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ABSTRACT 

The typical approach of increasing infrastructure to alleviate traffic issues such as congestion is 

becoming unviable due to limited space, high cost, and associated externalities. Control and 

management strategies using Intelligent Transportation Systems (ITS) seek to maximize the use 

of existent infrastructure. Many ITS strategies, such as the deployment of information, require or 

benefit from knowledge about traffic patterns and trends. This study proposes a mathematical 

programming formulation and solution algorithm that considers multiple time intervals for the 

estimation of network-wide traffic states and calculation of the corresponding transition 

probabilities. The proposed solution enables the determination of sections of the network with high 

traffic variability. This enables the location of congested zones and the determination of reliable 

traffic flow characteristics. Results from analyzing network level data suggest a trend for 

congested periods and predominant traffic states in the time intervals considered. It is observed 

that limited route choices during these periods affected the number of traffic states. From the 

results set a forecasting system that considers the traffic conditions of multiple time intervals 

simultaneously was developed and validated with the 10-fold cross validation method. This system 

presents one of the applications of the joint analysis of clustering of traffic characteristics and 

associated transition probabilities. 
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CHAPTER 1: INTRODUCTION 

High costs and unavailability of space constitute important factors that limit increase of highway 

infrastructure (Padiath, Vanajakshi, & Subramanian, 2012;Ma, Zhou, & Abdulhai, 2015;Hashemi 

& Abdelghany, 2015). To illustrate a better use of existing infrastructure, various studies have 

used traffic data to better understand traffic dynamics and generate effective traffic control and 

management strategies under the umbrella of Intelligent Transportation Systems (ITS) (Paz & 

Peeta, 2009a; Dimitrakopoulos & Demestichas, 2010; Zavin, Sharif, Ibnat, Abdullah, & Islam, 

2017; Dogru & Subasi, 2015). Many ITS strategies require dynamic and network-wide traffic flow 

data (Paz & Peeta, 2009a; Kachroo, Shlayan, Paz, Sastry, & Patel, 2015; Paz & Peeta, 2009b). 

Traffic patterns, including variable behavior, can be estimated using historical data to generate 

effective ITS strategies (Vlahogianni, Karlaftis, & Golias, 2014; Nemtanu, Costea, Badescu, 

Iordache, & Schlingensiepen, 2016; Van Lint & Hoogendoorn, 2010; Koroliuk & Connaughton, 

2015; Paz & Chiu, 2011). In general, traffic data can be classified into location-based, spatial, or 

network categories (Padiath et al., 2012; Gu, 2016).  

There is a body of literature about the analysis and use of this type of traffic data. (Zhang, 

Ye, Wang, & Malekian, 2016) proposed an algorithm named, grey relational membership degree 

rank clustering to cluster values of traffic flow characteristics, velocity, density and volume, using 

sensor data from Nanjing China. The proposed algorithm judged if a congested traffic condition 

was present by comparing clustered traffic characteristics with those present during a typical 

congested traffic event. The study obtained better results than previous studies using alternative 

clustering methods and speed as the only considered traffic characteristic. (Bharadwaj, Biswas, & 

Ramakrishnan, 2016) created a traffic dataset using video from various locations of a city in India. 

Samples of images of vehicles were classified with different clustering and artificial intelligence 



   

2 
 

algorithms. The study concluded that further development to obtain more robust classification 

algorithms was required, as the various tested clustering methods provided low accuracy results.  

(Dogru & Subasi, 2015) Generated traffic data of speed and location of vehicles from a simulation 

model. The data, were analyzed with the use of various clustering methods to determine anomalous 

situations. If the anomalies were present during a prolonged period of time, the system defined the 

presence of an accident on the highway. The study concluded that the best clustering methods to 

determine the presence of accidents on a highway are the “density-based spatial clustering of 

applications with noise (DBSCAN)” and the “agglomerative hierarchical clustering (AHC)”. 

These studies showed how aggregation of traffic data contributes to acquire knowledge or 

information regarding traffic conditions. Nonetheless, these studies provide a limited view because 

frequency of traffic conditions is not considered. Analyzing this frequency would result in the 

estimation of new patterns and knowledge that can determine how common are certain traffic 

conditions in a corridor or network. 

The existing literature provides methods to forecast traffic states and generate traffic 

control and management strategies (Zhao, 2015; J. Xu, Deng, Demiryurek, Shahabi, & Schaar, 

2015; Allström et al., 2016; Oh, Byon, & Yeo, 2016; Barros, Araujo, & Rossetti, 2015). An 

important group of studies involving traffic guidance require effective forecasting systems (Zavin 

et al., 2017; Paz & Peeta, 2009d; Paz & Peeta, 2009c; Paz & Peeta, 2008; Lu, Duan, & Zheng, 

2009; Boriboonsomsin, Barth, Zhu, & Vu, 2012). Using historical traffic data, a knowledge base 

can be built and used in conjunction with real-time traffic data to forecast and advise drivers about 

traffic conditions and adequate traffic routes. A system framework capable of determining possible 

traffic states across time intervals can be used to calculate transition probabilities where the highest 

values denote likely future conditions. Transition probabilities among traffic states can be used to 
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estimate the probability of having a specific group of traffic characteristics at a specific time period 

(Gu et al., 2016).  

(Y. Xu, Xi, & Li, 2016) developed a scheme of traffic signals using a transition probability 

model applied to a network of four segments. The transition probability model was linked with a 

Markov Decision Process to control traffic signals in the network. The transition probability 

model, described with a mathematical programming formulation, was first applied to a link and 

extended to the four segments of the network. To test this scheme, simulation experiments were 

performed. Results illustrated that this scheme outperformed previous related methods. (DOU, 

WANG, & GUO, 2011) developed a traffic guidance system to support travelers and managers of 

a traffic network. Logistic regression was used to build a probability function to estimate traffic 

state transitions. A historical traffic dataset was used to experiment with the estimated transitions 

in time intervals of 5, 10, 15 and 30 min. The study provided better results while estimating traffic 

state transitions using time intervals of 5 minutes. (Gu et al., 2016) developed a probabilistic model 

to estimate traffic states. This model generated a distribution using the Gibbs sampling method. 

This distribution was generated from previously observed traffic states. The process of estimating 

future traffic states started with the determination of the current conditions; then, a probability 

distribution used the current traffic conditions as an input to determine a future traffic state. 

Various experiments tested the efficiency of the model. (Hellinga & Noroozi, 2014) developed a 

near-future predictor using a Markov model to estimate transition probabilities among different 

traffic states. Different strategies were proposed to decrease error. The proposed approach was 

tested through experimentation with highway traffic data. The results indicated that the approach 

was capable of predicting traffic states and that the postprocessing strategies to decrease the error 

in the predictor were successful.  
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The existing literature has proposed various models that used the calculation of transition 

probabilities among traffic states to control and manage traffic networks (Zhao, 2015; J. Xu et al., 

2015; Allström et al., 2016; Oh et al., 2016; Barros et al., 2015; Maheshwari, Kachroo, Paz, & 

Khaddar, 2015). Common limitations of these models are related to the small size of the network 

considered. Further, the transition probabilities were calculated between a specific time interval t 

and its subsequent t+1; however, subsequent time intervals, t+2, t+3,…,t+n were not considered. 

This presents a limited view of what could be the evolution of traffic states. The nonexistence of 

a joint analysis of clusters of traffic characteristics and associated transition probabilities limits the 

understanding of existent traffic trends in historical traffic datasets. Important trends such as 

congested periods, predominant traffic states, and transition probabilities could be obtained from 

this analysis and used to develop improved control and management systems such as, traffic 

guidance systems, traffic signal systems, and forecasting systems (core components of the ITSs) 

that can be used by drivers and traffic controllers to take decisions, avoid unwanted traffic 

conditions, or even lead the system to a desired traffic state. The development of these systems 

can be improved considering the possible evolution of traffic conditions. This would offer more 

accurate results than the ones obtained by actual systems that only factor for traffic conditions at 

a given time and a subsequent. Not considering the evolution of traffic condition between time 

intervals creates a gap for uncertainty that could lead to inconsistent results, this presents a problem 

for actual control and management systems. 

To address the described limitations, the present work proposes a mathematical 

programming formulation and solution algorithm that considers multiple time intervals for the 

generation of clustered traffic characteristics and the calculation of transition probabilities among 
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them. Centroids of the clustered traffic characteristics represent average traffic states for each time 

interval. A forecasting system based in the obtained results is presented. 

The remaining portions of this manuscript is divided into four sections. Chapter 2 presents 

the methodology section, where a clustering problem is defined using a mathematical 

programming formulation and a proposed calculation for transition probabilities is described. 

Chapter 3 describes a solution algorithm for the proposed mathematical program. Chapter 4 

includes numerical experiments and results using data from the freeway of southern Nevada, 

Nevada. Results obtained are used to locate sections with high variations of traffic characteristics 

and to generate a forecasting system. The final part of this chapter contains a discussion of the 

obtained results. Chapter 5 provides conclusions, future work and limitations of the proposed 

framework. 
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CHAPTER 2: METHODOLOGY 

Terms used in the following mathematical programming formulation are defined in Table 1. The 

following is a discrete time non-linear mixed integer mathematical programming formulation. 

Superscript t, represents a time interval with a length Δ which is considered as the period used to 

register and average observations of various traffic characteristics in the dataset. It is assumed that 

the length of the observation time Δ is the same for every traffic characteristic. The problem of the 

generation of clusters of traffic characteristics and its associated transition probabilities is 

described as follows. First a definition of the terms is displayed. Second a description of the 

mathematical programming formulation for the generation of cluster of traffic characteristics is 

presented and notated in equations. Finally, the problem of the computation of transition 

probabilities between traffic states is described by an algorithm of five steps; the solution of the 

described problem is presented in the chapter 3. 

 

Table 1. Definition of Terms

Term Definition 

𝑁 Set of nodes in the network  

𝑅 Set of upstream nodes, 𝑅 ⊆ 𝑁 

𝑟 Superscript to denote an upstream node, 𝑟 ∈ 𝑅 

𝑃 Set of downstream nodes, 𝑃 ⊆ 𝑁 

𝑝 Superscript to denote a downstream node, 𝑝 ∈ 𝑃 

𝐴 Set of links in the network  

𝑟𝑝 Superscript to denote a link between nodes 𝑟 and 𝑝, 𝑟𝑝 ∈ 𝐴 

𝑌 Set of years considered in the analysis 

𝑦 Superscript to denote a year, 𝑦 ∈ 𝑌 

𝑆 Set of seasons in year y 

𝑠 Superscript to denote a season in a year, 𝑠 ∈ 𝑆; 𝑠 = 1,2,3,4 

𝑊 Set of weeks in season 𝑠 
𝑤 Superscript to denote a week in a season, 𝑤 ∈ 𝑊;  𝑤 = 1,………,12 

𝐷 Set of days in week 𝑤 

𝑑 Superscript to denote a day in a week, 𝑑 ∈ 𝐷;  𝑑 = 1,………,7 
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𝑇 Time period of analysis  

𝑡 Superscript to denote an observation time interval, 𝑡 ∈ 𝑇; 𝑡 = 1,………, 𝑇 

Δ Length of an observation time interval 𝑡 

𝑀 
Historic network-wide traffic flow characteristics including speed, 

volume, and occupancy. 

𝑐 Subscript to denote a traffic characteristic such as speed from 𝑀 

𝑚𝑐
𝑦𝑠𝑤𝑑𝑡,𝑟𝑝

 Traffic characteristic 𝑐 for link 𝑟𝑝 at 𝑦𝑠𝑤𝑑𝑡, 𝑚𝑐
𝑦𝑠𝑤𝑑𝑡,𝑟𝑝 ∈  𝑀 

𝑚𝑦𝑠𝑤𝑑𝑡 
Network-wide traffic characteristics 𝑚𝑐

𝑦𝑠𝑤𝑑𝑡,𝑟𝑝
 at 𝑦𝑠𝑤𝑑𝑡, ∀ 𝑐 ∈ 𝑀, ∀ 𝑟 ∈

𝑅, ∀ 𝑝 ∈ 𝑃 

𝐵𝑦𝑑𝑡 

Set of Network-wide traffic characteristics 𝑚𝑦𝑠𝑤𝑑𝑡 at 𝑦𝑑𝑡, where:  

𝐵𝑦𝑡 =⋃⋃𝑚𝑦𝑠𝑤𝑑𝑡

𝑊

𝑤=1_

𝑆

𝑠=1

      

∀ 𝑦 ∈ 𝑌, 𝑑 ∈ 𝐷, ∀ 𝑡 ∈ 𝑇 

𝑄𝑦𝑑𝑡 
Number of clusters of traffic characteristics in 𝐵𝑦𝑑𝑡 , ∀ 𝑦 ∈ 𝑌, ∀ 𝑑 ∈
𝐷, ∀ 𝑡 ∈ 𝑇 

𝑞(𝑦, 𝑑, 𝑡) 
Subscript to denote a cluster of network-wide traffic flow characteristics 

in 𝐵𝑦𝑑𝑡,  
𝑞(𝑦, 𝑑, 𝑡) = 1,………, 𝑄𝑦𝑑𝑡 ; ∀ 𝑦 ∈ 𝑌, ∀ 𝑑 ∈ 𝐷, ∀ 𝑡 ∈ 𝑇 

𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 

Cluster 𝑞 of network-wide traffic flow characteristics at 𝑦𝑑𝑡, where:   

(𝑚𝑦𝑠𝑤𝑑𝑡 ∈ 𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡 )  (𝛿𝑞(𝑦,𝑑,𝑡)

𝑦𝑠𝑤𝑑𝑡 = 1)     

∀ 𝑦 ∈ 𝑌, ∀ 𝑠 ∈ 𝑆, ∀ 𝑤 ∈ 𝑊,∀ 𝑑 ∈ 𝐷, ∀ 𝑡 ∈ 𝑇, ∀𝑞(𝑦, 𝑑, 𝑡) = 1…𝑄𝑦𝑑𝑡 
𝐾𝑦𝑑𝑡 Set of clusters of network-wide traffic flow characteristics at 𝑦𝑑𝑡 

𝑎𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 
Average traffic state for cluster 𝐾𝑞(𝑦,𝑑,𝑡)

𝑦𝑑𝑡
 defined as its centroid,  

∀𝑞(𝑦, 𝑑, 𝑡) = 1…𝑄𝑦𝑑𝑡, ∀ 𝑦 ∈ 𝑌, ∀ 𝑑 ∈ 𝐷, ∀ 𝑡 ∈ 𝑇 

𝛿𝑞(𝑦,𝑑,𝑡)
𝑦𝑠𝑤𝑑𝑡

 

Indicator variable:  

𝛿𝑞(𝑦,𝑑,𝑡)
𝑦𝑠𝑤𝑑𝑡

{
 

 

 

1  (𝑚𝑦𝑠𝑤𝑑𝑡 ∈ 𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡 ) 

 
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       

              

     

∀ 𝑦 ∈ 𝑌, ∀ 𝑠 ∈ 𝑆, ∀ 𝑤 ∈ 𝑊,∀ 𝑑 ∈ 𝐷, ∀ 𝑡 ∈ 𝑇, ∀𝑞(𝑦, 𝑑, 𝑡) = 1…𝑄𝑦𝑑𝑡 
𝜌𝑞(𝑦,𝑑,𝑡)  𝑞′(𝑦,𝑑,𝑡+1)
     

 

Notation for the calculation of transition probability from any cluster 

𝑞(𝑦, 𝑑, 𝑡) in 𝐾𝑦𝑑𝑡 to any cluster 𝑞′(𝑦, 𝑑, 𝑡 + 1) in 𝐾𝑦𝑑(𝑡+1) 

 

 

Mathematical Programming - Clustering 

The objective function to generate clusters 𝐾𝑦𝑑𝑡: 
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min∑∑∑ ∑ (𝑚𝑦𝑠𝑤𝑑𝑡 − 𝑎𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡 )2  ·  𝛿𝑞(𝑦,𝑑,𝑡)

𝑦𝑠𝑤𝑑𝑡

𝑄𝑦𝑑𝑡

𝑞(𝑦,𝑑,𝑡)

𝐷

𝑑

𝑊

𝑤

𝑆

𝑠

 ∀ 𝑦 ∈ 𝑌, ∀ 𝑡 ∈ 𝑇 (1) 

 

Subject to the following: 

Definitional Constraint:  

 

𝑎𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡 =  

1

∑ ∑ 𝛿𝑞(𝑦,𝑑,𝑡)
𝑦𝑠𝑤𝑑𝑡

𝑤𝑠

·∑∑∑∑∑(𝑚𝑐
𝑦𝑠𝑤𝑑𝑡,𝑟𝑝

𝐶

𝑐

𝑊

𝑤

𝑆

𝑠

𝑃

𝑝

· 𝛿𝑞(𝑦,𝑑,𝑡)
𝑦𝑠𝑤𝑑𝑡 )

𝑅

𝑟

  
∀ 𝑦 ∈ 𝑌, ∀ 𝑑 ∈ 𝐷, 
∀ 𝑡 ∈ 𝑇  

(2) 

 

𝛿𝑞(𝑦,𝑑,𝑡)
𝑦𝑠𝑤𝑑𝑡 {1  (𝑚𝑦𝑠𝑤𝑑𝑡 ∈ 𝐾𝑞(𝑦,𝑑,𝑡)

𝑦𝑑𝑡 ) 

 0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        
 

 

∀𝑞(𝑦, 𝑑, 𝑡) = 1…𝑄𝑦𝑑𝑡, ∀ 𝑦 ∈ 𝑌, ∀ 𝑠 ∈ 𝑆,  
∀ 𝑤 ∈ 𝑊,∀ 𝑑 ∈ 𝐷, ∀ 𝑡 ∈ 𝑇 

(3) 

 

∑ 𝛿𝑞(𝑦,𝑑,𝑡)
𝑦𝑠𝑤𝑑𝑡 = 1

𝑄𝑦𝑑𝑡

𝑞(𝑦,𝑑,𝑡)

 ∀ 𝑦 ∈ 𝑌, ∀ 𝑠 ∈ 𝑆, ∀ 𝑤 ∈ 𝑊,∀ 𝑑 ∈ 𝐷, ∀ 𝑡 ∈ 𝑇 (4) 

 

∑∑∑𝛿𝑞(𝑦,𝑑,𝑡)
𝑦𝑠𝑤𝑑𝑡 > 0

𝐷

𝑑

𝑊

𝑤

𝑆

𝑠

 ∀ 𝑦 ∈ 𝑌, ∀ 𝑡 ∈ 𝑇 (5) 

 

The Equation 1 describes a minimization process between each 𝑚𝑦𝑠𝑤𝑑𝑡 and its centroid 

𝑎𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

. This minimization enables the decision variable 𝛿𝑞(𝑦,𝑑,𝑡)
𝑦𝑠𝑤𝑑𝑡

 to indicate whether 𝑚𝑦𝑠𝑤𝑑𝑡 is 

part of cluster 𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

. The Equation 2 is used as a definitional constraint to generate centroid 

𝑎𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 for cluster 𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

, each centroid contains the averaged results of the 𝑚𝑦𝑠𝑤𝑑𝑡  that 

belongs to cluster 𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

. The divisor of this equation serves as a counter of how many traffic 

characteristics of an specific type exist in a cluster, using the dividend part of the equation, the 

average of the different traffic characteristics are used for the creation of traffic states. The 

Equation 3 is a constraint that determines whether 𝑚𝑦𝑠𝑤𝑑𝑡  is part of the cluster 𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

. The 
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Equation 4 is a constraint used to ensure that each 𝑚𝑦𝑠𝑤𝑑𝑡 is a member of only one cluster 𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

. 

The Equation 5 is a constraint that ensures that at least one 𝑚𝑦𝑠𝑤𝑑𝑡 is part of a cluster 𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

. 

 

  

Clustering Problem 

Given a vector of network-wide traffic flow characteristics 𝑚𝑦𝑠𝑤𝑑𝑡, the problem is to determine  

clusters of data that summarize time-dependent average network states denoted by terms 

𝛿𝑞(𝑦,𝑑,𝑡)
𝑦𝑠𝑤𝑑𝑡

, 𝑎𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

, 𝑄𝑦𝑑𝑡, 𝑎𝑛𝑑 𝐾𝑦𝑑𝑡 . Clusters 𝐾𝑦𝑑𝑡  composed by network-wide traffic flow 

characteristics 𝑚𝑦𝑠𝑤𝑑𝑡 generates centroids 𝑎𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 representing averaged network states from the 

traffic characteristics. The number of network-wide traffic flow characteristics considered for 

clusters 𝐾𝑦𝑑𝑡  can be calculated as |𝑆| ∗ |𝑊| ∗ |𝐷| . Therefore, it is assumed that traffic flow 

characteristics for the same day and time during a year are likely to be similar. Indicator 𝛿𝑞(𝑦,𝑑,𝑡)
𝑦𝑠𝑤𝑑𝑡

 

defines which network-wide traffic flow characteristics 𝑚𝑦𝑠𝑤𝑑𝑡  are part of clusters 𝐾𝑦𝑑𝑡 . The 

definition of the number of clusters 𝑄𝑦𝑑𝑡 is a fundamental issue for clustering processes. This 

study assesses the most convenient number of clusters for set 𝐵𝑦𝑑𝑡  with the silhouette method 

(Rousseeuw, 1987). Details about the selection and usage of this method are provided in the 

solution section.  

 

 

Transition Probabilities Problem 

Given clusters 𝐾𝑦𝑑𝑡  and 𝐾𝑦𝑑(𝑡+1) , the problem is to calculate transition probabilities 

𝜌𝑞(𝑦,𝑑,𝑡)  𝑞′(𝑦,𝑑,𝑡+1)
_

    . 𝐾𝑦𝑑𝑡  and 𝐾𝑦𝑑(𝑡+1)  include 𝑚𝑦𝑠𝑤𝑑𝑡  and 𝑚𝑦𝑠𝑤𝑑(𝑡+1)  respectively. Transition 
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probabilities are calculated counting the number of occurrences of 𝑚𝑦𝑠𝑤𝑑𝑡 ∈ 𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 and 

𝑚𝑦𝑠𝑤𝑑(𝑡+1) ∈ 𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑(𝑡+1)

. 
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CHAPTER 3: PROPOSED SOLUTION 

Clustering Generation 

To select an appropriate solution for the clustering problem different approaches were evaluated. 

The first attempt to solve this problem tried to cluster traffic characteristics 𝑚𝑦𝑠𝑤𝑑𝑡  based on 

prespecified ranges for the traffic characteristics for all the links in the network. However, the 

values of the traffic characteristics were falling outside the prespecified ranges in 99% of the cases, 

making this solution unviable. From this point, different clustering methods were tested and 

evaluated using the silhouette width method which is a widely used goodness-of-fit measure that 

can be used with multiple purposes in clustering problems. For example, selection of clustering 

algorithms or assessing of number of clusters in a dataset. The different average silhouette widths 

obtained from processing a sample of multiple entries of the dataset are displayed in the Table 2. 

 

 

Table 2. Clustering Methods Silhouette Width 

Clustering Method Average Silhouette Width 

hierarchical clustering 0.10 

Enhanced hierarchical clustering 0.11 

k-medoids/pam clustering 0.13 

k-means 0.32 

 

 

Hard clustering methods enable the formation of clusters with members that belong to a 

unique cluster. Given the nature of the problem here stablished, only hard clustering methods were 
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considered. The DBSCAN clustering method was not considered given its inability to use multiple 

processors simultaneously, the size of the dataset to be processed makes of it an unviable solution 

(Ahmad & Dang, 2015). The K-Means method presented the best silhouette width among the 

different methods tested, because of this it is the method selected to solve the mathematical 

programming formulation. 

Values for 𝛿𝑞(𝑦,𝑑,𝑡)
𝑦𝑠𝑤𝑑𝑡

, 𝑎𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

, 𝑄𝑦𝑑𝑡 and 𝐾𝑦𝑑𝑡 need to be determined. A standard K-means 

clustering algorithm that has been used to cluster traffic data in previous studies (Nawrin, 2017; 

Montazeri-Gh & Fotouhi, 2011) was used. The first step to generate clusters with the K-means 

algorithm is to set the value for the number of clusters 𝑄𝑦𝑑𝑡. The silhouette width method, is 

used as a goodness-of-fit measure that enables the assessing of the optimal number of clusters. 

Silhouette width (Nawrin, 2017; Yingqiu, Wei, & Yunchun, 2007) should be calculated for 

various numbers of clusters with the same data. The highest width obtained during the search 

determines the optimal number of clusters. The silhouette width method uses simultaneously 

separation and cohesion. To better understand its standard computation, a three steps algorithm is 

described as follows. 1) The average distance from an element i th to every other element in its 

cluster is calculated and assigned to ai. 2) For each cluster that does not contain the i th element, 

calculate the average distance from the i th element to all the elements of each cluster. Assign bi 

as the minimum average distance found. 3) The silhouette width coefficient for the element i th is 

given by: si = ( bi - ai  ) / max(ai, bi ). The silhouette width value has a range of -1 to 1, it is 

desirable for its value to be positive, meaning that the average distance (ai ) from an element i th 

to every other element in its cluster, is smaller than the minimum average distance (bi ) to 

elements of other clusters. It is also desirable for ai to be near 0, this because the silhouette width 

assumes a value of 1, its maximum, with ai = 0.  
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Once the number of clusters 𝑄𝑦𝑑𝑡 is determined, the values for terms  𝛿𝑞(𝑦,𝑑,𝑡)
𝑦𝑠𝑤𝑑𝑡

, 𝑎𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

, 

and 𝐾𝑦𝑑𝑡 can be searched with the K-means algorithm. The flowchart depicted in Figure 1, displays 

a series of steps followed by the algorithm to form clusters 𝐾𝑦𝑑𝑡 and set the values for 𝛿𝑞(𝑦,𝑑,𝑡)
𝑦𝑠𝑤𝑑𝑡

 and 

𝑎𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

. To start, the algorithm requires the definition of an initial set of centroids 𝑎𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 for each 

𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 which are formed by randomly selected network-wide traffic flow characteristics 𝑚𝑦𝑠𝑤𝑑𝑡. 

A loop with the following three steps is repeated until convergence is achieved when centroids stop 

changing across iterations with a tolerance of 0.00001%, or until a maximum of 20 iterations is 

achieved. 

 

1. Characteristics 𝑚𝑦𝑠𝑤𝑑𝑡 that are closer to centroids 𝑎𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 are set into clusters 𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

. If 

𝑚𝑦𝑠𝑤𝑑𝑡  ∈  𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

, then 𝛿𝑞(𝑦,𝑑,𝑡)
𝑦𝑠𝑤𝑑𝑡 = 1; otherwise, 𝛿𝑞(𝑦,𝑑,𝑡)

𝑦𝑠𝑤𝑑𝑡 = 0. 

2. An average of characteristics 𝑚𝑦𝑠𝑤𝑑𝑡 that belong to cluster 𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 is defined as the new 

centroid 𝑎𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 of the cluster. 

3. Check if centroid 𝑎𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 of the cluster changed; if it did not, stop. 

 

Once the algorithm finishes, the corresponding values for 𝛿𝑞(𝑦,𝑑,𝑡)
𝑦𝑠𝑤𝑑𝑡

,  𝑎𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

, 𝑎𝑛𝑑 𝐾𝑦𝑑𝑡 are 

assigned. The silhouette method can be applied to measure the goodness-of-fit of the results of the 

clustering process. 
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Figure 1. K-means applied to cluster characteristics 𝒎𝒚𝒔𝒘𝒅𝒕 

 

Transition Probabilities Algorithm 

An algorithm for the calculation of transition probabilities between the clusters of 𝐾𝑦𝑑𝑡  and 

𝐾𝑦𝑑(𝑡+1) is implemented as follows: 

 

1. Set values for the year y, the day d, and the time intervals t and t+1. 

2. Set e as the number of occurrences where the indicators variables 

𝛿𝑞(𝑦,𝑑,𝑡)
𝑦𝑠𝑤𝑑𝑡

 = 1 and 𝛿𝑞′(𝑦,𝑑,𝑡)
𝑦𝑠𝑤𝑑(𝑡+1)

= 1 

∀ 𝑦 ∈ 𝑌, ∀ 𝑠 ∈ 𝑆, ∀ 𝑤 ∈ 𝑊,∀ 𝑑 ∈ 𝐷, ∀𝑞 = 1…𝑄𝑦𝑑𝑡, ∀𝑞′ = 1…𝑄′
𝑦𝑑(𝑡+1)

 

3. Set h as the total number of days considered. 

4. The transition probability between t and t+1 is calculated as e / h. 

5. Repeat steps 1 to 4 for each 𝑡 ∈ 𝑇.  
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The transition probability is calculated between the sets of clusters 𝐾𝑦𝑑𝑡 and 𝐾𝑦𝑑(𝑡+1). Step 

one sets the required values for the superscripts of these sets. The second step sets e as a counter of 

occurrences where Indicators 𝛿𝑞(𝑦,𝑑,𝑡)
𝑦𝑠𝑤𝑑𝑡 = 1  and 𝛿𝑞′(𝑦,𝑑,𝑡)

𝑦𝑠𝑤𝑑(𝑡+1)
= 1 . This happens when 𝑚𝑦𝑠𝑤𝑑𝑡  ∈

 𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 and 𝑚𝑦𝑠𝑤𝑑(𝑡+1) ∈  𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑(𝑡+1)

, respectively.  The third step sets h as the total number of 

days considered, that is, the sample of size |𝑆| ∗ |𝑊| ∗ |𝐷|. The fourth step calculates the transition 

probability between 𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 to 𝐾𝑞′(𝑦,𝑑,𝑡)
𝑦𝑑(𝑡+1)

 as e / h. Finally, step 5 repeats steps 1 to 4 for each time 

interval considered. A zero-probability value means that there were not occurrences between the 

clusters. 
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CHAPTER 4: EXPERIMENTS AND RESULTS 

Specifications of software and hardware used to execute experiments 

Software: 

• Operating system: CentosOS 7.5  

• Programming Language: R 3.5.1, algorithms written with multiprocessing capabilities. 

• Data Base Management System: Microsoft Access 2016 (21.5 Gb) 

• File system (data queried from DBMS): csv files  

Hardware: 

• Number of CPUs: 8 

• CPUs Used: Intel(R) Xeon(R) CPU E7- 4870 @ 2.40GHz (10 cores) 

• Total cores: 80 cores 

• RAM Memory: 256 Gb DDR3 1333 MHz 

The approximated time to compute the different clusters, transition probabilities and validation 

processes in the time intervals considered was 6 days (144 hours). The processes that demanded 

90% of the processing time were related to partition of data, processes like this are sequential and 

cannot be easily parallelized to take advantage of the multiple processors. Other processes such as 

querying the database for the generation of a csv file that contains the final dataset are not factored 

in that 144 hours, the approximated time of processing these other calculations was 10 hours giving 

a total of 154 hours of continuous processing in the detailed hardware and software.  
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Data 

The Freeway & Arterial System of Transportation (FAST, NV, 2018) provided the traffic dataset 

used in this study. The main characteristics of this traffic dataset are: 

• The dataset contains information collected from September of 2016 to August of 2017. 

• The dataset includes information of 466 sensors located across the freeway system in Las 

Vegas Nevada. The precise location of these sensors is determined by latitude and 

longitude coordinates. Figure 2 provides a map view representing the location of each 

sensors with a blue marker. The spacing between many of these sensors is approximately 

0.33 miles. 

• The dataset contains average values of speed, volume, and occupancy. Each value is the 

result of averaging information collected in time intervals of 15 minutes from each lane 

where the sensor is located. 

• Speed is measured in miles per hour; volume is reported as the total number of vehicles 

during a time interval, and the occupancy is the seconds during which a sensor is occupied 

by a vehicle.  

• The size of the dataset is 21.5 GB, containing an approximated total of 16,328,640 records. 

Each record includes sensor Id, timestamp, speed, volume, and occupancy.  

• Sensor dataset incorporates freeways I-15, I-515, US-95, U-215 
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Figure 2. Location of sensors that provided the data for the dataset 

 

 

 

Experimental Setup 

Data from Mondays to Thursdays were selected for the analyses in this study and set as d. It is 

expected that during these days different traffic characteristics will reflect common commuting 

patterns. A total of 16 time intervals 𝑡 starting at 15:00 and ending at 19:00 were considered for 

the generation of clusters 𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 of network-wide traffic characteristics 𝑚𝑦𝑠𝑤𝑑𝑡. These specific 

time intervals were selected because they cover the transition from a non-peak hour to a peak hour, 

enabling the generation of results with singular characteristics. Given these considerations and the 

provided information of the dataset, the values for subscripts 𝑦, 𝑠, 𝑤, 𝑑, 𝑡  and 𝑐 were set as follows: 

la
ti

tu
d

e 

36.1 

36.0 

-115.4 -115.3 -115.2 -115.1 -115.0 
longitude 

36.2 
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𝑦 = 1,2   Years 2016 and 2017, respectively 

𝑠 = 3,4,1,2  Seasons Fall, Winter, Spring, and Summer, respectively 

𝑤 = 1, … ,12  Weeks 1 to 12 of each season with three months per season 

𝑑 = 1,2,3,4  1 = Monday, 2 = Tuesday, 3 = Wednesday, and 4 = Thursday 

𝑡 = 61,… ,77  61 = 14:45 to 15:00,……, 77 = 18:45 to 19:00 

𝑐 = 1,2,3  Speed, Volume, and Occupancy, respectively 

 

The dates that determine each change of season were slightly modified to fit with the 

proposed layout for the data with 12 weeks per season: 

 

𝑠 = 1  Spring  13 March to 4 June, 2017 

𝑠 = 2  Summer  5 June to 27 August, 2017 

𝑠 = 3  Fall  26 September to 18 December, 2016 

𝑠 = 4  Winter  19 December to 12 March, 2016 – 2017 

 

The total number of days considered for this study was 192 with 4 days per week (Monday 

thru Thursday) during 48 weeks. The clusters for each time interval 𝑡 were conformed by the 

information provided by the traffic characteristics of these 192 days.  
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Clustering at network level 

The proposed solution uses an algorithm with iterative steps that generated a vast number of 

results. Two samples of results were selected to be described in detail. The first sample corresponds 

to results obtained processing data for time interval 𝑡 = 68 (16:30 to 16:45), where 6 clusters were 

generated, allowing the observation of different traffic states. The second sample corresponds to 

results obtained processing the data for time interval 𝑡 = 74 (18:00 to 18:15). This time interval 

is part of the time intervals that are between 𝑡 = 69 (16:45 to 17:00) and 𝑡 = 75 (18:15 to 18:30) 

where only 2 clusters were generated for each time interval.  

 

 

Results for the first sample 𝒕 = 𝟔𝟖 (16:30 to 16:45) 

Figure 3 displays the value of the total average silhouette obtained after applying K-means with 

the number of clusters 𝑄𝑦𝑑𝑡  varying from 2 to 10. The highest average silhouette width 

corresponds to 𝑄𝑦𝑑𝑡 = 6. Hence, this is the number of clusters to be generated for this time 

interval. Figure 4 describes clusters 𝐾𝑦𝑑𝑡 obtained after applying the K-means algorithm to the 

192 network wide traffic characteristics 𝑚𝑦𝑠𝑤𝑑𝑡 with  𝑡 = 68, 𝑦 = 2016 𝑡𝑜 2017, and 𝑄𝑦𝑑𝑡 = 6. 

Using the silhouette width, each line in the figure represents how well each 𝑚𝑦𝑠𝑤𝑑𝑡  fits within its 

cluster 𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

. 

Each cluster 𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 generated a centroid 𝑎𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 or average traffic state that contains 

the mean of traffic characteristics 𝑚𝑦𝑠𝑤𝑑𝑡 that belong to the cluster. A map showing the speed per 

segment for each measured centroid 𝑎𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 is depicted in Figure 5. Table 3 provides details about 

the aggregated traffic characteristics and cluster information for each traffic state. 
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Figure 3. Number of clusters versus Silhouette width for 𝒕 = 𝟔𝟖

 

 

 

Figure 4. Silhouette obtained for each cluster in the time interval 𝒕 = 𝟔𝟖
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Figure 5. Traffic states 𝒂𝟏(𝒚,𝒅,𝒕)
𝒚𝒅𝒕

 - 𝒂𝟔(𝒚,𝒅,𝒕)
𝒚𝒅𝒕

 measured for the time interval 𝒕 = 𝟔𝟖
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Table 3. Measured traffic characteristics and cluster information for time interval 𝒕 = 𝟔𝟖  

Traffic 

state 
Cluster 

Number of 

characteristics 

𝒎𝒚𝒔𝒘𝒅𝒕 in cluster 

Average 

Speed 

Average 

Volume 

Average 

Occupancy 

Silhouette 

Width 

𝑎1(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 𝐾1(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 53 57.21 

mph 

941 

vehicles 

9.53 

seconds 

0.16 

𝑎2(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 𝐾2(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 35 58.65 

mph 

947 

vehicles 

9.36 

seconds 

0.13 

𝑎3(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 𝐾3(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 38 58.25 

mph 

926 

vehicles 

9.42 

seconds 

0.15 

𝑎4(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 𝐾4(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 7 64.00 

mph 

796 

vehicles 

6.31 

seconds 

0.3 

𝑎5(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 𝐾5(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 36 59.19 

mph 

919 

vehicles 

8.67 

seconds 

0.36 

𝑎6(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 𝐾6(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 23 57.69 

mph 

965 

vehicles 

9.48 

seconds 

0.2 

 

 

Results for second sample 𝒕 = 𝟕𝟒 (18:00 to 18:15) 

Figure 6 shows the value of the total average silhouette obtained after applying K-means with the 

number of clusters 𝑄𝑦𝑑𝑡 varying from 2 to 10. 

 

 

Figure 6. Number of clusters versus Silhouette width for 𝒕 = 𝟕𝟒
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The highest average silhouette width corresponds to 𝑄𝑦𝑑𝑡 = 2. Hence, this is the number 

of clusters to be generated for this time interval. Figure 7 describes clusters 𝐾𝑦𝑑𝑡 obtained after 

applying the K-means algorithm to the 192 network wide traffic characteristics 𝑚𝑦𝑠𝑤𝑑𝑡 with  𝑡 =

74, 𝑦 = 2016 𝑡𝑜 2017, and the number of clusters 𝑄𝑦𝑑𝑡 = 2. Using the silhouette width as a 

goodness of fit measure, each line in the figure represents how well each 𝑚𝑦𝑠𝑤𝑑𝑡  fits within its 

cluster 𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

. A map showing the measured speed per segment for each centroid or traffic state 

𝑎𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 of each cluster 𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 is depicted in Figure 8. Table 4 provides details about the 

aggregated traffic characteristics and cluster information for each traffic state. 

 

 

Figure 7. Silhouette obtained for each cluster in the time interval 𝒕 = 𝟕𝟒 

 

Silhouette plot 

Total number of 𝑚𝑦𝑠𝑤𝑑𝑡 = 192 
                                           2 clusters 
 
        Cluster : number of 𝑚𝑦𝑠𝑤𝑑𝑡 | Silhouette 

𝐾
1(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 : 95 | 0.13 

𝐾2(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 : 97 | 0.29 

Average silhouette width: 0.21 

0.0 0.2 0.4 
 

           0.6 0.8 

Silhouette width 

1.0 
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Figure 8. Traffic states 𝒂𝟏
𝒚𝒅𝒕

 and 𝒂𝟐
𝒚𝒅𝒕

 measured in the time interval 𝒕 = 𝟕𝟒

 

 

 

Table 4. Measured traffic characteristics and cluster information for time interval 𝒕 = 𝟕𝟒 

Traffic 

state 
Cluster 

Number of 

characteristics 

𝒎𝒚𝒔𝒘𝒅𝒕 in cluster 

Average 

Speed 

Average 

Volume 

Average 

Occupancy 

Silhouette 

Width 

𝑎1(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 𝐾1(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 95 60.18 

mph 

845 

vehicles 

7.63 

seconds 

0.13 

𝑎2(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 𝐾2(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 97 62.76 

mph 

832 

vehicles 

6.76 

seconds 

0.29 

 

 

Transition probabilities at the network level 

After generating clusters 𝐾𝑦𝑑𝑡  for the time intervals considered, transition probabilities were 

calculated using the steps of the proposed algorithm. Figures 9 to 12 display a summary of results 

from the clustering process and the calculated transition probabilities during the corresponding 

𝑎1(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 𝑎2(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 

Speed 

80 

60 

40 
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time intervals. In these figures, each circle represents a cluster 𝐾𝑞(𝑦,𝑑,𝑡)
𝑦𝑑𝑡

 at time interval depicted 

on the horizonal bar at the bottom of the figure. The number inside each circle or cluster, represents 

the percentage of traffic characteristics 𝑚𝑦𝑠𝑤𝑑𝑡 that is included in that cluster with respect of the 

others for the same time interval. The dashed lines and its percentage values are the calculated 

transition probabilities from each cluster in 𝑡  to any other cluster in 𝑡 + 1 . The solid line, 

represents the highest transition probability between each time interval. Transition probabilities 

equal to 0% are not displayed in the figures.  

 

 

Figure 9. Transition probabilities across time intervals  𝒕 = 𝟏𝟓: 𝟎𝟎 to 𝒕 = 𝟏𝟔: 𝟎𝟎 
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Figure 10. Transition probabilities across time intervals  𝒕 = 𝟏𝟔: 𝟎𝟎 to 𝒕 = 𝟏𝟕: 𝟎𝟎

 

 

 

Figure 11. Transition probabilities across time intervals  𝒕 = 𝟏𝟕: 𝟎𝟎 to 𝒕 = 𝟏𝟖: 𝟎𝟎 
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Figure 12. Transition probabilities across time intervals  𝒕 = 𝟏𝟖: 𝟎𝟎 to 𝒕 = 𝟏𝟗: 𝟎𝟎 

 

 

 

Sections with higher variation in values of traffic characteristics 

A detailed observation of the data revealed that there are a large number of sensors with low 

variation in the data. To observe substantial variations of traffic states, sets of sensors with large 

changes in traffic characteristics were grouped. For illustration purposes, two sections of the 

network where the values of its traffic characteristics had more variation in the traffic states were 

located. Figure 13 shows these sections highlighted with a red square. Section 1 is located in the 

intersection of the freeways, I-15 and I-515 near downtown Las Vegas. This section includes data 

from 52 sensors. Section 2 is located in the intersection of the freeways, I-15 and I-215. This 

section includes data from 35 sensors.  
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Traffic Characteristics at Located Section 

Table 5 presents the aggregated traffic characteristics of Section 1 during 96 time intervals of the 

192 days considered. These results are used to obtain averages of traffic characteristics from 

sensors that registered similar variations and traffic conditions, the values obtained from the 

network-wide study averaged values of sensors with dissimilar variations and traffic conditions. 

The minimum speed calculated for this section is 42.71 mph at t=17:30 while the minimum speed 

calculated in the network wide study for the same time interval was 55.00 mph. These results 

evidence the existent difference between a section and a network-wide study. These results also 

evidence that the methodology proposed in this study can be applied to sections of the network. 

 

Table 5. Measured traffic characteristics for Section 1 

Time 

Interval 

Avg 

Speed 

(mph) 

Avg 

Volume  

(# vehicles) 

Occupancy 

 (%) 

Time 

Interval 

Avg 

Speed 

(mph) 

Avg Volume 

(# vehicles) 

Occupancy 

(%) 

0:00 61.67 363.31 3.04 12:00 56.88 981.92 9.65 

0:15 61.65 368.53 3.06 12:15 56.7 1018.37 9.93 

0:30 61.64 337.51 2.8 12:30 56.35 1025.79 10.1 

0:45 61.78 293.31 2.37 12:45 56.1 1031.57 10.21 

1:00 61.71 251.64 2 13:00 56.17 1009.52 10.07 

1:15 61.64 249.99 1.98 13:15 55.88 1049.57 10.38 

1:30 61.6 235.45 1.85 13:30 54.63 1063.32 10.97 

1:45 61.79 217.62 1.71 13:45 53.36 1076.52 11.64 

2:00 61.58 193.07 1.48 14:00 52.95 1059.48 11.7 

2:15 61.58 201.99 1.54 14:15 52.03 1099.19 12.35 

2:30 61.56 199.13 1.54 14:30 49.46 1104.7 13.56 

2:45 61.81 198.6 1.54 14:45 47.38 1106.29 14.6 

3:00 61.75 183.39 1.38 15:00 46.95 1091.69 14.72 

3:15 61.6 198.97 1.54 15:15 47 1104.16 14.78 

3:30 61.96 231.94 1.83 15:30 45.92 1103.36 15.29 

3:45 62.52 257.71 2.04 15:45 45.1 1100.53 15.68 

4:00 62.36 238.41 1.91 16:00 45.01 1081 15.58 

4:15 62.36 279.04 2.24 16:15 44.89 1103.06 15.83 

4:30 62.62 370.11 3.02 16:30 44.09 1092.29 16.21 

4:45 63.16 478.57 3.9 16:45 43.69 1088.11 16.37 
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5:00 62.93 465.04 3.79 17:00 44.22 1075.93 15.93 

5:15 62.39 588.07 4.92 17:15 43.9 1098.66 16.22 

5:30 60.8 797.11 7.09 17:30 42.71 1085.21 16.62 

5:45 57.45 941.94 9.65 17:45 44.03 1056.21 15.67 

6:00 57.4 861.61 9.06 18:00 47.3 1013.11 13.85 

6:15 57.66 958.27 9.41 18:15 50.48 1019.42 12.46 

6:30 54.04 1081.47 11.88 18:30 52.37 1006.59 11.45 

6:45 50.41 1115.51 13.96 18:45 54.76 956.01 10.08 

7:00 50.56 1071.36 13.51 19:00 57.37 881.65 8.47 

7:15 51.18 1115.6 13.4 19:15 58.77 877.51 7.81 

7:30 48.85 1137.65 14.8 19:30 59.27 854.52 7.42 

7:45 46.52 1125.8 15.97 19:45 59.95 796.58 6.83 

8:00 47.01 1075.42 15.31 20:00 60.32 742.39 6.26 

8:15 49.25 1062.36 13.93 20:15 60.16 755.24 6.34 

8:30 50.87 1063.27 13.07 20:30 60.04 751.14 6.29 

8:45 51.68 1057.56 12.76 20:45 60.47 712.75 5.88 

9:00 53.54 1017.74 11.53 21:00 60.59 675.86 5.59 

9:15 55.64 1004.98 10.44 21:15 60.11 696.67 5.93 

9:30 56 1020.49 10.31 21:30 59.67 684.53 6.05 

9:45 55.94 1023.23 10.36 21:45 59.74 638.79 5.82 

10:00 56.85 962.93 9.6 22:00 59.93 582.61 5.38 

10:15 57.7 957.6 9.2 22:15 59.76 601.89 5.57 

10:30 57.68 986.01 9.35 22:30 59.65 584.35 5.48 

10:45 57.39 1000.14 9.59 22:45 60.12 528.92 4.94 

11:00 57.49 970.69 9.37 23:00 60.44 471.37 4.36 

11:15 57.52 984.13 9.44 23:15 60.6 491.57 4.44 

11:30 56.91 993.77 9.69 23:30 60.61 474.11 4.3 

11:45 56.71 1001.05 9.84 23:45 61.06 430.69 3.85 
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Figure 13. Sections with highest variation in values of traffic characteristics 

 

 

Clustering and Transition Probabilities at Located Section 

Figures 14 to 17 display the results obtained after applying the processes of clustering and 

calculation of transition probabilities to the Section 1. 

 

 

 

 

 

 

 

Section 1 

Section 2 
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Figure 14. Section 1, Transition Probabilities for time intervals  𝒕 = 𝟏𝟓:𝟎𝟎 to 𝒕 = 𝟏𝟔: 𝟎𝟎 

 

 

 

Figure 15. Section 1, Transition Probabilities for time intervals  𝒕 = 𝟏𝟔:𝟎𝟎 to 𝒕 = 𝟏𝟕: 𝟎𝟎 
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Figure 16. Section 1, Transition Probabilities for time intervals  𝒕 = 𝟏𝟕:𝟎𝟎 to 𝒕 = 𝟏𝟖: 𝟎𝟎

 

 

 

Figure 17. Section 1, Transition Probabilities for time intervals  𝒕 = 𝟏𝟖:𝟎𝟎 to 𝒕 = 𝟏𝟗: 𝟎𝟎

 

 

Clusters and Transition Probabilities Applied to Forecast Traffic States 

A system to forecast traffic states based on the obtained clusters and transition probabilities was 

developed. The 10-fold cross-validation method was used to test the accuracy of the forecasting 

system. 70% of the 192 days of the network data were used to create clusters and calculate the 

transition probabilities among them -training data-. The remaining 30% -testing data- was used to 
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assess the match between the observed and the forecasted transitions between clusters. A 

successful forecast was considered as the match between traffic characteristics 𝑚𝑦𝑠𝑤𝑑𝑡 and 

𝑚𝑦𝑠𝑤𝑑𝑡+1  of the testing dataset with the clusters 𝐾𝑞(𝑦,𝑑,𝑡)
𝑦d𝑡

 and 𝐾𝑞′(𝑦,𝑑,𝑡)
𝑦d(𝑡+1)

 -respectively- that are 

linked by the highest transition probability  from the training dataset. To apply the 10-fold cross 

validation method, the processes of selection of training and testing data and the forecasting 

process was repeated 10 times. Figure 18 illustrates the process of the forecasting system and more 

specifically what is considered a successful forecast. Table 6 displays the results obtained during 

this process, the matches are counted as the number of successful forecasts out of a total of 928 

test cases. These test cases were created considering the 30% of the 192 days = 58 days, and the 

16 time intervals processed in the experiments. The percentages of success are calculated as the 

number of successful forecasts out of the 928 test cases. A more detailed description of the average 

error between time intervals for all test cases can be found in Table 7. 

 

 

Figure 18. Forecasting System Validation 
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Table 6. 10-Fold Cross-validation Results for All Time Intervals Considered 

Iteration 

Matches 

Count 

Percentage 

of Success 

1 898 96.76 % 

2 880 94.82 % 

3 831 89.54 % 

4 879 94.71 % 

5 893 96.22 % 

6 881 94.93 % 

7 861 92.78 % 

8 877 94.50 % 

9 864 93.10 % 

10 840 90.51 % 

 Total Avg 93.79 % 

 

Table 7. Forecast Error Between Time Intervals 

Time Intervals Average Error 

Between Time 

Intervals 
From To 

14:45 -> 15:00 15:00 -> 15:15 7.86 % 

15:00 -> 15:15 15:15 -> 15:30 8.74 % 

15:15 -> 15:30 15:30 -> 15:45 9.64 % 

15:30 -> 15:45 15:45 -> 16:00 4.99 % 

15:45 -> 16:00 16:00 -> 16:15 4.46 % 

16:00 -> 16:15 16:15 -> 16:30 6.68 % 

16:15 -> 16:30 16:30 -> 16:45 9.84 % 

16:30 -> 16:45 16:45 -> 17:00 5.47 % 

16:45 -> 17:00 17:00 -> 17:15 9.45 % 

17:00 -> 17:15 17:15 -> 17:30 5.47 % 

17:15 -> 17:30 17:30 -> 17:45 5.77 % 

17:30 -> 17:45 17:45 -> 18:00 6.78 % 

17:45 -> 18:00 18:00 -> 18:15 5.79 % 

18:00 -> 18:15 18:15 -> 18:30 8.89 % 

18:15 -> 18:30 18:30 -> 18:45 7.88 % 

18:30 -> 18:45 18:45 -> 19:00 4.56 % 
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Discussion 

The results suggest that there are predominant traffic states with the time intervals that were 

considered. The dataset contains 192 network-wide traffic characteristics that were processed for 

each time interval. As shown in Figure 9, during the time interval starting at 15:00 and ending at 

15:15, the percentage traffic characteristics is different for each cluster. For this specific time 

interval, 10 network-wide traffic characteristics are in the cluster displayed on the top (5.2%), 86 

in the cluster displayed in the middle (44.7%), and 96 in the cluster displayed at the bottom (50%). 

These results show that there is a predominant traffic state and a second one with significant 

predominance but five percent below the most common. In addition, the cluster with the lowest 

predominance of 5% can be understood as a rare event in the network that cause infrequent traffic 

conditions; a similar trend can be observed for the rest of the time intervals. Another interesting 

result that can be observed in Figures 9-12 is a pattern that suggests that the majority of the 

predominant clusters are linked with the highest values of transition probabilities. 

Figures 5 and 8 display estimated traffic states for specific time intervals. It is noticeable 

that heterogeneity in traffic conditions is present. There are intervals that exhibit higher variation 

in the number of estimated clusters as shown in Figures 9-12. This number of clusters varies from 

two to six. This result shows that the proposed framework significantly summarizes and reduces 

the effort required to analyze a big historical traffic dataset such as the one used in this study.  

The results show a trend for the afternoon congested period. Before the congested period 

the number of clusters was higher compared to the period with more congestion. The results 

indicate that the number of clusters varies between two and four before the congested period and 

it is two for the congested period. In the transition between the non-congested and congested 

periods there was found a large number of clusters. This high variation can be attributed to 
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commuters looking for alternate routes before the most congested periods. As expected, once the 

congested period is reached, less variability occurs probably due to capacity constraints. These 

capacity constraints minimize the choices that drivers have, reducing the effect of randomness due 

to human behavior. When the congested period ends, larger numbers of clusters are observed. This 

can be attributed to both drivers looking for alternate routes and low congestion observed during 

night time periods. These observed patterns can help to determine the duration of the periods with 

more congestion in the network. This provides a better understanding of the congested period at a 

regional level. This type of results can be used to develop more accurate regional travel demand 

models. Currently a fixed congested period is suggested, for example, in the case of the U.S., the 

FHWA states that the congested period can be assumed to be from 4p.m to 7p.m during weekdays 

(FHWA, Urban Congestion Report., 2018). However, as shown in this study, the afternoon 

congested period for Las Vegas area was found to start at 5:00p.m. and end at 6:30p.m.  

In the results obtained from the studied section -compared to the results at network level- 

a higher variation of the values of the traffic characteristics can be observed. The number of sensors 

considered for the section study (52) are significantly less than the ones considered for the study 

of the entire network (466). This enabled obtaining averaged values from a smaller number of 

traffic characteristics; from sensors that present more common traffic characteristics during each 

time interval. These results can contribute to allocate and obtain values of the traffic characteristics 

of congested sections in the network. 
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CHAPTER 5 CONCLUSIONS, FUTURE WORK AND LIMITATIONS 

This study proposes a framework to capture dynamic traffic trends at a network-wide level using 

sensor data. A mathematical programming formulation and solution algorithm are proposed to 

generate average traffic states and transition probabilities among them. A k-means algorithm was 

used to generate clusters of data which centroid represents a traffic state. Multiple centroids could 

be observed for a time interval; each representing homogeneous traffic flow dynamics. The 

availability of these centroids minimizes the data processing effort required for traffic analyses at 

the network level; usually, traffic datasets include hundreds of thousands of records. Transition 

probabilities were computed considering the frequency of an event. A historical dataset for Las 

Vegas freeways was used in this study.  

The proposed framework is able to reveal predominant traffic conditions for each time 

interval. The frequency of a traffic condition is given by the number of network-wide traffic 

characteristics within a cluster; in other words, how many of the total number of analyzed days 

experienced a specific traffic condition. Knowing the frequency and predominance of traffic 

conditions can contribute to anticipate and prepare the network for such conditions. This result is 

valuable for transportation planning and congestion studies. An important insight from the analysis 

is a better understanding and data driven observation of a congested period at a regional level.  

The proposed framework enabled the creation of a forecasting system, this system was 

developed to illustrate one of the possible usages of the obtained clusters and transition 

probabilities. In this system a successful forecast was considered as a match between the observed 

and the forecasted transitions between the clusters at subsequent time intervals. The process was 

validated with the 10-fold cross validation method helping to ensure the consistency of the 
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proposed forecasting system. After validating the results, the forecasting system reached an 

average accuracy of 93.79%.   

The proposed analysis framework has multiple potential applications that require further 

research. For example, the ability to estimate future traffic states based on observed real-time data 

enables the generation of anticipatory traffic management strategies such as route guidance and 

demand responsive traffic control. The clusters and transition probabilities generated by the 

proposed framework can be used to perform short-term forecasting. Real-time network conditions 

can be used to determine its cluster membership. Then, the traffic state of the following time 

intervals can be estimated using the highest corresponding transition probabilities associated with 

the cluster under default traffic control or information conditions. The current work does not factor 

for working zones and the validation of the existence of clusters that represent traffic states with 

incidents make part of future work. 
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