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ABSTRACT 

Mixed logit models are a widely-used tool for studying discrete outcome problems. Modeling 

development entails answering three important questions that highly affect the quality of the 

specification: (i) what variables are considered in the analysis? (ii) what are going to be the 

coefficients for these variables? and (iii) what density function these coefficients will follow? The 

literature provides guidance; however, a strong statistical background and an ad hoc search process 

are required to obtain the best model specification. Knowledge of the problem context and data is 

required. Given a dataset including discrete outcomes and associated characteristics the problem 

to be addressed in this thesis is to investigate to what extend a relatively simple metaheuristic such 

as Simulated Annealing, can determine the best model specification for a mixed logit model and 

answer the above questions. A mathematical programing formulation is proposed and simulated 

annealing is implemented to find solutions for the proposed formulation. Three experiments were 

performed to test the effectiveness of the proposed algorithm. A comparison with existing model 

specifications for the same datasets was performed. The results suggest that the proposed algorithm 

is able to find an adequate model specification in terms of goodness of fit thereby reducing 

involvement of the analyst. 
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CHAPTER 1: INTRODUCTION 

Modeling and prediction of discrete outcomes is a common problem in many areas, including 

among others economics, engineering, and medicine. Some examples of discrete outcome 

problems include: (i) analysis of transportation modes (i.e., car, transit, or walking) based on 

observed socioeconomic characteristics, (ii) estimate the presence of a pathology based on 

attributes of a patient, and (iii) estimate how many cars will be owned based on observed 

characteristics of a household.  

In general, a categorical variable associated or explained by a set of attributes and/or 

characteristics can be considered a discrete outcome problem (Train, 2003). In transportation, 

discrete outcome analysis has a wide range of applications. In land use modeling, it is applied for 

choices of residential locations based on observed demographic attributes of people and 

characteristics of the locations (Wegener, 2004). In route choice analysis, discrete outcome models 

are used for prediction of route choices, based on observed attributes of both travelers and available 

routes (Paz, Emaasit, & de la Fuente, 2016; Paz & Peeta, 2009) . In traffic safety, prediction of 

crash severity based on roadway characteristics, driver behavior and weather factors (Milton, 

Shankar, & Mannering, 2008). In travel demand analysis, choices for auto and bike ownership 

based on attributes of travelers (Pinjari, Pendyala, Bhat, & Waddell, 2011). 

Several statistical and machine-learning approaches have been proposed in the literature to 

model discrete outcome problems (Luo, 2015; Omrani, 2015). In the machine learning side, 

techniques such as artificial neural networks and support vector machines have been successfully 

applied.  In statistics, models such as logit, probit, nested logit, mixed logit have been extensively 

used (Train, 2003). Machine learning has showed superior predictive ability compared to statistical 

models (Karlaftis & Vlahogianni, 2011). However, one disadvantage of machine learning 
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approaches is that these are considered ‘black box’ methods. These approaches, although useful 

for prediction, do not provide additional insights about the data. In the other hand, statistical 

techniques have a significant advantage in terms of interpretation. The output of statistical models 

is a set of coefficients whose values are intuitive and have a meaningful interpretation. Also, 

statistical models  can derive useful measures such as marginal effects, elasticities, willingness to 

pay, among others (Hensher & Ton, 2000). 

Regardless of the proposed approach, the researcher needs to decide which variables are to 

be considered in the model specification. The modeling process is time consuming and subject to 

expert knowledge and ad hoc trial and error approaches. The variables included in a model highly 

affect its predictive performance. Models with a proper and smallest subset of explanatory 

variables allow larger influence of the included variables, eliminate redundancy, provide a better 

understanding of the final model, reduce costs of data acquisition and are computationally efficient  

(Fouskakis & Draper, 2008). Variable selection, also referred in the literature as subset selection 

or model specification, aims to find a model with the highest explanatory power while selecting 

the smallest possible number of variables. A challenge is that the number of possible combinations 

of variables that could be considered grows exponentially as the number of potential explanatory 

variables increases (Sato, Takano, Miyashiro, & Yoshise, 2016; Vinterbo & Ohno-Machado, 1999). 

For example, for a model with 30 variables the number of different possible specifications is 230= 

1,073,741,824. This is computationally intensive to be solved using an exhaustive search. Various 

approaches used to address this problem are described below in the literature review. 

Discrete outcome problems can be viewed as discrete choice processes where a decision 

maker chooses an alternative from a finite set.  Theoretically, it is assumed that the chosen 

alternative maximizes the utility of the decision maker. This is known as random utility 
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maximization. Random because of the inability to observe all the factors that impact the utility. 

This means that the utility is calculated using observed factors and making assumptions about the 

distribution of unobserved factors, also known as error terms. (Ben-Akiva & Lerman, 1985; Train, 

2003).  

Multinomial logit and probit are common choice models that have been successfully 

applied for modeling discrete outcome problems. It is known that logit models suffer limitations 

such as Independence of Irrelevant Alternatives (IIA), restrictive substitution patterns and inability 

to model random taste variation. Probit models have addressed these limitations; however, they 

are restricted to model random taste variation using only the normal distribution, which is not 

always convenient. In view of these limitations, Mixed logit models have been proposed (Train, 

2003) as one of the most prominent techniques for modeling discrete outcome problems.   

Mixed logit models address the limitations of logit and probit by allowing modeling of 

variables with random coefficients. Such variables can follow any statistical distribution specified 

by the researcher, and a general random term that follows an extreme value distribution. The 

predictive power and quality of a mixed logit highly depends on an appropriate definition of the 

distribution of the random coefficients (Hensher & Greene, 2003). The modeling of coefficients 

as random variables provided by mixed logit allows to capture heterogeneity in preferences among 

the decision makers.  For example, in a mixed logit model for vehicle choices, a variable such as 

fuel consumption modeled as random and normally distributed, with a mean value of -0.3 and a 

standard deviation 1.2 can be understood as: given that the mean is slightly below zero, people 

have more inclination for cars with lower fuel consumption, however the standard deviation 

evidences that a significant portion of people are willing to have a car with higher fuel consumption. 

Modeling with random coefficients is not the only type of derivation for mixed logit models. 



 

4 

Another widely applied derivation is the use of error components to model correlations between 

the utilities for the alternatives.  The choose of what type of derivation for mixed logit to use 

depends entirely on the needs of the analyst. When the purpose is to analyze the heterogeneity in 

preferences, then the derivation of mixed logit with random terms is more suitable. In the other 

hand, if the analyst needs to study the different correlation patterns generated by the error terms, 

then the derivation with error terms fits better this context. The derivations of mixed logit as 

random terms or error components are equivalent with the only difference being the interpretation 

(Train, 2003). For this study, the derivation of random terms for mixed logit was used. 

The output of a mixed logit with random coefficients includes the mean and standard 

deviation of the variables treated as random terms. The mean represents the average preference 

about the variable while the standard deviation has valuable information about the heterogeneity 

of that preference , in other words how dispersed is the preference (Daniel McFadden and Kenneth 

Train, 2000). For example, in a mixed logit model for vehicle choices, a variable such as fuel 

consumption modeled as random and normally distributed, with a mean value of -0.3 and a 

standard deviation 1.2 can be understood as: given that the mean is slightly below zero, people 

have more inclination for cars with lower fuel consumption, however the standard deviation 

evidences that a significant portion of people are willing to have a car with higher fuel consumption. 

Given a mixed logit estimation problem, several assumptions are required to determine the 

best model specification. In general, the distribution of the random coefficients, and potential 

explanatory variables need to be assumed before a model is estimated (Hensher & Greene, 2003). 

This study, proposes an optimization framework to search the best model specification including 

the variables to be considered, the coefficients as well as the distribution and associated parameters 

for the corresponding coefficients. In addition, a solution algorithm was implemented and tested 
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with two datasets.  
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CHAPTER 2: LITERATURE REVIEW 

Variable selection is a topic of high interest in the scientific community. Substantial intellectual 

effort has been invested in characterizing and solving this problem since the early 60’s (Efromyson, 

1960). Interest on this problem grows, as new modeling techniques appear, and the availability of 

data increases with new advances in technology. For any statistical model, when all the possible 

explanatory variables are included, several issues can arise. For example, irrelevant variables may 

suppress important relationships between other variables or correlated variables create 

multicollinearity. A balance is recommended with a number of variables not too small or too large 

(Hasan Örkcü, 2013) while providing adequate predictive performance (Kadane & Lazar, 2004).  

Variable selection approaches have been classified as filter, wrapper and embedded 

methods based on the strategy used to search a subset of variables (Mehmood, Liland, Snipen, & 

Sæbø, 2012). Branch and bound algorithms along with stepwise variable inclusion/elimination are 

common wrapper variable selection methods. These methods have proven to be effective in subset 

selection for partial less squared regression and principal component analysis as well as logistic 

regression. A disadvantage of the stepwise approach is that its performance decreases for problems 

with a number of variables greater than 30 (Brusco, 2014). 

To perform variable selection, it is required to have a quality measure to quantify how good 

a model specification is. In other words, a measure that allows to compare models (Kadane & 

Lazar, 2004). Several approaches have been used for this purpose. Bayesian Information Criteria 

(BIC) also known as Swartz Information Criteria has been successfully employed for model 

comparison in variable selection for continuous and discrete outcome problems (Sato et al., 2016). 

This measure initially proposed by Schwarz (1978) has been applied in several variable selection 

problems (Sato et al., 2016; Tutz, Pößnecker, & Uhlmann, 2015; Vicari & Alfó, 2014). BIC uses 
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the likelihood as goodness of fit measure and it includes a penalization term for the number of 

parameters used to obtain such likelihood. BIC is similar to Akaike Information Criterion, which 

is also used for models comparison; however, BIC provides larger penalization for the number of 

parameters. Prediction accuracy, which measures the percentage of outcomes correctly classified, 

has been used in discrete outcome problems (Brusco & Steinley, 2011). The Wilks’ lambda 

measure has been applied for similar problems in principal component analysis (Pacheco, Casado, 

& Porras, 2013).  

 Simulated annealing is a metaheuristic extensively used to solve optimization problems 

(Kirkpatrick, Gelatt, & Vecchi, 1983). This metaheuristic has been applied in variable selection 

problems (Lin, Lee, Chen, & Tseng, 2007; Meiri & Zahavi, 2004; Sutter & Kalivas, 1993). It has 

proven to outperform other methods including stepwise elimination and branch and bound. The 

main challenge of simulated annealing is the need to define algorithm parameters. The 

performance of simulated annealing highly depends of proper specification of its parameters 

(Brusco, 2014). 

Variable selection approaches for logit and probit models using optimization metaheuristics  

has been successfully performed (Changpetch & Lin, 2013; Fouskakis & Draper, 2008; Pacheco, 

Casado, & Núñez, 2009; Sato et al., 2016; Vinterbo & Ohno-Machado, 1999; Zahid & Tutz, 2013). 

Tabu search algorithm has been used for variable selection in logistic regression outperforming 

forward and backward elimination (Pacheco et al., 2009).  Fousakis and Draper, (2008) performed 

a comparison of heuristic optimization methods for selection of binary-outcome logit models.  

Additional to variable selection, the optimization algorithm included a budget constraint 

component.   Association rules analysis for selection of multinomial logit has been proposed as a 

novel method to identify variable interactions. (Changpet & Lin, 2013). Additionally, mixed 
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integer optimization with a piecewise approximation of the logistic loss function has been applied 

for variable selection in logistic regression (Sato et al., 2016). 

The search of a mixed logit specification is more involved compare to logit or probit 

because the algorithms must determine what coefficients are deterministic or stochastic as well as 

the corresponding distributions. To determine these configurations for a mixed logit model, the 

literature provides guidance. Train (2003) provides the theoretical background necessary for the 

estimation and interpretation of mixed logit models. The adequacy of coefficients modeled as 

random parameters can be determined with a test of omitted variable and properly defined artificial 

variables (Daniel McFadden and Kenneth Train, 2000). Marginal likelihood with Bayesian 

approaches has been proposed as a comparison measure for mixed logit.(Balcombe, Chalak, & 

Fraser, 2009). For modeling of correlation and account ford scale heterogeneity Hess & Train 

(2017) provide a list of suggestions that the analyst can or should use to approach this specification.   

To the best knowledge of the authors, an approach to search the best mixed logit model 

specification is not yet available in the literature. For the remaining of this document, a mixed logit 

model specification will be known as model specification.  
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CHAPTER 3: METHODOLOGY 

Mathematical Programming - Problem Formulation 

The following notation is used to describe and formulate the proposed problem: 

x  vector of potential explanatory variables 

N number of observations  

K number of potential explanatory variables 

S number of included variables 

J number of alternatives or discrete outcomes 

i subscript to denote a decision maker; i = 1, 2, …, N 

j superscript to denote an alternative; j = 1, 2, …, J 

k subscript for a variable, k = 1, 2, ..., K 

𝑦𝑖𝑗 indicator variable equal to 1 if decision maker i chooses alternative j; 0 otherwise. 

𝑠𝑘   indicator variable to denote when variable xk is included, 𝑠𝑘 ∈ 𝒔 . 𝑠𝑘  equal to 1 if 

variable xk is included; 0 otherwise. 

𝛽𝑘
𝑗
 coefficient for variable 𝑥𝑘  and alternative j; 𝛽𝑘

𝑗
∈ 𝜷. 

s vector of included variables. 

𝜷 vector of coefficients for potential explanatory variables. 

𝒇 vector of density functions for coefficients 𝜷. 

𝑓𝑘 density function for coefficient 𝛽𝑘 . Possible density functions 𝑓𝑘  are: normal, 

lognormal, uniform, triangular or 𝑓𝑘 is equatl to when no density function will be used 

 

The observed utility 𝑉𝑖𝑗 that a decision maker i obtains from alternative j can be represented as a 

linear dependency on the attributes of the decision maker and the alternatives as: 
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𝑉𝑖𝑗 = 𝛽0
𝑗

+ 𝛽1
𝑗
𝑥𝑖1 + ⋯ + 𝛽𝐾

𝑗
𝑥𝑖𝐾 (1) 

For this research, the observed portion of utility 𝑉𝑖𝑗 is extended to add the indicator 𝑠𝑘 of included 

variables. 

𝑉𝑖𝑗 = 𝛽0
𝑗

+ 𝛽1
𝑗
𝑥𝑖1𝑠1 + ⋯ + 𝛽𝐾

𝑗
𝑥𝑖𝐾𝑠𝐾 (2) 

In mixed logit, the probability that a decision maker i chooses alternative l is modeled as (Train, 

2003): 

𝑃𝑖𝑙 = ∫
𝑒𝑉𝑖𝑙

∑ 𝑒𝑉𝑖𝑗
𝐽

𝑗=1

𝒇(𝜷)𝑑𝜷 (3) 

The coefficients 𝜷  can be estimated by maximum log- likelihood estimation (MLE). The log-

likelihood LL, is calculated as: 

𝐿𝐿 = 𝑙𝑛(𝐿) = ∑ ∑ 𝑦𝑖𝑗𝑙𝑛(𝑃𝑖𝑗

𝐽

𝑗=1

𝑁

𝑖=1

) (4) 

BIC, which is the measure for model comparison used in this study, is represented by Equation (5). 

𝐵𝐼𝐶 = ln(𝑁) 𝑆 − 2ln (𝐿𝐿) (5) 

The objective, represented by Equation (6), is to find the model specification M = {s, f} with 

included variables s, the coefficients 𝜷, and the density functions f that maximize the BIC.  

𝑀𝑖𝑛 𝐵𝐼𝐶 = ln(𝑁) 𝑆

− 2ln (∑ ∑ 𝑦𝑖𝑗𝑙𝑛(∫
𝑒𝛽0

𝑗
+𝛽1

𝑗
𝑥𝑖1𝑠1+⋯ +𝛽𝐾

𝑗
𝑥𝑖𝐾𝑠𝐾

∑ 𝑒𝛽0
𝑗

+𝛽1
𝑗

𝑥𝑖1𝑠1+⋯ +𝛽𝐾
𝑗

𝑥𝑖𝐾𝑠𝐾

𝐽

𝑗=1

𝒇(𝜷)𝑑𝜷

𝐽

𝑗=1

𝑁

𝑖=1

) ) 

(6) 

Subject to: 
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 𝑠𝑘 =  {

  
1   ↔ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥𝑘 𝑖𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 = 1, 2, … 𝑁; 
0    𝑜𝑡ℎ𝑒𝑟𝑤ℎ𝑖𝑠𝑒                                                                                                  

}  (6) 

  

 

Solution Algorithm 

A simulated annealing algorithm was used to solve the above minimization problem. This 

metaheuristic was selected because it has been successfully applied in variable selection problems 

(Brusco, 2014; Hasan Örkcü, 2013). In addition, its implementation and parameter tuning are 

relatively easy. Simulated annealing is a widely-used metaheuristic for optimization problems 

(Kirkpatrick et al., 1983) which uses the analogy of the controlled cooling process of materials to 

improve their properties (annealing process).  

Simulated annealing iteratively searches the feasible region trying to find better solutions. 

One of the most important features of simulated annealing is that it avoids local optimal by 

strategically accepting bad quality solutions. The probability of accepting a bad solution is a 

function of the temperature. At the beginning of the optimization process, when the temperature is 

high, the algorithm accepts low quality solutions with a high probability. The acceptance 

probability decreases as the temperature value decreases.  

To use a simulated annealing algorithm a researcher needs to specify: (i) a quality measure 

for a solution (BIC in this case), (ii) a neighborhood criteria that tells the algorithm how to move 

through the search space and (iii) a cooling schedule (Initial temperature T0, final minimum 

temperature Tmin, cooling rate ϕ, and Boltzmann Constant B) that models how the temperature 

decreases and when the algorithm stops. The stopping criteria for the algorithm is also handled by 

the cooling schedule, specifically by the minimum temperature. The cooling schedule for the 

algorithm proposed in this study was configured to execute 150 iterations. 
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The algorithm steps are illustrated in Figure 1 and a description of such steps is provided 

below. 

Step 1: Initialization 

Step 1.1: An initial solution M = {s, f} is generated by randomly assigning values to s and 

f.  

Step 1.2: Set values of initial temperature (T0), minimum temperature (Tmin), 

cooling rate (ϕ), and the maximum number of neighbors to be generated (Nmax) at each 

temperature level. 

Step 1.3: Initialize value for current temperature T as T = T0 

Step 2: Generate neighbor solution Mn 

Step 2.1: A neighbor solution is generated from M = {s, f} by randomly changing one 

element in the vector of selected variables and in the vector of density functions. 

Step 2.2: Step 2.1 is repeated until Nmax neighbor solutions have been generated. 

Step 2.3: For each Nmax neighbor, estimate mixed logit model and remove not significant 

variables at 0.1 level. 

Step 2.4: Calculate BIC for all Nmax neighbors generated in Step 2.3. Only the variables 

that were established as significant in previous step are used for the estimation of the BIC 

measure. 

Step 2.5: Select the best, smaller BIC, quality solution Mn from the Nmax neighbor solutions.  

Step 3: Determine acceptance of neighbor solution Mn 

Step 3.1: If the neighbor solution Mn has a BIC smaller than current solution M then Mn is 

set as current solution M, (M = Mn). Otherwise go to step 3.2. 

Step 3.2: Generate a random number r = R (0,1).  
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Step 3.3: Calculate ΔBIC = BIC(Mn)-BIC(M).  

Step 3.4: Calculate the probability of acceptance Pa = exp(ΔBIC/B*T) 

Step 3.5:  If Pa > r then Mn is set as current solution M, (M = Mn). 

Step 4: Check stop criteria. 

Step 4.1: If T < Tmin (the cooling was completed) then stop and return the current solution 

M. Otherwise go to step 4.2 

Step 4.2: Update the temperature T = ϕT and return to step 2. 
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Figure 1. Steps of the proposed simulated annealing algorithm.  
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CHAPTER 4: EXPERIMENTS 

Experiment 1 and 2 

In this study, three experiments were performed. For the first and second experiment a dataset for 

choices of alternative-fuel vehicles, initially used by Brownstone & Train (2000), was used. This 

dataset comes from a stated preference survey with 21 alternative specific variables and 4,654 

observed choices. Table 1 provides a description of the variables included on this dataset as shown 

in Brownstone & Train (1999). 

The first experiment had a random start point and parameters for simulated annealing: T0 

= 1, minimum temperature Tmin = 0.002, cooling rate ϕ = 0.96, and Boltzmann constant = 0.0009.  

The neighboring generation process changes 15% of the elements in the vector of the selected 

variables and in the vector of density functions. The output of this experiment is denoted as Model 

1a. 

The second experiment has a different start point and a slight modification of the 

parameters of simulated annealing. A specification similar to the one in McFadden & Train (Daniel 

McFadden and Kenneth Train, 2000) was used as start point. Hence, the starting search point is 

already an excellent solution. The motivation of this experiment is to represent a more extensive 

search relative to the first experiment and to investigate the existence of a better model 

specification subject to the use of a superior optimization algorithm. In the context of metaheuristic 

optimization, an intensive search involves both ‘exploration’ and ‘exploitation’. The Boltzmann 

constant was set to 0.03; for a neighboring generation, and only one element in the vector of 

selected variables and vector of density functions was changed. The cooling schedule and 

neighborhood criteria were set to perform a more intensive search. The output of this experiment 

is denoted as Model 1b. 
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Table 1. Variables for Alternative-Fuel Vehicles Dataset 

Variable names  Description 

Price/ln(income)  Purchase price in thousands of dollars, divided by the natural log of 

household income in thousands 

Range Hundreds of miles that the vehicle can travel between 

refueling/recharging 

Acceleration  Seconds required to reach 30 mph from stop, in tens of seconds 

(e.g., 3 s is entered as 0.3) 

Top Speed Highest speed that the vehicle can attain, in hundreds of miles/h 

(e.g., 80 mph is entered as 0.80) 

Pollution Tailpipe emissions as fraction of comparable new gas vehicle 

Size  0"mini, 0.1"subcompact, 0.2"compact, 0.3"mid-size or large 

Big Enough 1 if household size is over 2 and vehicle size is 3; 0 otherwise 

Luggage Space  Luggage space as fraction of comparable new gas vehicle 

Operating Cost Cost per mile of travel, in tens of cents per mile (e.g., 5 cents/miles 

is entered as 0.5.) For electric vehicles, cost is for home recharging. 

For other vehicles, cost is for station refueling 

Station Availability Fraction of stations that have capability to refuel/recharge the 

vehicle 

Sports Utility Vehicle 1 for sports utility vehicle, zero otherwise 

Sports Car 1 for sports car, zero otherwise 

Station Wagon 1 for station wagon, zero otherwise 

Truck  1 for truck, zero otherwise 

Van  1 for van, zero otherwise 

EV  1 for electric vehicle, zero otherwise 

Commute <5 & EV 1 if respondent commutes less than five miles each day and vehicle 

is electric; zero otherwise 

College & EV 1 if respondent had some college education and vehicle is electric; 

zero otherwise 

CNG 1 for compressed natural gas vehicle, zero otherwise 

Methanol  1 for methanol vehicle, zero otherwise 

College & methanol  1 if respondent had some college education and vehicle is 

methanol; zero otherwise 
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Experiment 3 

For the third experiment, a dataset from a stated preference survey for streaming video services 

was used. This dataset with 9 variables and 3300 observations was initially used by Glasgow & 

Butler (2017). This dataset has responses for 330 individuals; each individual has 10 observed 

choices which constitutes it as panel data. Table 2 provides a description of the variables included 

on this dataset as shown by Glasgow & Butler (2017). The third experiment has the same 

parameters of first experiment for simulated annealing algorithm; the only difference being the 

Boltzmann constant which is 0.0004 in this case.  

 

Table 2. Variables for Streaming Video Service Dataset 

Variable Description 

Share NPII 1 for Share Non-Personally Identifiable Information, zero otherwise 

Share NPII and PII 1 for Share Non-Personally Identifiable Information and Personally 

Identifiable Information, zero otherwise 

Price  Monthly price of the service 

More content 1 for 10 000 movies, 5000 TV episodes, zero otherwise 

More TV/fewer movies 1 for 2000 movies, 13 000 TV episodes, zero otherwise 

Commercials 1 for Commercials, 0 otherwise, zero otherwise 

Fast content  1 for TV episodes next day, movies in 3 months, zero otherwise 

No service 1 for no streaming video service, zero otherwise 

 

For all the experiments, the parameters for simulated annealing were defined by following 

suggestions from previous studies  by Hajek (Hajek, 1988), Nourani & Andresen (Nourani & 

Andresen, 1998) and Paz et. al. (Paz, Molano, Martinez, Gaviria, & Arteaga, 2015). R 

programming language was used for the implementation of the proposed algorithm, and  open 

source library, mlogit for R, was used to estimate of the mixed logit models (Croissant, 2012). 

Halton sequences with 100 random draws were used for the estimation. The experiments were 

executed on a laptop with 6 GB of RAM memory and an i7-4500U processor at 1.8 GHz. 
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CHAPTER 5: RESULTS 

Experiment 1 and 2 

Figures 2 and 3 illustrate the improvement of the BIC over iterations of the proposed algorithm for 

Experiments 1 and 2, respectively. For Experiment 1, the initial BIC was 15,749.4; after 150 

iterations, the BIC was 14,946.33. The execution time was 13.4 hours. As illustrated in Figure 3, 

similar results were obtained for Experiment 2. These improvements in the BIC suggest that the 

proposed algorithm can find a model specification with adequate goodness of fit. Table 3, provides 

the output of the proposed algorithm for Experiments 1 and 2; these are the models with the 

minimum BICs.  

 

Figure 2. BIC vs. iterations for Model 1a. 
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Figure 3. BIC vs. iterations for Model 1b. 

For Model 1a, the random effects of variables Acceleration and Operating Cost follow a 

normal distribution. For Model 1b, the random effects of variables Size and EV follow a normal 

distribution while for variables Operating Cost and CNG follow a triangular distribution. The use 

of triangular distributions has benefit when calculating the willingness to pay values. McFadden 

& Train (Daniel McFadden and Kenneth Train, 2000) estimated (Table IV) a mixed logit model 

for the same dataset used in this study. This model from McFadden & Train is denoted here as 

MAT. 
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Table 3. Algorithm output for Experiments 1 and 2. 

 Model 1a  Model 1b 

Variable Coefficient Std. Error  Coefficient Std. Error 

Price/log(income) -0.29313 0.82023  -0.33907 0.05713 

Range 0.00396 0.00031  0.00669 0.00093 

Acceleration -0.07894 0.01378  -0.11652 0.02187 

Top Speed 0.00422 0.00087  - - 

Pollution -0.55782 0.10221  -0.75645 0.18203 

Size 0.1276 0.03207  0.22116 0.0628 

Luggage space - -  1.12805 0.41114 

Operating cost -0.10088 0.01064  -0.25231 0.03383 

Station availability 0.27699 0.07455  0.70534 0.19206 

Sports utility vehicle 0.86253 0.14617  0.92437 0.14968 

Sports car 0.67947 0.15956  0.71357 0.16388 

Station Wagon -1.48132 0.06642  -1.51967 0.06782 

Truck -1.05403 0.05525  -1.11808 0.05592 

Van -0.80282- 0.05419  -0.81443 0.05619 

Commute < 5 & EV1 - -  0.42306 0.19038 

College & EV - -  0.93633 0.25907 

College & Methanol - -  0.39795 0.13779 

CNG2 - -  -0.08632 0.19047 

EV - -  -1.35161 0.49765 

Methanol 0.38902 0.05059  0.49892 0.17595 

      
Random Effects      
Acceleration 0.20188 0.07144  - - 

Size - -  0.84084 0.25975 

Operating cost 0.26487 0.03276  0.65276 0.10672 

CNG - -  3.25604 0.61779 

EV - -  2.95643 0.60767 

      
Log likelihood -7405.8   -7363.11  
BIC 14946.33   14920.45  

1Electric vehicle    2Compressed natural gas  
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The variable known as Big Enough, previously included in the MAT model, was not 

included in Models 1a and 1b. A probable reason for this is that the effect of this variable could be 

explained by other variables. For example, the variables Size and Luggage Space can have 

information about whether a vehicle is big enough. Therefore, removing the variable Big Enough 

from the model does not have a large effect. A possible disadvantage for Models 1a and 1b can be 

the values of the random effects. These values are small compared to those in the MAT model. 

This can be inconvenient because they can be interpreted as nonsignificant random effects. In 

addition, Model 1a removes several variables that the analyst might consider important for the 

interpretation of the model.  

The signs for the coefficients in Model 1a and 1b match the ones in MAT model, also, the 

magnitude of the coefficients is similar. The previous means that the overall effect of the variables 

on the output is similar for MAT model and Model 1a and 1b which leads to conclude that the 

models found by the proposed algorithm are meaningful and useful. For example, the variable 

Price has a negative sign which can be interpreted as: larger values for prices have a negative 

impact for the choice of a vehicle. In the other hand, the variable range has a positive sign with 

means that vehicles with larger values for range are preferred by decision makers. For the variables 

that are modeled as random parameters, the coefficients provide more insights about the preference 

of the decision makers. For example, for variable Electric Vehicle (EV), the coefficient -1.35 

represents that, because of the negative sign, in average, people avoids this type of vehicles. 

However, the value of 2.9 of standard deviation represents that despite of the preference for Non-

Electric Vehicles there is a big fraction of people who are willing to use electric vehicles. 

Probabilities above and below zero for the given mean and standard deviation following a normal 

distribution can be used to calculate the amount of people who like and dislike Electric Vehicles. 
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Computing these probabilities, it is possible to determine that 68% of the decision makers prefer 

Non-Electric Vehicles and the remaining 32% prefer Electric Vehicles. 

As shown in Table 4, the MAT model has a BIC of 14,962.72 which is less than the BIC 

for Model 1. However, the likelihood ratio shows that the difference between these two models is 

significant. Therefore, compared to Model 1a, the MAT model fits the data better. On the other 

hand, a likelihood ratio test showed that Model 1b fit the data better than the MAT model. Even 

though the log likelihood of Model 2 was a little bit smaller, it was obtained using fewer parameters 

compared to MAT model. Hence, the difference in the log likelihood does not seem significant. 

The log likelihood ratio and the BIC provided evidence that the proposed algorithm could find a 

quality model in terms of goodness of fit. 

Table 4. Summary of Quality Measures for Models 

Model BIC Log-Likelihood 

Dataset for alternative-fueled vehicles   

   McFadden & Train (2000) 14962.7 -7358.9 

   Model 1a 14946.3 -7405.8 

   Model 1b 14920.4 -7362.9 

   

Dataset for video streaming services   

   Glasgow & Butler (2017) 8864.7 -4363.5 

   Model 2 8958.8 -4426.7 

 

Experiment 3 

Figure 4 illustrates the improvement in the BIC for Experiment 3. The initial BIC was 9826.08 

and the final BIC was 8958.85. The behavior of the BIC through the iterations of the algorithm 

suggests that convergence was reached.  

Table 5 shows Model 2, which is the output of the proposed algorithm for the third 

experiment. The random effects for variables Fast Content, More Content and, No Service follow 
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a normal distribution; and for variables Share NPII and PII, Price, and, Commercials follow a 

triangular distribution. The variable More TV/fewer movies initially included by Glasgow & 

Butler (2017) was not included by the proposed algorithm. A probable reason for this is that the 

inclusion of the variable More Content might be enough to explain the effect of the omitted 

variable. 

 

 

Figure 4. BIC vs iterations for Model 2. 
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Table 5. Algorithm output for Experiment 3. 

Model 2 

Variable Coefficient Std. Error 

Share NPII -0.43209 0.053979 

Share NPII and PII -0.74832 0.069543 

Price -0.2342 0.013359 

Commercials -0.27574 0.047222 

Fast Content 0.473953 0.048558 

More Content 0.412229 0.049899 

No Service -3.36217 0.18228 

   

Random Effects   

Share NPII and PII 2.06521 0.199235 

Price 0.346337 0.015394 

Commercials 1.42009 0.126587 

Fast Content 0.66417 0.07209 

More Content 0.74492 0.073734 

No service 2.550361 0.15175 

   

Log likelihood -4426.76  

BIC 8958.854  
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For Model 2, the signs of the coefficients are the same as the ones for the model originally 

proposed by Glasgow & Butler (2017), also the magnitudes of the coefficients are similar. The 

interpretation of these coefficients evidence that the effects of the variables is the expected 

considering preferences of people. For example, attributes such as Share Information, Price, and 

Commercials affect negatively the choice of a video streaming service; and attributes such as Fast 

Content and More Content affect positively the choice. These effects make sense in reality. The 

random effects for some of the coefficients allow a better understanding of the distribution of the 

preferences. For example, for the variable commercials the coefficient of -0.27 shows an average 

preference for services without commercials. However, the standard deviation value of 1.42 shows 

that this preference is dispersed and a significant share of the population is willing to pay for video 

streaming services with commercials. Using this mean and standard deviation it is possible to 

stablish that approximately 57% of the respondents to the survey prefer video streaming services 

without commercials and the remaining 43% are willing to accept commercials. 

The improvement in the BIC and a likelihood ratio test evidence that the final model is a 

good quality model, however the goodness of fit is not as good as the one for the model originally 

proposed by Glasgow & Butler (2017) as shown in Table 4. The reason for this is that Glasgow & 

Butler (2017), using their knowledge in the data and the interpretation that they expected for the 

model, transformed the probability function to accommodate their analysis needs. The algorithm 

proposed on this study, does not apply transformations to neither to the data nor the probability 

function.  
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CHAPTER 6: CONCLUSIONS 

The results suggest that the proposed algorithm can find an adequate specification for a mixed 

logit model in terms of goodness of fit. However, it is necessary to consider the judgement of the 

analyst in order to avoid suppression of variables or random effects important for the interpretation 

of the model. This can be handled by adding constraints to guarantee the inclusion of elements 

defined by the analyst. The main challenge when applying the proposed algorithm with a new 

dataset is to define the neighborhood criteria and cooling schedule for the simulated annealing 

algorithm. A single definition of these elements that can be applied to all problems does not exist. 

However, the existing literature provides references for this purpose. It is important to highlight 

that the proposed algorithm minimizes the intervention and required time of the analyst for the 

speciation of a mixed logit model. The algorithm only requires an initial configuration and even 

though it takes some hours to run, at the end of the process, the analyst obtains a model 

specification with substantial goodness of fit. This constitutes the proposed algorithm as a valuable 

tool to help analysts, with different levels of expertise in statistics, to specify mixed logit models. 

The first experiment found a model specification with relatively small BIC. However, the 

likelihood ratio test was more favorable for the MAT model. In the second experiment, the 

proposed algorithm found a better model specification in terms of BIC and the log likelihood ratio 

test relative to the MAT model. This result was based on an ideal initial solution and illustrates the 

existence of better solutions which can potentially be obtained using an extensive search algorithm. 

Alternatively, an analyst could obtain Model 1b by first estimating the MAT model using their 

understanding of the problem and then applying the proposed algorithm to exploit the search space 

in the vicinity of such initial solution. This gives an opportunity for the analyst to pass valuable 

problem-specific knowledge to the algorithm. The fact that an algorithm can combine exploration 
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and exploitation could be more efficient when solving the problem formulation in this study. This 

is because the proposed optimization problem generally has a search space that is big; at the same 

time, small differences could substantially impact the objective function. A memetic algorithm is 

a metaheuristic which combines exploitation and exploration and is promising to solve the 

proposed problem regardless of the initial solution. 

The proposed algorithm can be enhanced in future research to maximize the quality of the 

final model by including computations for overfitting, multicollinearity, and predictive 

performance. Other quality measures – such as prediction rate, Akaike information criteria, 

precision, and recall – can be used as objective functions. Also, McFadden & Train (2000) propose 

a test with artificial variables that helps to determine what variables can be modeled with random 

coefficients. This can be included in the proposed algorithm to reduce the search space by trying 

various density functions only for the coefficients specified by the artificial variables test. Also, 

the objective function could include a measure that penalizes random effects with low magnitude.  

Additionally, other metaheuristics, such as genetic algorithms or particle swarm optimization, that 

have been proven to be effective in optimization problems, can be applied to solve the proposed 

problem formulation.  

Finally, transformations in the data and the probability function of mixed logit can be 

included as an additional optimization dimension for the algorithm. The previous can result in 

better model specifications. The authors who originally worked with the datasets used in this study, 

proposed good-quality specifications for mixed logit models by applying transformations to the 

data or to the structure of the probability function of mixed logit. For this purposed, they used their 

knowledge about the datasets and the context of the problem. In general, an approach that 

maximizes the inclusion of knowledge of the author about the problem and the data will represent 
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an improvement to the search ability of the proposed algorithm.   
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APPENDIX A: INSTRUCTIONS TO EXECUTE ALGORITHM 

Requirements 

- Operating system: Windows, Linux, Mac 

- R version: 3.3.2 

- Libraries: mlogit for R 

- For better performance, a processor with speed superior to 3.2 Ghz is recommended. 

Steps 

1. Install R 3.3.2 (https://cran.r-project.org/bin/windows/base/old/3.3.2/R-3.3.2-win.exe) 

2. Open R console  

3. Install package mlogit for R using the following command: 

Install.Packages(“mlogit”) 

4. Set working directory to the location of the folder of the experiment to be executed, using 

command setwd in the following way: 

setwd(“c:\\Users\\Experiments\\Experiment1\\”) 

Replace the path inside the quotes with path of the experiment folder in the local computer. 

Use \\ instead of \ for path separators in windows. 

5. Open and execute the file mxlogit_search. R for the selected experiment. 

6. During the process of execution, the console shows the progress through the iterations 

and a plot of BIC vs iterations is also shown. When the script stops, the output of the 

algorithm is stored in a file named ‘mxlogit_out.txt’ inside the experiment folder. 
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APPENDIX B: SOURCE CODE FOR ALGORITHM 

Files Structure 

The algorithm is organized in two main script files and one additional file with the parameters for 

a specific experiment. A description of the script files and their functionalities is provided below. 

- mxlogit_search.R : This is the main script file. Global parameters, logging system and   

steps of simulated annealing algorithm are in this file.  To run an experiment this is the file 

that must be executed. A regular user (not developer) should not modify this file. 

- mxlogit_search_fun.R: Contains al the functions or methods used in the main file. 

Simulated annealing methods and some utility functions for logging are part of this file. A 

regular user (not developer) should not modify this file. 

- params.R: Script file with all the parameters for a particular experiment. To use the 

algorithm with a new dataset, this is the file that the analyst must modify.  In this file, the 

analyst must read the dataset and parse it to a R dataframe. The variables that the analyst 

want to be part of the analysis must be listed in the array ‘vars’. The variables that are 

alternative specific can be specified with the vector ‘asvars’. Same for individual specific 

variables ‘isvars’. The variables that need transformation for log normal distributions can 

be specified using the vector ‘lnvars’. The variables that the analyst does not want as 

random parameters can be specified using the array ‘fdvars’. All these arrays use the 

position in the array ‘vars’ as reference for the positions. Here 1 means enable and 0 

disable. At the end of the this file the parameters for the simulated annealing are listed.  
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Source Code 

mxlogit_search.R 

library(mlogit) 

#====================================== 

#ENVIRONMENT  

#====================================== 

out_file = paste("mxlogit_out.txt",sep = "")  

source("mxlogit_search_fun.R") 

source("params.R") 

cat("D  \tS  \tF \thits \tAIC     \tBIC     \t\tLL    \t\tsvars  

\t\tfvars",file=out_file,sep="\n",append=TRUE) 

 

#General parameters 

rem_nonsig_coeff = TRUE 

R = 100 #Number of random draws 

 

#====================================== 

#SIMULATED ANNEALING 

#====================================== 

start.time = Sys.time() 

print(paste("Starting algorithm at: ",start.time)) 

all_M = list() 

all_M_eval = list() 

M = generate_initial_solution() 

M = list(svars = svars, fvars = fvars)  

M_eval = evaluate(M) 

#------ Simulated annealing  

Temp = Tini 

iter = 1 

repeat{ 

  #----- Generate Neighbor 

  neighbors = lapply(1:NN,function(i) generate_neighbor(M)) 

#Generate NN neighbors 

  evals = lapply(1:NN,function(i) evaluate(neighbors[[i]])) 

#Evaluate NN neighbors 

  Mc = neighbors[[which.min(evals)]] 

  Mc_eval = evals[[which.min(evals)]] 

 

  #---- Determine acceptance of neighbor 

  if(Mc_eval < M_eval){ #Accept new neighbor as current solution 

    M = Mc 

    M_eval = Mc_eval 

  }else{ 
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    ap = acceptance_probability(M_eval,Mc_eval,Temp) 

    if(runif(1, 0, 1) < ap){ #Check acceptance probability 

      M = Mc 

      M_eval = Mc_eval 

    } 

  } 

 

  #---- Display/Store iteration findings 

  print(paste("(",iter,")",M_eval)) 

  all_M[[iter]] = M 

  all_M_eval[[iter]] = M_eval 

  plot(unlist(all_M_eval),type = "l") 

 

  #----- Update for next iteration 

  Temp = Temp*cool_rate 

  iter = iter + 1 

  if(Temp < Tmin){break;} 

} 

 

print(paste("Finishing algorithm at: ",Sys.time())) 

Sys.time() - start.time 

 

#====================================== 

#PRINT OUTPUT FILE 

#====================================== 

cat("Variables: ", vec2str(vars) 

,file=out_file,sep="\n",append=TRUE) 

cat("Alternative Specific Vars: ", 

vec2str(asvars),file=out_file,sep="\n",append=TRUE) 

cat("Vars with log transf.: ", vec2str(lnstvars) 

,file=out_file,sep="\n",append=TRUE) 

cat("\n","Evaluation / Models: 

",file=out_file,sep="\n",append=TRUE) 

cat(unlist(lapply(seq_along(all_M),function(i){paste(all_M_eval[

[i]],"\t", M2str(all_M[[i]]) ) 

})),file=out_file,sep="\n",append=TRUE) 

plot(unlist(all_M_eval),type = "l") 
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mxlogit_search_fun.R 

#====================================== 

#FUNCTIONS 

#====================================== 

get_rand_density = function(current){ 

# Returns a random density different from the current one 

  densities = c("t","n","ln")  

  opts = densities[densities != current] 

  pos = sample(1:length(opts), 1,replace=TRUE) 

  return (opts[pos]) 

} 

 

 

evaluate = function(M){ 

#Preproces and run mixed logit for specification M 

  ev = 10000000 #Set high when minimizing 

  error = TRUE 

  #------- Transform data for lognormal cases 

  TrainDataTmp = TrainData  

  tvars = vars[M$svars == 1 & M$fvars == "ln" & lnstvars == 1] 

#Variables to be transformed 

  for(var in tvars){TrainDataTmp[var] = -TrainDataTmp[var]}    

#Transform data 

 

  #------- Mixed Logit execution 

  fla = create_formula(M) 

  print(paste("MxLogit: fla= 

",paste(fla$formul[2],fla$formul[3],sep=' ~ '),";  

rpars=(",paste(names(fla$rpars),"=",fla$rpars,collapse=","),");   

svars=(",paste(M$svars,collapse=","),");   

fvars=(",paste(M$fvars,collapse=","),");",sep="")) 

  try({ 

 

  mxlogit = mlogit(fla$formul, TrainDataTmp, rpar = fla$rpars, 

panel = is_panel, reflevel = reflev,  halton = NA, R = 20) 

  rm(list=".Random.seed", envir=globalenv()) #Reset randoms 

  deg_fre = length(mxlogit$coefficients) 

  #compute_performance(mxlogit,deg_fre,"Original") 

  if(rem_nonsig_coeff){ 

  #------- Remove non significant variables 

    pvals = summary(mxlogit)$CoefTable[,4] #extract p-values 

    non_sig = names(pvals[pvals > 0.09])   #non significant 

variables 

    mxlogit$coefficients[non_sig] = 0      #ignore non-

significant coefficients 
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    mxlogit$coefficients[match(paste("sd.",non_sig, sep = 

""),names(mxlogit$coefficients))] = 0 #ignore nonsig  

    deg_fre = length(mxlogit$coefficients) - length(non_sig) 

    mxlogit <- update(mxlogit, start = coef(mxlogit), data = 

TrainDataTmp, iterlim = 0, print.level = 0) 

    rm(list=".Random.seed", envir=globalenv()) #Reset randoms 

  } 

 

  ev = compute_performance(mxlogit,deg_fre,"") 

 

  error = FALSE 

  }) 

  if(error){cat(paste("ERROR 

with:",vec2str(M$svars),"\t",vec2str(M$fvars)),file=out_file,sep

="\n",append=TRUE);rm(list=".Random.seed", envir=globalenv()) } 

  return (ev) 

} 

 

 

compute_performance = function(mxlogit,deg_fre,tag=""){ 

#Computes and logs predictive performance 

  pred = 

apply(mxlogit$probabilities,1,function(x){names(which.max(x))}) 

  pred[sapply(pred,is.null)] = "None"    #Mark null values as 

None 

  pred = unlist(pred) 

  hits = sum(sapply(1:N,function(i){pred[i] == choices[i]})) 

 

  rAIC = round(  2*deg_fre - 2*mxlogit$logLik  , digits = 3) 

  rBIC = round(  log(length(choices))*deg_fre - 2*mxlogit$logLik  

, digits = 3) 

 

  evastr = paste(deg_fre ,"\t",sum(M$svars),"\t",sum(M$fvars != 

""),"\t",hits,"\t",rAIC,"\t",rBIC,"\t\t",round( mxlogit$logLik, 

digits = 5),"\t\t", 

vec2str(M$svars),"\t\t",vec2str(M$fvars),"\t",tag,sep = "") 

  cat(evastr,file=out_file,sep="\n",append=TRUE) 

  print(paste("hits=",hits,";   BIC=",rBIC )) 

  return (rBIC) 

} 

 

 

create_formula = function(M){ 

# Creates the mixed logit formula for model specification M 

  sel_asvars = M$svars==1 & asvars==1 

  sel_isvars = M$svars==1 & isvars==1 

 



 

35 

  formul = formula(paste( 

    paste(outcome, " ~ "), 

    ifelse(sum(sel_asvars) > 0,paste(vars[sel_asvars],collapse = 

" + "),"0"), #selas 

    "|", 

    ifelse(sum(sel_isvars) > 0,paste(vars[sel_isvars],collapse = 

" + "),"0")  #selis 

    )) 

 

  rpars = setNames(M$fvars,vars) 

  rpars = rpars[sel_asvars == 1] #Only for selected variables 

  rpars = rpars[rpars != ""] 

  return(list(formul = formul,rpars = rpars)) 

} 

 

 

is_valid_neighbor = function(Mn){ 

#Check validity of a neighbor 

  #At least 1 variable 

  if(sum(Mn$svars) < 1) {return (FALSE)}                 

  #At least one alternative specific variable 

  if(sum(Mn$svars==1 & asvars==1) < 1) {return (FALSE)}  

  #At least one selected variable with density function 

  if(sum(Mn$svars==1 & Mn$fvars!="") < 1) {return (FALSE)}  

  return (TRUE) 

} 

 

 

generate_neighbor = function(M){ 

#Generates a neighbor solution 

  repeat{ #until a valid neighbor is generated 

    Mn = M 

 

    #alter selected variables svars 

    num_alterations = round(perc_alter_svars*length(vars)) 

    num_alterations = ifelse(num_alterations < 

1,1,num_alterations) #at least 1 alteration 

    positions = sample(1:length(vars),num_alterations,replace = 

FALSE) 

    old = Mn$svars[positions] 

    Mn$svars[positions] = as.numeric(!old) #Update positions as 

negation of old values 

 

    #alter density functions fvars  

    avail_pos = which(asvars == 1 & Mn$svars == 1 & fdvars != 1)  

    num_alterations = round(perc_alter_fvars*length(avail_pos)) 
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    num_alterations = ifelse(num_alterations < 

1,1,num_alterations) #at least 1 alteration 

 

    rand_pos = 

sample(1:length(avail_pos),num_alterations,replace = FALSE) 

    positions = avail_pos[rand_pos] 

    Mn$fvars[positions] = 

sapply(Mn$fvars[positions],function(x){ ifelse(x=="","n","")   

}) 

 

    #Change distrbution for D positions 

    avail_pos = which(Mn$fvars != "" & Mn$svars == 1 & fdvars != 

1) 

    rand_pos = 

sample(1:length(avail_pos),num_alterations,replace = FALSE) 

    positions = avail_pos[rand_pos] 

    #For each position get random density 

    Mn$fvars[positions] = 

sapply(Mn$fvars[positions],function(x){get_rand_density(x)})  

 

    if(is_valid_neighbor(Mn)) {break} 

  } 

  return(Mn) 

} 

 

generate_initial_solution = function(){ 

#Generates random initial solution 

  svars = rep(0,length(vars)) 

  fvars = rep("",length(vars)) 

  pos = sample(1:length(vars),length(vars)*0.9,replace = FALSE) 

  svars[pos] = 1 

  fvars[pos] = 

sapply(fvars[pos],function(x){get_rand_density(x)}) 

  M = list(svars = svars, fvars = fvars)  

  return (M) 

} 

 

acceptance_probability = function(M_eval, Mc_eval, Temp){ 

#Checks acceptance probability given difference in evaluations 

  return ( exp(-(abs(M_eval-Mc_eval)/Temp*boltz )) ) 

} 

 

 

M2str = function(M){ 

#Returns a string with elements of model M 

  return (paste("S =",paste(M$svars,collapse=","),"    F 

=",paste(M$fvars,collapse=",") )) 
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} 

 

vec2str = function(vec){ 

#Returns a string with elements of array vec 

  return (paste(vec,collapse=",")) 

} 
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params.R 

#====================================== 

#DATASET PARAMETERS 

#====================================== 

Car = read.csv("Car.csv") 

 

CarLong <- mlogit.data(Car, shape = "wide", varying = 2:139, 

choice = "choice",sep = "") 

 

Data = Car           #Data in wide format 

TrainData = CarLong  #Data in long format 

choices = TrainData[TrainData$choice,]$alt #Vector of choices 

N = length(choices) 

outcome = "choice" 

reflev = "1" 

vars = 

c("price","range","acc","speed","pollution","size","be","space",

"cost","station","suv","sport","wagon","truck","van","ev","comlf

ive","colev","cng","methanol","colnmethan")#variable names 

 

asvars = c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)   

#Alternative specific variables 

isvars = as.numeric(!asvars)                            

#Individual specific variables 

fvars = 

c("n","","","","","","","","","","","","","","","","","","","","

") #Distribution for alternative specific variables 

svars = c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)    

#Selected variables 

fdvars = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)   

#Variables with fixed distrubution function 

lnstvars = c(1,0,1,0,1,0,0,0,1,0,0,0,1,1,1,1,0,0,0,0,0) 

#Variables that need sign to be transformed when log normal 

is_panel = FALSE 

if(! (length(vars) == length(fvars) && length(vars) == 

length(asvars) && length(vars) == length(svars)) ){ 

  stop("Size of vectors associated with variables must match") 

} 

 

#====================================== 

#SIMULATED ANNEALING PARAMETERS 

#===================================== 

perc_alter_fvars = 0.18   #Alteration percentage for densities 

perc_alter_svars = 0.18   #Alteration percenta for selected 

variables 

NN = 3                    #Number of neighbors 
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Tini = 1                  #Initial temperature 

Tmin = 0.0022             #Final temperature    

cool_rate = 0.96          #Cooling rate  

boltz = 0.0004            #Boltzman constant 
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