDS reduction—

even in DPR applications. Also, in the presence of precursors, there is a potential formation of 

disinfection by-products (DBPs) during ozonation (Gerrity et al., 2014). However, the public 

health risks associated with ozone-biofiltration need to be better characterized and 

communicated to overcome the perception (or reality) of RO as a superior treatment process. 

Using O3-BAC as an alternative for RO-based treatment trains (i.e., MF-RO-UV/H2O2) could 

save up to $51 million in capital cost and up to $4.3 million in O&M costs (Gerrity et al., 2014) 

Several existing (or recently decommissioned) ozone-biofiltration trains are shown in 

Fig. 2.3 (Gerrity et al, 2013). The treatment train in Figure2.3A is employed in Gwinnett County, 

GA, USA (also includes lime softening). The treatment train in Figure 2.3B was employed in 

Gerringong, New South Wales, Australia, but has recently been decommissioned. The treatment 

train in Figure 2.3C is employed in El Paso, Texas, USA (also includes PAC in secondary 

treatment process and lime softening). Specifically, Figure 2.3A represents the advanced 

treatment train for planned IPR, and Figure 2.3B is similar to the advanced treatment train for 

DPR.  
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Figure 2-3. Examples ozone-based treatment trains for the production of high quality product water for 

potable reuse applications 

There is insufficient evidence to determine whether potable reuse potentially poses 

greater risks than more conventional drinking water systems, or whether potable reuse is actually 

a safer and more reliable option. Additional studies are needed to address these questions, with 

the ultimate goal of informing future regulatory and operational decision-making processes. One 

tool that is often used to aid in these decision-making processes, particularly in the context of 

public health, is a quantitative microbial risk assessment (QMRA), which is an iterative 

modeling approach that relies on statistical probabilities to assess the risks posed by exposure to 

one or more pathogenic microorganisms.  

2.5 Quantitative Microbial Risk Assessment (QMRA) 

Health risk and probability of infection associated with exposure to a pathogen in drinking 

water can be determined by a quantitative microbial risk assessment (QMRA) (Haas et al., 2015). 

QMRA is a powerful tool, particularly in potable reuse applications, because it employs 

mathematical models to evaluate the performance and reliability of water reuse systems. The 

results of the QMRA can be used to characterize the overall public health risks, identify adverse 

outcomes, and ultimately aid in risk management, risk communication, and decision-making 

(Beaudequin et al., 2015). A general framework for QMRA consists of four fundamental steps 
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including: 1) problem formulation and hazard identification which collects general information 

about the microbial agent (pathogens) and the adverse health effects, 2) exposure assessment 

which estimate the probability of infection given a known dose of pathogens using mathematical 

dose-response relationships, 3) dose-response assessment which estimates the pathogen dose 

corresponding to the expected pathogen exposure, and 4) risk characterization which integrates 

information from the previous steps to estimate the risk of infection and characterize the 

significance of the risk within a specific context (Petterson et al., 2006).  

Generally, there are two types of QMRAs: static and dynamic. The key difference between 

these two models is time dependency, which means the number of individuals susceptible to 

infection is time-invariant in a static model and time-variant in a dynamic model. Comparison 

between static and dynamic QMRA is shown in Table 2.3. Both static and dynamic QMRAs have 

been used to facilitate decision making in municipal, recreational, and agricultural applications 

(Soller et al., 2006; Olivieri et al., 2014a; Olivieri et al., 2014b). QMRAs have also been used to 

evaluate risks associated with de facto reuse along the Trinity River (Wu, 2015), hypothetical IPR 

scenarios (NRC, 2012), and even DPR (Forss & Ander, 2011; Soller et al., 2016).  

Ames et al. (2014) conducted a static QMRA to evaluate the effect of wet weather 

overflows on the effluent from the wastewater treatment plant in Oakland, California and the 

quality of San Francisco Bay receiving water. The annual risk due to exposure to adenovirus and 

Giardia spp. was estimated which resulted in more than one order-of-magnitude below the EPA 

benchmark level for recreation events expect for the worse case outfall location.  
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Table 2-3. Comparison of static and dynamic QMRA 

Static QMRA Dynamic QMRA 

The number of individuals susceptible to infection is 

time invariant 

The number of individuals susceptible to infection is 

time variant  

Direct exposure (environment-to-person) Direct (environment-to-person) and indirect 

exposure (person-to-person/ person-to-environment-

to-person)  

Individual-based risk Population-based risk 

Potential for secondary transmission of infection or 

disease is typically not considered or assumed as a 

constant factor if it is.  

Potential for secondary transmission of infection or 

disease is considered and the magnitude of 

transmission is a function of susceptible, infected 

and immune population. 

Immunity to infection from microbial agents is 

typically not considered.  

Exposed individuals may not be susceptible to 

infection or disease because they may already be 

infected or may be immune from infection due to 

prior exposure.  

Dose-response function is the critical health 

component.  

The dose-response function is important; however, 

factors specific to the transmission of infectious 

diseases may also be important.  

Table adapted from Olivieri et al. (2014b) 

The California Department of Public Health (CDPH) has performed a static QMRA to 

assess the public health risk associated with increasing the use of recycled water for irrigation 

purposes (Olivieri et al., 2014). The QMRA resulted in median annual risk in the range of 10-8-

10-4 for enteric viruses, Cryptosporidium, Giardia, and E. coli which was compliant with the

benchmark risk. 

Forss & Ander, 2011 conducted a comprehensive static QMRA in the New Goreangab 

water reclamation plant in Windhoek, Namibia. The study evaluated microbiological quality of 

water under different operational conditions including optimal, sub-optima, and outbreak 

condition. Ozonation and ultrafiltration (UF) processes were found to have significant impact on 

reduction of Giardia and Cryptosporidium, respectively. The study also proposed the use of UV 

light as an effective process for further removal of Cryptosporidium especially during outbreak 
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conditions. It has been suggested that incorporating more realistic failure times in QMRA 

framework would result in more accurate results. 

More recently, Soller et al. (2017) and Soller et al. (2018) have performed QMRA to 

evaluate public health risk associated with DPR systems. They identified NoV as a pathogen of 

concern which may drive the risk in DPR systems given specific treatment processes. Also, results 

indicated that FAT systems require either high doses of UV disinfection or blending upstream of 

drinking water treatment facility to achieve the benchmark risk of infection due to exposure to 

NoV. Likewise, it was suggested that treatment trains which do not employ RO in advanced 

treatment processes, needs to either provide advanced oxidation process with high doses of UV or 

blending upstream of drinking water treatment facility to achieve the benchmark risk of infection 

due to exposure to Cryptosporidium.  

Chaudhary et al. (2017) evaluated microbial risk associated with IPR and DPR systems 

using a QMRA approach. The study indicated that DPR systems generally pose lower risk of 

infection than de facto reuse system and that potable reuse systems which utilized surface water 

as a discharge/blending point for advanced treated wastewater resulted in similar risk than de facto 

reuse systems. This showed that concentration of pathogens in upstream surface water was the 

dominant factor in estimating risk of infection.  

The dynamic disease transmission model was first designed and implemented by Eisenberg 

et al., 1996 which included different epidemiological states of the disease. Soller et al. (2003) 

performed the QMRA dynamic model in the City of Stockton, California to evaluate the beneficial 

effects on public health implementing an additional wastewater treatment during winter when 

discharge of secondary treated effluent into the San Joauin River can cause health risk associated 

to recreation events. The level of viral gastroenteritis was used to compare the effect of the 
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additional filtration process. Other dynamic QMRA studies are utilized in Newport Bay, Orange 

County, California (Soller et al., 2006) and in Mamala Bay, Hawaii (Cooper et al., 1996) to 

evaluate the public health risk associated to recreational exposure. Eisenberg et al. (1996) 

employed a dynamic disease transmission model to evaluate the risk of giardiasis by swimming in 

the recreational reservoirs which were augmented by reclaimed water. Several studies performed 

dynamic QMRA to evaluate cryptosporidiosis outbreak in Milwaukee (Eisenberg et al., 1998; 

Eisenberg et al., 2005; Brookhart et al., 2002; Soller and Eisenberg, 2008). Eisenberg et al. (2004) 

evaluated microbial health risks associated with exposure to biosolids-amended soil which 

demonstrated that secondary transmission of disease play an important role in disease incidence. 

The incidence of disease increases at higher rates of secondary transmission.  

2.6 System Dynamics 

System dynamics (SD) models are important tools to analyze the structure and behavior 

of the complex systems and to evaluate the effect of different policies on management of the 

problem (Pejic Bach & Ceric, 2007). System dynamics models need to be developed in several 

steps. First, the problem and its importance are identified. Spatial scale, temporal scale, and key 

variables and concepts must be defined (Stermen, 2000; Park, 2014). During the second step, 

initial hypothesis is generated, feedback processes is discovered, and cause and effect 

relationships between different system elements are represented using causal loop diagrams 

(Stermen, 2000; Park, 2014). In the third step, a computer simulation model is developed based 

on the relationships between the system’s components, initial conditions, and estimation of 

parameters. In the fourth step, the model is tested to compare the temporal behavior of the 

system with the recorded behavior of the system. Other evaluation tests are also conducted such 

as extreme condition tests (to evaluate the robustness of the model), sensitivity analysis (to 
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evaluate the behavior of the model with uncertainty in parameters and initial conditions), 

integration error, etc. (Pejic Bach & Ceric, 2007; Stermen, 2000; Park, 2014). In the last step, the 

behavior of the system is analyzed under different scenarios and policy options that may arise in 

the future to compare the effect of different policies and to find out whether there is any 

interaction between them (Stermen, 2000; Park, 2014). System dynamics is a mathematical 

simulation methodology that describes the complex effects of the system elements and their 

inter-relationships using stocks, flows, convertors, and arrows. Different modeling software is 

being used for system dynamic methodology such as Vensim, STELLA, DYNAMO, Analytica, 

Powersim, etc (Park et al., 2014; Simonovic & Rajasekaram, 2004). The concept of SD is first 

propounded by Forrester (1958) to analyze the behavior of an industrial organization and to 

improve management control. More recently, SD has also been applied for environmental 

problems such as water resources management including reservoir operations and flood 

predictions and managements (Ahmad and Simonovic 2000; 2001; 2004; 2006), wastewater 

treatment and reuse (Park et al., 2014), various water applications (Tamaddun et al., 2018; Chen 

et al., 2017; Ahmad 2016; Mirchi et al., 2012), environmental management applications 

(Amoueyan et al., 2017; Venkatesan et al., 2011a,b; Rusuli et al., 2015), water resources 

problems in Lake Mead and the Las Vegas water supply system (Stave 2003; Nussbaum et al., 

2015), effects of climate change on water resources (Dawadi et al., 2012, 2013; Zhang et al., 

2016), water resources vulnerability and water allocations (Wu et al., 2013; Qaiser et al., 2011, 

2013), carbon footprint of water projects (Shrestha et al., 2011, 2012), water and land availability 

and usage for solar systems (Bukhary et al., 2017), water conservation (Ahmad and Prashar 

2010) and energy planning (Moumoni et al. 2014). Other examples in this field include: the 

CanadaWater model developed by Simonovic & Rajasekaram (2004) which deals with water 
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resource problems in Canada that takes into consideration the available water resources, 

wastewater treatment, economic and population growth, energy generation and food production; 

and application of the SD methodology using LINGO as a linear programming procedure for 

sustainable development of water resources in China focusing on water recycling by Xiang et al. 

(2013).
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3.1 Abstract 

This study evaluated the reliability and equivalency of three different potable reuse 

paradigms: (1) surface water augmentation via de facto reuse with conventional wastewater 

treatment; (2) surface water augmentation via planned indirect potable reuse (IPR) with 

ultrafiltration, pre-ozone, biological activated carbon (BAC), and post-ozone; and (3) direct 

potable reuse (DPR) with ultrafiltration, ozone, BAC, and UV disinfection. A quantitative 

microbial risk assessment (QMRA) was performed to (1) quantify the risk of infection from 

Cryptosporidium oocysts; (2) compare the risks associated with different potable reuse systems 

under optimal and sub-optimal conditions; and (3) identify critical model/operational parameters 

based on sensitivity analyses. The annual risks of infection associated with the de facto and 

planned IPR systems were generally consistent with those of conventional drinking water 

systems [mean of (9.4±0.3)×10-5 to (4.5±0.1)×10-4], while DPR was clearly superior [mean of 

(6.1±67)×10-9 during sub-optimal operation]. Because the advanced treatment train in the 

planned IPR system was highly effective in reducing Cryptosporidium concentrations, the 

associated risks were generally dominated by the pathogen loading already present in the surface 

water. As a result, risks generally decreased with higher recycled water contributions (RWCs). 

Advanced treatment failures were generally inconsequential either due to the robustness of the 

advanced treatment train (i.e., DPR) or resiliency provided by the environmental buffer (i.e., 

planned IPR). Storage time in the environmental buffer was important for the de facto reuse 

system, and the model indicated a critical storage time of approximately 105 days. Storage times 

shorter than the critical value resulted in significant increases in risk. The conclusions from this 

study can be used to inform regulatory decision making and aid in the development of design or 

operational criteria for IPR and DPR systems.   
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3.2 Introduction 

In recent years, indirect potable reuse (IPR) and direct potable reuse (DPR) have become 

more common due to population growth and increased water demand, especially in communities 

with limited or variable water resources. A historically common form of IPR is known as 

unplanned or de facto reuse (Rice et al., 2013; Rice et al., 2015), in which the source water for a 

drinking water treatment plant (DWTP) is impacted by treated wastewater effluent from an 

upstream community. These systems may not have permits specifically addressing augmentation 

of source water with treated wastewater (Cotruvo & Bell, 2014), and they may not satisfy recent 

potable reuse guidelines/regulations addressing the chemical and microbial risks posed by this 

practice. Planned IPR and DPR systems explicitly acknowledge these risks and, as a result, 

generally employ advanced water and/or wastewater treatment processes to ensure adequate 

protection of public health. 

The primary distinction between IPR and DPR is that IPR incorporates an environmental 

buffer as a discharge and blending point (USEPA, 2012). The environmental buffer provides 

natural treatment barriers and is also used as a psychological barrier to improve public perception 

(Khan, 2013). DPR replaces the environmental buffer with additional treatment, monitoring, 

and/or the inclusion of an engineered storage buffer (Leverenz et al., 2011; Tchobanoglous et al., 

2015). The engineered storage buffer is intended to provide response retention time to react to 

failures in the advanced treatment train, which are identified by monitoring critical control points 

(Tchobanoglous et al., 2011; NWRI, 2016a). Although advanced treatment may be adequate to 

deliver purified water directly into a drinking water distribution system, a recent study indicates 

that blending with raw water upstream of a conventional drinking water treatment plant may still 

offer significant reductions in public health risks (Soller et al., 2016).  
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Existing regulatory frameworks for IPR or DPR require specific treatment trains and/or 

compliance with stringent water quality metrics. For example, the California Division of 

Drinking Water (DDW) requires “full advanced treatment” (FAT) consisting of reverse osmosis 

(RO) and an advanced oxidation process (AOP) for planned IPR systems that directly inject 

recycled water into local aquifers (CDPH, 2014) or rely on surface water augmentation (NWRI, 

2016b). Many other IPR projects throughout the world (e.g., Arizona, Singapore, and Australia) 

also employ RO and UV or UV/H2O2 to ensure adequate protection of public health (Gerrity et 

al., 2013). This treatment train has been shown to be effective in addressing known public health 

risks (Trussell et al., 2016) and is assumed to be sufficiently robust to mitigate unknown public 

health risks (CDPH, 2014), at least from a microbial standpoint. RO-based treatment trains can 

also achieve very low concentrations of total dissolved solids (TDS) and total organic carbon 

(TOC), which is important for achieving 0.5 mg/L of wastewater-derived TOC in California 

(CDPH, 2014). Due to sustainability concerns with RO (Gerrity et al., 2014), some communities 

are already employing or exploring the feasibility of ozone-biofiltration (Gerrity et al., 2013), as 

this treatment combination is equally capable of satisfying most public health criteria (Trussell et 

al., 2016). Ozone-biofiltration is unable to remove TDS without the use of RO or significant 

blending ratios, but some systems with low-TDS source waters may not require TDS reduction—

even in DPR applications. However, the public health risks associated with ozone-biofiltration 

need to be better characterized and communicated to overcome the perception (or reality) of RO 

as a superior treatment process. 

One of the primary drivers for the design of potable reuse treatment trains is mitigating 

risks associated with water-borne pathogens. Based on literature compiled in Trussell et al. 

(2013), a panel of public health experts recommended 12-10-9-log reduction of viruses, 
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Cryptosporidium, and total coliform bacteria, respectively, for potable reuse systems targeting 

annual risks of infection of 10-4 (NWRI, 2013). These recommendations are also consistent with 

the California DDW’s 12-10-10-log reduction requirements for viruses, Cryptosporidium, and 

Giardia, respectively (CDPH, 2014). Many potable reuse treatment trains are capable of 

satisfying these pathogen requirements during periods of optimal performance. However, there is 

always the possibility of a failure in one or more treatment barriers that could affect the 

performance of downstream processes (i.e., a ‘domino effect’) and the overall log removals in a 

treatment train. With the widespread implementation of potable reuse, it is important to fully 

understand the “reliability” (Pecson et al., 2015) and “equivalency” (Trussell et al., 2016) of the 

various treatment paradigms and to identify critical operational conditions. 

One way to achieve this goal is to perform a quantitative microbial risk assessment 

(QMRA), in which experimental data can be combined with mathematical models and statistical 

probabilities to estimate the risk of infection associated with a particular microbial hazard (Haas 

& Rose, 1995). The results of the QMRA can be used to characterize overall public health risks, 

identify adverse outcomes, and ultimately aid in risk management, risk communication, and 

decision making (Beaudequin et al., 2015; Petterson and Ashbolt, 2016). Both static (time-

invariant) and dynamic (time-variant) QMRAs have been used to facilitate decision making in 

municipal, recreational, and agricultural applications (Soller et al., 2006; Olivieri et al., 2014a; 

Olivieri et al., 2014b). QMRAs have also been used to evaluate risks associated with de facto 

reuse along the Trinity River (Wu, 2015; Lim et al., 2016), hypothetical IPR scenarios (NRC, 

2012), and even DPR (Forss & Ander, 2011; Soller et al., 2016).  

The current study expands the QMRA knowledge base for potable reuse through the use 

of a system dynamics platform. System dynamics is a non-linear, mathematical simulation of 
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complex, interrelated system elements, which are represented as ‘stocks’, ‘flows’, ‘convertors’, 

and ‘arrows’ (Text S7; Forrester, 1958). This non-linear approach has been used to model water 

resources management and water quality scenarios (Stave, 2003; Venkatesan et al., 2011a; 

Dawadi & Ahmad, 2013; Rehan et al., 2013; Wu et al., 2013a); climate change impacts on water 

resources (Dawadi & Ahmad, 2012; Zhang et al., 2016; Simonovic & Rajasekaram, 2004); the 

water-energy nexus (Shrestha et al., 2011; 2012); and even recycled water applications 

(Venkatesan et al., 2011b; Qaiser et al., 2013; Xiang et al., 2013). Winz et al. (2009) and Mirchi 

et al. (2012) provide detailed reviews of system dynamics applications related to water resources. 

System dynamics can also be used to model temporal variability in potable reuse 

applications, including changes in population structure, water quality, and treatment process 

performance. As such, the main objective of this study was to develop a system dynamics model 

to quantify the risk of cryptosporidiosis from ingestion of drinking water and to compare the 

risks associated with three different potable reuse systems: (1) surface water augmentation via de 

facto reuse with conventional wastewater treatment; (2) surface water augmentation via planned 

IPR with ultrafiltration, pre-ozone, BAC, and post-ozone; and (3) DPR with ultrafiltration, 

ozone, BAC, and UV disinfection. This model focused on quantifying and comparing baseline 

risks, determining critical values for some design/operational parameters (e.g., reservoir storage 

time), and evaluating sensitivity to water quality, operational conditions, and treatment failure. 

Three different scenarios encompassing a range of bin classifications were considered for the de 

facto reuse and planned IPR systems, and two different scenarios (or treatment objectives) were 

considered for the UV disinfection process in the DPR system: Cryptosporidium inactivation and 

NDMA attenuation. This model also serves as the foundation for future dynamic models 
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incorporating disease transmission and secondary exposure pathways, thereby closing the loop 

between finished drinking water and raw wastewater.  

3.3 Methodology  

3.3.1 Risk Calculations 

Cryptosporidium was identified as the hazard for this QMRA. Exposure to 

Cryptosporidium was limited to primary pathways (i.e., ingestion via drinking water) and did not 

consider secondary exposure to infected individuals or fomites. The final concentration of 

Cryptosporidium was calculated based on initial concentrations in raw wastewater and log 

reduction estimates for engineered treatment processes and the environmental buffer (when 

applicable). An exponential dose response model (Eq. 3.1) was used to estimate the daily 

probability of infection due to ingestion of treated drinking water (Teunis et al., 1997; Zhang et 

al., 2012).  

𝑃𝑖𝑛𝑓,𝑑 = 1 − 𝑒−𝑟𝐶𝑤 (Eq. 3.1) 

where,  Pinf,d = daily probability of infection 

r = dose response (infectivity) parameter, oocysts-1  

C = oocyst concentration in ingested drinking water, oocysts/L 

w = daily water consumption rate, L. 

In this study, a daily water consumption rate of 2 L/day was assumed (USEPA, 2004; 

WHO, 2008), although the USEPA recently increased its default drinking water consumption 

rate to 2.4 L/day based on community ingestion at the 90th percentile (USEPA, 2015a).  

A value of 0.00419 oocysts-1 (Barbeau et al., 2000; Zhang et al., 2012) was selected as 

the dose response parameter for the current study, but a range of values has been reported in the 

literature: 0.0022 oocysts-1 (Messner & Berger, 2016); 0.0572 oocysts-1 (Messner et al., 2001); 
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and 0.09 oocysts-1 (USEPA, 2006c). The current study addressed this uncertainty by assessing 

the sensitivity of the model to this published range. It should also be noted that alternative 

Cryptosporidium dose response models (e.g., fractional Poisson, beta-Poisson, exponential with 

immunity) were recently proposed by Messner & Berger (2016), but these were not considered 

in the current study.  

The annual risk of infection was then calculated using Eq. 3.2 (Karavarsamis & 

Hamilton, 2010). 

  𝑃𝑖𝑛𝑓,𝑎 = 1 − ∏ (1 − 𝑃𝑖𝑛𝑓,𝑑)𝑖
365
𝑖=1  (Eq. 3.2) 

 where,  Pinf,a = annual probability of infection. 

Several different frameworks were used to compare the risks posed by the different 

potable reuse systems. An annual risk of 10-4 has been used as a benchmark in previous studies 

(Regli et al., 1991; Ryu et al., 2007; NWRI, 2013; Trussell et al., 2013; CDPH, 2014; Soller et 

al., 2016), but it is not the formal basis for federal drinking water regulations for 

Cryptosporidium in the United States (U.S.). Instead, the Long Term 2 Enhanced Surface Water 

Treatment Rule (LT2) classifies source waters into different categories, or bins, based on their 

average Cryptosporidium concentrations. Drinking water utilities must then achieve the 

Cryptosporidium log reductions required by their bin classifications (USEPA, 2010a). This study 

compared the annual risks of infection calculated by Eq. 2 against the risks associated with 

compliance with LT2. A summary of baseline LT2 risk estimates is included in the 

Supplementary Information (SI) in Figure S1. 

The experimental treatment trains were also evaluated against the WHO guidelines for 

drinking water quality, which are based on disease burden and disability adjusted life years 

(DALYs). WHO recommends a target of 10-6 DALYs/person-year (WHO, 2008). The disease 
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burden for Cryptosporidium was calculated according to Eqs. 3.3 and 3.4 (Zhang et al., 2012; 

Health Canada, 2012). 

𝑅 = 𝑃𝑖𝑛𝑓,𝑎  ×  𝑆 ×  𝐼 (Eq. 3.3) 

𝐷 = 𝑅 ×  𝜔 (Eq. 3.4) 

where,  R = risk of illness per year for an individual 

Pinf,a = probability of infection per year (see Eq. 3.2) 

S = proportion of population susceptible to infection 

I = proportion of population that develops symptomatic illness after infection 

D = disease burden, DALYs/person-year 

𝜔 = health burden, DALYs/case 

In addition to the LT2 and WHO frameworks, this study also considered the 10-log 

reduction target for Cryptosporidium (NWRI, 2013; CDPH, 2014) in determining appropriate 

operational conditions for the treatment trains described later. The constants used in the 

aforementioned equations are summarized in Table 3.1. 

3.3.2 System Dynamics Model 

A general description of system dynamics is provided in the SI in Text S7. Probabilities 

of infection were based on daily simulations of a STELLA 10.1 (ISEE Systems, Lebanon, NH) 

system dynamics model over a duration of 365 days. Statistical analyses were based on the 

results of 10,000 model iterations (Barreto & Howland, 2005; Martorell et al., 2008). For the de 

facto reuse and planned IPR systems, typical Cryptosporidium concentrations were assumed to 

be present in the upstream surface water feeding the community (described later), and these 

systems were also augmented with treated wastewater discharges from within the community. 

This is slightly different from the original definition of de facto reuse (i.e., upstream community 
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impacting a downstream community), but it allows for simplification of the model while still 

maintaining the principal element of de facto reuse (i.e., limited treatment prior to environmental 

discharge).  

Table 3-1. Summary of the parameters and values used in the system dynamics model 

Parameter Description Value Units Reference 

Risk 

calculations 

I Proportion of symptomatic illness 0.7 unitless Zhang et al. (2012) 

S Susceptible proportion of population 100% unitless Zhang et al. (2012) 

ω Health burden of Cryptosporidium 0.0017 DALYs/case Health Canada (2012) 

r Infectivity parameter 0.00419 oocysts-1 Barbeau et al. (2000); (Ryu, Alum, 
Mena, & Abbaszadegan, 2007) 

w Daily water consumption rate 2 L/per-day WHO (2008) 

Wastewater Cc Influent oocyst concentration Lognormal (78, 112)3 oocysts/L Rose et al. (2005) 

Pre-ozone1 O3/TOC O3/TOC ratio 1.1 mgO3/mgC Gerrity et al. (2014) 
TOCWW TOC concentration in 2° effluent 7.2 mgC/L Gamage et al. (2013) 

TOCUF TOC concentration in UF filtrate 6.3 mgC/L Trussell et al. (2016) 

O3 Applied ozone dose 6.9 mg/L Calculated 

IOD Instantaneous ozone demand 4.0 mg/L Text S3 

𝑘o3
First order ozone decay rate constant 0.54 min -1 Text S3 

tO3
Ozone contact time 5 min Text S3 

T Temperature 25 °C Assumed 

CT Ozone CT 5.0 mg-min/L Text S3 

Post-ozone1 O3 CT Ozone CT 10 mg-min/L Text S3 

O3 Applied ozone dose 5.1 mg/L Calculated (based on target O3 CT) 

tO3
Ozone contact time 30 min Assumed (complete ozone decay) 

T Temperature 25 °C Assumed 

Environmental 

buffer 

𝑘4℃ Oocyst decay rate constant at 4ºC 0.0093 day-1 Peng et al. (2008) 

λ Dimensionless temperature modifier 0.095 unitless Peng et al. (2008) 

Tsw Temperature of surface water 
Baseline condition 

Critical condition 

20 

10 

°C 

°C 

Assumed [based on Peng et al. (2008)] 

Assumed (based on sensitivity analysis) 

RWC Recycled water contribution 20% unitless Assumed [based on Rice et al. (2013)] 

t sw Storage time 

Baseline condition 

Critical condition 

270 

105 

days 

days 

(Wu, 2015) 

Assumed (based on sensitivity analysis) 

UV2 I0 UV incident (maximum) intensity 25 mW/cm2 Assumed (based on commercial system) 

IAVG UV average intensity 11.4 mJ/cm2 Calculated (Eq. 13) 

x UV path length 10 cm Assumed [based on Lee et al. (2016)] 

kA UV absorbance of ozonated UF 

effluent 

0.080 cm-1 Text S5 

D UV dose 80 mJ/cm2 NWRI (2012) 

tUV UV exposure time 7.0 seconds Calculated (Eq. 14) 

𝑘UV Oocyst inactivation rate constant 0.243 (mJ/cm2)-1 Hijnen et al. (2006) 

1Additional details in Text S2-S4; 2Additional details in Text S5-S6; 3(Mean, Standard Deviation) with 

μ = 3.80 and σ = 1.06 

The additional Cryptosporidium from the treated wastewater was determined from typical 

raw wastewater concentrations (see Table 3.1) combined with output (i.e., treatment 

performance, failure mode, etc.) from the model simulation. In the de facto reuse and planned 

IPR systems, the degree of treatment incorporated into each scenario differed based on LT2 bin 
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classification requirements (described later). For the DPR system, there was no upstream surface 

water so all drinking water was provided by the advanced treated recycled water from within the 

community. The various water systems are depicted in Figure 3.1, and the unit processes used in 

each treatment train are depicted in Fig 3.2. 

Figure 3-1. Potable reuse systems considered in this study (A) de facto reuse with upstream base loading 

of Cryptosporidium, (B) planned IPR with upstream base loading of Cryptosporidium, and (C) ‘closed-

loop’ DPR. The wastewater-derived loadings of Cryptosporidium in (A) and (B) were modeled based on 

recycled water contributions, and the upstream base loadings of Cryptosporidium were modeled with 

three hypothetical scenarios (see Table 3.2). The AWWTPs differ based on the order of the unit processes 

and the final disinfection step: ozone for IPR and UV for DPR (see Figure 3.2). *WWTP = conventional 

wastewater treatment plant, SW = surface water, DWTP = conventional drinking water treatment plant, AWWTP = 

advanced wastewater treatment plant 

Figure 3-2. The treatment processes included in each sector of the system dynamics model 

(A) conventional wastewater treatment plant, (B) conventional drinking water treatment plant, (C)

advanced wastewater treatment plant for the planned IPR system, and (D) advanced wastewater treatment

plant for the DPR system. The operational conditions and expected performance of each unit process is

summarized in Table 3.1.



33 
 

The STELLA model included five different interconnected ‘sectors’ representing the 

major model components: (1) a conventional and advanced (if applicable) wastewater treatment 

plant; (2) a conventional drinking water treatment plant (for the IPR systems only); (3) the 

probability of infection calculated from the final Cryptosporidium concentration in the finished 

drinking water; (4) the bin classification, which was used to define the log removal credit for the 

conventional drinking water treatment plant in accordance with the LT2; and (5) the risk of 

infection and disease burden. Concentrations of Cryptosporidium in raw sewage and upstream 

surface water were modeled as probability distributions, the advanced treatment processes (e.g., 

pre-ozonation, post-ozonation, and UV disinfection) were modeled with dynamic algorithms 

(described later), and the remaining parameters and treatment processes were modeled using 

equations and output from the model or as point estimates when relevant data were not available 

in the literature. The system dynamics model was validated based on suggestions in Sterman 

(2000). These tests included structure assessment, dimensional consistency, parameter 

assessment, integration error (numerical integration method), behavior reproduction, and 

sensitivity analyses.  

3.3.2.1 Conventional Wastewater Treatment Plant 

 Each of the potable reuse systems was modeled with a sector representing a conventional 

wastewater treatment plant (WWTP), which was assumed to include primary sedimentation, an 

activated sludge process, and secondary sedimentation (Figure 3.2A). Disinfection was omitted 

to make the model applicable to facilities that do not employ final disinfection or facilities that 

employ disinfection achieving minimal inactivation of Cryptosporidium oocysts (e.g., 

chlorination or chloramination). The concentration of Cryptosporidium in the raw wastewater 

was estimated as a lognormal distribution with a mean of 78 oocysts/L and a standard deviation 
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of 112 oocysts/L (μ = 3.80 and σ = 1.06) (Rose et al., 2005). To account for reports of higher 

Cryptosporidium concentrations [e.g., mean of 242 oocysts/L in Robertson et al. (2006)], the 

current study included a sensitivity analysis on this parameter (described later). 

Some recent studies recommend no Cryptosporidium credit for conventional WWTPs 

due to the lack of published data describing possible correlations between removal/inactivation 

of Cryptosporidium and secondary effluent water quality (Tchobanoglous et al., 2015). However, 

in this study, a constant 1-log removal credit was used as a conservative point estimate for 

WWTP removal (Rose et al., 2005).  

3.3.2.2 Planned Indirect Potable Reuse – Advanced Wastewater Treatment Plant #1 

In addition to the conventional WWTP sector, the planned IPR system included a sector 

representing an advanced WWTP employing ultrafiltration (UF), pre-ozonation, BAC, and post-

ozonation (Figure 3.2C). This treatment train may be considered unsuitable for DPR because it 

may not consistently achieve the recommended 10-log reduction for Cryptosporidium unless 

high ozone CT values are achieved in both ozone steps—likely resulting in elevated bromate 

concentrations.  

UF is considered a reliable barrier against nearly all pathogens, particularly larger 

microbes such as Cryptosporidium (Jacangelo et al., 1995), and current regulatory frameworks 

award 4-log removal for microfiltration (MF) or UF (Tchobanoglous et al., 2015). Ozonation has 

been shown to be highly effective in converting complex bulk organic matter into simpler, more 

biodegradable compounds, which improves overall TOC removal during subsequent biofiltration 

processes (Snyder et al., 2014). Ozone is also effective in destroying a wide range of trace 

organic compounds (TOrCs) (Lee et al., 2013). Therefore, pre-ozonation is often employed for 

these treatment objectives, and disinfection is an ancillary benefit. Although BAC has not been 
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shown to play an important role in pathogen attenuation, it has significant impacts on TOC 

reduction (Reungoat et al., 2010; Trussell et al., 2016), attenuation of N-nitrosodimethylamine 

(NDMA) (Gerrity et al., 2015; Trussell et al., 2016), and TOrC removal (Reungoat et al., 2010; 

Gerrity et al., 2011). In contrast with the pre-ozonation step, post-ozonation for final disinfection 

is typically controlled and monitored based on disinfection objectives. 

For pre-ozonation, ozone dosing was based on O3/TOC ratio because this parameter 

achieves similar relative treatment efficacy in diverse wastewater qualities (Lee et al., 2013). To 

extend this concept to disinfection efficacy, particularly for Cryptosporidium, it was necessary to 

develop estimates for instantaneous ozone demand (IOD) and the ozone decay rate constant as a 

function of O3/TOC ratio. These parameters were then coupled with contact time and wastewater 

temperature to estimate ozone CT and log inactivation. The IOD and the ozone decay rate 

constant were determined according to Eqs. 3.5 and 3.6, respectively. These equations were 

developed based on previous bench-scale ozone experiments in five different secondary effluents 

(Gamage et al., 2013; Snyder et al., 2014). Additional details are provided in the SI in Text S2 

and Text S3. 

  𝐼𝑂𝐷 = 𝑇𝑂𝐶 × 0.6025 × (
𝑂3

𝑇𝑂𝐶
)

0.6679

 R2 = 0.93 (Eq. 3.5) 

where, IOD = instantaneous ozone demand, mg/L 

 
𝑂3

𝑇𝑂𝐶
≤ 0.25        𝑘𝑜3

= 𝑛𝑜𝑡 𝑑𝑒𝑓𝑖𝑛𝑒𝑑   (Eq. 3.6a) 

 
𝑂3

𝑇𝑂𝐶
> 0.25        𝑘𝑜3

= 𝑇𝑂𝐶 × 0.1001 × (
𝑂3

𝑇𝑂𝐶
)

−1.605

  R2 = 0.71 (Eq. 3.6b) 

where, 𝑘𝑜3
 = first order ozone decay rate constant, min-1. 

The ozone residual was modeled according to Eq. 3.7 using the wastewater-specific 

operational and kinetic parameters from Eqs. 3.5 and 3.6.  
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  𝑂3 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = [(
𝑂3

𝑇𝑂𝐶
) ×  𝑇𝑂𝐶 − 𝐼𝑂𝐷] ×  𝑒−𝑘𝑜3𝑡  (Eq. 3.7) 

where,  𝑡 = contact time, min. 

The ozone CT was then calculated using Eq. 3.8 (based on integration of Eq. 3.7). 

  𝑂3 𝐶𝑇 =  
[(

𝑂3
𝑇𝑂𝐶

)× 𝑇𝑂𝐶−𝐼𝑂𝐷]

𝑘𝑂3

× (1 − 𝑒−𝑘𝑂3𝑡)      (Eq. 3.8) 

where, 𝑂3 𝐶𝑇 = product of ozone residual and contact time, mg-min/L.   

Finally, Cryptosporidium log removal was calculated using the ozone dose response 

relationship described in Eq. 3.9 (USEPA, 2010a). This assumes that drinking water models for 

ozone disinfection are also applicable to wastewater treatment applications.  

  Cryptosporidium Log Credit = 0.0397 × 1.09757𝑇 ×  𝑂3 𝐶𝑇  (Eq. 3.9) 

where, T = water temperature, ºC (between 0.5ºC and 25ºC) (USEPA, 2010a). 

In contrast with the pre-ozonation step, the primary objective of post-ozonation is 

disinfection. As such, a potable reuse facility will likely operate the post-ozone step to achieve a 

specific ozone CT value. Instead of using the O3/TOC approach described above, an ozone CT 

value of 10 mg-min/L (Text S3) and temperature of 25°C were assumed, and Eq. 3.9 was used to 

calculate the corresponding Cryptosporidium log credit for post-ozonation. Other ozone dosing 

parameters were then calculated using the equations described previously. Additional details 

related to ozone efficacy during normal and failure modes are provided in the SI in Text S3 and 

Text S4, and a schematic diagram of the advanced wastewater treatment plant is shown in Figure 

S9 in Text S7. Model parameters used for the baseline condition (e.g., TOC, O3/TOC, contact 

time) are summarized in Table 3.1. 

3.3.2.3 Conventional Drinking Water Treatment Train 

 The conventional drinking water treatment plant was included for the de facto reuse and 

planned IPR systems. In these systems, Cryptosporidium oocysts at the drinking water intake 
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originated in (1) the upstream surface water and (2) the local wastewater discharge. The final 

concentration of Cryptosporidium oocysts at the drinking water intake accounted for both 

dilution of the treated wastewater in the surface water and Cryptosporidium die-off during 

storage. The Cryptosporidium concentration in the upstream surface water—typically linked to 

upstream wastewater discharges, livestock operations, etc.—was assumed to be one of three 

uniform distributions based on published data for 66 surface water treatment plants in the U.S. 

(Table 3.2; LeChevallier et al., 1991). These were assumed to represent the concentrations 

detected at the drinking water intake when no local wastewater was discharged into the source 

water.  

Table 3-2. Surface water Cryptosporidium concentrations and associated bin classifications. 

Scenario Cryptosporidium concentrations 

assumed for this study 

(oocysts/L)1 

Bin classification  

(Cryptosporidium concentration 

in oocysts/L)2 

Baseline 

treatment 

credit3 

Additional 

treatment 

requirement3 

1 Uniform Distribution 

[0.002,0.075] 

Bin 1 (<0.075) 3 logs 0 log 

2 Uniform Distribution [0.075,1] Bin 2 (≥0.075 and <1) 3 logs 1 log 

3 Uniform Distribution [3,112.75] Bin 4 (≥3) 3 logs 2.5 logs 
1LeChevallier et al. (1991) and [min, max]; 2USEPA (2010a); 3Assumes conventional filtration 

 

For the local-wastewater-derived Cryptosporidium loadings, the de facto reuse and 

planned IPR models allowed for varying percent contributions of treated wastewater into the 

local surface water (i.e., the recycled water contribution or RWC). The extent of wastewater 

influence in U.S. surface waters has been shown to vary considerably over time (Rice et al., 

2013). In 1980, the U.S EPA determined that the 25 most impacted municipal water utilities 

received wastewater contributions ranging from 2% to 16% of their overall supply (USEPA, 

1980). More recently, Rice et al. (2013) reported increases in de facto reuse for 17 of those 25 

cities, with an average RWC of 68% and a maximum of 100% during extended periods of dry 

weather. Moreover, California is likely to require a dilution ratio of at least 1:10 or 1:100, 

depending on log credits awarded to the engineered treatment trains, for surface water 
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augmentation (NWRI, 2016b). To account for these ranges, a slider bar was added to the 

STELLA model to allow for user-specified RWC values from 0% to 100%. The baseline 

condition (i.e., RWC of 20%) was selected based on Rice et al. (2015), in which six of nine 

drinking water systems had RWCs of at least 20% under low flow conditions.  

To evaluate the impact of retention time in the environmental buffer on pathogen die-off, 

a slider bar was added to the model to allow for changes in mean storage time from 0-365 days. 

For the current study, the baseline condition was assumed to be a mean storage time of 270 days 

to coincide with a case study of the Trinity River in Texas (Wu, 2015), although a ‘critical’ 

condition of 105 days was also evaluated (described later). According to California DDW’s 

recommended design criteria for surface water augmentation, retention times should not be less 

than 2-4 months in order to allow for sufficient response time for operational upsets (NWRI, 

2016b). Currently, there is a paucity of published literature documenting actual hydraulic 

retention times of wastewater-impacted drinking water reservoirs. Once additional tracer study 

and/or hydrodynamic modeling data are available, the mean retention time approach could be 

replaced with a more representative retention time distribution.  

Die-off in the reservoir was quantified using a Cryptosporidium decay rate constant 

calculated with Eq. 3.10. The temperature correction is valid from 4ºC to 37ºC, which is the 

typical temperature range for most aquatic environments (Peng et al., 2008). Because 

Cryptosporidium is a large protozoan parasite, settling may lead to significant reductions in 

oocyst concentrations during long storage periods. However, settling was not specifically 

addressed in this study because of the site-specific nature of this removal mechanism, including 

velocity profiles, intake elevations, etc. 

𝑘𝑇 =  𝑘4℃𝑒𝜆(𝑇𝑠𝑤−4) (Eq. 3.10)
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where, kT = first order die-off rate constant for Cryptosporidium at temperature Tsw, day-1 

 𝑘4℃ = first order die-off rate constant for Cryptosporidium at 4ºC, day-1 

 λ = dimensionless modifier of temperature  

 𝑇𝑠𝑤 = Temperature of the surface water, ºC. 

The temperature-specific rate constant was then used in conjunction with Eq. 3.11 to 

determine the concentration of infectious, local-wastewater-derived Cryptosporidium remaining 

at the end of the storage period (Brookes et al., 2004). 

   𝐶𝑑𝑒𝑐𝑎𝑦 = 𝐶𝑒𝑓𝑓  ×  𝑒−𝑘𝑇𝑡𝑠𝑤  (Eq. 3.11) 

where, Cdecay = concentration of local-wastewater-derived Cryptosporidium after die-off,  

   oocysts/L 

 Ceff = concentration of Cryptosporidium in treated wastewater, oocysts/L 

 𝑡𝑠𝑤= storage time in the surface water, days. 

The upstream loading of Cryptosporidium was not affected by storage time in the model 

because it was assumed that the storage time was already reflected in the concentration 

previously detected at the intake prior to the discharge of locally treated wastewater. Therefore, 

the final concentration of Cryptosporidium detected at the intake was determined based on a 

mass balance approach assuming complete mixing (Wu, 2015; Eq. 3.12). 

  𝐶𝑖𝑛𝑡𝑎𝑘𝑒 = 𝐶𝑑𝑒𝑐𝑎𝑦  ×  𝑅𝑊𝐶 +  𝐶𝑆𝑊  ×  (1 − 𝑅𝑊𝐶)  (Eq. 3.12) 

where, Cintake = concentration of Cryptosporidium at drinking water intake, oocysts/L 

 CSW = concentration of Cryptosporidium from upstream surface water, oocysts/L 

 RWC = recycled water contribution. 

The log removal of Cryptosporidium oocysts during conventional drinking water 

treatment was then determined in accordance with LT2 (Table 3.2), which resulted in the final 
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concentration in the finished drinking water consumed by the public. The conventional filtration 

process was credited with 3.0-log removal (USEPA, 2010a), and any additional log credits 

required by the LT2 bin classification were assumed to be achieved by a disinfection process. 

The corresponding bin classifications and treatment requirements, as described by the LT2, are 

summarized in Table 3.2. A schematic diagram of the conventional drinking water treatment 

plant is shown in Figure S10 in Text S7. 

3.3.2.4 Direct Potable Reuse – Advanced Wastewater Treatment Plant #2 

The DPR system (i.e., no surface water inputs) included UF, O3, BAC, and UV (Figure 

3.2D). This treatment train has been identified in the literature as a viable option for DPR 

(Trussell et al., 2016). UV is included for final disinfection in the DPR system because it is 

considered more robust when targeting Cryptosporidium inactivation. High dose UV is also 

effective as a final polishing step for NDMA photolysis and can be used for the attenuation of 

other trace organic contaminants (Lee et al., 2016). Chlorination would presumably be used for 

residual disinfection and to prevent pathogen regrowth in distribution systems, but residual 

chlorination was assumed to have no impact on Cryptosporidium concentrations. Therefore, no 

log removal credits were attributed to the engineered storage buffer. 

The UF and BAC systems were modeled in a similar fashion to the planned IPR system, 

and the ozone process was modeled consistent with the aforementioned pre-ozonation step. 

Therefore, only UV was unique to the DPR treatment train. Major operational parameters for UV 

disinfection include incident UV intensity, path length, and absorptivity of the water matrix, 

which collectively affect the average UV intensity in the reactor. The values assumed for this 

study are summarized in Table 3.1. For the absorptivity of the water matrix, typical values were 

assumed for a nitrified effluent (i.e., after conventional wastewater treatment) and a filtered 
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nitrified effluent (i.e., after UF). The reduction in UV absorbance achieved by pre-ozonation 

(Gerrity et al., 2012) was also considered in the model and is described in greater detail in Text 

S5. The treatment objective for the UV disinfection process was set to either Cryptosporidium 

inactivation (baseline condition) or NDMA photolysis (NDMA scenario) (described later). 

Average UV intensity in the reactor was determined by Eq. 3.13 (Chen et al., 2006), the 

UV dose was calculated by Eq. 3.14, and the corresponding log inactivation was calculated with 

Eq. 3.15, assuming first order kinetics (Hijnen et al., 2006). Relevant assumptions and constants 

are summarized in Table 3.1. 

 Iavg = 𝐼0 ×
(1−𝑒−𝑘𝐴

′ 𝑥)

𝑘𝐴
′ 𝑥

=  𝐼0 ×
(1−10−𝑘𝐴𝑥)

2.303 × 𝑘𝐴𝑥
  (Eq. 3.13) 

where, Iavg = average UV254 intensity in the system, mW/cm2 

 I0 = incident (maximum) UV254 intensity, mW/cm2 

 𝑘𝐴
′  = base e absorptivity of the water matrix at 254 nm, cm-1 

 𝑘𝐴 = base 10 absorptivity of the water matrix at 254 nm, cm-1 

 x = reactor path length, cm. 

 𝐷 = 𝐼𝑎𝑣𝑔  ×  t𝑈𝑉  (Eq. 3.14) 

 Cryptosporidium Log Credit = −𝑙𝑜𝑔 (
𝑁

𝑁0
) = 𝑘𝑈𝑉  ×  D   (Eq. 3.15) 

where, D = UV254 dose, mJ/cm2 

 t𝑈𝑉 = exposure time, s 

 𝑘𝑈𝑉 = UV254 inactivation rate constant, (mJ/cm2)-1. 

With respect to public health, additional water quality parameters, specifically 

disinfection byproducts, must be considered in a DPR system and might impact the operational 

conditions in the treatment facility. For this particular DPR treatment train, problematic 
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disinfection byproducts might include bromate formed during pre-ozonation, NDMA formed in 

the presence of chloramine (e.g., to control UF biofouling) or ozone, and trihalomethanes and 

haloacetic acids formed after exposure to chlorine in the engineered storage buffer and 

distribution system. Because of the pathogen focus of this study, these were not considered in the 

model (with the exception of NDMA). 

Either Cryptosporidium or NDMA can be targeted by the UV process in the model by 

changing a control switch. With the Cryptosporidium treatment objective (baseline condition), 

the model assumed a target UV dose of 80 mJ/cm2 (NWRI, 2012). With respect to NDMA, 

recent studies suggest that NDMA formation during ozonation may be problematic in some 

wastewater matrices (Gerrity et al., 2015). A downstream BAC process may achieve significant 

attenuation (Gerrity et al., 2015; Trussell et al., 2016), but high-dose UV photolysis (i.e., >100 

mJ/cm2) might still be warranted (Lee et al., 2016; Gerrity et al., 2016). For the NDMA scenario, 

the model assumed an NDMA concentration of 50 ng/L and a target reduction of 90% to achieve 

the California notification level of <10 ng/L (CDPH, 2014) with a 5-ng/L buffer, thereby 

requiring a UV dose of 512 mJ/cm2 (Lee et al., 2016). For these target UV doses (i.e., 80 mJ/cm2 

or 512 mJ/cm2), corresponding exposure times (7 sec and 45 sec, respectively) were calculated 

using Eqs. 13-14 and the UV-specific parameters listed in Table 3.1. Finally, the log credit for 

UV was limited to 6 logs regardless of the treatment objective and theoretical log reductions 

(Table S8), as required by CDPH (2014). Additional details related to UV disinfection efficacy 

during normal and failure modes are provided in Text S6. A schematic diagram of the DPR 

treatment train is shown in Figure S11 in Text S7. 
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3.3.2.5 Advanced Treatment Failure Framework  

Assuming the various treatment processes are operating as intended, one can estimate the 

log removal/inactivation credits expected for each potable reuse system, as summarized in Table 

3.3. The planned IPR and DPR treatment trains can theoretically achieve the 10-log reduction 

requirement without the environmental buffer, while the de facto reuse system is highly sensitive 

to the efficacy of the environmental buffer. However, failures during advanced treatment may 

have a significant detrimental impact on the total log removal in Table 3.3. To address this issue, 

the potential impacts of process failures were incorporated into the model to evaluate whether the 

treatment trains were sufficiently robust to adequately protect public health during sub-optimal 

operation.  

Table 3-3. Assumed or calculated Cryptosporidium log removal credits for the baseline condition under 

optimal operational conditions (i.e., no failures). 

Process de facto Reuse Planned IPR DPR 

1 WWTP 1.02 WWTP 1.02 WWTP 1.02 

2 EB TBD3 UF 4.04 UF 4.04 

3 DWTP 3.0-5.51 O3 2.05 O3 2.05 

4   BAC 06 BAC 06 

5   O3 4.17 UV 6.08 

6   EB TBD3 ESB 09 

7   DWTP 3.0-5.51   

Baseline Total10 4.0 – 6.5 14.1 – 16.6 13.0 
1Based on LT2 and corresponding bin classification for a drinking water treatment plant with conventional 

filtration (Table 3.2); 2Rose et al, 2004; 3Credit for environmental buffer determined by die off calculation (Eq. 

11) and dilution (Eq. 12); 44-log credit awarded assuming satisfactory pressure decay test (Tchobanoglous et 

al., 2015); 5Determined based on Eq. 9; 6No credit granted to BAC (Tchobanoglous et al., 2015); 7Determined 

based on Eq. 9; 8Assumes UV dose of 80 mJ/cm2 (NWRI, 2012) but limited to a maximum credit of 6 logs 

(CDPH, 2014); 9No credit awarded for engineered storage buffer assuming chlorine as residual disinfectant; 
10Excludes environmental buffer 

Table 3.4 summarizes the expected log credits during ideal operation and the modified 

log removal credits during failure mode for the critical unit processes in this study. The 

probabilities of failure for the UF and pre-ozone processes were based on a fault tree analysis 

and historical data from the DPR system in Namibia (Forss & Ander, 2011). The probability of 

failure for the post-ozonation process was based on a statistical distribution of historical ozone 
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CT values in Burns (2015) (Text S4). Due to a lack of failure data in the literature, an arbitrary 

failure probability of 0.01 was assumed for UV (Text S6), and BAC failures were not 

considered. Also, the model assumed a worst-case scenario (i.e., 0-log credit) for individual 

process failures. 

Table 3-4. Cryptosporidium reduction efficacy and probabilities of failure in different treatment 

processes. 

Treatment 

Process 

Log Removal 

during 

Ideal Operation 

Probability 

of 

Failure 

Log Removal Credit during Specified Failure(s)6 

UF 

failure 

Pre-O3 

failure 

UF+Pre-O3 

failure 

Post-O3 

failure 

UV 

Failure 

UF 4.01 0.00282 0 4.0 0 4.0 4.0 

Pre-O3 2.0 0.00212 1.4 0 0 2.0 2.0 

Post-O3 4.1 0.0003253 2.7 1.0 0.6 0 N/A 

UV 6.04 0.015 6.04 6.04 6.04 N/A 0 

1Tchobanoglous et al. (2015); 2Forss & Ander (2011); 3Burns (2015) and Text S4; 4Assumed maximum 

credit (CDPH, 2014); 5Arbitrary value due to lack of data but a sensitivity analysis was performed to 

evaluate the significance of this value (Text S6); 6Text S4 and S6 

Table 3.4 also summarizes the effects of compound failures, as described in Text S4-S6. 

For example, UF failures not only eliminated the 4-log removal credit for UF, but they also 

decreased the efficacy of the pre- and post-ozone processes in the planned IPR system and the 

pre-ozone and UV processes in the DPR system. Specifically, UF failures caused increases in 

TOC concentration in the UF filtrate. Assuming constant applied ozone doses, this led to 

decreased O3/TOC ratios for pre-ozonation (IPR and DPR) and post-ozonation (IPR only). 

Moreover, this led to lower ozone CT values (IPR and DPR) and lower UV doses due to the 

increase in UV254 absorbance of the water matrix (DPR). The model also considered the 

possibility of simultaneous failures of UF and pre-ozonation, for example, which led to a 

decrease in log inactivation from 4.1 (no failure scenario) to 0.6 (UF and pre-ozone failure) for 

the post-ozonation process. Even with simultaneous failures of the upstream UF and ozone 
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processes, the UV process in the DPR system was still able to achieve greater than 6-log 

inactivation based on the calculated UV doses during failure modes (30 mJ/cm2 and 194 

mJ/cm2), although NDMA attenuation decreased significantly (Tables S7-S8). Higher turbidities 

(e.g., due to UF failure) can also affect UV performance by scattering UV light and shielding 

target pathogens, but turbidity spikes were not considered in the model. 

3.3.3 Sensitivity Analyses 

To evaluate the significance of the various treatment processes, operational conditions, 

and parameter uncertainty, sensitivity analyses were performed on a subset of model inputs: (i) 

wastewater loading of Cryptosporidium, (ii) treatment process failures, (iii) reservoir storage 

time, (iv) recycled water contribution, (v) the temperature of the surface water, and (vi) the dose 

response parameter. Factor sensitivity (FS) values were calculated according to Eq. 3.16 to 

provide direct quantitative comparisons for the sensitivity analyses (Zwietering and Van Gerwen, 

2000). FS values indicate the log10 ratio of the revised model output versus the baseline 

condition: large negative values (e.g., less than -0.3) indicate notable decreases in risk, large 

positive values (e.g., greater than 0.3) indicate notable increases in risk, and small values indicate 

minimal changes in risk. 

 𝐹𝑆 = 𝑙𝑜𝑔10 (
𝑃𝑥

𝑃𝐵𝐿
)    (Eq. 3.16) 

where, Px = risk of infection for the modified condition 

 PBL = risk of infection for the baseline condition. 
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3.4 Results and Discussion 

3.4.1 Quantification of Cryptosporidium Oocysts for the Baseline Condition 

Six different water qualities were characterized for the baseline condition: (1) raw sewage; 

(2) conventionally treated wastewater; (3) finished drinking water in the de facto reuse system;

4) finished drinking water in the IPR system; 5) advanced treated wastewater in the IPR system

(i.e., before blending); and 6) finished drinking water in DPR system. Figure 3.3 compares the 

concentrations of Cryptosporidium oocysts for these water qualities using scenario 1 (bin 1 

surface water) as an example. The analysis of variance (ANOVA) test followed by multiple 

comparison analysis test (Tukey-Kramer post hoc test) indicated that the concentrations 

of Cryptosporidium oocysts in the various waters were significantly different (p<0.05), except 

for the finished drinking waters in the de facto reuse and planned IPR systems. The 

environmental buffer clearly improved the quality of the conventionally treated wastewater as a 

result of pathogen die-off and dilution, thereby improving the finished drinking water quality in 

the de facto reuse system. However, the environmental buffer led to a significant deterioration in 

water quality for planned IPR. The occurrence of Cryptosporidium in the upstream surface water 

controlled the risk calculation in both IPR systems. 
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Figure 3-3. Concentration of Cryptosporidium oocysts in raw wastewater and the finished water from 

different treatment trains for the baseline condition (storage time of 270 days at a temperature of 20°C). 

The model proved to be highly sensitive to storage time because pathogen die-off offset 

the limited reduction of Cryptosporidium in the de facto reuse system, and pathogen die-off also 

offset potential spikes in Cryptosporidium during failures in the planned IPR system. Despite 

higher concentrations of Cryptosporidium in the upstream surface water in scenarios 2 (Figure 

S12) and 3 (Figure S13), similar outcomes were observed. These results support the previous 

National Research Council suggestion that some engineered potable reuse systems might achieve 

similar or superior water quality compared to traditional systems incorporating environmental 

buffers (NRC, 2012). 
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3.4.2 Quantification of Public Health Risk for the Baseline Condition 

The annual probabilities of infection and DALYs for both optimal and sub-optimal 

conditions are presented in Table 3.5. Because the model did not consider failures in 

conventional wastewater or drinking water treatment, there are no results for sub-optimal 

operation for de facto reuse. Blending the de facto and planned IPR product waters with 

upstream surface water resulted in nearly identical annual risks of infection (mean of 9.4×10-5 - 

4.5×10-4) and DALYs (mean of 1.1×10-7 - 5.3×10-7), with the ranges representing results for the 

three bin scenarios. The small confidence levels in Table 3.5 also indicate that daily fluctuations 

in wastewater loadings had minimal impact on risk. Figure 3.4 illustrates how the modeled risks 

for the potable reuse scenarios under sub-optimal operation compare to the LT2 framework for 

conventional drinking water applications. The model suggests that under baseline conditions, the 

risks associated with de facto reuse and planned IPR are consistent with traditional bin 1, bin 2, 

or bin 4 drinking water systems. It is important to emphasize that the risks associated with 

planned IPR are elevated due to mixing with upstream surface water and not due to inadequate 

treatment or wastewater influence from within the community. Because of the dominance of the 

upstream surface water, advanced treatment failures were inconsequential for the planned IPR 

system, resulting in nearly identical annual risks of infection and DALYs for optimal and sub-

optimal performance (Table 3.5). Although the impacts of process failure were more apparent for 

the DPR system, the overall risks for DPR were still at least three orders of magnitude lower than 

the LT2 framework and the 10-4 benchmark during sub-optimal operation.  
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Table 3-5. Statistical analysis of probability of infection per year and disease burden for optimal (i.e., no 

failures) and sub-optimal operation for the baseline condition. Values are based on the results from 

10,000 model iterations.   
Optimal operation 

Statistics 
de facto (Unplanned Indirect 

Potable Reuse) 
Planned Indirect Potable Reuse 

Direct 

Potable 

Reuse Pinf,y Scenario 12 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 

Mean 9.4E-05 1.3E-04 4.5E-04 9.4E-05 1.3E-04 4.5E-04 2.2E-11 

St. Dev. 2.7E-06 3.4E-06 1.3E-05 2.7E-06 3.4E-06 1.3E-05 1.8E-12 

95% Confidence (±) 5.3E-08 6.8E-08 2.5E-07 5.3E-08 6.7E-08 2.5E-07 3.5E-14 

Minimum 8.4E-05 1.2E-04 4.0E-04 8.3E-05 1.2E-04 4.0E-04 1.9E-11 

5th Percentile 9.0E-05 1.3E-04 4.3E-04 9.0E-05 1.3E-04 4.3E-04 2.0E-11 

50th Percentile 9.4E-05 1.3E-04 4.5E-04 9.4E-05 1.3E-04 4.5E-04 2.3E-11 

95th Percentile 9.9E-05 1.4E-04 4.7E-04 9.9E-05 1.4E-04 4.7E-04 2.5E-11 

Maximum 1.1E-04 1.5E-04 5.0E-04 1.0E-04 1.4E-04 5.0E-04 2.8E-11 

Disease Burden1 

Mean 1.1E-07 1.6E-07 5.3E-07 1.1E-07 1.6E-07 5.3E-07 2.7E-16 

St. Dev. 3.3E-09 4.0E-09 1.5E-08 3.2E-09 4.1E-09 1.5E-08 2.7E-15 

95% Confidence (±) 6.4E-11 8.1E-11 3.0E-10 6.3E-11 8.0E-11 3.0E-10 5.3E-17 

Sub-optimal operation 

Statistics 
de facto (Unplanned Indirect 

Potable Reuse)3 
Planned Indirect Potable Reuse 

Direct 

Potable 

Reuse Pinf,y Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 

Mean - - - 9.4E-05 1.3E-04 4.5E-04 6.1E-09 

St. Dev. - - - 2.7E-06 3.4E-06 1.3E-05 6.7E-08 

95% Confidence (±) - - - 5.3E-07 6.7E-07 2.5E-06 1.3E-09 

Minimum - - - 8.4E-05 1.2E-04 4.1E-04 2.2E-11 

5th Percentile - - - 9.0E-05 1.3E-04 4.3E-04 3.4E-11 

50th Percentile - - - 9.4E-05 1.3E-04 4.5E-04 3.3E-10 

95th Percentile - - - 9.9E-05 1.4E-04 4.7E-04 1.9E-08 

Maximum - - - 1.0E-04 1.5E-04 5.1E-04 5.0E-06 

Disease Burden1 

Mean - - - 1.1E-07 1.6E-07 5.3E-07 7.2E-12 

St. Dev. - - - 3.2E-09 4.1E-09 1.5E-08 7.9E-11 

95% Confidence (±) - - - 6.3E-10 8.0E-10 3.0E-09 1.6E-12 

1Disease burden in DALYs per person per year 
2Scenarios refer to bin classifications (see Table 3.2); scenarios do not apply to direct potable reuse because 

there is no surface water influence 
3Model did not consider failures for conventional drinking water treatment or conventional wastewater 

treatment 



50 

Figure 3-4. Comparison of annual risk of infection from the system dynamics model during sub-optimal 

operation with calculated risks based on the LT2 framework. The scenarios refer to the varying 

concentrations of Cryptosporidium in the upstream surface water (see Table 3.2), and the results are 

calculated for the baseline and critical conditions (see Table 3.1). Datasets denoted with an “a” reflect 

baseline conditions, and datasets denoted with a “b” reflect critical conditions (i.e., 105 days of storage 

time and a temperature of 10°C). 

3.4.3 Water Resource Management and Policy Implications 

Sensitivity analyses were performed to identify the most influential parameters in each 

treatment train and to assess the implications of various management and regulatory/policy 

measures. The results for the sensitivity analyses were then used to identify ‘critical’ conditions 

based on observed changes in model output. 

3.4.3.1 Effects of Increased Wastewater Loading of Cryptosporidium 

Variability in wastewater loading of Cryptosporidium was evaluated in the context of an 

outbreak scenario. This study defined an outbreak as a 1-log increase in the raw wastewater 

concentration. This assumption is supported by Haas & Rose (1995), who showed a 10-fold 
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increase in Cryptosporidium concentration in finished water during the 1993 Milwaukee 

outbreak, and also by Trussell et al. (2013), who estimated 10-fold to 100-fold increases in raw 

wastewater concentration during outbreak conditions. The 1-log increase also allows for 

consideration of studies [e.g., Robertson et al. (2006)] reporting higher Cryptosporidium 

concentrations than Rose et al. (2005). Even though higher concentrations of Cryptosporidium in 

the raw wastewater were expected to result in higher risks of infection, model output for the IPR 

systems indicated that at least 270 days of reservoir storage time at 20°C was sufficient to 

completely buffer the effects of the outbreak. The outbreak condition increased the risk for DPR 

by a factor of 10, but the final risk (≈4×10-8) was still well below the 10-4 benchmark. The 

corresponding factor sensitivity values are summarized in Table 3.6.  

Table 3-6. Summary of factor sensitivity (FS) values for the sensitivity analyses on wastewater 

Cryptosporidium concentrations (i.e., outbreak condition) and process failure. FS values indicate the log10 

ratio of the revised model output versus the baseline condition: large negative values (e.g., less than -0.3) 

indicate notable decreases in risk, large positive values (e.g., greater than 0.3) indicate notable increases 

in risk, and small values (e.g., greater than -0.3 and less than 0.3) indicate minimal changes in risk. For 

example, an FS value of 0.3 indicates the risk has increased by a factor of 2 due to the change. 

Revised 

Condition 

de facto Reuse Planned IPR DPR 

Scenario 

1 

Scenario 

2 

Scenario 

3 

Scenario 

1 

Scenario 

2 

Scenario 

3 

Outbreak 1.2E-02 1.2E-02 1.0E-03 1.2E-03 2.9E-03 2.8E-03 1.5E+00 

UF Failure N/A N/A N/A 1.2E-08 3.3E-10 0.0E+00 4.6E+00 

Pre-O3 

Failure 

N/A N/A N/A 2.0E-09 0.0E+00 0.0E+00 N/A 

Post-O3 

Failure 

N/A N/A N/A 0.0E+00 0.0E+00 0.0E+00 2.0E+00 

UV 

Failure 

N/A N/A N/A N/A N/A N/A 6.0E+00 

*Bold values indicate that the risk increased/decreased by more than a factor of 2 relative to the baseline 

condition. 

**All FS values in this table are positive, which indicates increases in risk for all systems and for all scenarios.  

 

3.4.3.2 Effects of Failures during Advanced Treatment for Planned IPR and DPR  

The factor sensitivity values associated with specific process failures are summarized in 

Table 3.6 for the three planned IPR systems and the DPR system. Planned IPR scenario 3, which 
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was classified as a bin 4 surface water system, had the highest risk of infection for the baseline 

condition but was completely insensitive to process failures. Again, the higher baseline risk was 

due to the higher upstream surface water loading of Cryptosporidium, and the system’s lack of 

sensitivity to failure was due to increased resiliency linked to the environmental buffer and the 

greater removal requirements for the conventional drinking water treatment plant. Although 

extremely minor, UF failure had the greatest impact on risk for scenarios 1 and 2 because of the 

immediate reduction in log credits for UF and the ‘domino effects’ on downstream processes. 

Therefore, the effects of process failures in all planned IPR scenarios were negligible because the 

failures were sufficiently mitigated by the 270 days of storage in the environmental buffer. 

Because of the reduced resiliency of the DPR treatment train, process failures resulted in 

significant increases in annual risk, particularly during a UV failure. However, the DPR system 

had sufficient treatment redundancy to achieve the 10-4 annual risk benchmark even during 

process failures. 

3.4.3.3 Effects of Reservoir Storage Time 

Because of the high level of treatment provided by the planned IPR treatment train, 

reservoir storage time had a negligible impact on annual risk during normal operation. Because 

this was highly dependent on Cryptosporidium loadings in the upstream surface water, discharge 

to a ‘pristine’ source water would yield different results. For the de facto reuse system, storage 

times shorter than 270 days led to higher risks of infection (Figure 3.5). A ‘critical’ threshold 

(i.e., FS>0.3) occurred between 90 and 180 days of storage for surface water scenarios 1 and 2, 

but even zero days of storage had minimal impact on scenario 3 because of the high upstream 

surface water loading and robust treatment provided at the drinking water treatment plant. 

Therefore, 105 days was selected as the target storage time for the ‘critical condition’ analysis 
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(described later). It is important to note that the current model does not account for non-ideal 

flow conditions, such as short-circuiting, which could significantly reduce storage times for some 

parcels of water. Therefore, it is important to verify whether mean retention time is a reasonably 

accurate hydrodynamic representation of real-world systems.  

Figure 3-5.  Sensitivity analysis on reservoir storage time for the three scenarios of the de facto 
reuse system (storage time had negligible impact on the planned IPR system). The asterisk indicates the 

reservoir storage time for the baseline condition (270 days). Bold values indicate that the risk 

increased/decreased by more than a factor of 2 relative to the baseline condition. FS = factor sensitivity 

value. 

3.4.3.4 Effects of Recycled Water Contribution 

Figure 3.6 illustrates the relationship between RWC and annual risk of infection for de 

facto reuse and planned IPR. For the planned IPR system, higher RWCs led to reduced annual 

risk of infection regardless of storage time—from a 25% reduction for a 40% RWC to a 75% 

reduction for an 80% RWC (Figure 3.6B). The same results were observed for de facto reuse 

with a storage time of 270 days, but results were significantly different for de facto reuse with a 

105-day storage time (Figure 3.6A). For the less contaminated bin 1 surface water (scenario 1),

the annual risk of infection increased by a factor of 1.2-1.6 for RWCs of 40-80%. On the other 
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hand, the more contaminated surface waters in scenarios 2 and 3 were characterized by 

decreased risks of infection—actually lower than the risks for scenario 1—as the RWC increased 

to 80%. These results suggest that the relative impacts of RWC are highly dependent on other 

system variables, including storage time and bin classification.  

Figure 3-6. Sensitivity analysis on recycled water contribution  

for (A) de facto reuse system with 105 days of storage time and (B) de facto reuse with 270 days of 

storage time or planned IPR with either 105 or 270 days of storage time. The asterisk indicates the RWC 

for the baseline condition (20%). Bold values indicate that the risk increased/decreased by more than a 

factor of 2 relative to the baseline condition. FS = factor sensitivity value. 

3.4.3.5 Effects of Temperature in the Environmental Buffer 

Because the planned IPR system was insensitive to operational changes in the 

environmental buffer, changes in reservoir temperature had no significant impacts on annual risk. 

Figure 3.7 illustrates the results of the sensitivity analysis for temperature in the de facto reuse 

system. The annual risk of infection was less sensitive to temperature changes when coupled 

with 270 days of storage time (Figure 3.7B) versus 105 days of storage time (Figure 3.7A). 

However, for both 105 days and 270 days, the annual risk of infection increased by a factor of 10 

in scenario 1 (i.e., bin 1 surface water) when the temperature dropped from 20°C (baseline 
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condition) to 5°C. This is attributable to the reduction in die-off of wastewater-derived 

Cryptosporidium at the lower reservoir temperature coupled with the lack of additional treatment 

at the conventional drinking water treatment plant. The temperature effects were less pronounced 

for scenarios 2 and 3, which included additional treatment at the drinking water treatment plant 

in accordance with LT2. For scenario 1, notably higher risks were also observed for temperatures 

of 10°C, but the risks decreased relative to the baseline condition for temperatures greater than 

20°C. A temperature of 10°C was selected for the ‘critical’ condition analysis.  

Figure 3-7. Sensitivity analysis on temperature in the environmental buffer for the de facto reuse system 

(A) 105 days of storage time and (B) 270 days of storage time. The asterisk indicates the reservoir

temperature for the baseline condition (20°C). Bold values indicate that the risk increased/decreased by

more than a factor of 2 relative to the baseline condition. FS = factor sensitivity value.

3.4.3.6 Analysis of the Critical Condition 

Figure 3.8 illustrates the Cryptosporidium oocyst concentrations in the various water 

matrices for the critical conditions, specifically a storage time of 105 days at a temperature of 

10°C, for scenario 1. The corresponding data for scenarios 2 and 3 are provided in Figures S14 

and S15. Because the IPR (before blending) and DPR product waters were not influenced by the 

critical condition, their concentrations remained largely unchanged from the baseline condition 

for all three scenarios. The final IPR drinking water (after blending) was also similar due to the 
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high quality of the advanced treated wastewater and the dominance of the upstream surface 

water. The final drinking water in the scenario 1 de facto reuse system exhibited the greatest 

change—an approximate 10-fold increase in Cryptosporidium concentration—due to the reduced 

buffering capacity of the reservoir and the lower level of treatment at the drinking water 

treatment plant. The additional log reduction credits for the drinking water treatment plant in 

scenarios 2 and 3 were able to compensate for the reduction in die-off in the environmental 

buffer. The corresponding annual risks of infection for the critical condition are illustrated and 

compared against the LT2 framework in Figure 3.4.  

Figure 3-8. Concentration of Cryptosporidium oocysts in raw wastewater and the finished water from 

different treatment trains for the ‘critical’ condition  

(storage time of 105 days at a temperature of 10°C). 
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3.4.4 Sensitivity Analysis on the Dose Response Parameter 

Figure 3.9 illustrates the result of the sensitivity analysis on the Cryptosporidium dose 

response parameter for the baseline condition (i.e., temperature of 20°C and a storage time of 

270 days under sub-optimal operation). As expected, higher dose response parameters resulted in 

higher annual risks of infection, and the increases were nearly proportional to the ratio of the 

modified and original r values for the low Cryptosporidium concentrations/doses expected in the 

finished drinking waters. For dose response parameters of 0.0572 and 0.09 oocysts-1, the annual 

risks of infection for all IPR scenarios exceeded the 10-4 benchmark by at least one order of 

magnitude, but the annual risk for DPR (~9×10-8) was still well below the 10-4 benchmark. 

Therefore, uncertainty in the dose response parameter did not necessarily impact relative 

differences between the potable reuse systems, but there was a significant impact on absolute 

risk values.  
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Figure 3-9. Sensitivity analysis on dose response parameter for the baseline condition 

(temperature of 20°C and storage time of 270 days). The asterisk indicates the baseline dose 

response parameter of 0.00419 oocysts-1, and the dashed line represents the benchmark annual risk 

of 10-4. 

3.5 Conclusion 

The risks associated with the de facto and planned IPR systems were generally consistent 

with those of conventional drinking water systems, while DPR was clearly superior. Because the 

advanced treatment train in the planned IPR system was highly effective in reducing 

Cryptosporidium concentrations, the associated risks were generally dominated by upstream 

surface water conditions. Moreover, risks generally decreased with higher recycled water 

contributions (RWCs), except for the bin 1 de facto reuse system with short reservoir storage 

times. Outbreak conditions and advanced treatment failures were generally inconsequential, at 

least with respect to Cryptosporidium, either due to the robustness of the advanced treatment 
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train (i.e., DPR) or resiliency provided by the environmental buffer (i.e., planned IPR). Storage 

time in the environmental buffer was important for the de facto reuse system, and the model 

indicated a critical storage time of approximately 105 days, although this was also temperature-

dependent. A critical condition consisting of a 105-day storage time in the environmental buffer 

at a temperature of 10°C resulted in a significant difference between planned IPR and de facto 

reuse for a bin 1 system, with de facto reuse exhibiting a 10-fold higher annual risk of infection. 

This is attributable to the reduced treatment provided by the bin 1 drinking water treatment plant, 

which reduced the resiliency of the system. Therefore, the bin 2 and bin 4 de facto reuse systems 

generally exhibit higher risks of infection for storage times longer than 105 days, regardless of 

temperature, but bin 1 may exhibit higher risks when shorter storage times are coupled with 

colder temperatures. 

The conclusions developed from the model output can be used by stakeholders to better 

understand the role of various operational parameters on public health risks in diverse potable 

reuse systems. Moreover, the data from this study can be used to inform regulatory decision 

making and aid in the development of design or operational criteria for IPR and DPR systems. 

Future modeling efforts would benefit from a more comprehensive characterization of temporal 

variability in advanced treatment process efficacy. Although failures in the planned IPR and 

DPR treatment trains were generally inconsequential for the overall Cryptosporidium risk 

calculations, model accuracy could be improved by incorporating statistical distributions of 

process efficacy rather than using ‘absolute’ failures (i.e., worst-case scenarios). Moreover, the 

implications of process failure—and other critical parameters—might change when modeling 

risks associated with other pathogens, such as norovirus. Finally, there is a need to better 

understand the hydrodynamics of drinking water reservoirs to allow for more accurate modeling 
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of the environmental buffer, particularly considering that storage time was a critical parameter 

for some potable reuse systems.  
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4.1 Introduction 

Evaluating the microbiological quality of drinking water is critically important for 

ensuring adequate public health protection, particularly in potable reuse applications. 

Cryptosporidium, norovirus (NoV), adenovirus (AdV), and Salmonella, all of which can be 

transmitted via the fecal-oral route, are some of the main etiological agents of gastroenteritis 

worldwide (National Research Council, 2012). NoV, AdV, and Salmonella are also listed on the 

United States (U.S.) Environmental Protection Agency’s (EPA) Contaminant Candidate List 

(CCL4), thereby identifying these pathogens for priority research (USEPA, 2015b). 

Despite the importance of these pathogens in the context of public health, the industry 

lacks information on their survival in the environment and attenuation through some treatment 

processes. For example, quantification of NoV infectivity has been elusive due to the 

ineffectiveness of conventional cell culture methods. Instead, studies have relied on MS2 (Lee & 

Ko, 2013), feline calicivirus (FCV) (Doultree et al., 1999; Duizer et al., 2004; Nuanualsuwan and 

Cliver, 2003; Thurston-Enriquez et al., 2005; Abbaszadegan et al., 2007) and murine norovirus 

(MNV) (Karst et al., 2003; Katayama et al., 2006; Lee et al., 2008; Lim et al., 2010; Wu, 2015) 

as viral surrogates, or used a probabilistic approach to estimate viral inactivation based on 

genome damage (Pecson et al., 2011). Recently, MNV has been identified as a valuable 

surrogate for evaluating NoV survival in the environment (Bae & Schwab, 2008; Cannon et al., 

2006; Hirneisen & Kniel, 2013; Yi et al., 2016), but incomplete characterization still requires the 

use of other surrogates such as MS2 in some instances. 

Because of the challenging nature of pathogen detection, particularly in highly treated 

water, the drinking water and potable reuse industries generally rely on log removal values 

(LRVs) to ensure adequate protection of public health (Pecson et al., 2015). For potable reuse, 
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the “12-10-10” LRV framework initially implemented in California is now being adopted by 

other states (EPA, 2017). An independent panel of public health experts also supported the 

adoption of this framework with two minor exceptions: they noted that satisfying the 

Cryptosporidium LRV would presumably satisfy the LRV for Giardia, which is generally more 

susceptible to treatment, and that a 9-log total coliform LRV might be warranted to address 

concerns related to Salmonella. Therefore, they proposed a “12-10-9” framework (NWRI, 2013) 

for viruses, Cryptosporidium, and total coliform bacteria as a surrogate for Salmonella. These log 

reductions are based on raw sewage as the source water, while the “8-5.5-6” framework for 

viruses, Cryptosporidium, and Giardia in Texas uses pathogen levels in the presumably more 

consistent secondary wastewater effluent as the basis for treatment train design (TWDB, 2015). 

Because they all target a 10-4 annual risk of infection, experts suggested that New Mexico could 

adopt any of these frameworks for future DPR projects (NWRI, 2016c). On the other hand, 

Australia and the World Health Organization (WHO) proposed a target of 10-6 disability adjusted 

life years (DALYs) per person per year, which corresponds with a 10-3 annual risk of infection 

and LRVs of 9.5-8-8.1 for viruses, Cryptosporidium, and Campylobacter in untreated 

wastewater (NRMMC-EPHC-NHMRC, 2008). 

Previous studies have performed quantitative microbial risk assessments (QMRAs) to 

evaluate public health risks associated with indirect potable reuse (IPR) (Olivieri et al., 1999; 

Lim et al., 2017) and direct potable reuse (DPR) (Pecson et al., 2017; Soller et al., 2017), but 

there are few direct comparisons of IPR and DPR using the same QMRA framework (Chaudhry 

et al., 2017), particularly studies that simultaneously compare treatment trains in de facto reuse, 

planned IPR, and DPR applications (Amoueyan et al., 2017). Many studies emphasize treatment 

trains employing high-pressure membrane filtration [i.e., nanofiltration (NF) or reverse osmosis 
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(RO)] (Chaudhry et al., 2017), and some studies focus on alternative treatment trains relying on 

ozone-biofiltration (Amoueyan et al., 2017), while few studies include both (Soller et al., 2017). 

While most employ a stochastic Monte Carlo approach to address parameter variability, few 

studies have described the potential impacts of process failure (Pecson et al., 2017) and 

associated ‘domino effects’ (Amoueyan et al., 2017) on risk estimates. 

Each study is characterized by various strengths and limitations, but, more importantly, 

the unique attributes of each QMRA approach allow one to reach important conclusions 

regarding the safety and reliability of potable reuse treatment train design. For example, 

Amoueyan et al. (2017) found that the upstream surface water concentration of Cryptosporidium 

oocysts was the dominant factor in IPR applications, assuming wastewater-derived 

Cryptosporidium was attenuated with sufficient storage time in the environmental buffer. The 

existing QMRA literature generally agrees that potable reuse treatment trains are adequately 

protective of public health, particularly when compared with conventional drinking water 

applications. However, it has also been demonstrated that a small number of daily risk spikes for 

certain pathogens may cause disproportionate increases in annual risk under certain conditions 

(e.g., low UV doses) or when using alternative dose response models (Soller et al., 2017). 

Therefore, additional QMRA studies are still warranted to characterize the relative impacts of 

parameter variability and uncertainty across a wide range of pathogens and treatment train 

scenarios. 

As such, the main objective of this study was to perform a QMRA to estimate health risks 

associated with Cryptosporidium, NoV, AdV, and Salmonella that could potentially occur in the 

finished drinking water of de facto reuse, planned IPR, and DPR systems employing ozone-

biofiltration or RO-based treatment trains. The stochastic nature of observed LRVs was captured 
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with a Monte Carlo approach and published statistical distributions of treatment process 

performance. Short-term failures and associated ‘domino effects’ were also incorporated into the 

model framework. Therefore, the results of this study allow for a comprehensive evaluation of 

treatment train ‘equivalence’ in the context of protozoan, viral, and bacterial pathogen exposure. 

Specifically, this study expands upon Amoueyan et al. (2017) by including additional pathogens 

and a direct comparison of ‘full advanced treatment’ (FAT) [i.e., treatment trains employing RO 

and an advanced oxidation process (AOP)] vs. ozone-biofiltration. This study will also aid in 

characterizing the relative risks posed by planned potable reuse vs. de facto reuse in the U.S., 

thereby allowing for a determination of the adequacy of current Safe Drinking Water Act 

(SDWA) safeguards given the ubiquity of wastewater-impacted source waters (Rice et al., 2013).  

4.2 Methodology 

4.2.1 Potable reuse systems and treatment trains 

 Figure 4.1 summarizes the seven de facto reuse, planned IPR, and DPR systems 

considered in this study. These were selected to encompass the spectrum of potable reuse 

systems currently in use, under design/construction, or under consideration for future projects. 

Potable reuse treatment trains with UV disinfection (i.e., TT2, TT4, TT5,TT6, TT7) were 

assumed to employ low-dose UV targeting disinfection. In addition to the unit processes listed in 

Figure 4.1, the IPR systems (TT1-TT4) accounted for the effects of dilution and storage time in 

their respective environmental buffers. The surface water augmentation/blending systems (TT1, 

TT3, TT4, and TT5) employed conventional drinking water treatment with chlorine disinfection 

prior to distribution, and the groundwater replenishment system (TT2) employed chlorination 

upon withdrawal from the aquifer. LRVs for the unit processes are described later. 
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Figure 4-1. Treatment processes included in each potable reuse system.  

The conventional WWTP included only secondary wastewater treatment. The surface water 

augmentation/blending treatment trains (TT1, TT3, TT4, TT5) employed a conventional drinking water 

treatment plant with chlorine disinfection prior to distribution. The groundwater replenishment treatment 

train (TT2) included chlorine disinfection upon withdrawal from the aquifer. MF = microfiltration, UF = 

ultrafiltration, RO = reverse osmosis, UV = ultraviolet disinfection, BAC = biological activated carbon, 

Cl2 = free chlorine disinfection, ESB = engineered storage buffer.  

4.2.2 Target pathogens and raw wastewater concentrations 

Cryptosporidium, NoV, AdV, and Salmonella were selected as the target pathogens for 

the QMRA because they account for most of the waterborne gastroenteritis cases in the U.S. 

(Craun et al., 2006; National Research Council, 2012). Cryptosporidium and AdV are also 

common drivers for treatment train design due to their demonstrated resistance to oxidative 

(USEPA, 2006a) and UV disinfection processes (Gerba et al., 2002), respectively. Inclusion of 

disinfectant resistant pathogens in a QMRA is recommended to mitigate uncertainties by 
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addressing ‘extreme’ hazards (Gerba et al., 2018). Salmonella was also included in the current 

study based on the aforementioned recommendation of public health experts (NWRI, 2013). 

Transmission of the target pathogens may occur either through direct contact with a host 

or through contaminated surfaces, food, or water (Rzeżutka & Cook, 2004), but this study 

addressed only the primary exposure route via contaminated drinking water. Historically, NoV 

infections have generally been transmitted through contaminated food (Percival et al., 2013), but 

a recent QMRA indicated that NoV may be a concern for potable reuse as well (Soller et al., 

2018), thereby justifying its inclusion in the current study. Salmonella has also been associated 

with foodborne disease but is more frequently transmitted through contaminated water 

(Lemarchand & Lebaron, 2003; WHO, 2008). Data on pathogen occurrence in various water 

matrices was collected from the literature and described with best-fit probability distribution 

functions (PDFs), which are summarized in Table 4.1 and illustrated along with the 

corresponding cumulative distribution functions (CDFs) in Figures S1-S3. Cryptosporidium 

concentrations were based on immunomagnetic separation and immunofluorescence assay 

microscopy (i.e., U.S. EPA Method 1623) (Rose et al., 2005), NoV and AdV concentrations 

were based on genome copy data (described below), and Salmonella concentrations were based 

on most probable number (MPN) culture methods (Koivunen et al., 2003; Lemarchand & 

Lebaron, 2003). 

Detection and quantification of NoV in different water matrices (e.g., sewage, surface 

water, and groundwater) is typically accomplished with quantitative polymerase chain reaction 

(qPCR), and concentrations are reported based on genome copies (gc) (Lodder & de Roda 

Husman, 2005; Borchardt et al., 2012; Eftim et al., 2017). Some studies suggest that using 

genomes copies as a surrogate for infectious viral particles may overestimate risk estimates when 
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performing a QMRA (Abel et al., 2017), but Gerba et al. (2018) recommended continued use of 

qPCR-based data until a more appropriate alternative was developed. For culturable viruses, 

genome copies may provide a relatively accurate estimate of infectious particles in early stages 

of wastewater treatment, and some studies show that ratios of infectious particles to genome 

copies can range from 1/700 for AdV 40/41 (McBride et al., 2013; Lim et al., 2015) to 1/7 for 

AdV serotype 1 (Parker et al., 2017). Therefore, the use of genome copy data can be justified in 

some contexts, particularly in the absence of infectivity data (e.g., NoV), when ratios of 

infectious particles to genome copies are expected to be high (e.g., in raw sewage), or when 

additional conservatism is preferred (e.g., potable reuse). 

Table 4-1. Statistical distributions of pathogen occurrence in different water sources (WW = raw 

wastewater, SW = surface water, and GW = groundwater). The Cryptosporidium surface water 

distributions are provided for a bin 1 (S1), bin 2 (S2), and bin 4 (S3) surface water. The corresponding 

probability distribution functions and cumulative distribution functions are shown in Figures S1-S3. 
Pathogen Water Concentration Unit Reference 

Cryptosporidium WW Lognormala (101.89, 102.05) oocysts/L Rose et al. (2005) 

SW (S1) Uniformb (10-2.70,10-1.12) LeChevallier et al. (1991); USEPA (2010) 

SW (S2) Uniformb (10-1.12, 100.00) LeChevallier et al. (1991); USEPA (2010) 

SW (S3) Uniformb (100.48, 102.05) LeChevallier et al. (1991); USEPA (2010) 

GW 0 Lodder & de Roda Husman (2005); Ogorzaly et al. 

(2010) 

NoV WW Normalc (103.95, 101.11) gc/L Eftim et al. (2017) 

SW Lognormald (102.95, 103.22) Lodder & de Roda Husman (2005) 

GW Uniformb (0, 10-0.22) Borchardt et al. (2012) 

AdV WW Uniformb (103.25, 108.62) gc/L Hewitt et al. (2011) 

SW Uniformb (102.94, 103.88) Jiang et al. (2001) 

GW Uniformb (10-1.11, 101.00) Borchardt et al. (2012); Allard & Vantarakis (2017) 

Salmonella WW Weibulle (10-0.44, 103.36) MPN/L Koivunen et al. (2003); Lemarchand & Lebaron 

(2003) 

SW Uniformb (10-0.22, 102.63) Lemarchand & Lebaron (2003) 

GW 0 Lodder & de Roda Husman (2005); Ogorzaly et al. 

(2010) 

a(mean, standard deviation) with μ = 3.80 and σ = 1.06 
b(minimum, maximum) 
c(mean, standard deviation)
d(mean, standard deviation) with μ = 6.04 and σ = 1.22 
e(shape, scale) 
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Studies have reported mean NoV concentrations in raw wastewater as high as 7.70 log10 

gc/L, but the corresponding sample sizes have been limited (Simmons et al., 2011) or based on 

small-scale applications such as a single office building (Jahne, 2017) (additional discussion in 

Text S1). With a more comprehensive review of the literature, Eftim et al. (2017) reported a 

mean concentration of 3.95 log10 gc/L and standard deviation of 1.10 log10 gc/L for pooled NoV 

genogroups (NoV GI and GII; Table 4.1). Although studies have reported infectivity data for 

AdV in wastewater (Hewitt et al., 2011; Hurst et al., 1988), few studies have reported infectivity 

data for source waters. To maintain consistency, genome copy data were used to describe AdV 

occurrence in raw wastewater, surface water, and groundwater (Table 4.1) (Jiang et al., 2001; 

Hewitt et al., 2011; Borchardt et al., 2012; Allard & Vantarakis, 2017).   

4.2.3 Source water concentrations for target pathogens 

4.2.3.1 Surface water 

The de facto reuse system (TT1), the planned IPR systems with surface water 

augmentation (TT3 and TT4), and the DPR system with surface water blending (TT5) were all 

influenced by pathogen concentrations in the upstream surface water. Consistent with Amoueyan 

et al. (2017), the upstream surface water concentration of Cryptosporidium oocysts was based on 

the bin classification system established by the U.S. EPA’s Long Term 2 Enhanced Surface 

Water Treatment Rule (LT2ESWTR) and occurrence data in LeChevallier et al. (1991). Using 

data for typical virus concentrations in surface water (Choi & Jiang, 2005; Haramoto et al., 2007; 

Jiang et al., 2001; Lodder & de Roda Husman, 2005; Katayama et al., 2017), a lognormal 

distribution was fit to NoV (Lodder & de Roda Husman, 2005), and a uniform distribution was 

fit to human AdV serotypes 40 and 41 (Jiang et al., 2001). A uniform distribution was also fit to 

published Salmonella concentrations in surface water (Byappanahalli et al., 2009; Haley et al., 
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2009; Jyoti et al., 2010; Lemarchand & Lebaron, 2003; Levantesi et al., 2012). The distributions 

are summarized in Table 4.1, and the corresponding PDFs and CDFs are illustrated in Figure S2. 

4.2.3.2 Groundwater 

The planned IPR system employing groundwater replenishment was influenced by 

pathogen concentrations in the diluent groundwater. Although groundwater is less likely to be 

contaminated by bacteria and protozoa, albeit with some exceptions (Salvadori et al., 2009), 

groundwater systems are known to be susceptible to viral contamination (Ogorzaly et al., 2010; 

Rzeżutka & Cook, 2004). This is related to the longer survival of viral pathogens compared to 

fecal bacteria and the smaller sizes of viruses, which make them more likely to pass through the 

soil and reach the aquifer (Hijnen et al., 2005; Ogorzaly et al., 2010; Pang et al., 2005; Rzeżutka 

& Cook, 2004). In this study, uniform distributions were assumed for the diluent groundwater 

concentrations of NoV (Borchardt et al., 2012) and AdV (Borchardt et al., 2012; Allard & 

Vantarakis, 2017), while Cryptosporidium and Salmonella occurrence was assumed to be 

negligible. The distributions are summarized in Table 4.1, and the corresponding PDFs and 

CDFs are illustrated in Figure S3. 

4.2.4 Pathogen log reduction values for the environmental buffer 

This study focused on recycled water contribution (RWC), storage time, and temperature 

as the most important factors affecting pathogen dilution and die-off in the environmental buffer. 

All parameters related to pathogen dilution and die-off are summarized in Table 4.2. Surface 

water RWC was based on Rice et al. (2015), which evaluated nine source waters and found that 

six had RWCs of at least 20%, and a 270-day storage time was assumed for the surface water 

environmental buffer, consistent with the Trinity River in Texas (Wu, 2015). The groundwater 

RWC was based on data from Sloss et al. (1996), which indicated that the mean RWC for 66 
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groundwater replenishment sites at the Montebello Forebay was ~15% (Sloss et al., 1996; Text 

S2). California requires no less than 2 months of storage in groundwater replenishment systems 

(CDPH, 2014), so 2 months was also assumed for the baseline condition in the current study.  

Table 4-2. Summary of model parameters for the environmental buffer baseline condition. All rate 

constants are base e. 

Water Parameter Description Value Reference 

GW TGW Temperature 10°C Nevecherya et al. (2005); Ogorzaly et al. (2010) 

RWCGW Recycled water contribution 15% Calculateda 

tGW Storage time 2 months CDPH (2014) 

kCrypto,GW,10°C Inactivation rate constant 0.014 d-1 Calculatedb 

kNoV,GW,10°C Inactivation rate constant 0.055 d-1 Calculatedb 

kAdV,GW,10°C Inactivation rate constant 0.029 d-1 Calculatedb 

kSalmonella,GW,10°C Inactivation rate constant 0.138 d-1 Bitton et al. (1983) 

SW TSW Temperature 20°C Peng et al. (2008) 

RWCSW Recycled water contribution 20% Rice et al. (2015) 

tSW Storage time 270 days Wu (2015) 

kCrypto,SW,20°C Inactivation rate constant 0.043 d-1 Calculatedb 

kNoV,SW,20°C Inactivation rate constant 0.875 d-1 Calculatedb 

kAdV,SW,20°C Inactivation rate constant 0.036 d-1 Calculatedb 

kSalmonella,SW,20°C Inactivation rate constant 0.349 d-1 Calculatedb 

aCalculated based on Text S2; Sloss et al. (1996) 
bCalculated with Eq. 2 and the parameters in Table 4.3 

Several studies have evaluated survival (i.e., inactivation kinetics) of Cryptosporidium 

(Peng et al., 2008), viruses (Yates & Gerba, 1983; Yates et al., 1985; Nevecherya et al., 2005; 

Lee et al., 2008; Ogorzaly et al., 2010; Rigotto et al., 2011; Wu, 2015), and Salmonella (Bitton et 

al., 1983; Nevecherya et al., 2005; Pachepsky et al., 2014; Sjorgen, 1994) in the environment. 

Cryptosporidium is known to be highly persistent in the environment (Rzeżutka & Cook, 2004), 

with base e inactivation rate constants of k4°C = 0.0051 d-1 for groundwater and k4°C = 0.0093 d-1 

for surface water (Peng et al., 2008). Inactivation rate constants for other temperatures can be 

determined with Eq. 4.1 and dimensionless temperature modifiers of 0.158 for groundwater and 

0.095 for surface water (Peng et al., 2008).  
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𝑘𝐶𝑟𝑦𝑝𝑡𝑜,𝑇 =  𝑘𝐶𝑟𝑦𝑝𝑡𝑜,4𝑒𝜆(𝑇−4)   (Eq. 4.1)

where, kCrypto,T = base e Cryptosporidium inactivation rate constant at T°C (day-1),

kCrypto,4°C = base e Cryptosporidium inactivation rate constant at 4°C (day -1), 

λ = dimensionless temperature modifier, 

T = temperature of the surface water or groundwater (°C). 

Data generated from Eq. 4.1 can be used in conjunction with Eq. 4.2 to calculate 

activation energy and the Arrhenius equation constant, which can then be used as an alternative 

approach for determining temperature-specific inactivation rate constants. This framework was 

specifically needed for the other target pathogens but is also presented for Cryptosporidium in 

Table 4.3.  

Table 4-3. First order rate constants (base e) and associated Arrhenius equation parameters (Eq. 2) for 

Cryptosporidium, norovirus, adenovirus, and Salmonella inactivation (i.e., die-off) in groundwater and 

surface water. 

Parameter Cryptosporidium Norovirus Adenovirus Salmonella 

GWa SWa GWb SWc GWd SWe GWf SWg 

k4ºC (d-1) 0.005 0.009 0.024 0.173 0.018 -- -- -- 

k10ºC (d-1) 0.013 0.016 0.053 -- -- 0.007 0.138 0.187 

k19ºC (d-1) 0.055 0.039 0.176 -- -- 0.030 -- -- 

k20ºC (d-1) 0.064 0.043 0.201 -- 0.064 -- -- 0.347 

k25ºC (d-1) 0.141 0.068 0.394 1.382 -- -- -- -- 

Ea (kJ/mole)h 108.22 65.07 91.94 67.96 54.85 111.94 N/A 42.66 

Ch 41.69 23.56 36.15 27.75 19.77 42.60 N/A 16.45 
aCalculated with Eq. 1 (Peng et al., 2008)
bCalculated with Eq. 3 (Nevecherya et al., 2005) with MS2 as a surrogate
cYang & Griffiths (2013) with MS2 as a surrogate 
dOgorzaly et al. (2010)  
eRigotto et al. (2011) 
fBitton et al. (1983) 
gPachepsky et al. (2014) 
hCalculated with Eq. 3 
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The Cryptosporidium inactivation rate constants for the baseline conditions in the current 

study (i.e., 10°C for groundwater and 20°C for surface water) are summarized in Table 4.2. 

 𝑙𝑛 𝑘 = (
−𝐸𝑎

𝑅
) (

1

𝑇
) + 𝐶 (Eq. 4.2) 

where, k = base e inactivation rate constant (d-1), 

Ea = activation energy (kJ/mole), 

R = universal gas constant = 0.008314 kJ/mole-K,  

C = Arrhenius equation constant, 

T = temperature (K). 

Due to a lack of infectivity data, MS2 inactivation was used as a surrogate for NoV in the 

current study. Eq. 4.3 was proposed by Nevecherya et al. (2005) for determining the MS2 

inactivation rate constant in groundwater as a function of temperature. Base e MS2 inactivation 

rate constants were also reported by Yang & Griffiths (2013) for surface water: 0.173 d-1 and 

1.382 d-1 for temperatures of 4°C and 25°C, respectively. Published data for AdV inactivation 

are also summarized in Table 4.3 (Ogorzaly et al., 2010; Rigotto et al., 2011). These virus 

models and rate constants were then used in conjunction with Eq. 4.2 to determine the 

corresponding Arrhenius equation parameters and ultimately the inactivation rate constants for 

the baseline conditions in the current study, which are summarized in Table 4.2. 

 log(1/𝑘) = 1.862 − 0.0583 × T (Eq. 4.3) 

where, k = base e MS2 inactivation rate constant (assumed for NoV as well), day-1 

  T = temperature of groundwater, ºC (valid from 4-23ºC) 

As a point of comparison, California awards a 1-log virus credit for each month of 

storage/travel time in the aquifer. This is consistent with the MS2 inactivation rate constant 

determined with Eq. 3 for a temperature of ~13ºC. However, when evaluating lower 
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temperatures or other viruses (e.g., AdV), the die-off rate may deviate from the California 

framework, as illustrated in Figure 4.2.  

Figure 4-2. Estimated log reduction of (a) norovirus and (b) adenovirus in groundwater as a function of 

travel time and temperature 

The following base e inactivation rate constants were reported for Salmonella in surface 

water by Pachepsky et al. (2014): 0.187 d-1 and 0.347 d-1 for temperatures of 10°C and at 20°C, 

respectively. On the other hand, there is a paucity of data describing Salmonella inactivation in 

groundwater (Sjorgen, 1994; Gorden & Toze, 2003), and those existing studies may not be 

representative and/or applicable to environmental survival according to John and Rose (2005). 

Therefore, due to a lack of data, a base e inactivation rate constant of 0.138 day-1, which was 

determined for Salmonella in groundwater at temperatures ranging from 10-12°C (Bitton et al., 

1983), was assumed for this study.  

4.2.5 Pathogen log reduction values for engineered treatment processes 

When sufficient data were available in the literature, a probabilistic approach (i.e., a 

statistical distribution on the LRV) was used to estimate pathogen removal/inactivation by each 

engineered treatment process in the aforementioned treatment trains. In the case of insufficient 

data for a particular pathogen, relevant surrogates were used, and in the case of limited data for 
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treatment reliability, point estimates were used for the expected LRV. These data, along with 

typical probabilities of failure, are summarized in Table 4.4 and described in greater detail 

below. Because the data in Table 4.4 represent observed treatment performance, they may differ 

from the typical regulatory credit awarded to each treatment process. Regulatory credits are 

summarized in Table S2 for comparison. 

Table 4-4. Assumed pathogen log reduction values (LRVs) for engineered treatment processes for an 

assumed temperature of 25°C. N = normal distribution and U = uniform distribution.  

Treatment 

process 

Probability 

of failure 

LRVs 

Cryptosporidium Norovirus Adenovirus Salmonella 

WWTP CAS -- N (1.58, 1.30)e N (1.20, 0.78)f N (2.34, 1.20)g N (3.23, 0.76)e

DWTP Filter -- 3r 2r 2r N/A 

DWTP Cl2 -- 0r 2q 2q U (2.30, 3.15)p 

GW Cl2 -- 0r 4r 4r U (2.30, 3.15)p 

MF 0.0028a N (4.60, 0.96)h,n U (1.50, 3.30)d U (2.40, 4.90)d N (5.96, 1.47)h,n 

UF 0.0028a N (5.52, 0.51)h,k N (4.00, 0.10)h,i 4.9d,o N (4.80, 0.60)h 

RO 0.00009d N (4.50, 0.73)h N (4.30, 0.34)h,l U (2.70, 6.50)d N (6.00, 0.60)m 

BAC -- U (0.00, 0.85)d U (0.00, 1.00)d U (0.00, 0.60)d U (0.50, 2.00)d 

Pre-O3 0.0021a Determined based on ozone CT (Eqs.4-6); O3 CT= 5 (mg-min/L)c

Post-O3 0.000325b,c Determined based on ozone CT (Eqs. 4-6); O3 CT= 10 (mg-min/L)c

UV 0.0002d Determined based on UV dose (Eq. 7); UV dose = 80 (mJ/cm2)s

ESB Cl2 -- 0r 6t 6t U (2.30, 3.15)p 

aForss and Ander (2011); bBurns (2015); cAmoueyan et al. (2017); dSoller et al. (2017); eOttoson 

et al. (2006) with E. coli as a surrogate for Salmonella; fLodder et al. (2005); gHaramoto et al. (2007); 
hChaudhary et al. (2017); iMatsushita et al. (2013); kBeauchamp et al. (2011); lGovernal & Gerba (1999) 

with MS2 as a surrogate; mGerba et al. (1997); nHong et al. (2001); oQui et al. (2015); pFrancy et al. 

(2012); qUSEPA (1991); rUSEPA (2006a); sNWRI (2012); tSalveson et al. (2016) 

4.2.5.1 Conventional wastewater and drinking water treatment plant 

For the conventional wastewater treatment plant, normal distributions were assumed for 

the LRVs for Cryptosporidium (Ottoson et al., 2006), NoV (Lodder et al., 2005), AdV 

(Haramoto et al., 2007), and Salmonella (Ottoson et al., 2006) based on typical data for a 

conventional activated sludge (CAS) process; no tertiary treatment was assumed.  

For the conventional drinking water treatment plant, specifically conventional filtration, a 

3-log credit was awarded for Cryptosporidium and a 2-log credit was awarded for NoV and AdV
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for consistency with the U.S. EPA’s Surface Water Treatment Rules (SWTRs) (USEPA, 1991). 

An additional 2-log credit was awarded for NoV and AdV for final disinfection with free 

chlorine to achieve the 4 total logs required by the U.S. EPA’s SWTR. For TT2 with 

groundwater replenishment, free chlorine was assumed to achieve 4-log NoV and AdV 

inactivation consistent with the U.S. EPA’s Ground Water Rule (USEPA, 2006a). For 

Salmonella, no LRV was awarded for conventional filtration, but inactivation by free chlorine 

was assumed to follow a uniform distribution (Francy et al., 2012).  

4.2.5.2 Low-pressure (MF/UF) and high-pressure (RO) membrane technologies 

According to WHO (2008), MF is expected to remove 3 to 4 logs of bacteria and 

protozoa but less than 1 log of viruses. More recent studies have reported 1.5 to 3.3-log removal 

of NoV with MF, 2.4 to 4.9-log removal of AdV with MF (Soller et al., 2017), up to 4.9-log 

removal of AdV with UF (Qui et al., 2015), and up to 9-log removal of Salmonella using MF 

(Chaudhry et al., 2017; Hong et al., 2001). During nominal operation, both MF and UF are 

capable of serving as absolute barriers for protozoan cysts (Hong et al., 2001; LeChevallier & 

Au, 2004; Reardon et al., 2005). Although the primary benefit of RO membranes is the removal 

of total dissolved solids (TDS), they are also capable of achieving significant pathogen 

attenuation, although the ability to demonstrate RO membrane integrity with suitable surrogate 

parameters often limits the corresponding regulatory LRV to ~2 logs (NRC, 2012). In practice, 

RO membranes are able to achieve up to 6.5-log removal of MS2 phage (Chaudhary et al., 2017; 

Governal & Gerba, 1999) and more than 6-log removal of bacteria (Gerba et al., 1997).  
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4.2.5.3 Disinfection processes 

4.2.5.3.1 Ozonation 

Log inactivation during ozonation was based on an ozone CT framework and assumed 

CT values of 5 mg-min/L and 10 mg-min/L for pre-ozone and post-ozone, respectively 

(Amoueyan et al., 2017). These CT values were used in conjunction with temperature-dependent 

equations for the inactivation of Cryptosporidium (Eq. 4.4) and viruses (Eq. 4.5) (USEPA, 

2010). Thurston-Enriquez et al. (2005) indicated that 4-log inactivation of AdV and FCV (a 

surrogate for NoV) could be achieved at 5°C with ozone Ct values of 0.60 mg-min/L and 0.03 

mg-min/L, respectively, which are much lower than the 1.2 mg-min/L required for generalized 

viruses at 5°C (Eq. 4.5; USEPA, 2010). Therefore, the U.S. EPA equations were assumed to 

represent a potentially conservative estimate of viral inactivation for this QMRA.  

 Cryptosporidium Log Credit = 0.0397 × (1.09757)Temp × CT (Eq. 4.4) 

 Virus Log Credit = 2.1744 × (1.0726)Temp × CT  (Eq. 4.5) 

where, CT = product of ozone residual and contact time (mg-min/L), 

 Temp = temperature (°C) 

Disinfection kinetics for Salmonella are poorly defined in the literature, thereby 

necessitating the use of bacterial surrogates such as E. coli. The Chick-Watson model (Eq. 4.6) 

was fit to ozone disinfection data for E. coli from Zuma et al. (2009), which resulted in a base e 

inactivation rate constant of 0.32 (mg-min/L)-1. Temperature effects were not considered because 

studies have shown that temperature (0ºC to 30º) does not have a significant impact on bacterial 

inactivation kinetics (Kinman & Rempel, 1975; Zuma et al., 2009). Additional details related to 

this calculation are provided in Text S4. 

 𝑙𝑛
𝑁

𝑁0
=  −𝑘 ×  𝐶𝑇 (Eq. 4.6) 
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where, 𝑘 = base e Chick-Watson inactivation rate constant [(mg-min/L)-1] 

CT = ozone CT value (mg-min/L) 

Collectively, these CT values and models resulted in estimated Cryptosporidium, NoV, 

AdV, and Salmonella LRVs of 2, 6, 6, and 1.5 for pre-ozonation and 4.1, 6, 6, and 3.2 for post-

ozonation, respectively, under nominal operating conditions and a wastewater temperature of 

25°C.  

4.2.5.3.2 Chlorine 

Chlorination is known to be ineffective for Cryptosporidium inactivation so an LRV of 0 

was assumed (USEPA, 2006a). The USEPA CT guideline (USEPA, 1991), which requires 3 mg-

min/L at 20°C and 6 mg-min/L at 10°C for 4-log virus inactivation, was used as the basis for 

modeling viral LRVs with chlorination in surface water and groundwater, respectively. Also, for 

the engineered storage buffer (ESB) in the DPR systems, a conservative value of 18 mg-min/L 

was assumed for 6-log virus inactivation (Salveson et al., 2016). Francy et al. (2012) studied 

chlorination of secondary effluent at four wastewater treatment plants and observed a minimum 

log removal of 2.30 and a maximum log removal of 3.15 for E. coli. Due to lack of data on log 

inactivation of Salmonella, these values were used as a uniform distribution for Salmonella 

inactivation with free chlorine.  

4.2.5.3.3 UV disinfection 

Eq. 7 can be used in conjunction with the following base 10 rate constants to calculate 

expected LRVs for UV disinfection systems. Cryptosporidium [0.243 (mJ/cm2)-1; Hijnen et al., 

2006] and Salmonella [0.515 (mJ/cm2)-1; Hijnen et al., 2006] are considered to be highly 

susceptible to UV inactivation, while AdV [0.024 (mJ/cm2)-1; Hijnen et al., 2006] is often the 

driver for the design of UV disinfection systems in drinking water applications. Although 



79 
 

reliable infectivity assays are not yet available for NoV, experiments with MNV [0.150 

(mJ/cm2)-1; Text S5] indicate that NoV is likely highly susceptible to UV disinfection (Lee al., 

2008). As recommended by NWRI (2012), a target UV dose of 80 mJ/cm2 was assumed in the 

model, but pathogen removal was limited to 6 logs, in accordance with CDPH (2014). Although 

some potable reuse systems employ UV doses aimed at NDMA photolysis (e.g., >100 mJ/cm2) 

(Amoueyan et al. 2017), the 80-mJ/cm2 disinfection dose was assumed for conservatism. 

Moreover, treatment process failures and associated ‘domino effects’ were considered based on 

changes in UV254 absorbance. Additional details related to this UV failure framework are 

available in Amoueyan et al. (2017) and Text S6. 

 −𝑙𝑜𝑔 (
𝑁

𝑁0
) = 𝑘𝑈𝑉  ×  D   (Eq. 4.7) 

where, 𝑘𝑈𝑉 = base 10 UV254 inactivation rate constant (mJ/cm2)-1, 

D = UV254 dose (mJ/cm2). 

4.2.6 Dose response models  

Table 4.5 summarizes the various parameters used to estimate daily risk and DALYs per 

illness assuming 2 L of daily drinking water consumption (USEPA, 2004; WHO, 2008). An 

exponential dose response model was used for Cryptosporidium (Eq. 4.8; USEPA, 2006b) and 

AdV (Eq. 4.8; Crabtree et al., 1997; Heerden et al., 2005), fractional Poisson was used for NoV 

(Eq. 4.9; Messner et al., 2014), and beta Poisson was used for Salmonella (Eq. 10; Haas et al., 

1999; Soller et al., 2016). Estimating daily risk of AdV infection requires conversion of genome 

copy data to an infectious dose using a tissue culture infective dose (TCID50) conversion factor 

of 1/700 TCID50/gc (Lim et al., 2015; McBride et al., 2013).  
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Table 4-5. List of parameters used for dose response assessment and risk characterization calculations. 

Description Parameters Unit Reference 

Dose-response parameters 

Cryptosporidium 

Norovirus 

Adenovirus 

Salmonella 

r = 0.09 

P = 0.722; µ = 1106 

r = 0.4172 

α = 0.3126; β = 2884 

oocysts-1

unitless; gc 

unitless 

unitless 

USEPA (2006b) 

Messner et al. (2014) 

Heerden et al. (2005); Haas et al. (1999) 

Haas et al. (1999); Soller et al. (2016) 

Adenovirus conversion factor 1/700 TCID50/gc McBride et al. (2013); Lim et al. (2015) 

Health Burden 

Cryptosporidium 

Norovirus 

Adenovirus 

Salmonella 

0.0017 

0.00095 

0.0534 

0.068 

DALYs/case 

DALYs/case 

DALYs/case 

DALYs/case 

Health Canada. (2012) 

Kemmeren et al. (2006) 

Gaunt et al. (2011) 

Calculateda

Conditional probability of illness given an infection 

Cryptosporidium (𝑃𝑖𝑙𝑙|𝑃𝑖𝑛𝑓)
𝐶𝑟𝑦𝑝𝑡𝑜

= 0.7 Zhang et al. (2012) 

Norovirus 
Ƞ = 2.55×10-3; 𝑟𝑖𝑙𝑙,𝑁𝑜𝑉  =
0.086 

Teunis et al. (2008) 

Adenovirus (𝑃𝑖𝑙𝑙|𝑃𝑖𝑛𝑓)
𝐴𝑑𝑉

 = 0.5 McBride et al. (2013); Lim et al. (2015) 

Salmonella (𝑃𝑖𝑙𝑙|𝑃𝑖𝑛𝑓)
𝑆𝑎𝑙𝑚𝑜𝑛𝑒𝑙𝑙𝑎

 = 0.41 Jertborn et al. (1990); Calculatedb 

aAdditional details in Text S7 
bBased on symptomatic illness and total infection (Text S7) 

gc= genome copies 

It should also be noted that the AdV dose response model was developed based on AdV 

aerosol exposure through the inhalation route. Since there is a higher probability of infection 

through aerosols than ingestion, the use of an inhalation dose response model likely leads to a 

conservative risk estimate (USEPA, 2010b). The implications of using alternative dose response 

models [e.g., the fractional Poisson model for Cryptosporidium (Eq. 4.9) proposed by Messner et 

al. (2016)] was evaluated through sensitivity analysis.  

𝑃𝑖𝑛𝑓,𝑑 = 1 − 𝑒−𝑟×𝐷𝑜𝑠𝑒          (Eq. 4.8) 

where, Pinf,d = daily probability of infection, 

r = dose response parameter, 

Dose = pathogen dose (oocysts for Cryptosporidium or TCID50 for AdV) 

𝑃𝑖𝑛𝑓,𝑑 = 𝑃 × (1 − 𝑒
−

𝐷𝑜𝑠𝑒

𝜇 ) (Eq. 4.9) 

where,  P = fraction of susceptibles (P = 0.722 for NoV and 0.737 for Cryptosporidium) 
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μ = mean aggregate size (μ = 1106 for NoV and 1 for Cryptosporidium) 

  𝑃𝑖𝑛𝑓,𝑑 = 1 − (1 +
𝐷𝑜𝑠𝑒

𝛽
)−𝛼 (Eq. 4.10) 

where, α and β = beta Poisson dose response parameters 

4.2.7 Risk characterization 

The outcomes of this study for pathogen-specific annual risk (risk due to exposure to 

each target pathogen individually) (Eq. 4.11) and the combined annual risk (cumulative risk due 

to exposure to all pathogens) (Eq. 4.12) were compared against the benchmark risk of 10-4 

infection per person per year and the WHO guideline for disease burden of 10-6 DALYs per 

person per year. All parameters used in the dose response assessment and risk calculations are 

summarized in Table 4.5. 

  𝑃𝑖𝑛𝑓,𝑎 = 1 − ∏ (1 − 𝑃𝑖𝑛𝑓,𝑑)
𝑖

365
𝑖=1  (Eq. 4.11) 

where,  Pinf,a = annual probability of infection. 

𝑃𝑜𝑣𝑒𝑟𝑎𝑙𝑙,   𝑖𝑛𝑓,𝑎 = 1 − (∏ [1 − 𝑃𝐶𝑟𝑦𝑝−𝑖𝑛𝑓,𝑑]
𝑖

× ∏ [1 − 𝑃𝑁𝑜𝑉−𝑖𝑛𝑓,𝑑]
𝑖

×365
𝑖=1 ∏ [1 −365

𝑖=1
365
𝑖=1

𝑃𝐴𝑑𝑉−𝑖𝑛𝑓,𝑑]
𝑖

× ∏ [1 − 𝑃𝑆𝑎𝑙𝑚𝑜𝑒𝑛𝑙𝑙𝑎−𝑖𝑛𝑓,𝑑]
𝑖
)365

𝑖=1              (Eq. 4.12) 

Disease burden (Eq. 4.13) was computed based on annual risk of illness and published 

health burdens for the target pathogens when available (Health Canada, 2012; Gaunt et al., 2011; 

Kemmeren et al., 2006), as summarized in Table 4.5. 

  𝐷𝐵 = 𝑃𝑖𝑙𝑙,𝑎 ×  𝐻𝐵  (Eq. 4.13) 

where, DB = disease burden (DALYs/person-year), 

  𝑃𝑖𝑙𝑙,𝑎 = annual risk of illness for an individual, 

HB = health burden (DALY/case). 
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Annual risk of illness can be defined as the proportion of infectious individuals who 

develop symptomatic infection (Eq. 4.14).   

𝑃𝑖𝑙𝑙 =  𝑃𝑖𝑛𝑓  ×  (𝑃𝑖𝑙𝑙|𝑃𝑖𝑛𝑓)  (Eq. 4.14) 

where, (Pill|Pinf) = conditional probability of illness given an infection. 

The conditional probability of illness given an infection has been reported as a point 

estimate for Cryptosporidium and adenovirus (Lim et al., 2015) and as a function of intake dose 

for norovirus (Teunis et al., 1999; Teunis et al., 2008), as described in Eq. 4.15. 

𝑃𝑖𝑙𝑙,𝑁𝑜𝑉|𝑃𝑖𝑛𝑓,𝑁𝑜𝑉 = 1 − (1 + ƞ ×  𝐶𝑁𝑜𝑉𝑤)−𝑟𝑖𝑙𝑙,𝑁𝑜𝑉 (Eq. 4.15) 

where, ƞ and 𝑟𝑖𝑙𝑙,𝑁𝑜𝑉 = parameters of the distribution for the duration of infection, 

CNoV = concentration of norovirus in ingested drinking water (gc/L), 

w = daily water consumption rate (L). 

The health burden and conditional probability of illness given an infection due to 

exposure to Salmonella was not available in the literature so Eq. 4.16 was used in conjunction 

with published information for relevant parameters (Jertborn et al., 1990; Health Canada, 2012) 

(Text S7).  

𝐻𝐵 = 𝑌𝐿𝐷 + 𝐿𝑌𝐿 (Eq. 4.16) 

where, YLD = years lived with disability 

LYL = life years lost due to mortality 

4.2.8 Model platform and simulation approach 

The STELLA 10.1 (ISEE Systems, Lebanon, NH) system dynamics platform was used to 

develop the model. The model was simulated with a Monte Carlo approach over 365 days and 

with 10,000 iterations. To evaluate parameter uncertainty, sensitivity analyses were conducted on 

the following parameters: (1) wastewater loading of pathogens (i.e., an outbreak condition), (2) 
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water temperature in the environmental buffer, (3) storage time in the environmental buffer, (4) 

recycled water contribution (RWC), and (5) dose-response model (i.e., Cryptosporidium). Factor 

sensitivity (FS) was used to quantify sensitivity (Zwietering and Van Gerwen, 2000; Amoueyan 

et al., 2017), according to Eq. 4.17. FS values greater than 0.3 and less than -0.3 indicated 

significant changes in risk. 

𝐹𝑆 = 𝑙𝑜𝑔10 (
𝑃𝑥

𝑃𝐵𝐿
) (Eq. 4.17) 

where,  Px = risk of infection for the modified condition 

PBL = risk of infection for the baseline condition. 

4.3 Results and discussion  

4.3.1 Comparison of public health risk for different potable reuse treatment trains 

Pathogen LRV probability distribution functions for all potable reuse systems (assuming 

no failures) are shown in Figure 4.3. Under these ‘optimal’ conditions, all planned IPR and DPR 

treatment train achieved the 12-10-9-log reduction of viruses, Cryptosporidium, and bacteria, 

respectively, recommended by NWRI (2013). However, the LRV in the de facto reuse system 

was not compared with NWRI requirement since this treatment train was not ‘officially’ 

recognized as a reuse project. The impact of environmental buffers in attenuation of pathogens 

was not included in Figure 4.3. 

The annual risk of infection was calculated for each of the target pathogens separately 

and also for the combined effect of all pathogens under both optimal and sub-optimal operation. 

The results for optimal operation are provided in Table S9, and the results for sub-optimal 

operation are summarized in Figure 4.4 and Table 4.6. A direct comparison of optimal and sub-

optimal operation are shown in Figure S6. Infection risks for DPR treatment trains (TT6 and 

TT7) or IPR with FAT and groundwater replenishment (TT2) were typically less than the 
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benchmark risk of 10-4 for each individual pathogens and also for the combined risk of all 

pathogens. The only exception was for the maximum annual risk for AdV in TT7 (max = 7.3×10-

04), which was due to AdV’s resistance to UV disinfection. Although TT6 also employed UV 

disinfection but UF and pre-ozonation prior to UV could sufficiently attenuate AdV 

concentration in TT6. TT2 was shown to be very effective for mitigating risks associated with 

Cryptosporidium and Salmonella, which is consistent with NRC (2012). TT2 was also effective 

for NoV and AdV, but MF process could achieve higher LRV of AdV compared to NoV. 

Therefore, the annual risk of infection due to AdV was less than NoV for this treatment train 

(mean= 7.8×10-6 and SD= 2.5×10-7 for AdV; mean = 1.2×10-5 and SD = 3.7×10-7 for NoV). 

Except for TT2, the risk associated with AdV was greater than for NoV. This was due to the 

higher concentrations of AdV in the water matrices and AdV’s greater resistance to natural die-

off and UV disinfection. 
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Table 4-6. Summary of infection risk and disease burden due to exposure to target pathogens in each 

treatment train during sub-optimal operation. 

Pathogen Annual Risk of Infection Disease Burden 

min P5 median P95 max min P5 median P95 max 

TT1, TT3, TT4, TT5 (surface water discharge or blending) 

Crypto (S1) 

Crypto (S2) 

Crypto (S3) 

1.8E-03 

2.6E-03 

8.7E-03 

1.9E-03 

2.7E-03 

9.1E-03 

2.0E-03 

2.8E-03 

9.6E-03 

2.1E-03 

2.9E-03 

1.0E-02 

2.2E-03 

3.1E-03 

1.1E-02 

2.2E-06 

3.0E-06 

1.0E-05 

2.3E-06 

3.2E-06 

1.1E-05 

2.4E-06 

3.4E-06 

1.1E-05 

2.5E-06 

3.5E-06 

1.2E-05 

2.6E-06 

3.6E-06 

1.3E-05 

NoV 2.6E-04 2.9E-04 3.4E-04 4.0E-04 4.5E-04 7.6E-14 1.3E-13 2.2E-13 4.9E-13 1.7E-12 

AdV 1.1E-03 1.2E-03 1.2E-03 1.3E-03 1.3E-03 3.0E-05 3.1E-05 3.3E-05 3.4E-05 3.5E-05 

Salmonella 8.0E-04 8.7E-04 1.0E-03 1.2E-03 1.3E-03 2.2E-05 2.4E-05 2.8E-05 3.2E-05 3.6E-05 

Combined 5.0E-03 5.2E-03 5.4E-03 5.6E-03 5.7E-03 - - - - - 

TT2 (FAT with groundwater replenishment) 

Crypto 4.0E-14 3.9E-13 3.6E-12 9.9E-11 6.3E-7 4.7E-17 4.6E-16 4.3E-15 1.2E-13 7.5E-10 

NoV 1.1E-05 1.2E-05 1.2E-05 1.3E-05 1.3E-05 1.2E-16 1.3E-16 1.4E-16 1.5E-16 1.6E-16 

AdV 5.0E-06 5.3E-06 5.6E-06 6.3E-06 5.5E-05 1.3E-07 1.4E-07 1.5E-07 1.7E-07 1.5E-06 

Salmonella 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 

Combined 1.6E-05 1.7E-05 1.8E-05 1.9E-05 6.7E-05 - - - - - 

TT6 (DPR with ozone-BAC and direct distribution) 

Crypto 1.4E-11 2.2E-11 8.5E-10 2.6E-07 3.6E-06 1.7E-14 2.6E-14 1.0E-12 3.1E-10 4.2E-09 

NoV 0.0E+00 0.0E+00 8.2E-14 9.5E-12 1.3E-06 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 

AdV 2.7E-11 4.6E-11 1.8E-08 4.4E-06 6.7E-05 0.0E+00 1.2E-12 4.7E-10 1.2E-07 1.8E-06 

Salmonella 0.0E+00 0.0E+00 0.0E+00 2.4E-13 1.4E-10 0.0E+00 0.0E+00 0.0E+00 6.8E-15 4.0E-12 

Combined 6.0E-11 1.0E-10 5.4E-08 4.4E-06 6.7E-05 - - - - - 

TT7 (DPR with FAT and direct distribution) 

Crypto 4.5E-12 8.6E-12 3.7E-11 2.5E-09 7.7E-05 5.4E-15 1.0E-14 4.4E-14 3.0E-12 9.1E-08 

NoV 0.0 1.0E-12 1.4E-12 3.1E-11 1.0E-07 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 

AdV 1.5E-07 4.5E-07 1.2E-06 1.5E-05 7.3E-04 4.0E-09 1.2E-08 3.3E-08 4.1E-07 1.9E-05 

Salmonella 0.0E+00 0.0E+00 0.0E+00 0.0E+00 5.4E-14 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.5E-15 

Combined 1.5E-07 4.5E-07 1.2E-06 1.5E-05 7.3E-04 - - - - -
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Figure 4.3. Log reduction of target pathogens in potable reuse treatment trains during optimal operation 

(i.e., no failure). Pathogen attenuation in environmental buffers was not calculated in LRV. The LRVs for 

de facto reuse was shown as a comparison with other treatment trains. However, it was not compared with 

the recommended 12-10-9 LRVs since it is not officially recognized as a reuse project. 
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Figure 4.4. Annual risk of infection due to exposure to (A) Cryptosporidium, (B) norovirus, (C) 

adenovirus, and (D) Salmonella during sub-optimal operation. The risk for Salmonella with TT2 was 

below what could be assessed by the model and was calculated as zero. Also, the “+” for TT6 and TT7 

indicates the maximum risk for Salmonella; the corresponding min, 25th, 50th, and 75th percentiles ranged 

from 0 to 8.4×10-15). 

All of the treatment trains employing either surface water discharge (IPR: TT1, TT3, and 

TT4) or blending (DPR: TT5), exhibited identical results for annual risk for all pathogens, with 

values exceeding the 10-4 annual risk benchmark. This indicates that the risks for these treatment 

trains were dominated by pathogen concentrations in the upstream surface water. Previous 

studies reported similar results (Amoueyan et al., 2017; Chaudhary et al., 2017). On the other 

hand, risks associated with the DPR systems with direct distribution (TT6 and TT7) were up to 

10 orders of magnitudes lower than the surface water systems for all pathogens.  

The results of combined risk for all pathogens (Table 4.6) showed that TT2 (IPR with 

FAT and groundwater replenishment) and TT6 (DPR with ozone-biofiltration and direct 

distribution) were below the 10-4 benchmark at all times, while the combined risk for TT7 

complied with the 10-4 benchmark at the 95th percentile but exceeded the benchmark with its 
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maximum value. However, TT7 was still more reliable than the surface water IPR systems. TT6 

was superior to all other treatment trains with combined annual risk ranging from 6.0×10-11 to 

6.7×10-5. 

Figure 4.5 illustrates the calculated disease burdens for each of the treatment trains and 

for each target pathogen. When the infection risks of NoV were translated to disease burdens, 

they all fell below the WHO’s recommended threshold of 10-6 DALYs per person per year. In 

contrast, the disease burdens of Cryptosporidium, AdV, and Salmonella for the surface water 

treatment trains (TT1, TT3, TT4 and TT5) all exceeded the recommended threshold. The disease 

burdens were the lowest in the DPR systems with direct distribution (TT6 and TT7) and IPR 

with groundwater replenishment (TT2) although the maximum values for AdV still exceeded the 

10-6 benchmark.

Figure 4-5. Disease burden due to exposure to (A) Cryptosporidium, (B) norovirus, (C) adenovirus, and 

(D) Salmonella during sub-optimal operation.

Disease burdens for Salmonella with TT2 and norovirus with TT6 and TT7 were below what could be

assessed by the model and was calculated as zero. Also, the “+” for TT6 and TT7 indicates the maximum

disease burden for Salmonella; the corresponding min, 25th, 50th, and 75th percentiles ranged from 0 to

2.3×10-16).
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4.3.2 Results of sensitivity analyses 

4.3.2.1 Impact of wastewater loading of pathogens (outbreak conditions) 

With respect to Cryptosporidium, outbreak conditions have previously been defined as a 

1-log increase in the raw wastewater concentration, in accordance with published data for the

1993 Milwaukee outbreak (Haas and Rose, 1995). The results for the IPR systems (TT1-TT4) 

showed that with sufficient storage time (i.e., at least 270 days at 20ºC in surface water and 2 

months at 10°C in groundwater), the impacts of higher wastewater loadings could be entirely 

mitigated (Figure S7). DPR systems with direct distribution (TT6 and TT7) were significantly 

impacted by an increase in Cryptosporidium concentration, and the risks increased proportionally 

by a factor of 10. Nevertheless, the final risks for the DPR systems (6.7×10-10 and 7.7×10-10 for 

TT6 and TT7, respectively) were still several orders of magnitude lower than the benchmark risk 

(Table 4.7). DPR with blending upstream of the drinking water treatment facility (TT5) achieved 

similar results as IPR systems with surface water augmentation. 

Table 4-7. Impact of wastewater loading (outbreak conditions) on annual risk of infection during sub-

optimal operation. Corresponding graphs are shown in Figure S7-S10. 
Train Cryptosporidium Norovirus Adenovirusb Salmonella 

Normal Outbreak Normal Outbreak Normal Outbreak Normal Outbreak 

TT1 NS NS NS NS 1.2E-03 8.0E-02b NS NS 

TT2 NS NS NS NS 5.5E-06 4.5E-04b NS NS 

TT6 6.7E-11 6.7E-10 1.5E-09 2.5E-08 1.3E-10 1.3E-06b 0.0E+00 2.2E-10d

TT7 7.6E-11 7.7E-10 2.8E-10 1.9E-07 1.1E-06 1.1E-04c NS NS 

Note: TT3, TT4, and TT5 were not impacted by outbreak conditions and therefore are not 

included in this table. 
aNS = not significant  
bThese results are for 4-log increase in adenovirus concentration in wastewater.  
c These results are for 2-log increase in adenovirus concentration in wastewater which resulted in 

a risk above 10-4 benchmark. 
d These results are for 5-log increase in Salmonella concentration in wastewater.

With respect to NoV, outbreaks have been linked to 5-log increases in wastewater 

concentrations (Barker et al., 2013). This simulated increase resulted in only a 1-log increase in 

risk for TT6 (DPR with ozone-BAC and direct distribution) and a 3-log increase for TT7 (DPR 
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with FAT and direct distribution) (Table 4.7). Similar to Cryptosporidium, the IPR systems 

(TT1-TT4) and the DPR system with blending (TT5) were not significantly impacted by higher 

concentrations of NoV. 

Due to a lack of data on AdV outbreaks, wastewater concentrations were increased by 1 

to 5 logs for consistency with Cryptosporidium and NoV, respectively. The results showed that 

the DPR systems with direct distribution (TT6 and TT7) were impacted the most by an AdV 

outbreak (Table 4.7 and Figure S9). With only a 2-log increase in AdV concentration in 

wastewater, the risk of infection in TT7 (≈1.1×10-04) exceeded the benchmark risk. This was due 

to the high level of resistance of AdV to UV disinfection. However, in TT6, UF and pre-

ozonation prior to UV could sufficiently attenuate AdV concentration. Similar results were 

obtained for TT2 (IPR with FAT and groundwater replenishment) when the concentration of 

adenovirus increased by 4 logs. The greater robustness of TT2 compared to TT7 was due to the 

additional attenuation achieved by inactivation in the environmental buffer. However, the 

benchmark risk was still exceeded with the 4-log increase in AdV concentration because AdV is 

more stable in the environment than other viruses, as shown previously in Figure 4.2. Also, 

although TT1 (de facto reuse) was significantly impacted by a 3-log increase in AdV 

concentration, the other IPR systems (TT3 and TT4) and the DPR system with surface water 

blending (TT5) were not impacted by the outbreak, even with a 5-log increase in AdV 

concentration. However, it should be noted that the risk for AdV in TT1, TT3, TT4, and TT5 had 

already exceeded the 10-4 benchmark risk for the baseline condition (i.e., in the absence of an 

outbreak). Thus, it can be concluded that TT6 was the most robust treatment train during an 

outbreak of AdV. 
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Similar to AdV, outbreaks of Salmonella have resulted in a wide range of published 

wastewater concentrations (Blaser et al., 1982; Teunis et al., 2010). Therefore, Salmonella risk 

during an outbreak was also modeled based on 1 to 5-log increases in wastewater concentration 

(Figure S10). The results showed that only TT6 was significantly impacted by increases in 

Salmonella concentration (i.e., 4-log increase in annual risk for a 5-log increase in Salmonella 

concentration). The exclusivity of the effect to TT6 was due to lower LRVs for the ozone-

biofiltration treatment train (as compared with FAT) coupled with the absence of an 

environmental buffer (as compared with IPR) to compensate for the higher Salmonella 

concentrations. Nevertheless, the final Salmonella risk for all treatment trains, including TT6, 

was still well below the 10-4 benchmark risk.  

4.3.2.2 Impact of storage time in environmental buffer 

Among treatment trains that utilized an environmental buffer (either surface water or 

groundwater), TT1 (S1) (i.e., de facto reuse with the lowest concentration of Cryptosporidium) 

and TT1 (S2) (de facto reuse with a moderate concentration of Cryptosporidium) were the most 

sensitive treatment trains to changes in storage time when targeting Cryptosporidium. The annual 

risk of infection started to increase significantly when storage time decreased from 270 days to 

120 days and 60 days for S1 and S2, respectively (Figure 4.6a). In other words, storage time is a 

significant factor when conventionally treated wastewater is discharged into relatively high 

quality surface water supplies. These results are slightly different from Amoueyan et al. (2017), 

which identified 150 days and 90 days as critical storage times for S1 and S2, respectively. This 

is because an exponential dose response parameter of 0.09 was used in the current study vs. 

0.00419 in Amoueyan et al. (2017). 
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The annual risk of infection for Cryptosporidium was also sensitive to storage time for 

TT2 (IPR with FAT and groundwater replenishment), albeit to a lesser extent. The change 

became significant when storage time in the groundwater decreased from the baseline value of 

two months to one month (Figure 4.6b). However, the final risk for TT2 was still well below the 

10-4 benchmark regardless of storage time. This was related to the efficacy of FAT in attenuating

Cryptosporidium and the assumption that Cryptosporidium was not present in diluent 

groundwater. The other planned IPR systems (TT3-TT5) were not significantly impacted by 

changes in storage time because of the low Cryptosporidium concentrations in the advanced 

treated wastewater, which made the Cryptosporidium concentration in the upstream surface 

water the dominant factor. AdV was also sensitive to storage time because of its resistance to 

environmental stress. The results of the sensitivity analysis (Figure 4.6c) indicated that storage 

times less than 150 days for TT1 (de facto reuse) led to significantly higher risk of infection. 

Similar to Cryptosporidium, the risk of adenovirus in the planned IPR systems (TT2-TT4) were 

not impacted by changes in storage time due to the very low AdV concentrations in the advanced 

treated wastewater. 

With respect to NoV and Salmonella, storage time was not a significant parameter. 
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Figure 4-6. Sensitivity analysis on storage time in environmental buffer a) TT1 (de facto reuse) targeting 

Cryptosporidium for scenario 1 and 2, b) TT2 (IPR with groundwater replenishment) targeting 

Cryptosporidium, and c) TT1 (de facto reuse) targeting adenovirus. (Asterisk * indicates the baseline 

conditions). FS values greater than 0.3 and less than -0.3 indicates significant changes in risk. For 

example, an FS value of 0.3 indicates the risk has increased by a factor of 2 due to the changes in storage 

time. 

4.3.2.3 Impact of recycled water contribution in the environmental buffer 

With respect to Cryptosporidium, annual risk of infection was inversely related to RWC 

in IPR systems with surface water augmentation and the baseline storage time of 270 days 

(Figure 4.7a). When RWC increased to 40% and 80%, annual risks of infection in the IPR 

systems with surface water augmentation (TT1, TT3, and TT4) decreased by 25% and 75%, 

respectively. However, these results may vary with shorter storage times, as explained previously 

in Amoueyan et al. (2017).  
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Figure 4-7. Sensitivity analysis on RWC for a) TT1, TT3, and TT4 (IPR with surface water augmentation 

at storage time of 270 days and temperature of 20°C) and b) TT2 (IPR with groundwater replenishment at 

storage time of 60 days and temperature of 10°C). These results may vary with shorter storage times, as 

explained previously in Amoueyan et al. (2017). (Asterisk * indicates the baseline conditions) 

Similar results were obtained for NoV, AdV, and Salmonella in the IPR systems with 

surface water augmentation. However, the results were different for TT2 (IPR with FAT and 

groundwater replenishment), for which higher RWCs led to slightly higher risk of infection for 

Cryptosporidium (Figure 4.7b). When RWC increased from 15% to 20%, the annual risk of 

infection increased by 34%. Also, decreasing the RWC from the baseline value of 10% to 5% 

resulted in a 68% reduction in risk. This is due to the assumption that Cryptosporidium was not 

present in the diluent groundwater. For NoV and AdV, there were no significant changes in 

annual risk of infection with higher RWCs. Also, the Salmonella risk for TT2 was below the 

level that could be assessed by the model. 

4.3.2.4 Impact of water temperature in the environmental buffer 

Similar to the storage time, Cryptosporidium risk was impacted the most by varying 

water temperature in the environmental buffer for TT1 (S1 and S2) and TT2. Temperature 

changes did not significantly impact TT1 at scenario 3 (ie., with the highest concentration of 

Cryptosporidium in surface water) due to robust treatment provided at the drinking water 

treatment plant. The risk of infection increased 4-fold in TT1 (S1) and 0.3-fold in TT1 (S2) when 

temperature dropped from 20°C to 10°C. This was due to slower inactivation kinetics at lower 
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temperatures and the lower level of treatment employed for S1 at the conventional drinking 

water treatment plant (consistent with LT2). Also, the risk significantly increased for TT2 when 

the temperature of the groundwater dropped from 10ºC to 5ºC, which again was attributed to 

slower inactivation kinetics. The other planned IPR systems (TT3 and TT4) were insensitive to 

temperature changes in the environmental buffer. With respect to AdV, surface water 

temperatures lower than 20ºC resulted in up to 2 orders of magnitude higher risks than the 

baseline condition, while no significant reduction in risk was observed at temperatures higher 

than 20ºC. Temperatures changes were insignificant for NoV and Salmonella. 

4.3.2.5 Impact of treatment process failure 

No significant differences in risk were observed in the event of treatment process failures 

for the planned IPR systems with surface water augmentation (TT3 and TT4) or the DPR system 

with surface water blending (TT5). Therefore, only the results for TT2 (IPR with FAT and 

groundwater replenishment), TT6 (DPR with ozone-BAC and direct distribution), and TT7 (DPR 

with FAT and direct distribution) were impacted by failures (Table 4.8).  

Table 4-8- Sensitivity analysis on treatment process failures 

Pathogens Planned IPR Ozone-based DPR FAT-based DPR 

MF RO UV UF pre-O3 UV MF RO UV 

Crypto 3.17 3.58 6.00 5.86 1.92 6.00 4.02 4.11 6.00 

NoV 0.00 0.00 0.00 N/A N/A N/A 0.65 4.25 6.08 

AdV 1.05 2.27 0.22 5.34 6.89 1.92 3.55 4.63 1.92 

Salmonella N/A N/A N/A 2.78 0.00 4.56 2.15 3.29 3.40 
Note: N/A indicates the risk for Salmonella was below the limits that could be assessed by the model 

Although AdV was less impacted by UV failure due to its inherent resistance to UV, 

failures during UV disinfection were particularly important for Cryptosporidium, NoV (in FAT-

based DPR), and Salmonella (in both DPR systems) because their overall LRVs decreased by up 

to 6 logs. Therefore, even though DPR systems with direct distribution achieved a lower risk of 
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infection compared to the planned IPR systems (except TT2), the planned IPR systems were 

more robust in the event of treatment process failure due to the effects of the environmental 

buffer. Generally, UF and UV were identified as critical processes for Cryptosporidium 

attenuation; RO and UV as critical processes for norovirus and Salmonella attenuation; and pre-

ozonation and UF were identified as critical processes for adenovirus attenuation. 

4.3.2.6 Impact of dose-response model 

The fractional Poisson model was also used as an alternative dose response model for 

Cryptosporidium, as suggested by Messner et al. (2016). The results showed that by using 

fractional Poisson, the final risk due to exposure to Cryptosporidium in all treatment trains 

increased about 7-fold. Previous studies on fractional Poisson dose response model for 

Cryptosporidium showed similar results (Soller et al., 2016). However, in DPR systems with 

direct distribution (TT6 and TT7) and planned IPR system with groundwater replenishment 

(TT2) the risk was still well below the benchmark of 10-4. While, in the IPR systems with surface 

water augmentation (TT1, TT3, and TT4) and DPR with blending (TT5), employing fractional 

Poisson model instead of exponential model increased the risk up to 7.3×10-2. 

4.4 Conclusion 

All potable reuse treatment trains evaluated in this study could achieve the 12-10-9-log 

reduction of viruses, Cryptosporidium, and bacteria, respectively, recommended by NWRI 

(2013). However, potable reuse treatment trains with surface water utilization (IPRs with surface 

water augmentation and DPR with blending upstream of the drinking water treatment facility) 

resulted in similar risks which all exceeded the benchmark of 10-4 for each individual pathogen 

and for the combined effect of all pathogens. This indicated that the risks for these treatment 

trains were dominated by concentration of pathogens in the upstream surface water. DPR 
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treatment trains with direct distribution and planned IPR system with groundwater replenishment 

typically resulted in risk of infection less than the benchmark of 10-4. Although the combined 

risk of all pathogens in TT7 (DPR with FAT and direct distribution) exceeded the 10-4 

benchmark at the maximum value (7.3×10-4) but the 95th percentile was below the benchmark 

(1.5×10-5) and this treatment train was still more reliable than the IPR systems with surface water 

augmentation. TT6 led to the lowest combined risk among all other treatment trains ranging from 

6.0×10-11 to 6.7×10-5 annual risk of infection per person per year.  

Although DPR systems resulted in lower risk than IPR systems with surface water 

augmentation, the performance of DPR systems were significantly impacted during outbreak 

conditions. The results of this study indicated that, risk of infection from Cryptosporidium during 

outbreak conditions increased by a factor of 10 in DPR systems while, IPR systems could 

sufficiently mitigate the higher wastewater loading, if at least 270 days at 20ºC and 2 month of 

storage time at 10°C could be provided in surface water and groundwater, respectively. 

Nevertheless, the final risks for the DPR systems (6.7×10-10 and 7.7×10-10 for TT6 and TT7, 

respectively) were still several orders of magnitude lower than the benchmark risk. With respect 

to AdV, this study suggested TT6 was the most robust treatment train during the outbreak 

conditions.  

The study also identified 120 days and 150 days as the critical storage times in surface 

water in the de facto reuse systems when targeting Cryptosporidium and AdV, respectively. 

Also, when temperature in surface water dropped from 20°C to 10°C, risk of Cryptosporidium 

and adenovirus increased up to 4-fold and 20-fold, respectively. This was due to slower 

inactivation kinetics at lower temperatures especially for AdV. With respect to NoV and 

Salmonella, storage time and temperature were not significant parameters. 
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Also, the results identified UV disinfection as a significant treatment process in the DPR 

systems when targeting Cryptosporidium and norovirus. However, no significance impact was 

observed in planned IPR systems with surface water augmentation (TT3 and TT4) or the DPR 

system with surface water blending (TT5) in the event of treatment process failures. 

The conclusions from this model can be used to better characterize public health risk 

associated with different waterborne pathogens in potable reuse applications and to better 

understand the critical parameters and operational conditions that could significantly impact the 

performance of potable reuse systems.   
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5.1  Introduction 

In 1996, the Pathogen Risk Assessment Working Group of the International Life 

Sciences Institute (ILSI) collaborated with the United States (U.S.) Environmental Protection 

Agency (EPA) to develop a revised framework for quantitative microbial risk assessment 

(QMRA). Specifically, the working group emphasized the need for inclusion of secondary 

transmission and immunity to improve risk estimates for waterborne disease (ILSI, 1996). Soon 

thereafter, Eisenberg et al. (1996) described the first dynamic model for waterborne disease, and 

then Eisenberg et al. (2002; 2004) expanded the model to account for the unique properties of 

target pathogens, including asymptomatic vs. symptomatic infection rates; the duration of 

incubation, infection, and immunity; and shedding rate (Eisenberg et al., 2002; 2004).  

Most QMRAs for waterborne pathogens involve static models, in which the probability 

of infection is calculated as a single exposure event. However, outbreaks caused by highly 

contagious pathogens (e.g., norovirus; NoV) often involve a significant number of ‘secondary’ 

cases (Zelner et al., 2010). Most static models do not capture the effects of secondary 

transmission, thereby underestimating the true risk of waterborne disease within a community. In 

contrast, dynamic QMRAs allow for differentiation of major pathogen sources, waterborne vs. 

foodborne exposure, primary vs. secondary transmission, etc. A typical dynamic framework with 

various epidemiological states [susceptible (S), exposed (E), carrier state 1 (C1), diseased (D), 

carrier state 2 (C2), and post-infection (P)] is illustrated in Figure 5.1. Dynamic disease 

transmission models have been used to characterize risk due to recreational exposures to Giardia 

(Eisenberg et al., 1996), the Milwaukee cryptosporidiosis outbreak (Eisenberg et al., 1998; 

Eisenberg et al., 2005; Brookhart et al., 2002), risks due to exposure to biosolids-amended soils 
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(Eisenberg et al., 2004); parsimony for static vs. dynamic modeling frameworks (Soller and 

Eisenberg, 2008); and the duration of post-infection immunity to NoV (Simmons et al., 2013). 

 

Figure 5-1. Graphical depiction of the dynamic disease transmission model.  

The movement of individuals from one state to another is represented with solid lines, and 

pathogen transmission routes are represented by dashed lines. 

NoV is the most common cause of acute gastroenteritis in the U.S., with approximately 

20 million cases annually that affect up to 5% of the population (Hall et al., 2013a). NoV has 

been implicated in several waterborne outbreaks linked to contaminated well water or 

recreational water (Anderson et al., 2003; Parshionikar et al., 2003), but NoV is generally 

transmitted through contaminated food, accounting for up to 50% of all foodborne outbreaks in 

the U.S. (CDC, 2009-2011). Therefore, it is important to characterize the relative significance of 
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waterborne vs. foodborne NoV outbreaks to aid in developing effective and cost-efficient 

interventions. 

Several studies have presented QMRAs on indirect potable reuse (IPR) and direct potable 

reuse (DPR) systems for a wide variety of waterborne pathogens (Olivieri et al., 1999; 

Amoueyan et al., 2017; Chaudhry et al., 2017; Lim et al., 2017; Pecson et al., 2017; Soller et al., 

2017). However, these models generally involve a static framework that does not account for the 

impacts of alternative exposure routes (e.g., consumption of contaminated food), secondary 

transmission, or the duration of post-infection immunity. Recent studies have also implicated 

NoV as a major driver of risk in potable reuse systems (Soller et al., 2018; Soller et al., 2017), 

thereby warranting further study.  

The objective of this study was to develop a dynamic QMRA to evaluate the efficacy of 

different potable reuse treatment trains in adequately mitigating risk of acquiring NoV-associated 

gastroenteritis. This study not only characterizes the reliability of potable reuse treatment trains 

in achieving relevant public health benchmarks under nominal conditions, but it also evaluates 

the significance of treatment train failures, disease states and duration, endemic disease within 

the community, alternative exposure routes (i.e., a foodborne outbreak), and secondary 

transmission to identify the most influential model components, parameters, and assumptions. 

Finally, this model allows for a direct comparison with Amoueyan et al. (in preparation; Chapter 

3), which presented a static QMRA of NoV risk in potable reuse systems. 

5.2  Methodology 

A conceptual comparison of a static QMRA (Amoueyan et al., 2017) and the current 

dynamic QMRA, which focuses on NoV as the primary hazard, is illustrated in Figure 5.2. In the 

current study, a Monte Carlo simulation was used to capture stochastic variability in model 
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parameters (e.g., pathogen concentrations, treatment process performance) based on assigned 

probability distributions. The dynamic QMRA assumed susceptible individuals could contract 

NoV through exposure to contaminated drinking water or food (i.e., primary transmission) or 

contact with infected individuals, surfaces, or fomites (i.e., secondary transmission) (CDC, 2014; 

Hall et al., 2012; Simmons et al., 2013). The model then simulated pathogen shedding into the 

wastewater and pathogen attenuation during natural or engineered treatment in IPR and DPR 

systems. Each of these model components is described in greater detail in the following sections.  

Figure 5-2. Conceptual comparison of (A) static and (B) dynamic risk assessment frameworks.  

The static framework represents the structure of the QMRA in Amoueyan et al. (2017; 2018), 

and the dynamic framework represents the structure of the current QMRA. Transmission rate 

constants are defined as follows: β1 = primary transmission rate constant for drinking water, β2 = 

secondary transmission rate constant, β3 = primary transmission rate constant for food. The solid 

lines represent travel of water through an IPR system, and dashed lines represent travel of water 

through a DPR system. The dynamic model also uses a ‘distributed delay’ approach (Eisenberg 

et al. 2004) to accurately capture time/duration effects.   
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5.2.1 Norovirus epidemiology 

Susceptibility to NoV is dependent upon the presence of histo-blood group antigens 

(HBGAs) within the human gut, and fucosyltransferase 2 enzyme (FUT2) is required for 

secretion of these HBGAs. In “nonsecretors”, inactivation of FUT2 prevents those individuals 

from contracting a NoV infection (Currier et al., 2015; Nordgren et al., 2016). In the current 

study, non-secretors were assumed to comprise 20% of the total population (Currier et al., 2015; 

Simmons et al., 2013). Although these individuals were not at risk of developing or transmitting 

NoV infections, they were still considered in the overall population-based risk calculation.  

For the susceptible fraction of the population, the daily risk (i.e., β1) was based on NoV 

concentration in the finished drinking water, an assumed water ingestion rate of 2 L/day 

(USEPA, 2004; WHO, 2008), and a fractional Poisson dose response model (Eq. 5.1; Messner et 

al., 2014). 

𝑃𝑖𝑛𝑓,𝑑 = 𝑃 × (1 − 𝑒
−

𝐷𝑜𝑠𝑒

𝜇 ) (Eq. 5.1)

where, Pinf,d = daily probability of infection 

P = fraction of susceptible subjects = 0.722 for NoV, 

Dose = number of NoV ‘particles’ consumed (genome copies), 

µ = mean aggregate size = 1106 genome copies for NoV.  

The average incubation period for NoV (i.e., duration from exposure to infection) was 

assumed to be follow a uniform distribution ranging from 12 to 48 hours (CDC, 2014), and the 

duration of disease was assumed to follow a uniform distribution ranging from 1 to 3 days (CDC, 

2014; Aoki et al., 2009). The infected population was also divided into symptomatic (69%) and 

asymptomatic (31%) infections (Teunis et al., 2015; Zhang et al., 2011), with symptomatic 

individuals shedding at a rate of 250×109 genome copies/g feces and asymptomatic individuals 
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shedding at a rate of 12×109 genome copies/g feces (Amar et al., 2007; Atmar et al., 2008). 

Studies have shown that shedding can last for 2 to 3 weeks post-infection (Okhuysen et al., 1995; 

Atmar et al., 2008), and post-symptomatic individuals sometimes shed at rates similar to when 

they were symptomatic (Milbrath et al., 2013). Therefore, the shedding period was assumed to 

follow a uniform distribution ranging 2 to 21 days. During this time, secondary transmission is 

likely, with rates following a uniform distribution from 0.08 to 0.24 secondary infections per 

shedding individual per day (Zelner et al. 2010). The acquired immunity that develops post-

infection ‘wanes’ during the recovery period until the individual returns to the fully susceptible 

state. Previously, the NoV post-infection period (i.e., duration of immunity) was suggested to be 

at least 6 months (Johnson et al., 1990), but Simmons et al. (2013) proposed a longer immunity 

period, which was modeled as a uniform distribution ranging from 3.2 to 5.1 years of immunity. 

These values are all summarized in Table 5.1.  

5.2.2 Model scenarios 

Amoueyan et al. (2018) previously described a static QMRA for NoV in a de facto reuse 

system, three planned IPR systems, and three DPR systems. Similar to the current dynamic 

model, log removal of NoV was achieved through dilution, natural die-off in the environmental 

buffer (i.e., surface water reservoir or groundwater aquifer), and inactivation/removal by 

engineered water and wastewater treatment processes. 

Amoueyan et al. (2018) demonstrated that planned potable reuse systems that utilize 

surface water discharge (i.e., IPR) or blending (i.e. DPR) achieve similar annual NoV risks as de 

facto reuse systems due to the dominance of upstream NoV concentrations. Therefore, this 

dynamic QMRA focused on (1) a de facto reuse system, which was assumed to be representative 

of each of the aforementioned surface water systems; (2) a planned IPR system with full 



106 

advanced treatment (FAT) consisting of microfiltration (MF), reverse osmosis (RO), high-dose 

UV disinfection, direct injection into the local aquifer, and final disinfection with free chlorine; 

(3) a DPR system with ultrafiltration (UF), ozone (O3), biological activated carbon (BAC), UV

disinfection, an engineered storage buffer (ESB) with free chlorine disinfection, and direct 

distribution to the consumer; and (4) a DPR system with FAT, an ESB with free chlorine 

disinfection, and direct distribution to the consumer. A summary of the treatment trains is shown 

in Figure 5.3. 

Table 5-1. Summary of dynamic QMRA model parameters and values. 

Parameter Unit Value Reference 

NoV shedding rate (∅) 

Symptomatic individuals 

Asymptomatic individuals 

gc/g-feces 

gc/g-feces 

250×109 

12×109 

Atmar et al. (2008) 

Atmar et al. (2008) 

Feces production rate g-feces/person Uniform (200, 750)a Barker et al. (2013); Rao (2006) 

Wastewater generation rate gallons/person-day Uniform (50, 70) USEPA (2002) 

Community 

Large community 

Small community 

Initial latent population 

persons 

persons 

percent 

1,000,000 

1,000 

0% or 5% 

Assumed  

Assumed 

Eisenberg et al. (2005) 

Birth rate day-1 3.4×10-5 National Center for Health Statistics (2018) 

Death rate day-1 2.3×10-5 National Center for Health Statistics (2018) 

Probability of symptomatic 

response 

percent 69% Teunis et al. (2015); Zhang et al. (2011) 

Latency period (1/α) hours Uniform (12, 48) CDC (2014) 

Duration of disease (1/δ) days 1-3 CDC (2014); Aoki et al. (2009) 

Duration of shedding (1/σ) days Uniform (2, 21)a Atmar et al. (2008); Aoki et al. (2009) 

Duration of immunity (1/γ) years Uniform (3.2, 5.1) Simmons et al. (2013) 

Proportion of nonsecretors (τ) percent 20% Simmons et al. (2013); Currier et al. (2015) 

β1 (primary transmission through 

water) 

infections/person-day Table 5.2b Amoueyan et al. (2018) 

β2 (secondary transmission) infections/person-day Uniform (0.08, 0.24)a Zelner et al. (2010) 

β3 (primary transmission through 

food)  

day-1 7×10-6c Hall et al. (2012); CDC (2009-2011) 

NoV dose response model (Eq. 1 in main text) 

Fraction of susceptible subjects 

(P) 

- 

0.722 

Messner et al. (2014) 

Mean aggregate size (µ) - 1106 Messner et al. (2014) 

NoV Occurrence 

WW at time 0 gc/L Normal (8913, 13)d Eftim et al. (2017) 

SW (prior to blending) gc/L Lognormal (888, 1643)e Lodder & de Roda Husman. (2005) 

SW RWC/storage time percent and days 20% and 270  Rice et al. (2015); Wu, 2015 

GW (prior to blending) gc/L Uniform (0, 0.6)a Borchardt et al. (2012) 

GW RWC/storage time percent and days 15% and 60  Sloss et al. (1996); CDPH (2014) 

a(minimum, maximum); bInitial conditions for β1 are summarized in Table 5.2 and were based on a previous static 

QMRA model (Amoueyan et al., 2018); c The number is based on 35 people per 1,000,000 people per year which 

was applied over a 5-day time period to simulate a foodborne outbreak; d(mean, standard deviation); e(mean, 

standard deviation) with μ = 6.04 and σ = 1.22 
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Figure 5-3. Potable reuse treatment trains included in the dynamic QMRA.  

The conventional wastewater treatment plant (WWTP) included only secondary wastewater treatment. 

The drinking water treatment plant (DWTP) represented a conventional filtration system with final 

disinfection and was assumed to be compliant with the U.S. EPA Surface Water Treatment Rules. The 

chlorination step following groundwater replenishment was assumed to be compliant with the U.S. EPA 

Ground Water Rule. The chlorination step included in the engineered storage buffer (ESB) was assumed 

to be compliant with guidelines for ESBs in DPR systems (Salveson et al., 2016). MF = microfiltration, 

UF = ultrafiltration, RO = reverse osmosis, UV = ultraviolet disinfection, BAC = biological activated 

carbon.  

Pathogen attenuation was modeled with probability distributions for the expected log 

removal values (LRVs) for the engineered treatment processes, which also accounted for unit 

process failure and associated ‘domino effects’ (Amoueyan et al., 2017; Amoueyan et al., 2018). 

In the IPR systems, pathogen attenuation was also achieved with dilution and natural die-off 

based on recycled water contribution (RWC) [20% for surface water (Rice et al., 2015) and 15% 

for groundwater (Sloss et al., 1996)], die-off rate (Amoueyan et al., 2018), and estimated storage 

time in the environmental buffer [270 days for surface water (Wu, 2015) and 60 days for 

groundwater (CDPH, 2014)]. 

5.2.3 Scenario 1: Simultaneous evaluation of primary and secondary transmission 

In this scenario, exposure to NoV occurred through contaminated drinking water (i.e., 

primary transmission; β1) or through contact with shedding individuals (i.e., secondary 

transmission; β2). Primary exposure through food was not considered in this scenario (i.e., β3 = 
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0). The initial conditions for β1 for each treatment train were determined previously in 

Amoueyan et al. (2018) and are summarized as the mean annual risks for the static model in 

Table 5.2. Once susceptible individuals were infected, they potentially infected other susceptible 

individuals and also shed pathogens to the wastewater, thereby allowing for calculation of time-

dependent raw wastewater concentrations based on the parameters in Table 5.1. The primary risk 

due to exposure to contaminated drinking water then varied over time based on the stochastic 

performance of the engineered treatment trains and environmental buffer (when applicable). In 

other words, the daily risk (i.e., β1) was recalculated for each day of the simulation using the 

simulated concentration of NoV in the finished drinking water.   

5.2.4 Scenario 2: Relative significance of secondary transmission 

This scenario focused on the relative contribution of secondary transmission (i.e., β2; Table 

5.1) to overall disease incidence in the community. In this scenario, the pathogen shedding rate 

was set to zero, but primary transmission could still occur due to a baseline level of NoV in local 

drinking water. In other words, β1 was held constant at the static risk values shown in Table 5.1.  

5.2.5 Scenario 3: Relative significance of time-dependent primary transmission 

This scenario focused on the relative contribution of dynamic primary transmission to 

overall disease incidence in the community. Because secondary transmission (i.e., β2) was set to 

zero, the risk estimates in this scenario were expected to be approximately similar to the static 

model, in which drinking water was the only source of NoV. However, the post-infection 

immunity period considered in the dynamic model was also expected to reduce estimated risks 

relative to the static model.  
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5.2.6 Scenario 4: Relative significance of foodborne transmission 

This scenario expanded the framework of Scenario 1 by including primary transmission 

through contaminated food (i.e., β3) as an additional NoV exposure route. In addition to 

evaluating the relative significance of a foodborne outbreak to overall risk in the community, this 

scenario also allowed for an evaluation of potable reuse treatment train reliability through 

robustness (Pecson et al., 2015) in the event of an outbreak condition. The additional primary 

transmission route was applied to the model over a five-day period to simulate a foodborne 

outbreak at a local food preparation center (e.g., a restaurant). The transmission rate constant 

(i.e., β3 = 7×10-6 day-1) was based on data for reported illnesses associated with foodborne NoV 

outbreak in the U.S. from 2001 to 2008 (Hall et al., 2012). 

5.3 Simulation approach and initial conditions 

The dynamic model was developed in STELLA 10.1 (ISEE Systems, Lebanon, NH). The 

movement of individuals through the various epidemiological states was modeled using a series 

of ordinary differential equations (ODEs) (Text S1; Eisenberg et al., 1998; Soller & Eisenberg, 

2008) and the parameters summarized in Tables 5.1. 

Two different population sizes—a small community of 1,000 and a large community of 

1,000,000 people—were considered to evaluate the role of population size in propagating disease 

throughout the community. As suggested by previous studies (Eisenberg et al., 1996; Simmons et 

al., 2013), birth (3.4×10-5 day-1) and death (2.3×10-5 day-1) rates were also included (National 

Center for Health Statistics, 2018). The birth rate was applied to the total population but only 

added individuals to the susceptible state, and the death rate was applied to all epidemiological 

states (S, E, C1, D, C2, and P). Each model scenario was simulated based on two initial latent 

conditions: (1) an endemic scenario in which 5% of the community was ‘exposed’ at time zero 
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(Eisenberg et al., 2005) and (2) a scenario in which all secretors were in the susceptible state at 

time zero (i.e., no initial latent population). The 5% latency scenario allowed for a simulation of 

real-world conditions, and the 0% latency scenario allowed for a direct comparison with the 

static model in Amoueyan et al. (2018). There were no further distinctions for sex, age, or 

immunocompromised individuals. 

All states except the susceptible state (S) were characterized as distributed delays and 

described by gamma distributions with a shape parameter of 4 (Soller & Eisenberg, 2008; Zelner 

et al., 2010), as shown in Figure 5.4.  

Figure 5-4. Dynamic disease transmission model used to simultaneously evaluate the impacts of primary 

and secondary transmission. 

To incorporate waning immunity, it was assumed that the level of protection during the 

immunity period (1/γ) decreased linearly from full protection to no protection (Eisenberg et al., 
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2004). Four different compartments with different levels of immunity were used to simulate the 

post-infection state (P1, P2, P3, and P4), with P1 representing full protection and P4 representing 

the least protection. Therefore, individuals in P2, P3, and P4 could theoretically move to the 

exposed state (E) through primary or secondary NoV exposure, or ultimately return to the 

susceptible state with no protection. Eq. 5.2 was used to define the rate constant of movement 

from P2, P3, and P4 to the exposed state (E) (Soller & Eisenberg, 2008).  

 𝛽𝑗𝑖 =  
𝛽𝑗(𝑖−1)

𝑛
 (Eq. 5.2) 

where, j = 1 for primary transmission or 2 for secondary transmission, 

i = 1, 2, 3, or 4 depending on the protected state, 

n = total number of compartments in the protected state = 4. 

5.4 Risk Calculation 

Annual cumulative incidence (CI) was used as the principal measure of risk and was 

calculated as the number of individuals who entered either the diseased state (D) or the 

asymptomatic carrier state (C1) during each simulated year divided by the total population for 

that year (Eisenberg et al., 2004; Soller and Eisenberg, 2008). Therefore, CI can also be 

described as the annual risk of infection per person for the dynamic QMRA. Because the model 

simulated true travel times for each ‘parcel’ of water and for movement of individuals between 

epidemiological states, a typical 365-day simulation would not have been adequate to achieve 

steady state conditions (Eisenberg et al., 2004). Instead, each model iteration simulated 10 years, 

and the results were based on 1,000 model iterations.  
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5.5 Model Validation 

The model was validated as suggested by Sterman (2000). These tests included structure 

assessment, dimensional consistency, behavior reproduction, integration error, extreme 

conditions, and sensitivity analysis. Moreover, to ensure consistency between the previous static 

model (Amoueyan et al., 2018) and the current dynamic model, the following model validation 

scenario was also evaluated: no secondary transmission (β2 = 0) and no post-infection immunity 

(1/γ = 0). These conditions provided a more direct comparison with the static model than 

Scenario 3 because the significant time lag associated with post-infection immunity was 

eliminated. Different ‘delta time’ (DT) values (i.e., the time interval simulated by each model 

calculation) were also evaluated to identify the DT with the most accurate simulation of 

movement between the various epidemiological states. The optimal DT value was determined to 

be 1/16 which means calculations were done 16 times per time unit. Time unit in this simulation 

was considered as one day.  

5.6 Sensitivity Analysis 

Sensitivity analyses were conducted to evaluate the relative impact of various model inputs 

and to identify the most influential parameters. Sensitivity analyses were performed on pathogen 

shedding rate (∅), secondary transmission rate constant (β2), the duration of latency (1/α), the 

duration of disease (1/δ), the duration of shedding in either carrier state (1/σ), and the duration of 

post-infection immunity (1/γ). The Morris method (Eq. 5.3) was used to define the relative 

sensitivity of the final risk to different model inputs (Wu et al., 2013b). Parameters with higher 

relative sensitivity parameters were considered to be more influential for estimating disease 

incidence.   

Relative sensitivity = 
∆𝐶𝐼/𝐶𝐼0

∆𝑃/𝑃0
(Eq. 5.3) 
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where, ∆𝐶𝐼/𝐶𝐼0 = relative changes in cumulative incidence,

∆𝑃/𝑃0 = relative changes in the input parameter. 

5.7  Results  

5.7.1 Scenario 1: Simultaneous evaluation of primary and secondary transmission 

Cumulative incidence (CI) was calculated for each year of the model simulation for initial 

latent populations of 0% and 5% (i.e., endemic). The mean cumulative incidence for each 

treatment train in the endemic setting was slightly higher than those of the 0% initial latent 

population (Table 5.2). The percent differences ranged from 19% for de facto reuse to 30% for 

FAT-based DPR, although the DPR systems achieved the lowest overall CIs for each latent 

condition. The increase in CI for the endemic condition was simply due to the baseline level of 

disease at time zero, which then propagated through the community.  

Table 5-2. Comparison of mean annual risk of norovirus infection for the previous static model 

 (Amoueyan et al., 2018) and the current dynamic model under different scenarios. The static 

model risks for each treatment train were used as the initial conditions (β1,time=0) for the 

dynamic model. 

Condition Static Model Dynamic Scenario 1 Dynamic Scenario 

2 

Dynamic Scenario 

3 

Dynamic Scenario 4 

β1 N/A Dynamic Static Dynamic Dynamic 

β2 N/A Uniforma Uniforma 0 Uniforma 

β3 N/A 0 0 0 Pointa 

Latent = 0% Meanb SD Meanc SD Meanc SD Meanc SD Meanc SD 

A. de facto reuse 3.4E-04 3.1E-05 5.8E-02 4.5E-02 5.8E-02 4.5E-02 2.6E-04 5.7E-06 1.6E-01 2.2E-03 

B. Planned IPR 1.2E-05 3.7E-07 5.5E-02 6.6E-02 5.5E-02 6.6E-02 9.6E-06 2.0E-07 6.1E-02 4.5E-04 

C. O3-based DPR 1.5E-09 4.1E-08 4.4E-02 7.3E-02 4.4E-02 7.3E-02 2.3E-11 6.5E-11 4.7E-02 3.2E-04 

D. FAT-based DPR 2.8E-10 3.7E-09 4.4E-02 7.1E-02 4.4E-02 7.1E-02 4.1E-11 9.5E-11 4.6E-02 3.2E-04 

Latent = 5% Mean SD Meanc SD Meanc SD Meanc SD Meanc SD 

A. de facto reuse N/A N/A 6.9E-02 9.6E-02 6.9E-02 9.6E-02 2.9E-03 7.8E-03 3.4E-01 5E-03 

B. Planned IPR N/A N/A 6.8E-02 1.0E-01 6.8E-02 1.0E-01 2.6E-03 7.8E-03 3.4E-01 5E-03 

C. O3-based DPR N/A N/A 5.6E-02 1.1E-01 5.6E-02 1.1E-01 2.6E-03 7.8E-03 3.4E-01 5E-03 

D. FAT-based DPR N/A N/A 5.7E-02 1.1E-01 5.7E-02 1.1E-01 2.7E-03 7.9E-03 3.4E-01 5E-03 

aDefined in Table 5.1; bThese values (after conversion to daily risk) served as initial conditions for β1 in 

the dynamic primary transmission scenarios; cThese values represent cumulative incidence 
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The maximum CI for scenario 1 ranged from 0.18 for the DPR treatment trains to 0.23 for 

the IPR treatment trains (Table S2), which are consistent with Phillips et al. (2010) (annual 

incidence per person = 0.19) and Simmons et al. (2013) (annual incidence per person = 0.21). 

The maximum CIs in the current study were associated either with the first year of the endemic 

condition or with infections resulting from secondary transmission. Scallan et al. (2011) noted 

that total acute gastroenteritis in the U.S. amounted to 0.65 cases/person-year, which is higher 

than the current study, and that acute gastroenteritis linked to water was approximately 0.05 

cases/person-year, which is lower than the current study. Therefore, secondary transmission may 

explain the discrepancy between the current study and the water-specific values in Scallan et al. 

(2011), and the lack of foodborne exposure in scenario 1 may explain the discrepancy between 

the current study and the higher overall value in Scallan et al. (2011). The results showed that 

including secondary transmission increased the risk of the dynamic model significantly 

compared to the static model and none of the treatment trains could achieve the 10-4 benchmark. 

There was no noticeable impact of community size on CI. 

Based on a comparison of the static risks from Amoueyan et al. (2018) and the dynamic 

risks for Scenario 1 (Table 5.2: Latent = 0%), the dynamic model resulted in notably higher 

risks. In fact, estimated risks for the de facto reuse system increased by two orders of magnitude, 

and risks in the FAT-based DPR system increased by eight orders of magnitude. The major 

differences in model structure included (1) varying primary transmission based on disease 

incidence within the community; (2) secondary transmission, which was expected to increase 

risk; and (2) the distributed delays associated with the epidemiological states, which were 

expected to decrease risk. Therefore, changes in primary transmission (focus of scenario 3) or 

secondary transmission (focus of scenario 2) appeared to be driving the risk in the dynamic 
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model. These results can potentially be explained based on observations in Phillips et al. (2010) 

and predicted data in Simmons et al. (2013), both of which studied age-specific annual incidence 

of NoV-associated gastroenteritis. Both studies noted that disease incidence was highest in 

younger age groups, particularly among children less than 5 years old who were characterized by 

higher rates of secondary transmission. 

5.7.2 Scenario 2: Relative significance of secondary transmission 

To further elucidate the role of secondary transmission, the primary transmission rate was 

held constant in scenario 2. The results of this scenario are summarized in Table 5.2. The mean 

risks in Table 5.2 were nearly identical for scenarios 1 and 2, which suggested that varying 

primary transmission (i.e., scenario 1) had a negligible impact on CI and that secondary 

transmission was primarily driving risk in the potable reuse systems. Particularly when 

considering the 0% latent population condition, the risk posed by the baseline level of NoV in 

any of the potable reuse systems was still sufficient to drive the secondary transmission pathway. 

These results were consistent data from the national outbreak reporting system, which identified 

secondary transmission as primary exposure route for acute gastroenteritis caused by NoV 

(66.1% of all NoV cases in the U.S. from 2009-2010) (Hall et al., 2013b). 

5.7.3 Scenario 3: Relative significance of time-dependent primary transmission 

This scenario highlighted the potential role of varying primary transmission on CI by 

eliminating the secondary transmission route. As expected based on the results from the previous 

scenarios, the CI values were considerably lower in scenario 3 (Table 5.2). Moreover, the 

dynamic risk values for scenario 3 were slightly lower than the static risk values from Amoueyan 

et al. (2018), which could be explained either by long-term NoV attenuation within the potable 

reuse systems or more likely the distributed delay structure of the dynamic model. 
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Nevertheless, it is still important for potable reuse systems to achieve the recommended 

benchmark risk of 10-4. If attenuation through the potable reuse treatment trains is inadequate, 

the impact of the person-environment-person pathway (i.e., shedding to wastewater) may 

become more significant. In the dynamic model, the CI in the de facto reuse with a 0% latent 

population was 2.6×10-4, which is slightly higher than the 10-4 benchmark, but the planned IPR 

and DPR systems were all well below the 10-4 benchmark. Brunkard et al. (2011) reported that 

only 0.11% of waterborne disease outbreak in the U.S. between 2007 and 2008 were related to 

NoV which resulted in 265 infectious cases (annual risk of 9.0×10-7 per person).  

5.7.4 Scenario 4: Relative significance of foodborne transmission 

The national outbreak reporting system identified foodborne transmission as the second 

most important NoV exposure route (second only to person-person transmission) (Hall et al., 

2013b). Foodborne transmission accounted for 25.9% of all NoV-associated gastroenteritis cases 

in the U.S. between 2009 and 2010 (Hall et al., 2013b). The results of this scenario are 

summarized in Table 5.2. Relative increase in cumulative incidence in scenario 4 was attributed 

to the combined effect of secondary transmission and primary exposure to drinking water. To 

evaluate robustness of the treatment trains as a result of pathogen shedding into wastewater due 

to outbreak event, primary transmission through drinking water (β1) was calculated for each of 

the treatment trains during both normal and outbreak conditions and shown in Fig. 5.5. As 

illustrated in Figure 5.5A, the additional cases of gastroenteritis caused by contaminated food 

had no noticeable impact on primary transmission through drinking water at 5% initial latent 

population. However, the primary risk was higher compared to Fig. 5.5B due to the initial level 

of disease within the community. However, when not ‘masked’ by the initial latent population, 

the foodborne outbreak resulted in a considerable increase in primary risk through drinking water 
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(up to 5 orders of magnitude) for the DPR systems, although the overall annual risk of infection 

was still well below the 10-4 benchmark (maximum of 9.5×10-7). On the other hand, neither IPR 

system was impacted by the foodborne outbreak due to the robustness of the advanced treatment 

train and/or environmental buffer. Additional simulations indicated that the foodborne outbreak 

had significant impact on CI in the de facto reuse system when the storage time decreased to less 

than ~10 days (Figure S1). The planned IPR system was sufficiently robust to mitigate the 

impacts of a foodborne outbreak regardless of storage/travel time in the aquifer (Figure S2). 

Therefore, it may be concluded that the planned IPR system with FAT and groundwater 

replenishment was the most robust treatment train in the case of outbreak conditions. Again, the 

size of the community had no apparent impact on CI. 

 

Figure 5-5. Summary of results for dynamic scenario 4, specifically the relative impact of 

foodborne transmission on primary transmission through drinking water (β1).  

The normal condition referred to β3 = 0, and the outbreak condition referred to β3 = 7×10-6 day-1 

which was applied over a 5-day period). The results represent risk of infection in one year of 

simulation in which outbreak occurs. 

5.7.5 Model validation 

5.7.5.1 Comparison with static model 

To ensure consistency between the previous static model (Amoueyan et al., 2018) and the 

current dynamic model, the model was adjusted to eliminate secondary transmission (β2 = 0) and 
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post-infection immunity (1/γ = 0). As noted earlier, these conditions provided a more direct 

comparison with the static model than the aforementioned conditions for Scenario 3. The results 

summarized in Table S1 indicate that there is consistency between the static model and the 

dynamic model when the distinguishing model components are deactivated, thereby validating 

the dynamic QMRA. 

5.7.5.2 Extreme condition tests 

Test 1: β1 = β2 = β3 = 0. This scenario simulated the condition in which there was no primary 

exposure to NoV from contaminated drinking water (β1 = 0) or food (β3 = 0), and there was also 

no secondary exposure to infected individuals (β12 = 0). Therefore, assuming a 0% initial latent 

population, there should have been no incidence of disease within the community. Assuming a 

5% initial latent population, there should have been an initial spike in disease incidence as the 

latent individuals progressed to the diseased or carrier states, but the number of infectious 

individuals was then expected to remain at zero once those individuals recovered. The results 

shown in Figure 5.6 are consistent with these expectations. The peak value in the graph was 

consistent with a 5% initial latent population (i.e., 5% × 80% × 1,000,000 = 40,000). Also, since 

the maximum duration of exposed (E), diseased (D), and shedding (C1 or C2) was estimated to 

be 2 days, 3 days, and 21 days, respectively (Table 5.1), infectious individuals were expected to 

recover after a maximum of 26 days, as demonstrated in Figure 5.6. 
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Figure 5-6. Extreme condition test (test 1): β1 = β2 = β3 = 0. Number of infectious individuals were 

estimated based on endemic setting with 5% initial latent population. 

Test 2: 1/γ = 0. Assuming no protection from disease (i.e., duration of immunity = 1/γ = 0), 

infectious individuals return to the susceptible state immediately after leaving either carrier 

states. Therefore, in the presence of primary and secondary transmission routes, it was expected 

that the number of infectious individuals increase over time (Figure 5.7). The variations in the 

number of infectious people were due to probability distributions assigned to each of the model 

parameters. Also, as expected the results showed significantly higher number of infections 

compared to the normal condition with immunity levels included. The number of infectious 

individuals at both “immunity” and “no immunity” models are shown in Fig. 5.7. As expected, in 

both models the number of infectious individuals increased until all initially latent population 

went through the epidemiological states and became infectious. Meanwhile, the infectious 

individuals spread the virus which could transmit the disease to other susceptible population and 

therefore the number of infectious individuals was amplified due to secondary transmission. In 

“no immunity” model, soon after infectious individuals left the carrier states, they became 

susceptible and could get infected again by both symptomatically and asymptomatically 

infectious persons.  
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The cumulative incidence was about two orders of magnitude higher for the ‘no immunity’ 

dynamic model than the ‘immunity’ dynamic model for each of the potable reuse systems (Table 

S3). Thus, including immunity in the model resulted in a lower cumulative incidence of disease, 

which is consistent with Simmons et al. (2013) and Phillips et al. (2010). 

Figure 5-7. Extreme condition test (test 2): 1/γ = 0. Number of infectious individuals were estimated 

based on endemic setting with 5% initial latent population. 

5.7.6  Sensitivity analysis 

The sensitivity analyses identified the rate of secondary transmission, duration of immunity, 

and duration of shedding as the most significant parameters affecting the risk estimates. Also, 

sensitivity analysis on storage time in environmental buffer during outbreak conditions was 

addressed earlier in section 3.4.  

5.7.6.1 Secondary transmission (β2) 

Secondary transmission was previously identified as the most important component 

contributing to disease incidence in the dynamic model. Fig. 5.8 illustrates cumulative incidence 

as a function of secondary transmission rate (β2 = 0 to 0.5 infections/person-day based on profile 

likelihood of NoV outbreak by Zelner et al. (2010)) during normal condition (no outbreak, β3=0) 
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where all other parameters set to the values in Table 5.1. As expected, a higher rate of secondary 

transmission led to higher CI within the community.  

 

Figure 5-8. Cumulative incidence as a function of secondary transmission rate at 5% initial latent 

population. Β2=0 refers to scenario 3 in which the only source of NoV is from primary exposure through 

drinking water. 

As shown in Fig. 5.8, relative sensitivity of disease incidence to secondary transmission 

rate decreased as the secondary transmission rate increased. For example, when secondary 

transmission rate increased from zero to 0.1, disease incidence increased by a factor of 2.5×101 

while, increasing secondary transmission rate from 0.4 to 0.5 increased the disease incidence by 

a factor of 1.2×10-1. This result was consistent with Eisenberg et al. (2004) which showed lower 

relative sensitivity at higher rates of secondary transmission compared to the lower rates of 

secondary transmission due to exposure to enteroviruses. The importance of secondary 

transmission for NoV infections can be illustrated with observed data for schools and child care 

facilities in which young children with higher rates of disease incidence (annual risk of 1.22×10-1 

per person among children who attended daycare in their first year of age; Hullegie et al. 2016), 
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make up most of the population, or in other ‘high contact’ areas, such as nursing homes, 

hospitals, or cruise ships. According to national outbreak reporting systems, approximately 3,500 

outbreaks occurred from 2009-2012, of which 63% were related to health care facilities, 22% to 

restaurants or banquet facilities, and 6% to schools or daycare facilities. Studies have reported 

that the highest prevalence of NoV occurs in healthcare settings, with risk of illness ranging from 

9-78% (Iturriza-Gómara and Lopman, 2014; Kambhampti et al., 2015; Weinstein et al., 2008).

5.7.6.2 Duration of immunity (1/γ) 

Disease incidence was inversely related to the duration of immunity (Figure 5.9). A longer 

duration of protection effectively led to larger portions of the population with some level of 

protection at any given time, thereby limiting the number of new infections in any given year. 

With a duration of immunity of at least one year, CI decreased dramatically. Therefore, it could 

be suggested that if a vaccine could achieve a 1-year protection from NoV infection, especially 

in children less than 5 years old, it could be significantly beneficial for public health protection. 

However, Simmons et al. (2013) recommended development of NoV vaccine to provide 

protection for a duration of 5 years for greater cost and health benefits per person vaccinated.     
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Figure 5-9. Cumulative incidence of disease as a function of duration of immunity. The results are based 

on one simulation at 5% initial latent population and β1 and β2 were set as listed in Table 5.1.   

5.7.6.3 Duration of shedding (1/σ) 

Studies have reported different NoV shedding rates ranging from several hundred viruses 

per gram of feces to more than 1011 genome copies per gram of feces (Aoki et al., 2010; Atmar et 

al., 2008; Teunis et al., 2015). Although a higher shedding rate was expected to result in higher 

NoV concentrations in the raw wastewater and consequently the finished drinking water, the 

results indicated that shedding rate (varied from 103 to 1013 gc/g feces for both symptomatic and 

asymptomatic infections) did not significantly impact cumulative incidence (relative sensitivity 

≈0). This was due to the robustness of the engineered treatment processes and/or natural die off 

and dilution. For example, when die-off rate in the surface water was set to zero for the de facto 

reuse scenario, the cumulative incidence increased by one order of magnitude for the higher 

pathogen shedding rate (i.e., 3-orders of magnitude higher pathogen shedding than normal rate 

listed in Table 5.1). On the other hand, the duration of shedding was demonstrated to have a 

significant impact on cumulative incidence of disease (Figure 5.10). This was presumably linked 
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to the importance of secondary transmission. When the duration of shedding increased from 2 

days (minimum duration of shedding) to 21 days (maximum duration of shedding), cumulative 

incidence increased about 9-orders of magnitude (depending on the treatment train) with de facto 

reuse system resulted in highest incidence (Figure 5.10). Similar to duration of immunity, 

relative sensitivity of disease incidence to duration of shedding decreased at higher duration of 

shedding (relative sensitivity= 1.5×10+8, and 5.9×10-1 when duration of shedding increased from 

2 days to 21 days and from 21 days to 40 days, respectively). 

Figure 5-10. Cumulative incidence of disease as a function of duration of shedding.  

The results are based on one simulation at 5% initial latent population and β1 and β2 were set as 

listed in Table 5.1.  

5.8 Conclusion 

The main goal of this study was to evaluate performance of different potable reuse treatment 

trains in case of NoV infection, outbreak conditions, and significance of secondary transmission 

and immunity in NoV transmission through potable reuse systems. Results suggested that 

incidence of NoV disease was mainly attributed to secondary transmission and that primary 
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transmission through drinking water did not play a significant role in NoV infections. However, 

it is important to provide the recommended benchmark risk of 10-4 in potable reuse systems to 

limit the risk of infection associated with drinking water exposure pathway. Results of the study 

indicated that the de facto reuse and planned IPR systems were sufficiently robust to handle the 

impact of outbreak in the community. Increased number of infectious cases when employing 

these treatment trains was mainly associated to secondary transmission pathway.  

 However, with less storage time in the environmental buffer, pathogen shedding into the 

local wastewater became more important. For example, decreasing storage time in the de facto 

reuse system from 270 days to 10 days resulted in more than 2-orders of magnitude increase in 

primary transmission through drinking water during an outbreak event. On the other hand, with 

planned IPR system, even very short storage times could sufficiently mitigate the effects of a 

NoV outbreak. This was due to a lower concentration of NoV in the groundwater prior to 

blending and the robustness of the advanced treatment train. Therefore, among the treatment 

trains evaluated in this study, the planned IPR system suggested as the most robust treatment 

train especially in case of outbreak conditions. This result may change if other planned IPR (i.e., 

ozone-based treatment trains with surface water augmentation) or DPR (i.e., FAT-based with 

blending upstream of drinking water treatment facility) would also be considered in this dynamic 

model.  

The results of the sensitivity analyses indicated that secondary transmission, duration of 

immunity, and duration of shedding were the most significant parameters in the dynamic 

transmission model. Potable reuse treatment trains were able to adequately attenuate NoV 

concentration in the raw wastewater through natural die-off, dilution, or advanced treatment 

processes even when infectious individuals excreted as much as 1013 gc/g of feces into the 
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wastewater which is higher than normally expected concentrations. However, since secondary 

transmission drives the risk of NoV, longer duration of shedding or infectiousness increased the 

incidence of disease through secondary transmission. Similarly, higher rates of secondary 

transmission led to higher incidence within the community. Longer duration of immunity led to 

lower disease incidence. Increasing the duration of protection from 0 (no protection) to one year 

significantly impacted the cumulative incidence within the community. Therefore, it could be 

concluded that if the potable reuse treatment trains could achieve the recommended benchmark 

risk of 10-4 and if the secondary transmission pathway could be limited by developing a NoV 

vaccine that could provide at least 1-year protection against the virus, the incidence of disease 

within the community could be significantly reduced.  
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6 Conclusion 

6.1 Findings from current study that support previous literature 

• A previous study by Chaudhary et al. (2017) reported that in potable reuse systems that 

utilize surface water as a discharge or blending point, the concentration of pathogens in 

the upstream surface water dominates the risk calculation. The results of the QMRAs in 

the current study provided further support for this statement. Two IPR systems (i.e., 

ozone-based and FAT-based) with surface water augmentation and one DPR system 

(FAT-based) with surface water blending resulted in similar risks as a de facto reuse 

system. The DPR systems with direct distribution and the planned IPR system with 

groundwater replenishment achieved lower risks of infection for all pathogens due to the 

robustness of the treatment trains and minimal/no pathogen contributions from the source 

water. These results also confirm the statement by the National Research Council 

suggesting that environmental buffers may not always be necessary to provide adequate 

public health protection and that some engineered systems might achieve similar or 

superior water quality than traditional systems incorporating environmental buffers 

(NRC, 2012).  

• Potable reuse systems that employ surface water discharge or blending are more likely to 

exceed the 10-4 annual risk benchmark for each pathogen or for the combination of all 

target pathogens. Again, this is because of pathogen occurrence in upstream source 

waters and not necessarily because of the inadequacy of the engineered treatment trains. 

The DPR systems with direct distribution (both ozone-based and FAT-based) and the 

planned IPR system with groundwater replenishment were generally able to achieve the 

recommended benchmark. The only exception was adenovirus in the FAT-based DPR 
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system with direct distribution, although the benchmark risk was only exceeded by the 

absolute maximum risk simulated for that treatment train. In other words, the 95th 

percentile annual risk was still less than the 10-4 benchmark. This was due to adenovirus 

resistance to UV disinfection. These findings support Chaudhary et al. (2017), which 

suggested that de facto reuse resulted in higher risks of Cryptosporidium, norovirus, and 

combined pathogen risk than DPR systems. 

• Although Soller et al. (2017) and Soller et al. (2018) suggested that norovirus drives the

risk in DPR systems, the results of the current study indicated that Cryptosporidium and

adenovirus resulted in higher risks of infection in both IPR and DPR treatment trains.

Only in the IPR system with groundwater replenishment did norovirus result in a higher

risk than Cryptosporidium, although the risk was still lower than the 10-4 benchmark. The

results of the current study are consistent with Forss and Ander (2011), which involved a

QMRA on the DPR system in Windhoek, Namibia. They identified Cryptosporidium as

the most critical pathogen (as opposed to Giardia and norovirus). The results of the

current study also confirm statistics from the national reporting outbreak system.

Specifically, the data suggest a low rate of primary transmission of NoV through drinking

water (annual risk of infection of 9.0×10-7 per person in the U.S. between 2007 and 2008)

(Brunkard et al., 2011).

• According to this study, potable reuse treatment trains employing ozone-biofiltration are

generally equivalent to RO-based treatment trains on the basis of public health, which is

consistent with the findings of Trussell et al. (2016). Gerrity et al. (2014) also evaluated

the applicability of ozone-biofiltration systems and concluded that ozone-based treatment

trains can provide adequate public health protection while also saving up to $51 million
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in capital costs and up to $4 million in O&M costs compared to FAT in a 10 MGD 

potable reuse facility. 

• With respect to Cryptosporidium, the results of the current study showed that potable 

reuse treatment trains that employ UV disinfection are superior to other treatment trains 

and generally achieve annual risks that are several orders of magnitude lower than the 10-

4 annual benchmark. The only exception was the DPR system with blending upstream of 

a conventional drinking water treatment facility, for which the risk was dominated by 

Cryptosporidium in the upstream surface water. Also, UF and UV were found to be 

important treatment processes for Cryptosporidium removal/inactivation, which is 

consistent with Forss and Ander (2011). 

• The results of this QMRA indicated that all of the potable reuse treatment trains 

evaluated in the current study could reliably achieve the required 12-10-9-log reductions 

of viruses, Cryptosporidium, and Salmonella that are recommended by the California 

Division of Drinking Water (DDW) and NWRI (2013). However, potable reuse treatment 

trains with surface water utilization (IPRs with surface water augmentation and DPR with 

blending upstream of the drinking water treatment facility) resulted in similar risks which 

all exceeded the benchmark of 10-4 for each individual pathogen and for the combined 

effect of all pathogens. While, DPR treatment trains with direct distribution and planned 

IPR system with groundwater replenishment typically resulted in risk of infection less 

than the benchmark of 10-4. 

• Evaluating the significance of different norovirus transmission suggested that person-

person transmission (i.e., secondary transmission) dominated the risk calculation, 

followed by foodborne transmission and then waterborne transmission. These findings 
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are confirmed by the national outbreak reporting system, which attributed 66% of all 

norovirus infectious cases to secondary transmission pathway, 26% to foodborne 

transmission, and only 0.2% to waterborne transmission in the U.S. between 2009 and 

2010 (Hall et al., 2013b).   

• The results of the dynamic QMRA indicated a maximum cumulative incidence of 0.18

for the DPR treatment trains (both ozone-based and FAT based) and 0.23 for the de facto

reuse and planned IPR system with groundwater replenishment, although these risks were

dominated by secondary transmission. These results are consistent with Phillips et al.

(2010) (annual incidence per person = 0.19) and Simmons et al. (2013) (annual incidence

per person = 0.21). Eliminating the impact of secondary transmission resulted in several

orders of magnitude lower risk ranging from 2.6×10-04 to 4.1×10-11 (depending on the

treatment train) which supported the statement that the risk was dominated by secondary

transmission and not the drinking water.

• The most important factors in the norovirus dynamic disease transmission model were the

secondary transmission rate constant, the duration of immunity, and the duration of

shedding. These results are consistent with the disease transmission model for enterovirus

performed by Eisenberg et al. (2004). Both studies also showed higher cumulative

incidence for higher secondary transmission and for shorter durations of immunity.

6.2 Novelty and findings specific to this study 

Previous studies primarily focused on static QMRAs to evaluate risks associated with 

IPR systems (Olivieri et al., 1999; Lim et al., 2017) and DPR systems (Pecson et al., 2017; Soller 

et al., 2017; Soller et al., 2018). A few studies provided a QMRA framework for direct 

comparison of IPR and DPR (Chaudhary et al., 2017) and for evaluating the potential impact of 
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treatment process failure (Pecson et al., 2017). The current study provided a QMRA framework 

for direct comparison of de facto, IPR, and DPR systems, while also incorporating the impact of 

treatment process failures and the associated ‘domino effects’. This study also provided a 

framework to compare the efficacy of both ozone-biofiltration and RO-based treatment trains, 

the impacts of extreme conditions (e.g., outbreaks), and the most critical parameters/operational 

conditions in potable reuse systems in a static and dynamic context.  

Findings specific to the static QMRA  

• With respect to Cryptosporidium, this study found that storage time and temperature in 

the environmental buffer were the most significant operational conditions affecting risk 

in planned IPR systems. The study initially identified a storage time of approximately 

105 days and a surface water temperature of 10°C as being critical conditions for 

Cryptosporidium. These results were based on an exponential dose response model for 

Cryptosporidium with a dose response parameter of 0.00419 (Barbeau et al., 2000). 

However, use of a different dose response parameter (r = 0.09; USEPA, 2006b) resulted 

in a revised critical storage time of 120 days at 10°C. Storage times shorter than these 

critical values resulted in significant increases in risk. With respect to adenovirus, which 

exhibits greater resistance to environmental stress than other viruses, a critical storage 

time of 150 days was identified in de facto reuse systems. Storage time and temperature 

were not significant parameters in other planned IPR systems with surface water 

augmentation and also with respect to NoV and Salmonella, storage time and temperature 

were not significant parameters.  

• Although surface water was not important for norovirus or Salmonella risk, a temperature 

of 20ºC was identified as a critical condition for adenovirus. Temperature lower than 
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20ºC resulted in up to 2 orders of magnitude higher risk for adenovirus compared to the 

baseline condition because of this virus’ slower inactivation kinetics in the environment. 

• This study identified pre-ozonation and UF as critical processes for adenovirus

attenuation; RO and UV as critical processes for norovirus and Salmonella attenuation;

and UF and UV as critical treatment processes for Cryptosporidium.

• The results of the static QMRA indicated that advanced treatment failures were generally

insignificant either due to the robustness of the advanced treatment train (i.e., DPR) or

resiliency provided by the environmental buffer (i.e., planned IPR).

Findings specific to the dynamic QMRA 

• In general, the results suggested that all potable reuse treatment trains were sufficiently

robust to handle spikes in norovirus concentration from an outbreak, although IPR

systems exhibited greater robustness than DPR systems. However, a storage time of at

least 10 days in surface water for the de facto reuse systems was critical for preventing a

foodborne outbreak of NoV from further propagating through the community via

drinking water.

• Planned IPR with FAT and groundwater replenishment was identified as the most robust

treatment train which could sufficiently attenuate norovirus concentration in the event of

an outbreak even with very short storage time in groundwater (<5 days). However,

planned IPR systems with surface water augmentation and DPR systems with FAT and

blending were not considered in the dynamic framework. Including these treatment trains

may impact this conclusion.

• The current study suggested that a duration of immunity to norovirus of at least one year

could dramatically decrease the cumulative incidence of disease within the community.
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Therefore, developing a vaccine that could provide at least 1 year of protection, 

especially in children younger than 5 years old who are more prone to secondary 

transmission, would be very beneficial to public health. This was consistent with reported 

results by Simmons et al. (2013).  

These findings could ultimately have implication for more widespread implementation of 

potable reuse, thereby increasing water resource security by expanding water portfolios 

throughout the United States in a sustainable manner. The conclusions developed from these 

QMRA models can be used in the development of regulatory frameworks to aid in identifying 

critical targets, such as storage time in the environmental buffer and overall reliability of the 

advanced treatment trains. The research identified the components and operational conditions 

that were most critical to minimizing public health risks due to exposure to different pathogens 

in potable reuse systems in order to improve the decision-making processes in development and 

operational designs of potable reuse systems. 

The main sources of uncertainties in this study was related to failure in the treatment 

processes and occurrence of pathogens in raw water sources, especially viruses. As suggested by 

Forss and Ander (2011) employing methods such as a Fault Tree Analysis to calculate the actual 

failure in all treatment processes improved the results of the QMRA. Also, information on 

infectivity of norovirus and dose response model for norovirus could be beneficial to estimate 

more accurate risk of infection for norovirus.  

 



134 

6.3 Recommendations 

According to this study, de facto reuse systems were the less reliable treatment trains on 

the basis of public health protection with the highest sensitivity to operational changes such as 

contribution of wastewater effluent, storage time, and temperature in environmental buffers. 

Since many of the nation’s water systems utilizes de facto reuse as a source of drinking water 

specially during drought or under low-flow conditions it is important to fully characterize the 

quality of water in upstream source water and the performance of de facto reuse systems under 

various operational conditions to ensure adequate public health protection. For example, for 

surface waters with higher concentrations of pathogens than treated wastewater (e.g., bin 2, 3, 

and 4 for Cryptosporidium) higher contribution of wastewater effluent is recommended to 

decrease the final risk.  

Higher risk of infection in potable reuse systems with environmental buffers (i.e., IPR) 

than those with no environmental buffers (i.e., DPR) may suggest that even though “indirect” 

reuse has a connotation that is safer than “direct” reuse, these are not correlated to the quality of 

the final product water and therefore, may not be a good representative of adverse impact on 

public health from a technical perspective. 

This study can be expanded by including other pathogens, such as giardia, E. coli, and 

rotavirus. Also, other potable reuse treatment trains could be developed and simulated in both 

static and dynamic frameworks. Even though studies are under evaluation to estimate NoV 

infectivity to be utilized in dose-response assessments, in case of potable reuse applications, 

NoV was not identified as an important pathogen in risk assessment. Therefore, it is 

recommended to better characterize the risk associated with pathogens such as Cryptosporidium 

and AdV which drive the risk in potable reuse applications by performing the dynamic QMRA 
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and evaluating the impact of secondary transmission of these pathogens in public health risk 

estimation.    
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Text S1. Annual risk of infection by Cryptosporidium in the context of the LT2 framework 

Annual risk of infection by Cryptosporidium was calculated assuming 2 liters of daily 

water consumption and an exponential dose response parameter of 0.00419 oocysts-1. These risks 

assume compliance with LT2 for conventional filtration (i.e., 3-log credit via filtration + bin 

requirement) and direct filtration (i.e., 2.5-log credit via filtration + bin requirement). As 

illustrated in Figure S1, conventional filtration and direct filtration are equivalent for influent 

concentrations greater than 0.075 oocysts/L. The dashed line denotes the annual risk benchmark 

of 10-4.  

 

Figure S1. Annual risk of infection by Cryptosporidium in the context of the LT2 framework. 
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Text S2. Determination of instantaneous ozone demand and ozone decay rate constant 

Figure S2 illustrates data generated from ozone demand/decay testing of five different 

secondary wastewater effluents (Snyder et al., 2014). The graph illustrates the relationship 

between instantaneous ozone demand (IOD), which is standardized to total organic carbon 

(TOC) concentration, and O3/TOC ratio at 25°C.  

Figure S2. Relationship between IOD/TOC and O3/TOC for ozonated secondary effluents. 

After aggregating all of the data from the five secondary effluents, a regression model 

was developed to estimate the IOD/TOC ratio (Eq. S1) and the IOD (Eq. S2). A similar approach 

was used to develop a regression model to estimate the TOC-standardized first order ozone 

decay rate constant (Eq. S3) and the first order ozone decay rate constant (Eq. S4). The 

corresponding regression models are illustrated in Figure S3 and Figure S4, respectively.  

Instantaneous ozone demand (at 25°C): 

𝐼𝑂𝐷

𝑇𝑂𝐶
= 0.6025 × (

𝑂3

𝑇𝑂𝐶
) 0.6679 (Eq. S1) 

𝐼𝑂𝐷 = 𝑇𝑂𝐶 × 0.6025 × (
𝑂3

𝑇𝑂𝐶
) 0.6679 (Eq. S2) 
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First order ozone decay rate constant (at 25°C): 

 

 
𝑘𝑂3

𝑇𝑂𝐶
= 0.1001 × (

𝑂3

𝑇𝑂𝐶
) −1.605            (Eq. S3) 

 

 𝑘𝑂3
= 𝑇𝑂𝐶 × 0.1001 × (

𝑂3

𝑇𝑂𝐶
) −1.605           (Eq. S4) 

 

 
Figure S3. Regression model for instantaneous ozone demand (at 25°C). 

 
Figure S4. Regression model for first order ozone decay rate constant (at 25°C). 
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Because of practical limitations of batch ozone demand/decay testing with the indigo 

trisulfonate method, it is not possible to accurately characterize ozone residual kinetics for 

O3/TOC < 0.25 unless a quench-flow approach is employed. As a result, the ozone decay rate 

constant model was separated into two different equations (Eq. S5 and Eq. S6) with a threshold 

O3/TOC of 0.25. For O3/TOC < 0.25, the IOD is assumed to be equal to the applied ozone dose, 

thereby negating the need for a corresponding ozone decay rate constant. In the context of 

disinfection, the model assumes O3/TOC values less than 0.25 result in an ozone ‘CT’ value of 0 

mg-min/L. 

𝑂3

𝑇𝑂𝐶
≤ 0.25  𝑘𝑂3

= 𝑛𝑜𝑡 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 (Eq. S5) 

𝑂3

𝑇𝑂𝐶
> 0.25 𝑘𝑂3

= 𝑇𝑂𝐶 × 0.1001 × (
𝑂3

𝑇𝑂𝐶
) −1.605 (Eq. S6) 
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Text S3. Cryptosporidium log inactivation for pre-ozonation and post-ozonation 

 

Pre-ozonation process: 

 

Because the main objectives of the pre-ozonation process are typically bulk organic 

matter transformation and TOrC oxidation, the O3/TOC ratio is a highly useful parameter. 

However, it is still necessary to estimate the corresponding IOD and kO3 for a particular O3/TOC 

ratio because ozone “CT” still provides a more accurate estimate of Cryptosporidium 

inactivation. The corresponding parameters for the baseline scenario in the system dynamics 

model are summarized in Eq. S7-S10.        

   

 𝐼𝑂𝐷 = 𝑇𝑂𝐶 × 0.6025 × (
𝑂3

𝑇𝑂𝐶
) 0.6679      (Eq. S7) 

 𝑘𝑜3
= 𝑇𝑂𝐶 × 0.1001 × (

𝑂3

𝑇𝑂𝐶
)−1.605      (Eq. S8) 

In Gamage et al. (2013), the median TOC concentration of the five secondary effluents 

was 7.2 mgC/L. Assuming a 13% reduction in TOC by UF (Trussell et al., 2016), the TOC 

concentration in the UF filtrate/pre-ozone feed would be 6.3 mgC/L. Using this value and an 

O3/TOC ratio of 1.1 mgO3/mgC, the corresponding applied ozone dose, IOD, and ozone decay 

rate constant would be 6.9 mg/L, 4.0 mg/L, and 0.54 min-1, respectively. Assuming an ozone 

contact time of 5 minutes, Eqs. S9-S11 can be used to calculate the corresponding ozone residual 

(0.19 mg/L) and ozone CT (5.0 mg-min/L) in the pre-ozone effluent. An O3/TOC of 1.1 

mgO3/mgC is assumed to be adequate to achieve significant oxidation of a wide range of TOrCs 

(Gerrity et al., 2014), including the 69% destruction of 1,4-dioxane (Snyder et al., 2014) required 

by the CA DDW potable reuse regulations (CDPH, 2014). A 5-minute contact time was selected 

to achieve nearly complete ozone decay and also achieve 2-log inactivation of Cryptosporidium 

based on the resulting ozone CT of 5.0 mg-min/L (Eq. S12). 
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𝑂3 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = [(
𝑂3

𝑇𝑂𝐶
) ×  𝑇𝑂𝐶 − 𝐼𝑂𝐷] ×  𝑒−𝑘𝑜3𝑡     (Eq. S9)

𝑂3 𝐶𝑇 = ∫ [(
𝑂3

𝑇𝑂𝐶
) ×  𝑇𝑂𝐶 − 𝐼𝑂𝐷] ×  𝑒−𝑘𝑜3𝑡𝑑𝑡         

𝑡

0
   (Eq. S10)

Ozone CT can be calculated with an analytical solution to Eq. S10, as shown in Eq. S11, 

or estimated as the area under the curve of ozone residual versus contact time, as shown in 

Figure S5.  

𝑂3 𝐶𝑇 =  
[(

𝑂3
𝑇𝑂𝐶

)× 𝑇𝑂𝐶−𝐼𝑂𝐷]

𝑘𝑂3

× (1 − 𝑒−𝑘𝑂3𝑡) (Eq. S11) 

According to the LT2 guidance manual (USEPA, 2010), Cryptosporidium inactivation 

with ozone can be estimated according to Eq. S12, in which T is the temperature in °C. 

𝐶𝑟𝑦𝑝𝑡𝑜𝑠𝑝𝑜𝑟𝑖𝑑𝑖𝑢𝑚 Log Credit =  0.0397 ×  1.09757𝑇 ×  Ozone 𝐶𝑇 (Eq. S12)

For the computed O3 CT of 5.0 mg-min/L and an assumed water temperature of 25°C, the 

corresponding Cryptosporidium log removal would be 2.0. 

Figure S5. Ozone residual as a function of contact time. 
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Post-ozonation process: 

 

Since the post-ozonation process is primarily used for disinfection purposes, it was 

assumed that the process would be operated and monitored to achieve a target ozone CT value. 

Considering the calculated/estimated removal and inactivation of Cryptosporidium prior to post-

ozonation (7.0 logs; Table 3.3), an additional 3-log inactivation would be sufficient to meet the 

10-log target established by the CA DDW and NWRI. Therefore, an ozone CT of 10 mg-min/L 

was assumed based on the published data by Korich et al. (1990) and LeChevallier and Au 

(2004), which demonstrated that constant exposure to 1 mg/L of ozone for 10 minutes could 

achieve this 3-log target. In fact, an ozone CT of 10 mg-min/L and an assumed water 

temperature of 25°C yields a Cryptosporidium log inactivation of 4.1 based on Eq. 12. 

It is important to note that it will likely be acceptable to achieve the 10-log target in 

California by combining log credits from the advanced wastewater treatment plant and the 

conventional drinking water treatment plant (NWRI, 2016b), which will reduce burden on the 

advanced treatment processes. In other words, it may be possible to decrease the target CT value 

for post-ozone and still achieve the 10-log benchmark in the planned IPR system. This could 

result in a series of benefits, including reduced cost, energy consumption, and bromate 

formation. However, the proposed surface water augmentation regulations in California also 

require a minimum hydraulic retention time of 2-4 months and a minimum dilution ratio of 100:1 

(or 10:1 if an additional 1-log credit is demonstrated somewhere in the treatment train). Instead 

of incorporating these requirements into the model, the higher post-ozone CT value was used as 

an alternative source of conservatism.  
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Text S4. Impact of process failures on ozone efficacy 

Impact of UF and pre-ozonation on post-ozonation: 

Ozone demand/decay and ozone disinfection efficacy are influenced by various water 

quality parameters, particularly turbidity and bulk organic matter composition and concentration. 

This model focuses exclusively on the effects of TOC in estimating the impacts of process 

failures on ozone efficacy. While UF generally achieves a nominal reduction in TOC, the 

combination of ozone and BAC can achieve significant reductions in TOC in potable reuse 

applications. For this study, a 13% reduction in TOC was assumed for UF, and a 40% reduction 

was assumed for O3-BAC (Trussell et al., 2016). A failure in the UF process was assumed to 

result in 0% TOC reduction, and a failure in the pre-ozone process (i.e., minimal bulk organic 

matter transformation) was assumed to result in a 5% TOC reduction after BAC. These 

operational scenarios and the resulting water qualities are shown in Table S1.  

Table S1. Failure scenarios for UF-O3-BAC and the effects on TOC concentration 

Scenario UF O3-BAC 

Reduction TOC (mg/L)3 Reduction TOC (mg/L)4 

Normal (no failure) 13%1 6.3 40%1 3.8 

UF failure 0% 7.2 40%1 4.3 

Pre-O3 failure 13%1 6.3 5%2 6.0 

UF and pre-O3 failure 0% 7.2 5%2 6.8 
1 Trussell et al. (2016) 
2 Minimal reduction by BAC assumed during ozone failure (unpublished data) 
3 TOC for O3-BAC feed; initial TOC concentration assumed to be 7.2 mgC/L (Gamage et al., 2013) 
4 TOC for post-ozone feed 

For the baseline condition, the ozone CT for pre-ozonation (5.0 mg-min/L) was 

calculated based on an initial TOC concentration of 6.3 mgC/L, an O3/TOC ratio of 1.10, and the 

equations described in Text S2. These operating conditions result in an applied ozone dose of 6.9 

mg/L. 
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For post-ozonation, an ozone CT of 10 mg-min/L was specifically targeted to achieve 

adequate Cryptosporidium reduction across the entire treatment train. By reversing the approach 

described in Text S2, it is possible to determine that the applied ozone dose in the post-ozonation 

process is 5.1 mg/L, assuming the ozone is allowed to decay completely (i.e., contact time > 30 

minutes based on the aforementioned demand/decay model).  

Failures in the treatment train will have significant effects on ozone disinfection efficacy. 

For example, a UF failure will result in an increase in TOC in the pre-ozone feed. Assuming the 

applied ozone dose remains constant (i.e., constant ozone generator power and feed gas flow 

rate) during a UF failure, the resulting O3/TOC ratio will decrease, thereby resulting in a lower 

ozone CT value and less Cryptosporidium inactivation. A similar effect would be observed in the 

post-ozonation process during a failure in pre-ozonation or a simultaneous failure in UF and pre-

ozonation. The effects of these failure scenarios on TOC concentrations were summarized in 

Table S1, and the effects on ozone CT and the corresponding levels of Cryptosporidium 

inactivation are summarized in Tables S2-S3.     

Table S2. Pre-ozonation CT values and log inactivation during process failures (at 25°C). 

Scenario TOC 

(mg/L) 

O3/TOC1 Ozone CT 

(mg-min/L) 

Inactivation 

(logs) 

Normal (no failure) 6.3 1.1 5.0 2.0 

UF failure 7.2 1.0 3.4 1.4 

Pre-O3 failure N/A 0 0 0 

UF and pre-O3 failure N/A 0 0 0 
1 Applied ozone dose assumed to be constant at 6.9 mg/L 

 

Table S3. Post-ozonation CT values and log inactivation during process failures (at 25°C). 

Scenario TOC      

(mg/L) 

O3/TOC1 Ozone CT 

(mg-min/L) 

Inactivation 

(logs) 

Normal (no failure) 3.8 1.4 10 4.1 

UF failure 4.3 1.2 6.6 2.7 

Pre-O3 failure 6.0 0.9 2.4 1.0 

UF and pre-O3 failure 6.8 0.7 1.6 0.6 

Post-O3 failure N/A 0 0 0 
1 Applied ozone dose assumed to be constant at 5.1 mg/L 
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Failure in the post-ozonation process: 

Burns (2015) reported historical ozone CT values for a full-scale water recycling facility 

in Australia. Table S4 summarizes the statistical distribution of these ozone CT values.  

Table S4. Statistical distribution of observed ozone CT values in Burns (2015) 

Parameter Post-Ozone 

P5 3.4 

P50 5.1 

P95 7.0 

P99 8.3 

Max. 9.8 

N 8,579 

Assuming a normal distribution with the given 5th and 95th percentiles, the mean and 

standard deviation were estimated using a system of equations. Specifically, the corresponding Z 

values for the 5th and 95th percentiles are -1.645 and 1.645, respectively. Coupled with the 

historical ozone CT data, for which the 5th and 95th percentiles were 3.4 mg-min/L and 7.0 mg-

min/L, the mean and standard deviation can be calculated as shown in Eqs. S13 and S14. Using 

this approach, the mean (𝜇) and standard deviation (𝜎) were determined to be 5.2 mg-min/L and 

1.09 mg-min/L, respectively. The corresponding distribution is shown in Figure S6. 

𝑍 =
𝑥−𝜇

𝜎
(Eq. S13) 

{
−1.645 =

3.4−𝜇

𝜎

1.645 =
7− 𝜇

𝜎

(Eq. S14) 
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Figure S6. Normal distribution of post-ozonation CT values. 

 

According to Burns (2015), the primary objective of the post-ozonation process at the 

full-scale facility was disinfection, specifically 0.6-log inactivation of Cryptosporidium. 

According to Eq. S12, for a temperature of 25ºC and a log inactivation target of 0.6, the 

corresponding ozone CT would be 1.5 mg-min/L. Assuming this is the treatment objective for 

Burns (2015), failure can be described as any observed ozone CT < 1.5 mg-min/L. According to 

the statistical distribution above, the corresponding probability of post-ozonation failure is 

0.000325. This value was used as the probability of failure for the post-ozonation process in the 

current study (Table 3.4 in main text). 
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Text S5. Impact of ozonation on UV absorbance 

Microbial inactivation with germicidal UV light is highly dependent on water quality and 

the performance of preceding treatment units, particularly unit processes that address turbidity 

and UV transmittance (UVT). Water matrices with high levels of suspended solids may result in 

significant shielding of target microbes, and water matrices with high absorptivity (i.e., low 

transmissivity) within the action spectrum of the UV lamp will exhibit low inactivation 

efficiencies. One way of estimating the expected level of microbial inactivation is to calculate 

the average UV dose within a reactor. This UV dose is a function of the average UV intensity 

and the exposure time. For this study, hydraulic inefficiencies were not considered (i.e., exposure 

times remained constant), but the model did account for water quality changes, specifically 

related to UV254 absorbance. The main text demonstrates how the incident intensity of a low-

pressure (i.e., 254 nm light) UV disinfection system can be adjusted based on path length and the 

UV254 absorbance of the water matrix to determine the average UV intensity. 

Table S5 summarizes typical UV254 absorbance values (kA) for various wastewater 

qualities. This study assumed values for nitrified secondary effluents (kA = 0.25 cm-1) and 

filtered nitrified secondary effluents (kA = 0.175 cm-1) for modeling of the DPR advanced 

wastewater treatment train. When the preceding UF system exhibits normal operation, the feed to 

the ozone system is assigned a kA = 0.175 cm-1, but when the UF system is in failure mode, the 

feed to the ozone system is assigned a kA = 0.25 cm-1. The subsequent effect of ozonation on 

UV254 absorbance was determined according to correlations developed in Gerrity et al. (2012). 

These correlations describe the percent reduction in UV254 absorbance, which relates to the 

increase in UV254 transmittance, as a function of O3/TOC ratio, as described in Eq. S15. 
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Although BAC achieves significant reductions in TOC in O3-BAC systems, BAC was assumed 

to have no significant effect on UV254 absorbance.  

 

Table S5. Typical base 10 UV254 absorbance values (kA) for various wastewater qualities. 

Wastewater Metcalf & Eddy 

(2007) 

Chen et al. 

(2006) 

This study 

Secondary effluent 0.15-0.35 0.17-0.50 -- 

Filtered effluent -- 0.20-0.40 -- 

Nitrified effluent 0.10-0.25 0.25-0.45 0.25 

Filtered nitrified effluent 0.10-0.25 -- 0.175 

   

  ∆𝑈𝑉254(%) = 100 × 0.51 × (
𝑂3

𝑇𝑂𝐶
)

0.63

     (Eq. S15) 

 

Once the final UV254 absorbance is known, the expected UV dose can be adjusted to 

account for water quality effects. The current study assumed a typical O3/TOC ratio of 1.1 for 

bulk organic matter transformation and trace organic contaminant destruction, which would 

result in a 54% reduction in UV254 absorbance during normal operation. Therefore, the final 

UV254 absorbance under normal operational conditions (i.e., fully functioning UF and O3) would 

be 0.080 cm-1. In the event of a UF failure, the feed to the ozone system would have a UV254 

absorbance of 0.25 cm-1, and the O3/TOC ratio of 1.1 would achieve a UV254 absorbance of 

0.115 cm-1. In the event of ozone failure, the water quality would be equivalent to a filtered 

nitrified effluent with a UV254 absorbance of 0.175 cm-1. Finally, simultaneous failures in the UF 

and ozone systems would result in a UV254 absorbance of 0.25 cm-1. These scenarios are 

summarized in Table S6. 

 

Table S6. UV254 absorbance values for different modeling scenarios. 

Operational Scenario UV254 absorbance or kA (cm-1) 

Normal (no failure) 0.080 

UF failure (with O3) 0.115 

O3 failure (with UF) 0.175 

UF and O3 failure 0.25 
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Text S6. Model framework for UV disinfection 

As described in the main text, the UV process in the DPR system can be modeled with 

two different approaches. In the first approach, the primary treatment objective is disinfection, 

and the target UV dose is 80 mJ/cm2, which is the minimum recommended dose according to the 

National Water Research Institute’s UV disinfection guidelines (NWRI, 2012). In the second 

approach, the primary treatment objective is NDMA photolysis. The model assumes an NDMA 

concentration of 50 ng/L in the UV feed and a treatment objective of 5 ng/L, which is intended to 

reliably achieve the 10-ng/L notification level in California (CPDH, 2014).   

Given the parameters listed in Table 3.1 in the main text (i.e., I0 = 25 mW/cm2 and path 

length = 10 cm), one can use the UV254 absorbance values in Table S6 to determine the Iavg for 

the system and the required hydraulic residence time in the UV reactor to achieve the target UV 

doses in each scenario. Again, the hydraulic residence times are calculated based on the ‘no 

failure’ scenario, and the hydraulic residence times remain constant during the various failure 

scenarios, thereby reducing the UV dose. The UV doses for the various scenarios were calculated 

using Eqs. 13-15 in the main text and are summarized in Table S7. The UV-dose-based 

photolysis rate constant for NDMA was assumed to be 4.5×10-3 (mJ/cm2)-1 (Lee et al., 2016). 

The effects on Cryptosporidium inactivation and NDMA destruction are summarized in Table 

S8.  

Table S7. UV254 absorbance values and UV doses for different modeling scenarios. 

Operational 

Scenario 

UV254 

absorbance or kA 

(cm-1) 

UV Dose in 

Disinfection Scenario 

(mJ/cm2) 

UV Dose in NDMA 

Scenario (mJ/cm2) 

Normal (no failure) 0.0802 80 512 

UF failure (with O3) 0.1146 62 395 

O3 failure (with UF) 0.175 43 274 

UF and O3 failure 0.25 30 194 
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Disinfection scenario: 

Normal (no failure): Iavg = 𝐼0 ×
(1−10−𝑘𝐴 𝑥)

2.303 × 𝑘𝐴𝑥
= 25 ×

(1−10−0.0802×10)

2.303×0.0802×10
 = 11.4 mJ/cm2   

 

Target UV Dose = 80 mJ/cm2 = Iavg × t = 11.4 mJ/cm2 × t  t = 7.0 seconds (constant) 

 

NDMA scenario: 

 

ln (C/C0) = -kNDMA,UV ×  UV Dose  ln (5/50) = -4.5×10-3 (mJ/cm2)-1 × UV Dose 

 

Target UV Dose = 512 mJ/cm2 = Iavg × t = 11.4 mJ/cm2 × t  t = 45 seconds (constant) 
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Table S8. UV254 absorbance values and theoretical treatment efficacy. The log inactivation 

values assume linear extrapolation of published UV dose response curves for Cryptosporidium. 

These estimated values are significantly higher than the values actually observed in experimental 

samples and are assumed to be unreasonably high. Therefore, log inactivation credits are 

typically capped according to regulatory frameworks (e.g., 6 logs in California) or based on 

maximum observed inactivation levels in practice or experiments.  
Operational 

Scenario 

Disinfection Scenario NDMA Photolysis Scenario 

Log Inactivation of 

Cryptosporidium1 

Percent Reduction 

in NDMA 

Log Inactivation 

of 

Cryptosporidium1 

Percent Reduction 

in NDMA 

Normal (no failure) 19 30% 124 90% 
UF failure (with O3) 15 24% 96 83% 
O3 failure (with UF) 10 18% 66 71% 

UF and O3 failure 7 13% 47 58% 
1Cryptosporidium log credit limited to 6.0 in model (CDPH, 2014) 

As described in the main text, an arbitrary failure probability of 0.01 was assumed for UV 

due to a lack of failure data in the literature. The significance of this value was then evaluated 

using a sensitivity analysis. The results of the sensitivity analysis for a range of failure 

probabilities (0.0001-0.1) are shown in Figure S7. The results illustrated that probabilities of 

failure less than 0.01 did not have a significant impact on the final risk of infection, but a 

probability of failure of 0.1 caused the risk of infection to increase by 6 orders of magnitude. 

Because a 10% failure rate (i.e., once every 10 days) is likely overly conservative, a value of 

0.01 was deemed appropriate for the baseline condition. 
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Figure S7. Sensitivity analysis on probability of failure of UV disinfection. 
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Text S7. System dynamics models 

System dynamics is a non-linear, mathematical simulation of complex, interrelated 

system elements, which are represented as stocks, flows, convertors, and arrows (Forrester, 

1958). Figure S7 illustrates how these key features are represented in the STELLA software 

platform. For the current study, the system dynamics model was used to predict the concentration 

of Cryptosporidium oocysts at each point in the potable reuse system. In this stock-and-flow 

structure, each stock represents an engineered or environmental barrier, and the flows represent 

the wastewater that passes through each component of the system. Each of the three potable 

reuse systems modeled in this study (i.e., de facto, planned IPR, and DPR) incorporates different 

sectors, as illustrated in Figures S8-S11 below. 

Figure S8. A schematic diagram of the key features of system dynamics STELLA 
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Figure S9. Schematic diagram of the flows and converters used in the advanced wastewater 

treatment train sector in the planned IPR system. The schematic is adapted from the STELLA 

system dynamics software program. 
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Figure S10. Schematic diagram of the flows and converters used in the conventional drinking 

water treatment plant sector. The schematic is adapted from the STELLA system dynamics 

software program. 
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Figure S11. Schematic diagram of the flows and converters used in the advanced wastewater 

treatment train sector in the DPR system. The schematic is adapted from the STELLA system 

dynamics software program. 
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Text S8. Model output 

Figure S12. Cryptosporidium concentrations for the scenario 2 baseline condition. 
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 Figure S13. Cryptosporidium concentrations for the scenario 3 baseline condition. 
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Figure S14. Cryptosporidium concentrations for the scenario 2 critical condition. 
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Figure S15. Cryptosporidium concentrations for the scenario 3 critical condition. 
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Appendix 2 



163 
 

 

Text S1. Pathogen probability (PDFs) and cumulative distribution functions (CDFs)  

 

 

Figure S1. PDFs and CDFs of pathogen concentrations in raw wastewater. 

  

  

  

 
 

  
 



164 

Additional discussion related to NoV concentrations in raw wastewater: 

Jahne (2017) reported NoV concentrations in wastewater from a single office building, 

with a maximum of 7.5log10 gc/L, but this may overestimate the levels that are expected in a 

blended municipal wastewater from the larger community. The values in Jahne (2017) may be 

appropriate when evaluating small-scale DPR systems—a single office building, for example—

but may not be appropriate at larger scale.  

Simmons et al. (2011) reported a mean concentration of 7.7 log10 gc/L in eight samples 

from a single wastewater treatment plant, although this value was inflated due to an extreme 

spike in a sample collected in January. Seasonal effects were also observed for NoV in Eftim et 

al. (2017). Excluding the maximum value from Simmons et al. (2011), the median concentration 

was 5.8 log10 in the remaining 7 samples from that wastewater treatment plant. 

Due to the small sample sizes in these studies, the more comprehensive review in Eftim 

et al. (2017) was used as the basis for NoV concentrations in raw wastewater in the current 

study. However, this highlights the importance of local pathogen characterization when assessing 

public health risk.  
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Figure S2. PDFs and CDFs of pathogen concentrations in surface water. For Cryptosporidium, 

S1 = Bin 1 surface water, S2 = Bin 2 surface water, and S3 = Bin 4 surface water, in accordance 

with the LT2ESWTR and LeChevallier et al. (1991).  
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Figure S2 (continued). PDFs and CDFs of pathogen concentrations in surface water. 
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Figure S3. PDFs and CDFs of pathogen concentrations in groundwater. The Cryptosporidium 

oocyst and Salmonella concentrations were assumed to be 0.  
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Text S2. Recycled water contribution in groundwater replenishment projects 

Table S1 summarizes the recycled water contribution (RWC) at 66 groundwater 

replenishment sites in the Montebello Forebay (from 1960 to 1991) (Sloss et al., 1996). The 

average RWC was determined to be 14% (and rounded up to 15% for the current study) 

according to Eq. S1.  

Table S1. RWCs in the Montebello Forebay (Sloss et al., 1996). 

Number of service areas (f) RWC (%) m f × m 

8 0 0 0 

14 1-4 2.5 35 

19 5-19 12 228 

25 20-31 25.5 637.5 

𝑥𝑔 =  
∑ 𝑓×𝑚

𝑛
=  

900.5

66
 = 14% (Eq. S1)

where, 𝑥𝑔 = mean of the frequency distribution data 

f = frequency 

m = midpoint of each group 

n = total frequency  
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Text S3. Regulatory log removal value (LRV) framework 

Because the data in Table 3.4 in the main text represent observed treatment performance, 

they may differ from the typical regulatory credit awarded to each treatment process. The 

regulatory credits summarized in Table S2 are provided as a basis for comparison. 

Table S2. Typical pathogen regulatory log credits for engineered treatment processes. 

Treatment Process Cryptosporidium Norovirus Adenovirus Salmonella 

CASa NCh 1g 1g NC

Conventional Filtrationb 3 2 2 NCc

MFa,i 4 0 0 4

UFa,g,i 4 1 1 4 

ROa,g 1.5-2.0 1.5-2.0 1.5-2.0 1.5-2.0 

BACa,g 0 0 0 0 

Ozoneg 1 6 6 4 

UVa,h 6 6 6a,d 6 

Chlorine 

       DWTP 

       ESB 

0a 

0a 

2b 

6a,e 

2b 

6a,e 

4f 

4f 

aTchobanoglous et al. (2015) 
bUSEPA (2006b) 
cLT2 does not provide direct guideline on log reduction of Salmonella  
dAt a minimum UV dose of 235 mJ/cm2 
ebased on maintaining a minimum free residual of 0.4 mg/L over 24 hour storage time 
fNRC (2012)
gTrussell et al. (2016) 
hNC = no credit 
iCDPH (2011) 
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Text S4. Ozone inactivation of E. coli as a surrogate for Salmonella 

Because Salmonella disinfection kinetics are poorly defined in the literature, data 

describing E. coli inactivation with ozone (Table S3; Zuma et al., 2009) were used as a surrogate. 

The corresponding log inactivation and ozone CT values are summarized in Table S4 and Figure 

S4. 

Table S3. Kinetics of E. coli inactivation with ozone (Zuma et al., 2009) 

Time (min) 
O3 Concentration (mg/L) 

0.91 1.78 2.78 3.44 4.72 

Log CFU/mL 

0 8.28 8.29 8.23 8.10 8.13 

1 7.78 7.59 7.50 7.13 6.39 

2 7.02 6.73 6.51 6.10 5.22 

3 6.28 5.76 5.56 4.60 4.05 

4 5.70 4.90 4.60 3.89 3.00 

5 5.20 4.06 3.71 2.99 - 

6 4.70 3.49 2.78 2.40 - 

Table S4. CT table (mg-min/L) for log inactivation of E. coli 

CT Log Removal CT Log Removal CT Log Removal 

0 0.00 9.44 2.91 18.88 4.08 

0.91 0.50 2.73 2.00 4.55 3.08 

1.78 0.70 5.34 2.53 8.90 4.23 

2.78 0.73 8.34 2.67 13.9 4.52 

3.44 0.97 10.32 3.50 17.2 5.11 

4.72 1.74 14.16 4.08 5.46 3.58 

1.82 1.26 3.64 2.58 10.68 4.80 

3.56 1.56 7.12 3.39 16.68 5.45 

5.56 1.72 11.12 3.63 20.64 5.70 

6.88 2.00 13.76 4.21 

*CT values were calculated based on data from Table S3.
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Figure S4. Inactivation of E. coli as a function of ozone CT. Adapted from Zuma et al. (2009). 
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Text S5. Inactivation of norovirus by UV disinfection 

Due to lack of information, MNV was used as a viral surrogate to evaluate the 

effectiveness of UV disinfection for NoV inactivation (Lee et al., 2008). The MNV log 

inactivation data from Lee et al. (2008) are summarized in Table S5 and plotted in Figure S5. 

Based on linear regression, the first order inactivation rate constant was determined to be 0.15 

(mJ/cm2)-1. 

Table S5. Log inactivation of MNV as a function of UV dose (Lee et al., 2008). 

UV dose (mJ/cm2) Log reduction 

0 0 

10 -1.0

20 -2.9

25 -3.4

30 -5.0

Figure S5. Log inactivation of MNV as a function of UV dose (Lee et al., 2008). 
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Text S6. UV254 absorbance values for different wastewater qualities 

 

Table S6. Typical base 10 UV254 absorbance values (kA) for various wastewater qualities. 

Wastewater Metcalf & Eddy 

(2007) 

Chen et al. 

(2006) 

This study 

Secondary effluent 0.15-0.35 0.17-0.50 -- 

Filtered effluent -- 0.20-0.40 -- 

Nitrified effluent 0.10-0.25 0.25-0.45 0.25 

Filtered nitrified effluent 0.10-0.25 -- 0.175 

MF filtrate 0.04-0.10 0.158-0.3 0.17 

RO permeate 0.01-0.05 0.05-0.2 0.10 

   

Table S7. UV254 absorbance values for different modeling scenarios. 

Operational Scenario UV254 absorbance or kA (cm-1) 

Normal (no failure) 0.08 (O3-based) 

0.10 (RO-based) 

MF failure (with RO) 0.10 

RO failure (with MF) 0.17 

MF and RO failure 0.25 

UF failure (with O3) 0.115 

O3 failure (with UF) 0.175 

UF and O3 failure 0.25 
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Text S7. Risk characterization of Salmonella 

Table S8. Health burden calculation for Salmonella. 

Health 

outcome 

Outcome 

fraction 

Duration of illness Severity 

weight 

DALYs/case 

Morbidity Mild diarrhea 0.9984 0.01918 years (7 days)b 0.067d 1.29×10-3 

Mortality Death 0.0016a Life expectancy/age at deathc 1 0.0666 

Health Burden 0.068 
aCalculated based on Ao et al. (2010) (93 million infections and 155,000 diarrheal death each year) 
bHealth Canada. (2010) 
cU.S. life expectancy = 78.7 years (World Bank, 2015); Age at death (the mean weighted age of the population 

assuming no difference in fatality rates) = 36.88 (Health Canada, 2010)  
dBased on mild diarrhea from Cryptosporidium, Giardia, and rotavirus 

YLD= (outcome fraction × duration of illness × severity weight) for health outcome contributing 

to morbidity 

LYL= ([life expectancy – age at death] × severity weight) for health outcome contributing to 

mortality 

Conditional probability of illness given an infection: According to Jertborn et al. (1990), the 

number of cases that developed symptomatic disease after infection was 7 out of 17 cases. 

Asymptomatic disease of Salmonella is not considered to be an illness (Mangen et al., 2013). 

(𝑃𝑖𝑙𝑙|𝑃𝑖𝑛𝑓) = 
𝑆𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐 𝑆𝑎𝑙𝑚𝑜𝑛𝑒𝑙𝑙𝑜𝑠𝑖𝑠

𝑆𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐+ 𝐴𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐
=  

7

17
= 0.41 (Eq. S2) 
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Table S9. Annual risk of infection during optimal operation. 

Pathogen Annual Risk of Infection Disease Burden 

min P5 median P95 max min P5 median P95 max 

TT1, TT3, TT4, TT5 

Crypto (S1) 

Crypto (S2) 

Crypto (S3) 

1.8E-03 

2.6E-03 

8.7E-03 

1.9E-03 

2.7E-03 

9.1E-03 

2.0E-03 

2.8E-03 

9.6E-03 

2.1E-03 

2.9E-03 

1.0E-02 

2.2E-03 

3.1E-03 

1.1E-02 

2.2E-06 

3.0E-06 

1.0E-05 

2.3E-06 

3.2E-06 

1.1E-05 

2.4E-06 

3.4E-06 

1.1E-05 

2.5E-06 

3.5E-06 

1.2E-05 

2.6E-06 

3.6E-06 

1.3E-05 

NoV 2.6E-04 2.9E-04 3.4E-04 4.0E-04 4.5E-04 7.6E-14 1.3E-13 2.2E-13 4.9E-13 1.7E-12 

AdV 1.1E-03 1.2E-03 1.2E-03 1.3E-03 1.3E-03 3.0E-05 3.1E-05 3.3E-05 3.4E-05 3.5E-05 

Salmonella 8.0E-04 8.7E-04 1.0E-03 1.2E-03 1.3E-03 2.2E-05 2.4E-05 2.8E-05 3.2E-05 3.6E-05 

TT2 

Crypto 0.0E+00 9.5E-14 5.7E-13 2.9E-12 6.8E-11 0.0E+00 1.1E-16 6.8E-16 3.4E-15 8.1E-14 

NoV 1.1E-05 1.2E-05 1.2E-05 1.3E-05 1.3E-05 9.7E-17 1.1E-16 1.2E-16 1.3E-16 1.3E-16 

AdV 5.0E-06 5.3E-06 5.6E-06 5.9E-06 6.0E-06 1.3E-07 1.4E-07 1.5E-07 1.6E-07 1.6E-07 

Salmonella 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 

TT6 

Crypto 1.2E-11 1.8E-11 2.9E-11 5.2E-11 1.4E-10 1.4E-14 2.2E-14 3.5E-14 6.2E-14 1.6E-13 

NoV 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 

AdV 2.7E-11 3.7E-11 5.1E-11 6.8E-11 8.4E-11 0.0E+00 9.8E-13 1.4E-12 1.8E-12 2.3E-12 

Salmonella 0.0E+00 0.0E+00 0.0E+00 0.0E+00 8.2E-14 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.3E-15 

TT7 

Crypto 2.8E-12 7.1E-12 1.9E-11 9.2E-11 6.2E-10 3.3E-15 8.4E-15 2.3E-14 1.1E-13 7.4E-13 

NoV 0.0E+00 1.2E-12 1.4E-12 1.5E-12 1.0E-11 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 

AdV 1.5E-07 4.0E-07 1.0E-06 2.8E-06 5.7E-06 4.0E-09 1.1E-08 2.7E-08 7.5E-08 1.5E-07 

Salmonella 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 
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Figure S6. Comparison of annual risk of infection during optimal and sub-optimal operations. 
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Figure S7. Impact of Cryptosporidium outbreak on annual risk of infection during sub-optimal 

operations. The results of TT4 (IPR with FAT and surface water augmentation) and TT5 (DPR 

with FAT and blending upstream of the drinking water treatment facility) were similar to TT3 

and therefore not shown in the Figure.  
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Figure S8. Impact of norovirus outbreak on annual risk of infection during sub-optimal 

operations. The results of TT4 (IPR with FAT and surface water augmentation) and TT5 (DPR 

with FAT and blending upstream of the drinking water treatment facility) were similar to TT3 

and therefore not shown in the Figure.  
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Figure S9. Impact of AdV outbreak on annual risk of infection during sub-optimal operations. 

The results of TT4 (IPR with FAT and surface water augmentation) and TT5 (DPR with FAT 

and blending upstream of the drinking water treatment facility) were similar to TT3 and therefore 

not shown in the Figure.  
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Figure S10. Impact of Salmonella outbreak on annual risk of infection during sub-optimal 

operations. The results of TT4 (IPR with FAT and surface water augmentation) and TT5 (DPR 

with FAT and blending upstream of the drinking water treatment facility) were similar to TT3 

and therefore not shown in the Figure. The risk with TT2 and TT7 was below what could be assessed 

by the model and was calculated as zero 
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Text S1. Ordinary differential equations used in dynamic QMRA. 

𝑑𝐸1

𝑑𝑡
=  𝛽2𝑆(𝐷 + 𝐶1 + 𝐶2) + 𝛽1𝑆 + 𝛽2 (

1

4
) 𝑃2(𝐷 + 𝐶1 + 𝐶2) + 𝛽1(

1

4
)𝑃2 + 𝛽2 (

2

4
) 𝑃3(𝐷 + 𝐶1 + 𝐶2) + 𝛽1(

2

4
)𝑃3

+ 𝛽2 (
3

4
) 𝑃4(𝐷 + 𝐶1 + 𝐶2) + 𝛽1(

3

4
)𝑃4 − 𝛼𝐸1

𝑑𝐸2

𝑑𝑡
=  𝛼𝐸1 − 𝛼𝐸2 

𝑑𝐸3

𝑑𝑡
=  𝛼𝐸2 − 𝛼𝐸3 

𝑑𝐸4

𝑑𝑡
=  𝛼𝐸3 − 𝛼𝐸4 

𝑑𝑆

𝑑𝑡
=  −𝛽2𝑆(𝐷 + 𝐶1 + 𝐶2)/𝑁 − 𝛽1𝑆 + 𝛾𝑃4

𝑑𝑃1

𝑑𝑡
=  𝜎1𝐶14 + 𝜎2𝐶24 − 𝛾𝑃1

𝑑𝑃2

𝑑𝑡
=  𝛾𝑃1 − 𝛾𝑃2 − 𝛽2 (

1

4
) 𝑃2(𝐷 + 𝐶1 + 𝐶2)/𝑁 −  𝛽1(

1

4
)𝑃2

𝑑𝑃3

𝑑𝑡
=  𝛾𝑃2 − 𝛾𝑃3 − 𝛽2 (

2

4
) 𝑃3(𝐷 + 𝐶1 + 𝐶2)/𝑁 − 𝛽1(

2

4
)𝑃3

𝑑𝑃4

𝑑𝑡
=  𝛾𝑃3 − 𝛾𝑃4 − 𝛽2 (

3

4
) 𝑃4(𝐷 + 𝐶1 + 𝐶2)/𝑁 − 𝛽1(

3

4
)𝑃4

𝑑𝐷1

𝑑𝑡
= 𝑃𝑠𝑦𝑚 𝛼𝐸4 − 𝛿𝐷1

𝑑𝐷2

𝑑𝑡
= 𝛿𝐷1 − 𝛿𝐷2

𝑑𝐷3

𝑑𝑡
= 𝛿𝐷2 − 𝛿𝐷3

𝑑𝐷4

𝑑𝑡
= 𝛿𝐷3 − 𝛿𝐷4

𝑑𝐶21

𝑑𝑡
= 𝛿𝐷4 − 𝜎2𝐶21

𝑑𝐶22

𝑑𝑡
= 𝜎2𝐶21 − 𝜎2𝐶22

𝑑𝐶23

𝑑𝑡
= 𝜎2𝐶22 − 𝜎2𝐶23

𝑑𝐶24

𝑑𝑡
= 𝜎2𝐶23 − 𝜎2𝐶24

𝑑𝐶11

𝑑𝑡
= (1 − 𝑃𝑠𝑦𝑚)𝜎𝐸4 −  𝜎1𝐶11

𝑑𝐶12

𝑑𝑡
= 𝜎1𝐶11 − 𝜎1𝐶12 

𝑑𝐶13

𝑑𝑡
= 𝜎1𝐶12 − 𝜎1𝐶13 
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𝑑𝐶14

𝑑𝑡
= 𝜎1𝐶13 − 𝜎1𝐶14 

 

 

Table S1. Model validation: comparison of the static and dynamic risk. The results of the 

dynamic model were based on 0% initial latent population, no primary transmission due to 

contaminated food (β3 = 0), no secondary transmission (β2 = 0), and no duration of immunity (1/γ 

= 0) to allow for a direct comparison with the static model. The minor differences in the models 

were due to the distributed delays for the remaining epidemiological states (i.e., exposed, 

diseased, and carrier) in the dynamic model.  

Treatment trains Static Dynamic 

Mean SD Mean SD 

A. de facto reuse 3.4E-04 3.1E-05 3.4E-04 1.7E-06 

B. IPR (FAT+GW replenishment) 1.2E-05 3.7E-07 1.0E-05 3.1E-08 

C. DPR (O3-biofiltration) 0.0E+00 0.0E+00 0.0E+00 0.0E+00 

D. DPR (FAT) 1.1E-12 1.6E-13 9.0E-13 2.1E-15 

 

 

Table S2. Annual risk of infection calculated by the static model and cumulative incidence 

calculated by the dynamic model. The results of the dynamic model were based on 0% initial 

latent. The dynamic model includes secondary transmission which makes the risks higher than 

the static model. 

Treatment trains Static Modela Dynamic Modelb 

min median max min median max 

A. de facto reuse 2.6E-04 3.4E-04 4.5E-04 6.4E-03 3.7E-02 2.3E-01 

B. Planned IPR 1.1E-05 1.2E-05 1.3E-05 5.5E-04 2.7E-02 2.3E-01 

C. O3-based DPR 0.0E+00 8.2E-14 1.3E-06 8.9E-08 7.0E-03 1.8E-01 

D. FAT-based DPR 0.0E+00 1.4E-12 1.0E-07 3.0E-08 7.4E-03 1.8E-01 
aThese values represent annual risk of infection 
bThese values represent cumulative incidence 
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Table S3. Comparison of the cumulative incidence calculated by dynamic model including 

secondary transmission with and without immunity. The results are based on 5% initial latent 

population. 

Treatment trains Dynamic with Immunity Dynamic with No Immunity 

Mean SD Mean SD 

A. de facto reuse 6.9E-02 9.6E-02 3.7E+00 1.1E+00 

B. IPR (FAT+GW replenishment) 6.8E-02 1.0E-01 3.6E+00 1.2E+00 

C. DPR (O3-biofiltration) 5.6E-02 1.1E-01 3.0E+00 1.7E+00 

D. DPR (FAT) 5.7E-02 1.1E-01 2.9E+00 1.8E+00 

Figure S1. Annual risk of infection for the de facto reuse system for scenario 4 (i.e., foodborne 

outbreak) as a function of storage time in the environmental buffer. The base e inactivation rate 

constant for NoV in surface water with a temperature of 20°C was assumed to be 0.875 day-1 

(Amoueyan et al., 2018; Yang & Griffiths, 2013). 
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Figure S2. Annual risk of infection for the planned IPR system for scenario 4 (i.e., foodborne 

outbreak) as a function of storage/travel time in the aquifer. The base e inactivation rate constant 

for NoV in groundwater with a temperature of 10°C was assumed to be 0.055 day-1 (Amoueyan 

et al., 2018; Nevecherya et al., 2005). 
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