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ABSTRACT 

Generalized Clusterwise Regression for Simultaneous Estimation of Optimal Pavement 

Clusters and Performance Models 

 

by 

 

Mukesh Khadka 

 

Dr. Alexander Paz, Examination Committee Chair 

Associate Professor, Civil and Environmental Engineering and Construction 

University of Nevada, Las Vegas 

 

 

The existing state-of-the-art approach of Clusterwise Regression (CR) to estimate pavement 

performance models (PPMs) pre-specifies explanatory variables without testing their 

significance; as an input, this approach requires the number of clusters for a given data set. Time-

consuming ‘trial and error’ methods are required to determine the optimal number of clusters. A 

common objective function is the minimization of the total sum of squared errors (SSE). Given 

that SSE decreases monotonically as a function of the number of clusters, the optimal number of 

clusters with minimum SSE always is the total number of data points. Hence, the minimization 

of SSE is not the best objective function to seek for an optimal number of clusters. 

In previous studies, the PPMs were restricted to be either linear or nonlinear, irrespective 

of which functional form provided the best results. The existing mathematical programming 

formulations did not include constraints that ensured the minimum number of observations 

required in each cluster to achieve statistical significance. In addition, a pavement sample could 

be associated with multiple performance models. Hence, additional modeling was required to 

combine the results from multiple models. 

To address all these limitations, this research proposes a generalized CR that 

simultaneously 1) finds the optimal number of pavement clusters, 2) assigns pavement samples 
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into clusters, 3) estimates the coefficients of cluster-specific explanatory variables, and 4) 

determines the best functional form between linear and nonlinear models. Linear and nonlinear 

functional forms were investigated to select the best model specification. A mixed-integer 

nonlinear mathematical program was formulated with the Bayesian Information Criteria (BIC) as 

the objective function. The advantage of using BIC is that it penalizes for including additional 

parameters (i.e., number of clusters and/or explanatory variables). Hence, the optimal CR models 

provided a balance between goodness of fit and model complexity. In addition, the search 

process for the best model specification using BIC has the property of consistency, which 

asymptotically selects this model with a probability of ‘1’. 

Comprehensive solution algorithms – Simulated Annealing coupled with Ordinary Least 

Squares for linear models and All Subsets Regression for nonlinear models – were implemented 

to solve the proposed mathematical problem. The algorithms selected the best model 

specification for each cluster after exploring all possible combinations of potentially significant 

explanatory variables. Potential multicollinearity issues were investigated and addressed as 

required. 

Variables identified as significant explanatory variables were average daily traffic, 

pavement age, rut depth along the pavement, annual average precipitation and minimum 

temperature, road functional class, prioritization category, and the number of lanes. All these 

variables were considered in the literature as the most critical factors for pavement deterioration.  

In addition, the predictive capability of the estimated models was investigated. The 

results showed that the models were robust without any overfitting issues, and provided small 

prediction errors. The models developed using the proposed approach provided superior 

explanatory power compared to those that were developed using the existing state-of-the-art 
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approach of clusterwise regression.  In particular, for the data set used in this research, nonlinear 

models provided better explanatory power than did the linear models. As expected, the results 

illustrated that different clusters might require different explanatory variables and associated 

coefficients. Similarly, determining the optimal number of clusters while estimating the 

corresponding PPMs contributed significantly to reduce the estimation error. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

In practice, it is very important to achieve a balance among the number of Pavement 

Performance Models (PPMs); the number of explanatory variables; the resources required to 

develop, maintain, and use these models; and the associated explanatory power. To seek this 

balance, PPMs typically are developed using clusters of pavement segments. A few predefined 

explanatory variables are used to assign pavement segments into clusters, instead of estimating 

the cluster memberships using statistical methods and testing for significance. In terms of 

performance or deterioration, the clusters thus formed are likely to include heterogeneous 

pavement segments. 

The existing state-of-the-art proposes Clusterwise Linear Regression (CLR) to determine, 

simultaneously, pavement clusters and associated PPMs using a single objective function. In 

CLR, different clusters are formed such that segments assigned within a cluster are homogenous 

in terms of the effects of the explanatory variables on pavement performance (Park et al. 2015). 

That is, the homogeneity of pavement segments in a cluster is defined by similarities of the 

observed values of both dependent and explanatory variables and largely by the proximity of 

segments with respect to an underlying PPM (Preda and Saporta 2007). Hence, observations of 

all pavement segments assigned to a cluster fit the same PPM with a minimum estimation error. 

In the field of pavement management, to the best knowledge of the author, only three 

studies (Luo and Chou 2006, Luo and Yin 2008, Zhang and Durango-Cohen 2014) have used 

CLR. These studies have revealed the advantages of pavement performance modelling when 
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using the CLR framework over other available methods. However, the existing literature suffer 

from a few serious limitations.  

 First, the number of clusters is a pre-specified input for CLR. However, it is impossible 

to know a priori the optimal number of clusters that minimizes the estimation error. 

Time-consuming ‘trial and error’ methods as well as an extensive sensitivity analysis are 

required to determine this number. 

 Second, previous mathematical programs used the minimization of the sum of squared 

errors (SSE) as the objective function. By increasing the number of clusters, the number 

of parameters is increased, which translates into a smaller SSE. 

 Third, the existing literature assumes that all explanatory variables are significant. 

Assignment of pavement segments into clusters using predefined and fixed explanatory 

variables introduces bias into the statistical analysis (Gupta and Ibrahim 2007). In 

addition, clustering using explanatory variables that do not provide any information 

about the underlying clustering structure does not reveal the true cluster assignments. 

This illustrates the negative consequences of assuming the significance of variables. 

 Fourth, previous mathematical programs did not include constraints to restrict a 

minimum number of observations required in a cluster to achieve statistical significance.  

 Fifth, in previous studies, a pavement sample could be associated with multiple 

performance models. Hence, an additional modeling was required to combine the results 

from multiple models.  

 Sixth, the existing literature assumes either linear or nonlinear functional forms to 

estimate PPMs. Potential functional forms were not investigated to select the one with 

less estimation errors. 
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1.2 Contributions of the Dissertation 

To address all the above limitations, this dissertation proposed a generalized mathematical 

programing formulation and a solution algorithm to determine simultaneously 1) the optimal 

number of clusters and the associated cluster members (i.e., pavement samples), 2) the cluster-

specific significant explanatory variables and the associated coefficients, and 3) the best 

functional form between linear and nonlinear models. The proposed mathematical program used 

the Bayesian Information Criteria (BIC), which penalizes the inclusion of additional model 

parameter, as the objective function. Thus, the optimal number of models with minimum BIC 

provided balance between the goodness of fit and model complexity. To achieve statistical 

significance, the mathematical program included constraints that ensured the minimum number 

of observations required in each cluster. In addition, the mathematical program was formulated 

such that all observations of a sample were assigned to the same cluster exclusively. Both, linear 

and nonlinear functional forms were estimated within the proposed clusterwise regression 

framework; the resultant models were then compared to select the one with less estimation errors 

for the data used in this dissertation. 

The mathematical program included two constraints to prevent a search beyond a feasible 

number of clusters. A solution algorithm was proposed and implemented to determine the upper 

bound (maximum) of the potential number of clusters. The minimization of BIC was used as the 

objective function. Minimizing BIC reduces unexplained variation in the dependent variable. 

The search process for the best model specification using BIC has the property of consistency, 

which asymptotically selects this model, with probability one. The mathematical program and 

solution algorithm explored all possible combinations of explanatory variables to seek for the 
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best model specification that provides the explanatory power and is free of potential 

multicollinearity issues. 

To avoid issues about samples associated with multiple clusters, the proposed 

mathematical program included constraints to ensure a pavement sample and all associated 

observations were assigned to one cluster exclusively. 

To investigate the appropriateness of model functional form, both, linear and nonlinear 

functional forms were estimated within the proposed CR framework. The prediction accuracies 

of the resultant models were then compared to select the best functional form for the data used in 

this dissertation. 

To summarize, this dissertation seeks to develop a generalized CR framework that 

determines simultaneously 1) the optimum number of pavement clusters, 2) cluster memberships 

of pavement samples, 3) clusters-specific significant explanatory variables, 4) estimated 

regression coefficients for PPMs, and 5) the best functional form between linear and nonlinear 

models. Minimization of Bayesian Information Criteria was used as the objective function; the 

optimal number of models with minimum BIC provided balance between goodness of fit and 

model complexity. The proposed mathematical program included constraints that ensured the 

minimum number of observations required in each cluster so as to achieve statistical 

significance. In addition, the mathematical program was formulated such that all observations of 

a pavement sample were assigned to the same cluster exclusively. Comprehensive algorithms – 

that integrated Simulated Annealing and Ordinary Least Square for the linear models, and All 

Subset Regression for the nonlinear models – were proposed to solve the proposed mathematical 

problems. To estimate the nonlinear model parameters, a logarithmic transformation was 
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performed to linearize the adopted model; the estimated model parameters were then transformed 

back to the original scale by taking exponential. 

Minimum effort was required to determine estimation parameters required to run the 

optimization experiments. Researchers, practitioners, departments of transportation, and other 

transportation agencies, including Federal Highway Administration can benefit from this study. 

1.3 Objectives of the Dissertation 

The primary objective of this dissertation was to propose a comprehensive framework to 

estimate accurate PPMs that minimize the overall estimation error. The models thus estimated 

must represent historical performance and can be used to predict conditions of pavement 

segments. The proposed methodology is motivated by the need to use the regression effects of 

explanatory variables on the pavement performance while simultaneously clustering the 

pavement segments and estimating PPMs so as to achieve balance between goodness of fit and 

model complexity. The specific problems addressed to achieve the above objective are: 

(i) Develop a comprehensive CR framework that determines simultaneously 1) the optimal 

number of clusters, 2) the assignment of pavement samples into clusters, and 3) the 

cluster-specific significant explanatory variables and associated coefficients. 

(ii) Use Bayesian Information Criteria as the objective function so as to penalize for the 

inclusion of additional parameters, the number of clusters and explanatory variables. The 

estimated models provide a balance between goodness of fit and model complexity. 

(iii) Utilize a variable selection procedure to identify the best model specification. This 

procedure must distinguish between relevant and irrelevant variables, thus providing true 

underlying clusters and regression models. In addition, potential multicollinearity issues 

should be addressed.  
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(iv) Propose an algorithm to find a feasible range of the potential number of clusters that 

could be formed using the available data. The proposed algorithm must determine the 

upper bound (maximum) of the potential number of clusters to prevent a search beyond 

the feasible number of clusters for the given data. 

(v) Propose a comprehensive solution algorithm to solve the proposed mathematical 

program. Determine the optimization parameters required for the given data set. 

(vi) Investigate the appropriateness of linear and nonlinear pavement performance models 

within the proposed CR framework. It is intuitive that estimation errors would be high if 

an incorrect functional form is used to estimate model parameters. As pavement 

performance is a complex process and governed by many factors, several functional 

forms have been used in the literature. The best functional form is data-specific and 

depends on multiple aspects, such as number of observations and explanatory variables. 

Hence, various functional forms are required to be investigated to select the best to 

minimize the overall estimation errors. 

1.4 Organization of the Dissertation 

This dissertation is divided into five chapters. Chapter 2 proposes a CR framework to determine 

the optimal number of PPMs and a procedure to estimate a feasible range of potential number of 

clusters. In addition, the advantages of using BIC as the objective function are illustrated. A 

detailed solution algorithm to solve the proposed mathematical problem is presented along with 

the required estimation parameters. The models developed using the proposed framework are 

compared with the ones developed using the existing state-of-the-art method. 

Chapter 3 extended the mathematical program proposed in Chapter 2 to propose a 

comprehensive CR framework to test the significance of explanatory variables. A variable 
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selection procedure is proposed to select the best model specification that is free from the 

multicollinearity issues and provides balance between goodness of fit and model complexity. 

Chapter 4 investigates the appropriateness of using a nonlinear functional form within the 

CR framework. A power functional form for PPM estimation is tested. The performances of the 

nonlinear and linear models are compared. Results show that the nonlinear models are superior 

for the data set used in this research. 

Chapter 5 summarizes the overall insights from this research and discusses the significant 

contributions. Potential future works are also discussed in this chapter. 

  



 

8 

 

CHAPTER 2 

SIMULTANEOUS GENERATION OF OPTIMUM PAVEMENT CLUSTERS 

AND ASSOCIATED PERFORMANCE MODELS 

2.1 Introduction 

Pavement deterioration is a complex process, involving both observed and unobserved factors 

(Hong and Prozzi 2010). Simple pavement performance models (PPMs) typically are developed 

using only a few critical factors, such as pavement type, age, and traffic volume. These models 

assume that all critical factors have significant effects on pavement performance (Hong and 

Prozzi 2015). This assumption is not necessarily correct in all cases. In addition, such factors as 

timing, scope of maintenance, rehabilitation, and reconstruction (MR&R) treatments, and 

construction methods and techniques significantly affect pavement performance; often, however, 

they are ignored (Prozzi and Madanat 2004). Consequently, errors are introduced to the 

estimated PPMs, leading to inaccurate forecasts (Hsiao 2003). 

From a practical perspective, a single PPM could be ideal; however, it is associated with 

large prediction errors because it is very difficult to capture the heterogeneity in the entire 

roadway network with only one model (Shahin 1994). In contrast, prediction errors can be 

reduced significantly by developing an individual model for each pavement segment. In practice, 

this often is unfeasible because 1) there are not sufficient data for each pavement segment, 2) 

development costs are high, and 3) maintaining a system that includes thousands of models is 

impractical. 

Typically, PPMs are developed using a Two-Step approach. First, pavement segments 

with similar characteristics are grouped together to form a cluster. The objective of clustering is 
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to group the pavement segments that perform similarly over time The deterioration pattern can 

be determined by tracking a pavement performance measure, such as Present Serviceability 

Index (PSI). In practice, the performances of pavement segments within a cluster differ 

significantly because clusters are formed using only a few critical factors (Luo and Chou 2006, 

Luo and Yin 2008). 

In the second step, the corresponding PPMs are developed using statistical techniques. A 

major challenge is to select characteristics that define clusters and the corresponding segments 

associated with them (Steinbach et al. 2003). If inappropriate characteristics are used, clusters 

may include homogeneous segments with different performance behaviors or heterogeneous 

segments with similar performance behaviors (Pulugurta 2007). The prediction accuracy of 

PPMs can be improved by subdividing the pavement segments into more uniform clusters. 

However, this subdivision is not always possible due to limited information (Luo and Chou 

2006). 

Figure 2.1a and 2.1b provide an example of heterogeneous performance behavior for two 

segments, each grouped within the same cluster (the Prioritization Category), using the Two-Step 

approach and actual data from Pavement Management System (PMS) of the Nevada Department 

of Transportation (NDOT). Segments ‘SR445 (SB), MP: 40-39’ and ‘SR445 (NB), MP: 36-37’ 

were assigned into one cluster, Prioritization Category 4. Segments ‘SR156 (WB), MP: 3-2’ and 

‘SR892 (SB), MP: 25-24’ were assigned into Prioritization Category 5. 

In contrast, Figure 2.1c illustrates that segments ‘SR445 (SB), MP: 40-39’ and ‘SR156 

(WB), MP: 3-2’ had more homogeneous performance behavior. Similarly, segments ‘SR892 

(SB), MP: 25-24’ and ‘SR445 (NB), MP: 36-37’ showed more consistent behavior as shown in 

Figure 2.1d. This suggests that factors other than the Prioritization Category are critical in 
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causing the differences in performance behaviors. Influencing factors could include subgrade 

type, traffic loading characteristics, or any hidden factors. 

 

Figure 2.1 Heterogeneous performance behavior of pavement segments from the same 

Prioritization Category (a and b), and potential clusters with pavement segments with 

homogeneous performance behavior (c and d). 

 

To address the limitations of the Two-Step approach, the existing literature proposed 

using Clusterwise Linear Regression (CLR) to determine clusters and associated regression 

models simultaneously. CLR generates clusters according to the effects that the explanatory 

variables have on the response variable of the regression models (Park et al. 2015). Pavement 
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segments with similar regression effects are assigned into clusters such that the overall sum of 

squared errors within the clusters is minimal. CLR minimizes the overall prediction error by 

simultaneously determining the explanatory variables’ coefficients, and by assigning each 

pavement segment into an appropriate cluster. 

Spath (1979) introduced CLR with the exchange algorithm. Since then, the approach has 

been developed further, and implemented in many fields (DeSarbo et al. 1989, Wedel and 

SteenKamp 1989, Lau et al. 1999, Carbonnea et al. 2011, Schlittgen 2011, Zhen et al. 2012, Tan 

et al. 2013, Lu et al. 2014). In the context of pavement management, CLR first was used by Luo 

and Chou (2006) to model the deterioration of pavement conditions. First, the pavement network 

was clustered by using a few critical pavement characteristics; then, CLR was used to divide the 

data set further into several homogeneous clusters. The subdivision was performed at the data-

point level; that is, data points collected over various years for a pavement segment could be 

assigned to multiple clusters; hence, there was a chance of pavement segments being associated 

with multiple performance models. An additional step was proposed to predict performance 

using the results from multiple models. Later, Luo and Yin (2008) expanded their research, using 

CLR to formulate the development of pavement distresses. Both studies (Luo and Chou 2006, 

Luo and Yin 2008) used pavement data collected by the Ohio Department of Transportation, and 

pavement age was the only explanatory variable. 

Zhang and Durango-Cohen (2014) used CLR to account for heterogeneity in pavement 

deterioration. A potential overfitting issue was diagnosed using a methodology proposed by 

Brusco et al. (2008); this study included multiple explanatory variables to address some of the 

limitations present in the studies completed by Luo and Chou (2006) and Luo and Yin (2008). 

However, data used in the study were collected during the AASHO Road Test (Highway 
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Research Board 1962), conducted in the late 1950s in Ottawa, Illinois. The data set was collected 

for a single site in a relatively controlled environment; clearly, the site characteristics were not 

representative of all other locations. For example, the data set did not represent the varieties of 

soil and climatic conditions. Construction techniques and materials have changed substantially 

since this test was conducted. In addition, the optimum number of clusters was determined 

manually using the ‘elbow’ criterion. Experiments were run only for number of clusters equal to 

1, 5, 10, 15, 20, and 25. One possible reason of not examining all potential number of clusters 

might have been large amount of computational time needed, given that the exchange algorithm 

was utilized with 100 instances with various initial assignments. 

The existing state-of-the-art approach for CLR does not test the explanatory power of 

variables used in both clustering and regression analyses. That is, all the explanatory variables 

used in regression models are assumed to be significant. The effects of any insignificant 

explanatory variables on the dependent variable are accounted during assignment of pavement 

segments into clusters and estimation of regression coefficients. The presence of any 

insignificant explanatory variables might distort the underlying regression effects of other 

significant explanatory variables. This may lead to the incorrect assignment of pavement 

segments and estimation of PPMs. 

Another key limitation of standard CLR is a need to pre-specify the number of clusters. 

In order to avoid pre-specifying the number of required clusters, this study proposes a 

mathematical program to simultaneously determine an optimal number of clusters, assignment of 

segments into clusters, and regression coefficients for all pre-specified explanatory variables. 

This mathematical program is flexible enough to handle multiple explanatory variables, multiple 

observations per pavement segments, and user-defined constraints on cluster characteristics. 
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In previous studies using CLR for pavement management (Luo and Chou 2006, Luo and 

Yin 2008, Zhang and Durango-Cohen 2014), the objective function was to minimize the sum of 

squared errors of prediction (SSE), which decreases monotonically as the number of clusters 

increases. That is, for a given data set, the optimum number of clusters is always the total 

number of data points (Kodinariya and Makwana 2013). The optimum number of clusters is 

equal to the total number of pavement segments, and each pavement segment is the sole member 

of its own cluster. Such clustering structure is unlikely to provide statistical reliable models. In 

addition, SSE always decreases when a new explanatory variable is added to the model 

(Wooldridge 2006). Usually, this leads to an overfitting problem (Wu 2014). Therefore, SSE is 

not the best objective function to use for searching the optimal number of clusters. 

Even though SSE decreases as the number of clusters increases, the decrease rate also 

decreases significantly after a particular number of clusters. Going forward from this number, 

known as the elbow point, improvement in SSE is very small for each additional cluster. This 

elbow point indicates an optimal number of clusters for the given data set (Tibshirani et al. 

2001). However, the SSE versus the number of clusters curve might not exhibit this elbow point 

distinctly in all the cases. Hence, it could be very challenging to choose the right number of 

clusters. 

To address these limitations, this study proposes as an objective function the Bayesian 

Information Criteria (BIC) (Schwarz 1978), which penalizes the inclusion of additional 

parameters. An optimal number of clusters provides a balance between model complexity and 

goodness of fit. Given that BIC is an increasing function of SSE and free parameters (the number 

of clusters and regression coefficients) to be estimated, a clustering with the lowest BIC is 

preferred. Minimizing BIC reduces unexplained variation in the dependent variable (Schwarz 
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1978). The search process for the best model specification using BIC has the property of 

consistency, which asymptotically selects this model with probability of ‘1’ (Rao and Wu 1989, 

Yang 2005, Maydeu-Olivares and García-Forero 2010, Vrieze 2012). 

In this study, the data limitations in the existing literature were addressed using actual 

field data collected across a variety of environmental, traffic, design, construction, and 

maintenance conditions. Pavement data were used that was collected for the past 12 years over 

the entire State of Nevada were used. This data included significant variations across a large 

range of characteristics, e.g., pavement segments exposed to either extreme desert heat or to very 

low winter temperatures in the mountains. 

2.2 Methodology 

2.2.1 Problem Formulation 

This section includes the definition of a pavement sample, notation and definitions of terms used, 

proposed mathematical program, and a procedure to find upper bound of the range of the feasible 

number of clusters. 

Definition of a Pavement Sample  

The condition of a pavement segment improves when intervention occurs by applying an MR&R 

treatment. Such intervention alters the physical characteristics of the pavement. Hence, the 

performance of a pavement before and after the intervention differs, even though all other 

contributing factors remain constant. In this circumstance, the same pavement segment before 

and after intervention should be treated as two different samples. Given that the physical location 

of a pavement segment is the same, a different identifier is required to distinguish the set of 

consecutive observations before and after the intervention. In this study, the term pavement 

sample is used as an identifier to uniquely represent the set of consecutive observations that 
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accounts for the historical interventions made on a pavement segment. Figure 2.2 provides a 

simplified depiction of how consecutive observations of a pavement segment are divided into 

two pavement samples. 

 

Figure 2.2 A typical pavement performance curve and a simplified depiction of how the 

observations of a pavement segments are divided into two samples. 

 

In this study, a pavement sample – instead of pavement segment – was considered as a 

single entity during cluster analysis. Hence, if a pavement segment consists of two or more 

pavement samples, these samples could be assigned to different clusters. 

Notation and Definition of Terms 

The following notation and definitions were used to describe the proposed model: 

I = Number of pavement samples in the network 

i  = Subscript for a pavement sample in the network, 𝑖 ∈ 𝐼 

𝑇𝑖 = Number of observation periods for a pavement sample i 

t = Subscript for an observation period for a pavement sample, 𝑡 ∈ 𝑇𝑖 

O = Total number of observations = ∑ 𝑇𝑖
𝐼
𝑖  ∀ 𝑖 ∈ 𝐼  

J = Number of explanatory variables 
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j = Subscript for an explanatory variable including an intercept, j = 0,…,J 

𝑥𝑖𝑗𝑡
𝑘  = Measurement of an explanatory variable j for a sample 𝑖 at observation period 𝑡 that is 

assigned to a cluster k  ∀  𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇𝑖 

y
it
k  = Measurement of dependent variable for a sample 𝑖 at observation period 𝑡 that is assigned to 

a cluster k  ∀  𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇𝑖 

K = Optimum number of clusters (1 ≤ 𝑘 ≤ 𝐾𝑚𝑎𝑥) 

k  = Subscript for a clusters, 𝑘 ∈ 𝐾 

𝐾𝑚𝑎𝑥 = Maximum number of potential clusters that could be formed 

n = Minimum number of observations required in a cluster 

𝐶𝐾 = Set of pavement samples that are assigned to cluster k ∀ k ∈ K 

𝑝𝑖𝑘 = Cluster membership of a pavement sample 𝑖 to a cluster k, ∀  𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 

𝛽𝑗𝑘 = Estimated regression coefficient for an explanatory variable j including an intercept in 

cluster k ∀ j = 0,…,J, k ∈ K; 

 

Mathematical Program 

In this study, PSI was chosen as the dependent variable, y. PSI serves as a unified standard, and 

is widely accepted for evaluating pavement performance, especially in terms of ride quality 

(Shoukry et al. 1997, Terzi 2006, Attoh-Okine and Adarkwa 2013). In addition, PSI reflects 

human rider’s response, and is understood by highway users and legislators (Hudson et al. 2015). 

The adopted functional form for the regression model is expressed as: 

 y
it
k  = β

0k
+ ∑ β

jk
*xijt

kJ
j=1  (2.1) 
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This study proposes a mixed-integer, nonlinear mathematical program to formulate a 

CLR. This mathematical program can determine an optimal number of clusters, assignment of 

segments into clusters, and regression coefficients for all pre-specified explanatory variables. 

The problem was defined by the optimum number of clusters, K; the number of predefined 

explanatory variables, J; the number of pavement samples to be clustered, I; and the number of 

observation periods, 𝑇𝑖 associated with each pavement sample. The formulation partitioned 

pavement samples into an optimum number of clusters, with a PPM model fit to each cluster. 

The objective function involved minimization of the BIC across K clusters. Decision 

variables to be determined were the optimum number of clusters, K; coefficients for all the pre-

specified explanatory variables, 𝛽0𝑘 and 𝛽𝑗𝑘; and the cluster membership, 𝑝𝑖𝑘. 

Objective Function 

  Min. BIC = O+O*ln(2π)+O*ln (
SSE

O
) +(JK+2K-1)*ln(O) (2.2) 

Subject to: 

Sum of squared errors: 

 SSE= ∑ ∑ ∑ [β
0k

+ ∑ β
jk

* xijt
kJ

j=1 - y
it
k ]

2

∗
Ti

t=1
I
i=1 p

ik
K
k=1 ∀ i ∈ I, t ∈ Ti, j ∈ J, k ∈ K (2.3) 

Membership constraints: 

 ∑ p
ik

=1k ∀i ∈ I, k ∈ K (2.4) 

 𝑝ik = {
1, if  sample i is assigned to cluster k;  

0, Otherwise
∀ i ∈ I, k ∈ K (2.5) 

Constraints for feasible partitions: 

 Ck= {i|p
ik

=1∀i ∈ I, k ∈ K} (2.6) 
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 C
k

'∩C
k

'' = null  ∀k
' ≠ k''

, k' and k
''∈ K (2.7) 

 ⋃ |Ck|k ∈ K = I (2.8) 

 ∑ Ti ≥ n ∀i∈Ck
Ck (2.9) 

Constraints for range of clusters: 

 1≤ k ≤ Kmax (2.10) 

  Kmax=F(I, Ti, n) (2.11) 

The objective (Equation 2.2) was to minimize BIC as a function of the number of 

clusters, the assignment of segments into clusters, and the coefficients to be determined. The 

constraint (2.3) calculated total SSE, which evaluates goodness of fit of the models. Each cluster 

was associated with a linear regression model with predefined explanatory variables. Deviations 

of predicted data from actual data were calculated separately for each cluster, and summed to 

obtain the total SSE. 

The constraints (2.4 and 2.5) ensured that each pavement sample was assigned to exactly 

one cluster. The indicator 𝑝𝑖𝑘 equalled 1 if and only if a pavement sample 𝑖 belonged to cluster k. 

Otherwise, it took a value of zero. 

The constraints (2.6 - 2.9) determined feasibility of partition. These constraints ensured 

that pavement samples were partitioned exclusively into K clusters. The minimum-size constraint 

(2.9) was imposed to ensure sufficient observations in each cluster for statistically reliable 

estimation of coefficients. The total observations in a cluster were required to be no less than the 

minimum number of observations, n. 
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The constraints (2.10 and 2.11) were imposed to determine the maximum number of 

potential clusters. If a pavement sample had more than n observations, regression over these 

observations could generate statistically reliable estimates of coefficients. Hence, a cluster could 

be formed with only one sample that had more than n. If all pavement samples had more than n 

observations, each pavement sample could form a cluster. In this case, the maximum number of 

clusters would be the total number of pavement samples, I. However, in reality, it is possible that 

none of the pavement samples would have more than n observations. In this case, samples would 

be grouped to form a cluster at the sample level, but not at the observation level; that is, 

observations of a sample must not be assigned to more than one cluster. The constraint (2.11) 

determined the maximum number of potential clusters. This number if a function of I, Ti, and n, 

and represent by F. The procedure to calculate Kmax is illustrated in the flow-chart as shown in 

Figure 2.3 and described in the following paragraphs: 

 

Step 1. If the total number of observations, O, is less than the minimum number of observations 

required to form a cluster, n, then set 𝐾𝑚𝑎𝑥= zero and go to Step 6. Otherwise, create a 

matrix, M of size (𝜏𝑚𝑎𝑥  x 2) with the following elements, where 𝜏𝑚𝑎𝑥 is maximum 

number of observations of a pavement segment(s) in the data set: 

 The first column of M includes all integer values from 1 to 𝜏𝑚𝑎𝑥. 

 The second column includes the number of segments associated with the number of 

observations. 

 If no segments have a particular number of observations in the data set, then set the 

second column of the matrix to zero. 

Step 2. If any segment has a number of observations greater than or equal to n (𝑚𝜏,1 ≥ 𝑛), then  
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a. Calculate 𝐾𝑚𝑎𝑥 = ∑ 𝑚𝜏,2𝜏≥𝑛 . 

b. Update 𝑚𝜏,2 with 0 for τ ≥ n. 

Otherwise, go to Step 3 to find the maximum number of clusters that could be formed. 

Step 3. If the matrix M has all zeros in its second column (∑ 𝑚𝜏,2𝜏 = 0), then return 𝐾𝑚𝑎𝑥 =

𝐾𝑚𝑎𝑥 and go to Step 6. Otherwise: 

a. Update M by removing all rows that have number of segments equal to zero 

(𝑚𝜏,2 = 0). 

b. Initialize two indices as: 𝜔 = ϑ = number of rows in M. 

c. Make a copy of M and let it represent by M'. 

d. If the remaining total number of observations (∑ 𝑚𝜏,1 ∗ 𝑚𝜏,2
𝜔
𝜏=1 ) is less than n, 

then, 𝐾𝑚𝑎𝑥 = 𝐾𝑚𝑎𝑥  and go to Step 6. Otherwise, initialize S with the value of 

𝑚𝜔,1 and 𝑚𝜔,2 = 𝑚𝜔,2 − 1. 

Step 4. Repeat the following steps until S = n. 

Step 4.1. If (𝑚𝜗,2 = 0), then ϑ = ϑ − 1. Otherwise, go to Step 4.3. 

Step 4.2. If (ϑ = 0), then set: 

 M = M', 

 ϑ = number of rows of M, 

 n = n + 1, S = 0, and  

 Go to Step 4.6. 

Otherwise, go to Step 4.3. 

Step 4.3. If (S > n), then set: 

 𝑆 = 𝑆 − 𝑚𝜗,1, 
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 𝑚𝜗,2 = 𝑚𝜗,2 + 1, and 

 ϑ = ϑ − 1. 

Otherwise, go to Step 4.6. 

Step 4.4. If (ϑ = 0), then set: 

 M = M
', 

 ϑ = number of rows of M, 

 𝜔 = 𝜔 − 1, and 

 S = 0. 

Otherwise, go to Step 4.6. 

Step 4.5. If (𝜔 = 0), then 

 Update both indices ω and ϑ with the number of rows of M 

 Set n = n + 1, 

 Go to Step 4.6. 

Otherwise: 

 Set 𝑆 = 𝑚𝜔,1, and 𝑚𝜔,2 = 𝑚𝜔,2 − 1 

 Go to Step 4.6. 

Step 4.6 Update S with (𝑆 + 𝑚ϑ,1) and 𝑚ϑ,2 with (𝑚ϑ,2 − 1). 

Step 5. Set Kmax = Kmax +1, and go to Step 3. 

Step 6. Return the current value of Kmax and stop. 



 

22 

 

 

Figure 2.3 Algorithm utilized to calculate the maximum number of potential clusters. 

 

2.2.2 Solution to the Mathematical Program 

Simulated annealing (SA) coupled with an ordinary least square (OLS) algorithm was 

implemented to solve the above mathematical program. SA was used to cluster the data set; that 



 

23 

 

is, estimate, 𝑝𝑖𝑘. For each accepted neighborhood clusters, OLS was utilized to estimate the 

regression coefficients, 𝛽0𝑘 and 𝛽𝑗𝑘. The fitting linear models (lm) function, available in the 

statistical software, R, was used to estimate these coefficients (R Core Team 2015). DeSarbo et 

al. (1989) successfully implemented such an algorithm to solve the CLR problem. The algorithm 

utilized to solve the clusterwise multiple linear regression is described as follows and illustrated 

in Figure 2.4. 

Step 1. Initialization: 

Step 1.1. Set K = 2, and BICmin=infinity. 

Step 1.2. Set values of initial temperature (θ0), final minimum temperature (θmin), cooling 

rate (λ), and the maximum number of neighbors to be generated (Nmax) at each 

temperature level. Set the iterator N = 1. 

Step 2. Maximum number of potential clusters: 

Calculate Kmax utilizing function F as described above, as part of the Constraint (2.11). 

Step 3. Initial estimation of regression coefficients: 

Step 3.1. For a given number of clusters, K, randomly assign cluster memberships to all 

pavement samples. 

Step 3.2. Count the number of observations of all pavement samples assigned to each 

cluster. If all clusters have at least n observations, then go to Step 4; otherwise, 

reassign the cluster memberships until all clusters have at least n observations. 

Let 𝐶𝐾
𝑁 be the valid initial clusters. 

Step 3.3. Estimate 𝛽0𝑘 and 𝛽𝑗𝑘 for all K clusters using OLS. 

Step 4. Evaluate the objective function, 𝐵𝐼𝐶𝐾
𝑁 using Equation 2.2. 
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Step 5. Generate a set of neighborhood clusters near to the previous one, using the following 

steps: 

Step 5.1. Randomly select a pre-specified number of pavement samples (Nps) to change 

their memberships. 

Step 5.2. For each of the sample selected, assign a new membership by generating a 

random number 𝑢~𝑈(1, 𝐾). If the new membership is same as the previous 

one, regenerate a random number 𝑢′~𝑈(1, 𝐾) until it is different. Repeat this 

process until the memberships of all the selected pavement samples are 

different from those that were previously assigned. 

Step 5.3. Count the total number of observations of all pavement samples assigned to 

each cluster. 

Step 5.4. If all clusters have at least n observations, go to Step 6; otherwise, repeat Steps 

5.1., 5.2., and 5.3. until all clusters have at least n observations. Let 𝐶𝐾
𝑁+1 be 

the new set of valid neighborhood clusters. 

Step 6. Search of a solution: 

Step 6.1. For 𝐶𝐾+1
𝑁 , estimate new 𝛽0𝑘 and 𝛽𝑗𝑘 for all K clusters using OLS. 

Step 6.2. Evaluate 𝐵𝐼𝐶𝐾
𝑁+1 using Equation 2.1. 

Step 6.3. Calculate ∆𝐵𝐼𝐶 = 𝐵𝐼𝐶𝐾
𝑁+1 − 𝐵𝐼𝐶𝐾

𝑁. 

Step 6.4. Check the following two conditions: 

a. If ∆𝐵𝐼𝐶 < 0 , accept the current set of clusters, 𝐶𝑁+1
𝐾 , and corresponding 𝛽0𝑘 and 

𝛽𝑗𝑘. Go to Step 7; otherwise, go to Step b. 
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b. Generate a random number 𝑢"~𝑈(0,1). Calculate the acceptance probability, 

𝑝𝑎𝑐𝑐𝑒𝑝𝑡 = 𝑒𝑥𝑝 (
−∆𝐵𝐼𝐶

𝐵∗𝑇
); where B is a Boltzmann’s constant. If 𝑝𝑎𝑐𝑐𝑒𝑝𝑡 > 𝑢" , accept 

the current set of clusters, 𝐶𝐾+1
𝑁 , and corresponding 𝛿𝑘 and 𝛽𝑗𝑘. Go to Step 7; 

otherwise, return to Step 5. 

Step 7. Counter and temperature update: 

Step 7.1. Repeat Steps 5 and 6 for 𝑁𝑚𝑎𝑥 times. 

Step 7.2. If 𝜃 < 𝜃𝑚𝑖𝑛, stop the algorithm. Otherwise, reduce temperature by multiplying 

the current temperature by the pre-specified cooling rate, λ, set N =1, and go to 

Step 5. 

Step 8. Stopping criteria: 

Step 8.1. Update BICmin with the smallest between the one obtained in Step 7 and the 

current BICmin. Set 𝐾𝑜𝑝𝑡𝑖𝑚𝑎𝑙 equal to K. 

Step 8.2. Repeat Steps 3 to 7 for 𝐾𝑚𝑎𝑥 − 1 times. 

 

This algorithm seeks solutions using a probabilistic approach. The algorithm starts with a 

high temperature, θ, and a high probability of accepting a worse solution, 𝑝𝑎𝑐𝑐𝑒𝑝𝑡. This enables 

occasional ‘uphill’ moves, which help escape from the local minima. The algorithm builds up a 

rough view of the search space by moving with large step lengths. As θ drops, 𝑝𝑎𝑐𝑐𝑒𝑝𝑡 decreases 

to behave more closely as a greedy algorithm, with small step lengths slowly focusing on the 

most promising solution space. Theoretical studies have shown that with infinitely slow cooling, 

the algorithm converges to a global minimum (Román-Román et al. 2012). 
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Figure 2.4 Algorithm utilized to solve the clusterwise multiple linear regression. 
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2.3 Numerical Experiment and Results 

2.3.1 Experimental Research Data 

Data used in this study were extracted from the PMS database of NDOT. The data consisted of 

various classes – location data, segment data, contract data, environmental data, traffic data, and 

condition data – collected throughout the entire State of Nevada. Various environmental factors 

were tested as explanatory variables including elevation, annual precipitation, average minimum 

and maximum temperatures, the number of wet days, and the freeze and thaw cycles. Provided 

that the minimum data requirements were met, other variables (e.g., economic and social factors) 

could be included. Potential explanatory variables used in this study could be divided as follows: 

1. Continuous explanatory variables: 

 age - pavement age since the last M&R treatment; 

 adt - average daily traffic in one direction; 

 trucks - average daily trucks in one direction; 

 elevation - midpoint elevation of a segment; 

 precip - average annual precipitation (cm/yr); 

 min_temp - minimum average annual temperature (0C); 

 max_temp - maximum average annual temperature (0C); 

 wet_days - total number of wet days in a year; 

 freeze_thaw - total number of freeze-thaw cycles that a pavement experienced in a 

year; 

 rut_depth - average ride rut depth (cm); 

2. Categorical explanatory variables: 

 Two dummy variables, lane=2 and lane≥3, were encoded to represent if a segment 
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had two lanes and three or more lanes, respectively. 

 NDOT classifies pavement segments under (i) the Interstate Route (IR), (ii) the 

National Highway System (NHS), or (iii) the Surface Transportation Program (STP). 

Two dummy variables, sys_id=2 and sys_id=3, were encoded to represent if a 

segment belonged to the NHS or STP classification system, respectively. 

 NDOT grouped its roadway network into five prioritization categories, Category 1 

through Category 5, using such factors as highway classification and traffic volumes 

(NDOT, 2011). The type and frequency of M&R activities vary among these 

prioritization categories. Four dummy variables – category=2, category=3, 

category=4, and category=5 – were encoded to represent if a segment was grouped 

in Prioritization Categories 2, 3, 4, or 5, respectively. 

 Six dummy variables – f_class=2, f_class=3, f_class=4, f_class= 5, f_class= 6 and 

f_class= 7 – were encoded to represent if a segment is classified as Functional Class 

2, 3, 4, 5, 6, or 7, respectively. 

2.3.2 Data Preparation 

In practice, missing and inconsistent data are commonly encountered in pavement condition data 

sets (Buchheit et al. 2005, Farhan and Fwa 2015). When using inconsistent data, development of 

accurate pavement performance models is difficult (Pierce et al. 2013, Tan and Cheng 2014). A 

detailed data analysis was performed to check for inconsistent and missing information in the 

data set, and some were found. Some of the missing data were synthesized based on associated 

information available in the data set. In preparation of the PMS data, the following filters were 

applied: 

 Only one-mile segments were selected for consistency. 
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 Only pavement segments with the most recent maintenance contracts awarded in 2001 or 

later were used in the study. 

 PSI of a pavement should deteriorate over time if no MR&R treatment occurred. If PSI of 

a segment in any year increased by 0.1 or more points from the previous year without any 

MR&R treatment, all observations for that year were excluded from the analysis. 

However, if an increase in PSI in any year was less than 0.1 from the previous year, it 

was assumed to be a random error during the process of pavement evaluation or data 

processing. Therefore, those observations were included in the analysis. 

 If PSI of any year decreased by one or more points from the previous year, all 

observations for that year were excluded from the analysis. 

 In practice, the PSI range is between 4.5 and 1.5. Therefore, if a pavement segment had a 

PSI beyond these limits in any year, it was considered an outlier, and all observations for 

that year were excluded. 

 Only PSI values used were within the interval of mean minus three standard deviations to 

mean plus three standard deviations. 

 Pavement samples that did not consist of data regarding condition for at least two 

consecutive years were excluded. 

 Data analysis showed that the improvement of PSI was seen one or two years after the 

contract award date. Hence, the age of the pavement sample was set to 0 when the actual 

improvement occurred rather than when the contract was awarded. 

After data preparation was completed, 4,138 flexible pavement samples with 17,642 

observations were available. For CLR modelling, 14,637 observations were collected from 2001 
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to 2010; the remaining 3,005 observations, collected in 2011 and 2012 – about 17% of the total 

number – were used as test data set to check the accuracy of the CLR models. Descriptive 

statistics of the continuous explanatory variables and the dependent variable are illustrated in 

Table 2.1. The descriptive statistics of the categorical variables are illustrated in Table 2.2. 

Table 2.1 Descriptive Statistics for the Continuous Variables 

Variable Description Min. Max. Mean Std. Dev. 

psi Present serviceability index 1.60 4.57 4.01 0.41 

age Age of the last pavement maintenance 

treatment 

0.00 8.00 2.24 2.01 

adt Average daily traffic (single bound) 20.00 132000.00 4844.45 9812.57 

trucks Average daily trucks (single bound) 1.00 7731.00 862.29 1082.20 

elevation Midpoint elevation (m) 228.60 2667.00 1368.25 415.19 

precip Average annual precipitation (cm/year) 3.94 89.28 19.33 10.10 

min_temp Annual average minimum temperature (0C) -6.67 13.33 3.20 4.00 

max_temp Annual average maximum temperature (0C) 7.78 31.67 20.31 4.22 

wet_days Number of wet days in a year 11.00 81.00 42.14 15.67 

freeze_thaw Number of freeze-thaw cycles in a year 0.00 230.00 136.75 51.51 

rut_depth Average ride rut depth (cm) 0.00 1.60 0.14 0.14 

Table 2.2 Descriptive Statistics for the Categorical Variables 

Variable Category Dummy Variable Number of Obs. Percent 

System ID IR - 5,165 29.3 

NHS sys_id=2 6,281 35.6 

STP sys_id=3 6,196 35.1 

Number of Lanes 1 - 10,438 59.2 

2 lane=2 6,494 36.8 

≥ 3 lane≥3 710 4.0 

Prioritization  

Category 

 

1 - 5,643 32.0 

2 category=2 4,017 22.8 

3 category=3 3,778 21.4 

4 category=4 1,872 10.6 

5 category=5 2,332 13.2 

Functional 

Class 

 

1 - 5,265 29.8 

2 f_class=2 134 0.8 

3 f_class=3 6,326 35.9 

4 f_class=4 3,294 18.7 

5 f_class=5 2,216 12.6 

6 f_class=6 354 2.0 

7 f_class=7 53 0.3 

Note: IR - Interstate Route, NHS - National Highway System, STP - Surface Transportation Program 
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2.3.3 Estimation Parameters 

Performance of the SA algorithm generally depends on the values of optimization parameters 

utilized for a given problem. To ensure proper initialization and search for optimal solutions, 

selection of the most appropriate parameter values is critical (Park and Kim 1998, Roshan et al. 

2013). A body of literature exists regarding various methodologies for finding the most 

appropriate values for annealing parameters in SA (Park and Kim 1998, Kirkpatrick et al. 1983, 

Collins et al. 1988, Rose et al. 1990, Selim, and Alsultan 1991, Guo and Zheng 2005). 

If an SA algorithm is allowed to run for a sufficiently long time by setting a high initial 

temperature with a slow cooling rate, the algorithm performs well, as shown in the study 

performed by Anily and Federgruen (1987). In such a cooling scheme, the selection of the most 

appropriate parameter values may not be critical. However, computation time cannot always be 

ignored. Hence, the algorithm has to find a good solution in a reasonable time (Kirkpatrick et al. 

1983). 

Effective values to be assigned to the optimization parameters depend of the type and 

complexity of the problem. These values may not be obvious to determine, but rather might be 

determined by ‘trial and error’ methods for a given problem (Collins et al. 1988). In this study, 

values assigned to the optimization parameters were determined using experience gained from 

previous research (Paz et al. 2015a and b, Khadka and Paz 2017, Paz and Khadka 2017) that 

involved SA and other comparable algorithms. Table 2.3 lists the parameter values used in this 

study. 
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Table 2.3 Setup Parameters for Implementation of the Proposed Algorithm 

Parameter Value Remarks 

θ0 10 Initial temperature 

θmin 10e-17 Minimum temperature 

B 3000 Boltzmann constant 

λ 0.97 Cooling rate 

Nmax 10 Number of neighborhood solutions generated at each temperature 

level 

𝑛 800 Minimum number of observations required in a cluster 

Nps 25 Number of pavement samples, which memberships were changed 

to generate a neighborhood cluster 

 

2.3.4 Results and Discussion 

Given the constraints for feasible partitions defined in the problem formulation and the minimum 

number of observations required in a cluster, n = 800, the proposed algorithm determined 16 as 

the maximum number of potential clusters. The algorithm searched for the optimum number of 

clusters from 2 to 16. Seven-cluster CLR models provided the optimum solution with the lowest 

BIC. The estimated regression coefficients for the CLR models are presented in Table 2.4. 

Figure 2.5a shows the smallest BIC for each of the clusters (K = 2 to16) considered in 

this experiment. Figure 2.5b shows the trajectory of the objective function, BIC, when the CLR 

models were used. The initial value of BIC was 8,502. After 1,360 iterations, the BIC decreased 

to 3,008. This change was equivalent to an improvement of 65%. 

It was observed that not all coefficients had associated p-value less than 0.05. In this 

study, the significance level was considered to be 5%. As expected, coefficients differed in 

magnitude and sign across the clusters, which indicated that the deterioration patterns of 

pavement samples varied among the clusters. However, seven explanatory variables had the 

same sign across all clusters. 
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Table 2.4 Coefficients Obtained Using the Proposed CLR Approach 

Parameters 
C1 

(2,279) 
C2 

(1,959) 
C3 

(2,169) 
C4 

(2,094) 
C5 

(1,883) 
C6 

(1,936) 
C7 

(2,317) 

intercept 4.1450 6.2420 2.7910 6.7280 7.7810 12.1400 3.8730 

age -0.0347 -0.0400 -0.0350 -0.0327 -0.0464 -0.0392 -0.0498 

adt†  -0.0059 -0.0035 -0.0262 -0.0028 -0.0078 -0.0053 -0.0334 

trucks† 0.0002‡ 0.0205‡ 0.0190‡ -0.0151‡ 0.0306 0.0557 0.0752 

elevation† 0.0066‡ 0.0182‡ -0.0352‡ -0.1079 -0.1418 -0.0131‡ 0.1060 

precip -0.0037‡ -0.0118‡ -0.0037‡ -0.0248 0.0094‡ -0.0518 -0.0252 

min_temp -0.0301 0.0129‡ -0.0092‡ 0.0497 -0.0321 -0.0447 0.0532 

max_temp 0.0252 -0.0297 0.0249 -0.0568 -0.0124‡ -0.0554 -0.0311 

wet_days 0.0049 -0.0104 0.0115 0.0031‡ -0.0028‡ 0.0004‡ -0.0061 

freeze_thaw† -1.6970 1.5130 -0.2029‡ 1.8550 -1.4100 -13.7900 4.2370 

rut_depth -0.6316 -1.0020 -1.1060 -0.5614 -0.8408 -0.3999 -0.9900 

lane=2 -0.3710 -0.1663 0.0121‡ -0.1216 -0.5574 -0.2745 0.0258‡ 

lane≥3 -0.3248 -0.1950 -0.1713 -0.3215 -0.3974 -0.2511 0.0391‡ 

sys_id=2 -0.4417 -0.4070 0.7454 -0.2811 -0.2639 -0.4300 1.4320 

sys_id=3 -0.8024 -0.4868 0.6121 -0.3452 -0.1346‡ -0.3379 1.1350 

f_class=2 0.5210 0.0940‡ -0.9383 0.4118 0.7050 0.9474 -1.5090 

f_class=3 0.3819 0.3377‡ -0.8551 0.3270 0.3107 0.4025 -1.3770 

f_class=4 0.6185 0.2964‡ -0.6925 0.2945 0.0189‡ 0.5468 -1.0330 

f_class=5 0.6183 -0.0703‡ -0.6471 -0.7763 -0.6250 0.3015 -1.5590 

f_class=6 0.4724 -0.4187 -1.2170 -0.6566 -0.7955 0.0582‡ -1.7880 

f_class=7 0.5543 0.4159 -1.3840 -0.1375‡ NA 0.7614 -1.3640 

category=2 -0.3059 -0.0444‡ 0.0762‡ -0.1300 -0.6077 -0.1175‡ 0.0246‡ 

category=3 -0.3191 -0.0156‡ -0.0421‡ -0.2457 -0.6000 -0.2317 -0.0080‡ 

category=4 -0.4683 -0.2976 -0.3665 -0.1535 -0.6331 -0.5050 -0.3982 

category=5 -0.4634 -0.3555 -0.7165 -0.1899 -0.8446 -0.6001 -0.4145 

BIC 136 338 238 216 496 857 271 

Note: The quantity included in parentheses represents the total number of observations in a cluster. 
† variable value in thousands, ‡ coefficient with p-value > 0.05, and NA = Not applicable 

 

Different clusters had different number of significant explanatory variables. For example, 

Cluster #2 had #10 variables with insignificant regression coefficients. In addition, among all 

seven clusters, five variables – age, adt, rut_depth, category=4, and category=5 – were 

significant. However, four variables – trucks, elevation, precip, and category=2 – were 

insignificant in four different clusters. 
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Figure 2.5 BIC trend over the number of clusters (a), and trajectory of the BIC during 

optimization for 11-cluster models (b). 

 

The performance of the proposed CLR approach was compared with that of the existing 

CLR for pavement management. Experiments using the existing CLR approach were run for all 

feasible clusters (K = 2 to 16). Figure 2.6a shows the smallest SEE for each of these clusters. As 

expected, SSE decreased with an increasing number of clusters, but at a very small rate after 

K=11. In this case, Figure 2.6a does not exhibit a clear elbow point. Hence, an optimum number 

of clusters needs to be decided by visual inspection while considering the trade-off between 

goodness of fit and model complexity (i.e., of the number of models and explanatory variables). 

This inherent subjectivity when choosing an optimum number of clusters is a major drawback for 

the existing state-of-the-art CLR approach. 

After careful assessment, 11-cluster CLR models were selected as the optimum solution. 

Figure 2.6b shows the trajectory of SSE, when the 11-cluster CLR models were used, and Table 

2.5 provides the corresponding regression coefficients. Similar to the results obtained from the 

proposed CLR approach, the coefficients differed in terms of magnitude and sign. In addition, 

some coefficients had p-values larger than 0.05. 



 

35 

 

 

Figure 2.6 SSE trend over the number of clusters (a), and trajectory of the SSE during 

optimization for 11-cluster models (b). 

 

The BIC for these models are provided in Tables 2.4 and 2.5. To compare the goodness 

of fit, overall BIC values were calculated. The overall BIC for the 7-cluster models obtained 

from the proposed approach was 3,008, whereas the BIC for the 11-cluster models, obtained 

from the existing state-of-the-art approach, was 3,171. This difference was the result of similar 

or better explanatory powers provided by the proposed approach with seven versus 11. That is, 

the more clusters, the more coefficients for explanatory variables needed to be estimated for a 

similar goodness of fit; thus, the BIC is increased. 
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Table 2.5 Coefficients Obtained Using the Existing State-of-the-Art CLR Approach 

Parameters 
C1 

(1,229) 
C2 

(1,365) 
C3 

(1,413) 
C4 

(1,091) 
C5 

(1,423) 
C6 

(1,412) 
C7 

(1,430) 
C8 

(1,321) 
C9 

(1,272) 
C10 

(1,360) 
C11 

(1,321) 

intercept 3.9179 4.1242 4.9547 14.4267 7.4120 3.7039 4.6147 3.7970 7.9487 6.4985 7.5429 

age -0.0430 -0.0391 -0.0455 -0.0419 -0.0504 -0.0365 -0.0358 -0.0459 -0.0502 -0.0369 -0.0320 

adt†  -0.0373 -0.0167 -0.0159 -0.0037 -0.0403 -0.0031 -0.0011‡ -0.0370 -0.0059 -0.0030‡ -0.0033 

trucks† 0.1137 0.0342 0.0382 0.1256 0.0478 0.0011‡ -0.0266‡ -0.0063‡ 0.0515 0.0107‡ 0.0310 

elevation† -0.0244‡ 0.1784 -0.0490‡ -0.0531‡ -0.2150 0.0134‡ -0.1074 -0.1681 0.1774 -0.0451‡ 0.0017‡ 

precip -0.0039‡ -0.0173‡ -0.0075‡ -0.1292 -0.0096‡ -0.0037‡ 0.0186‡ 0.0371 -0.0507 -0.0268 -0.0479 

min_temp 0.0105‡ -0.0182‡ 0.0851 -0.0933 0.0049‡ -0.0217 -0.0259 -0.0187‡ 0.1173 -0.0115‡ 0.0465 

max_temp -0.0031‡ 0.0135‡ -0.0581 -0.0546 -0.0348 0.0209 0.0182‡ 0.0266 -0.1153 -0.0141‡ -0.0647 

wet_days 0.0044‡ -0.0080 -0.0031‡ 0.0234 0.0023‡ 0.0051 -0.0001‡ 0.0021‡ -0.0182 0.0044‡ 0.0076 

freeze_thaw† 0.9951‡ -0.8567‡ 6.5932 -20.8922 0.2354‡ -1.3799 0.7758‡ 1.4509 5.2168 -2.1911 -1.9284 

rut_depth -0.6360 -1.0021 -1.2161 -1.0259 -0.2717 -0.4595 -0.7600 -1.0184 -1.8027 -0.8827 -1.1997 

lane=2 0.0229‡ -0.1578 -0.3482 -0.1019 0.0305‡ -0.0560‡ -0.2602 -0.2159 -0.5342 -0.2792 -0.2630 

lane≥3 0.2207 -0.0342‡ -0.4349 -0.3108 0.3095 -0.4315 -0.4773 0.0088‡ -0.3303 -0.2730 -0.3863 

sys_id=2 1.3916 0.2777‡ 0.5097 -0.1217‡ 1.1989 -0.2483 -0.4121 0.8043 -0.6980 -0.5032 0.4380 

sys_id=3 1.3306 0.1837‡ 0.4183 -0.2667‡ 0.6715 -0.3782 -0.4986 0.8235 -0.6427 -0.6491 0.6490 

f_class=2 -1.4239 -0.3873‡ -0.2363‡ 0.4439 -0.8292 0.3205 0.5201 -0.9277 1.4305 -0.2489‡ -0.7147 

f_class=3 -1.3580 -0.5468 -0.3844 0.1211‡ -0.8767 0.1509‡ 0.3306 -0.9877 0.9337 0.4276 -0.5483 

f_class=4 -1.2475 -0.4867 -0.3948 0.2204‡ -0.5639 0.2707 0.4126 -1.1156 0.8923 0.6946 -0.5923 

f_class=5 -1.8532 -0.5072 -0.9079 0.0311‡ -1.4272 0.2050‡ 0.1754‡ -2.1799 0.6035 0.4307 -0.4690 

f_class=6 -2.0674 -0.7052 -0.7661 -0.7152 -1.7136 0.1425‡ -0.6626 -2.2356 0.2427‡ 0.5646 -0.7057 

f_class=7 NA -0.6277 -1.5309 0.4157‡ -0.6797 0.0900‡ 0.1752‡ -2.2750 NA 0.7240 NA 

category=2 0.0160‡ 0.0723‡ -0.3571 0.2248 -0.2728 0.0592‡ -0.1951 -0.0647‡ -0.6593 -0.1255 -0.1354‡ 

category=3 0.0208‡ 0.0147‡ -0.4289 0.1372‡ -0.1665 -0.0549‡ -0.2926 -0.0776‡ -0.7634 -0.1954 -0.4642 

category=4 -0.2385 -0.4135 -0.6921 0.0199‡ -0.2206 -0.1261 -0.4187 -0.1467 -1.0083 -0.7392 -0.6837 

category=5 -0.3813 -0.3251 -0.8041 -0.0703‡ -0.1786 -0.0797‡ -0.3830 -0.1789 -1.1519 -1.2923 -1.1395 

BIC 125 97 420 553 314 226 88 103 337 233 276 
† variable value in thousands. 
‡ coefficient with p-value > 0.05. 

Note: The quantity included in the parenthesis represents the total number of observations in a cluster. 

NA = Not applicable
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Investigation of Potential Overfitting 

Brusco et al. (2008) noted that clusterwise regression models have great potential for overfitting. 

Often, a variation in the response variable is governed by clustering. Hence, they recommend 

investigating the potential presence of overfitting in CLR models. This study adopted a 

procedure proposed by Brusco et al. (2008) to diagnose overfitting. For the optimum 7-cluster 

models, the total sum of squares (TSS) was 2,419, the between-clusters sum of squares (BCSS) 

was 30, the within-clusters sum of squares (WCSS) was 2,389, the sum of squares due to 

regression (SSR) was 1,456, and the SSE was 933. The BCSS was around 1% of TSS, and SSR 

was 62% of WCSS. These results indicated that there was no overfitting, as most of the variation 

in PSI was explained by the within-cluster regressions. SSE accounted for 38% of TSS which 

suggests that the models still have a relatively high rate of error. A nonlinear functional form 

should be investigated to reduce the existing errors. 

Model Accuracy 

The accuracy of the models obtained from both approaches was assessed by calculating the 

overall root-mean-square error (RMSE) , as follows: 
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it
k  = the observed PSI, ŷ

it

k
 = the predicted PSI, and η = the number of predictions. 

Both models were applied to the test data set. Memberships of the pavement samples 

were assigned by mapping the sample IDs and memberships determined by the CLR models. 

Associated regression models and observed data were used to estimate the PSIs. Predicted PSIs 

then were compared with the observed PSIs, as shown in Figure 2.7. Results indicated that the 
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both CLR models overestimated the PSI. A possible reason might be the existence of 

multicollinearity among the explanatory variables. 

 

Figure 2.7 Observed versus predicted PSIs: (a) the proposed CLR approach, and (b) the state-of-

the-art approach. 

 

The RMSE for 2011 and 2012 predictions were calculated for models obtained from both 

approaches (Figure 2.7). The RMSE values for models obtained using the proposed CLR and the 

existing state-of-the-art approach  were 0.439 and 0.429, respectively. Even though the 

prediction accuracy of both models was similar, 7-cluster models obtained using the proposed 

approach are preferred because they were more parsimonious than 11-cluster models. That is, 7-

cluster models were preferred over 11-cluster models that provided the same explanatory power. 

2.4 Conclusions 

This study proposed and implemented a clusterwise multiple linear regression to develop 

pavement performance models. A mixed-integer nonlinear mathematical program was 

formulated to explain the problem. The CLR approach simultaneously divided pavement samples 

into an optimum number of clusters, and estimated a PPM for each cluster. 
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In the experiments, various environmental factors were considered as potential 

explanatory variables including, elevation, annual precipitation, average minimum and maximum 

temperatures, the number of wet days, the freeze and thaw cycles. The proposed approach 

enabled consideration of other types of variables, such as economic and social factors. 

Formulation of mathematical program developed in this study supports a number of explanatory 

variables, multiple observations per pavement segment, and user-defined constraints on cluster 

characteristics. 

Simulated annealing coupled with OLS was used to solve the mathematical program. For 

the data used in the experiments, the algorithm found that 7-cluster models provided the 

optimum solution. Results obtained from the proposed CLR models were compared with results 

obtained from the state-of-the-art approach. This comparison showed that the proposed CLR 

approach performed better than the state-of-the-art approach in predicting the PSI of pavement 

samples. 

The analysis showed that overfitting was not an issue for the resulting clusters and 

regression models. As expected, the use of the BIC as an objective function to determine the best 

model specification provided a more parsimonious structure compared with that obtained using 

SSE. This was a consequence of the consistency property of the BIC (Schwarz 1978, Rao and 

Wu 1989, Yang 2005, Maydeu-Olivares and García-Forero 2010, Vrieze 2012).  
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CHAPT`ER 3 

COMPREHENSIVE CLUSTERWISE LINEAR REGRESSION FOR 

PAVEMENT MANAGEMENT SYSTEMS 

3.1 Introduction 

Pavement deteriorates over time due to the combined effects of traffic and environmental factors. 

To keep pavement in a serviceable condition, highway agencies primarily have two alternatives: 

1) permit the pavement to deteriorate until its condition falls below the serviceability limit, and 

then perform rehabilitation or reconstruction work; or 2) intervene with the deterioration by 

performing a series of maintenance activities that retard the deterioration process and essentially 

delay the type of substantial failure that requires major rehabilitation or reconstruction. 

Considering that a typical cost of the maintenance is 15% to 20% of the cost for rehabilitation or 

reconstruction (Hajj et al. 2010), agencies are more focused on preserving and maintaining 

existing facilities (Davies and Sorenson 2000, Labi and Sinha 2003). 

However, the challenge is to find the pavement segments that require maintenance as 

well as appropriate times to execute such activities. Hence, there is a need to develop a proactive 

approach to identify potential pavement segments for improvement. Pavement performance 

models (PPMs) – one of several critical components required to achieve this proactive approach 

– seek to capture historical patterns of pavement deterioration that can be used to estimate an 

appropriate time for maintenance. Thus, the condition of pavements can be improved before a 

serviceability limit is reached. 

In practice, it is very important to achieve a balance among the number of PPMs; the 

number of explanatory variables; the resources required to develop, maintain, and use these 
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models; and the associated explanatory power. To seek this balance, PPMs typically are 

developed using clusters of pavement segments. Instead of estimating the cluster memberships 

by using statistical methods, a few predefined explanatory variables are used to assign pavement 

segments into clusters. In terms of performance, clusters thus formed likely include 

heterogeneous pavement segments. 

Existing state-of-the-art methods propose Clusterwise Linear Regression (CLR) to 

determine pavement clusters and associated PPMs simultaneously, using a single objective 

function. In CLR, different clusters are formed so that pavement segments assigned within a 

cluster are homogenous in terms of the effects of the explanatory variables on the dependent 

variable (Park et al. 2015). In other words, the homogeneity of pavement segments in a cluster is 

defined by similarities of the observed values of explanatory variables and largely by the 

proximity of segments with respect to an underlying PPM (Preda and Saporta 2007). Hence, 

observations of all the pavement segments assigned to a cluster fit the same PPM, with minimum 

prediction error. 

CLR was first implemented by Spath (1979) for data partition and estimation of 

regression models within each cluster, simultaneously. The approach has been expanded further 

and implemented in many studies (DeSarbo et al. 1989, Wedel and SteenKamp 1989, Lau et al. 

1999, Carbonnea et al. 2011, Schlittgen 2011, Zhen et al. 2012, Tan et al. 2013, Lu et al. 2014). 

In the field of pavement management, to the best knowledge of the authors, only three studies 

(Luo and Chou 2006, Luo and Yin 2008, Zhang and Durango-Cohen 2014) have been performed 

using CLR. In a recent study (Zhang and Durango-Cohen 2014), CLR with multiple explanatory 

variables was proposed to account for heterogeneity in pavement deterioration. Potential 

overfitting issues were investigated using the methodology proposed by Brusco et al. (2008). The 



 

42 

 

study used the data collected during the AASHTO Road Test (Highway Research Board 1962), 

which is no longer the best available data nor representative of existing conditions. However, this 

data was collected at a single site, and over 50 years ago, when materials and construction 

techniques were different. 

In order to address some of the limitations of previous models, a mathematical 

programming framework within the CLR approach is proposed to determine simultaneously the 

optimal number of clusters, the assignment of segments into clusters, and the associated PPMs. 

The Bayesian Information Criteria (BIC) (Schwarz 1978) was used as the objective function in 

order to impose penalties for the inclusion of additional parameters. Minimizing BIC reduces 

unexplained variation, and the search process for the best model specification has the property of 

consistency (Rao and Wu 1989, Yang 2005, Maydeu-Olivares and García-Forero 2010, Vrieze 

2012). 

In addition, the proposed framework tests the significance of explanatory variables. To 

the best of the authors’ knowledge, all the existing literature about pavement management and 

PPMs estimation using CLR suffers from this limitation, which is that variables included in the 

PPMs are assumed to be significant. However, the effects of insignificant explanatory variables 

affect clustering and regression analyses. Therefore, the true-cluster members are mixed 

(Fowlkes et al. 1988), and so it becomes challenging to discover the underlying pavement 

clusters that exhibit similar performance behaviors (Gupta and Ibrahim 2007). 

This problem is illustrated in Figure 3.1, using data from the Pavement Management 

System (PMS) of the Nevada Department of Transportation (NDOT). Fifty-four randomly 

selected pavement segments were considered in this example. Each pavement segment was 

represented by a dependent variable, a Present Serviceability Index (PSI), and two explanatory 
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variables, Age and Average Daily Traffic (ADT). The variables PSI and Age have significant 

linear relationship, as shown in Figure 3.1a. However, the relationship between PSI and ADT is 

insignificant, as shown in Figure 3.1b. If ADT was included in a CLR analysis without checking 

its significance, the resulting clustering and regression models would not represent the 

underlying relationships among the variables; that is, the underlying pavement-performance 

behaviors captured by PSI and Age would be blurred. 

 

Figure 3.1 Linear relationship between PSI and (a) Age and (b) ADT. 

 

Assignment of pavement segments into clusters using predefined and fixed explanatory 

variables, instead of estimation, introduces bias into the statistical analysis (Gupta and Ibrahim 

2007). The available data are not fully utilized for clustering, as the performance behavior 

represented by historical PSI is ignored. In addition, clustering using explanatory variables that 

do not provide any information about the underlying clustering structure does not reveal the true 

cluster assignments. 

A legitimate assignment of pavement segments into clusters that is closer to the true 

underlying clusters can be obtained using the relevant explanatory variables that exhibit the 

strongest effects on the performance measure (Fowlkes et al. 1988, Liu and Ong 2008, and 

Maugis et al. 2009). The strength of the effects of explanatory variables on the dependent 
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variables often is assessed by comparing p-values with the desired level of significance (α). If the 

p-value of an explanatory variable is greater than α, the explanatory variable is considered as 

insignificant; in other words, changes in the explanatory variables do not reflect changes in the 

dependent variable. Therefore, such explanatory variables with p-values less than the desired α 

need to be excluded during the model development process. 

A variable selection procedure can be utilized to select the best subset of potential 

explanatory variables. This procedure must distinguish between relevant and irrelevant variables, 

thus providing a true regression model using underlying clusters. A number of variable selection 

methodologies are available in the literature for data analysis and statistics (Thompson 1978, 

Tibshirani 1996, Baumann 2003, Efron et al. 2004, Mehmood et al. 2012, Brusco 2014). In this 

study, the All Subsets regression procedure (Garside 1965, Gorman and Toman 1966, Hocking 

and Leslie 1967, Mallows 1973, Berk 1978, Efron et al. 2004) was used to select variables to use 

in the CLR analysis. All (2P-1) possible subsets of P potential explanatory variables were 

examined. BIC was used as a criterion for comparing models with different subsets of variables. 

It is not recommended to use least squares estimation and variable selection techniques 

for data with multicollinearity (Gunst and Webster 1975). Strongly-correlated clustering 

variables may overweight one or more underlying constructs (Ketchen and Shook 1996). 

Multicollinearity among explanatory variables in a regression equation can make it challenging 

to identify significant variables correctly (Abdul-Wahab et al. 2005). Therefore, this study 

investigated the effects of highly-correlated explanatory variables, and the Variance Inflation 

Factor (VIF) was used to examine potential issues due to multicollinearity. As the degree of 

collinearity increases, both the variance of regression coefficient and the VIF increase (Yoo et al. 

2014). Large VIF is an indicator of multicollinearity (Tacq 1997). In general, a VIF greater than 
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10 is considered unacceptable (Neter et al. 1996, Midi et al. 2010), even though no formal rule 

exists in the body of literature. 

In order to avoid pre-specifying the significance of potential explanatory variables, this 

chapter proposes a comprehensive CLR framework that determines, simultaneously, the optimal 

number of pavement clusters, the assignment of segments into clusters, and the corresponding 

PPMs using only significant explanatory variables. That is, the proposed framework 

simultaneously seeks for 1) the optimal number of clusters, 2) the combination of significant 

explanatory variables that provides the best goodness of fit, and 3) assigns segments into 

clusters. The significance of the explanatory variables is tested for each cluster model. Hence, 

different clusters may include different significant explanatory variables. 

Considering the simultaneous and extensive search for significant explanatory variables 

and the optimal number of clusters, the PPMs developed under the proposed framework were 

expected to provide superior explanatory power compared to existing approaches. The proposed 

framework was tested using pavement data from the entire State of Nevada. The results 

illustrated the advantage of solving simultaneously for the three types of parameters listed above. 

3.2 Methodology 

3.2.1 Problem Formulation 

This section describes a mathematical program that was formulated to describe the proposed 

CLR problem. This chapter uses the same notation and definitions of variables in Chapter 2. 

However, new variables and constraints were added to address the proposed problem. The 

following variables are used in this chapter: 

I = Number of pavement samples in the network; 

i = Subscript for a pavement sample in the network, 𝑖 ∈ 𝐼; 
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𝑇𝑖 = Number of observation periods for a pavement sample i; 

t = Subscript for an observation period for a pavement sample, 𝑡 ∈ 𝑇𝑖; 

O = Total number of observations = ∑ 𝑇𝑖
𝐼
𝑖  ∀ 𝑖 ∈ 𝐼; 

J = Number of explanatory variables; 

j = Subscript for an explanatory variable including an intercept, 𝑗 = 0, … , 𝐽; 

𝑥𝑖𝑗𝑡
𝑘  = Measurement of an explanatory variable j for a sample 𝑖 at observation period 𝑡 that is 

assigned to a cluster k  ∀  𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇𝑖; 

𝑦𝑖𝑡
𝑘  = Measurement of dependent variable for a sample 𝑖 at observation period 𝑡 that is assigned 

to a cluster k  ∀  𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇𝑖; 

K = Optimum number of clusters (1 ≤ 𝑘 ≤ 𝐾𝑚𝑎𝑥); 

k = Subscript for a clusters, 𝑘 ∈ 𝐾; 

𝐾𝑚𝑎𝑥 = Maximum number of potential clusters that could be formed; 

n = Minimum number of observations required in a cluster; 

𝐶𝑘 = Set of pavement samples that are assigned to cluster k ∀ k ∈ K; 

δ = Total number of significant explanatory variables including intercepts in all clusters; 

𝑣𝑗𝑘 = Binary indicator that represents significance of an explanatory variable including an 

intercept in a cluster k ∀ j = 0,…,J, k ∈ K; 

𝑝𝑖𝑘 = Cluster membership of a pavement sample 𝑖 to a cluster k, ∀  𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾; 

𝛽𝑗𝑘 = Estimated regression coefficient for an explanatory variable j including an intercept in 

cluster k ∀  𝑗 = 0, … , 𝐽, 𝑘 ∈ 𝐾; 

Various pavement performance measures are available in the literature. PSI, which is a 

widely accepted measure that serves as a unified standard to measure pavement serviceability 
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(Shoukry et al. 1997, Terzi 2006, Attoh-Okine and Adarkwa 2013), is easily understood by both 

road users and legislators (Hudson et al. 2015). This study used PSI as the dependent variable, y. 

Multiple linear regression PPMs were estimated with functional form expressed by: 

 y
it
k  = β

0k
+ ∑ β

jk
*xijt

kJ
j=1  (3.1) 

The objective function was to minimize BIC, as illustrated by Equation 3.2. Intercepts, 

𝛽0𝑘; coefficients for cluster-specific significant explanatory variables, 𝛽𝑗𝑘; the optimum number 

of clusters, K; and the cluster memberships, 𝑝𝑖𝑘, were the decision variables to be determined: 

  Min. BIC = O+O*ln(2π)+O*ln (
SSE

O
) +(δ+K-1)*ln(O) (3.2) 

where, SSE is total sum of squared errors expressed by: 

 SSE= ∑ ∑ ∑ [β
0k

+ ∑ β
jk

* xijt
kJ

j=1 - y
it
k ]

2

∗
Ti

t=1
I
i=1 p

ik
K
k=1 ∀ i ∈ I, t ∈ Ti, j ∈ J, k ∈ K (3.3) 

and the quantity (δ+K-1) is the total number of free parameters to be estimated for K clusterwise 

regression models (DeSarbo and Corn 1988). Intercepts (𝛽0𝑘), coefficients for cluster-specific 

significant explanatory variables (𝛽𝑗𝑘), the optimum number of clusters (K), and cluster 

memberships (𝑝𝑖𝑘) were the decision variables to be determined. 

The proposed mathematical programming included the following constraints: 

 𝛿 = ∑ ∑ vjkjk ∀ j = 0,…,J, k ∈ K  (3.4) 

 𝑣jk = {
1, if β

jk
 is significant; 

0, Otherwise
∀ j = 0,…,J, k ∈ K (3.5) 
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 ∑ p
ik

=1k ∀i ∈ I, k ∈ K (3.6) 

 𝑝ik = {
1, if  sample i is assigned to cluster k;  

0, Otherwise
∀ i ∈ I, k ∈ K (3.7) 

 Ck= {i|p
ik

=1∀i ∈ I, k ∈ K} (3.8) 

 C
k

'∩C
k

'' = null  ∀k
' ≠ k''

, k' and k
''∈ K (3.9) 

 ⋃ |Ck|k ∈ K = I (3.10) 

 ∑ Ti ≥ n ∀i∈Ck
Ck (3.11) 

 1≤ k ≤ Kmax (3.12) 

  Kmax=F(I, Ti, n) (3.13) 

Constraint 3.4 provided the total number of significant explanatory variables, including 

intercepts for all the clusters. The sum of elements in each column of the binary matrix, V, of 

size (J+1 x K) provided the number of significant explanatory variables and an associated 

intercept for a particular cluster. According to Constraint 3.5, the element 𝑣𝑗𝑘 was equal to 1 if an 

estimated coefficient (𝛽𝑗𝑘) was significant in cluster k; otherwise 𝑣𝑗𝑘 was zero (Equation 3.5). 

The significance of an explanatory variable as well as an intercept was determined by using the 

p-value of its estimated regression coefficient. 

Constraints 3.6 and 3.7 ensured that a pavement sample was assigned exclusively to a 

single cluster. A binary indicator variable, 𝑝𝑖𝑘, was used to define the membership of a sample. 
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Indicator 𝑝𝑖𝑘 equaled 1 if and only if a pavement sample 𝑖 belonged to cluster k. Otherwise, 𝑝𝑖𝑘 

was zero. 

The feasibility of the resulting clustering was guaranteed by Constraints 3.8 – 3.11. 

Constraints 3.8 – 3.10 prevented the overlap of members among clusters; that is, pavement 

samples were divided exclusively into K clusters. Constraint 3.11 warranted that the number of 

observations for each cluster was no less than the minimum number of observations, n, in order 

to obtain the statistically reliable estimation of coefficients. 

Constraints 3.12 and 3.13 were used to prevent a search beyond a feasible number of 

clusters. If the pavement sample had more than n observations, the sample alone could form a 

cluster. In reality, none of the pavement samples had more than n observations. Hence, samples 

were grouped into clusters to provide enough observations. All observations of a sample needed 

to be assigned to the same cluster. Constraint 3.13 denoted the maximum number of feasible 

clusters, which is represented by function F. The procedure to determine this maximum number 

is described in Chapter 2. 

3.2.2 Solution to the Mathematical Program 

This study integrated simulated annealing (SA) with ordinary least square (OLS) to solve the 

proposed mathematical program. SA determined the cluster memberships (𝑝𝑖𝑘) of the pavement 

samples. For each accepted cluster, the VIF for all explanatory variables were calculated. Highly 

correlated explanatory variables that had VIFs greater than a pre-defined limiting VIF were 

excluded. All subset regressions were utilized to find the best model and to estimate the 

associated coefficients (𝛽𝑗𝑘). BIC and the level of significance, α, were used as the criteria to 

select the best model. Hence, selected models included only significant explanatory variables at a 

given α.  
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The algorithm utilized to solve the proposed mathematical program is described as 

follows, and illustrated in Figure 3.2. 

Step 1. Set K = 2, 𝐵𝐼𝐶𝑚𝑖𝑛  = infinity, and N = 1. 

Step 2. Calculate the maximum number of feasible clusters, 𝐾𝑚𝑎𝑥, utilizing function F, 

described above, as part of Constraint 3.13. 

Step 3. For a given K, randomly assign pavement samples into clusters. If all the clusters have 

at least n observations, then go to Step 4; otherwise, reassign pavement samples into 

clusters until all the clusters have at least n observations. Let 𝐶𝐾
𝑁 ∀ 1 ≤ 𝑘 ≤ 𝐾 be the 

valid initial clusters. 

Step 4. All subsets regression: Repeat the following steps for all K clusters. 

Step 4.1. Calculate VIF for all explanatory variables. Exclude variables that have 𝑉𝐼𝐹 >

𝑉𝐼𝐹𝑚𝑎𝑥. Let 𝐽 be the set of explanatory variables with 𝑉𝐼𝐹 < 𝑉𝐼𝐹𝑚𝑎𝑥. 

Step 4.2. Generate all possible 2|𝐽| − 1 subsets of 𝐽.  

Step 4.3. Estimate 𝛽𝑗𝑘 for all subsets, using OLS, and calculate BIC for all the models. 

Step 4.4. Rank models in ascending order, using BIC. 

Step 4.5. Select the model that has the minimum BIC and all significant explanatory 

variables with p-value < α. 

Step 5. Calculate the total number of free parameters to be estimated, (δ+K-1). Calculate BIC 

using Equation 3.2. 

Step 6. Using the following steps, generate valid neighborhood clusters near to the previous 

ones. 

Step 6.1. Select 𝑁𝑝𝑠 pavement samples randomly. For each of the selected samples, assign 

a new membership by generating a random number 𝑢~𝑈(1, 𝐾). If the new 
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membership is the same as previously, regenerate a random number 𝑢′~𝑈(1, 𝐾) 

until a different outcome is obtained. Repeat this process until the memberships 

of all selected samples are different from those previously assigned. 

Step 6.2. If all clusters have at least n observations, go to Step 7; otherwise, repeat Step 

6.1. until all clusters have at least n observations. Let 𝐶𝐾
𝑁+1 be the new set of 

valid neighborhood clusters. 

Step 7. For 𝐶𝐾
𝑁+1, repeat Step 4 to estimate 𝛽𝑗𝑘 for all K clusters. 

Step 8. Calculate the total number of free parameters to be estimated, (δ+K-1), and evaluate 

𝐵𝐼𝐶𝐾
𝑁+1, using the Equation 3.2. 

Step 9. Search of a solution. 

Step 9.1. Calculate ∆𝐵𝐼𝐶 = 𝐵𝐼𝐶𝐾
𝑁+1 − 𝐵𝐼𝐶𝐾

𝑁. 

Step 9.2. Check the following two conditions: 

a. If ∆𝐵𝐼𝐶 < 0 , accept current set of clusters, 𝐶𝐾
𝑁+1, and the corresponding 𝛽𝑗𝑘; go to 

Step 10, otherwise, go to Step b. 

b. Generate a random number 𝑢"~𝑈(0,1). Calculate acceptance probability, 𝑝𝑎𝑐𝑐𝑒𝑝𝑡 =

𝑒𝑥𝑝 (
−∆𝐵𝐼𝐶

𝐵∗𝑇
), where B is the Boltzmann’s constant. If 𝑝𝑎𝑐𝑐𝑒𝑝𝑡 > 𝑢", accept current set 

of clusters, 𝐶𝐾
𝑁+1, and the associated  𝛽𝑗𝑘; go to Step 10, otherwise, return to Step 6. 

Step 10. Counter and temperature update: 

Step 10.1. Repeat Steps 6 to 9 for 𝑁𝑚𝑎𝑥 times. 

Step 10.2. If 𝜃 < 𝜃𝑚𝑖𝑛, stop the algorithm. Otherwise, reduce the temperature by 

multiplying the current temperature by λ, set N =1, and go to Step 6. 
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Step 11. Stopping criteria: 

Step 11.1. Update 𝐵𝐼𝐶𝑚𝑖𝑛 with the smallest between the values obtained in Step 10 and the 

current 𝐵𝐼𝐶𝑚𝑖𝑛. Set 𝐾𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝐾. 

Step 11.2. Repeat Steps 3 to 10 for 𝐾𝑚𝑎𝑥 − 1 times. 

To seek for a global solution, this algorithm uses a probabilistic approach during the 

search process. The initial solution is improved repetitively by making small changes until a 

better solution is obtained (Sridhar and Rajendran 1993, Johnson et al. 1989). The algorithm 

accepts better solutions and also non-improving (worse) solutions at a certain probability (Dolan 

et al. 1989, Rutenbar 1989, Aarts et al. 2005). This probability decreases continuously over 

iterations and depends on 1) the difference between the BICs of the current solution and a newly 

selected solution, and 2) the current temperature (Nikolaev and Jacobson 2010). 

Initially, at a high temperature, the algorithm accepts worse solutions that cause larger 

increments in BIC. As the temperature goes down, the algorithm accepts worse solutions with 

relatively smaller increments in BIC. Finally, when the temperature drops to zero, the algorithm 

no longer accepts worse solutions. This enables occasional ‘uphill’ moves, which help the 

algorithm to escape from the local minima. Thus, the algorithm tries to explore the entire 

solution space to seek for a global solution (Dolan et al. 1989). Previous studies have shown that 

the algorithm converges to a global minimum when an infinitely slow cooling schedule is 

utilized (Román-Román et al. 2012). 
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Figure 3.2 Algorithm used to solve the comprehensive clusterwise linear regression. 

 

3.3 Numerical Experiment and Results 

3.3.1 Experimental Research Data 

Experiments were performed using the PMS of NDOT. The data included condition monitoring 

and roadway inventory data collected throughout the State of Nevada. Potential explanatory 
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variables used in this study are illustrated in Table 3.1. A total of 4,138 samples having 14,638 

observations (from 2001 to 2010) and 3,005 observations (2011 and 2012) were available for 

model estimation and validation, respectively. The detailed descriptions of the data were 

provided in Chapter 2. 

Table 3.1 Variables Used in the Pavement Performance Models 

Variable Description 

age Age of the last M&R treatment performed on a segment 

adt One direction average daily traffic 

trucks One direction average daily trucks 

elevation Elevation at midpoint of a segment (m) 

precip Average annual precipitation (cm/year) 

min_temp Minimum average yearly air temperature (0C) 

max_temp Maximum average yearly air temperature (0C) 

wet_days Total number of wet days (days that moisture was recorded) over the course of one year 

freeze_thaw 
Total number of freeze-thaw cycles that a pavement experienced over the course of one 

year 

rut_depth Average ride rut depth (cm) 

lane=2 Dummy variable for a segment that has 2 lanes (1 = yes, 0 = no) 

lane≥3 Dummy variable for a segment that has 3 or more lanes (1 = yes, 0 = no) 

sys_id=2 Dummy variable for a segment that is part of NHS (1 = yes, 0 = no) 

sys_id=3 Dummy variable for a segment that is part of STP (1 = yes, 0 = no) 

f_class=2 Dummy variable for a segment classified as functional class 2 (1=yes, 0 = no) 

f_class=3 Dummy variable for a segment classified as functional class 3 (1 = yes, 0 = no) 

f_class=4 Dummy variable for a segment classified as functional class 4 (1 = yes, 0 = no) 

f_class=5 Dummy variable for a segment classified as functional class 5 (1 = yes, 0 = no) 

f_class=6 Dummy variable for a segment classified as functional class 6 (1 = yes, 0 = no) 

f_class=7 Dummy variable for a segment classified as functional class 7 (1 = yes, 0 = no) 

category=2 Dummy variable for a segment grouped in prioritization category 2 (1 = yes, 0 = no) 

category=3 Dummy variable for a segment grouped in prioritization category 3 (1 = yes, 0 = no) 

category=4 Dummy variable for a segment grouped in prioritization category 4 (1 = yes, 0 = no) 

category=5 Dummy variable for a segment grouped in prioritization category 5 (1 = yes, 0 = no) 

 

3.3.2 Estimation Parameters 

The existing literature does not provide hard-and-fast rules to define the limiting VIF beyond the 

one that indicates a serious multicollinearity problem (Petraitis et al. 1996). Many studies (Myers 

1990, Neter et al. 1996, Chatterjee and Hadi 2000) suggested that a multicollinearity problem 
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was serious for greater than 10 VIFs. In this study, all explanatory variables with VIF > 10 were 

excluded from the final models. Other estimation parameters that were required were set using 

experience of the research team (Paz et al. 2015a and b, Khadka and Paz 2017, Paz and Khadka 

2017) and sensitivity analyses. Table 3.2 provides the parameter values used in this study. 

Table 3.2 Estimation Parameters Used in the Experiments 

Parameter Value Remarks 

𝜃0 10 Initial temperature 

𝜃𝑚𝑖𝑛 10e-17 Final minimum temperature 

B 30 Boltzmann constant 

λ 0.97 Cooling rate 

𝑁𝑚𝑎𝑥 5 Number of neighborhood solutions generated at each 

temperature level 

𝑛 800 Minimum number of observations required in a cluster 

𝑁𝑝𝑠 100 Number of pavement samples, which memberships were 

changed to generate a neighborhood cluster 

𝑉𝐼𝐹𝑚𝑎𝑥 10 Limiting VIF 

α 5% Level of Significance 

 

3.3.3 Results and Discussion 

Function F in Constraint 3.13 was used to determine the maximum number of feasible clusters for 

the data set used in this study. The algorithm found that 16 was the maximum number of feasible 

clusters that fulfilled the requirements imposed by the constraints for feasible partitions. 

The solution algorithm proposed in the section, Solution to the Mathematical Program, 

sought for the optimum number of clusters by exploring each of all feasible clusters (i.e., K = 2 

to 16). Thus, the algorithm determined that 6-cluster CLR models provided the optimum solution 

with the lowest BIC. 

Figure 3.3a shows the BIC trend over the number of clusters that were considered in this 

experiment. Figure 3b shows the convergence of the objective function, BIC, over iterations 
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when the six-cluster CLR models were used. After 983 iterations, the BIC decreased from the 

initial value of 9,283 to the final value of 6,443, with an improvement of 31%. 

 

Figure 3.3 BIC versus (a) the number of clusters and (b) iterations for 6-cluster models. 

 

Coefficients for the variables, trucks and freeze_thaw, were positive. This is counter-

intuitive because a pavement deteriorates faster when it is subject to a large number of trucks and 

frequent freeze-and-thaw cycles. Hence, additional data analysis was performed to investigate 

the data quality. The analysis showed average positive trends of PSI for these variables. This 

indicates significant data collection or management errors for trucks and freeze-thaw. Hence, 

these two variables were excluded from the models, and new model parameters were estimated. 

Table 3.3 provides the estimated parameters for 6-cluster models. 
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Table 3.3 Estimated Model Parameters Using the Proposed CLR Approach 

Parameters 
Cluster #1 Cluster #2 Cluster #3 

𝛽𝑗1 VIF p-value 𝛽𝑗2 VIF p-value 𝛽𝑗3 VIF p-value 

intercept 4.392 - < 0.0001 4.552 - < 0.0001 4.674 - < 0.0001 

age -0.039 1.0 < 0.0001 -0.022 1.0 < 0.0001 -0.028 1.0 < 0.0001 

adt† -0.013 1.2 < 0.0001 -0.012 1.8 < 0.0001 -0.008 2.2 < 0.0001 

rut_depth -0.509 1.1 < 0.0001 -1.108 1.1 < 0.0001 -1.314 1.1 < 0.0001 

lane=2 - - - -0.191 4.4 < 0.0001 -0.358 4.4 < 0.0001 

lane≥3 - - - -0.202 1.8 < 0.0001 -0.289 2.5 < 0.0001 

f_class=2 -0.185 1.0 0.002 - - - - - - 

f_class=3 -0.110 1.6 < 0.0001 - - - - - - 

f_class=4 -0.259 1.5 < 0.0001 - - - - - - 

f_class=5 -1.052 1.4 < 0.0001 - - - - - - 

f_class=6 -1.181 1.1 < 0.0001 - - - - - - 

f_class=7 -0.284 1.0 0.006 - - - - - - 

category=2 - - - -0.202 2.6 < 0.0001 -0.325 2.8 < 0.0001 

category=3 - - - -0.323 4.2 < 0.0001 -0.465 4.4 < 0.0001 

category=4 - - - -0.664 2.6 < 0.0001 -0.684 2.9 < 0.0001 

category=5 - - - -1.149 2.8 < 0.0001 -0.808 2.8 < 0.0001 

No. of Obs. 2,376 2,483 2,442 

BIC 658 1,069 1,470 

    

Parameters 
Cluster #4 Cluster #5 Cluster #6 

𝛽𝑗4 VIF p-value 𝛽𝑗5 VIF p-value 𝛽𝑗6 VIF p-value 

intercept 4.605 - < 0.0001 4.557 - < 0.0001 4.401 - < 0.0001 

age -0.033 1.0 < 0.0001 -0.028 1.0 < 0.0001 -0.037 1.0 < 0.0001 

adt† -0.006 1.8 < 0.0001 -0.005 2.2 < 0.0001 -0.013 1.4 < 0.0001 

rut_depth -1.459 1.1 < 0.0001 -1.295 1.1 < 0.0001 -0.902 1.0 < 0.0001 

lane=2 -0.213 4.8 < 0.0001 -0.260 4.9 < 0.0001 - - - 

lane≥3 -0.405 1.9 < 0.0001 -0.294 2.4 < 0.0001 - - - 

f_class=2 - - - - - - 0.468 1.2 < 0.0001 

f_class=3 - - - - - - -0.086 1.5 < 0.0001 

f_class=4 - - - - - - -0.258 1.4 < 0.0001 

f_class=5 - - - - - - -0.864 1.3 < 0.0001 

f_class=6 - - - - - - -1.288 1.1 < 0.0001 

f_class=7 - - - - - - -0.634 1.0 < 0.0001 

category=2 -0.263 3.0 < 0.0001 -0.194 2.7 < 0.0001 - - - 

category=3 -0.325 4.0 < 0.0001 -0.287 4.2 < 0.0001 - - - 

category=4 -0.650 3.2 < 0.0001 -0.639 3.1 < 0.0001 - - - 

category=5 -0.808 3.4 < 0.0001 -1.130 2.9 < 0.0001 - - - 

No. of Obs. 2,414 2,340 2,583 

BIC 1,009 1,273 870 

† variable value in thousands. 

- = Not applicable. 
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This study used a 5% significance level. Results showed that seven explanatory variables 

– elevation, precip, min_temp, max_temp, wet_days, sys_id=2, and sys_id=3 – were not included 

in any of the resultant six models. As the constraints for significant variables were imposed, the 

algorithm excluded these seven variables because they were either associated with high VIF, 

causing multicollinearity, or were statistically insignificant. Hence, the resultant models only had 

statistically significant explanatory variables. 

Table 3.3 also includes the VIFs of the significant explanatory variables. All the VIF 

values were less than five, which indicated that the associated explanatory variables in each 

model did not have strong correlations among each other. Hence, the resultant models were free 

from serious multicollinearity problems. 

The six models included different significant explanatory variables. In addition, the 

common variables had different estimated coefficients. These differences indicated that 

pavement samples across the clusters were heterogeneous by the effect of explanatory variables, 

and exhibited different types of performance behavior. For example, the samples exhibited 

different deterioration rates as they got older. The estimated coefficients for age were -0.039 and 

-0.022 for Clusters #1 and #2, respectively. However, pavement samples in Clusters #1 and #2 

performed similarly with respect to traffic-loading conditions. That is, the estimated coefficients 

for adt in Clusters #1 and #2 were -0.013 and -0.012, respectively. 

Only four variables – intercept, age, adt, and rut_depth – were common for all six 

models; and all of them had a negative sign, except for the intercept. All the estimated intercept 

values were realistic. The PSI of a newly constructed pavement was about 4.5 (Christopher et al. 

2006). However, the intercepts differed across the models. The negative signs of age and adt 

indicated that the conditions deteriorated when a pavement became older and was subjected to 
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greater traffic loadings, respectively. Similarly, the PSI of a pavement segment decreased as 

rutting along the pavement became deeper. 

It was observed that Clusters #2 to #5, which had as significant variables category=2, 

category=3, category=4, and category=5, also had variables lane=2 and lane=3 as significant. 

In contrast, the variable f_class was not significant in these clusters. The estimated coefficients 

of the variables category=2, category=3, category=4, and category=5 were negative, and the 

coefficient increased as the category level went up. This indicated that the average PSIs in these 

four category levels (i.e., from 2 to 5) were smaller than for that of Category 1, and decreased as 

the level went up. This was expected, because NDOT assigned the highest priority – in terms of 

maintaining good conditions – to the roadway segments identified as Category 1 and the lowest 

priority to the roadway segments identified as Category 5 (NDOT 2011). The variable f_class 

was significant only in Clusters 1 and 6.  The coefficients for all six classes were negative, 

except for the f_class=2 in Cluster 6. The positive sign indicated that the pavement segments 

classified as Class 2 had a higher average PSI than for the segments classified as Class 1. It also 

was observed that for both clusters, the coefficient increased as the class number went up, except 

for the f_class=7. A possible reason was that the estimation was based on only 44 observations 

(Functional Class 7), which might not represent the reality. 

 

3.3.4 Model Performance 

Brusco et al. (2008) proposed a procedure to diagnose the presence of overfitting in the resultant 

CLR models. Five different metrics were calculated for the optimum 6-cluster models, which are 

included in Table 3.4. The results showed that the between-clusters sum of squares (BCSS) was 

equal to 4, which was less than 1% of the total sum of squares (TSS). The sum of squares due to 
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regression (SSR) was equal to 1,130, which was 47% of the within-clusters sum of squares 

(WCSS). This indicates that there was no overfitting, as most of the variation in PSI was 

explained by the within-cluster regressions. However, SSE accounted for 53% of the TSS. This 

indicated that the resultant models had relatively high errors, which could be due to the nature of 

the data. In addition, the estimated linear function might not have been the best to use to explain 

the pavement deterioration. 

Table 3.4 Metrics Calculated to Investigate the Presence of Overfitting in the Models 

Metric Value Remarks 

TSS 2,419 - 

BCSS 4 0.17% of TSS 

WCSS 2,415 - 

SSR 1,130 47% of WCSS 

SSE 1,284 53% of TSS 

 

The prediction accuracy of the models was evaluated by calculating the root-mean-square 

error (RMSE), the normalized root-mean-square error (NRMSE), and the mean absolute error 

(MAE), using Eqs. 3.14, 3.15, and 3.16, respectively.  
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where, 𝑦𝑖𝑡
𝑘  = the observed PSI, �̂�𝑖𝑡

𝑘  = the predicted PSI, ymax = the maximum observed PSI, ymin = 

the minimum observed PSI, and η = the number of predictions. 
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The estimated model coefficients were applied to the test data set – which is described in 

the section, Data Resources – to estimate PSIs for 2011 and 2012. The overall RMSE, NRMSE, 

and MAE values for all the models were 0.47, 0.17, and 0.36, respectively. This indicated that 

the resultant models were robust. In addition, to diagnose the variation in the prediction errors, 

the RMSE, NRMSE, and MAE were calculated separately for all six models. 

Table 3.5 provides the RMSE, NRMSE, and MAE values for all the models as well as the 

individual models. It was observed that the differences between RMSE and MAE values were 

approximately equal for all the models, which indicated that the prediction errors were well 

distributed among the clusters. 

Table 3.5 Model Performance Error Metrics: RMSE, NRMSE, and MAE for Each of the 

Clusters 

Cluster RMSE NRMSE MAE 

1 0.47 0.18 0.37 

2 0.46 0.18 0.37 

3 0.49 0.18 0.37 

4 0.47 0.17 0.35 

5 0.48 0.18 0.36 

6 0.49 0.19 0.38 

Overall 0.47 0.17 0.36 

 

Figure 3.4a shows the scattered plot of predicted versus observed PSIs for 2011 and 

2012. The degree of prediction error of the models is reflected by the relative positions of data 

points from the 450 line. Data points above the 450 line are over-predicted while those under the 

450 line are under-predicted. Figure 3.4b provides the percentages of observations that were 

within different ranges of error. For example, about 74% of the total observations were contained 

within a ±15% range of error. Figure 3.5 shows individual scattered plot of predicted versus 

observed PSIs for all six models. 
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Figure 3.4 Observed versus predicted PSIs (a), and percentage of predictions within different 

ranges of error (b). 

 

3.4 Conclusions 

In this chapter, a comprehensive mathematical program is proposed to estimate PPMs that 

minimize the estimation error by simultaneously finding 1) the optimum number of pavement 

clusters, 2) cluster memberships of the samples, 3) cluster-specific significant explanatory 

variables, and 4) regression coefficients. To solve the mathematical program, Simulated 

Annealing integrated with All Subsets Regression was implemented. The algorithm has the 

capability to identify potential explanatory variables that cause serious multicollinearity in a 

model. In addition, the algorithm addresses multicollinearity by removing the potential 

explanatory variables one at a time until the effect of multicollinearity is minimal. 

In this study, VIF was used to measure the effect of multicollinearity in a model. After 

addressing the multicollinearity issue, the proposed algorithm identified the relevant explanatory 

variables to include in the models. All possible combinations of the explanatory variables were 
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evaluated to select the best model for each cluster. Hence, the resultant CLR models included 

cluster-specific significant explanatory variables that were free from multicollinearity. 

 

Figure 3.5 Observed versus predicted PSIs for each of 6-cluster models. 

 

The algorithm explored all the feasible clusters that could be formed for the data used in 

the experiments, and found that 6-cluster models were the optimum solution. The algorithm 

determined traffic-loading conditions of both ADT and the number of trucks, age, rut-depth, 

function class, prioritization category, freeze-and-thaw cycles, and the number of lanes as 

significant explanatory variables. In the literature, all these variables were considered to be the 

most critical factors for pavement deterioration (Saraf and Majidzadeh 1992, Prozzi and Madanat 

2004, Kim and Kim 2006, Salama et al. 2006). Both the magnitude and sign of the estimated 

regression coefficients were as expected, and were realistic. This indicates that the proposed 
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algorithm is very effective when selecting the underlying explanatory variables that are truly 

relevant. 

The resulting CLR models first were analyzed to investigate the presence of overfitting. 

The results show that the models did not possess any overfitting issues. In order to investigate 

the predictive capability of models, RMSE, NRMSE, and MAE were calculated for all the 

models as well as for individual models. The overall RMSE, NRMSE, and MAE values of 0.47, 

0.17, and 0.36, respectively, indicated that the resultant models were robust. 

In addition, the results showed that both the differences between the RMSE and MAE 

values for all six models were approximately equal. This indicated that the prediction error was 

well distributed among the models. Even so, the models still were associated with prediction 

errors. Moreover, the linear functional form used in this study did not exactly fit the data used in 

the experiments. Hence, it is worth investigating the proposed methodology by allowing 

nonlinear relationships between the pavement performance measures and multiple explanatory 

variables. Various forms of power and sigmoidal models (Sadek et al. 1996, Luo and Chou 2006, 

Zhang and Durango-Cohen 2014, and Chen and Mastin 2015) could be investigated. 

Finally, the results indicated that each cluster had almost an equal number of members 

(i.e., pavement samples. However, it is unlikely that the underlying clusters had equally 

distributed pavement samples. An interesting aspect worthy of investigation would be to explore 

the likelihood of distribution of the pavement samples and the associated physical characteristics.  
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CHAPTER 4 

ESTIMATION OF PAVEMENT PERFORMANCE MODELS USING 

NONLINEAR CLUSTERWISE REGRESSION 

4.1 Introduction 

A variety of modelling approaches, including empirical, mechanistic, and mechanistic-empirical 

approaches, have been investigated and implemented for pavement performance modelling 

(George et al. 1989, Li et al. 1997, Zheng 2005, Hong and Prozzi 2006, Bardaka et al. 2014, 

Chen and Mastin 2015). Mechanistic models are developed using mechanical and engineering 

properties of pavement materials, such as stress, strain, and deflection (Lytton 1987, Schmitt et 

al. 2008). However, quantification of the exact mechanistic behaviour is very challenging 

because pavement deterioration is a very complex process governed by many factors (Prozzi and 

Madanat 2003). Hence, modelling approaches that use mechanical properties are less preferred 

(Schram 2008). In contrast, empirical modelling approaches commonly are used to develop 

pavement performance models (PPMs). Empirical models are estimated using historical 

pavement data and statistical techniques (Prozzi and Madanat 2003). Model specifications, such 

as functional form and potential explanatory variables, are chosen based on physical 

considerations, estimation error, and experience (George et al. 1989, Madanat et al. 2008). 

Empirical models can be categorized further into deterministic and probabilistic types (Li 

et al. 1997, Sundin and Braban-Lexdoux 2001, Ortiz-Garcia et al.  2006, Schram 2008, 

AASHTO 2012, Chen and Mastin 2015). A deterministic model provides an estimate of a 

performance measure that represents pavement conditions. In contrast, a probabilistic model 

estimates the probability that a pavement transitions from one condition level to another. 
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Numerous deterministic models have been investigated to develop PPMs for individual 

pavement segments as well as for pavement clusters.  

A wide variety of deterministic models are available in the literature (Anastasopoulos and 

Mannering 2014). Examples include: 

 Multiple regression models (Sadek et al. 1996, Hand et al. 1999, Agarwal et al. 2006, 

Kim and Kim 2006);  

 Panel data models, i.e., random-effect and mixed-effect models (Prozzi and Madanat 

2003, Archilla 2006, Lee 2007, Yu et al. 2007, Ker and Lee 2011, Khraibani et al. 

2012);  

 Logistic regression models (Wang 2013); and 

 Clusterwise regression (CR) models (Luo and Chou 2006, Luo and Yin 2008, Zhang 

and Durango-Cohen 2014).  

Taking into consideration the need to minimize the overall estimation errors, this study focused 

on the estimation of CR models. 

The existing state of the art for clusterwise regression determines pavement clusters and 

associated PPMs simultaneously, using a single objective function. CR provides a valid 

statistical approach to incorporate cluster analysis into regression analysis such that the 

uncertainty in clustering is considered while simultaneously estimating the regression models 

(Luo and Chou 2006, Kang and Ghosal 2008, Hsu, 2015). CR estimates the underlying 

regression models and associated subpopulations (clusters) by searching a mixture of unknown 

number of regression models that could be formed with the available data (Kang and Ghosal 

2009). 
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In the field of pavement management, Luo and Chou (2006) introduced CR to model 

pavement deterioration. A sigmoidal (S-shaped) functional form was used to relate a pavement 

condition rating based on pavement age. Later, Luo and Yin (2008) extended their study to 

model development of pavement distresses in flexible pavements. In both studies, only pavement 

age was used as an explanatory variable. In a recent study (Zhang and Durango-Cohen 2014), a 

CR model with multiple explanatory variables was proposed to estimate pavement serviceability.  

A nonlinear model specification, presented by Prozzi and Madanat (2003), was used to 

estimate the trends in the Present Serviceability Index (PSI). A logarithmic transformation was 

used to linearize the adopted model. Parameters were estimated using ordinary least squares. The 

study used data collected during the AASHO Road Test (Highway Research Board 1962). 

However, the test was performed in a relatively controlled environment, and the data was 

collected in a single site. Clearly, the experiment characteristics were not representative of all 

other locations. 

Previous studies using CR for pavement performance modelling suffer from other 

limitations. First, it was found that the explanatory power of variables used in clustering as well 

as regression analyses was not tested. All user-defined variables were assumed to be significant, 

and were included in the final models. Second, the proposed mathematical programs could not 

find the optimal number of clusters for the given data. Hence, time-consuming ‘trial and error’ 

methods were required to find the optimal number of clusters. Third, the objective function was 

to minimize the sum of squared errors of prediction (SSE). Given that SSE decreases 

monotonically as a function of the number of clusters, the optimum number of clusters with 

minimum SSE always is the total number of data points available in the data (Kodinariya and 

Makwana 2013). Therefore, minimization of SSE is not the best objective function to use for 
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seeking an optimal number of clusters. Fourth, the PPMs were restricted to be either linear or 

nonlinear, irrespective of which functional form provided the best results. 

To address these limitations from previous studies, this chapter proposes a mathematical 

programming framework within the CR approach in order to determine simultaneously 1) an 

optimal number of clusters, 2) the assignment of segments into clusters, and 3) the associated 

significant PPM parameters. The explanatory power of the variables was tested to include only 

significant explanatory variables in the final models.  

A comprehensive solution algorithm was utilized to solve the proposed problem. The 

proposed approach could identify variables that cause multicollinearity issues in the models, and 

could address the problems, if required. The mathematical program and solution algorithm were 

designed to explore all possible combinations of potentially significant explanatory variables in 

order to select the best model specification. The Bayesian Information Criteria (BIC) (Schwarz 

1978) was used as the objective function to obtain models that balance the goodness of fit and 

complexity in terms of number of clusters and explanatory variables. The relevance of the 

nonlinear functional form within the proposed framework was investigated using pavement data 

from the entire State of Nevada. The results were expected to illustrate the advantage of using 

nonlinear functional form while solving simultaneously for the three types of parameters listed 

above. 

4.2 Methodology 

4.2.1 Problem Formulation 

This section provides 1) notation and definitions, 2) details about the performance measure used 

to evaluate pavement condition, 3) the functional form chosen to estimate PPMs, and 4) the 

proposed mathematical program and solution algorithm. 
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Notation and Definitions 

The following variables were used to formulate the mathematical program: 

I = Number of pavement samples in the network; 

i = Subscript for a pavement sample in the network, 𝑖 ∈ 𝐼; 

𝑇𝑖 = Number of observation periods for a pavement sample i; 

t = Subscript for an observation period for a pavement sample, 𝑡 ∈ 𝑇𝑖; 

O = Total number of observations = ∑ 𝑇𝑖
𝐼
𝑖  ∀ i ∈ I; 

J = Number of continuous explanatory variables; 

j = Subscript for a continuous explanatory variable including an intercept, j = 0,…,J; 

H = Number of categorical explanatory variables; 

h = Subscript for a categorical explanatory variable, h ∈ H;  

𝑥𝑖𝑗𝑡
𝑘  = Measurement of a continuous explanatory variable j for a sample 𝑖 at observation period t 

that is assigned to a cluster k ∀ i ∈ I, j ∈ J, t ∈ Ti; 

𝑥𝑖ℎ𝑡
𝑘  = Measurement of a categorical explanatory variable h for a sample 𝑖 at observation period t 

that is assigned to a cluster k ∀ i ∈ I, h ∈ H, t ∈ Ti; 

𝑦𝑖𝑡
𝑘  = Measurement of dependent variable for a sample 𝑖 at observation period 𝑡 that is assigned 

to a cluster k ∀ i ∈ I, t ∈ Ti; 

K = Optimum number of clusters (1 ≤ k ≤ Kmax); 

k = Subscript for a clusters, ∀ k ∈ K; 

𝐾𝑚𝑎𝑥 = Maximum number of potential clusters that could be formed; 

n = Minimum number of observations required in a cluster; 

𝐶𝑘 = Set of pavement samples that are assigned to cluster k ∀ k ∈ K; 

δ = Total number of significant explanatory variables including intercepts in all clusters; 
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𝑣𝑗𝑘 = Binary indicator to represent significance of a continuous explanatory variable including 

an intercept in a cluster k ∀ j = 0,…,J, k ∈ K; 

𝜔hk = Binary indicator to represent significance of a categorical explanatory variable in a cluster 

k ∀ h ∈ H, k ∈ K; 

𝑝𝑖𝑘 = Cluster membership of a pavement sample 𝑖 to a cluster k, ∀ i ∈ I, k ∈ K; 

𝛽𝑗𝑘 = Estimated regression coefficient for a continuous explanatory variable j including an 

intercept in cluster k ∀ j = 0,…,J, k ∈ K; 

ϑℎ𝑘= Estimated regression coefficient for a categorical explanatory variable h in cluster k ∀ h ∈ 

H, k ∈ K; 

Pavement Performance Measure 

Pavement performance is defined as an overall assessment of the serviceability pattern of a 

pavement (Highway Research Board 1962). Performance may be described by serviceability 

measurements of a pavement over the evaluation period (Li 2005, Hudson et al. 2007). 

Serviceability represents the degree of service that a pavement is intended to provide under 

existing conditions (Namakura and Michael 1963, Garcia-Diaz and Riggins 1984).  

A variety of pavement performance indices are available in the literature. They were 

developed to evaluate various aspects of pavements, such as structural, safety, functional, skid 

resistance, and surface distress (Garcia-Diaz and Riggins 1984, Hand et al. 1999, Li 2005). Some 

indices were proposed to evaluate an individual aspect of pavement, whereas others were 

developed to characterize a combination of aspects (Zhang et al. 1993). For example, the 

International Roughness Index provides the riding quality of a pavement surface. Similarly, 

structural capacity may be evaluated using a structural number. 
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The Present Serviceability Index is a commonly used functional performance measure in 

pavement performance modelling (Hand et al. 1999). PSI serves as a unified standard to measure 

the riding comfort from the driver’s point of view (Shoukry et al. 1997, Garcia-Diaz and Riggins 

1984, Terzi 2006, Attoh-Okine and Adarkwa 2013). In addition, PSI is easily understood by road 

users and legislators (Hudson et al. 2015). In this study, the PSI was used as the dependent 

variable. 

Model Functional Form 

Identification of the potential functional form is the most important step when formulating a 

modelling approach (Darter 1980, Sadek et al. 1996). The selected functional form must 

represent the actual physical phenomenon – in this study, the deterioration trend – and provide 

the best fit with the given data. In addition, the selected function form must satisfy all boundary 

conditions (Wolters and Zimmerman 2010). Both simple and complex functional forms have 

been utilized to develop PPMs (Sadek et al. 1996, Li et al. 1997, de Melo Silva et al. 2000, Luo 

and Yin 2008). The simple linear model forms have a few inherent characteristics that typically 

restrict them in achieving a high level of accuracy for a variety of conditions. Hence, flexible 

model forms that typically are nonlinear are preferred (Shekharan 2000). 

The literature revealed that nonlinear models typically are more appropriate when 

representing pavement deterioration over time (Hong and Prozzi 2006). Various functional forms 

have been proposed and implemented for pavement performance modelling. Nonlinear 

functional forms – including exponential, sigmoidal, and polynomial types – were used by many 

state departments of transportations (DOTs). For example, sigmoidal models were developed by 

Texas (TXDOT) and North Carolina (NCDOT) to predict pavement distresses, and by Minnesota 

(MnDOT) to predict the ride qualify index (Stampley et al. 1995, Gharaibeh et al. 2012, Wolters 
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and Zimmerman 2010, Chen et al. 2014). The City of Cincinnati adopted power and exponential 

performance models to predict pavement conditions (Rajagopal 2006). Similarly, power 

functional forms were used by the departments of transportation for Washington State 

(WSDOT), Oklahoma (ODOT), and Louisiana (LDOTD) to develop PPMs as a function of 

pavement age (Kay et al. 1993, Khatta et al. 2008, Wolters and Zimmerman 2010). 

The property of the power functional form is suitable for describing historical trends of 

pavement deterioration (Chan et al. 1997). This study investigates the appropriateness of using a 

power functional form in the context of CR to estimate PPMs. The functional form proposed for 

the PPMs can be expressed as: 

 y
it
k =β

0k
* ∏ (xijt

k )
βjk  * ∏ exp(𝜗hk* xiht

k )𝐻
h=1

J
j=1  (4.1) 

The model parameters can be estimated in two ways. In order to utilize ordinary least 

squares (OLS), the model can be linearized by performing logarithmic transformation. 

Alternatively, model parameters are estimated by using nonlinear regression techniques. 

Considering that direct estimation of nonlinear regression models requires a high amount of 

computational time, this study pursued the estimation by using logarithmic transformation. The 

linearized functional form used in the proposed CR analysis was expressed as: 

  ln(y
it
k )=ln(β

0k
)+ ∑ β

jk
*ln(xijt

k )J
j=1 + ∑ (𝜗hk* xiht

k )H
h=1  (4.2) 

Mathematical Program 

The objective function involves minimization of BIC, expressed as: 

  Min. BIC = O+O*ln(2π)+O*ln (
SSE

O
) +(δ+K-1)*ln(O)  (4.3) 
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where, SSE is total sum of squared errors, expressed as: 

 SSE = ∑ ∑ ∑ [ln(β
0k

)+ ∑ β
jk

* ln(xijt
k )J

j=1 + ∑ (ϑhk* xiht
k )H

h=1 - ln(y
it
k )]

2

∗ p
ik

∀ i ∈ I, t ∈ Ti, j ∈ J, h ∈ H, k ∈ K

Ti

t=1
I
i=1

K
k=1   (4.4) 

and the quantity (δ + K -1) is the total number of free parameters to be estimated for K 

clusterwise regression models (DeSarbo and Corn 1988). Decision variables to be determined 

included the optimum number of clusters, K; coefficients for cluster-specific significant 

explanatory variables, 𝛽0𝑘, 𝛽𝑗𝑘, and ϑhk; and cluster memberships, 𝑝𝑖𝑘. 

The proposed mathematical programming included the following constraints: 

 𝛿 = ∑ (∑ vjkj + ∑ ωhkh )k ∀ j = 0,…,J, h ∈ H, k ∈ K  (4.5) 

 𝑣jk = {
1, if β

jk
 is significant; 

0, Otherwise
∀ j = 0,…,J, k ∈ K (4.6) 

 𝜔hk = {
1, if 𝜗hk is significant; 

0, Otherwise
∀ h ∈ H, k ∈ K (4.7) 

 ∑ p
ik

=1k ∀i ∈ I, k ∈ K (4.8) 

 𝑝ik = {
1, if  sample i is assigned to cluster k;  

0, Otherwise
∀ i ∈ I, k ∈ K (4.9) 

 Ck= {i|p
ik

=1∀i ∈ I, k ∈ K} (4.10) 

 C
k

'∩C
k

'' = null  ∀k
' ≠ k''

, k' and k
''∈ K (4.11) 

 ⋃ |Ck|k ∈ K = I (4.12) 
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 ∑ Ti ≥ n ∀i∈Ck
Ck (4.13) 

 1≤ k ≤ Kmax (4.14) 

  Kmax=F(I, Ti, n) (4.15) 

Constraint (4.5) provided the total number of significant explanatory variables, including 

intercepts in all clusters. In Constraint (4.6), 𝑣𝑗𝑘 equaled 1 if coefficient βjk was significant; 

otherwise, 𝑣𝑗𝑘 equaled 0. Similarly, in Constraint (4.7), 𝜔ℎ𝑘 equaled 1 if coefficient 𝜗ℎ𝑘,  was 

significant; otherwise, 𝜔ℎ𝑘 equaled 0. 

Significance was determined using p-value and α. Constraints (4.8 and 4.9) were used to 

assign cluster memberships to the samples. The indicator 𝑝𝑖𝑘 equaled 1 if and only if sample 𝑖 

was in cluster k; otherwise 𝑝𝑖𝑘 equaled 0. The sets of samples assigned to K clusters were 

provided by Constraint (4.10). Assignment of a sample to multiple clusters was restricted by 

Constraint (4.11). Constraint (4.12) ensured all available samples were assigned to clusters. The 

minimum number of observations required for statistical significance was defined by Constraint 

(4.13). Constraint (4.14) stated a range of feasible clusters for the available data. 

The maximum number of clusters was a function (F) of I, Ti, and n. Table 4.1 provides 

the step-by-step procedure to calculate this number. 
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Table 4.1 Function F to Calculate Kmax 

Inputs: I, Ti, and n 

Output: Kmax 

If (Total observations < n) then 

 Kmax = 0 

else 

Create a matrix, M of size (𝜏𝑚𝑎𝑥  x 2): 

 𝜏𝑚𝑎𝑥 is maximum number of observations of a pavement sample in the data set 

 𝑚𝜏,1 includes with all integers from 1 to 𝜏𝑚𝑎𝑥 in an ascending order 

 𝑚𝜏,2 includes number of samples that have 𝜏 observations 

 If (𝑚𝜏,1 ≥ n) then 

  𝐾𝑚𝑎𝑥 = ∑ 𝑚𝜏,2𝜏≥𝑛   

  Update 𝑚𝜏,2 with 0 for all τ ≥ n 

 else 

  Repeat 

  If ∑ 𝑚𝜏,2𝜏 = 0 then 

   Update Kmax 

  else 

   Remove rows with 𝑚𝜏,2 = 0 from M 

   Initialize counters: ѱ = γ = number of rows in M 

   M’ = M 

   If ∑ (𝑚𝜏,1 ∗ 𝑚𝜏,2) < 𝑛𝜏  then 

     Update Kmax 

   else 

    S = 𝑚ѱ,1; 𝑚ѱ,2 = 𝑚ѱ,2 − 1 

  Repeat 

 If (𝑚𝛾,2 = 0) then 

  γ = γ -1 

   If (γ = 0) then M = M’, γ = number of rows in M; n = n + 1; S = 0 end 

else 

  If (S > n) then 𝑆 = 𝑆 − 𝑚𝛾,1; 𝑚𝛾,2 = 𝑚𝛾,2 + 1; γ = γ -1 end 

   If (β = 0) then M = M’, γ = number of rows in M; ѱ = ѱ – 1; S = 0 end 

    If (ѱ = 0) then 

     ѱ = γ = number of rows in M, n = n+1ѱ 

    else  

     S = 𝑚ѱ,1; 𝑚ѱ,2 = 𝑚ѱ,2 − 1 

    end 

  𝑆 = 𝑆 + 𝑚𝛾,1; 𝑚𝛾,2 =  𝑚𝛾,2 − 1 

end 

  Until S = n 

    Kmax = Kmax + 1 

   end 

end 
Until no sample is available for clustering 

end 

Update Kmax 

end 
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4.2.2 Solution to the Mathematical Program 

This section provides a description of the solution algorithm utilized to find the optimal solution 

for the proposed mathematical programming problem. The exiting literature does not provide an 

exact algorithm to solve such a combinatorial problem efficiently (Meneses and Ferreira 2012). 

In addition, no single approach is known to be superior to other methods (Marler and Arora 

2004). Hence, the selection of an appropriate solution approach is problem-specific and depends 

on user preferences, such as the availability of software and trade-offs between computational 

time and the quality of the results. 

In this study, Simulated Annealing (SA) integrated with Function All Subsets Regression 

(ASR) was utilized to solve the proposed mathematical problem. The ASR sought for the best 

model parameters that could provide a balance between goodness of fit and model complexity. 

The criteria used to select the best model were BIC and α. All potential model specifications 

were tested. In addition, the ASR took care of potential multicollinearity that might be present in 

the models. Table 4.2 provides an algorithmic description of the function ASR. 

Table 4.2 Function All Subsets Regression 

Inputs: K, cluster memberships, observations of all explanatory variables and a dependent variable 

Outputs: Models parameters and set of significant explanatory variables 

1. Set k =1 

2. Repeat  

2.1.  Calculate GVIFs for all explanatory variables used in the model 

2.2.  Remove the explanatory variable with the largest GVIF and recalculate GVIFs with the 

remaining variables 

Until all explanatory variables have GVIF less than VIFmax. Let 𝐽 is number of such variables 

3. Generate all possible subsets of 𝐽 

4. For all subsets, estimate model parameters and BIC using ordinary least squares method 

5. Select the model that has minimum BIC and all variables with p-value < α 

6. If k < K, go to Step 7; otherwise, Step 8 

7. Set k = k + 1 and go to Step 2 

8. Return the model parameters and associated significant explanatory variables of the best models 

selected for all K clusters in Step 5 

9. End 
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The SA portion of the solution algorithm determined the cluster memberships of 

pavement samples and called the ASR function to estimate the optimal solution. SA was chosen 

because it:  

1) Can escape from local optima (occasionally) by accepting moves that degrades 

solutions,  

2) Is a simple and efficient search algorithm to solve combinatorial optimization 

problems, and  

3) Is easy to implement.  

SA has been used successfully to solve similar problems (DeSarbo et al. 1989, Selim and 

Alsultan 1991, Sun et al. 1994). Table 4.3 provides the master algorithm utilized to solve the 

proposed mathematical problem. 

 

4.3 Numerical Experiment and Results 

4.3.1 Experimental Research Data 

Experimental research data were extracted from the Pavement Management System database of 

the Nevada Department of Transportation. The data included pavement conditions and roadway 

inventory data that was collected over a 12-year period (from 2001 to 2012, inclusive) for the 

entire State of Nevada. A total of 17,642 observations of flexible pavements were available for 

the experiments. Out of this, 14,637 observations (2001 to 2010) were used to develop PPMs and 

3,005 observations (2011 and 2012) were used for validation. 

Table 4.4 includes variables used in this study. PSI is used as the dependent variable. The 

descriptions of the data were provided in Chapter 2. 
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Table 4.3 Master Algorithm: Simulated Annealing Integrated with All Subsets Regression 

Inputs: Observations of all explanatory variables and a dependent variable for pavement samples 

Outputs: Koptimal, models parameters, cluster memberships, and clusters-specific significant explanatory 

variables 

1. Set K =2, initial temperature = θ0, and final temperature = θmin, BICmin = ∞ 

2. Call Function F to calculate Kmax 

3. Repeat 

3.1. Randomly generate a valid K initial clusters of pavement samples, 𝐶𝑘
′  

3.2. Call Function ASR to estimate the best model parameters 

3.3. Evaluate the objective function, BIC (𝐶𝑘
′ ) using Equation 4.3 

3.4. Set current temperature, θ = θ0 

3.5. Repeat the following steps for Nmax times 

a. Randomly generate valid K neighborhood clusters, 𝐶𝑘
′′ 

b. Call Function ASR to estimate the best model parameters 

c. Evaluate the objective function, BIC (𝐶𝑘
′′) using Equation 4.3 

d. Calculate ΔBIC = BIC (𝐶𝑘
′′) - BIC (𝐶𝑘

′ ) 

e. If ΔBIC < 0, let BICK = BIC (𝐶𝑘
′′) and 𝐶𝑘

′ = 𝐶𝑘
′′, and go to Step 3.6. Otherwise, do the 

following: 

 Generate a random number 𝑢~𝑈(0,1). Calculate acceptance probability, 𝑝𝑎𝑐𝑐𝑒𝑝𝑡 =

exp (
−∆𝐵𝐼𝐶

𝐵∗𝜃
), where B is a Boltzmann’s constant 

 If 𝑝𝑎𝑐𝑐𝑒𝑝𝑡 > 𝑢, let BICK = BIC (𝐶𝑘
′′) and 𝐶𝑘

′ = 𝐶𝑘
′′, and go to Step 3.6. Otherwise, go 

back to Step 3.5 

3.6. If θ < θmin then 

 Update θ = λ * θ, where λ is the cooling rate 

 Go back to Step 3.5 

else 

 Go to Step 3.7 

end 
3.7. If BICK < BICmin then  

 Update BICmin = BICK and Koptimal = K 

else 

 If K < Kmax then set K = K+1; otherwise go to Step 4 

end 

4. Return Koptimal, cluster, 𝐶𝑘
′ , models parameters, and set of clusters-specific significant explanatory 

variables 

5. End 
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Table 4.4 Variables Used in the Pavement Performance Models 

Variable Description 

age Age of the last M&R treatment performed on a segment 

adt One direction average daily traffic 

trucks One direction average daily trucks 

elevation Elevation at midpoint of a segment (m) 

precip Average annual precipitation (cm/year) 

min_temp Minimum average yearly air temperature (0C) 

max_temp Maximum average yearly air temperature (0C) 

wet_days Total number of wet days (days that moisture was recorded) over the course of one year 

freeze_thaw 
Total number of freeze-thaw cycles that a pavement experienced over the course of one 

year 

rut_depth Average ride rut depth (cm) 

lane=2 Dummy variable for a segment that has 2 lanes (1 = yes, 0 = no) 

lane≥3 Dummy variable for a segment that has 3 or more lanes (1 = yes, 0 = no) 

sys_id=2 Dummy variable for a segment that is part of NHS (1 = yes, 0 = no) 

sys_id=3 Dummy variable for a segment that is part of STP (1 = yes, 0 = no) 

f_class=2 Dummy variable for a segment classified as functional class 2 (1=yes, 0 = no) 

f_class=3 Dummy variable for a segment classified as functional class 3 (1 = yes, 0 = no) 

f_class=4 Dummy variable for a segment classified as functional class 4 (1 = yes, 0 = no) 

f_class=5 Dummy variable for a segment classified as functional class 5 (1 = yes, 0 = no) 

f_class=6 Dummy variable for a segment classified as functional class 6 (1 = yes, 0 = no) 

f_class=7 Dummy variable for a segment classified as functional class 7 (1 = yes, 0 = no) 

category=2 Dummy variable for a segment grouped in prioritization category 2 (1 = yes, 0 = no) 

category=3 Dummy variable for a segment grouped in prioritization category 3 (1 = yes, 0 = no) 

category=4 Dummy variable for a segment grouped in prioritization category 4 (1 = yes, 0 = no) 

category=5 Dummy variable for a segment grouped in prioritization category 5 (1 = yes, 0 = no) 

 

4.3.2 Estimation Parameters 

Several estimation parameters were required to initiate and utilize the proposed solution 

algorithm. It was very important to select appropriate starting values of the parameters, because 

the convergence rate of the algorithm largely depended on them. Experience from previous 

research (Paz et al. 2015a and b, Khadka and Paz 2017, Paz and Khadka 2017) and results from 

the sensitivity analysis were used to choose the estimation parameter values to be used in the 

experiments. Table 4.5 provides the estimation parameters specified in the experiments. 
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Table 4.5 Estimation Parameters Used in the Experiments 

Parameter Value Remarks 

𝜃0 10 Initial temperature 

𝜃𝑚𝑖𝑛 10e-17 Final minimum temperature 

B 80 Boltzmann constant 

λ 0.97 Cooling rate 

𝑁𝑚𝑎𝑥 5 Number of neighborhood solutions generated at each temperature 

level 

𝑛 800 Minimum number of observations required in a cluster 

𝑁𝑝𝑠 80 Number of pavement samples, which memberships were changed 

to generate a neighborhood cluster 

𝑉𝐼𝐹𝑚𝑎𝑥 5 Limiting VIF  

α 5% Level of Significance 

 

4.3.3 Results and Discussion 

Function F determined the maximum number of feasible clusters for the data used in this study to 

be 16. The solution algorithm explored all the feasible number of clusters (i.e., K = 2 to 16) to 

seek for the optimum number of clusters. Figure 4.1a shows the optimum values of the objective 

function for each of the feasible number of clusters. The algorithm returned five-cluster models 

with the lowest BIC as a part of the optimum solution. Figure 4.1b visualizes the convergence 

curve of BIC for the five-cluster models. Initially, BIC was -26,955, and after 1,437 iterations, 

the algorithm found the optimal solution to have a BIC of -30,010. 

 

   

Figure 4.1 BIC versus the number of clusters (a), and convergence curve of BIC for five-cluster 

models (b). 
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The estimated parameters for the five-cluster models are presented in Table 4.6. 

Explanatory variables identified and included in the models were ln(age), ln(adt), ln(rut_depth), 

ln(precip), ln(min_temp) as well as all the dummy variables for the number of lanes, 

prioritization category, and functional class. In the pavement modelling literature, these variables 

were considered to be critical factors that affect pavement performance (Saraf and Majidzadeh 

1992, Prozzi and Madanat 2004, Salama et al. 2006). Only two variables, ln(age) and 

ln(rut_depth), were included in all five models. The variable ln(precip) was significant only in 

the model for Cluster #3. Other variables were common in a few models. For example, ln(adt) 

was included in models for Clusters #1, #2, and #4. 

Other explanatory variables were excluded from the resultant models because they were 

either causing multicollinearity in the models or were statistically insignificant (α = 0.05). The 

variance-inflation factor (VIF) was used as a criterion to investigate potential multicollinearity in 

the models. Because the models included a few categorical explanatory variables that had more 

than one level, generalized variance-inflation factors (GVIF) were calculated, as suggested by 

Fox and Monette (1992). For each model, the explanatory variables with GVIFs greater than the 

limiting VIF were dropped, one at a time, starting with the one that had the largest GVIF. Table 

4.6 shows the GVIFs of significant explanatory variables that were included in the final models. 

The GVIF values were less than the limiting VIF, which indicated that the models were free 

from serious multicollinearity. 



 

82 

 

Table 4.6 Estimated Parameters of Five-Cluster Nonlinear Models (α = 0.05) 

Clusters, k Variables, j Coefficients, βjk p-value Bootstrap 95% CI GVIF 

1  

(2,818) 

Intercept 1.464 <0.000 (1.438, 1.490) - 

ln(age) -0.021 <0.000 (-0.026, -0.017) 1.01 

ln(adt) -0.007 <0.000 (-0.011, -0.003) 1.89 

ln(rut_depth) -0.104 <0.000 (-0.134, -0.074) 1.07 

lane=2 -0.067 <0.000 (-0.080, -0.053) 1.54 

lane≥3 -0.155 <0.000 (-0.178, -0.132) 

f_class=2 -0.034 0.041 (-0.067, -0.001) 1.13 

f_class=3 -0.049 <0.000 (-0.061, -0.038) 

f_class=4 -0.084 <0.000 (-0.097, -0.071) 

f_class=5 -0.149 <0.000 (-0.164, -0.134) 

f_class=6 -0.305 <0.000 (-0.337, -0.274) 

f_class=7 -0.359 <0.000 (-0.467, -0.251) 

2 

(2,968) 

Intercept 1.568 <0.000 (1.540, 1.596) - 

ln(age) -0.027 <0.000 (-0.032, -0.022) 1.02 

ln(adt) -0.007 0.001 (-0.010, -0.003) 2.06 

ln(rut_depth) -0.060 <0.000 (-0.090, -0.03) 1.08 

lane=2 -0.052 <0.000 (-0.067, -0.038) 1.58 

lane≥3 -0.114 <0.000 (-0.137, -0.091) 

f_class=2 -0.040 0.015 (-0.072, -0.009) 1.16 

f_class=3 -0.056 <0.000 (-0.068, -0.044) 

f_class=4 -0.128 <0.000 (-0.142, -0.114) 

f_class=5 -0.393 <0.000 (-0.411, -0.375) 

f_class=6 -0.465 <0.000 (-0.498, -0.432) 

f_class=7 -0.490 <0.000 (-0.579, -0.401) 

3 

(2,962) 

Intercept 1.922 <0.000 (1.776, 2.067) - 

ln(age) -0.021 <0.000 (-0.026, -0.016) 1.01 

ln(precip) -0.027 <0.000 (-0.042, -0.013) 1.95 

ln(min_temp) -0.116 <0.000 (-0.15, -0.082) 1.91 

ln(rut_depth) -0.149 <0.000 (-0.177, -0.121) 1.02 

f_class=2 -0.046 0.004 (-0.076, -0.015) 1.02 

f_class=3 0.010 0.020 (0.002, 0.018) 

f_class=4 -0.051 <0.000 (-0.060, -0.042) 

f_class=5 -0.166 <0.000 (-0.176, -0.155) 

f_class=6 -0.257 <0.000 (-0.282, -0.232) 

f_class=7 -0.051 0.010 (-0.090, -0.012) 

4 

(2,942) 

Intercept 1.536 <0.000 (1.466, 1.607) - 

ln(age) -0.010 <0.000 (-0.015, -0.005) 1.01 

ln(adt) -0.046 <0.000 (-0.050, -0.043) 1.60 

ln(min_temp) -0.121 <0.000 (-0.142, -0.101) 1.17 

ln(rut_depth) -0.210 <0.000 (-0.24, -0.179) 1.02 

lane=2 -0.037 <0.000 (-0.047, -0.027) 1.25 

lane≥3 -0.152 <0.000 (-0.173, -0.131) 

5 

(2,948) 

Intercept 1.876 <0.000 (1.803, 1.949) - 

ln(age) -0.021 <0.000 (-0.026, -0.016) 1.01 

ln(min_temp) -0.091 <0.000 (-0.111, -0.071) 1.14 

ln(rut_depth) -0.170 <0.000 (-0.202, -0.138) 1.05 

lane=2 -0.079 <0.000 (-0.092, -0.065) 1.49 

lane≥3 -0.137 <0.000 (-0.156, -0.118) 

category=2 -0.072 <0.000 (-0.085, -0.059) 1.21 

category=3 -0.102 <0.000 (-0.117, -0.088) 

category=4 -0.181 <0.000 (-0.198, -0.164) 

category=5 -0.254 <0.000 (-0.271, -0.238) 

Note: number in parenthesis represents the number of observations in a clusters 
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As the model parameters were estimated after logarithmic transformation was performed, 

the normality of the residuals was investigated. The Anderson-Darling test was performed using 

the R package, ‘nortest’ (R Core Team 2015). Table 4.7 includes the results of the test, which 

indicated that the residuals were non-normal and the estimated p-values of the regression 

coefficients were inaccurate. Hence, bootstrap (Efron 1979, Efron and Tibshirani 1993) was used 

to calculate 95% confidence intervals (CI) of all the estimated coefficients. Table 4.6 includes 

the lower and upper bounds of the 95% CIs for all coefficients. Table 4.6 shows that the 

bootstrap results confirmed the significance of all explanatory variables in the model. For 

example, the coefficient for f_class = 3 in the case of Cluster #3 is 0.01 with a p-value of 0.02, 

and the bootstrap CI (0.002, 0.018) fell to the right of 0; that is, f_class = 3 was positive and 

significant. 

Table 4.7 Anderson-Darling Normality Test (Nonlinear Models) 

Clusters A-value p-value 

1 92.876 < 2.2e-16 

2 113.85 < 2.2e-16 

3 102.96 < 2.2e-16 

4 75.497 < 2.2e-16 

5 58.248 < 2.2e-16 

 

It was observed that models for Cluster #1 and #2 included the same significant 

explanatory variables. In addition, the coefficients of the corresponding variables were nearly 

equal and had the same sign. These similarities suggested that these two clusters could be 

merged, but the objective function of the resultant model would increase slightly. This can be 

observed in Figure 4.1b, where the BIC for number of clusters equal to 4 was slightly higher than 

for 5. 
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The models had different cluster-specific explanatory variables, that is, each model had a 

unique set of explanatory variables. In addition, the associated coefficients varied among the 

resultant models. These differences indicated that average performance behavior of pavement 

samples across clusters were different. 

4.3.4 Model Performance 

The proposed algorithms discussed in the Solution Algorithm section were also utilized to 

estimate the optimal number of clusters and associated model parameters, using a linear 

functional form expressed by: 

 y
it
k =β

0k
+ ∑ β

jk
*J

j=1  xijt
k + ∑ ϑhk* xiht

kH
h=1  (4.16) 

Six-cluster linear models were found to be part of the optimum solution. The estimated 

model parameters are provided in Table 4.8. The primary observation was that the variables 

min_temp and precip, which were significant in the nonlinear models, were not included in any 

of the linear models. As expected, the intercepts and coefficients of the corresponding 

explanatory variables were different across the models. 

The performances of the resultant nonlinear and liner models were compared. Both 

models were applied to the test data set to estimate PSIs for 2011 and 2012. For nonlinear 

models, the predicted PSIs were transformed back to the original scale by taking exponential. 

The scatter plots of observed versus predicted PSIs for both models are shown in Figure 

4.2. The figure shows that the nonlinear models had less scattered data points beyond the ±15% 

error lines. About 81% of the total data points are within the ±15% range of error. In case of 

linear models, approximately 74% of the total data points are within the ±15% error lines. 
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Table 4.8 Estimated Parameters of Six-Cluster Linear Models (α = 0.05) 

Variables, j Clusters, k Coefficients, βjk p-value Bootstrap 95% CI GVIF Clusters, k Coefficients, βjk p-value Bootstrap 95% CI GVIF  

Intercept 1 

(2,376) 

4.393 <0.000 (4.362, 4.423) - 6 

(2,583) 

4.401 <0.000 (4.374, 4.428) - 

age -0.040 <0.000 (-0.045, -0.034) 1.0 -0.037 <0.000 (-0.042, -0.031) 1.0 

adt† -0.013 <0.000 (-0.015, -0.012) 1.1 -0.014 <0.000 (-0.015, -0.012) 1.2 

rut_depth -0.200 <0.000 (-0.285, -0.115) 1.0 -0.355 <0.000 (-0.432, -0.278) 1.0 

f_class=2 -0.186 0.002 (-0.303, -0.069) 1.0 0.468 <0.000 (0.350, 0.586) 1.0 

f_class=3 -0.111 <0.000 (-0.140, -0.081) -0.086 <0.000 (-0.113, -0.060) 

f_class=4 -0.259 <0.000 (-0.293, -0.226) -0.258 <0.000 (-0.289, -0.228) 

f_class=5 -1.052 <0.000 (-1.092, -1.012) -0.864 <0.000 (-0.905, -0.823) 

f_class=6 -1.182 <0.000 (-1.265, -1.098) -1.288 <0.000 (-1.365, -1.211) 

f_class=7 -0.284 0.006 (-0.492, -0.076) -0.634 <0.000 (-0.811, -0.457) 

Intercept 2 

(2,483) 

4.552 <0.000 (4.496, 4.608) - 4 

(2,414) 

4.605 <0.000 (4.548, 4.661) - 

age -0.022 <0.000 (-0.028, -0.016) 1.0 -0.033 <0.000 (-0.038, -0.027) 1.0 

adt† -0.012 <0.000 (-0.014, -0.01) 1.3 -0.006 <0.000 (-0.008, -0.005) 1.3 

rut_depth -0.436 <0.000 (-0.527, -0.346) 1.0 -0.574 <0.000 (-0.667, -0.482) 1.1 

lane=2 -0.191 <0.000 (-0.24, -0.141) 1.6 -0.213 <0.000 (-0.266, -0.160) 1.6 

lane≥3 -0.202 <0.000 (-0.294, -0.111) -0.405 <0.000 (-0.484, -0.326)  

category=2 -0.202 <0.000 (-0.248, -0.156) 1.2 -0.263 <0.000 (-0.311, -0.215) 1.2 

category=3 -0.323 <0.000 (-0.38, -0.266) -0.326 <0.000 (-0.383, -0.268) 

category=4 -0.664 <0.000 (-0.73, -0.599) -0.650 <0.000 (-0.716, -0.584) 

category=5 -1.149 <0.000 (-1.216, -1.083) -0.808 <0.000 (-0.874, -0.742) 

Intercept 3 

(2,442) 

4.674 <0.000 (4.612, 4.736) - 5 

(2,340) 

4.557 <0.000 (4.496, 4.618) - 

age -0.028 <0.000 (-0.034, -0.022) 1.0 -0.028 <0.000 (-0.034, -0.021) 1.0 

adt† -0.008 <0.000 (-0.010, -0.006) 1.5 -0.005 <0.000 (-0.006, -0.003) 1.5 

rut_depth -0.517 <0.000 (-0.618, -0.417) 1.0 -0.510 <0.000 (-0.607, -0.413) 1.1 

lane=2 -0.358 <0.000 (-0.414, -0.302) 1.7 -0.260 <0.000 (-0.317, -0.203) 1.7 

lane≥3 -0.289 <0.000 (-0.391, -0.187) -0.294 <0.000 (-0.394, -0.195) 

category=2  -0.325 <0.000 (-0.376, -0.273) 1.2 -0.194 <0.000 (-0.247, -0.141) 1.2 

category=3 -0.465 <0.000 (-0.529, -0.401) -0.287 <0.000 (-0.348, -0.226) 

category=4 -0.684 <0.000 (-0.756, -0.613) -0.639 <0.000 (-0.709, -0.569) 

category=5 -0.808 <0.000 (-0.881, -0.735) -1.130 <0.000 (-1.203, -1.057) 

Note: † = variable value in thousands, - = Not applicable, and quantity in parenthesis represents the number of observations in a clusters 
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Figure 4.2 Observed versus prediction PSI: a) linear models, and b) nonlinear models 

 

The prediction accuracy of the models was measured using root-mean-square error 

(RMSE), normalized root-mean-square error (NRMSE), and mean absolute errors (MAE). The 

overall values for RMSE, NRMSE, and MAE for all the nonlinear models were 0.41, 0.15, and 

0.33; whereas for the linear models were 0.47, 0.17, and 0.36, respectively. All three metrics for 

the nonlinear models were less than those for the linear models. This indicated that the nonlinear 

models were more accurate than the linear models in estimating PSIs of pavement samples. 

Table 4.9 provides the RMSE, NRMSE, and MAE values for all the models as well as for 

individual nonlinear and linear models. 
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Table 4.9 Overall and Individual RMSE, NRMSE, and MAE 

Clusters 
Five-cluster nonlinear models Six-cluster linear models 

No. of Obs. RMSE NRMSE MAE No. of Obs. RMSE NRMSE MAE 

1 567 0.41 0.19 0.32 474 0.47 0.18 0.37 

2 560 0.39 0.16 0.31 525 0.46 0.18 0.37 

3 610 0.42 0.17 0.34 507 0.49 0.18 0.37 

4 621 0.41 0.18 0.33 495 0.47 0.17 0.35 

5 647 0.42 0.16 0.33 494 0.48 0.18 0.36 

6 - - - - 510 0.49 0.19 0.38 

Overall 3005 0.41 0.15 0.33 3005 0.47 0.17 0.36 

 

4.4 Conclusions 

This chapter discussed some of the modelling approaches that were used in the pavement 

performance literature. Clusterwise regression (CR) was introduced as the existing state-of-the-

art approach to estimate PPMs. In addition, the chapter outlined some of the limitations of 

existing state-of-the-art approach. To address these limitations, a comprehensive mathematical 

programming approach and solution algorithm were proposed. 

The proposed mathematical programming approach used a single objective function to 

simultaneously divide the pavement samples into an optimum number of clusters and estimate 

the corresponding model parameters. Bayesian Information Criteria was used as the objective 

function, and Simulated Annealing integrated with All Subsets Regression was utilized to solve 

the mathematical problem. During the optimization process, the algorithm sought for the 

potential explanatory variables that posed serious multicollinearity issues in a model. The 

variables that posed the largest multicollinearity effect in the models were dropped individually 

until all models were free from serious multicollinearity issues. All possible linear and nonlinear 

model specifications were examined to determine the best model for each cluster. A power 

functional form was used to estimate nonlinear PPMs. 
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Five-cluster models were found as the optimum solution. Variables ln(age), ln(adt), 

ln(rut_depth), ln(precip), ln(min_temp) as well as all the dummy variables for the number of 

lanes, prioritization category, and functional class were identified as the significant and as having 

realistic coefficients. All these variables were considered to be critical factors affecting pavement 

performance. Linear PPMs were estimated using the same algorithmic framework discussed in 

this chapter. The variables min_temp and precip, which were significant in the nonlinear models, 

were not included in any of the linear models. Similar to nonlinear models, the estimated 

coefficients and associated sign were as expected, and were realistic. 

The performances of the nonlinear and linear models were compared by means of 

validation of the prediction capabilities. In addition, RMSE, NRMSE, and MAE were used to 

compare the explanatory power of the models even further. Results showed that the nonlinear 

models were more accurate than the linear models in estimating PSIs. However, the nonlinear 

models overestimated the PSIs for a few pavement samples. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE RESEARCH 

This chapter summarizes this dissertation and highlights its significance. Recommendations for 

possible extensions and directions for future research are also discussed in this chapter. 

5.1 Summary and Conclusions 

This study proposes a generalized Clusterwise Regression (CR) approach to estimate pavement 

clusters and associated PPMs, simultaneously. The proposed approach integrated clustering, 

variable selection, and regression techniques to seek for the true underlying pavement clusters 

and the best model specification for PPMs. The resultant PPMs included cluster-specific 

significant explanatory variables. That is, significant explanatory variables could be different 

across models. 

A mixed-integer nonlinear mathematical program with BIC as the objective function was 

formulated to describe the problem. The program was flexible enough to handle multiple 

explanatory variables, multiple observations per pavement segments, and user-defined 

constraints on cluster characteristics. In addition, the program assigned all observations of a 

pavement sample to the same cluster exclusively. An iterative search based optimization 

procedure was implemented to explore all feasible clusters that could be formed for a given data 

set. All possible combinations of explanatory variables were explored and potential 

multicollinearity issues were addressed. A comprehensive algorithm was implemented in the 

software R to solve the proposed mathematical problem. The algorithm included Simulated 

Annealing coupled with: (i) Ordinary Least Squares (OLS) for estimation of the linear models, 

and (ii) All Subset Regression for estimation of the nonlinear models. Parameters of the 
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nonlinear models were estimated after linearizing the adopted model using a logarithmic 

transformation. The estimated model parameters were then transformed back to the original scale 

by taking exponential. The optimization parameters required by the solution algorithm were 

determined based on previous experience and extensive sensitivity analysis. 

The study results highlighted the ability of variable selection procedure to distinguish 

between significant and insignificant explanatory variables. They also illustrated the importance 

of testing the significance of explanatory variables while seeking for the best model 

specification. The results showed average daily traffic, pavement age, rut-depth along the 

pavement, average annual precipitation and minimum temperature, function class, prioritization 

category, and the number of lanes, as significant for explaining pavement performance. Further, 

the estimated model parameters were as expected in magnitude and signs. The models were 

accurate in estimating pavement performance or condition with minimal errors. No overfitting 

issues were observed. These results together implied that the proposed approach was effective in 

developing adequate PPMs. A detailed analysis of the experiment results suggested that 

nonlinear CR models were superior than the linear CR models in terms of prediction accuracy 

for the data used in this study. 

5.2 Research Contributions 

The primary contribution of this dissertation is a comprehensive framework including a 

mathematical programming formulation and solution algorithm to determine simultaneously the 

optimal number of clusters, sample memberships to clusters, cluster-specific significant 

explanatory variables and associated coefficients, and the best functional form between linear 

and power models for pavement performance. The existing literature does not provide this kind 
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of generalized modeling approach which seeks balance between goodness of fit and model 

complexity and facilitates superior model development. 

5.3 Future Research 

This study investigated the appropriateness of the power functional form within the clusterwise 

regression framework to estimate PPMs. Various other functional forms have been used to 

explain pavement performance behavior. It would be worthwhile expanding the proposed 

framework to consider all potential functional forms in order to determine the best models that 

have minimal estimation error. In addition, as pavement condition data also is panel data, 

varieties of panel data models can be explored, such as fixed-effect, mixed-effect, and random-

effect models. 

This study focused on partitioning the pavement data such that the resultant PPMs had 

minimum estimation errors. However, it did not investigate the resulting distribution of the 

pavement samples across clusters in order to identify the most critical or dominant variable in 

each cluster. Therefore, this study did not provide any justification of whether the assignment of 

pavement samples to the clusters truly represented the underlying clustering structure. Future 

work could include validating the assignment of pavement samples to the clusters. 

Due to unavailability of data, a few potential explanatory variables that were proven to be 

significant in previous studies were not used. For example, the effect of pavement structure was 

not considered in the analysis. The structural numbers of pavements could be used to study the 

effect of the pavement structure on performance. 

This study accounted for the effect of historical maintenance activities by setting 

pavement age to zero when a new maintenance activity was performed. However, routine 

maintenance works were ignored. In addition, the effects of various types of the maintenance 
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activities were assumed to be the same. To address this limitation, maintenance types could be 

used as an extra explanatory variable in the analysis. 

Pavement performance is governed by environmental, subsurface, and load-related 

factors, among others. The effects of these factors are not independent from one another, and 

potential interactions of various factors largely affect pavement performance. For example, 

extensive rutting and shoving on a flexible pavement can occur due to heavy traffic and high 

temperatures (Huang, 2003; Aguiar-Moya and Prozzi, 2011). Hence, adequate PPMs should 

capture the effects of the potential interactions of governing factors. In such circumstances, the 

PPMs could have a significantly large number of predictors; as a result, estimation of the model 

parameters could become very challenging. A non-parametric modelling approach could be 

utilized to estimate model parameters accurately. This study did not consider the effects of 

potential interactions of explanatory variables. Future research is recommended as well on the 

use of a non-parametric modelling approach, which is flexible enough to handle a large numbers 

of predictors. Details about non-parametric modelling can be found in Kang and Ghosal (2008), 

Attoh-Okine et al. (2009) and Ghahramani (2013). 

Optimization parameters were obtained using past experience of the research team as 

well as sensitivity analysis. However, the existing literature (Park and Kim 1988, Johnson et al. 

1987) included a few standard methods to determine such parameters. Future research could use 

optimization parameters that were determined from these proven techniques. 

Simulated Annealing primarily was used for clustering. As clustering methods are highly 

sensitive to the choice of algorithms, different types of algorithms could be investigated to select 

the best. For example, genetic algorithms (Shekharan, 2000), artificial neural networks (Attoh-
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Okine 1999), particle swarm optimization (ver der Merew and Engelbrecht 2003), and 

combination of these could be explored. 
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