

UNLV Theses, Dissertations, Professional Papers, and Capstones

December 2015

CBCT Evaluation of Adolescent Mandibular Morphology in Different Classifications of Facial Type

Annie Hsu University of Nevada, Las Vegas, ahsu2009@gmail.com

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the <u>Dentistry Commons</u>

Repository Citation

Hsu, Annie, "CBCT Evaluation of Adolescent Mandibular Morphology in Different Classifications of Facial Type" (2015). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2539. https://digitalscholarship.unlv.edu/thesesdissertations/2539

This Thesis is brought to you for free and open access by Digital Scholarship@UNLV. It has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

CBCT EVALUATION OF ADOLESCENT MANDIBULAR MORPHOLOGY IN DIFFERENT CLASSIFICATIONS OF FACIAL TYPE

By

Annie Hsu

Bachelor of Arts in Economics University of California, Berkeley 1998

Doctor of Dental Surgery University of California, Los Angeles, School of Dentistry 2009

> A thesis submitted in partial fulfillment of the requirements for the

Master of Science - Oral Biology

School of Dental Medicine Division of Health Sciences The Graduate College

University of Nevada, Las Vegas December 2015 Copyright by Annie Hsu, 2015 All Rights Reserved

Thesis Approval

The Graduate College The University of Nevada, Las Vegas

October 9, 2015

This thesis prepared by

Annie Hsu

entitled

CBCT Evaluation of Adolescent Mandibular Morphology in Different Classifications of Facial Type

is approved in partial fulfillment of the requirements for the degree of

Master of Science – Oral Biology School of Dental Medicine

James Mah, D.D.S., D.M.Sc. *Examination Committee Chair*

Edward Herschaft, D.D.S., M.A. *Examination Committee Member*

Robert Danforth, D.D.S. *Examination Committee Member*

Bob Martin, D.D.S. Examination Committee Member

Debra Martin, Ph.D. Graduate College Faculty Representative Kathryn Hausbeck Korgan, Ph.D. Graduate College Interim Dean

Abstract

CBCT Evaluation of Adolescent Mandibular Morphology in Different Classifications of Facial Type

By

Annie Hsu

Dr. James K. Mah, Examination Committee Chair Professor of Clinical Sciences Director of the Advanced Education Program in Orthodontics and Dentofacial Orthopedics University of Nevada, Las Vegas

The goal of this study is to use the improved imaging capability of cone-beam computerized tomography (CBCT) to investigate the relationship between vertical facial patterns and mandibular tooth-alveolar morphology in the adolescent population. Pre-treatment orthodontic records were obtained from the UNLV School of Dental Medicine archival dental records. One hundred and seventy three patients (72 males, 101 females) between the ages of 12 and 18 years were included in this study. Among these patients, 61 displayed the vertical growth pattern, 30 displayed the horizontal growth pattern, and 82 displayed the average growth pattern. The samples were categorized into 4 age groups for analysis: Group 1 (age 12 to 18), Group 2 (age 12 to 13), Group 3 (age 14 to 15), and Group 4 (age 16 to 18). Cross sectional slices of the mandible were developed from the cone-beam scans to evaluate cortical bone thickness, alveolar bone height, alveolar bone width, tooth inclination, and alveolar bone inclination at four locations. Each cross section was measured at 10 sites, which included 5 cortical bone thickness, 1 height, 2 width, 1 tooth inclination, and 1 bone inclination measurements. An analysis of

variance (ANOVA) with post-hoc Scheffé statistical analysis was used with a significance level of p < 0.05. Results of this study indicated that in all age groups the hyperdivergent facial type generally had the thinnest cortical bone, the highest alveolar bone height at the anterior region of the mandible, and the narrowest alveolar bone width compared with the other two facial types. The hyperdivergent facial type had more upright lower incisor and more lingually inclined posterior teeth than the other facial types. The alveolar bone inclination generally followed the same angulation tendency as the tooth inclination. The results of this study indicates statistically significant differences exist in cortical bone thickness, alveolar bone height, alveolar bone width, tooth inclination, and bone inclination measurements between the various facial types in the adolescent population.

Acknowledgements

I would like to express my sincerest gratitude to my advisor Dr. James Mah for his advice, time, and support. His guidance has helped me tremendously on this research project and I will be forever grateful.

I would also like to thank my other committee members Dr. Edward Herschaft, Dr. Robert Danforth, Dr. Bob Martin, and Dr. Debra Martin for their encouragement and dedication to this project. Their assistance and guidance have helped me enormously in completing my research project.

In addition, I would also like to acknowledge Dr. Marcia Ditmeyer for her assistance in analyzing the statistical data.

Lastly, I would like to thank my entire family for providing me with unconditional love and support. In particular, I must acknowledge my husband and best friend, Steve, without whose love and encouragement I would not have finished this thesis.

Dedication

To my husband Steve and daughter Natalie,

Thank you for always believing in me and for all of your support.

I love you both more than words can say.

Table of Contents

Abstractiii
Acknowledgementsv
Dedication
List of Tables xi
List of Figures xii
Chapter 1: Introduction
Purpose of Study
Research Questions and Hypothesis4
Chapter 2: Literature Review
Vertical Facial Types7
Computed Tomography (CT) vs Cone Beam Computed Tomograph (CBCT)9
Accuracy of CBCT Measurements of Cortical Bone11
CT Studies of Mandibular Morphology and Facial Types13
CBCT Studies of Mandibular Morphology and Facial Types15
Chapter 3: Methodology
Subjects19
Determination of Vertical Facial Type21
Adjustment for Head Position

Measurement of the Tooth alveolar complex	23
Statistics	30
Chapter 4: Results	31
Age Distribution	31
Intra-Observer Error	33
Research Question 1	34
Age Group 12 to 18 Years	34
Age Groups Subdivided	37
Research Question 2	41
Age Group 12 to 18 Years	41
Age Groups Subdivided	43
Research Question 3	48
Age Group 12 to 18 Years	48
Age Groups Subdivided	50
Research Question 4	53
Age Group 12 to 18 Years	53
Age Groups Subdivided	55
Research Question 5	59
Age Group 12 to 18 Years	59
Age Groups Subdivided	60

Research Question 664
Age Group 12 to 18 Years64
Age Groups Subdivided65
Chapter 5: Discussion and Conclusion
Age Group 12 to 18 Years69
Cortical Bone Thickness
Alveolar Bone Height72
Alveolar Bone Width74
Tooth Inclination76
Bone Inclination77
Age Groups Subdivided78
Cortical Bone Thickness
Alveolar Bone Height
Alveolar Bone Width
Tooth Inclination81
Bone Inclination82
Limitations and Future Studies
Conclusion
Appendix A: UNLV Institutional Review Board Approval
Appendix B: Shapiro Wilk and Levene's Test

Appendix C: ANOVA and Posthoc Scheffé	101
References	. 132
Curriculum Vitae	. 138

List of Tables

Table 3.1 Vertical Skeletal Measurement Norms	22
Table 3.2 Abbreviations Used To Indicate Measurement Sites	28
Table 4.1 Sample Distribution of each Age Group According to Gender	31
Table 4.2 Sample Distribution of Each Age Group According to Facial Type	32
Table 4.3 Analysis of Intra-Observer Error	33
Table 4.4 Means and Standard Deviations of Buccal Cortical Bone Thickness	36
Table 4.5 Means and Standard Deviations of Buccal Cortical Bone Thickness	39
Table 4.6 Means and Standard Deviations of Lingual Cortical Bone Thickness	42
Table 4.7 Means and Standard Deviation of Lingual Cortical Bone Thickness	46
Table 4.8 Means and Standard Deviations of Alveolar Bone Height	49
Table 4.9 Means and Standard Deviations of Alveolar Bone Height	51
Table 4.10 Means and Standard Deviations of Alveolar Bone Width	54
Table 4.11 Means and Standard Deviations of Alveolar Bone Width	57
Table 4.12 Means and Standard Deviations of Tooth Inclination	60
Table 4.13 Mean and Standard Deviations of Tooth Inclination	62
Table 4.14 Means and Standard Deviation of Alveolar Bone Inclination	65
Table 4.15 Means and Standard Deviation of Alveolar Bone Inclination	67

List of Figures

Figure 3.1. SN-GoMe Angle (red line)
Figure 3.2. AFH (Blue Line)
Figure 3.3. PFH (Blue Line)
Figure 3.4. Mandibular Plane (Go-Me) parallels the floor
Figure 3.5. Cross Sections in the Occlusal View
Figure 3.6. Measurement of Buccal and Lingual Cortical bone (a)
Figure 3.7. Measurement of Basal Bone (b)
Figure 3.8. Measurement of Alveolar Bone Height (c)
Figure 3.9. Measurement of Alveolar Bone Width (d)
Figure 3.10. Measurement of the Tooth Inclination (e)
Figure 3.11. Measurement of the Alveolar Bone Inclination (f) 27
Figure 4.1. Buccal Cortical Bone Thickness for All Facial Types Age 12 to 18 Years 36
Figure 4.2. Buccal Cortical Bone Thickness for All Facial Types Age 12 to 13 Years 40
Figure 4.3. Buccal Cortical Bone Thickness for All Facial Types Age 14 to 15 Years 40
Figure 4.4. Buccal Cortical Bone Thickness for All Facial Types Age 16 to 18 Years 40
Figure 4.5. Lingual Cortical Bone Thickness for All Facial Types Age 12 to 18 Year 42
Figure 4.6. Lingual Cortical Bone Thickness for All Facial Types Age 12 to 13 Years 47
Figure 4.7. Lingual Cortical Bone Thickness for All Facial Types Age 14 to 15 Years 47
Figure 4.8. Lingual Cortical Bone Thickness for All Facial Types Age 16 to 18 Years 47
Figure 4.9. Alveolar Bone Height for All Facial Types Age 12 to 18 Years 49
Figure 4.10. Alveolar Bone Height for All Facial Types Age 12 to 13 Years 52
Figure 4.11. Alveolar Bone Height for All Facial Types Age 14 to 15 Years 52

Figure 4.12. Alveolar Bone Height for All Facial Types Age 16 to 18 Years 52
Figure 4.13. Alveolar Bone Width for All Facial Types Age 12 to 18 Years
Figure 4.14. Alveolar Bone Width for All Facial Types Age 12 to 13 Years 58
Figure 4.15. Alveolar Bone Width for All Facial Types Age 14 to 15 Years 58
Figure 4.16. Alveolar Bone Width for All Facial Types Age16 to 18 Years 58
Figure 4.17. Tooth inclination for all Facial Types Age 12 to 18 Years 60
Figure 4.18. Tooth inclination for all Facial Types Age 12 to 13 Years
Figure 4.19. Tooth inclination for all Facial Types Age 14 to 15 Years
Figure 4.20. Tooth inclination for all Facial Types Age 16 to 18 Years
Figure 4.21. Bone inclination for all Facial Types Age 12 to 18 Years
Figure 4.22. Bone inclination for all Facial Types Age 12 to 13 Years
Figure 4.23. Bone inclination for all Facial Types Age 14 to 15 Years
Figure 4.24. Bone inclination for all Facial Types Age 16 to 18 Years
Figure 5.1. Incremental Growth Curve Illustrating Growth Stages

Chapter 1: Introduction

Vertical facial morphology and its effect on the outcome of orthodontic treatment is of great interest for clinicians because the amount and direction of facial growth may alter biomechanics, treatment plans, and ultimately outcomes (Schudy, 1964). There are important changes in vertical facial dimension during the growth of the craniofacial region, and short, average, and long facial types have distinguishing morphological and functional differences (Bjork, 1969; Bjork & Skieller, 1972; Bresin, Kiliaridis, & Strid, 1999; Schudy, 1964; Skieller, Bjork, & Lende-Hansen 1984).

Past studies that have investigated craniofacial growth and vertical facial morphology used lateral cephalograms and metallic implants as methods of research. In some of these studies, researchers placed metallic implants in various stable regions of the maxilla and mandible and then traced and superimposed the annual lateral cephalograms (Bjork, 1955). The researchers then studied the vertical development of the face and the subsequent compensatory changes in mandibular rotation and teeth with the implants as reference points. These studies have established that hypodivergent individuals are characterized by shorter lower anterior face height with longer posterior face height and have more forward rotation of the mandible during growth (Bjork, 1969; Bjork & Skieller, 1972). Because of the more upward and forward position of the mandible, the short-faced individual therefore tends to have a more horizontal palatal plane and a lower mandibular plane angle. In addition, a deep bite malocclusion tends to occur because as the mandible rotates upward and forward, the vertical overlap of the teeth tends to increase (Bjork, 1969; Bjork & Skieller, 1972). The hypodivergent individual has a short and wide face with a square mandible and wide dental arches (Ricketts, Roth, Chaconas, Schulhhof, & Engel, 1982).

Conversely, hyperdivergent individuals typically have longer lower anterior face height with shorter posterior face height and have more backward rotation of the mandible during growth (Bjork, 1969; Bjork & Skieller, 1972). Because of the downward and backward position of the mandible, the long-faced patient therefore tends to have a steeper palatal plane and a higher mandibular plane angle. Since the mandible rotates backward, there is a tendency for anterior open bite and mandibular incisor protrusion to develop (Bjork, 1969; Bjork & Skieller, 1972). The hyperdivergent individual has a long and narrow face with weak muscles and an obtuse mandibular gonial angle (Ricketts et al., 1982).

It is believed that mandibular rotation, mandibular plane, occlusal plane, gonial angle, occlusion, dental arch forms, mandibular shapes, cortical bone thickness, and tooth inclinations are different between the three groups (Bjork, 1969; Bjork & Skieller, 1972; Bresin et al., 1999; Schudy, 1964; Skieller et al., 1984). Among these variations, the differences in the tooth-alveolar bone complex between the facial types are especially important in orthodontic treatment planning and the subsequent success of treatment. Knowledge of the variants in buccolingual inclination of mandibular incisors and molars between the facial types allows for proper treatment planning to ensure a stable occlusion. The knowledge of the alveolar bone morphology also assists in determining the location and placement of temporary anchorage devices in order to achieve maximum stability. An understanding of the post-treatment growth tendencies further assists clinicians in making therapeutic decisions that ensure post-treatment stability. Thus, for many reasons, it is important to understand and investigate the morphological characteristics of the mandibular body and its relationship to facial type.

Researchers have investigated the relationship between vertical facial pattern and mandibular tooth-alveolar morphology in the past. However, the limitations of these earlier

studies are that the sample sizes were small and the study populations consisted only of computed tomography (CT) scans of dry skulls of male Asiatic Indians or modern Japanese males (Kasai et al., 1995; Kohakura, Kasai, Ohno & Kanazawa, 1997; Masumoto, Hayashi, Kawamura, Tanaka, & Kasai, 2001; Tsunori, Mashita, & Kasai, 1998). The appearance of conebeam computerized tomography (CBCT) technology has opened new possibilities for dental and maxillofacial assessment and research. However, CBCT studies evaluating the relationships between mandibular tooth-alveolar morphology and facial types have been insufficient in number and scope (Han et al., 2013; Horner, Behrents, Kim, & Buschang, 2012; Ozdemir, Tozlu, & Germec-Cakan, 2013; Sadek, Sabet, & Hassan, 2014; Swasty et al., 2011). Previous CBCT research focused mainly on the adult population and only evaluated limited aspects of the toothalveolar mandibular morphology. In addition, there are some conflicting findings derived from these studies.

Purpose of Study

The purpose of this study is to conduct a broad evaluation of the mandibular toothalveolar morphology as related to different facial divergences in the adolescent population. This study uses the improved imaging capability of the CBCT to analyze a broader set of data points for a set of subjects more representative of the orthodontic treatment population. Specifically, measurements were taken of the cortical bone thickness, height of the alveolar bone, width of the alveolar bone, buccolingual inclination of teeth, and buccolingual inclination of the alveolar bone at four locations in the mandible for male and female subjects between the ages of 12 and 18 years. These measurements have then been correlated with facial type. Since the majority of the studies performed previously focused on adults, this project's focus on adolescents was designed to identify and assess issues that are likely to arise in orthodontic practice.

Research Questions and Hypothesis

 Is there a difference in the mandibular buccal cortical bone thickness between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types?
 Hypothesis: There is a difference in the mandibular buccal cortical bone thickness between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types.

Null Hypothesis: There is no difference in the mandibular buccal cortical bone thickness between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types.

Is there a difference in the mandibular lingual cortical bone thickness between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types?
 Hypothesis: There is a difference in the mandibular lingual cortical bone thickness between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types.

Null Hypothesis: There is no difference in mandibular lingual cortical bone thickness between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types.

3. Is there a difference in the mandibular alveolar bone height between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types?
Hypothesis: There is a difference in the mandibular alveolar bone height between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types.
Null Hypothesis: There is no difference in the mandibular alveolar bone height

between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types.

4. Is there a difference in the mandibular alveolar bone width between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types?

Hypothesis: There is a difference in the mandibular alveolar bone width between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types.

Null Hypothesis: There is no difference in the mandibular alveolar bone width between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types.

5. Is there a difference in the buccolingual tooth inclination between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types?

Hypothesis: There is a difference in the buccolingual tooth inclination between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types.

Null Hypothesis: There is no difference in the buccolingual tooth inclination between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types.

6. Is there a difference in the buccolingual inclination of mandibular alveolar bone between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types?

Hypothesis: There is a difference in the buccolingual inclination of mandibular alveolar bone between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types.

Null Hypothesis: There is no difference in the buccolingual inclination of mandibular alveolar bone in adolescents with normodivergent, hypodivergent, and hyperdivergent facial types.

Chapter 2: Literature Review

Vertical Facial Types

The understanding of vertical facial growth and its implications with regard to treatment are important topics in orthodontics. Two facial forms, namely the hyperdivergent and hypodivergent facial types, have been studied extensively. Hyperdivergent individuals have been characterized as having a skeletal open bite or a long face while hypodivergent individuals have been characterized as having a skeletal deep bite or a short face (Schendel et al., 1976, Schudy, 1964). Researchers have conducted various studies to understand vertical facial growth and its implications in orthodontics. In 1964, a study investigated the relationship between posterior and anterior face height cross-sectionally using 270 patients with an age range of 11 to 14 years (Schudy, 1964). Researchers concluded, based on measurements of lateral cephalograms, that the total and lower anterior facial heights were larger and the mandibular plane angles were higher in the skeletal open bite subjects than in the skeletal deep bite subjects. Other investigators made similar observations in 1976 and 1984 (Fields, Proffit, Nixon, & Stanek, 1984; Schendel et al., 1976). The 1976 study used 31 patients with an age range of 17 to 25 years with vertical maxillary excess (Schendel et al., 1976). Various angular and linear measurements were made on lateral cephalograms and the conclusion was that the total anterior face height, and in particular, the lower anterior face height, was increased in patients with a long face. It was also discovered that the two variants of the long-faced type are those who have an open bite and those who have a non-open bite. Those who have a long face but no open bite have an increased ramus height. Both groups have a high mandibular plane angle and a normal upper lip length with an excess display of maxillary anterior teeth (Schendel et al., 1976). The

1984 study also concluded that long faces are also associated with higher Sella-Nasion to Mandibular Plane (SN-MP) angles (Fields et al., 1984)

Longitudinal studies of craniofacial growth utilizing metallic implants inserted in jaws found that forward mandibular condylar growth rotation is associated with the short face cases while a backward mandibular condylar growth rotation is associated with the long face cases (Bjork, 1969; Bjork & Skieller, 1972). These studies investigated growth changes in a sample of 100 children of each sex covering the ages of 4 to 24 years. Researchers examined growth changes using metallic implants placed in stable sites in the maxilla and mandible, and then traced and superimposed annual lateral cephalograms. Researchers then studied the vertical development of the face and the subsequent compensatory changes in mandibular rotation and teeth with the implants as reference points. The studies found that with the short-faced types the more forward rotation results in a more horizontal palatal plane, a lower mandibular plane angle, and a larger gonial angle. In addition, when excessive rotation of the jaw occurs, the incisors tend to move into an overlapping position and therefore the tendency for a deep bite develops (Bjork, 1969; Bjork & Skieller, 1972). Conversely, with the long-faced types the more backward rotation of the mandible leads to a steeper palatal plane, a higher mandibular plane angle, and a smaller gonial angle. With an anterior open bite, incisors will need to erupt for a greater distance. The rotation of the jaws will then carry the incisor forward and result in dental protrusion (Bjork, 1969; Bjork & Skieller, 1972).

Studies also indicate that there are biomechanical differences between vertical facial types which result in morphologic and functional differences. The size and orientation of the masticatory muscles and the forces that they generate affect the development of the maxillofacial complex and facial divergence (Chan, Woods, & Stella, 2008; Satiroglu, Arun, & Isik, 2005).

There is an association between increased facial divergence and reduced muscle function (Garcia-Morales, Buschang, Throckmorton, & English, 2003). Density and thickness of the cortical bone of the mandible and maxilla also adapt to masticatory forces and therefore result in different maxillomandibular morphology between the facial types. Reduced muscle function correlates with a reduced amount of cortical and trabecular bone in the dentoalveolar process (Bresin et al., 1999; Ichim, Kieser, & Swain, 2007). The forces generated by the masticatory muscles affect the occlusion, dental arch forms, and mandibular morphology.

The various studies on vertical facial dimensions indicate significant differences in craniofacial morphology and function between the hyperdivergent, normodivergent, and hypodivergent facial types. These differences warrant additional investigation as this knowledge will aid the orthodontic clinician in treatment planning and achieving stable results.

Computed Tomography (CT) versus Cone Beam Computed Tomography (CBCT)

Traditional two dimensional imaging techniques used in the orthodontic specialty such as the panoramic radiograph or the lateral cephalometric radiograph have the disadvantages of magnification, distortion, and superimposition of structures (Farman & Scarfe, 2009). Due to the many limitations of these two dimensional image views, there has been a shift toward a three dimensional approach to data acquisition and image reconstruction including the use of computed tomography (CT) and cone beam computed tomography (CBCT) (Mah & Hatcher, 2004). Three dimensional imaging are composed of voxels instead of pixels used in two dimensional images. Voxels have height, width, and thickness. All computed tomography scanners consist of an x-ray source and a detector mounted on a rotating gantry. As the gantry rotates, the receptor detects x-rays attenuated by the patient. A computer algorithm then reconstructs the data collected to generate cross-sectional images (Farman & Scarfe, 2009) Computed tomography can be categorized based on x-ray beam geometry as either fan beam CT or cone beam CT. Most hospital CT scanners use a fan-shaped x-ray beam and images are produced in axial plane slices. These slices need to be reassembled in the correct orientation to construct the volume from which subsequent reoriented slices can be made. The resultant voxels are not uniform in all planes, which means that the precision in some measurements can be compromised. CBCT scanners use a cone-shaped x-ray beam so that a single C-arm rotation generates several hundred basis images of raw data, which are reconstructed to produce the complete dental or maxillofacial volume. The measurements are generally precise in all dimensions because the voxels are isotropic, or uniform, in all planes (Farman & Scarfe, 2009; Mah & Hatcher, 2004).

CBCT offers several advantages over CT as the preferred imaging modality for dental and orthodontic assessment. Since CBCT provides quality images of high contrasting structures, it improves the ability to evaluate calcified structures such as tooth alveolar morphology and cortical bone in the mandible (Farman & Scarfe, 2009). Patient radiation dose and scanning time are lower as compared to conventional medical CT, which reduces artifacts created by movement of the subject. In addition, CBCT measurements are generally precise in all dimensions because the voxels are isotropic, or uniform, in all planes. CBCT offers the advantages of accurate, reliable, and high definition images compared to conventional CT, MRI, and lateral cephalometric headfilms with a reduced radiation dose (Mah, Danforth, Bumann, & Hatcher, 2003). For all of the reasons cited above, CBCT technology has emerged as the superior imaging modality for the study of mandibular tooth-alveolar morphology in the different facial types.

Accuracy of CBCT Measurements of Cortical Bone

CBCT is an increasingly popular technology used in many specialties of dentistry because of its high performance, low cost, and reduced radiation dose compared with conventional computed tomography (Mah et al., 2003). Because CBCT is a relatively new advancement, numerous studies have been conducted to evaluate the accuracy of CBCT data. Initial studies conducted in 2004 comparing direct measurements with CBCT measurements on dry cadaver mandibles reveal that linear distance measurements are accurate with CBCT with a mean measurement error of only 0.22mm (±15) (Kobayashi, Shimoda, Nakagawa, & Yamodo, 2004). More recent studies have reported similar results with the exception that possible measurement inaccuracies can occur in areas of thin bone such as the mandibular anterior incisor region (Patcas, Muller, Ullrich, & Peltomaki, 2012). Research conducted in 2011 found only submillimetric differences in measurements of cadaver buccal bone height and buccal bone thickness of 0.30 and 0.13 mm, respectively, and concluded that CBCT imaging can provide accurate and reliable representations of buccal alveolar bone dimensions (Timock et al., 2011). This is consistent with the findings of another 2010 study where mean absolute measurement errors were 0.05mm and 0.07mm for the 0.25mm voxel-size scans and 0.4mm voxel-size scans, respectively (Damstra, Fourie, Huddleston, & Ren, 2010). A 2012 study also concluded that CBCT is an appropriate tool to use for linear intraoral measurements because accurate data is provided and anatomic structures are depicted reliably (Patcas et al., 2012). However, these researchers noted that in the areas of thin buccal bone in the mandibular anterior incisor region there is a risk of assuming fenestrations and dehiscence on CBCT radiographs that do not exist clinically. Another study found that when alveolar bone thickness is near or smaller than the

CBCT voxel size, alveolar bone height measurements are likely to be underestimated by 0.9 to 1.2mm (Sun et al., 2011).

Bone can become invisible in a CBCT image due to two factors: the partial volume averaging effect and contrast resolution (Sun et al., 2011). The partial volume averaging effect occurs when a voxel lies on two objects of different densities. This voxel reflects the average density of both objects rather than the true density of either object. Therefore when the thickness of the alveolar bone is below or near the voxel size the voxel will reflect an average density of the alveolar bone and periodontal ligament rather than the true density of the alveolar bone. Bone may be hard to distinguish from adjacent periodontal ligament structures when the thickness is below or at the voxel size and therefore not taken into account when measuring alveolar bone height (Sun et al., 2011).

Contrast resolution determines the ability to distinguish two objects of similar densities and in close proximity. The periodontal ligament (approximately 0.5mm thick) separates the alveolar bone from the cementum and anything smaller than this minimum distance requirement could result in the alveolar bone becoming indistinguishable from the cementum (Sun et al., 2011). Areas with bone less than 0.6mm thick were invisible on CBCT images (Leung et al., 2010).

CBCT can be reliably used in the current study of mandibular alveolar morphology of adolescents as the majority of measurements of cortical bone thickness and height are concentrated in the posterior mandible where there is greater cortical bone thickness. Results of past research have demonstrated that measurements of a few millimeters with CBCT are accurate and repeatable (Damstra et al., 2010; Kobayashi et al, 2004; Timock et al., 2011). The cortical bone measurements collected in this research project were generally 5 to 10 times greater than

the 0.38 mm voxel-size scans used. In addition, recent research using study samples of fresh young pig heads with bone equivalent to that of early adolescent humans found that for 0.40 mm voxel-size scans, measurements in the mandibular molar regions were generally accurate (Wood et al, 2013). For the measurements of mandibular anterior incisors in this current investigation of adolescent mandibular morphology, measurements of cortical bone thickness were at 1/3rd and 2/3rd of alveolar bone height and not at the bone margin as used in past studies where cortical bone can be extremely thin (Leung et al., 2010; Patcas et al., 2012; Wood et al., 2013). Mandibular anterior cortical bone measurements collected in this study were generally 3 to 8 times that of the 0.38 mm voxel size, which decreased the chance of underestimation of cortical bone thickness. Alveolar bone height in the anterior incisor region may be underestimated, however, if the cortical bone thickness is at or below the voxel size. Therefore, the analysis of the results in this research project must address for this possible underestimation of alveolar bone height.

CT Studies of Mandibular Morphology and Facial Types

Facial types are important in orthodontics because they influence anchorage usage, growth prediction of maxillofacial structures, and goals of treatment. The significance of this relationship has prompted studies to investigate the relationship between vertical facial type and mandibular tooth alveolar morphology. Since CBCT was only introduced in Europe in the 1990s and in North America in 2001, CT was the main imaging modality used to obtain radiographic sections for measurement in the earlier studies of tooth-alveolar morphology as related to facial type.

In two studies, conducted in 1997 and 1998, researchers at the Department of Orthodontics at Nihon University School of Dentistry at Matsudo evaluated the cortical bone

thickness, tooth inclination, and bone inclination of the mandible using CT scans of 40 dry skulls and 39 dry skulls of male Asiatic Indians, respectively, and correlated the findings with vertical facial patterns (Kohakura et al., 1997; Tsunori et. al, 1998). Both studies used a lateral radiograph of the skull for each specimen to determine the facial type. In addition, both studies used four CT scan sections of the mandibular body at the left lower incisor, left lower second premolar, left lower first molar, and left lower second molar for measurements of the cortical bone, tooth inclination, and bone inclination. Both studies found that the thickness of the buccal cortical bone strongly correlated with facial type. The buccal cortical bone of short-faced subjects was thicker than that of average or long-faced subjects for all sections measured in the 1998 study and only at the second premolar and first molar for the 1997 study. The 1998 study found that the lingual cortical bone in short-faced subjects in the first and second molar region was thicker than in other facial types but the 1997 study only found the same correlation with the second molar region. The 1998 study also found that the second premolar, first molar, and second molar were all more lingually inclined in the short-faced group, while the 1997 study only found a correlation with the second molars. The 1997 study found that the height at the second molar region was less than at the lower incisor region, while width was greater at the second molar region than at the lower incisor region in all facial types.

In 2001, researchers studied the CT scans of 31 dry skulls of modern Japanese males between the ages of 18 and 45 years with a mean average age of 27 years (Matsumoto et al., 2001). Similar to the results of the 1998 study by Tsunori et al., the cortical bone thickness of the first molar and second molar sections was thicker in short-faced subjects than in average and long-faced subjects. The lingual cortical bone was thicker in the short-faced patient in the lower third region of the mandible. However, contrary to the 1997 and 1998 studies, teeth of long-

faced subjects were more lingually inclined than those of short-faced subjects (Kohakura et al., 1997, Tsunori et. al., 1998).

There is a consensus among the CT studies that buccal and lingual cortical bone thickness is generally greater in short-faced subjects although there are some slight differences reported regarding which regions have the thicker cortical bones (Kohakura et al., 1997, Matsumoto et al., 2001, Tsunori et. al., 1998). The main disparity in findings lies in whether the posterior mandibular teeth are more lingually inclined in the short-faced or long-faced group. The 2001 study found that teeth of long-faced subjects were more lingually inclined, while the 1997 and 1998 studies found that teeth of short-faced subjects were more lingually inclined (Kohakura et al., 1997; Matsumoto et al, 2001; Tsunori et. al., 1998).

CBCT Studies of Mandibular Morphology and Facial Types

The appearance of CBCT technology has opened new possibilities for dental and maxillofacial assessment and research. The improved imaging capability of the CBCT allows for more extensive and accurate investigation of mandibular morphology as related to facial form. Landmarks can be more precisely and easily identified, and additional measurements can be taken, due to the 3-D nature of the images (Mah, Huang, & Choo, 2010). Studies evaluating the relationships between mandibular tooth-alveolar morphology and facial types using CBCT have been conducted in the past few years, but these studies have been limited in number and in its scope especially pertaining to the mandibular morphology of adolescents.

The earlier CBCT studies evaluating facial types and mandibular morphology focused mainly on measurements of cortical bone thickness in the adult population with a mean age of 27 years in one 2012 study and an age range from 20 to 45 years in another 2013 study (Horner et al., 2012; Ozdemir et al., 2013). In these studies the digital communications in medicine

(DICOM) files of each CBCT scan were imported into three dimensional software and the images were oriented in three planes of space so that measurements could be made on a cross section of the alveolar bone at various sites in the mandible. Both studies found statistically significant differences between the facial types in the buccal cortical bone between the premolar, first molar, and second molar interradicular sites in the mandible. Statistically significant differences of lingual cortical bone was found at two sites (Horner et al., 2012). These studies concluded that the hypodivergent group has thicker cortical bone at many sites in the mandible and thicker alveolar bone thickness in general than the hyperdivergent subjects (Horner et al., 2012; Ozdemir et al., 2013).

Researchers at the University of California at San Francisco in 2011 used CBCT technology to evaluate a larger age range of patients which included a total of 111 subjects between the ages of 10 and 65 years (Swasty et al., 2011). Although adolescents were included in the study, the investigation focused on the comparison of the mandibular cortical bone thickness, height, and width between the facial types only. Consistent with the findings of the 2012 and 2013 CBCT studies, the 2011 CBCT study found that subjects in the short-faced group had a thicker cortical plate in many regions of the buccal and lingual areas while subjects in the long-faced group had thinner cortical bone in almost all sites in the mandible (Horner et al., 2012; Ozdemir et al., 2013). In the long-faced group, there was a considerable change in height of the mandibular cross-sectional area from the molars to the symphysis with maximum change in height occurring around the incisors. The long-faced group also showed a statistically significant narrower cross section of the mandible in the upper third region compared with the average-face and short-faced groups. This is consistent with the findings of a 2014 CBCT study where the long-faced group was found to have the thinner alveolus and larger dentoalveolar

height in the anterior mandible compared to the short face group (Sadek et al., 2014). This 2014 study reported that due to the thin alveolus there were significantly lower values for the maximum possible buccal lingual movements of the central and lateral incisors in the long-faced group.

A more comprehensive CBCT investigation of mandibular tooth alveolar morphology was performed by researchers in China in 2012 (Han et al., 2013). Cortical bone thickness, basal bone thickness, inclination of teeth, inclination of bone, and height and width of mandibular bone were all analyzed. Although this study of tooth alveolar morphology is more comprehensive than past CBCT studies, the analysis was restricted to 45 Chinese adult male and female subjects between the ages of 21 and 41 years. Consistent with findings from previous CT and CBCT research, average thickness of the buccal cortical bone was greater in patients with the horizontal growth pattern. This study found no statistical differences in the widths of the mandibular bone between the two facial groups, which differs from the 2011 and 2012 CBCT studies (Horner, et al., 2012; Swasty et al., 2011). This study also found that the first and second molars have a greater buccal inclination in short-faced patients when compared to those patients with a vertical growth pattern. This finding differs from the previous CT studies of mandibular morphology where greater molar buccal inclination was found in long-faced patients but agrees with the findings of the 2001 CT study (Kohakura et al., 1997; Matsumoto et al., 2001; Tsunori et al., 1998).

There is consensus among the CBCT and the CT studies that cortical bone thickness is greater in the hypodivergent facial type and thinner in the hyperdivergent facial type in adults (Han et al., 2013; Horner et al., 2012; Kohakura et al., 1997; Matsumoto et al., 2001; Ozdemir, et al., 2013; Swasty et al., 2011; Tsunori et. al., 1998). Studies have also concluded that there is a

significant change in height of the mandibular alveolar bone with the maximum change in height occurring around the incisors in the long-faced type. The long-faced group has the larger anterior dentoalveolar height in the mandible and the thinner alveolus compared to the short-faced group (Han, 2012; Sadek et al., 2014; Swasty et al., 2011). However, there are differing conclusions on whether there are differences in the alveolar bone height, alveolar bone width, and tooth inclination between the three facial types. These differences in findings warrant additional research to provide further clarification on these topics. In addition, more studies investigating the tooth alveolar morphology of adolescents with different facial divergences should be conducted.

Chapter 3: Methodology

The following protocol, #1411-4992M, was reviewed by the Office of Research Integrity – Human Subjects at the University of Nevada, Las, Vegas, and deemed excluded from IRB review (Appendix A).

Subjects

A total of 561 CBCT scans were obtained from the UNLV School of Dental Medicine archival dental records from August 2006 to June 2014. All CBCT scans were taken by one radiology technician trained in the technique and operation of the CBCT (CB MercuRay, Hitachi Medical Corp). Scans were taken with a matrix of 512 x 512, 193 mm FOV, 100 kV, 15 mA, and exposure time of 10 seconds. The data was sent directly to a UNLV School of Dental Medicine computer with password protected access and stored in Digital Imaging and Communications in Medicine format (DICOM). Volumetric renderings of subjects' CBCT scans were evaluated with InvivoDental version 5.4.1 software (Anatomage, San Jose, CA).

Of the 561 total records, 173 (72 males, 101 females) subjects between the ages of 12 and 18 years were chosen for inclusion. Among these patients, 61 displayed the vertical growth pattern, 30 displayed the horizontal growth pattern, and 82 displayed the average growth pattern. CBCT scans were included only if they were of good image quality and were absent of any movement artifact. Subjects with complete dentition including full eruption of the second permanent molars, no remaining deciduous teeth, and symmetric mandibles were included. Subjects with missing or root canal treated teeth, large metallic restorations, mandibular pathology, deciduous or incomplete dentition, syndromes or disease that may affect craniofacial development, past history of mandibular surgery, or currently receiving orthodontic treatment

were excluded. The age range of 12 to 18 years was chosen as second molars have generally erupted by the age of 12 and adolescence has been commonly defined as spanning the ages of 12 to 18 years (American Academy of Pediatrics, 2011; Dean, Avery, & McDonald, 2011). In addition, data collected can be compared with past CBCT investigations of cortical bone thickness in adolescents with the age range of 13 to 18 years (Fayed, Pazera, & Katsaros, 2010). Adolescents are the focus of this study as they consist of the main treatment population for orthodontics. Data collected were analyzed according to the following age groups:

> Group 1: Age 12-18 ("12 to 18 Age Group") Group 2: Age 12-13 ("12 to 13 Age Group") Group 3: Age 14-15 ("14 to 15 Age Group") Group 4: Age 16-18 ("16 to 18 Age Group")

The combined age group of 12 to 18 years was also studied and the results reported because of the limited sample sizes once the subjects were classified in their individual age subgroups.

3-D volumetric skeletal tracings from these scans were used to determine the facial type for each subject. All images were reoriented so that the mandibular plane (Gonion-Menton) was parallel to the floor. Measurements were then made of the buccal cortical bone thickness, lingual cortical bone thickness, basal bone thickness, mandibular alveolar bone height, mandibular alveolar bone width, tooth inclination, and alveolar bone inclination in the cross sectional image at four locations in the mandible.

All personal information regarding the subjects was anonymized. Age, sex, and facial types for each individual were recorded independently and only made available for this project upon the completion of data collection.

Determination of Vertical Facial Type

The primary investigator performed 3-D volumetric skeletal tracings to classify subjects into the normodivergent, hyperdivergent, and hypodivergent facial types based on standard values (Table 3.1). The classifications of facial type was determined by the angular measurement Sella-Nasion and Gonion-Menton angle (SN-GoMe) and the linear Facial Height Index (FHI) measurement. Subjects had to fit into a single facial type category for both measurements in order to be included in the study.

1. **SN-GoMe** –the angle formed by the Sella Nasion plane (S-N) to the Gonion-Menton (Go-Me) plane (Figure 3.1)

Figure 3.1. SN-GoMe Angle (red line)

2. Facial Height index –ratio of posterior facial height (PFH) to anterior facial height (AHF) or PFH/AFH

a. **AFH** –Anterior Facial Height is the linear distance between Nasion and Menton (Figure 3.2)

Figure 3.2. AFH (Blue Line)

b. PFH –Posterior Facial Height is the linear distance between Sella and Gonion (Figure

3.3)

Figure 3.3. PFH (Blue Line)

Table 3.1		
Vertical Skeletal	Measurement	Norms

	SN-GoMe (°)*	FHI (%)*	
Normodivergent	27-37	61-69	
Hyperdivergent	> 37	<61	
Hypodivergent	<27	>69	

(Horn, 1992; Jacobson & Jacobson, 2006; Riedel, 1952)

*Consistent with the measurement norms and standard deviations in Invivo 5.4.1

Adjustment for Head Position

The cross-sections taken of the mandible for measurement purposes would differ depending on the mandibular plane angles of the subjects studied. Those who have a mandibular lower border that closely parallels the floor would have a shorter cross-section than those with a steeper mandibular plane. In order to correct for this factor, all subjects were reoriented so that the mandibular plane (Go-Me) was parallel to the floor (Figure 3.4). The reorientation was performed with the InVivo 5.4.1 software by defining a horizontal plane in the coordinate system in the "3D Analysis tab" and using gonion and menton as reference points.

Figure 3.4. Mandibular Plane (Go-Me) parallels the floor

Measurement of the Tooth alveolar complex

A total of four mandibular cross-sections (C1, P2, M1, and M2) were taken for each subject. C1 is the cross-section passing through the center of the lower right central incisor; P2 is the cross-section passing through the center of the lower right second premolar; M1 is the crosssection passing through the center of the mesial root of the lower right first molar; M2 is the cross-section passing through the center of the mesial root of the lower right second molar (Figure 3.5).

Figure 3.5. Cross Sections in the Occlusal View

Because previous studies reported that cortical bone width is the same for both sides of the jaw, only one side of the mandible was measured (Deguchi, Nsu, Yabuuch, & Takana-Yamamoto, 2006; Schwartz-Dabney & Dechow, 2003).

Measurements for each cross section was performed in the "Arch Section" tab of InVivo 5.4.1. Slice thickness was set at 1.0mm. For each cross section a total of 10 measurements were recorded. The cortical bone was measured at 5 sites: 2 buccal, 2 lingual, and 1 at the base. One height, 2 widths, 1 tooth inclination, and 1 bone inclination measurements were also recorded.

First, a length measurement was made by drawing a line perpendicular to the mandibular plane at the height of the alveolar crest to the mandibular plane. This length was then divided into equal vertical thirds. Two lines were then extended perpendicular to this length at 1/3rd and 2/3rds the height and these 2 lines served as reference points for the cortical bone thickness and width measurements (Figure 3.6). These measurement procedures followed the protocol used in the CBCT study by Swasty et al. (2011).

1. **Cortical bone thickness (a):** The $1/3^{rd}$ and $2/3^{rds}$ reference lines were used to determine where the buccal and lingual cortical bone thicknesses were measured. Two measurements were taken of the buccal cortical bone and two measurements were taken

24

of the lingual cortical bone. The measurement lines were angled in the same direction that the cross-section was angled and positioned at approximately 90 degrees to the external surface of the cortical bone. This was done to prevent false readings taken obliquely through the cortical plate (Figure 3.6).

2. **Basal bone thickness (b):** 1 measurement was made at the base of the mandible (Figure 3.7).

3. Alveolar bone height (c): Height from the center of the alveolar bone crest to the inferior border of the mandible. Measurement was drawn along the long axis of the section and placed approximately through the center of the slice (Figure 3.8).

4. Alveolar bone width (d): Width of the mandibular cross section taken at 2 sites, using the same $1/3^{rd}$ and $2/3^{rds}$ reference lines used in measuring the thickness of the cortical plates. Widths were recorded perpendicular to the height measurement that was taken through the long axis (Figure 3.9).

5. **Tooth inclination (e):** The angle between the basal line (mandibular plane) and the tooth long axis. The long axis of the tooth is defined as the line passing through the midpoint of crown width and the root apex (Figure 3.10).

6. **Bone inclination (f):** The angle between the basal line (mandibular plane) and the bone axis. The long axis of the bone is defined as the line passing through the middle point of the buccal and lingual alveolar process and the inferior border of the mandible (Figure 3.11).

25

Figure 3.6. Measurement of Buccal and Lingual Cortical bone (a)

Figure 3.7. Measurement of Basal Bone (b)

Figure 3.8. Measurement of Alveolar Bone Height (c)

Figure 3.9 Measurement of Alveolar Bone Width (d)

Figure 3.10. Measurement of the Tooth Inclination (e)

Figure 3.11. Measurement of the Alveolar Bone Inclination (f)

Table 3.2

Abbreviations Used To Indicate Measurement Sites

Second Mola	ar
CBB132M	Second Molar Buccal Cortical Bone at 1/3rd Height
CBB232M	Second Molar Buccal Cortical Bone at 2/3rds Height
CLB132M	Second Molar Lingual Cortical Bone at 1/3rd Height
CLB232M	Second Molar Lingual Cortical Bone at 2/3rds Height
BB2M	Second Molar Basal Bone
BHT2M	Second Molar Alveolar Bone Height
BW132M	Second Molar Bone Width at 1/3rd Height
BW232M	Second Molar Bone Width at 2/3rds Height
TIncl2M	Second Molar Tooth Inclination
BIncl2M	Second Molar Bone Inclination
First Molar	
CBB131M	First Molar Buccal Cortical Bone at 1/3rd Height
CBB231M	First Molar Buccal Cortical Bone at 2/3rds Height
CLB131M	First Molar Lingual Cortical Bone at 1/3rd Height
CLB231M	First Molar Lingual Cortical Bone at 2/3rds Height
BB1M	First Molar Basal Bone
BHT1M	First Molar Alveolar Bone Height
BW131M	First Molar Bone Width at 1/3rd Height
BW231M	First Molar Bone Width at 2/3rds Height
TIncl1M	First Molar Tooth Inclination
BIncl1M	First Molar Bone Inclination
Second Prem	nolar
CBB132P	Second Premolar Buccal Cortical Bone at 1/3rd Height
CBB232P	Second Premolar Buccal Cortical Bone at 2/3rds Height
CLB132P	Second Premolar Lingual Cortical Bone at 1/3rd Height
CLB232P	Second Premolar Lingual Cortical Bone at 2/3rds Height
BB2P	Second Premolar Basal Bone
BHT2P	Second Premolar Alveolar Bone Height
BW132P	Second Premolar Bone Width at 1/3rd Height
BW232P	Second Premolar Bone Width at 2/3rds Height
TIncl2P	Second Premolar Tooth Inclination
BIncl2P	Second Premolar Bone Inclination
Central Incis	sor
CBB13CI	Central Incisor Buccal Cortical Bone at 1/3rd Height
CBB23CI	Central Incisor Buccal Cortical Bone at 2/3rds Height
CLB13CI	Central Incisor Lingual Cortical Bone at 1/3rd Height
CLB23CI	Central Incisor Lingual Cortical Bone at 2/3rds Height

Table 3.2 (Continued)

Abbreviations Used To Indicate Measurement Sites

Central Inci	sor
BBCI	Central Incisor Basal Bone
BHTCI	Central Incisor Alveolar Bone Height
BW13CI	Central Incisor Bone Width at 1/3rd Height
BW23CI	Central Incisor Bone Width at 2/3rds Height
TInclCI	Central Incisor Tooth Inclination
BInclCI	Central Incisor Bone Inclination

Statistics

The intra-operator error was obtained by repeating measurements on 10 randomly selected subjects three months after the initial measurements. The degree of reliability was determined using Lin's concordance correlation.

Data from Excel was transferred into SPSS software version 23.0 (SPSS, Chicago, IL) for statistical analysis. A test of normality using Shapiro-Wilks test and a test of homogeneity of variances using Levene's test were conducted to ensure the assumptions of the one way ANOVA were met (Appendix B). Statistical analysis among the facial groups was performed using a separate analysis of variance (ANOVA) for each measurement location with post-hoc Scheffé analysis with a significance level of p < 0.05 (Appendix C). Mean and standard deviation were calculated to evaluate the measurement variables between the different facial types.

Chapter 4: Results

Age Distribution

The age distribution of the 173 individuals evaluated in this study ranged from 12 to 18 years. The subjects were divided into 4 age groups with 1 group encompassing the entire age range of 12 to 18 years. Table 4.1 shows the breakdown of the age groups and the gender distribution. Table 4.2 shows the breakdown of the age groups and the facial type distribution.

Table 4.1

Group	Age	Gender	Sample	Total Sample
			Size	
1	12-18	Male	72	173
		Female	101	
2	12-13	Male	23	65
		Female	42	
3	14-15	Male	34	75
		Female	41	
4	16-18	Male	15	33
		Female	18	

Sample Distribution of each Age Group According to Gender

Table 4.2

Group	Age	Facial Type	Sample	Total
			Size	Sample Size
1	12-18	Normodivergent	82	173
		Hypodivergent	30	
		Hyperdivergent	61	
2	12-13	Normodivergent	35	65
		Hypodivergent	11	
		Hyperdivergent	19	
3	14-15	Normodivergent	38	75
		Hypodivergent	12	
		Hyperdivergent	25	
4	16-18	Normodivergent	9	33
		Hypodivergent	7	
_		Hyperdivergent	17	

Sample Distribution of Each Age Group According to Facial Type

Intra-Observer Error

In order to test the degree of reliability for the methods used in this study, intra-observer error testing was carried out on 10 (5 females, 5 males) randomly selected individuals. A Lin's concordance correlation was carried out to compare the results of the original and secondary measurements for each location in the mandible (Table 4.3). A score of 1 indicated a perfect correlation, whereas 0 indicated no correlation at all. The Lin's concordance correlation score of the 10 subjects was 0.998, which indicates excellent repeatability using the InVivo 5.4.1 software with a single examiner.

Table 4.3

Analysis of Intra-Observer Error

Lin's Concordance			
Coefficient	Rc	Cb	Mn. Shift
	.998	1.000	.001
95% CI for Rc	Lower	Upper	
	.998	.999	
X & Y Statistics	Var1	Var2	
Mean	21.917	21.957	
Variance	884.835	895.326	
Association Statistics	Cov.	R	
	888.4795	.9982	
Fisher Transformation	Ζ	SE (Z)	
	3.506	.049	

Research Question 1

Is there a difference in the mandibular buccal cortical bone thickness between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types? **Hypothesis:** There is a difference in the mandibular buccal cortical bone thickness between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types. **Null Hypothesis:** There is no difference in the mandibular buccal cortical bone thickness between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types. **Null Hypothesis:** There is no difference in the mandibular buccal cortical bone thickness between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types. The null hypothesis was rejected. ANOVA and Post-Hoc Scheffé analysis (Appendix C) were conducted and statistically significant differences were found in mean buccal cortical bone thickness between facial types in all age groups (Table 4.4 and Table 4.5).

Age Group 12 to 18 Years

Statistically significant differences were found between the facial types at 8 out of 8 buccal cortical bone measurement sites in the mandible for the 12 to 18 age group. This includes the second molar upper and lower buccal sites at CBB132M (p < .001) and CBB232M (p < .001), the first molar upper and lower buccal sites at CBB131M (p < .001) and CBB231M (p < .001), the second premolar upper and lower buccal sites at CBB132P (p < .001) and CBB232P (p < .001), and the central incisor upper and lower buccal sites at CBB13CI (p < .001) and CBB232P (p < .001), and the central incisor upper and lower buccal sites at CBB13CI (p < .001) and CBB23CI (p = .001) (Table 4.4). In addition, the buccal cortical bone thickness for the hypodivergent facial type was consistently greater at all sites measured compared with the normodivergent and hyperdivergent facial types. The normodivergent facial type had consistently greater buccal cortical bone thickness than the hyperdivergent facial type at all sites measured except at the second molar lower buccal site (Figure 4.1). In addition, the buccal cortical bone thickness decreased

34

successively from the posterior region of the mandible to the anterior region in all facial types. Mean thicknesses ranged from 2.99mm (± 0.52) at the second molar region to 1.96mm (± 0.36) at the central incisor region for the hypodivergent group. Mean thicknesses ranged from 2.59mm (± 0.49) at the second molar region to 1.78mm (± 0.36) at the central incisor for the normodivergent group. Mean thicknesses ranged from 2.39mm (± 0.45) at the second molar region to 1.66mm (± 0.37) at the central incisor region for the hyperdivergent group (Table 4.4).

Table 4.4

							Norm vs
							Hypo vs
							Hyper p <
	Ну	ро	No	rm	Hyj	per	0.05
	Mean		Mean		Mean		
	(mm)	SD	(mm)	SD	(mm)	SD	
Age Group 12	2-18						
CBB132M	2.99	0.52	2.59	0.49	2.39	0.45	.000*
CBB232M	2.52	0.42	2.13	0.43	2.17	0.51	.000*
CBB131M	2.86	0.44	2.30	0.47	2.09	0.46	.000*
CBB231M	2.41	0.44	2.00	0.34	1.90	0.45	.000*
CBB132P	2.37	0.44	1.92	0.32	1.71	0.38	.000*
CBB232P	2.24	0.36	1.94	0.28	1.80	0.37	.000*
CBB13CI	1.76	0.34	1.39	0.29	1.27	0.27	.000*
CBB23CI	1.96	0.36	1.78	0.36	1.66	0.37	.001*

Means and Standard Deviations of Buccal Cortical Bone Thickness

Figure 4.1. Buccal Cortical Bone Thickness for All Facial Types Age 12 to 18 Years

Age Groups Subdivided

Age Group 12 to 13 Years

Statistically significant differences were found between the facial types at 7 out of 8 buccal cortical bone measurement sites in the mandible for the 12 to 13 age group. This includes the second molar upper buccal site at CBB132M (p = .003), the first molar upper and lower buccal site at CBB131M (p < .001) and CBB231M (p = .002), the second premolar upper and lower buccal site at CBB132P (p < .001) and CBB232P (p < .001), and the central incisor upper and lower buccal site at CBB132P (p < .001) and CBB232P (p < .001), and the central incisor upper and lower buccal site at CBB13CI (p = .001) and CBB23CI (p = .021) (Table 4.5). The only site that did not have statistically significant difference between the facial types was at the second molar lower buccal site CBB232M (p = .087). In addition, the buccal cortical bone thickness for the hypodivergent facial type was consistently greater at all sites measured compared with the normodivergent and hyperdivergent facial types. The normodivergent facial type at all sites measured (Figure 4.2). In addition, the cortical bone thickness decreased successively from the posterior region to the anterior region of the mandible in all facial types.

Age Group 14 to 15 Years

Statistically significant differences were found between the facial types at 8 out of 8 buccal cortical bone measurement sites in the mandible for the 14 to 15 age group. This includes the second molar upper and lower buccal sites at CBB132M (p < .001) and CBB232M (p = .007), the first molar upper and lower buccal sites at CBB131M (p < .001) and CBB231M (p = .001), the second premolar upper and lower buccal sites at CBB132P (p < .001) and CBB232P (p < .001), and the central incisor upper and lower buccal sites at CBB13CI (p < .001) and CBB232CI (p = .001),

.006) (Table 4.5). In addition, the buccal cortical bone thickness for the hypodivergent facial type was consistently greater at all sites measured than the normodivergent and hyperdivergent facial type. The normodivergent facial type had consistently greater buccal cortical bone thickness than the hyperdivergent facial type at all sites measured (Figure 4.3). In addition, the cortical bone thickness decreased successively from the posterior region of the mandible to the anterior region in all facial types.

Age Group 16 to 18 Years

Statistically significant differences were found between the facial types at 4 out of 8 buccal cortical bone measurement sites in the mandible for the 16 to 18 age group. This includes the first molar upper and lower buccal sites at CBB131M (p = .001) and CBB231M (p = .049), the second premolar upper buccal site at CBB132P (p = .009), and the central incisor upper buccal site at CBB13CI (p = .014) (Table 4.5). Measurement sites that were not statistically different include the second molar upper and lower buccal site at CBB132M (p = .077) and CBB232M (p = .389), the second premolar lower buccal site at CBB232P (p = .128), and the central incisor lower buccal site at CBB23CI (p = .977). In addition, the buccal cortical bone thickness for the hypodivergent facial type was consistently greater at all sites measured compared with the normodivergent and hyperdivergent facial types. The normodivergent facial type had similar buccal cortical bone thickness to the hyperdivergent facial type (Figure 4.4). In addition, the cortical bone thickness decreased successively from the posterior region of the mandible to the anterior region in all facial types.

Table 4.5

Means and Standard Deviations of Buccal Cortical Bone Thickness	
---	--

							Norm vs
							Hypo vs
							Hyper p <
	Ну	ро	No	rm	Hyj	per	0.05
	Mean		Mean		Mean		
	(mm)	SD	(mm)	SD	(mm)	SD	
Age Group 12	-13						
CBB132M	2.86	0.50	2.46	0.51	2.18	0.48	.003*
CBB232M	2.44	0.40	2.10	0.46	2.08	0.52	.087
CBB131M	2.77	0.48	2.22	0.42	2.04	0.46	.000*
CBB231M	2.35	0.42	1.97	0.33	1.82	0.41	.002*
CBB132P	2.42	0.48	1.89	0.30	1.70	0.43	.000*
CBB232P	2.29	0.41	1.90	0.28	1.75	0.41	.000*
CBB13CI	1.75	0.36	1.43	0.31	1.30	0.26	.001*
CBB23CI	1.95	0.40	1.70	0.30	1.59	0.36	.021*
Age Group 14	15						
CBB132M	2.99	0.48	2.65	0.44	2.35	0.37	.000*
CBB232M	2.59	0.46	2.16	0.42	2.13	0.44	.007*
CBB131M	2.81	0.46	2.41	0.47	2.03	0.37	.000*
CBB231M	2.44	0.50	2.06	0.35	1.91	0.39	.001*
CBB132P	2.36	0.47	1.94	0.32	1.70	0.33	.000*
CBB232P	2.23	0.40	2.02	0.26	1.81	0.28	.000*
CBB13CI	1.81	0.30	1.40	0.26	1.23	0.22	.000*
CBB23CI	2.05	0.34	1.85	0.39	1.63	0.36	.006*
Age Group 16	-18						
CBB132M	3.19	0.62	2.82	0.53	2.68	0.40	.077
CBB232M	2.54	0.40	2.18	0.42	2.33	0.58	.389
CBB131M	3.09	0.30	2.08	0.55	2.22	0.58	.001*
CBB231M	2.44	0.42	1.85	0.30	1.98	0.57	.049*
CBB132P	2.32	0.37	1.94	0.40	1.73	0.41	.009*
CBB232P	2.16	0.25	1.80	0.31	1.84	0.45	.128
CBB13CI	1.69	0.43	1.18	0.23	1.29	0.35	.014*
CBB23CI	1.80	0.31	1.79	0.42	1.77	0.38	.977

Figure 4.2. Buccal Cortical Bone Thickness for All Facial Types Age 12 to 13 Years

Figure 4.3. Buccal Cortical Bone Thickness for All Facial Types Age 14 to 15 Years

Figure 4.4. Buccal Cortical Bone Thickness for All Facial Types Age 16 to 18 Years

Research Question 2

Is there a difference in the mandibular lingual cortical bone thickness between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types? **Hypothesis:** There is a difference in the mandibular lingual cortical bone thickness between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types. **Null Hypothesis:** There is no difference in the mandibular lingual cortical bone thickness between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types. **Null Hypothesis:** There is no difference in the mandibular lingual cortical bone thickness between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types. The null hypothesis was rejected. ANOVA and Post-Hoc Scheffé analysis (Appendix C) were conducted and statistically significant differences were found in the mean lingual cortical bone thickness between the facial types in all age groups (Table 4.6 and Table 4.7).

Age Group 12 to 18 Years

Statistically significant differences were found between the facial types at 8 out of 8 sites measured in the mandible for the 12 to 18 age group including the second molar upper and lower lingual sites at CLB132M (p < .001) and CLB232M (p < .001), the first molar upper and lower lingual sites at CLB131M (p < .001) and CLB231M (p < .001), the second premolar upper and lower lingual sites at CLB132P (p < .001) and CLB232P (p < .001), and the central incisor upper and lower lingual sites at CLB132P (p < .001) and CLB232P (p < .001), and the central incisor upper and lower lingual sites at CLB13CI (p < .001) and CLB23CI (p < .001) (Table 4.6). In addition, the lingual cortical bone thickness for the hypodivergent facial type was consistently greater at all sites measured than the normodivergent and hyperdivergent facial types. The normodivergent facial type had greater lingual cortical bone thickness than the hyperdivergent facial type at all sites measured (Figure 4.5). In addition, the lingual cortical bone thickness was greater at $1/3^{rd}$ height of the alveolar bone than at $2/3^{rds}$ height of the alveolar bone at all locations of measurement and in all facial types except at the central incisor. At the central incisor the lingual cortical bone was thicker at $2/3^{rds}$ of the alveolar bone height rather than at $1/3^{rd}$ of the alveolar bone height.

Table 4.6

	Hv	DO	Noi	rm	Hvr	ber	Norm vs Hypo vs Hyper p < 0.05
	Mean		Mean		Mean	-	
	(mm)	SD	(mm)	SD	(mm)	SD	
Age Group 12	-18						
CLB132M	2.17	.53	1.84	.39	1.58	.40	.000*
CLB232M	1.82	.40	1.50	.36	1.38	.33	.000*
CLB231M	1.90	.46	1.64	.35	1.47	.34	.000*
CLB131M	2.73	.50	2.21	.50	2.03	.51	.000*
CLB132P	2.52	.38	2.13	.42	2.02	.48	.000*
CLB232P	2.01	.47	1.74	.34	1.61	.36	.000*
CLB13CI	2.06	.44	1.84	.34	1.67	.42	.000*
CLB23CI	3.50	.81	2.91	.71	2.70	.76	.000*

Means and Standard Deviations of Lingual Cortical Bone Thickness

Figure 4.5. Lingual Cortical Bone Thickness for All Facial Types Age 12 to 18 Year

Age Groups Subdivided

Age Group 12 to 13 Years

Statistically significant differences were found between the facial types at 5 out of 8 sites measured in the mandible for the 12 to 13 age group. The statistically significant sites included the second molar upper lingual site at CLB132M (p = .003), the first molar upper and lower lingual sites at CLB131M (p = .008) and CLB231M (p = .026), the second premolar upper lingual site at CLB132P (p = .001), and the central incisor upper lingual site at CLB13CI (p = .003) (Table 4.7). The three sites that did not have statistically significant differences between the facial types was at the second molar lower lingual site at CLB232M (p = .286), the second premolar lower lingual site at CLB232P (p = .167), and the central incisor lower lingual site at CLB23CI (p = .350). In addition, the lingual cortical bone thickness for the hypodivergent facial type was consistently greater at all sites measured than the normodivergent and hyperdivergent facial types. The normodivergent facial type had greater lingual cortical bone thickness than the hyperdivergent facial type in the posterior region of the mandible but not at all sites in the anterior region (Figure 4.6). In addition, the lingual cortical bone thickness was greater at 1/3rd height of the alveolar bone than at $2/3^{rds}$ height of the alveolar bone at all locations of measurement and in all facial types except at the central incisor. At the central incisor the lingual cortical bone was thicker at $2/3^{rds}$ of the alveolar bone height rather than at $1/3^{rd}$ of the alveolar bone height.

Age Group 14 to 15 Years

Statistically significant differences were found between the facial types at 8 out of 8 sites measured in the mandible for the 14 to 15 age group including the second molar upper and lower lingual site at CLB132M (p = .001) and CLB232M (p < .001), the first molar upper and lower lingual sites at CLB131M (p = .001) and CLB231M (p = .002), the second premolar upper and lower lingual sites at CLB132P (p = .018) and CLB232P (p = .001), and the central incisor upper and lower lingual sites at CLB13CI (p = .002) and CLB23CI (p = .002) (Table 4.7). In addition, the lingual cortical bone thickness for the hypodivergent facial type was consistently greater at all sites measured than the normodivergent and hyperdivergent facial types. The normodivergent facial type had greater lingual cortical bone thickness than the hyperdivergent facial type at all sites measured (Figure 4.7). In addition, the lingual cortical bone thickness was greater at $1/3^{rd}$ height of the alveolar bone than at $2/3^{rds}$ height of the alveolar bone at all locations of measurement and in all facial types except at the central incisor. At the central incisor the lingual cortical bone was thicker at $2/3^{rds}$ of the alveolar bone height rather than at $1/3^{rd}$ of the alveolar bone height.

Age Group 16 to 18 Years

Statistically significant differences were found between the facial types at 6 out of 8 sites measured in the mandible for the 16 to 18 age group including the second molar upper and lower lingual sites at CLB132M (p = .004) and CLB232M (p = .001), the first molar upper and lower lingual sites at CLB131M (p = .004) and CLB231M, (p = .038), the second premolar lower lingual site at CLB232P (p = .028), and the central incisor lower lingual site at CLB23CI (p = .004) (Table 4.7). The two sites that were not statistically significant between the facial types were at the second premolar upper lingual site at CLB132P (p = .101) and central incisor upper lingual site at CLB132P (p = .004) (p = .004)

CLB13CI (p = .653). In addition, the lingual cortical bone thickness for the hypodivergent facial type was consistently greater at all sites measured than the normodivergent and hyperdivergent facial type. The normodivergent facial type had greater lingual cortical bone thickness than the hyperdivergent facial type at all sites measured (Figure 4.8). In addition, the lingual cortical bone thickness was greater at $1/3^{rd}$ height of the alveolar bone than at $2/3^{rds}$ height of the alveolar bone at all locations of measurement and in all facial types except at the central incisor. At the central incisor the lingual cortical bone was thicker at $2/3^{rds}$ of the alveolar bone height rather than at $1/3^{rd}$ of the alveolar bone height.

Table 4.7

							Norm vs
							Hypo vs
							Hyper p
	Hy	ро	Noi	rm	Hyp	ber	< 0.05
	Mean		Mean		Mean		
	(mm)	SD	(mm)	SD	(mm)	SD	
Age Group 12-13							
CLB132M	2.03	.41	1.76	.39	1.53	.32	.003*
CLB232M	1.58	.33	1.48	.32	1.38	.36	.286
CLB131M	2.54	.53	2.13	.52	1.93	.44	.008*
CLB231M	1.82	.49	1.63	.35	1.45	.29	.026*
CLB132P	2.56	.31	2.04	.46	1.92	.45	.001*
CLB232P	1.89	.61	1.67	.24	1.69	.28	.167
CLB13CI	2.14	.48	1.76	.35	1.67	.30	.003*
CLB23CI	3.09	.44	2.75	.69	2.76	.82	.350
Age Group 14-15							
CLB132M	2.13	.65	1.88	.36	1.56	.39	.001*
CLB232M	1.93	.38	1.51	.41	1.34	.32	.000*
CLB131M	2.75	.45	2.30	.47	2.06	.50	.001*
CLB231M	1.90	.38	1.66	.37	1.44	.32	.002*
CLB132P	2.46	.49	2.19	.41	2.00	.48	.018*
CLB232P	2.10	.38	1.84	.40	1.57	.42	.001*
CLB13CI	2.07	.40	1.90	.33	1.61	.46	.002*
CLB23CI	3.72	.92	3.04	.69	2.70	.85	.002*
Age Group 16	5-18						
CLB132M	2.43	.43	1.96	.46	1.65	.49	.004*
CLB232M	2.02	.38	1.51	.32	1.42	.31	.001*
CLB131M	2.98	.46	2.14	.49	2.12	.60	.004*
CLB231M	2.03	.59	1.58	.26	1.53	.42	.038*
CLB132P	2.57	.30	2.21	.31	2.15	.52	.101
CLB232P	2.03	.37	1.62	.30	1.59	.37	.028*
CLB13CI	1.92	.46	1.90	.32	1.77	.47	.653
CLB23CI	3.76	.93	2.95	.80	2.63	.53	.004*

Means and Standard Deviation of Lingual Cortical Bone Thickness

Figure 4.6. Lingual Cortical Bone Thickness for All Facial Types Age 12 to 13 Years

Figure 4.7. Lingual Cortical Bone Thickness for All Facial Types Age 14 to 15 Years

Figure 4.8. Lingual Cortical Bone Thickness for All Facial Types Age 16 to 18 Year

Research Question 3

Is there a difference in the mandibular alveolar bone height between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types? **Hypothesis**: There is a difference in the mandibular alveolar bone height between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types. **Null Hypothesis**: There is no difference in the mandibular alveolar bone height between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types. The null hypothesis was rejected. ANOVA and Post-Hoc Scheffé analysis (Appendix C) were conducted and statistically significant differences were found in mean alveolar bone height between the facial types in all age groups (Table 4.8 and Table 4.9).

Age Group 12 to 18 Years

Statistically significant differences in alveolar bone height were found between the facial types at the central incisor at BHTCI (p < .001) and at the second molar at BHT2M (p = .021) for the 12 to 18 age group. No statistically significant differences were found at the first molar or second premolar measurement sites between the facial types (Table 4.8). Bone height successively increased from the posterior region of the mandible to the anterior region of the mandible in all facial types (Figure 4.9). Mean alveolar bone heights ranged from 23.66mm (\pm 2.42) at the second molar region to 27.33mm (\pm 2.99) at the central incisor region for the hypodivergent group. Mean alveolar bone height ranged from 23.11mm (\pm 2.05) at the second molar region to 28.30mm (\pm 3.00) at the central incisor region for the normodivergent group. Mean alveolar bone height ranged from 22.39mm (\pm 2.12) at the second molar region to 30.79mm (\pm 3.16) at the central incisor region for the hyperdivergent facial type had the greatest alveolar bone height compared with the other facial types at the central incisor region and the shortest alveolar bone height at the second molar

region (Figure 4.9). The hypodivergent facial type had the greatest alveolar bone height at the second molar region and the shortest alveolar bone height at the central incisor region.

Table 4.8

Means and	l Standard	Deviations o	f Alveolar	Bone Height
-----------	------------	--------------	------------	-------------

							Norm vs
							Hypo vs
							Hyper p
	Нуро		Norm		Hyper		< 0.05
	Mean		Mean		Mean		
	(mm)	SD	(mm)	SD	(mm)	SD	
Age Group 12	2-18						
BHT2M	23.66	2.42	23.11	2.05	22.39	2.12	.021*
BHT1M	25.33	3.06	25.12	2.36	25.41	2.66	.794
BHT2P	26.34	3.39	26.40	2.56	27.24	2.70	.156
BHTCI	27.33	2.99	28.30	3.00	30.79	3.16	.000*

Figure 4.9. Alveolar Bone Height for All Facial Types Age 12 to 18 Years

Age Groups Subdivided

Age Group 12 to 13 Years

Statistically significant differences in alveolar bone height were found between the facial types at the central incisor region (p < .001) for the 12 to 13 age group. No statistically significant differences were found at the second molar, first molar, or second premolar sites between the facial types (Table 4.9). Bone height successively increased from the posterior region of the mandible to the anterior region of the mandible in all facial types (Figure 4.10). The hyperdivergent facial type had the greatest alveolar bone height at the central incisor region and the shortest alveolar bone height at the second molar region. The hypodivergent facial type had the greatest alveolar molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at t

Age Group 14 to 15 Years

Statistically significant differences in alveolar bone height were found between the facial types at the central incisor region (p = .004) in the mandible for the 14 to 15 age group. No statistically significant differences were found at the second molar, first molar, or second premolar sites between the facial types (Table 4.9). Bone height successively increased from the posterior region of the mandible to the anterior region of the mandible in all facial types (Figure 4.11). The hyperdivergent facial type had the greatest alveolar bone height at the central incisor region and the shortest alveolar bone height at the second molar region. The hypodivergent facial type had the greatest alveolar molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar

Age Group 16 to 18 Years

Statistically significant differences in alveolar bone height were found between the facial types at the second molar region (p = .044) in the mandible for the 16 to 18 age group. No statistically significant differences were found at the first molar, second premolar, or lower central incisor sites between the facial types (Table 4.9). Bone height successively increased from the posterior region of the mandible to the anterior region of the mandible in all facial types (Figure 4.12). The hyperdivergent facial type had the greatest alveolar bone height at the central incisor region and the shortest alveolar bone height at the second molar region. The hypodivergent facial type had the greatest alveolar bone height at the second molar region and shorter alveolar bone height at the central incisor region.

Table 4.9

means and Standard Deviations of Miveolar Done mergin								
							Norm vs	
							Hypo vs	
							Hyper p	
	Hy	ро	No	rm	Hyj	ber	< 0.05	
	Mean		Mean		Mean			
	(mm)	SD	(mm)	SD	(mm)	SD		
Age Group 12	2-13							
BHT2M	21.97	1.73	22.51	1.72	21.29	1.75	.053	
BHT1M	23.28	1.87	24.32	2.13	23.94	2.07	.343	
BHT2P	24.15	2.49	25.39	2.37	25.49	2.22	.264	
BHTCI	25.89	2.39	27.53	2.52	30.17	3.72	.000*	
Age Group 14	-15							
BHT2M	23.93	2.10	23.44	2.15	22.65	2.05	.174	
BHT1M	25.93	3.19	25.45	2.37	25.44	2.34	.827	
BHT2P	26.43	2.96	26.90	2.49	27.29	2.24	.609	
BHTCI	27.15	2.65	28.80	3.38	30.70	2.64	.004*	
Age Group 16-18								
BHT2M	25.83	2.10	24.10	2.29	23.24	2.19	.044*	
BHT1M	27.54	2.59	26.83	2.09	27.00	2.87	.857	
BHT2P	29.63	2.81	28.23	2.03	29.12	2.61	.522	
BHTCI	29.88	3.09	29.14	2.60	31.62	3.21	.129	

Means and Standard Deviations of Alveolar Bone Height

Figure 4.10. Alveolar Bone Height for All Facial Types Age 12 to 13 Years

Figure 4.11. Alveolar Bone Height for All Facial Types Age 14 to 15 Years

Figure 4.12. Alveolar Bone Height for All Facial Types Age 16 to 18 Years

Research Question 4

Is there a difference in the mandibular alveolar bone width between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types? **Hypothesis**: There is a difference in the mandibular alveolar bone width between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types. **Null Hypothesis**: There is no difference in the mandibular alveolar bone width between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types. The null hypothesis was rejected. ANOVA and Post-Hoc Scheffé analysis (Appendix C) were conducted and statistically significant differences were found in mean alveolar bone width between the facial types in all age groups (Table 4.10 and Table 4.11).

Age Group 12 to 18 Years

Statistically significant differences were found in mean alveolar bone width between the facial types for the 12 to 18 age group at the upper second molar region at BW132M (p = .044), at the upper first molar region at BW131M (p = .001), at the upper second premolar region at BW132P (p < .001), and at the upper and lower central incisor region at BW13CI (p < .001) and at BW23CI (p < .001) (Table 4.10). Bone width successively decreased from the posterior region of the mandible to the anterior region of the mandible in all facial types. The exception was at $2/3^{rds}$ height of the alveolar bone at the central incisor region (BW23CI) where the bone width was sometimes greater than in the posterior region (Figure 4.13). The hypodivergent facial type had greater alveolar bone width in general than the normodivergent and hyperdivergent facial types. The normodivergent facial type had greater bone width than the hyperdivergent facial type at most sites.

Table 4.10

		ŭ					Norm vs Hypo vs Hyper p
	Hy	ро	Norm		Hyper		< 0.05
	Mean		Mean		Mean		
	(mm)	SD	(mm)	SD	(mm)	SD	
Age Group 12-	-18						
BW132M	15.08	1.41	14.62	1.48	14.26	1.52	.044*
BW232M	11.51	1.26	10.92	1.36	11.18	1.31	.105
BW131M	13.77	1.17	13.11	1.37	12.60	1.55	.001*
BW231M	10.82	1.38	10.17	1.48	10.20	1.70	.126
BW132P	12.31	1.44	11.62	1.53	10.87	1.63	.000*
BW232P	10.54	1.34	9.99	1.45	9.83	1.77	.116
BW13CI	9.16	1.40	8.31	1.31	7.12	1.39	.000*
BW23CI	14.74	2.28	13.47	1.79	12.30	1.82	.000*

Means and Standard Deviations of Alveolar Bone Width

Figure 4.13. Alveolar Bone Width for All Facial Types Age 12 to 18 Years

Age Groups Subdivided

Age Group 12 to 13 Years

Statistically significant differences were found in the alveolar bone width between the facial types for the 12 to 13 age group at the upper first molar region at BW131M (p = .008), second premolar region at BW132P (p = .004), and at the central incisor region at BW13CI (p < .001). No statistically significant differences in alveolar bone width was found at the second molar region between the facial types (Table 4.11). Bone width successively decreased from the posterior region of the mandible to the anterior region of the mandible in all facial types. The exception was at $2/3^{rds}$ height of the alveolar bone at the central incisor region (BW23CI) where the bone width was sometimes greater than in the posterior region (Figure 4.14). The hypodivergent facial types. The normodivergent facial type had greater bone width than the hyperdivergent facial type at most sites

Age Group 14 to 15 Years

Statistically significant differences were found in the alveolar bone width between the facial types for the 14 to 15 age group at the upper and lower central incisor region at BW13CI (p < .001) and BW23CI (p < .001). No statistically significant differences in alveolar bone width were found at the second molar, first molar, or second premolar region between the facial types (Table 4.11). Bone width successively decreased from the posterior region of the mandible to the anterior region of the mandible in all facial types. The exception was at $2/3^{rds}$ height of the alveolar bone at the central incisor region (BW23CI) where the bone width was sometimes greater than in the posterior region (Figure 4.15). The hypodivergent facial type had wider

alveolar bone width in general than the normodivergent and hyperdivergent facial types. The normodivergent facial type had greater bone width than the hyperdivergent facial type at most sites.

Age Group 16 to 18 Years

Statistically significant differences were found between the facial types in the alveolar bone width for the 16 to 18 age group at the upper second premolar region at BW132P (p = .024) and at the upper and lower central incisor region at BW13CI (p = .009) and at BW23CI (p = .001). No statistically significant differences in width were found at the second molar or first molar region between the facial types (Table 4.11). Bone width successively decreased from the posterior region of the mandible to the anterior region of the mandible in all facial types. The exception was at $2/3^{rds}$ height of the alveolar bone at the central incisor region (BW23CI) where the bone width was sometimes greater than in the posterior region (Figure 4.15). The hypodivergent facial type had wider alveolar bone width in general than the normodivergent and hyperdivergent facial types. The normodivergent facial type had greater bone width than the hyperdivergent facial type at most sites

Table 4.11

							Norm vs Hypo vs
							Hyper p
	Ну	ро	Not	rm	Hyj	ber	< 0.05
	Mean		Mean		Mean		
	(mm)	SD	(mm)	SD	(mm)	SD	
Age Group 12	2-13						
BW132M	15.36	.87	14.43	1.56	14.64	1.19	.157
BW232M	11.48	.85	10.88	1.31	11.15	1.25	.350
BW131M	14.26	.98	12.93	1.39	12.82	1.24	.008*
BW231M	11.21	1.12	10.15	1.52	10.23	1.33	.090
BW132P	13.07	1.40	11.49	1.49	11.34	1.35	.004*
BW232P	10.86	1.16	10.03	1.56	10.02	1.39	.229
BW13CI	9.48	1.00	8.47	1.41	7.55	.90	.000*
BW23CI	13.76	1.63	13.38	1.94	12.42	2.05	.123
Age Group 14-15							
BW132M	15.12	1.88	14.80	1.44	14.14	1.56	.132
BW232M	12.01	1.03	10.95	1.46	11.16	1.32	.069
BW131M	13.38	1.40	13.22	1.38	12.56	1.56	.147
BW231M	10.52	1.27	10.18	1.53	10.05	2.02	.732
BW132P	11.99	1.56	11.62	1.58	10.78	1.81	.063
BW232P	10.41	1.56	9.94	1.38	9.73	2.21	.54
BW13CI	9.49	1.27	8.23	1.24	7.29	1.57	.000*
BW23CI	15.16	2.18	13.63	1.67	12.52	1.91	.000*
Age Group 16	5-18						
BW132M	14.59	1.20	14.56	1.35	14.02	1.79	.603
BW232M	10.72	1.83	10.96	1.29	11.25	1.43	.714
BW131M	13.67	.79	13.34	1.25	12.40	1.87	.141
BW231M	10.70	1.92	10.20	1.21	10.39	1.62	.819
BW132P	11.65	.74	12.12	1.52	10.49	1.59	.024*
BW232P	10.28	1.27	10.10	1.38	9.76	1.46	.671
BW13CI	8.11	1.78	7.98	1.32	6.38	1.34	.009*
BW23CI	15.56	3.00	13.14	1.78	11.84	1.39	.001*

Means and Standard Deviations of Alveolar Bone Width

Figure 4.14. Alveolar Bone Width for All Facial Types Age 12 to 13 Years

Figure 4.15. Alveolar Bone Width for All Facial Types Age 14 to 15 Years

Figure 4.16. Alveolar Bone Width for All Facial Types Age16 to 18 Years

Research Question 5

Is there a difference in the buccolingual tooth inclination between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types? **Hypothesis:** There is a difference in the buccolingual tooth inclination between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types. **Null Hypothesis:** There is no difference in the buccolingual tooth inclination between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types. The null hypothesis was rejected. ANOVA and Post-Hoc Scheffé analysis (Appendix C) were conducted and statistically significant differences were found in the tooth inclination between the facial types in three of the four age groups (Table 4.12 and Table 4.13).

Age Group 12 to 18 Years

Statistically significant differences in tooth inclination were found between the facial types for the second premolar (p = .002) and central incisor (p < .001) for the 12 to 18 age group (Table 4.12). At the second premolar the hypodivergent facial type had the largest buccolingual inclination angle at 82 degrees and the hyperdivergent facial type had the lowest buccolingual inclination angle at 78 degrees. At the central incisor, the hypodivergent facial type had the lowest labiolingual inclination at 98 degrees and the hyperdivergent facial type had the lowest labiolingual inclination at 91 degrees. In each facial type, the tooth inclination successively increased from the posterior region of the mandible to the anterior region (Figure 4.17). Hypodivergent subjects had more upright posterior teeth and more proclined central incisor than the normodivergent and hyperdivergent subjects.

Table 4.12

							Norm vs
							Hypo vs
							Hyper p
	Hyp	00	Nor	m Hyper		er	< 0.05
	Mean (°)	SD	Mean (°)	SD	Mean (°)	SD	
Age Group 12	2-18						
TIncl2M	71.37	7.02	71.71	6.35	70.96	7.08	.804
TIncl1M	75.99	4.73	75.04	4.53	74.32	5.39	.306
TIncl2P	82.39	6.17	81.60	6.07	78.48	5.83	.002*
TInclCI	97.99	8.84	95.54	7.18	90.67	6.57	.000*

Means and Standard Deviations of Tooth Inclination

Note. *p < .05

Figure 4.17. Tooth inclination for all Facial Types Age 12 to 18 Years

Age Groups Subdivided

Age Group 12 to 13 Years

No Statistically significant differences were found in tooth inclination between the facial types for the 12 to 13 age group (Table 4.13). In each facial type, the tooth inclination successively increased from the posterior region of the mandible to the anterior region (Figure

4.18). Hypodivergent subjects also had more upright posterior teeth than the normodivergent subjects. The normodivergent subjects had more upright posterior teeth than the hyperdivergent subjects. At the central incisor, the hypodivergent facial type had the largest labiolingual inclination at 97 degrees and the hyperdivergent facial type had the lowest labiolingual inclination at 93 degrees.

Age Group 14 to 15 Years

Statistically significant differences were found in the tooth inclination between the facial types for the second premolar (p < .001) and central incisor (p = .001) for the 14 to 15 age group (Table 4.13). At the second premolar the hypodivergent facial type had the largest buccolingual inclination angle at 83 degrees and the hyperdivergent facial type had the lowest buccolingual inclination angle at 78 degrees. At the central incisor, the hypodivergent facial type had the lowest labiolingual inclination at 97 degrees and the hyperdivergent facial type had the lowest labiolingual inclination at 89 degrees. In each facial type, the tooth inclination successively increased from the posterior region of the mandible to the anterior region (Figure 4.19). Hypodivergent subjects also had more upright posterior teeth than the normodivergent subjects.

Age Group 16 to 18 Years

Statistically significant difference was found in the tooth inclination between the facial types for the central incisor (p = .006) for the 16 to 18 age group (Table 4.13). At the central incisor, the hypodivergent facial type had the largest labiolingual inclination at 100 degrees and the hyperdivergent facial type had the smallest labiolingual inclination at 89 degrees. The tooth inclination successively increased from the posterior region of the mandible to the anterior region at all locations measured in each facial type (Figure 4.20). Hypodivergent subjects also

had more upright posterior teeth than the normodivergent subjects and the normodivergent subjects had more upright posterior teeth than the hyperdivergent subjects.

Table 4.13

Mean and	Standard	Deviation	s of Toot	h Inclination
			./	

							Norm vs
							Hypo vs
							Hyper p
	Hyp	00	Nor	m	Нур	er	< 0.05
	Mean (°)	SD	Mean (°)	SD	Mean (°)	SD	
Age Group 12	-13						
TIncl2M	68.26	6.87	71.55	7.44	69.95	7.32	.400
TIncl1M	75.42	2.62	75.07	4.58	75.41	3.91	.945
TIncl2P	81.67	5.54	81.09	5.83	79.94	6.59	.706
TInclCI	96.76	7.20	94.82	7.54	93.48	6.55	.488
Age Group 14	-15						
TIncl2M	72.13	6.41	71.28	5.46	70.89	7.39	.857
TIncl1M	75.15	5.39	74.91	4.79	73.91	6.00	.712
TIncl2P	83.48	6.17	81.92	6.34	78.40	5.62	.029*
TInclCI	97.70	9.32	96.13	7.16	89.48	6.24	.001*
Age Group 16	-18						
TIncl2M	74.94	7.09	74.10	5.21	72.18	6.56	.570
TIncl1M	78.31	5.92	75.50	3.50	73.72	5.99	.183
TIncl2P	81.66	7.70	82.18	6.34	76.98	5.11	.077
TInclCI	100.40	11.07	95.88	6.21	89.28	6.44	.006*

Note. *p < .05

Figure 4.18. Tooth inclination for all Facial Types Age 12 to 13 Years

Figure 4.19. Tooth inclination for all Facial Types Age 14 to 15 Years

Figure 4.20. Tooth inclination for all Facial Types Age 16 to 18 Years

Research Question 6

Is there a difference in the buccolingual inclination of mandibular alveolar bone between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types? **Hypothesis**: There is a difference in the buccolingual inclination of mandibular alveolar bone between adolescents with normodivergent, hypodivergent, and hyperdivergent facial types. **Null Hypothesis:** There is no difference in the buccolingual inclination of mandibular alveolar bone in adolescents with normodivergent, hypodivergent, and hyperdivergent facial types. The null hypothesis was rejected. ANOVA and Post-Hoc Scheffé analysis (Appendix C) were conducted and statistically significant differences were found in the alveolar bone inclination between the facial types in all age groups (Table 4.14 and Table 4.15).

Age Group 12 to 18 Years

Statistically significant difference in the alveolar bone inclination was found between the facial types at the second molar region (p = .039) for the 12 to 18 age group (Table 4.14). The mean bone inclination of the second molar region was 67 degrees in the hypodivergent group, 66 degrees in the normodivergent group, and 64 degrees in the hyperdivergent group. This indicated that the bone was more upright in the second molar region for the hypodivergent facial types than the other two groups. The mean bone inclination increased from the posterior region of the mandible to the anterior region at all locations measured (Figure 4.21). The mean bone inclination was 67 degrees in the second molar region and it increased to 87 degrees in the anterior region for the hypodivergent group. A similar trend was also noted in the normodivergent and hyperdivergent facial types as well.

Table 4.14

							Norm vs Hypo vs Hyper p
	Hyp	Нуро		rm Hyp		er	< 0.05
	Mean (°)	SD	Mean (°)	SD	Mean (°)	SD	
Age Group	12-18						
BIncl2M	66.91	5.69	66.20	4.23	64.45	5.33	.039*
BIncl1M	74.15	5.60	73.94	4.16	73.51	4.96	.795
BIncl2P	78.17	5.34	78.64	3.94	78.61	4.09	.868
BInclCI	87.03	7.22	86.49	5.11	84.53	6.06	.074
<i>Note</i> . *p < .0)5						

Means and Standard Deviation of Alveolar Bone Inclination

Figure 4.21. Bone inclination for all Facial Types Age 12 to 18 Years

Age Groups Subdivided

Age Group 12 to 13 Years

Statistically significant differences were found in the alveolar bone inclination between the facial types at the second premolar region (p = .013) for the 12 to 13 age group (Table 4.15). The mean bone inclination at the second premolar was 75 degrees for the hypodivergent facial type, 78 degrees for the normodivergent facial type, and 79 degrees for the hyperdivergent facial type. The bone inclination successively increased from the posterior region of the mandible to the anterior region at all locations measured for all facial types (Figure 4.22). The alveolar bone was more lingually inclined in the posterior mandible in the hypodivergent facial type than other facial types which differed from the other age groups where the alveolar bone was more upright.

Age Group 14 to 15 Years

Statistically significant differences were found in the alveolar bone inclination between the facial types for the second molar region (p = .041) and the central incisor region (p = .031) for the 14 to 15 age group (Table 4.15). The mean bone inclination at the second molar was 67 degrees for the hypodivergent facial type, 66 degrees for the normodivergent facial type, and 44 degrees for the hyperdivergent facial type. The mean bone inclination at the central incisor was 87 degrees for the hypodivergent facial type, 87 degrees for the normodivergent facial type, and 84 degrees for the hyperdivergent facial type. The bone inclination angle increased from the posterior region of the mandible to the anterior region of the mandible at all locations measured (Figure 4.23). The posterior alveolar bone was more upright in the hypodivergent than in the normodivergent and hyperdivergent group.

Age Group 16 to 18 Years

Statistically significant differences were found in the alveolar bone inclination between the facial types at the central incisor region (p = .005) for the 16 to 18 age group (Table 4.15). The mean bone inclination at the central incisor was at 92 degrees for the hypodivergent facial type, at 85 degrees for the normodivergent facial type, and at 83 degrees for the hyperdivergent facial type. The bone inclination angle increased from the posterior region of the mandible to the anterior region of the mandible at all locations measured (Figure 4.24). The posterior alveolar

bone was more upright in the hypodivergent group than in the normodivergent and

hyperdivergent group.

Table 4.15

Means and Standard Deviation of Alveolar Bone Inclination

							Norm vs Hypo vs Hyper p
	Нур	00	Nor	m	Нур	er	< 0.05
	Mean (°)	SD	Mean (°)	SD	Mean (°)	SD	
Age Group 1	2-13						
BIncl2M	64.85	4.64	65.05	4.21	65.25	4.70	.970
BIncl1M	70.99	3.49	72.93	3.91	74.04	3.91	.121
BIncl2P	74.86	3.76	78.17	3.60	78.90	3.65	.013*
BInclCI	83.69	6.42	85.27	4.99	86.47	6.30	.429
Age Group 1	4-15						
BIncl2M	67.27	5.27	66.49	3.88	63.69	5.76	.041*
BIncl1M	75.16	5.48	74.33	4.24	72.44	5.19	.183
BIncl2P	79.58	4.33	78.59	4.30	77.89	4.34	.536
BInclCI	87.32	5.87	87.91	5.28	83.93	6.58	.031*
Age Group 1	6-18						
BIncl2M	69.56	7.30	69.43	4.31	64.67	5.49	.064
BIncl1M	77.39	6.60	76.24	4.04	74.51	5.61	.47
BIncl2P	80.97	6.83	80.64	3.33	79.34	4.25	.67
BInclCI	91.80	8.52	85.26	3.37	83.25	4.65	.005*

Note. *p < .05

Figure 4.22. Bone inclination for all Facial Types Age 12 to 13 Years

Figure 4.23. Bone inclination for all Facial Types Age 14 to 15 Years

Figure 4.24. Bone inclination for all Facial Types Age 16 to 18 Years

Chapter 5: Discussion and Conclusion

The primary goal of this research project was to use the improved imaging capability of the CBCT to investigate the relationship between vertical facial patterns and mandibular toothalveolar morphology in the adolescent population. Prior studies focused mainly on the adult population and this study was designed to identify the characteristics of subjects 12 to 18 years of age which comprise the main treatment population of the orthodontic practice. The study population was subdivided into 12 to 13, 14 to 15, and 16 to 18 age groups in order to evaluate any changes associated with growth. When subjects were classified in their respective age subgroups, however, statistical power decreased due to the limited sample size. Therefore, subjects were also evaluated in the combined 12 to 18 age group for an investigation of the adolescent population as a whole. Overall, statistically significant differences were found between the facial types in all of the categories measured including cortical bone thickness, alveolar bone height, alveolar bone width, tooth inclination, and bone inclination measurements.

Age Group 12 to 18 Years

Cortical Bone Thickness

For the combined age group, statistically significant differences were found between the different facial types at all sites measured for the cortical bone. The measurements included the buccal and lingual cortical bone thickness at the second molar, first molar, second premolar, and central incisor region. The hypodivergent facial type had consistently greater cortical bone thickness than the normodivergent and the hyperdivergent facial types. The normodivergent facial type had consistently greater cortical bone thickness than the hyperdivergent facial type at almost all sites. These finding are consistent with the studies by Tsunori et al. (1998) and Matsumoto et al. (2001) on CT scans of dry skulls of adult Asiatic Indians where researchers

found the thickness of buccal cortical bone in hypodivergent subjects was greater than that of normodivergent or hyperdivergent subjects at all sites measured. The CBCT study by Swasty et al. (2011), which measured cortical bone thickness in a combined age group of 10 to 65 years, had similar findings but noted that the most significant correlation of cortical bone thickness and facial type applied to the upper buccal cortical bone of the mandible. No significant correlation was found in that study between facial types and the lower lingual cortical bone. This difference in finding may be due to the wide age range of subjects included in the investigation as patients at the higher and lower end of the age spectrum could have significant differences in cortical bone thickness. This study, however, found statistically significant differences at all sites measured between the facial types in the 12 to 18 age group. It appears that in the adolescent age group, as with adults, the same correlations of the short-faced type with thicker cortical bone and the long-faced type with thinner cortical bone exists.

The findings in this study can be attributed to the adaptation of cortical bone to loading forces and functional demands. Cortical bone thickness, shape, and mineralization are not only influenced by genetics but also by environmental factors as well. Cortical bone thickness correlates with the amount of loading forces developed through the dentition as muscles contract (Bresin et al., 1999). Bone mass and remodeling varies depending on function and also on the region of muscle attachment. Reduced muscle function is associated with a reduced amount of cortical and trabecular bone in the dentoalveolar process (Bresin et al., 1999). The size and orientation of the masticatory muscles and the forces that they generate also affect the development of the maxillofacial complex and facial divergence (Chan et al., 2008; Satiroglu et al., 2005). In addition, increased facial divergence has been found to be associated with reduced muscle function (Garcia-Morales et al., 2003). The finding in this study that short-faced subjects

had thicker cortical bone and long faced subjects had thinner cortical bone is consistent with the existing evidence regarding muscle function, facial type, and cortical bone mineralization. In addition, the tensile stress and strain during biting has been found to be greatest at the lower lingual region of the mandibular symphysis and least on the upper buccal region of the symphysis (Korioth, Romilly, & Hannam, 1992). Consequently, in this study, the thickest cortical bone of the mandible was found at the lower lingual 1/3rd region of the symphysis while the thinnest cortical bone was located at the upper buccal 1/3rd region of the symphysis. Results of this investigation provides further evidence that cortical bone thickness is influenced by functional forces.

The findings in this study have significant implications for various disciplines in dentistry including orthodontics. The thickness of cortical bone is strongly correlated with the success rate of mini-implants and greater than 1mm of bone should be present to ensure primary stability (Motoyoshi et al., 2009). Some studies have also found that mini-implants inserted in adolescents tended to fail at a higher rate than those placed in adults due to less mature and thinner cortical bone (Chen, Chang, & Huang, 2007; Farnsworth, Rossouw, Ceen, & Buschang, 2011). Therefore, knowledge of the buccal cortical bone thickness of adolescents with different facial types is important in order to determine the ideal placement sites for mini-implants. The mean cortical bone thicknesses of subjects in this study ranged from 1.27mm (\pm 0.27) to 2.99mm (\pm 0.52). The hypodivergent facial type has been found in this study to have thicker cortical bone than the hyperdivergent facial type and therefore adolescents with the horizontal growth pattern may have better primary stability with miniscrews. Cortical bone thickness increased successively from the anterior mandible to the posterior mandible. Since cortical bone thickness is directly related to bone screw stability, the results suggests that posterior regions of the

mandible would be more ideal for mini-implant placement. Caution should be taken in placing mini-implants in hyperdivergent adolescents in the anterior and premolar regions of the mandible as buccal cortical bone ranged from 1.27mm (± 0.27) to 1.71mm (± 0.38), which is only slightly greater than 1mm. A more predictable area for placement would be near the first and second molar region where buccal cortical bone ranged from 1.9mm (± 0.45) to 2.39mm (± 0.45).

In addition, there are periodontal concerns regarding the thin buccal cortical bone overlying the upper one third of the lower central incisor for the hyperdivergent subjects as the mean value was only at 1.27mm (\pm 0.27). Lower incisors should not be proclined excessively in orthodontic treatment mechanics to avoid dehiscence, recession, and other iatrogenic problems. Periodontists should also be aware of the existence of thinner cortical bone in the mandible when treating long faced patients and the increased possibility of recession and bone loss in this population.

Alveolar Bone Height

Statistically significant differences were found between the facial types in the alveolar bone height at the central incisor and second molar region of the mandible in the 12 to 18 age group. The hyperdivergent facial type had the greatest alveolar bone height compared with the other facial types at the central incisor region and the shortest alveolar bone height at the second molar region. The hypodivergent facial type had the greatest alveolar bone height at the second molar region and the shortest alveolar bone height at the second molar region and the shortest alveolar bone height at the central incisor region. This is consistent with past research that concluded that lower anterior facial heights were longer, mandibular plane angles were higher, and the ramus heights were shorter in patients with a long face (Fields et al., 1984; Schendel et al., 1976). The shorter ramus height in long-faced individuals accounts for the finding of consistently shorter alveolar bone height in the hyperdivergent group in the

posterior mandible near the second molar region. The longer alveolar bone height at the central incisor in the hyperdivergent subjects was the result of dental compensation for the longer lower anterior face heights as teeth extrude to meet opposing teeth and the alveolar process elongate as a consequence. The findings in this study on alveolar bone height are consistent with the findings in other studies that focused on adults (Kohakura et al., 1997; Swasty et al., 2011; Han et al., 2013). The finding that mandibular alveolar bone height of patients varied with the horizontal and vertical facial patterns supports the idea that the height of the mandibular alveolar bone is associated with the growth pattern. The same correlations previously found in studies in adults were also found in this investigation of the adolescent age group.

The patterns found with regards to alveolar bone height in this study are consistent with the current understanding of typical mandibular bone response to stress, strain, bending, and torsion when the mandible is in function. Past investigations have found an increase in bone remodeling and vertical depth of the mandibular corpus in macaques as a result of increased stress induced by mastication of hard foods and in response to increased sagittal mandibular bending (Bouvier & Hylander, 1981; Hylander, Johnson, & Crompton, 1987). Greater depth of the mandible was found as an adaptive response to increased stress levels associated with greater mastication forces associated with a harder diet (Bouvier & Hylander, 1981; Hylander et al., 1987). It has been noted that long-faced individuals have lower and short-faced individuals have higher maximum biting forces than those with normal vertical dimensions (Proffit, Fields, & Nixon, 1983; Throckmorton, Finn, & Bell, 1980). It has also been suggested that those with an acute gonial angle and longer posterior facial heights, all characteristics of the hypodivergent facial type, are better suited to produce higher bite forces (Korioth et al., 1992). The greater masticatory forces associated with the short-faced individual accounted for the increased vertical

height in the posterior mandible found in this study. The adaptive response of bone as a result of varying levels of stress induced by the bite force resulted in differences in vertical depth of the mandible between the hypodivergent and hyperdivergent facial types.

Alveolar Bone Width

Statistically significant differences were found between the facial types in the alveolar bone width for the 12 to 18 age group at the upper second molar region, the upper first molar region, the upper second premolar region, and at the upper and lower central incisor region. Bone width successively decreased from the posterior region of the mandible to the anterior region of the mandible in all facial types except at $2/3^{rds}$ height of the alveolar bone at the central incisor region where the bone width was sometimes greater than in the posterior region. The hypodivergent facial type has wider alveolar bone width than the normodivergent and hyperdivergent facial types. The normodivergent facial type has greater bone width than the hyperdivergent facial type at most sites. These findings are consistent with the results of the Swasty et al. (2011) study where the hyperdivergent group exhibited a narrower cross section of the mandible compared with the normodivergent and hypodivergent groups. However, the study by Han et al. (2013) found no significant differences in the mandibular alveolar bone width between the hyperdivergent and hypodivergent group. Han et al. (2013) defined bone width as the greatest length from the buccal side and lingual side of the alveolar bone and the width measurement was drawn parallel to the mandibular plane. These reference points differed from the ones used in this study and the dissimilar measurement techniques may be the reason why there were differing conclusions. In this study, the bone width was found to be the narrowest at the upper third region of the alveolar bone in the central incisor region of the hyperdivergent facial type.

The difference in alveolar bone width between the facial types could be attributed to the variation in bite force, size of masticatory muscles, and region of attachment of masticatory muscles between the three groups. As stated previously, increased facial divergence has been associated with reduced bite force and decreased facial divergence has been associated with larger masticatory muscles and a higher maximum biting force (Garcia-Morales et al., 2003; Throckmorton et al., 1980). Results of various studies confirm that the size of the mandibular muscles is related to skeletal facial width (Kitai et al., 2002; Hannam & Wood, 1989). A study on the primate mandible has shown that jaws are thicker in the transverse dimension in the molar region in order to resist the increase in torsional forces on the working side of the mandibular body during one sided chewing (Hylander, 1979). An increase in the chewing muscle force would also result in an increase in torsional forces on the mandibular body. The increase in alveolar bone width in the hypodivergent subjects can be attributed to an adaptation to resist the increase due to greater mastication strength.

The findings regarding alveolar bone width have important implications for various disciplines of dentistry. Care must be exercised in orthodontic treatment mechanics not have excessive labio-lingual movements of the lower incisors in the narrower alveolar ridge of a hyperdivergent patient in order to prevent iatrogenic sequelae such as bony dehiscence and gingival recession. Vigilant planning of tooth movement is needed and attention must be paid to the shape of the symphysis when large anterior posterior movements are needed. In addition, buccolingual movements of the lower posterior teeth should also be limited in the hyperdivergent patient in order to ensure the teeth remain within the limits of the alveolar bone housing. The narrower alveolar bone width for the hyperdivergent population means less buccal lingual width for dental implant placement. Knowledge of the differences in alveolar morphology between the

facial divergences would assist oral surgeons or dentists in deciding the proper treatment plan for various surgical and dental procedures. It would also assist with determination of the requirements for successful dental implant placement in these three groups of patients.

Tooth Inclination

Statistically significant differences were found between the facial types in the tooth inclination for the second premolar and the central incisor for the 12 to 18 age group. At the central incisor, the hypodivergent facial type had the largest labiolingual inclination at 98 degrees and the hyperdivergent facial type had the smallest labiolingual inclination at 91 degrees. At the second premolar, the hypodivergent facial type had the largest buccolingual inclination angle at 82 degrees and the hyperdivergent facial type had the smallest buccolingual inclination angle at 78 degrees. These findings are consistent with the studies by Matsumoto et al. (2001) and Han et al. (2013) where posterior teeth of long-faced subjects were found to be more lingually inclined than those of short-faced subjects. These findings, however, contrast with the studies by Kohakura et al. (1997) and Tsunori et al. (1998) where the more upright posterior teeth were found in the long-faced subjects. Mandibular posterior teeth move buccally due to a combination of tongue pressure and masticatory occlusal force (Tsunori et al., 1998). The posterior teeth of hypodivergent patients endure greater masticatory pressure due to stronger muscle forces which may influence the more upright position of the mandibular posterior teeth (Tsunori et al., 1998). Since there are differences in findings between the studies, future research is warranted as the understanding of tooth inclination helps guide treatment decisions on mandibular arch expansion and torque control.

In clinical orthodontic treatment, expansion of the dental arch is commonly performed in order to gain space. Since molars in the hypodivergent patient is found to be more upright, less

expansion should be performed to ensure treatment stability. Consequently in the hyperdivergent patient, since molars are more lingually inclined, there is more room for expansion and space creation. More buccal crown torque is also needed in the long face patient in order to level the curve of Wilson. In addition, the difference in antero-posterior position of the lower incisors between the different facial types should be noted for guiding treatment mechanics. Past research has shown that crowding has been associated with vertical growth, increased lower incisor eruption, and increased vertical dentoalveolar eruption (Driscoll-Gilliland, Buschang, & Behrent, 2001). Therefore, hyperdivergent individuals have a tendency for more retroclined incisors which is consistent with the findings in this study. As the inclination of the lower incisors are also influenced by the antero-posterior (AP) position of the maxilla and mandible, in addition to vertical facial types cannot be narrowed down to just one factor. However, it is still important to note the results of this study and its implication on orthodontic treatment planning.

Bone Inclination

Statistically significant differences were found between the facial types in the alveolar bone inclination for the second molar region for the 12 to 18 age group (Table 4.14). The mean bone inclination at the second molar was 67 degrees in the hypodivergent group, 66 degrees in the normodivergent group, and 64 degrees in the hyperdivergent group. The alveolar bone in the hypodivergent facial type was found to be more upright in the posterior region of the mandible and more proclined in the anterior region of the mandible. The mandibular alveolar bone inclination followed the same angulation tendency as the tooth inclination. As masticatory muscles and bite force are greater in the hypodivergent patient and tooth inclination is more

upright as a result, it would follow that alveolar bone inclination would be more upright in the posterior mandible as well (Garcia-Morales et al., 2003; Throckmorton et al., 1980). These results suggest that the since both the posterior teeth and alveolar bone are more upright in patients with the horizontal growth pattern, there is less room for arch expansion. In addition, knowledge of the differences in angulation of the alveolar bone is useful when determining the proper insertion angulation when placing dental implants.

Age Groups Subdivided

Cortical Bone Thickness

Statistically significant differences were found between the facial types in the buccal cortical bone thickness at 7 out of 8 sites in the 12 to 13 age group, 8 out of 8 sites in the 14 to 15 age group, and at 4 out of 8 sites in the 16 to 18 age group. Statistically significant differences were found in the lingual cortical bone thickness at 5 out of 8 sites in the 12 to 13 age group, 8 out of 8 sites in the 14 to 15 age group, and 6 out of 8 sites in the 12 to 13 age group. The adolescent growth spurt is characterized by an increase in growth velocity around 10 to 12 years of age for girls and around 12 to 14 years of age for boys (Dean et al., 2011). On average, the adolescent spurt in the growth of the jaws occurs at about the same time as the spurt in height. The growth of the jaws, especially the mandible, follows the general body curve closely (Proffit, Fields, & Sarver, 2013). After the advent of the adolescent growth spurt, a greater degree of change may be exhibited between the facial types in the 14 to 15 age group resulting in a greater number of statistically significant sites. After the pubertal growth spurt, incremental changes in growth tend to decrease. Generally, after the age of 12 in females and 14 in males, the incremental growth per year decreases as exhibited by Figure 5.1.

Figure 5.1. Incremental Growth Curve Illustrating Growth Stages. (Adapted from *McDonald and Avery's Dentistry for the Child and Adolescent* (p. 512), by J. Dean, R. McDonald, and D. Avery, 2011, Maryland Heights, MO: Mosby Inc. Copyright 2011 by Elsevier, Inc)

This decrease in growth rate may account for the decrease in the number of statistically significant sites as subjects mature and individuals begin to reach adult size. Regardless of the decrease in the number of statistically significant sites, however, the absolute cortical bone thickness measurements of the hypodivergent facial type were greater than that of the normodivergent and hyperdivergent facial types in all age groups. In general, the hyperdivergent cortical bone was thinnest among the three facial types.

Alveolar Bone Height

Statistically significant differences were found between the facial types in the alveolar bone heights at the central incisor in the 12 to 13 age group and the 14 to 15 age group. In the 16 to 18 age group there was only a statistically significant difference between facial types in the second molar region. However, past research in adults has found that the hyperdivergent facial type has the largest alveolar bone height in the anterior region (Sadek et al., 2014; Swasty et al., 2011). For the 16 to 18 age group, the mean alveolar bone height at the central incisor region was 31.62mm (\pm 3.21), which was still greater than the 29.88mm (\pm 3.09) height for the hypodivergent facial type, but the difference in values was not statistically significant. The lack of a statistically significant finding at the central incisor region may be due to the smaller sample size of 33 subjects in the 16 to 18 age group. In all age groups, the hyperdivergent facial type generally had the greatest alveolar bone height at the second molar region. The hypodivergent facial type generally had the greatest alveolar bone height at the second molar region. The hypodivergent facial type generally had the greatest alveolar bone height at the second molar region. The hypodivergent facial type generally had the greatest alveolar bone height at the second molar region and the shortest alveolar bone height at the central incisor region. The finding that the mandibular height of patients varied with the horizontal and vertical facial pattern supports the idea that the height of the mandibular bone is associated with the growth pattern even in the adolescent population.

Alveolar Bone Width

There were statistically significantly differences in the alveolar bone width between the facial types at the upper first molar, upper second premolar, and upper central incisor region in the 12 to 13 age group; at the upper and lower central incisor region in the 14 to 15 age group; and at the upper second premolar and upper and lower central incisor region in the 16 to 18 age group. It appears that in the more mature subjects, the number of statistically significant sites decreased as adolescents begin to reach adult size. Posterior bone width differences between the facial types decreased from the younger 12 to 13 age group to the older 14 to 15 age group and the 16 to 18 age group. However, large differences in width between the facial types remained

in the anterior mandible despite changes with age. The hypodivergent facial type still had the greatest absolute mean alveolar bone width compared with the other facial types in all age groups. The hyperdivergent facial type still had the smallest mean cortical bone width versus other facial types at most sites.

Tooth Inclination

No statistically significant differences were found between the facial types in the tooth inclination for the 12 to 13 age group. Statistically significant differences were found at the central incisor and second premolar in the 14 to 15 age group and the central incisor in the 16 to 18 age group. The increase in the number of statistically significant sites in the older subjects may be due to the continued eruption of the permanent teeth as they settle into the adult occlusion. After teeth have erupted into the arch, posteruptive movements that accommodate the growth of the jaws generally occurs between the ages of 14 and 18 years (Nanci, 2008). They are readjustment of the position of the tooth socket, assisted by the formation of new bone at the alveolar crest and on the socket floor to keep pace with the increasing height of the jaws (Nanci, 2008). In the 12 to 13 age group, the second molar was more lingually inclined in the hypodivergent group compared with the other facial types as the second molar may have just erupted into occlusion. However, for all other age groups, the hypodivergent group had consistently more upright posterior teeth and more proclined central incisors than the other facial types. These findings follow the theory that mandibular posterior teeth of hypodivergent subjects endure greater masticatory pressure due to stronger muscle forces which may influence the more upright position of the mandibular posterior teeth (Tsunori et al., 1998). Retroclined lower incisors found in the hyperdivergent group is consistent with past research where high

facial angle individuals were found to have more retroclined and crowded incisors (Driscoll-Gilliland et al., 2001).

Bone Inclination

Statistically significant differences in bone inclination between the facial types were found at the second premolar region in the 12 to 13 age group, the central incisor region in the 14 to 15 and 16 to 18 age group, and at the second molar in the 14 to 15 age group. The hypodivergent facial type had greater labiolingual bone inclination at the central incisor region. The difference in bone inclination at the central incisor region correlates with the tooth inclination found in the different facial types. In general, the hypodivergent facial type had more upright posterior alveolar bone in the 14 to 15 age group and the 16 to 18 age group. These findings correlate with the more upright buccolingual teeth inclinations in these two age groups. As mandibular posterior teeth of hypodivergent subjects endure greater masticatory pressure due to stronger muscle forces, posterior mandibular teeth are more upright and the alveolar bone subsequently uprights as well (Tsunori et al., 1998). It is interesting to note that in the 12 to 13 age group, the alveolar bone was more lingually inclined in the posterior and anterior mandible than in the hypodivergent facial type. Perhaps this is due to the fact that after teeth have erupted into the arch, posteruptive movements that accommodate the growth of the jaws generally occurs between the ages of 14 and 18 years and this in turned influenced alveolar bone inclinations (Nanci, 2008). In addition, it has been found that masticatory activity increases with age (Pancherz, 1980). The increased bite force in the older hypodivergent subjects may have contributed to the compensation of the diverged and upright alveolar bone in the older subjects. In conclusion, in general the mandibular alveolar bone inclination followed the same angulation tendency as the tooth inclination.

Limitations and Future Studies

The majority of the past studies evaluating mandibular morphology in relation to facial types have utilized lateral cephalograms or CT scans. Lateral cephalograms have the disadvantages of magnification, distortion, and superimposition of structures and CT scans have the disadvantage of compromises in precision of measurements due to anisotropic voxels (Mah et al., 2003). The use of CBCT has the benefit of accurate, reliable, and high definition images but there are compromises in the precision of measurements when the thickness of the alveolar bone is below or near the voxel size because the voxel will reflect an average density of the alveolar bone and periodontal ligament rather than the true density of the alveolar bone (Sun et al., 2011). The border voxel in this study had a 376-micron width, which could potentially include the contribution of more than one tissue. With cortical bone thickness measurements ranging from 1.27mm to 3.76mm, the error could range from 10.0% (376/3760) to 29.6% (376/1270) in the worst case scenario. With alveolar bone height measurements ranging from 21.29 mm to 31.62 mm, the error could range from 1.2% (376/31,620) to 1.8% (376/21,290) in the worst case scenario. With alveolar bone width measurements ranging from 6.38mm and 15.36mm, the error could range from 2.4% (376/15,360) to 5.9% (376/6380) in the worst case scenario. These error calculations followed the same computation method used in the study by Swasty et al. (2011). Despite the potential for some loss of precision, especially in areas of thin cortical bone, the measurements were conducted consistently in this study and the same criteria was used for all measurements which eliminated uncertainties in determining the thickest and thinnest regions of the cortical bone. Cortical bone measurements were also within the same range as studies which used physical calipers on cadavers (Schwartz-Dabney & Dechow, 2003). CBCT can be reliably used in the current study of mandibular alveolar morphology of adolescents because the majority of measurements were concentrated in areas of the mandible with greater cortical bone thickness. The cortical bone measurements in the posterior mandible collected in this research project were generally 5 to 10 times greater than the 0.38 mm voxel-size scans used. Mandibular anterior cortical bone measurements collected in this study were generally 3 to 8 times greater than that of the 0.38 mm voxel size, which decreased the chance of underestimation of cortical bone thickness. Results of past research have demonstrated that measurements with CBCT are accurate and repeatable (Damstra et al., 2010; Kobayashi et al, 2004; Timock et al., 2011). Although there is some possible loss of accuracy in areas of thin cortical bone, the measurements in this study can still be predictably relied upon as the majority of the sites measured contained cortical bone of a few millimeters. Future studies utilizing smaller voxel size CBCT scans can help improve the accuracy of the measurements.

The second limitation to this study involved the limited sample size in the subdivided age groups. When the total sample size of 30 hypodivergent subjects is separated, there remain only 11 short-faced individuals in the 12 to 13 age group, 12 short-faced individuals in the 14 to 15 age group, and 7 short-faced individuals in the 16 to 18 age group. The 16 to 18 age group also had a limited total sample size of 33 subjects. The limited sample sizes means less statistical power and lower probability that true differences were actually detected. Future studies, then, should focus on studying a larger number of subjects in each age subgroup.

Subjects were limited to the patients in the dental records archive from UNLV School of Dental Medicine, which were not representative of the entire population at large. In addition, subjects of all ethnicities were included in the study and differences in craniofacial morphology may be present between the different groups. Future studies should focus on the adolescent

population of a single ethnicity in order to eliminate any variances in mandibular morphology attributable to ethnic differences.

The adolescents in the study were divided into groups based upon chronological age. However, chronologic age does not always accurately reflect where an individual is developmentally. In order to identify an individual's true stage of development, a diagnosis of skeletal age is also needed. The conclusions for each age group may change once skeletal age is also accounted for. Future studies on differences in facial types in the adolescent group should take into account of skeletal age along with the chronologic age.

Conclusion

This study used the improved imaging capability of the CBCT to investigate the relationship between vertical facial patterns and mandibular tooth-alveolar morphology in the adolescent population. Overall, statistically significant differences were found between the facial types for all categories measured, including cortical bone thickness, alveolar bone height, alveolar bone width, tooth inclination, and alveolar bone inclination. Cortical bone thickness was greatest in the hypodivergent group and least in the hyperdivergent group with statistically significant differences at the majority of sites measured in the mandible. In all adolescent age groups, the hyperdivergent group generally had the greatest alveolar bone height at the second molar region. The hyperdivergent group generally had the narrowest alveolar bone width compared with the other two facial types with the narrowest width in the mandible at the upper 1/3rd of the alveolar bone in the central incisor region. The hyperdivergent group had the smallest labiolingual inclination of the central incisor and more lingually inclined posterior teeth

than the hyperdivergent and normodivergent groups. The mandibular alveolar bone inclination followed the same angulation tendency as the tooth inclination.

The same conclusions regarding tooth-alveolar morphology differences between the facial types for the 12 to 18 age group applied to the subdivided age groups as well. The main difference noted with the individual age groups was that the number of statistically significant sites increased or decreased depending on the chronological age of the subjects. The number of statistically significant sites in cortical bone thickness increased immediately after the adolescent growth spurt in the 14 to 15 age group and decreased in the 16 to 18 age group as incremental growth rates decreased and subjects began to reach adult size. Mean posterior bone width differences between the facial types also decreased from the younger 12 to 13 age group to the older 14 to 15 and 16 to 18 age group. Large differences in width between the facial types remained, however, in the anterior mandible despite changes with age. No statistically significant differences in tooth inclination were found in the 12 to 13 age group. However, in the older subjects studied, tooth position had stabilized and statistically significant differences in tooth inclination were noted, especially at the central incisor.

Orthodontic treatment planning and mechanics are affected by differences in mandibular tooth alveolar morphology and therefore significant benefit can be gained from understanding the mandibular anatomy variances between the facial types. The results of this study give further clarification of the distinctions between the facial divergences in the adolescent population. Further research with a larger adolescent sample size in each age subgroup will be beneficial in providing further clarification and substantiation of the changes associated with growth found in this study.

Appendix A: UNLV Institutional Review Board Approval

DAIE:	November 24, 2014
TO:	Dr. James Mah, School of Dental Medicine
FROM:	Office of Research Integrity – Human Subjects
RE:	Notification of IRB Action Protocol Title: Mandibular Morphology Analysis of Archival Dental Records Protocol# 1411-4992M

This memorandum is notification that the project referenced above has been reviewed as indicated in Federal regulatory statutes 45CFR46.

The protocol has been reviewed and deemed excluded from IRB review. It is not in need of further review or approval by the IRB.

Any changes to the excluded activity may cause this project to require a different level of IRB review. Should any changes need to be made, please submit a Modification Form.

If you have questions or require any assistance, please contact the Office of Research Integrity – Human Subjects at IRB@univ.edu or call 702-895-2794.

> Office of Research Integrity – Human Subjects 4505 Maryland Parkway * Box 451047 * Las Vegas, Nevada 89154-1047 (702) 895-2794 * PAX: (702) 895-6805 * IRB@umlv.edu

Appendix B: Shapiro Wilk and Levene's Test

Age 12 to 18 Years (Shapiro Wilk)

Tests of Normality

	-	Kolmogorov-Smirnov ^a		Shapiro-Wilk			
	FaceTyp	Statistic	df	Sig.	Statistic	df	Sig.
CBB132M	Normodivergent	.053	82	.200*	.986	82	.515
	Hypodivergent	.093	30	.200*	.977	30	.735
	Hyperdivergent	.073	61	.200*	.990	61	.911
CBB232M	Normodivergent	.063	82	.200*	.984	82	.400
	Hypodivergent	.059	30	.200*	.982	30	.871
	Hyperdivergent	.081	61	.200*	.971	61	.163
CLB132M	Normodivergent	.044	82	.200*	.992	82	.875
	Hypodivergent	.132	30	.195	.942	30	.103
	Hyperdivergent	.071	61	.200*	.990	61	.918
CLB232M	Normodivergent	.085	82	.200*	.970	82	.055
	Hypodivergent	.087	30	.200*	.989	30	.985
	Hyperdivergent	.085	61	.200*	.979	61	.389
BB2M	Normodivergent	.082	82	.200*	.976	82	.133
	Hypodivergent	.155	30	.064	.892	30	.005
	Hyperdivergent	.113	61	.052	.945	61	.009
BHT2M	Normodivergent	.113	82	.012	.956	82	.006
	Hypodivergent	.101	30	.200*	.973	30	.632
	Hyperdivergent	.077	61	.200*	.970	61	.142
BW132M	Normodivergent	.090	82	.099	.977	82	.149
	Hypodivergent	.105	30	.200*	.979	30	.797
	Hyperdivergent	.091	61	.200*	.979	61	.374
BW232M	Normodivergent	.088	82	.176	.983	82	.356
	Hypodivergent	.110	30	.200^	.958	30	.277
	Hyperdivergent	.066	61	.200*	.987	61	.750
TIncl2M	Normodivergent	.057	82	.200	.991	82	.857
	Hypodivergent	.108	30	.200	.979	30	.789
	Hyperdivergent	.069	61	.200	.978	61	.352
BIncl2M	Normodivergent	.063	82	.200	.993	82	.955
	Hypodivergent	.104	30	.200	.970	30	.538
	Hyperdivergent	.083	61	.200	.951	61	.015
CBB131M	Normodivergent	.081	82	.200	.986	82	.489
	Hypodivergent	.102	30	.200	.958	30	.282
CDD004M	Hyperdivergent	.083	61	.200	.983	61	.581
CDD231W	Normouvergent	.040	02	.200	.903	0Z	.343
	Hypodivergent	.063	30	.200	.971	30	.572
	Normodivorgent	.079	01	.200	.900	01	.093
CLDISIN	Hypodiyorgopt	.004	02 20	.200	.975	02 20	.100
	Hypoulvergent	.103	50	.200	.950	50	.245
CLB231M	Normodivergent	.009	82	.200	.980	82	.423
	Hypodivergent	.079	30	.200	.300	30	.509
	Hyperdivergent	.159	50 61	200*	.939	50 61	.007 182
BB1M	Normodivergent	075	82	200	.372	82	205
	Hypodivergent	.073 Nar	30	.200	.373	30	.200
	Hyperdivergent	.030	61	.200	.373	61	185
BHT1M	Normodivergent	073	82	200*	985	82	474
	Hypodivergent	.092	30	.200*	.966	30	.438
BB2M BHT2M BW132M BW232M TINCI2M BINCI2M CBB131M CBB231M CLB131M CLB231M BB1M BHT1M	Normodivergent Hypodivergent Hyperdivergent	.085 .087 .085 .082 .155 .113 .113 .101 .077 .090 .105 .091 .088 .110 .066 .057 .108 .063 .104 .063 .104 .083 .104 .083 .104 .083 .081 .102 .083 .048 .083 .079 .064 .105 .089 .079 .159 .066 .075 .098 .075 .092	82 30 61 82 30 82 30 61 82 30	.200 .200 .200 .200 .064 .052 .200 .200 .200 .200 .200 .200 .200		82 30 61 82 30 82 30 61 82 30	.054 .98 .38 .38 .00 .00 .00 .00 .00 .63 .14 .14 .79 .37 .35 .27 .75 .35 .27 .75 .35 .27 .75 .35 .27 .75 .35 .27 .75 .35 .27 .75 .35 .27 .75 .35 .27 .75 .35 .27 .75 .35 .27 .75 .35 .27 .75 .35 .53 .35 .53 .35 .53 .35 .53 .53 .01 .27 .53 .35 .53 .53 .53 .53 .53 .53 .53 .53

	Hyperdivergent	.093	61	.200*	.964	61	.072
BW131M	Normodivergent	.048	82	.200*	.992	82	.872
	Hypodivergent	.082	30	.200*	.987	30	.969
	Hyperdivergent	.078	61	.200*	.973	61	.191
BW231M	Normodivergent	.095	82	.066	.979	82	.208
	Hypodivergent	.109	30	.200*	.963	30	.373
	Hyperdivergent	.062	61	.200*	.977	61	.318
TIncl1M	Normodivergent	.071	82	.200*	.985	82	.452
	Hypodivergent	.149	30	.089	.928	30	.043
	Hyperdivergent	.097	61	.200*	.976	61	.271
BIncl1M	Normodivergent	.063	82	.200*	.979	82	.195
	Hypodivergent	.171	30	.026	.947	30	.143
	Hyperdivergent	.089	61	.200*	.977	61	.303
CBB132P	Normodivergent	.090	82	.100	.987	82	.553
	Hypodivergent	.144	30	.115	.941	30	.094
	Hyperdivergent	.089	61	.200*	.968	61	.108
CBB232P	Normodivergent	.054	82	.200*	.987	82	.587
	Hypodivergent	.095	30	.200*	.980	30	.814
	Hyperdivergent	.071	61	.200*	.986	61	.718
CLB132P	Normodivergent	.039	82	.200*	.988	82	.657
	Hypodivergent	.114	30	.200*	.966	30	.431
	Hyperdivergent	.081	61	.200*	.978	61	.355
CLB232P	Normodivergent	.102	82	.035	.968	82	.039
	Hypodivergent	.101	30	.200*	.951	30	.175
	Hyperdivergent	.098	61	.200*	.978	61	.325
BB2P	Normodivergent	.066	82	.200*	.990	82	.779
	Hypodivergent	.090	30	.200*	.983	30	.900
	Hyperdivergent	.095	61	.200*	.981	61	.447
BHT2P	Normodivergent	.115	82	.009	.975	82	.104
	Hypodivergent	.070	30	.200*	.985	30	.944
	Hyperdivergent	.086	61	.200*	.982	61	.526
BW132P	Normodivergent	.066	82	.200*	.990	82	.788
	Hypodivergent	.102	30	.200*	.954	30	.211
	Hyperdivergent	.078	61	.200*	.978	61	.353
BW232P	Normodivergent	.072	82	.200*	.976	82	.118
	Hypodivergent	.092	30	.200*	.966	30	.443
	Hyperdivergent	.088	61	.200*	.981	61	.479
TIncl2P	Normodivergent	.090	82	.154	.985	82	.474
	Hypodivergent	.114	30	.200*	.955	30	.233
	Hyperdivergent	.058	61	.200*	.968	61	.117
BIncl2P	Normodivergent	.055	82	.200*	.989	82	.683
	Hypodivergent	.133	30	.184	.939	30	.088
	Hyperdivergent	.095	61	.200*	.982	61	.497
CBB13CI	Normodivergent	.070	82	.200*	.968	82	.037
	Hypodivergent	.086	30	.200	.974	30	.653
	Hyperdivergent	.077	61	.200*	.975	61	.252
CBB23CI	Normodivergent	.074	82	.200*	.975	82	.103
	Hypodivergent	.111	30	.200*	.974	30	.654
	Hyperdivergent	.079	61	.200*	.978	61	.344
CLB13CI	Normodivergent	.059	82	.200*	.991	82	.835
	Hypodivergent	.117	30	.200*	.936	30	.072
	Hyperdivergent	.080	61	.200*	.985	61	.680
CLB23CI	Normodivergent	.076	82	.200*	.980	82	.231
	Hypodivergent	.151	30	.078	.897	30	.007
	Hyperdivergent	.145	61	.003	.943	61	.007
BBCI	Normodivergent	.104	82	.029	.940	82	.001
	Hypodivergent	.083	30	.200*	.984	30	.928

	Hyperdivergent	.069	61	.200*	.977	61	.290
BHTCI	Normodivergent	.073	82	.200*	.985	82	.467
	Hypodivergent	.107	30	.200*	.980	30	.838
	Hyperdivergent	.078	61	.200*	.981	61	.457
BW13CI	Normodivergent	.061	82	.200*	.991	82	.854
	Hypodivergent	.097	30	.200*	.963	30	.372
	Hyperdivergent	.087	61	.200*	.987	61	.789
BW23CI	Normodivergent	.083	82	.200*	.969	82	.044
	Hypodivergent	.112	30	.200*	.953	30	.207
	Hyperdivergent	.087	61	.200*	.976	61	.286
TInclCI	Normodivergent	.051	82	.200*	.988	82	.674
	Hypodivergent	.130	30	.200*	.951	30	.184
	Hyperdivergent	.059	61	.200*	.989	61	.862
BInclCI	Normodivergent	.066	82	.200*	.988	82	.681
	Hypodivergent	.098	30	.200*	.943	30	.108
	Hyperdivergent	.066	61	.200*	.988	61	.796

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Age 12 to 18 Years (Levene's Test)

		Test of I	lomogeneity	<u>of Variances</u>
	Levene Statistic	df1	df2	Sig.
CBB132M	.334	2	170	.717
CBB232M	.822	2	170	.441
CLB132M	.860	2	170	.425
CLB232M	1.185	2	170	.308
BB2M	1.979	2	170	.141
BHT2M	.662	2	170	.517
BW132M	.628	2	170	.535
BW232M	.525	2	170	.593
TIncl2M	.328	2	170	.721
BIncl2M	1.736	2	170	.179
CBB131M	.160	2	170	.853
CBB231M	2.896	2	170	.058
CLB131M	.074	2	170	.929
CLB231M	.721	2	170	.488
BB1M	1.054	2	170	.351
BHT1M	1.434	2	170	.241
BW131M	2.483	2	170	.087
BW231M	.393	2	170	.675
TIncl1M	1.642	2	170	.197
BIncl1M	.806	2	170	.448
CBB132P	2.086	2	170	.127
CBB232P	1.912	2	170	.151
CLB132P	.817	2	170	.443
CLB232P	2.158	2	170	.119
BB2P	.459	2	170	.633
BHT2P	2.511	2	170	.084
BW132P	.385	2	170	.681
BW232P	.532	2	170	.588
TIncl2P	.706	2	170	.495
BIncl2P	.829	2	170	.438

CBB13CI	1.091	2	170	.338
CBB23CI	.003	2	170	.997
CLB13CI	2.953	2	170	.055
CLB23CI	.001	2	170	.999
BBCI	.233	2	170	.792
BHTCI	.260	2	170	.772
BW13CI	.052	2	170	.949
BW23CI	1.311	2	170	.272
TInclCI	.703	2	170	.497
BInclCI	2.316	2	170	.102

Age 12 to 13 Years (Shapiro Wilk)

	Tests of Normality								
		Kolm	logorov-Smir	nov ^a		Shapiro-Wilk			
	FaceTyp	Statistic	df	Sig.	Statistic	df	Sig.		
CBB132M	Normodivergent	.140	35	.081	.964	35	.298		
	Hypodivergent	.121	11	.200*	.965	11	.836		
	Hyperdivergent	.146	19	.200*	.973	19	.833		
CBB232M	Normodivergent	.173	35	.010	.925	35	.020		
	Hypodivergent	.215	11	.164	.943	11	.552		
	Hyperdivergent	.154	19	.200*	.901	19	.050		
CLB132M	Normodivergent	.096	35	.200*	.974	35	.556		
	Hypodivergent	.199	11	.200*	.950	11	.642		
	Hyperdivergent	.149	19	.200*	.951	19	.416		
CLB232M	Normodivergent	.101	35	.200*	.956	35	.173		
	Hypodivergent	.110	11	.200*	.962	11	.801		
	Hyperdivergent	.130	19	.200*	.961	19	.602		
BB2M	Normodivergent	.098	35	.200*	.968	35	.391		
	Hypodivergent	.310	11	.004	.759	11	.003		
	Hyperdivergent	.114	19	.200*	.983	19	.968		
BHT2M	Normodivergent	.088	35	.200*	.977	35	.650		
	Hypodivergent	.161	11	.200*	.897	11	.171		
	Hyperdivergent	.209	19	.028	.900	19	.048		
BW132M	Normodivergent	.141	35	.077	.960	35	.222		
	Hypodivergent	.190	11	.200*	.955	11	.713		
	Hyperdivergent	.136	19	.200*	.943	19	.295		
BW232M	Normodivergent	.123	35	.198	.962	35	.263		
	Hypodivergent	.125	11	.200*	.991	11	.998		
	Hyperdivergent	.170	19	.153	.942	19	.287		
TIncl2M	Normodivergent	.118	35	.200*	.982	35	.808		
	Hypodivergent	.173	11	.200*	.963	11	.814		
	Hyperdivergent	.123	19	.200*	.956	19	.501		
BIncl2M	Normodivergent	.099	35	.200*	.981	35	.779		
	Hypodivergent	.231	11	.104	.879	11	.100		
	Hyperdivergent	.090	19	.200*	.976	19	.888		
CBB131M	Normodivergent	.125	35	.180	.960	35	.230		
	Hypodivergent	.169	11	.200*	.923	11	.344		
	Hyperdivergent	.105	19	.200*	.961	19	.589		
CBB231M	Normodivergent	.106	35	.200*	.956	35	.175		
	Hypodivergent	.169	11	.200*	.967	11	.858		
	Hyperdivergent	.137	19	.200*	.963	19	.631		
CLB131M	Normodivergent	.102	35	.200*	.952	35	.130		
	Hypodivergent	.168	11	.200*	.926	11	.371		
	Hyperdivergent	.114	19	.200*	.966	19	.687		

CLB231M	Normodivergent	.102	35	.200*	.977	35	.649
	Hypodivergent	.215	11	.164	.774	11	.004
	Hyperdivergent	.069	19	.200*	.983	19	.973
BB1M	Normodivergent	.128	35	.158	.951	35	.121
	Hypodivergent	.164	11	.200*	.931	11	.419
	Hyperdivergent	.087	19	.200*	.954	19	.459
BHT1M	Normodivergent	.125	35	.185	.981	35	.803
	Hypodivergent	.181	11	.200*	.963	11	.814
	Hyperdivergent	.195	19	.055	.896	19	.042
BW131M	Normodivergent	.091	35	.200*	.977	35	.646
	Hypodivergent	.169	11	.200*	.947	11	.608
	Hyperdivergent	.112	19	.200*	.966	19	.702
BW231M	Normodivergent	.138	35	.092	.942	35	.063
	Hypodivergent	.199	11	.200*	.897	11	.168
	Hyperdivergent	.183	19	.094	.918	19	.105
TIncl1M	Normodivergent	.103	35	.200*	.979	35	.740
	Hypodivergent	.154	11	.200*	.957	11	.728
	Hyperdivergent	.166	19	.180	.948	19	.371
BIncl1M	Normodivergent	.140	35	.079	.947	35	.090
	Hypodivergent	.161	11	.200*	.945	11	.578
	Hyperdivergent	.111	19	.200*	.957	19	.521
CBB132P	Normodivergent	.153	35	.037	.940	35	.054
	Hypodivergent	.316	11	.003	.808	11	.012
	Hyperdivergent	.138	19	.200*	.925	19	.139
CBB232P	Normodivergent	.131	35	.138	.956	35	.177
	Hypodivergent	.162	11	.200*	.939	11	.506
	Hyperdivergent	.111	19	.200*	.964	19	.645
CLB132P	Normodivergent	.119	35	.200*	.972	35	.515
	Hypodivergent	.267	11	.027	.856	11	.051
	Hyperdivergent	.109	19	.200*	.962	19	.613
CLB232P	Normodivergent	.127	35	.163	.964	35	.296
	Hypodivergent	.184	11	.200*	.862	11	.061
	Hyperdivergent	.132	19	.200*	.948	19	.359
BB2P	Normodivergent	.097	35	.200*	.978	35	.691
	Hypodivergent	.147	11	.200*	.949	11	.635
	Hyperdivergent	.150	19	.200*	.973	19	.844
BHT2P	Normodivergent	.068	35	.200*	.986	35	.931
	Hypodivergent	.140	11	.200*	.975	11	.931
	Hyperdivergent	.164	19	.196	.932	19	.187
BW132P	Normodivergent	.065	35	.200*	.983	35	.841
	Hypodivergent	.197	11	.200^	.905	11	.213
	Hyperdivergent	.133	19	.200*	.968	19	.735
BW232P	Normodivergent	.103	35	.200	.965	35	.322
	Hypodivergent	.166	11	.200^	.943	11	.556
	Hyperdivergent	.105	19	.200	.983	19	.969
TIncl2P	Normodivergent	.102	35	.200^	.977	35	.649
	Hypodivergent	.122	11	.200	.974	11	.926
	Hyperdivergent	.202	19	.040	.876	19	.018
BIncl2P	Normodivergent	.128	35	.159	.949	35	.109
	Hypodivergent	.157	11	.200*	.929	11	.397
000.000	Hyperdivergent	.138	19	.200*	.945	19	.320
CBB13CI	Normodivergent	.097	35	.200*	.934	35	.036
	Hypodivergent	.185	11	.200	.931	11	.424
000000	Hyperdivergent	.123	19	.200*	.972	19	.808
CBB23CI	Normodivergent	.123	35	.196	.942	35	.064
	Hypodivergent	.199	11	.200	.945	11	.586
	Hyperdivergent	.260	19	.001	.882	19	.023

CLB13CI	Normodivergent	.090	35	.200*	.985	35	.901
	Hypodivergent	.168	11	.200*	.914	11	.274
	Hyperdivergent	.119	19	.200*	.965	19	.670
CLB23CI	Normodivergent	.097	35	.200*	.969	35	.420
	Hypodivergent	.225	11	.125	.873	11	.083
	Hyperdivergent	.178	19	.114	.907	19	.067
BBCI	Normodivergent	.174	35	.009	.798	35	.000
	Hypodivergent	.181	11	.200*	.925	11	.359
	Hyperdivergent	.114	19	.200*	.960	19	.567
BHTCI	Normodivergent	.090	35	.200*	.969	35	.413
	Hypodivergent	.203	11	.200*	.892	11	.146
	Hyperdivergent	.114	19	.200*	.955	19	.485
BW13CI	Normodivergent	.111	35	.200*	.969	35	.407
	Hypodivergent	.124	11	.200*	.975	11	.933
	Hyperdivergent	.124	19	.200*	.948	19	.367
BW23CI	Normodivergent	.124	35	.195	.946	35	.087
	Hypodivergent	.168	11	.200*	.979	11	.962
	Hyperdivergent	.136	19	.200*	.914	19	.089
TInclCI	Normodivergent	.098	35	.200*	.968	35	.392
	Hypodivergent	.196	11	.200*	.950	11	.647
	Hyperdivergent	.134	19	.200*	.970	19	.770
BInclCl	Normodivergent	.109	35	.200*	.972	35	.497
	Hypodivergent	.133	11	.200*	.972	11	.910
	Hyperdivergent	.126	19	.200*	.974	19	.855

*. This is a lower bound of the true significance. a. Lilliefors Significance Correction

Age 12 to	13 Years	(Levene's	Test)
-----------	----------	-----------	-------

	Levene Statistic	df1	df2	Sig.
CBB132M	.063	2	62	.939
CBB232M	.206	2	62	.814
CLB132M	.156	2	62	.856
CLB232M	.114	2	62	.893
BB2M	2.951	2	62	.060
BHT2M	.303	2	62	.740
BW132M	3.548	2	62	.035
BW232M	2.370	2	62	.102
TIncl2M	.106	2	62	.900
BIncl2M	.731	2	62	.486
CBB131M	.117	2	62	.890
CBB231M	.469	2	62	.628
CLB131M	.625	2	62	.539
CLB231M	.849	2	62	.433
BB1M	2.124	2	62	.128
BHT1M	.234	2	62	.792
BW131M	1.027	2	62	.364
BW231M	1.888	2	62	.160
TIncl1M	3.151	2	62	.051
BIncl1M	.007	2	62	.993
CBB132P	.900	2	62	.412
CBB232P	1.664	2	62	.198
CLB132P	.907	2	62	.409
CLB232P	5.913	2	62	.004
BB2P	.341	2	62	.713
BHT2P	.057	2	62	.944

Test of Homogeneity of Variances
BW132P	.218	2	62	.804
BW232P	1.263	2	62	.290
TIncl2P	.072	2	62	.930
BIncl2P	.129	2	62	.880
CBB13CI	.258	2	62	.773
CBB23CI	.124	2	62	.883
CLB13CI	2.153	2	62	.125
CLB23CI	1.941	2	62	.152
BBCI	1.417	2	62	.250
BHTCI	3.154	2	62	.050
BW13CI	1.230	2	62	.299
BW23CI	1.023	2	62	.365
TInclCI	.836	2	62	.438
BInclCl	1.010	2	62	.370

Age 14 to 15 Years (Shapiro-Wilk)

		Kolmo	gorov-Smirr	nov ^a	S	Shapiro-Wilk	
	FaceTyp	Statistic	df	Sig.	Statistic	df	Sig.
CBB132M	Normodivergent	.082	38	.200*	.979	38	.687
	Hypodivergent	.141	12	.200*	.975	12	.957
	Hyperdivergent	.119	25	.200*	.932	25	.097
CBB232M	Normodivergent	.098	38	.200*	.974	38	.520
	Hypodivergent	.148	12	.200*	.946	12	.574
	Hyperdivergent	.077	25	.200*	.980	25	.891
CLB132M	Normodivergent	.098	38	.200*	.973	38	.474
	Hypodivergent	.177	12	.200*	.877	12	.081
	Hyperdivergent	.110	25	.200*	.970	25	.655
CLB232M	Normodivergent	.119	38	.191	.945	38	.060
	Hypodivergent	.178	12	.200*	.932	12	.402
	Hyperdivergent	.083	25	.200*	.965	25	.531
BB2M	Normodivergent	.087	38	.200*	.976	38	.589
	Hypodivergent	.135	12	.200*	.940	12	.495
	Hyperdivergent	.145	25	.187	.926	25	.072
BHT2M	Normodivergent	.188	38	.002	.897	38	.002
	Hypodivergent	.239	12	.057	.942	12	.527
	Hyperdivergent	.150	25	.151	.941	25	.152
BW132M	Normodivergent	.127	38	.125	.964	38	.263
	Hypodivergent	.129	12	.200*	.967	12	.874
	Hyperdivergent	.069	25	.200*	.990	25	.995
BW232M	Normodivergent	.108	38	.200*	.974	38	.499
	Hypodivergent	.116	12	.200*	.961	12	.803
	Hyperdivergent	.115	25	.200*	.970	25	.647
TIncl2M	Normodivergent	.086	38	.200*	.973	38	.471
	Hypodivergent	.159	12	.200*	.969	12	.904
	Hyperdivergent	.107	25	.200*	.974	25	.744
BIncl2M	Normodivergent	.079	38	.200*	.976	38	.572
	Hypodivergent	.217	12	.123	.919	12	.281
	Hyperdivergent	.160	25	.099	.926	25	.070
CBB131M	Normodivergent	.092	38	.200*	.974	38	.499
	Hypodivergent	.138	12	.200*	.950	12	.642
	Hyperdivergent	.103	25	.200*	.984	25	.955
CBB231M	Normodivergent	.091	38	.200*	.978	38	.635

Tests of Normality

	Hypodivergent	.179	12	.200*	.928	12	.362
	Hyperdivergent	.148	25	.167	.953	25	.290
CLB131M	Normodivergent	.105	38	.200*	.964	38	.262
	Hypodivergent	.167	12	.200*	.965	12	.855
	Hyperdivergent	.129	25	.200*	.943	25	.173
CLB231M	Normodivergent	.105	38	.200*	.969	38	.377
	Hypodivergent	.231	12	.078	.886	12	.105
	Hyperdivergent	.110	25	.200*	.958	25	.381
BB1M	Normodivergent	.116	38	.200*	.972	38	.446
	Hypodivergent	.158	12	.200*	.918	12	.273
	Hyperdivergent	.107	25	.200*	.966	25	.545
BHT1M	Normodivergent	.090	38	.200*	.961	38	.208
	Hypodivergent	.119	12	.200*	.965	12	.851
	Hyperdivergent	.133	25	.200*	.941	25	.153
BW131M	Normodivergent	.084	38	.200*	.990	38	.980
	Hypodivergent	.131	12	.200*	.975	12	.953
	Hyperdivergent	.163	25	.084	.935	25	.115
BW231M	Normodivergent	.071	38	.200*	.981	38	.768
	Hypodivergent	.140	12	.200*	.943	12	.533
	Hyperdivergent	.168	25	.066	.937	25	.126
TIncl1M	Normodivergent	.119	38	.193	.976	38	.568
	Hypodivergent	.173	12	.200*	.929	12	.365
	Hyperdivergent	.101	25	.200*	.974	25	.745
BIncl1M	Normodivergent	.114	38	.200*	.926	38	.016
	Hypodivergent	.237	12	.062	.850	12	.037
	Hyperdivergent	.149	25	.159	.946	25	.205
CBB132P	Normodivergent	.108	38	.200*	.970	38	.389
	Hypodivergent	.163	12	.200*	.892	12	.124
	Hyperdivergent	.180	25	.037	.942	25	.168
CBB232P	Normodivergent	.092	38	.200*	.981	38	.768
	Hypodivergent	.204	12	.179	.960	12	.780
	Hyperdivergent	.135	25	.200*	.967	25	.572
CLB132P	Normodivergent	.092	38	.200*	.959	38	.174
	Hypodivergent	.166	12	.200*	.904	12	.177
	Hyperdivergent	.137	25	.200*	.973	25	.726
CLB232P	Normodivergent	.135	38	.079	.976	38	.587
	Hypodivergent	.133	12	.200^	.972	12	.933
	Hyperdivergent	.127	25	.200	.960	25	.417
BB2P	Normodivergent	.127	38	.125	.972	38	.446
	Hypodivergent	.166	12	.200	.931	12	.396
	Hyperdivergent	.192	25	.018	.926	25	.069
BH12P	Normodivergent	.204	38	.000	.886	38	.001
	Hypodivergent	.132	12	.200	.968	12	.890
	Hyperdivergent	.166	25	.076	.953	25	.291
BW132P	Normodivergent	.112	38	.200	.972	38	.456
	Hypodivergent	.120	12	.200	.948	12	.602
	Hyperdivergent	.105	25	.200	.970	25	.633
BW232P	Normodivergent	.062	38	.200	.977	38	.607
	Hypoalvergent	.208	12	.162	.890	12	.117
Theology	Hyperdivergent	.162	25	.090	.954	25	.310
I INCIZP		.116	38	.200	.975	38	.549
	Hypodivergent	.102	12	.200	.942	12	.528
		.103	25	.200	.975	25	.762
BINCIZP	Normoalvergent	.102	38	.200	.955	38	.128
	Hypodivergent	.208	12	.159	.869	12	.063
		.170	25	.061	.955	25	.332
CRRIQCI	ivormoaivergent	.126	38	.133	.959	38	.178

	Hypodivergent	.114	12	.200*	.989	12	.999
	Hyperdivergent	.091	25	.200*	.963	25	.480
CBB23CI	Normodivergent	.094	38	.200*	.963	38	.240
	Hypodivergent	.199	12	.200*	.896	12	.141
	Hyperdivergent	.135	25	.200*	.962	25	.449
CLB13CI	Normodivergent	.119	38	.189	.976	38	.568
	Hypodivergent	.137	12	.200*	.979	12	.979
	Hyperdivergent	.100	25	.200*	.970	25	.647
CLB23CI	Normodivergent	.083	38	.200*	.986	38	.913
	Hypodivergent	.140	12	.200*	.945	12	.567
	Hyperdivergent	.185	25	.027	.933	25	.101
BBCI	Normodivergent	.115	38	.200*	.969	38	.370
	Hypodivergent	.140	12	.200*	.969	12	.905
	Hyperdivergent	.092	25	.200*	.978	25	.832
BHTCI	Normodivergent	.088	38	.200*	.981	38	.736
	Hypodivergent	.152	12	.200*	.978	12	.973
	Hyperdivergent	.112	25	.200*	.964	25	.503
BW13CI	Normodivergent	.097	38	.200*	.967	38	.319
	Hypodivergent	.135	12	.200*	.955	12	.712
	Hyperdivergent	.123	25	.200*	.970	25	.636
BW23CI	Normodivergent	.074	38	.200*	.980	38	.730
	Hypodivergent	.179	12	.200*	.879	12	.084
	Hyperdivergent	.107	25	.200*	.977	25	.815
TInclCI	Normodivergent	.067	38	.200*	.986	38	.906
	Hypodivergent	.152	12	.200*	.972	12	.933
	Hyperdivergent	.149	25	.160	.932	25	.096
BIncICI	Normodivergent	.051	38	.200*	.989	38	.961
	Hypodivergent	.175	12	.200*	.904	12	.177
	Hyperdivergent	.096	25	.200*	.979	25	.875

*. This is a lower bound of the true significance. a. Lilliefors Significance Correction

Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
CBB132M	.513	2	72	.601
CBB232M	.038	2	72	.963
CLB132M	2.542	2	72	.086
CLB232M	.995	2	72	.375
BB2M	1.218	2	72	.302
BHT2M	.042	2	72	.959
BW132M	.566	2	72	.570
BW232M	1.052	2	72	.354
TIncl2M	.689	2	72	.505
BIncl2M	.738	2	72	.482
CBB131M	1.239	2	72	.296
CBB231M	1.432	2	72	.246
CLB131M	.144	2	72	.866
CLB231M	.571	2	72	.568
BB1M	.887	2	72	.416
BHT1M	.826	2	72	.442
BW131M	.885	2	72	.417

BW231M	1.182	2	72	.312
TIncl1M	.777	2	72	.463
BIncl1M	.423	2	72	.657
CBB132P	1.410	2	72	.251
CBB232P	1.898	2	72	.157
CLB132P	.739	2	72	.481
CLB232P	.435	2	72	.649
BB2P	1.188	2	72	.311
BHT2P	.535	2	72	.588
BW132P	.771	2	72	.466
BW232P	1.398	2	72	.254
TIncl2P	.390	2	72	.679
BIncl2P	.221	2	72	.802
CBB13CI	.373	2	72	.690
CBB23CI	.179	2	72	.837
CLB13CI	2.672	2	72	.076
CLB23CI	.653	2	72	.524
BBCI	.002	2	72	.998
BHTCI	.716	2	72	.492
BW13CI	.717	2	72	.492
BW23CI	1.737	2	72	.183
TInclCI	.767	2	72	.468
BInclCl	1.182	2	72	.313

Age 16 to 18 Years (Shapiro-Wilk)

Tests	of	Normality	
10313	01	Normany	

		Kolm	ogorov-Smir	าov ^a	Shapiro-Wilk		
	FaceTyp	Statistic	df	Sig.	Statistic	df	Sig.
CBB132M	Normodivergent	.160	9	.200*	.944	9	.621
	Hypodivergent	.255	7	.189	.855	7	.137
	Hyperdivergent	.134	17	.200*	.959	17	.611
CBB232M	Normodivergent	.149	9	.200*	.985	9	.984
	Hypodivergent	.223	7	.200*	.953	7	.757
	Hyperdivergent	.140	17	.200*	.954	17	.526
CLB132M	Normodivergent	.157	9	.200*	.942	9	.602
	Hypodivergent	.242	7	.200*	.865	7	.167
	Hyperdivergent	.139	17	.200*	.975	17	.896
CLB232M	Normodivergent	.153	9	.200*	.948	9	.667
	Hypodivergent	.211	7	.200*	.967	7	.878
	Hyperdivergent	.219	17	.030	.894	17	.054
BB2M	Normodivergent	.273	9	.052	.835	9	.050
	Hypodivergent	.283	7	.095	.805	7	.046
	Hyperdivergent	.114	17	.200*	.947	17	.411
BHT2M	Normodivergent	.155	9	.200*	.923	9	.418
	Hypodivergent	.140	7	.200*	.948	7	.712
	Hyperdivergent	.119	17	.200*	.962	17	.663
BW132M	Normodivergent	.238	9	.148	.861	9	.098
	Hypodivergent	.171	7	.200*	.896	7	.306
	Hyperdivergent	.184	17	.131	.911	17	.103
BW232M	Normodivergent	.187	9	.200*	.888	9	.191
	Hypodivergent	.223	7	.200*	.912	7	.410
	Hyperdivergent	.179	17	.149	.950	17	.454
TIncl2M	Normodivergent	.247	9	.122	.866	9	.111
	Hypodivergent	.172	7	.200*	.916	7	.443

	Hyperdivergent	.121	17	.200*	.967	17	.761
BIncl2M	Normodivergent	.180	9	.200*	.959	9	.792
	Hypodivergent	.150	7	.200*	.966	7	.865
	Hyperdivergent	.169	17	.200*	.920	17	.150
CBB131M	Normodivergent	.209	9	.200*	.931	9	.486
	Hypodivergent	.194	7	.200*	.869	7	.181
	Hyperdivergent	.149	17	.200*	.907	17	.089
CBB231M	Normodivergent	.209	9	.200*	.899	9	.248
	Hypodivergent	.274	7	.121	.822	7	.067
	Hyperdivergent	.149	17	.200*	.960	17	.635
CLB131M	Normodivergent	.198	9	.200*	.895	9	.224
	Hypodivergent	.264	7	.149	.836	7	.092
	Hyperdivergent	.119	17	.200*	.965	17	.733
CLB231M	Normodivergent	.224	9	.200*	.898	9	.242
	Hypodivergent	.229	7	.200*	.953	7	.756
	Hyperdivergent	.151	17	.200*	.955	17	.548
BB1M	Normodivergent	.158	9	.200*	.965	9	.852
	Hypodivergent	.228	7	.200*	.879	7	.220
	Hyperdivergent	.189	17	.107	.960	17	.627
BHT1M	Normodivergent	.234	9	.169	.941	9	.589
	Hypodivergent	.219	7	.200*	.887	7	.258
	Hyperdivergent	.088	17	.200*	.974	17	.887
BW131M	Normodivergent	.196	9	.200*	.957	9	.765
	Hypodivergent	.256	7	.181	.903	7	.348
	Hyperdivergent	.145	17	.200*	.929	17	.210
BW231M	Normodivergent	.175	9	.200*	.957	9	.766
	Hypodivergent	.265	7	.147	.905	7	.362
	Hyperdivergent	.143	17	.200*	.961	17	.659
TIncl1M	Normodivergent	.190	9	.200*	.905	9	.282
	Hypodivergent	.229	7	.200*	.880	7	.229
	Hyperdivergent	.097	17	.200^	.968	17	.785
BIncl1M	Normodivergent	.172	9	.200	.955	9	.743
	Hypodivergent	.201	7	.200^	.947	7	.698
	Hyperdivergent	.125	17	.200^	.971	17	.837
CBB132P	Normodivergent	.233	9	.173	.906	9	.288
	Hypodivergent	.207	7	.200	.899	7	.324
0000000	Hyperdivergent	.189	17	.107	.908	17	.093
CBB232P	Normodivergent	.248	9	.118	.913	9	.341
	Hypodivergent	.218	1	.200	.909	1	.392
	Hyperdivergent	.103	17	.200	.970	17	.824
CLB132P	Normodivergent	.099	9	.200	.993	9	.999
	Hypodivergent	.185	1	.200	.957	17	.790
	Hyperdivergent	.106	17	.200	.971	17	.831
CLB232P	Normodivergent	.133	9	.200	.959	9	.787
	Hypodivergent	.184	1	.200	.945	17	.688
	Hyperdivergent	.148	17	.200	.931	17	.227
BB2P	Normodivergent	.254	9	.099	.908	9	.299
	Hypodivergent	.189	1	.200	.975	1	.934
	nyperaivergent	.133	17	.200	.950	17	.462
внігр	Normoalvergent	.1/1	9	.200	.907	9	.297
	Hypodivergent	.219	/	.200	.922	/	.486
		.139	17	.200	.972	17	.858
DVV132P	Normoalvergent	.170	9	.200	.960	9	./98
	Hypoalvergent	.210	/	.200	.903	/	.350
ם הרי אום		.121	17	.200	.955	17	.542
DVVZJZP	Normoalvergent	.227	9	.199	.900	9	.250
	- nypoalvergent	.193	/	.200	.907		.3/6

	Hyperdivergent	.156	17	.200*	.962	17	.660
TIncl2P	Normodivergent	.155	9	.200*	.975	9	.931
	Hypodivergent	.245	7	.200*	.866	7	.173
	Hyperdivergent	.139	17	.200*	.956	17	.554
BIncl2P	Normodivergent	.143	9	.200*	.966	9	.862
	Hypodivergent	.234	7	.200*	.879	7	.221
	Hyperdivergent	.115	17	.200*	.982	17	.971
CBB13CI	Normodivergent	.190	9	.200*	.933	9	.513
	Hypodivergent	.199	7	.200*	.891	7	.282
	Hyperdivergent	.158	17	.200*	.915	17	.121
CBB23CI	Normodivergent	.230	9	.187	.868	9	.116
	Hypodivergent	.292	7	.073	.845	7	.110
	Hyperdivergent	.132	17	.200*	.960	17	.637
CLB13CI	Normodivergent	.218	9	.200*	.904	9	.275
	Hypodivergent	.190	7	.200*	.915	7	.429
	Hyperdivergent	.143	17	.200*	.953	17	.512
CLB23CI	Normodivergent	.271	9	.055	.872	9	.128
	Hypodivergent	.192	7	.200*	.908	7	.380
	Hyperdivergent	.151	17	.200*	.961	17	.659
BBCI	Normodivergent	.175	9	.200*	.959	9	.783
	Hypodivergent	.212	7	.200*	.942	7	.657
	Hyperdivergent	.120	17	.200*	.962	17	.675
BHTCI	Normodivergent	.151	9	.200*	.933	9	.511
	Hypodivergent	.250	7	.200*	.926	7	.520
	Hyperdivergent	.110	17	.200*	.965	17	.724
BW13CI	Normodivergent	.125	9	.200*	.944	9	.622
	Hypodivergent	.241	7	.200*	.941	7	.648
	Hyperdivergent	.125	17	.200*	.968	17	.783
BW23CI	Normodivergent	.188	9	.200*	.911	9	.323
	Hypodivergent	.254	7	.190	.886	7	.253
	Hyperdivergent	.158	17	.200*	.925	17	.182
TInclCI	Normodivergent	.245	9	.128	.936	9	.545
	Hypodivergent	.290	7	.078	.917	7	.448
	Hyperdivergent	.121	17	.200*	.953	17	.502
BInclCl	Normodivergent	.277	9	.044	.866	9	.111
	Hypodivergent	.324	7	.025	.756	7	.015
	Hyperdivergent	.156	17	.200*	.945	17	.376

*. This is a lower bound of the true significance. a. Lilliefors Significance Correction

Age 16 to 18	Years	(Levene's	Test)
--------------	-------	-----------	-------

	Levene Statistic	df1	df2	Sig.
CBB132M	.476	2	30	.626
CBB232M	1.395	2	30	.263
CLB132M	.206	2	30	.815
CLB232M	.062	2	30	.940
BB2M	.077	2	30	.926
BHT2M	.052	2	30	.950
BW132M	1.492	2	30	.241
BW232M	.821	2	30	.450
TIncl2M	.284	2	30	.755
BIncl2M	1.094	2	30	.348
CBB131M	3.326	2	30	.050

Test of Homogeneity of Variances

CBB231M	3.416	2	30	.046
CLB131M	.594	2	30	.558
CLB231M	1.170	2	30	.324
BB1M	.969	2	30	.391
BHT1M	.468	2	30	.631
BW131M	2.820	2	30	.075
BW231M	1.439	2	30	.253
TIncl1M	1.286	2	30	.291
BIncl1M	.835	2	30	.444
CBB132P	.812	2	30	.454
CBB232P	1.495	2	30	.240
CLB132P	2.481	2	30	.101
CLB232P	.896	2	30	.419
BB2P	.369	2	30	.695
BHT2P	.597	2	30	.557
BW132P	2.025	2	30	.150
BW232P	.060	2	30	.941
TIncl2P	.965	2	30	.392
BIncl2P	1.799	2	30	.183
CBB13CI	1.858	2	30	.173
CBB23CI	.611	2	30	.549
CLB13CI	1.028	2	30	.370
CLB23CI	2.718	2	30	.082
BBCI	3.620	2	30	.039
BHTCI	.226	2	30	.799
BW13CI	.132	2	30	.877
BW23CI	1.948	2	30	.160
TInclCI	1.603	2	30	.218
BInclCl	1.678	2	30	.204

Appendix C: ANOVA and Posthoc Scheffé

Age 12 to 18 Years (ANOVA)

ANOVA										
		Sum of Squares	df	Mean Square	F	Sig.				
CBB132M	Between Groups	7.244	2	3.622	15.563	.000				
	Within Groups	39.563	170	.233						
	Total	46.808	172							
CBB232M	Between Groups	3.475	2	1.737	8.275	.000				
	Within Groups	35.691	170	.210						
	Total	39.166	172							
CLB132M	Between Groups	7.193	2	3.596	20.507	.000				
	Within Groups	29.813	170	.175						
	Total	37.006	172							
CLB232M	Between Groups	4.037	2	2.018	15.846	.000				
	Within Groups	21.654	170	.127						
	Total	25.691	172							
BB2M	Between Groups	1.282	2	.641	1.978	.142				
	Within Groups	55.083	170	.324						
	Total	56.365	172							
BHT2M	Between Groups	36.428	2	18.214	3.970	.021				
	Within Groups	780.004	170	4.588						
	Total	816.432	172							
BW132M	Between Groups	13.972	2	6.986	3.180	.044				
	Within Groups	373.518	170	2.197						
	Total	387.490	172							
BW232M	Between Groups	8.061	2	4.031	2.288	.105				
	Within Groups	299.542	170	1.762						
	Total	307.603	172							
TIncl2M	Between Groups	19.748	2	9.874	.218	.804				
	Within Groups	7700.140	170	45.295						
	Total	7719.888	172							
BIncl2M	Between Groups	159.845	2	79.922	3.319	.039				
	Within Groups	4093.907	170	24.082						
	Total	4253.752	172							
CBB131M	Between Groups	12.058	2	6.029	28.266	.000				
	Within Groups	36.261	170	.213						
	Total	48.319	172							
CBB231M	Between Groups	5.406	2	2.703	16.900	.000				
	Within Groups	27.190	170	.160						
	Total	32.596	172							
CLB131M	Between Groups	9.722	2	4.861	19.366	.000				

ANOVA

101

	Within Groups	42.671	170	.251		
	Total	52.392	172			
CLB231M	Between Groups	3.830	2	1.915	14.128	.000
	Within Groups	23.044	170	.136		
	Total	26.874	172			
BB1M	Between Groups	.830	2	.415	1.154	.318
	Within Groups	61.130	170	.360		
	Total	61.960	172			
BHT1M	Between Groups	3.114	2	1.557	.231	.794
		1148.275	170	6.755		
	lotal	1151.389	172			
BW131M	Between Groups	28.233	2	14.116	7.183	.001
		334.086	170	1.965		
D 11100111	lotal	362.319	172			
BW231M	Between Groups	9.980	2	4.990	2.095	.126
	Tatal	404.918	170	2.382		
The state	Total	414.897	172	00.404	4.400	000
I Incl1M	Between Groups Within Groups	56.928	170	28.464	1.193	.306
	Total	4056.403	170	23.001		
DisaldM	Total	4113.331	1/2	F 400	000	705
BINCITIVI	Between Groups Within Groups	10.260	170	5.130	.230	.795
	Total	3700.700	170	22.201		
CDD122D	Potwoon Croups	3799.047	172	4 467	22 527	000
CDD132F	Within Groups	0.934 22 644	2 170	4.407	33.337	.000
	Total	31 570	170	.100		
CBB232P	Retween Groups	3 823	2	1 912	17 504	000
OBBEOEI	Within Groups	18,565	170	.109	17.001	.000
	Total	22 388	172			
CLB132P	Between Groups	5.266	2	2.633	13.666	.000
	Within Groups	32.751	170	.193		
	Total	38.017	172			
CLB232P	Between Groups	3.156	2	1.578	11.381	.000
	Within Groups	23.572	170	.139		
	Total	26.728	172			
BB2P	Between Groups	2.398	2	1.199	2.580	.079
	Within Groups	78.993	170	.465		
	Total	81.391	172			
BHT2P	Between Groups	28.727	2	14.364	1.879	.156
	Within Groups	1299.858	170	7.646		
	Total	1328.585	172			
BW132P	Between Groups	44.664	2	22.332	9.311	.000
	Within Groups	407.749	170	2.399		
	Total	452.413	172			
BW232P	Between Groups	10.472	2	5.236	2.178	.116
		408.659	170	2.404		
	Total	419.131	172			

TIncl2P	Between Groups	450.680	2	225.340	6.256	.002
	Within Groups	6123.380	170	36.020		
	Total	6574.061	172			
BIncl2P	Between Groups	5.130	2	2.565	.141	.868
	Within Groups	3087.622	170	18.162		
	Total	3092.752	172			
CBB13CI	Between Groups	4.971	2	2.486	28.988	.000
	Within Groups	14.577	170	.086		
	Total	19.548	172			
CBB23CI	Between Groups	1.829	2	.914	7.008	.001
	Within Groups	22.183	170	.130		
	Total	24.012	172			
CLB13CI	Between Groups	3.060	2	1.530	10.289	.000
	Within Groups	25.275	170	.149		
	Total	28.334	172			
CLB23CI	Between Groups	13.028	2	6.514	11.784	.000
	Within Groups	93.973	170	.553		
	Total	107.001	172			
BBCI	Between Groups	7.148	2	3.574	7.207	.001
	Within Groups	84.306	170	.496		
	Total	91.454	172			
BHTCI	Between Groups	319.903	2	159.951	17.103	.000
	Within Groups	1589.861	170	9.352		
	Total	1909.764	172			
BW13CI	Between Groups	95.665	2	47.832	26.001	.000
	Within Groups	312.733	170	1.840		
	Total	408.398	172			
BW23CI	Between Groups	125.460	2	62.730	17.536	.000
	Within Groups	608.118	170	3.577		
	Total	733.578	172			
TInclCI	Between Groups	1337.749	2	668.874	12.597	.000
	Within Groups	9026.744	170	53.098		
	Total	10364.492	172			
BInclCl	Between Groups	181.240	2	90.620	2.643	.074
	Within Groups	5828.205	170	34.284		
	Total	6009.445	172			

Age 12 to 18 Years (Scheffé)

Multiple Comparisons

Scheffe		•	•				
	-	-	Mean			95% Confide	ence Interval
Dependent			Difference	Std.		Lower	Upper
Variable	(I) FaceTyp	(J) FaceTyp	(I-J)	Error	Sig.	Bound	Bound

CBB132M	Normodiverge	Hypodivergent	39699*	.10294	.001	6512	1428
	nt	Hyperdivergen t	.20314*	.08157	.048	.0017	.4046
	Hypodivergent	Normodiverge nt	.39699*	.10294	.001	.1428	.6512
		Hyperdivergen t	.60014*	.10758	.000	.3345	.8658
	Hyperdivergen t	Normodiverge nt	20314*	.08157	.048	4046	0017
		Hypodivergent	60014*	.10758	.000	8658	3345
CBB232M	Normodiverge	Hypodivergent	38679*	.09777	.001	6282	1454
	nt	Hyperdivergen t	03447	.07747	.906	2258	.1569
	Hypodivergent	Normodiverge nt	.38679*	.09777	.001	.1454	.6282
		Hyperdivergen t	.35232*	.10218	.003	.1000	.6046
	Hyperdivergen t	Normodiverge nt	.03447	.07747	.906	1569	.2258
		Hypodivergent	35232 [*]	.10218	.003	6046	1000
CLB132M	Normodiverge	Hypodivergent	33005*	.08936	.001	5507	1094
	nt	Hyperdivergen t	.26023*	.07081	.002	.0854	.4351
	Hypodivergent	Normodiverge nt	.33005*	.08936	.001	.1094	.5507
		Hyperdivergen t	.59028*	.09338	.000	.3597	.8209
	Hyperdivergen t	Normodiverge nt	26023 [*]	.07081	.002	4351	0854
		Hypodivergent	59028 [*]	.09338	.000	8209	3597
CLB232M	Normodiverge	Hypodivergent	32511*	.07615	.000	5132	1370
	nt	Hyperdivergen t	.12133	.06034	.136	0277	.2704
	Hypodivergent	Normodiverge nt	.32511*	.07615	.000	.1370	.5132
		Hyperdivergen t	.44644*	.07959	.000	.2499	.6430
	Hyperdivergen t	Normodiverge nt	12133	.06034	.136	2704	.0277
		Hypodivergent	44644*	.07959	.000	6430	2499
BB2M	Normodiverge	Hypodivergent	23659	.12146	.153	5365	.0633
		Hyperdivergen t	02703	.09625	.961	2647	.2107
	Hypodivergent	Normodiverge nt	.23659	.12146	.153	0633	.5365
		Hyperdivergen t	.20957	.12693	.259	1039	.5230
	Hyperdivergen t	Normodiverge nt	.02703	.09625	.961	2107	.2647
		Hypodivergent	20957	.12693	.259	5230	.1039
BHT2M	Normodiverge	Hypodivergent	54091	.45705	.498	-1.6696	.5878
	nt	Hyperdivergen t	.72672	.36218	.137	1677	1.6211
	Hypodivergent	Normodiverge nt	.54091	.45705	.498	5878	1.6696
		Hyperdivergen t	1.26763*	.47766	.032	.0881	2.4472

	Hyperdivergen	Normodiverge	72672	.36218	.137	-1.6211	.1677
	t	nt Hypodivergent	-1 26763*	47766	032	-2 1/72	- 0881
BW132M	Normodiverge	Hypodivergent	46824	.31628	.032	-1.2493	.3128
	nt	Hyperdivergen t	.35610	.25063	.367	2628	.9750
	Hypodivergent	Normodiverge nt	.46824	.31628	.337	3128	1.2493
		Hyperdivergen t	.82433*	.33054	.047	.0081	1.6406
	Hyperdivergen t	Normodiverge nt	35610	.25063	.367	9750	.2628
DWOODNA	NI 1.	Hypodivergent	82433 [^]	.33054	.047	-1.6406	0081
BVV232IVI	normodiverge	Hypodivergent	59041	.28323	.117	-1.2899	.1090
		t	25940	.22444	.514	8136	.2949
	Hypodivergent	Normodiverge nt	.59041	.28323	.117	1090	1.2899
		Hyperdivergen t	.33102	.29601	.536	4000	1.0620
	Hyperdivergen t	Normodiverge nt	.25940	.22444	.514	2949	.8136
		Hypodivergent	33102	.29601	.536	-1.0620	.4000
TIncl2M	Normodiverge	Hypodivergent	.3419	1.4360	.972	-3.204	3.888
	nt	Hyperdivergen t	.7512	1.1379	.804	-2.059	3.561
	Hypodivergent	Normodiverge nt	3419	1.4360	.972	-3.888	3.204
		Hyperdivergen t	.4093	1.5008	.964	-3.297	4.115
	Hyperdivergen t	Normodiverge nt	7512	1.1379	.804	-3.561	2.059
		Hypodivergent	4093	1.5008	.964	-4.115	3.297
BIncl2M	Normodiverge	Hypodivergent	7133	1.0471	.793	-3.299	1.872
	nt	Hyperdivergen t	1.7492	.8297	.112	300	3.798
	Hypodivergent	Normodiverge nt	.7133	1.0471	.793	-1.872	3.299
		Hyperdivergen t	2.4625	1.0943	.083	240	5.165
	Hyperdivergen t	Normodiverge nt	-1.7492	.8297	.112	-3.798	.300
		Hypodivergent	-2.4625	1.0943	.083	-5.165	.240
CBB131M	Normodiverge	Hypodivergent	56288	.09854	.000	8062	3195
		⊓yperdivergen t	.20856*	.07809	.030	.0157	.4014
	Hypodivergent	Normodiverge nt	.56288*	.09854	.000	.3195	.8062
		Hyperdivergen t	.77144*	.10299	.000	.5171	1.0258
	Hyperdivergen t	Normodiverge nt	20856 [*]	.07809	.030	4014	0157
		Hypodivergent	77144*	.10299	.000	-1.0258	5171
CBB231M	Normodiverge	Hypodivergent	41089*	.08533	.000	6216	2002
	nu	Hyperalvergen	.09728	.06762	.358	0697	.2643
	Hypodivergent	Normodiverge nt	.41089*	.08533	.000	.2002	.6216

		Hyperdivergen t	.50817*	.08918	.000	.2879	.7284
	Hyperdivergen t	Normodiverge nt	09728	.06762	.358	2643	.0697
		Hypodivergent	50817 [*]	.08918	.000	7284	2879
CLB131M	Normodiverge	Hypodivergent	51363 [*]	.10690	.000	7776	2496
	nt	Hyperdivergen t	.17777	.08471	.114	0314	.3870
	Hypodivergent	Normodiverge nt	.51363 [*]	.10690	.000	.2496	.7776
		Hyperdivergen t	.69140*	.11172	.000	.4155	.9673
	Hyperdivergen t	Normodiverge nt	17777	.08471	.114	3870	.0314
		Hypodivergent	69140 [*]	.11172	.000	9673	4155
CLB231M	Normodiverge	Hypodivergent	26045 [*]	.07856	.005	4544	0664
	nt	Hyperdivergen t	.17368 [*]	.06225	.022	.0199	.3274
	Hypodivergent	Normodiverge nt	.26045*	.07856	.005	.0664	.4544
		Hyperdivergen t	.43413 [*]	.08210	.000	.2314	.6369
	Hyperdivergen t	Normodiverge nt	17368 [*]	.06225	.022	3274	0199
		Hypodivergent	43413 [*]	.08210	.000	6369	2314
BB1M	Normodiverge	Hypodivergent	19073	.12795	.332	5067	.1252
	nt	Hyperdivergen t	02311	.10139	.974	2735	.2273
	Hypodivergent	Normodiverge nt	.19073	.12795	.332	1252	.5067
		Hyperdivergen t	.16762	.13372	.457	1626	.4978
	Hyperdivergen t	Normodiverge nt	.02311	.10139	.974	2273	.2735
		Hypodivergent	16762	.13372	.457	4978	.1626
BHT1M	Normodiverge	Hypodivergent	21400	.55455	.928	-1.5834	1.1554
	nt	Hyperdivergen t	28836	.43944	.807	-1.3735	.7968
	Hypodivergent	Normodiverge nt	.21400	.55455	.928	-1.1554	1.5834
		Hyperdivergen t	07436	.57955	.992	-1.5056	1.3568
	Hyperdivergen t	Normodiverge nt	.28836	.43944	.807	7968	1.3735
		Hypodivergent	.07436	.57955	.992	-1.3568	1.5056
BW131M	Normodiverge	Hypodivergent	66314	.29912	.089	-1.4018	.0755
	nt	Hyperdivergen t	.50818	.23703	.104	0772	1.0935
	Hypodivergent	Normodiverge nt	.66314	.29912	.089	0755	1.4018
		Hyperdivergen t	1.17132 [*]	.31261	.001	.3993	1.9433
	Hyperdivergen t	Normodiverge nt	50818	.23703	.104	-1.0935	.0772
		Hypodivergent	-1.17132 [*]	.31261	.001	-1.9433	3993
BW231M	Normodiverge	Hypodivergent	64807	.32931	.147	-1.4613	.1651
	nt	Hyperdivergen t	03535	.26095	.991	6798	.6091

	Hypodivergent	Normodiverge nt	.64807	.32931	.147	1651	1.4613
		Hyperdivergen t	.61272	.34416	.208	2372	1.4626
	Hyperdivergen t	Normodiverge nt	.03535	.26095	.991	6091	.6798
		Hypodivergent	61272	.34416	.208	-1.4626	.2372
TIncl1M	Normodiverge	Hypodivergent	9440	1.0423	.664	-3.518	1.630
	nt	Hyperdivergen t	.7197	.8259	.685	-1.320	2.759
	Hypodivergent	Normodiverge nt	.9440	1.0423	.664	-1.630	3.518
		Hyperdivergen t	1.6637	1.0893	.314	-1.026	4.354
	Hyperdivergen t	Normodiverge nt	7197	.8259	.685	-2.759	1.320
		Hypodivergent	-1.6637	1.0893	.314	-4.354	1.026
BIncl1M	Normodiverge	Hypodivergent	2061	1.0073	.979	-2.694	2.281
	nt	Hyperdivergen t	.4308	.7982	.865	-1.540	2.402
	Hypodivergent	Normodiverge nt	.2061	1.0073	.979	-2.281	2.694
		Hyperdivergen t	.6369	1.0527	.833	-1.963	3.237
	Hyperdivergen t	Normodiverge nt	4308	.7982	.865	-2.402	1.540
		Hypodivergent	6369	1.0527	.833	-3.237	1.963
CBB132P	Normodiverge	Hypodivergent	45502 [*]	.07787	.000	6473	2627
	nt	Hyperdivergen t	.21142 [*]	.06171	.003	.0590	.3638
	Hypodivergent	Normodiverge nt	.45502 [*]	.07787	.000	.2627	.6473
		Hyperdivergen t	.66643*	.08139	.000	.4655	.8674
	Hyperdivergen t	Normodiverge nt	21142 [*]	.06171	.003	3638	0590
		Hypodivergent	66643 [*]	.08139	.000	8674	4655
CBB232P	Normodiverge	Hypodivergent	29463 [*]	.07051	.000	4688	1205
	nt	Hyperdivergen t	.14138 [*]	.05587	.043	.0034	.2794
	Hypodivergent	Normodiverge nt	.29463 [*]	.07051	.000	.1205	.4688
		Hyperdivergen t	.43601*	.07369	.000	.2540	.6180
	Hyperdivergen t	Normodiverge nt	14138 [*]	.05587	.043	2794	0034
		Hypodivergent	43601 [*]	.07369	.000	6180	2540
CLB132P	Normodiverge	Hypodivergent	39776 [*]	.09366	.000	6290	1665
	nt	Hyperdivergen t	.10639	.07421	.360	0769	.2897
	Hypodivergent	Normodiverge nt	.39776*	.09366	.000	.1665	.6290
		Hyperdivergen t	.50415*	.09788	.000	.2624	.7459
	Hyperdivergen t	Normodiverge nt	10639	.07421	.360	2897	.0769
		Hypodivergent	50415 [*]	.09788	.000	7459	2624
CLB232P	Normodiverge	Hypodivergent	26405 [*]	.07945	.005	4603	0678

	nt	Hyperdivergen t	.13212	.06296	.114	0234	.2876
	Hypodivergent	Normodiverge nt	.26405*	.07945	.005	.0678	.4603
		Hyperdivergen t	.39616*	.08304	.000	.1911	.6012
	Hyperdivergen t	Normodiverge nt	13212	.06296	.114	2876	.0234
		Hypodivergent	39616 [*]	.08304	.000	6012	1911
BB2P	Normodiverge	Hypodivergent	17215	.14545	.498	5313	.1870
	nt	Hyperdivergen t	.16421	.11526	.365	1204	.4488
	Hypodivergent	Normodiverge nt	.17215	.14545	.498	1870	.5313
		Hyperdivergen t	.33636	.15201	.089	0390	.7117
	Hyperdivergen t	Normodiverge nt	16421	.11526	.365	4488	.1204
		Hypodivergent	33636	.15201	.089	7117	.0390
BHT2P	Normodiverge	Hypodivergent	.06029	.59002	.995	-1.3967	1.5173
	m	Hyperalvergen t	83556	.46754	.206	-1.9901	.3190
	Hypodivergent	Normodiverge nt	06029	.59002	.995	-1.5173	1.3967
		Hyperdivergen t	89585	.61662	.350	-2.4186	.6269
	Hyperdivergen t	Normodiverge nt	.83556	.46754	.206	3190	1.9901
		Hypodivergent	.89585	.61662	.350	6269	2.4186
BW132P	Normodiverge	Hypodivergent	69206	.33046	.115	-1.5081	.1240
	nt	Hyperdivergen t	.74446*	.26186	.019	.0978	1.3911
	Hypodivergent	Normodiverge nt	.69206	.33046	.115	1240	1.5081
		Hyperdivergen t	1.43652 [*]	.34536	.000	.5837	2.2894
	Hyperdivergen t	Normodiverge nt	74446 [*]	.26186	.019	-1.3911	0978
		Hypodivergent	-1.43652 [*]	.34536	.000	-2.2894	5837
BW232P	Normodiverge	Hypodivergent	55004	.33082	.254	-1.3670	.2669
		Hyperalvergen t	.16395	.26215	.823	4834	.8113
	Hypodivergent	Normodiverge nt	.55004	.33082	.254	2669	1.3670
		Hyperdivergen t	.71399	.34574	.122	1398	1.5678
	Hyperdivergen t	Normodiverge nt	16395	.26215	.823	8113	.4834
		Hypodivergent	71399	.34574	.122	-1.5678	.1398
TIncl2P	Normodiverge	Hypodivergent	7982	1.2806	.824	-3.961	2.364
	m	Hyperalvergen	3.1115 [*]	1.0148	.010	.606	5.617
	Hypodivergent	Normodiverge nt	.7982	1.2806	.824	-2.364	3.961
		Hyperdivergen t	3.9097*	1.3383	.016	.605	7.215
	Hyperdivergen t	Normodiverge nt	-3.1115*	1.0148	.010	-5.617	606
		Hypodivergent	-3.9097*	1.3383	.016	-7.215	605

BIncl2P	Normodiverge	Hypodivergent	.4669	.9093	.877	-1.779	2.713
	nt	Hyperdivergen t	.0320	.7206	.999	-1.747	1.812
	Hypodivergent	Normodiverge nt	4669	.9093	.877	-2.713	1.779
		Hyperdivergen t	4349	.9503	.901	-2.782	1.912
	Hyperdivergen t	Normodiverge nt	0320	.7206	.999	-1.812	1.747
		Hypodivergent	.4349	.9503	.901	-1.912	2.782
CBB13CI	Normodiverge	Hypodivergent	37234*	.06248	.000	5266	2180
	nt	Hyperdivergen t	.12112	.04951	.053	0011	.2434
	Hypodivergent	Normodiverge nt	.37234*	.06248	.000	.2180	.5266
		Hyperdivergen t	.49346*	.06530	.000	.3322	.6547
	Hyperdivergen t	Normodiverge nt	12112	.04951	.053	2434	.0011
		Hypodivergent	49346 [*]	.06530	.000	6547	3322
CBB23CI	Normodiverge	Hypodivergent	18108	.07708	.066	3714	.0093
	nt	Hyperdivergen t	.11904	.06108	.153	0318	.2699
	Hypodivergent	Normodiverge nt	.18108	.07708	.066	0093	.3714
		Hyperdivergen t	.30013*	.08055	.001	.1012	.4991
	Hyperdivergen t	Normodiverge nt	11904	.06108	.153	2699	.0318
		Hypodivergent	30013 [*]	.08055	.001	4991	1012
CLB13CI	Normodiverge	Hypodivergent	21985 [*]	.08227	.030	4230	0167
	nt	Hyperdivergen t	.16603*	.06519	.041	.0050	.3270
	Hypodivergent	Normodiverge nt	.21985*	.08227	.030	.0167	.4230
		Hyperdivergen t	.38589*	.08598	.000	.1736	.5982
	Hyperdivergen t	Normodiverge nt	16603*	.06519	.041	3270	0050
		Hypodivergent	38589 [*]	.08598	.000	5982	1736
CLB23CI	Normodiverge	Hypodivergent	59208 [*]	.15864	.001	9838	2003
	nt	Hyperdivergen t	.20872	.12571	.255	1017	.5192
	Hypodivergent	Normodiverge nt	.59208*	.15864	.001	.2003	.9838
		Hyperdivergen t	.80080*	.16580	.000	.3914	1.2102
	Hyperdivergen t	Normodiverge nt	20872	.12571	.255	5192	.1017
		Hypodivergent	80080*	.16580	.000	-1.2102	3914
BBCI	Normodiverge	Hypodivergent	55158 [*]	.15026	.002	9226	1805
	nt	Hyperdivergen t	03918	.11907	.947	3332	.2549
	Hypodivergent	Normodiverge nt	.55158*	.15026	.002	.1805	.9226
		Hyperdivergen t	.51240*	.15704	.006	.1246	.9002
	Hyperdivergen t	Normodiverge nt	.03918	.11907	.947	2549	.3332

		Hypodivergent	51240 [*]	.15704	.006	9002	1246
BHTCI	Normodiverge	Hypodivergent	.96995	.65252	.334	6414	2.5813
	nt	Hyperdivergen t	-2.49288*	.51707	.000	-3.7698	-1.2160
	Hypodivergent	Normodiverge nt	96995	.65252	.334	-2.5813	.6414
		Hyperdivergen t	-3.46284*	.68195	.000	-5.1469	-1.7788
	Hyperdivergen t	Normodiverge nt	2.49288*	.51707	.000	1.2160	3.7698
		Hypodivergent	3.46284*	.68195	.000	1.7788	5.1469
BW13CI	Normodiverge	Hypodivergent	85626 [*]	.28940	.014	-1.5709	1416
	nt	Hyperdivergen t	1.19002*	.22933	.000	.6237	1.7563
	Hypodivergent	Normodiverge nt	.85626*	.28940	.014	.1416	1.5709
		Hyperdivergen t	2.04628*	.30245	.000	1.2994	2.7932
	Hyperdivergen t	Normodiverge nt	-1.19002 [*]	.22933	.000	-1.7563	6237
		Hypodivergent	-2.04628*	.30245	.000	-2.7932	-1.2994
BW23CI	Normodiverge	Hypodivergent	-1.27356 [*]	.40356	.008	-2.2701	2770
	nt	Hyperdivergen t	1.16711*	.31979	.002	.3774	1.9568
	Hypodivergent	Normodiverge nt	1.27356*	.40356	.008	.2770	2.2701
		Hyperdivergen t	2.44067*	.42176	.000	1.3991	3.4822
	Hyperdivergen t	Normodiverge nt	-1.16711*	.31979	.002	-1.9568	3774
		Hypodivergent	-2.44067*	.42176	.000	-3.4822	-1.3991
TInclCI	Normodiverge	Hypodivergent	-2.4428	1.5548	.294	-6.282	1.397
	nt	Hyperdivergen t	4.8734 [*]	1.2321	.001	1.831	7.916
	Hypodivergent	Normodiverge nt	2.4428	1.5548	.294	-1.397	6.282
		Hyperdivergen t	7.3162 [*]	1.6249	.000	3.303	11.329
	Hyperdivergen t	Normodiverge nt	-4.8734 [*]	1.2321	.001	-7.916	-1.831
		Hypodivergent	-7.3162 [*]	1.6249	.000	-11.329	-3.303
BInclCl	Normodiverge	Hypodivergent	5419	1.2494	.910	-3.627	2.543
	nt	Hyperdivergen t	1.9587	.9900	.144	486	4.403
	Hypodivergent	Normodiverge nt	.5419	1.2494	.910	-2.543	3.627
		Hyperdivergen t	2.5005	1.3057	.163	724	5.725
	Hyperdivergen t	Normodiverge nt	-1.9587	.9900	.144	-4.403	.486
		Hypodivergent	-2.5005	1.3057	.163	-5.725	.724

*. The mean difference is significant at the 0.05 level.

Age 12 to 13 Years (ANOVA)

		AI				
		Sum of Squares	df	Mean Square	F	Sig.
CBB132M	Between Groups	3.238	2	1.619	6.450	.003
	Within Groups	15.561	62	.251		
	Total	18.799	64			
CBB232M	Between Groups	1.111	2	.556	2.543	.087
	Within Groups	13.545	62	.218		
	Total	14.656	64			
CLB132M	Between Groups	1.794	2	.897	6.312	.003
	Within Groups	8.810	62	.142		
	Total	10.603	64			
CLB232M	Between Groups	.285	2	.142	1.278	.286
	Within Groups	6.903	62	.111		
	Total	7.188	64			
BB2M	Between Groups	.129	2	.065	.269	.765
	Within Groups	14.917	62	.241		
	Total	15.047	64			
BHT2M	Between Groups	18.489	2	9.245	3.082	.053
	Within Groups	185.954	62	2.999		
	Total	204.444	64			
BW132M	Between Groups	7.143	2	3.571	1.905	.157
	Within Groups	116.206	62	1.874		
	Total	123.348	64			
BW232M	Between Groups	3.206	2	1.603	1.067	.350
	Within Groups	93.104	62	1.502		
	Total	96.310	64			
TIncl2M	Between Groups	99.555	2	49.777	.930	.400
	Within Groups	3317.900	62	53.515		
	Total	3417.454	64			
BIncl2M	Between Groups	1.199	2	.599	.031	.970
	Within Groups	1216.422	62	19.620		
	Total	1217.621	64			
CBB131M	Between Groups	3.801	2	1.901	9.690	.000
		12.160	62	.196		
	Total	15.961	64			
CBB231M	Between Groups	1.979	2	.990	7.109	.002
		8.632	62	.139		
	Total	10.611	64			
CLB131M	Between Groups	2.619	2	1.310	5.218	.008
		15.560	62	.251		
	Total	18.179	64			
CLB231M	Between Groups	1.010	2	.505	3.891	.026
		8.043	62	.130		
	Total	9.052	64			

ANOVA

BB1M	Between Groups	.159	2	.079	.255	.776
	Within Groups	19.357	62	.312		
	Total	19.516	64			
BHT1M	Between Groups	9.361	2	4.681	1.088	.343
	Within Groups	266.853	62	4.304		
	lotal	276.215	64			
BW131M	Between Groups	17.376	2	8.688	5.224	.008
	Within Groups	103.124	62	1.663		
DIMOGRAM	l otal	120.500	64	4.050	0.500	
BW231M	Between Groups	9.916	2	4.958	2.509	.090
	Total	122.514	02	1.970		
Tipel1M	Rotwoon Groups	132.430	04	059	056	045
THICTHVI	Within Groups	1055 605	62	.938 17 026	.050	.945
	Total	1057 521	64	11.020		
BIncl1M	Between Groups	64.638	2	32.319	2.183	.121
	Within Groups	917.892	62	14.805		
	Total	982.530	64			
CBB132P	Between Groups	3.757	2	1.878	13.271	.000
	Within Groups	8.775	62	.142		
	Total	12.532	64			
CBB232P	Between Groups	2.106	2	1.053	8.683	.000
	Within Groups	7.517	62	.121		
	Total	9.623	64			
CLB132P	Between Groups	3.082	2	1.541	8.164	.001
	Within Groups	11.702	62	.189		
	Total	14.783	64			
CLB232P	Between Groups	.420	2	.210	1.843	.167
		7.064	62	.114		
	l otal	7.484	64		4 000	
BB2P	Between Groups	1.083	2	.542	1.233	.299
	Total	27.247	02	.439		
	Potwoon Croups	28.330	64	7 400	1 261	264
DITIZE	Within Groups	341 234	62	7.488 5.504	1.301	.204
	Total	356 210	64	0.001		
BW132P	Between Groups	24,788	2	12,394	6.014	.004
5111021	Within Groups	127.782	62	2.061	0.011	
	Total	152.570	64			
BW232P	Between Groups	6.397	2	3.198	1.510	.229
	Within Groups	131.352	62	2.119		
	Total	137.749	64			
TIncl2P	Between Groups	25.377	2	12.688	.351	.706
	Within Groups	2244.185	62	36.197		
	Total	2269.562	64			
BIncl2P	Between Groups	122.693	2	61.347	4.620	.013
	Within Groups	823.352	62	13.280		

	Total	946.046	64			
CBB13CI	Between Groups	1.411	2	.705	7.560	.001
	Within Groups	5.785	62	.093		
	Total	7.196	64			
CBB23CI	Between Groups	.927	2	.463	4.134	.021
	Within Groups	6.948	62	.112		
	Total	7.875	64			
CLB13CI	Between Groups	1.641	2	.821	6.367	.003
	Within Groups	7.991	62	.129		
	Total	9.633	64			
CLB23CI	Between Groups	1.050	2	.525	1.068	.350
	Within Groups	30.478	62	.492		
	Total	31.528	64			
BBCI	Between Groups	4.086	2	2.043	4.092	.021
	Within Groups	30.951	62	.499		
	Total	35.037	64			
BHTCI	Between Groups	145.547	2	72.773	8.641	.000
	Within Groups	522.168	62	8.422		
	Total	667.715	64			
BW13CI	Between Groups	26.743	2	13.372	9.012	.000
	Within Groups	91.991	62	1.484		
	Total	118.734	64			
BW23CI	Between Groups	16.157	2	8.079	2.169	.123
	Within Groups	230.963	62	3.725		
	Total	247.120	64			
TInclCI	Between Groups	75.454	2	37.727	.726	.488
	Within Groups	3222.867	62	51.982		
	Total	3298.321	64			
BInclCl	Between Groups	54.517	2	27.259	.857	.429
	Within Groups	1971.965	62	31.806		
	Total	2026.482	64			

Age 12 to 13 Years (Scheffé)

Multiple Comparisons

Scheffe		Watt		5			
	-		Mean			95% Confide	ence Interval
			Difference (I-				
Dependent Variable	 FaceTyp 	(J) FaceTyp	J)	Std. Error	Sig.	Lower Bound	Upper Bound
CBB132M	Normodivergent	Hypodivergent	39117	.17317	.086	8255	.0432
		Hyperdivergent	.28797	.14276	.139	0701	.6460
	Hypodivergent	Normodivergent	.39117	.17317	.086	0432	.8255
		Hyperdivergent	.67914*	.18980	.003	.2031	1.1552
	Hyperdivergent	Normodivergent	28797	.14276	.139	6460	.0701
		Hypodivergent	67914 [*]	.18980	.003	-1.1552	2031
CBB232M	Normodivergent	Hypodivergent	34223	.16156	.115	7474	.0630
		Hyperdivergent	.01686	.13319	.992	3172	.3509
	Hypodivergent	Normodivergent	.34223	.16156	.115	0630	.7474
		Hyperdivergent	.35909	.17708	.137	0851	.8032
	Hyperdivergent	Normodivergent	01686	.13319	.992	3509	.3172

		Hypodivergent	35909	.17708	.137	8032	.0851
CLB132M	Normodivergent	Hypodivergent	27740	.13030	.112	6042	.0494
		Hyperdivergent	.22609	.10742	.118	0433	.4955
	Hypodivergent	Normodivergent	.27740	.13030	.112	0494	.6042
		Hyperdivergent	.50349*	.14281	.003	.1453	.8617
	Hyperdivergent	Normodivergent	22609	.10742	.118	4955	.0433
		Hypodivergent	50349*	.14281	.003	8617	1453
CLB232M	Normodivergent	Hypodivergent	09873	.11534	.695	3880	.1906
		Hyperdivergent	.09926	.09509	.583	1392	.3377
	Hypodivergent	Normodivergent	.09873	.11534	.695	1906	.3880
		Hyperdivergent	.19799	.12642	.300	1191	.5151
	Hyperdivergent	Normodivergent	09926	.09509	.583	3377	.1392
DD014	NI 11 1	Hypodivergent	19799	.12642	.300	5151	.1191
BB2M	Normodivergent	Hypodivergent	.07332	.16955	.911	3519	.4986
		Hyperdivergent	.09672	.13978	.788	2539	.44/3
	Hypodivergent	Normodivergent	07332	.16955	.911	4986	.3519
	Lb as a self second of t	Hyperdivergent	.02340	.18584	.992	4427	.4895
	Hyperdivergent	Normodivergent	09672	.13978	.788	44/3	.2539
	Normodiversest	Hypodivorgent	02340	.10004	.992	4895	.4427
טרוצויו	nomodivergent	Hypothypothypothy	.04100	.09003	.000	9097	2.0431
	Hupodivorgant	Normodivergent	1.22152	.49351	.054	0162	2.4593
	riypouvergent	Hyperdivergent	04100	.09003	.000 597	-2.0431	.909/ 2 2255
	Hyperdivergent	Normodivergent	-1 22152	.03014	.307	9030	2.3233
	riyperdivergent	Hypodivergent	- 67986	65614	587	-2.4090	9658
BW/132M	Normodivergent	Hypodivergent	- 92356	47322	158	-2 1104	2633
DWIJZIM	Nonnouvergent	Hyperdivergent	- 20418	39012	872	-1 1826	.2000
	Hypodivergent	Normodivergent	92356	47322	158	- 2633	2 1104
	rijpourorgoni	Hyperdivergent	.71938	.51869	.388	5815	2.0203
	Hyperdivergent	Normodivergent	.20418	.39012	.872	7743	1.1826
	J1	Hypodivergent	71938	.51869	.388	-2.0203	.5815
BW232M	Normodivergent	Hypodivergent	59665	.42358	.377	-1.6590	.4657
-		Hyperdivergent	27239	.34920	.739	-1.1482	.6034
	Hypodivergent	Normodivergent	.59665	.42358	.377	4657	1.6590
		Hyperdivergent	.32426	.46428	.784	8402	1.4887
	Hyperdivergent	Normodivergent	.27239	.34920	.739	6034	1.1482
		Hypodivergent	32426	.46428	.784	-1.4887	.8402
TIncl2M	Normodivergent	Hypodivergent	3.2906	2.5286	.434	-3.051	9.633
		Hyperdivergent	1.6017	2.0846	.745	-3.627	6.830
	Hypodivergent	Normodivergent	-3.2906	2.5286	.434	-9.633	3.051
		Hyperdivergent	-1.6890	2.7716	.831	-8.640	5.262
	Hyperdivergent	Normodivergent	-1.6017	2.0846	.745	-6.830	3.627
		Hypodivergent	1.6890	2.7716	.831	-5.262	8.640
BIncl2M	Normodivergent	Hypodivergent	.2060	1.5311	.991	-3.634	4.046
		Hyperdivergent	2012	1.2622	.987	-3.367	2.965
	Hypodivergent	Normodivergent	2060	1.5311	.991	-4.046	3.634
	L h un a nella come a ret	Hyperdivergent	4072	1.6782	.971	-4.616	3.802
	Hyperdivergent	Normodivergent	.2012	1.2622	.987	-2.965	3.367
CDD424M	Normadivergent	Hypodivergent	.4072	1.0762	.971	-3.602	4.010
CDD131W	Normodivergent	Hypodivergent	34200	.15308	.003	9200	1569
	Hypodiyorgont	Normodivorgant	.10320	.12020	.347	1313	.3017
	riypouivergent	Hyperdivergent	.04200 72800*	16770	.003	.1009	.9200 1 1/20
	Hyperdivergent	Normodivergent	- 18520	12620	347	- 5013	1212
	rypolationgoni	Hypodivergent	- 72800*	16770	000	-1 1/180	- 3073
CBB231M	Normodivergent	Hypodivergent	- 38099*	12897	.000	- 7045	- 0575
COBLONN		Hyperdivergent	.14734	.10633	.388	- 1193	.4140
	Hypodivergent	Normodivergent	.38099*	.12897	.017	.0575	.7045
		Hyperdivergent	.52833*	.14136	.002	.1738	.8829
	Hyperdivergent	Normodivergent	14734	.10633	.388	4140	.1193
	,,	Hypodivergent	52833*	.14136	.002	8829	1738
CLB131M	Normodivergent	Hypodivergent	40691	.17316	.071	8412	.0274
	5	Hyperdivergent	.20558	.14276	.361	1525	.5636

	Hypodivergent	Normodivergent	40691	.17316	.071	- 0274	.8412
	Typeaneigent	Hyperdivergent	61249	18980	008	1365	1 0885
	Hyperdivergent	Normodivergent	- 20558	14276	361	- 5636	1525
	riyperaivergent	Hypodivergent	- 61240*	18080	.008	-1 0885	- 1365
CL B221M	Normodivorgont		01243	12450	.000	-1.0003	1303
CLD231W	Normouvergent	Lypoulvergent	10702	.12450	.527	3001	.1244
	Liber a d'accentration	Hyperalvergent	.18558	.10263	.203	0718	.4430
	Hypodivergent	Normodivergent	.18782	.12450	.327	1244	.5001
		Hyperdivergent	.37340	.13646	.029	.0311	./156
	Hyperdivergent	Normodivergent	18558	.10263	.203	4430	.0718
		Hypodivergent	37340 ⁻	.13646	.029	7156	0311
BB1M	Normodivergent	Hypodivergent	.02101	.19314	.994	4634	.5054
		Hyperdivergent	.11250	.15922	.780	2869	.5118
	Hypodivergent	Normodivergent	02101	.19314	.994	5054	.4634
		Hyperdivergent	.09148	.21170	.911	4395	.6224
	Hyperdivergent	Normodivergent	11250	.15922	.780	5118	.2869
		Hypodivergent	09148	.21170	.911	6224	.4395
BHT1M	Normodivergent	Hypodivergent	1.04426	.71712	.353	7543	2.8428
		Hyperdivergent	.38182	.59119	.812	-1.1009	1.8646
	Hypodivergent	Normodivergent	-1 04426	71712	353	-2 8428	7543
		Hyperdivergent	- 66244	78601	702	-2 6338	1.3089
	Hyperdivergent	Normodivergent	- 28182	50110	812	-1 86/6	1 1000
	riyperuivergent	Hypodivorgont	30102	79604	2012	-1.0040	1.1009
B\//121M	Normadiversast	Hypodivorgant	.00244	.10001	.102	-1.3009	2.0330
DVVIJIVI	Normodivergent	Hypodivergent	-1.33021	.44579	.015	-2.4343	2101
	Libra a Britania a S		.10585	.36751	.959	8159	1.02/6
	Hypodivergent	Normodivergent	1.33621	.44579	.015	.2181	2.4543
		Hyperdivergent	1.44206	.48862	.017	.2166	2.6676
	Hyperdivergent	Normodivergent	10585	.36751	.959	-1.0276	.8159
		Hypodivergent	-1.44206	.48862	.017	-2.6676	2166
BW231M	Normodivergent	Hypodivergent	-1.06644	.48590	.098	-2.2851	.1522
		Hyperdivergent	08319	.40057	.979	-1.0879	.9215
	Hypodivergent	Normodivergent	1.06644	.48590	.098	1522	2.2851
		Hyperdivergent	.98325	.53258	.190	3525	2.3190
	Hyperdivergent	Normodivergent	.08319	.40057	.979	9215	1.0879
		Hypodivergent	98325	.53258	.190	-2.3190	.3525
TIncl1M	Normodivergent	Hypodivergent	3525	1.4263	.970	-3.930	3.225
	-	Hyperdivergent	3395	1.1758	.959	-3.289	2.610
	Hypodivergent	Normodivergent	.3525	1.4263	.970	-3.225	3.930
	71	Hyperdivergent	.0129	1.5633	1.000	-3.908	3.934
	Hyperdivergent	Normodivergent	.3395	1,1758	.959	-2.610	3,289
	Typeranoigent	Hypodivergent	- 0129	1 5633	1 000	-3 934	3 908
BlocI1M	Normodivergent	Hypodivergent	1 9434	1 3300	350	-1 392	5 279
DINCITIW	Nonnouvergent	Hyperdivergent	-1 1026	1.0064	.550 606	-3.853	1 6/7
	Hypodiyoraopt	Normodivorgent	1 0424	1 2200	.000	-5.000	1 202
	riypoulvergent	Huperdivergent	-1.9434	1.3300	.330	-5.219	1.392
	L h un a nalis sa nava nat	Normondivergent	-3.0409	1.4576	.121	-0.702	.010
	nyperdivergent	Normodivergent	1.1020	1.0964	.000	-1.047	3.003
0004000	Nie wee of Programs of the	nypoaivergent	3.0459	1.4578	.121	610	6.702
CBB132P	Normodivergent	Hypodivergent	536/8	.13004	.001	8629	2106
		Hyperdivergent	.18/91	.10/21	.223	0810	.4568
	Hypodivergent	Normodivergent	.53678	.13004	.001	.2106	.8629
		Hyperdivergent	.72469*	.14253	.000	.3672	1.0822
	Hyperdivergent	Normodivergent	18791	.10721	.223	4568	.0810
		Hypodivergent	72469 [*]	.14253	.000	-1.0822	3672
CBB232P	Normodivergent	Hypodivergent	39268 [*]	.12036	.007	6945	0908
		Hyperdivergent	.15230	.09922	.315	0966	.4012
	Hypodivergent	Normodivergent	.39268*	.12036	.007	.0908	.6945
	··· •	Hyperdivergent	.54498*	.13192	.001	.2141	.8759
	Hyperdiveraent	Normodivergent	15230	.09922	.315	4012	.0966
	, · · · · · · · · · · · · · · · · · · ·	Hypodivergent	54498*	.13192	.001	8759	2141
CLB132P	Normodiveraent	Hypodivergent	52553*	.15017	.004	9022	- 1489
		Hyperdivergent	11365	12380	658	- 1968	4241
	Hypodivergent	Normodivergent	52553*	15017	.000	1480	9022
	rypouvergent	Hyperdivergent	63010*	16450	.004	2264	1 0520
	Hyperdivorgant	Normodivorgent	11265	10409	.001	.2204	10020
	riyperuivergent	Nonnouvergent	11505	.12300	.000	4241	.1900

		Hypodivergent	63919*	.16459	.001	-1.0520	2264
CLB232P	Normodivergent	Hypodivergent	21956	.11667	.179	5122	.0731
		Hyperdivergent	01755	.09618	.983	2588	.2237
	Hypodivergent	Normodivergent	.21956	.11667	.179	0731	.5122
		Hyperdivergent	.20201	.12788	.294	1187	.5227
	Hyperdivergent	Normodivergent	.01755	.09618	.983	2237	.2588
		Hypodivergent	20201	.12788	.294	5227	.1187
BB2P	Normodivergent	Hypodivergent	.11951	.22915	.873	4552	.6942
		Hyperdivergent	.29630	.18891	.299	1775	.7701
	Hypodivergent	Normodivergent	11951	.22915	.873	6942	.4552
		Hyperdivergent	.17679	.25116	.781	4531	.8067
	Hyperdivergent	Normodivergent	29630	.18891	.299	7701	.1775
DUTOD	No was a d'accordant t	Hypodivergent	1/6/9	.25116	.781	8067	.4531
BHI2P	Normodivergent	Hypodivergent	1.24195	.81092	.316	7919	3.2758
	Lhungdivergent	Normodivergent	09504	.00002	.990	-1.7710	1.3617
	nypodivergeni	Normodivergent	-1.24195	.01092	.310	-3.2730	.7919
	Hupordivorgant	Normodivorgent	-1.33699	.00003	.329	-3.3002	.0923
	Hyperdivergent	Hypodivorgont	1 22600	.00002	.990	-1.0017	1.7710
BW132P	Normodivergent	Hypodivergent	-1 58630*	49623	.529	0923 _2 8310	- 3418
5001021	Ronnouvergent	Hyperdivergent	14701	40023	003 820	- 8790	1 1721
	Hypodivergent	Normodivergent	1 58630*	49623	000	0730 3418	2 8310
	rypourorgont	Hyperdivergent	1.73340*	.43023	.009	3692	3.0976
	Hyperdivergent	Normodivergent	14701	.40910	.938	-1.1731	.8790
		Hypodivergent	-1.73340*	.54391	.009	-3.0976	3692
BW232P	Normodivergent	Hypodivergent	83610	.50312	.259	-2.0980	.4258
		Hyperdivergent	.00150	.41477	1.000	-1.0388	1.0418
	Hypodivergent	Normodivergent	.83610	.50312	.259	4258	2.0980
		Hyperdivergent	.83761	.55146	.322	5455	2.2207
	Hyperdivergent	Normodivergent	00150	.41477	1.000	-1.0418	1.0388
		Hypodivergent	83761	.55146	.322	-2.2207	.5455
TIncl2P	Normodivergent	Hypodivergent	5784	2.0796	.962	-5.794	4.637
		Hyperdivergent	1.1574	1.7144	.797	-3.142	5.457
	Hypodivergent	Normodivergent	.5784	2.0796	.962	-4.637	5.794
		Hyperdivergent	1.7359	2.2794	.749	-3.981	7.453
	Hyperdivergent	Normodivergent	-1.1574	1.7144	.797	-5.457	3.142
		Hypodivergent	-1.7359	2.2794	.749	-7.453	3.981
BIncl2P	Normodivergent	Hypodivergent	3.3106	1.2596	.038	.151	6.470
		Hyperdivergent	7257	1.0384	.784	-3.330	1.879
	Hypodivergent	Normodivergent	-3.3106	1.2596	.038	-6.470	151
	Lhun ardivargant	Hyperdivergent	-4.0364	1.3807	.018	-7.499	574
	nyperaivergent	Hypodivergent	.7257	1.0384	./84	-1.8/9	3.330
CBB12CI	Normodivorgont	Hypodivergent	4.0304	1.3007	.016	.374	7.499
0001301	Normouvergefit	Hyperdivergent	51501	08704	.010.	5704	0400
	Hypodivergent	Normodivergent	21261*	10558	.312	0043 0488	578/
	i iypodivoligeni	Hyperdivergent	44766*	11573	001	1574	7379
	Hyperdivergent	Normodivergent	- 13405	.08704	.312	3524	.0843
		Hypodivergent	44766*	.11573	.001	7379	1574
CBB23CI	Normodivergent	Hypodivergent	25382	.11572	.099	5440	.0364
		Hyperdivergent	.10905	.09540	.524	1302	.3483
	Hypodivergent	Normodivergent	.25382	.11572	.099	0364	.5440
		Hyperdivergent	.36287*	.12683	.021	.0448	.6810
	Hyperdivergent	Normodivergent	10905	.09540	.524	3483	.1302
		Hypodivergent	36287*	.12683	.021	6810	0448
CLB13CI	Normodivergent	Hypodivergent	38114*	.12410	.012	6924	0699
		Hyperdivergent	.08675	.10231	.699	1698	.3433
	Hypodivergent	Normodivergent	.38114*	.12410	.012	.0699	.6924
		Hyperdivergent	.46789*	.13602	.004	.1267	.8090
	Hyperdivergent	Normodivergent	08675	.10231	.699	3433	.1698
		Hypodivergent	46789*	.13602	.004	8090	1267
CLB23CI	Normodivergent	Hypodivergent	34153	.24235	.376	9494	.2663
		Hyperdivergent	00761	.19979	.999	5087	.4935

	Hypodivergent	Normodivergent	.34153	.24235	.376	2663	.9494
		Hyperdivergent	.33392	.26563	.458	3323	1.0002
	Hyperdivergent	Normodivergent	.00761	.19979	.999	4935	.5087
		Hypodivergent	33392	.26563	.458	-1.0002	.3323
BBCI	Normodivergent	Hypodivergent	63221*	.24423	.042	-1.2447	0197
		Hyperdivergent	.08353	.20134	.918	4214	.5885
	Hypodivergent	Normodivergent	.63221*	.24423	.042	.0197	1.2447
		Hyperdivergent	.71574*	.26769	.034	.0444	1.3871
	Hyperdivergent	Normodivergent	08353	.20134	.918	5885	.4214
		Hypodivergent	71574 [*]	.26769	.034	-1.3871	0444
BHTCI	Normodivergent	Hypodivergent	1.64070	1.00313	.270	8752	4.1566
		Hyperdivergent	-2.63236 [*]	.82698	.009	-4.7065	5582
	Hypodivergent	Normodivergent	-1.64070	1.00313	.270	-4.1566	.8752
		Hyperdivergent	-4.27306 [*]	1.09950	.001	-7.0307	-1.5154
	Hyperdivergent	Normodivergent	2.63236 [*]	.82698	.009	.5582	4.7065
		Hypodivergent	4.27306 [*]	1.09950	.001	1.5154	7.0307
BW13CI	Normodivergent	Hypodivergent	-1.00904	.42104	.064	-2.0651	.0470
		Hyperdivergent	.92283 [*]	.34711	.035	.0523	1.7934
	Hypodivergent	Normodivergent	1.00904	.42104	.064	0470	2.0651
		Hyperdivergent	1.93187*	.46149	.000	.7744	3.0893
	Hyperdivergent	Normodivergent	92283 [*]	.34711	.035	-1.7934	0523
		Hypodivergent	-1.93187*	.46149	.000	-3.0893	7744
BW23CI	Normodivergent	Hypodivergent	38244	.66715	.849	-2.0557	1.2908
		Hyperdivergent	.96239	.55000	.224	4171	2.3418
	Hypodivergent	Normodivergent	.38244	.66715	.849	-1.2908	2.0557
		Hyperdivergent	1.34483	.73124	.193	4892	3.1789
	Hyperdivergent	Normodivergent	96239	.55000	.224	-2.3418	.4171
		Hypodivergent	-1.34483	.73124	.193	-3.1789	.4892
TInclCI	Normodivergent	Hypodivergent	-1.9465	2.4921	.738	-8.197	4.304
		Hyperdivergent	1.3382	2.0545	.809	-3.815	6.491
	Hypodivergent	Normodivergent	1.9465	2.4921	.738	-4.304	8.197
		Hyperdivergent	3.2847	2.7316	.489	-3.566	10.136
	Hyperdivergent	Normodivergent	-1.3382	2.0545	.809	-6.491	3.815
		Hypodivergent	-3.2847	2.7316	.489	-10.136	3.566
BInclCI	Normodivergent	Hypodivergent	1.5748	1.9494	.723	-3.314	6.464
		Hyperdivergent	-1.2080	1.6071	.755	-5.239	2.823
	Hypodivergent	Normodivergent	-1.5748	1.9494	.723	-6.464	3.314
		Hyperdivergent	-2.7828	2.1367	.433	-8.142	2.576
	Hyperdivergent	Normodivergent	1.2080	1.6071	.755	-2.823	5.239
		Hypodivergent	2.7828	2.1367	.433	-2.576	8.142

*. The mean difference is significant at the 0.05 level.

Age 14 to 15 Years (ANOVA)

ANOVA								
		Sum of Squares	df	Mean Square	F	Sig.		
CBB132M	Between Groups	3.456	2	1.728	9.632	.000		
	Within Groups	12.917	72	.179				
	Total	16.373	74					
CBB232M	Between Groups	1.986	2	.993	5.293	.007		
	Within Groups	13.508	72	.188				
	Total	15.494	74					
CLB132M	Between Groups	3.023	2	1.511	8.365	.001		
	Within Groups	13.009	72	.181				
	Total	16.031	74					
CLB232M	Between Groups	2.825	2	1.413	9.791	.000		

	Within Groups	10.389	72	.144		
	Total	13.214	74			
BB2M	Between Groups	.558	2	.279	1.163	.318
	Within Groups	17.274	72	.240		
	Total	17.832	74			
BHT2M	Between Groups	15.998	2	7.999	1.790	.174
	Total	321.700	72	4.400		
P\//122M	Rotwoon Groups	337.098	2	5.021	2 083	122
DVV 132IVI	Within Groups	173 943	72	2 416	2.003	.152
	Total	184 006	74	2.110		
BW232M	Between Groups	10.220	2	5.110	2.772	.069
•	Within Groups	132.731	72	1.843		
	Total	142.951	74			
TIncl2M	Between Groups	12.328	2	6.164	.155	.857
	Within Groups	2868.491	72	39.840		
	Total	2880.819	74			
BIncl2M	Between Groups	154.075	2	77.037	3.344	.041
	Within Groups	1658.773	72	23.039		
	Total	1812.847	74			
CBB131M	Between Groups	5.143	2	2.572	13.489	.000
	Within Groups	13.727	72	.191		
	lotal	18.870	74			
CBB231M	Between Groups	2.348	2	1.174	7.693	.001
	Total	10.988	72	.153		
	Potwoon Croups	13.337	74	1 021	0 425	001
CLDISIN	Within Groups	16 498	72	229	0.420	.001
	Total	20.359	74	.220		
CLB231M	Between Groups	1.788	2	.894	6.985	.002
	Within Groups	9.216	72	.128		
	Total	11.004	74			
BB1M	Between Groups	.611	2	.305	1.004	.371
	Within Groups	21.902	72	.304		
	Total	22.513	74			
BHT1M	Between Groups	2.386	2	1.193	.190	.827
	Within Groups	451.895	72	6.276		
	Total	454.281	74			
BW131M	Between Groups	8.249	2	4.125	1.971	.147
	Tatal	150.698	72	2.093		
DMODANA	Tutal	158.947	74	070	040	700
DVVZ31IVI	Between Groups	1.758	2	.8/9 2 200	.313	.132
	Total	202.100	7/	2.000		
TIncl1M	Between Groups	19,309	2	9 654	342	712
	Within Groups	2033.012	72	28.236	.012	., ., .
	Total	2052.321	74			

BIncl1M	Between Groups	79.215	2	39.607	1.738	.183
	Within Groups	1640.905	72	22.790		
	Total	1720.119	74			
CBB132P	Between Groups	3.547	2	1.773	14.226	.000
	Within Groups	8.976	72	.125		
	Total	12.522	74			
CBB232P	Between Groups	1.499	2	.750	8.814	.000
	Within Groups	6.124	72	.085		
	Total	7.624	74			
CLB132P	Between Groups	1.707	2	.854	4.241	.018
		14.494	72	.201		
	lotal	16.202	74			
CLB232P	Between Groups	2.506	2	1.253	7.787	.001
	Total	11.586	72	.161		
DDOD	Total	14.092	74	770	0.010	110
BB2P	Between Groups Within Groups	1.546	2	.773	2.218	.116
	Total	25.082	72	.340		
DUTOD	Potucon Crouno	26.628	/4	2 104	500	600
DUIT	Within Groups	0.209	Z 72	3.104 6.212	.500	.609
	Total	452 469	74	0.212		
BW/132P	Between Groups	455.400	2	7 863	2 870	063
DW 1521	Within Groups	197 243	72	2 739	2.070	.000
	Total	212 968	74	2.100		
BW232P	Between Groups	3.710	2	1.855	.621	.540
-	Within Groups	215.151	72	2.988	-	
	Total	218.861	74			
TIncl2P	Between Groups	275.055	2	137.528	3.713	.029
	Within Groups	2666.634	72	37.037		
	Total	2941.689	74			
BIncl2P	Between Groups	23.428	2	11.714	.629	.536
	Within Groups	1340.600	72	18.619		
	Total	1364.027	74			
CBB13CI	Between Groups	2.792	2	1.396	21.375	.000
	Within Groups	4.702	72	.065		
	Total	7.494	74			
CBB23CI	Between Groups	1.533	2	.766	5.529	.006
		9.980	72	.139		
	l otal	11.512	74		0.004	
CLB13CI	Between Groups	2.073	2	1.036	6.924	.002
	Total	10.778	72	.150		
	I Ulai	12.850	/4	4 205	6 0 4 0	000
0102301	Within Groups	0.411 11 010	2 70	4.205 614	0.849	.002
	Total	50 600	74	.014		
BBCI	Retween Groups	52.023 1 031	2	516	1 130	326
5501	Within Groups	32 602	72	453	1.109	.020
		02.00Z	12	.+00		

	Total	33.633	74			
BHTCI	Between Groups	112.425	2	56.213	6.071	.004
	Within Groups	666.691	72	9.260		
	Total	779.117	74			
BW13CI	Between Groups	40.142	2	20.071	10.823	.000
	Within Groups	133.520	72	1.854		
	Total	173.662	74			
BW23CI	Between Groups	57.579	2	28.789	8.553	.000
	Within Groups	242.344	72	3.366		
	Total	299.923	74			
TInclCI	Between Groups	845.104	2	422.552	8.032	.001
	Within Groups	3787.979	72	52.611		
	Total	4633.083	74			
BInclCl	Between Groups	248.749	2	124.374	3.657	.031
	Within Groups	2448.754	72	34.010		
	Total	2697.503	74			

Age 14 to 15 Years (Scheffé)

Multiple Comparisons

Scheffe				-			
			Mean			95% Confide	ence Interval
	<i></i>	<i></i> _	Difference (I-				
Dependent Variable	(I) FaceTyp	(J) FaceTyp	J)	Std. Error	Sig.	Lower Bound	Upper Bound
CBB132M	Normodivergent	Hypodivergent	33715	.14026	.062	6877	.0134
		Hyperdivergent	.30008*	.10908	.027	.0274	.5727
	Hypodivergent	Normodivergent	.33715	.14026	.062	0134	.6877
		Hyperdivergent	.63723*	.14875	.000	.2654	1.0090
	Hyperdivergent	Normodivergent	30008*	.10908	.027	5727	0274
		Hypodivergent	63723 [*]	.14875	.000	-1.0090	2654
CBB232M	Normodivergent	Hypodivergent	42855 [*]	.14343	.015	7871	0700
	-	Hyperdivergent	.03375	.11154	.955	2451	.3126
	Hypodivergent	Normodivergent	.42855*	.14343	.015	.0700	.7871
		Hyperdivergent	.46230*	.15212	.013	.0821	.8425
	Hyperdivergent	Normodivergent	03375	.11154	.955	3126	.2451
		Hypodivergent	46230 [*]	.15212	.013	8425	0821
CLB132M	Normodivergent	Hypodivergent	25338	.14075	.205	6052	.0984
		Hyperdivergent	.32159*	.10946	.017	.0480	.5952
	Hypodivergent	Normodivergent	.25338	.14075	.205	0984	.6052
		Hyperdivergent	.57497*	.14928	.001	.2018	.9481
	Hyperdivergent	Normodivergent	32159*	.10946	.017	5952	0480
		Hypodivergent	57497*	.14928	.001	9481	2018
CLB232M	Normodivergent	Hypodivergent	42232*	.12578	.005	7367	1079
		Hyperdivergent	.16684	.09782	.240	0777	.4113
	Hypodivergent	Normodivergent	.42232*	.12578	.005	.1079	.7367
		Hyperdivergent	.58917	.13340	.000	.2557	.9226
	Hyperdivergent	Normodivergent	16684	.09782	.240	4113	.0777
		Hypodivergent	58917	.13340	.000	9226	2557
BB2M	Normodivergent	Hypodivergent	10908	.16219	.798	5145	.2963
		Hyperdivergent	.13802	.12614	.552	1773	.4533
	Hypodivergent	Normodivergent	.10908	.16219	.798	2963	.5145
		Hyperdivergent	.24710	.17202	.362	1829	.6771
	Hyperdivergent	Normodivergent	13802	.12614	.552	4533	.1773
		Hypodivergent	24710	.17202	.362	6771	.1829

DUTOM	N la una a alla ca una acat	Lib un a altera nava a t	40000	00004	700	0.0440	4 0575
BHTZM	Normodivergent	Hypodivergent	49206	.69994	.782	-2.2416	1.2575
		Hyperdivergent	.79151	.54434	.353	5691	2.1521
	Hypodivergent	Normodivergent	.49206	.69994	.782	-1.2575	2.2416
		Hyperdivergent	1.28357	.74233	.231	5719	3.1391
	Hyperdivergent	Normodivergent	79151	.54434	.353	-2.1521	.5691
		Hypodivergent	-1.28357	.74233	.231	-3.1391	.5719
BW132M	Normodivergent	Hypodivergent	- 32785	51468	.817	-1.6143	9586
211102		Hyperdivergent	65952	40026	264	- 3410	1 6600
	Hypodiyorgopt	Normodivorgent	32785	51/69	.204	.0410	1.0000
	riypouvergeni	Hunordivorgent	.32703	51400	.017	3300	2 2510
	Lb as a self- constant	Hyperalvergent	.90737	.04000	.202	3770	2.3310
	Hyperdivergent	Normodivergent	65952	.40026	.264	-1.6600	.3410
		Hypodivergent	98737	.54586	.202	-2.3518	.3770
BW232M	Normodivergent	Hypodivergent	-1.05667	.44960	.070	-2.1805	.0671
		Hyperdivergent	20640	.34965	.840	-1.0804	.6676
	Hypodivergent	Normodivergent	1.05667	.44960	.070	0671	2.1805
		Hyperdivergent	.85027	.47683	.211	3416	2.0421
	Hyperdivergent	Normodivergent	.20640	.34965	.840	6676	1.0804
	71 5	Hypodivergent	- 85027	47683	.211	-2.0421	.3416
TIncl2M	Normodivergent	Hypodivergent	- 8408	2 0901	922	-6.065	4 383
THIOZIW	Nonnoaivergent	Hyperdivergent	3022	1 6254	071	-3 671	4.000
	Hupodivorgont	Normodivorgent	.0022	2 0001	.071	4 202	F.455
	Hypodivergeni	Normouvergent	.0400	2.0901	.922	-4.303	0.005
		Hyperalvergent	1.2330	2.2167	.657	-4.308	6.774
	Hyperdivergent	Normodivergent	3922	1.6254	.971	-4.455	3.671
		Hypodivergent	-1.2330	2.2167	.857	-6.774	4.308
BIncl2M	Normodivergent	Hypodivergent	7746	1.5894	.888	-4.747	3.198
		Hyperdivergent	2.8001	1.2360	.084	289	5.890
	Hypodivergent	Normodivergent	.7746	1.5894	.888	-3.198	4.747
		Hyperdivergent	3.5747	1.6857	.113	639	7.788
	Hyperdivergent	Normodivergent	-2.8001	1.2360	.084	-5.890	.289
		Hypodivergent	-3.5747	1.6857	.113	-7.788	.639
CBB131M	Normodivergent	Hypodivergent	39513 [*]	.14458	.029	7565	0337
	0	Hyperdivergent	.37757*	.11244	.005	.0965	.6586
	Hypodivergent	Normodivergent	39513*	14458	.029	.0337	7565
		Hyperdivergent	77270*	15334	000	3894	1 1560
	Hyperdivergent	Normodivergent	- 37757*	11244	005	- 6586	- 0965
	rijporatvorgoni	Hypodivergent	- 77270*	1533/	000	-1 1560	- 380/
CBB221M	Normodivorgont	Hypodivergent	38206*	12026	.000	7054	0597
CDD251W	Normouvergent	Lypordivergent	30200	10060	.010	7034	0507
	L h un a alla ca na a na f	Nerreredivergent	.10031	.10060	.310	0902	.4000
	Hypodivergent	Normodivergent	.38206	.12936	.016	.0587	.7054
		Hyperdivergent	.53/3/	.13720	.001	.1944	.8803
	Hyperdivergent	Normodivergent	15531	.10060	.310	4068	.0962
		Hypodivergent	53737 [*]	.13720	.001	8803	1944
CLB131M	Normodivergent	Hypodivergent	44579 [*]	.15851	.023	8420	0496
		Hyperdivergent	.24361	.12327	.149	0645	.5517
	Hypodivergent	Normodivergent	.44579*	.15851	.023	.0496	.8420
		Hyperdivergent	.68940*	.16811	.001	.2692	1.1096
	Hyperdivergent	Normodivergent	- 24361	12327	149	- 5517	.0645
		Hypodivergent	- 68940*	16811	001	-1 1096	- 2692
CLB231M	Normodivergent	Hypodivergent	- 23544	11847	146	- 5316	0607
OLDZONN	Nonnouvergent	Hypodivergent	22080	.11047	.140	0004	.0007
	Lhungdivergent	Normodivergent	.22009	.09213	.003	0094	.4012
	nypodivergent	Normodivergent	.23044	.11047	.140	0607	.0310
		Hyperdivergent	.45633	.12564	.002	.1423	.7704
	Hyperdivergent	Normodivergent	22089	.09213	.063	4512	.0094
		Hypodivergent	45633 [*]	.12564	.002	7704	1423
BB1M	Normodivergent	Hypodivergent	13750	.18263	.754	5940	.3190
		Hyperdivergent	.12920	.14203	.663	<u>225</u> 8	.4842
	Hypodivergent	Normodivergent	.13750	.18263	.754	3190	.5940
		Hyperdivergent	.26670	.19369	.392	2175	.7509
	Hyperdivergent	Normodivergent	12920	.14203	.663	4842	.2258
	, · · · · · · ·	Hypodivergent	- 26670	.19369	392	- 7509	.2175
BHT1M	Normodivergent	Hypodivergent	- 48232	82957	845	-2 5550	1 5912
		Hyperdivergent	01024	64515	1 000	-1 6024	1 6228
	Hypodivergent	Normodivergent	18029	82057	9/F	_1 5012	2 5550
	riypouvergent	ronnouvergent	.402.52	.02307	.040	-1.0812	2.0009

		Hyperdivergent	.49257	.87982	.855	-1.7066	2.6917
	Hyperdivergent	Normodivergent	01024	.64515	1.000	-1.6228	1.6024
		Hypodivergent	49257	.87982	.855	-2.6917	1.7066
BW131M	Normodivergent	Hypodivergent	15930	.47906	.946	-1.3567	1.0381
		Hyperdivergent	.65537	.37256	.220	2759	1.5866
	Hypodivergent	Normodivergent	.15930	.47906	.946	-1.0381	1.3567
		Hyperdivergent	.81467	.50807	.283	4553	2.0846
	Hyperdivergent	Normodivergent	65537	.37256	.220	-1.5866	.2759
		Hypodivergent	81467	.50807	.283	-2.0846	.4553
BW231M	Normodivergent	Hypodivergent	33645	.55486	.832	-1.7234	1.0505
		Hyperdivergent	.12785	.43151	.957	9507	1.2064
	Hypodivergent	Normodivergent	.33645	.55486	.832	-1.0505	1.7234
		Hyperdivergent	.46430	.58846	./34	-1.0066	1.9352
	Hyperdivergent	Normodivergent	12785	.43151	.957	-1.2064	.9507
	N a was a allo ca was a st	Hypodivergent	46430	.58846	.734	-1.9352	1.0066
TINCITIVI	Normodivergent	Hypodivergent	2368	1.7596	.991	-4.635	4.161
	Lhungdivergent	Hyperalvergent	1.0052	1.3684	.764	-2.415	4.426
	Hypodivergent	Normodivergent	.2368	1.7596	.991	-4.101	4.635
	Hupordivorgant	Normodivorgent	1.2420	1.0001	.002	-3.423	5.907
	Hyperdivergent	Hunodivergent	-1.0032	1.3004	.704	-4.420	2.410
Block1M	Normodivorgont		-1.2420	1.0001	.002	-3.907	3.423
DITICITIVI	Normouvergent	Hypoulvergent	0294	1.3000	.072	-4.701	3.122
	Hypodivergent	Normodivergent	8204	1.2294	.312	-1.100	4.900
	riypoulvergent	Hyperdivergent	2 7223	1.5000	.072	-1.468	6 913
	Hyperdivergent	Normodivergent	-1 8020	1 2294	312	-4.966	1 180
	riyperdivergent	Hypodivergent	-2 7223	1.2254	274	-6 913	1.100
CBB132P	Normodivergent	Hypodivergent	- 41640*	11691	.214	- 7086	- 1242
0001021	Honnoullongoin	Hyperdivergent	.24346*	.09092	.033	.0162	.4707
	Hypodivergent	Normodivergent	.41640 [*]	.11691	.003	.1242	.7086
		Hyperdivergent	.65987*	.12399	.000	.3499	.9698
	Hyperdivergent	Normodivergent	24346*	.09092	.033	4707	0162
	71	Hypodivergent	65987*	.12399	.000	9698	3499
CBB232P	Normodivergent	Hypodivergent	21307	.09658	.095	4545	.0283
	0	Hyperdivergent	.20406*	.07511	.030	.0163	.3918
	Hypodivergent	Normodivergent	.21307	.09658	.095	0283	.4545
		Hyperdivergent	.41713*	.10242	.001	.1611	.6732
	Hyperdivergent	Normodivergent	20406 [*]	.07511	.030	3918	0163
		Hypodivergent	41713 [*]	.10242	.001	6732	1611
CLB132P	Normodivergent	Hypodivergent	27154	.14857	.195	6429	.0998
		Hyperdivergent	.18403	.11554	.287	1048	.4728
	Hypodivergent	Normodivergent	.27154	.14857	.195	0998	.6429
		Hyperdivergent	.45557*	.15757	.019	.0617	.8494
	Hyperdivergent	Normodivergent	18403	.11554	.287	4728	.1048
		Hypodivergent	45557*	.15757	.019	8494	0617
CLB232P	Normodivergent	Hypodivergent	26167	.13283	.151	5937	.0704
		Hyperdivergent	.27320	.10330	.036	.0150	.5314
	Hypodivergent	Normodivergent	.26167	.13283	.151	0704	.5937
		Hyperdivergent	.53487	.14088	.001	.1827	.8870
	Hyperdivergent	Normodivergent	27320	.10330	.036	5314	0150
PP2D	Normadivorgent		53487	.14088	.001	8870	1827
DDZM	normoalvergent		08219	.19544	.915	5707	.4063
	Hypodiyorgoot	Normodivergent	.2/00/	10544	. 193	1012	.0000
	nypoulvergent	Hypordivergent	.00219	.19044	כוש. דרר	4003	.0707
	Hyperdivergent	Normodivergent	- 27967	.20720	.227	1372	.0790
	riyperuivergent	Hypodivergent	21007	20729	.193	0300	.1012
BHT2P	Normodivergent	Hypodivergent	30007	.20120	.221	0790	2 5303
	Nonnouvergent	Hyperdivergent	- 30083	64183	.002	-1 9951	1 2135
	Hypodivergent	Normodivergent	- 46737	82531	852	-2 5303	1 5955
	rypourorgoni	Hyperdivergent	- 85820	.87529	620	-3 0460	1 3296
	Hyperdivergent	Normodivergent	.39083	.64183	.831	-1.2135	1.9951
	,, · · · · · · · · · · · · · · · · · ·	Hypodivergent	.85820	.87529	.620	-1.3296	3.0460
			-			-	-

				_	_	_	_
BW132P	Normodivergent	Hypodivergent	37456	.54807	.792	-1.7445	.9954
		Hyperdivergent	.84111	.42623	.150	2243	1.9065
	Hypodivergent	Normodivergent	.37456	.54807	.792	9954	1.7445
		Hyperdivergent	1.21567	.58127	.120	2372	2.6686
	Hyperdivergent	Normodivergent	84111	.42623	.150	-1.9065	.2243
	-	Hypodivergent	-1.21567	.58127	.120	-2.6686	.2372
BW232P	Normodivergent	Hypodivergent	46873	.57241	.716	-1.8995	.9620
	-	Hyperdivergent	.20751	.44516	.897	9052	1.3202
	Hypodivergent	Normodivergent	.46873	.57241	.716	9620	1.8995
		Hyperdivergent	.67623	.60708	.541	8412	2.1937
	Hyperdivergent	Normodivergent	20751	.44516	.897	-1.3202	.9052
		Hypodivergent	67623	.60708	.541	-2.1937	.8412
TIncl2P	Normodivergent	Hypodivergent	-1.5649	2.0152	.741	-6.602	3.472
	-	Hyperdivergent	3.5184	1.5672	.088	399	7.436
	Hypodivergent	Normodivergent	1.5649	2.0152	.741	-3.472	6.602
		Hyperdivergent	5.0833	2.1373	.066	259	10.426
	Hyperdivergent	Normodivergent	-3.5184	1.5672	.088	-7.436	.399
	J1	Hypodivergent	-5.0833	2.1373	.066	-10.426	.259
BIncl2P	Normodivergent	Hypodivergent	9803	1.4288	.791	-4.552	2.591
		Hyperdivergent	.7027	1.1112	.819	-2.075	3.480
	Hypodivergent	Normodivergent	.9803	1.4288	.791	-2.591	4.552
		Hyperdivergent	1.6830	1.5154	.543	-2.105	5.471
	Hyperdivergent	Normodivergent	-,7027	1.1112	.819	-3.480	2.075
		Hypodivergent	-1.6830	1,5154	.543	-5.471	2.105
CBB13CI	Normodivergent	Hypodivergent	41535*	.08462	.000	6269	2038
		Hyperdivergent	.17072*	.06581	.040	.0062	.3352
	Hypodivergent	Normodivergent	.41535	.08462	.000	.2038	.6269
	Typourorgoni	Hyperdivergent	.58607*	.08975	.000	.2000	.8104
	Hyperdivergent	Normodivergent	- 17072*	06581	.000	- 3352	- 0062
	nyporationgoint	Hypodivergent	- 58607*	08975	000	- 8104	- 3617
CBB23CI	Normodivergent	Hypodivergent	- 20781	12328	248	- 5160	1003
OBB2001	Nonnoaivergent	Hyperdivergent	21153	09587	.240	- 0281	4512
	Hypodivergent	Normodivergent	20781	12328	248	- 1003	5160
	rijpodivorgoni	Hyperdivergent	41933*	13075	10	0925	7461
	Hyperdivergent	Normodivergent	- 21153	09587	.000	- 4512	0281
	riyperaivergent	Hypodivergent	- 41933*	13075	.000	- 7461	- 0925
CLB13CI	Normodivergent	Hypodivergent	- 16741	12811	430	- 4876	1528
OLDIOOI	Nonnoaivergent	Hyperdivergent	29002*	09963	.400	.4070	5391
	Hypodivergent	Normodivergent	16741	12811	430	- 1528	4876
	rijpodivorgoni	Hyperdivergent	45743*	13587	005	1178	7971
	Hyperdivergent	Normodivergent	- 29002*	09963	.003	- 5391	- 0410
	riypordivorgoni	Hypodivergent	- 45743*	13587	005	- 7971	- 1178
CL B23CI	Normodivergent	Hypodivergent	- 67868*	250/18	.000 N38	-1 3273	_ 0301
0202001	ronnouvergent	Hyperdivergent	07000	20340	2/0	-1.3273	0301 Q//1
	Hypodivergent	Normodivergent	.55572 67869*	250/0	.249	1047	1 2072
	riypoulvergent	Hyperdivergent	.07000 1.018/0*	.20340	.030	3305	1.3273
	Hyperdivergent	Normodivergent	- 33070	20180	2/0	.3303 _ Q//1	1.7003
	riyperuivergent	Hypodivergent		20100	.249	0441	- 3305
BBCI	Normodivorgent	Hypodivergent	-1.01040	21020	.002	-1.7003	3305
5001	ronnouvergent	Hyperdivergent	33300	.22202	.327	0920	.2213
	Hupodivorgant	Normodivergent	09070	20000	800. 700	5269	.33/4
	rypodivergent	Hypordivergent	22000	.22202	.327	2213	.0920
	Hupordivorgant	Normodivergent	.23990	.23032	.000	5008- 100-	.0300
	nyperdivergent	Hypodivergent	01660.	.1/329	.009	33/4	.5269
DUTCI	Normalization	nypouivergent	23990	.23032	.600	8306	.3508
рнісі	ivormoalvergent		1.64833	70000	.269	8703	4.1670
	1 1		-1.89760	.78362	.060	-3.8563	.0611
	Hypodivergent	Normoalvergent	-1.64833	1.00/62	.269	-4.1670	.8703
	11. 8	Hyperdivergent	-3.54593	1.06865	.006	-6.2171	8748
	Hyperdivergent	Normodivergent	1.89760	.78362	.060	0611	3.8563
DM// AC:		Hypodivergent	3.54593	1.06865	.006	.8748	6.2171
BW13CI	Normodivergent	Hypodivergent	-1.25329	.45093	.026	-2.3804	1262
		Hyperdivergent	.94381*	.35068	.032	.0673	1.8204
	Hypodivergent	Normodivergent	1.25329 [*]	.45093	.026	.1262	2.3804

		Hyperdivergent	2.19710 [*]	.47824	.000	1.0017	3.3925
	Hyperdivergent	Normodivergent	94381 [*]	.35068	.032	-1.8204	0673
		Hypodivergent	-2.19710 [*]	.47824	.000	-3.3925	-1.0017
BW23CI	Normodivergent	Hypodivergent	-1.53452 [*]	.60751	.047	-3.0530	0160
		Hyperdivergent	1.10352	.47245	.072	0774	2.2844
	Hypodivergent	Normodivergent	1.53452*	.60751	.047	.0160	3.0530
		Hyperdivergent	2.63803*	.64430	.001	1.0276	4.2485
	Hyperdivergent	Normodivergent	-1.10352	.47245	.072	-2.2844	.0774
		Hypodivergent	-2.63803 [*]	.64430	.001	-4.2485	-1.0276
TInclCI	Normodivergent	Hypodivergent	-1.5658	2.4018	.809	-7.569	4.438
		Hyperdivergent	6.6502 [*]	1.8679	.003	1.981	11.319
	Hypodivergent	Normodivergent	1.5658	2.4018	.809	-4.438	7.569
		Hyperdivergent	8.2160 [*]	2.5473	.008	1.849	14.583
	Hyperdivergent	Normodivergent	-6.6502 [*]	1.8679	.003	-11.319	-1.981
		Hypodivergent	-8.2160 [*]	2.5473	.008	-14.583	-1.849
BInclCI	Normodivergent	Hypodivergent	.5965	1.9311	.953	-4.230	5.423
		Hyperdivergent	3.9812 [*]	1.5018	.035	.227	7.735
	Hypodivergent	Normodivergent	5965	1.9311	.953	-5.423	4.230
		Hyperdivergent	3.3847	2.0481	.262	-1.735	8.504
	Hyperdivergent	Normodivergent	-3.9812 [*]	1.5018	.035	-7.735	227
		Hypodivergent	-3.3847	2.0481	.262	-8.504	1.735

*. The mean difference is significant at the 0.05 level.

Age 16 to 18 Years (ANOVA)

ANOVA										
		Sum of Squares	df	Mean Square	F	Sig.				
CBB132M	Between Groups	1.325	2	.663	2.794	.077				
	Within Groups	7.116	30	.237						
	Total	8.441	32							
CBB232M	Between Groups	.503	2	.252	.973	.389				
	Within Groups	7.755	30	.259						
	Total	8.259	32							
CLB132M	Between Groups	3.044	2	1.522	6.801	.004				
	Within Groups	6.715	30	.224						
	Total	9.759	32							
CLB232M	Between Groups	1.813	2	.907	8.370	.001				
	Within Groups	3.250	30	.108						
	Total	5.063	32							
BB2M	Between Groups	4.022	2	2.011	4.238	.024				
	Within Groups	14.234	30	.474						
	Total	18.256	32							
BHT2M	Between Groups	33.561	2	16.780	3.472	.044				
	Within Groups	144.981	30	4.833						
	Total	178.542	32							
BW132M	Between Groups	2.546	2	1.273	.514	.603				
	Within Groups	74.296	30	2.477						
	Total	76.842	32							
BW232M	Between Groups	1.501	2	.751	.340	.714				
1	Within Groups	66.147	30	2.205						

ANOVA

124

	Total	67.648	32			
TIncl2M	Between Groups	46.107	2	23.054	.573	.570
	Within Groups	1207.708	30	40.257		
	Total	1253.815	32			
BIncl2M	Between Groups	191.306	2	95.653	3.020	.064
	Within Groups	950.312	30	31.677		
	Total	1141.619	32			
CBB131M	Between Groups	4.768	2	2.384	8.563	.001
	Within Groups	8.352	30	.278		
	Total	13.121	32			
CBB231M	Between Groups	1.535	2	.768	3.353	.049
	Within Groups	6.867	30	.229		
	Total	8.402	32			
CLB131M	Between Groups	4.016	2	2.008	6.782	.004
		8.883	30	.296		
	lotal	12.899	32			
CLB231M	Between Groups	1.332	2	.666	3.662	.038
		5.456	30	.182		
5544	lotal	6.789	32		1.001	
BB1M	Between Groups	1.418	2	.709	1.681	.203
	Tatal	12.658	30	.422		
DUTAN	Total	14.077	32	1.000	455	0.57
BHIJM	Between Groups Within Groups	2.136	2	1.068	.155	.857
	Total	207.238	30	0.908		
D\\/121M	Potwoon Crouns	209.374	32	5 022	2 004	1 / 1
DVVISIN	Within Groups	71 955	2 30	2 300	2.094	.141
	Total	82.000	20	2.000		
B\M/231M	Between Groups	1 019	2	510	201	810
DVVZSTIVI	Within Groups	76 128	30	2 538	.201	.013
	Total	77 147	32	2.000		
TIncl1M	Between Groups	105,750	2	52.875	1,797	.183
	Within Groups	882.699	30	29.423		
	Total	988.449	32			
BIncl1M	Between Groups	46.190	2	23.095	.774	.470
	Within Groups	894.608	30	29.820		
	Total	940.799	32			
CBB132P	Between Groups	1.745	2	.872	5.482	.009
	Within Groups	4.774	30	.159		
	Total	6.519	32			
CBB232P	Between Groups	.633	2	.316	2.206	.128
	Within Groups	4.303	30	.143		
	Total	4.935	32			
CLB132P	Between Groups	.913	2	.456	2.481	.101
	Within Groups	5.518	30	.184		
	Total	6.431	32			
CLB232P	Between Groups	1.025	2	.512	4.053	.028

	Within Groups	3.793	30	.126		
	Total	4.818	32			
BB2P	Between Groups	2.749	2	1.374	2.294	.118
	Within Groups	17.978	30	.599		
	Total	20.726	32			
BHT2P	Between Groups	8.394	2	4.197	.665	.522
	Total	189.470	30	6.316		
DW/122D	Potwoon Croups	197.864	32	9 769	4 210	024
DVV132P	Within Groups	62 360	∠ 30	0.700 2.079	4.210	.024
	Total	79 895	32	2.075		
BW232P	Between Groups	1.590	2	.795	.404	.671
	Within Groups	58.998	30	1.967		
	Total	60.588	32			
TIncl2P	Between Groups	204.470	2	102.235	2.803	.077
	Within Groups	1094.377	30	36.479		
	Total	1298.847	32			
BIncl2P	Between Groups	17.803	2	8.902	.406	.670
	Within Groups	657.535	30	21.918		
	Total	675.339	32			
CBB13CI	Between Groups	1.153	2	.576	4.976	.014
	Within Groups	3.475	30	.116		
	Total	4.627	32	000	00.4	077
CBB23CI	Between Groups Within Groups	.007	2	.003	.024	.977
	Total	4.203	30	.142		
CLB13CI	Between Groups	4.272	2	081	433	653
OLDIGOI	Within Groups	5.642	30	.188	. 100	.000
	Total	5.804	32			
CLB23CI	Between Groups	6.369	2	3.184	6.506	.004
	Within Groups	14.684	30	.489		
	Total	21.053	32			
BBCI	Between Groups	2.735	2	1.368	2.330	.115
	Within Groups	17.604	30	.587		
	Total	20.339	32			
BHTCI	Between Groups	40.512	2	20.256	2.198	.129
	Total	276.467	30	9.216		
DW40CL	Total	316.979	32	44.005	5 520	000
BW13CI	Within Groups	22.730	2 30	2 055	5.530	.009
	Total	84 390	30	2.000		
BW23CI	Between Groups	68 786	32 2	34 393	9 363	001
2112001	Within Groups	110.198	30	3.673	0.000	.001
	Total	178.984	32			
TInclCI	Between Groups	687.270	2	343.635	6.040	.006
	Within Groups	1706.866	30	56.896		
	Total	2394.136	32			

BInclCl	Between Groups	364.263	2	182.131	6.261	.005
	Within Groups	872.745	30	29.091		
	Total	1237.007	32			

Age 16 to 18 Years (Scheffé)

Multiple Comparisons

Scheffe				-			
			Mean			95% Confide	ence Interval
	- -		Difference (I-		<u> </u>		
Dependent Variable	(I) Face I yp	(J) Face I yp	J)	Std. Error	Sig.	Lower Bound	Upper Bound
CBB132M	Normodivergent	Hypodivergent	37063	.24544	.333	-1.0027	.2614
		Hyperdivergent	.14634	.20077	.768	3707	.6634
	Hypodivergent	Normodivergent	.37063	.24544	.333	2614	1.0027
		Hyperdivergent	.51697	.21872	.077	0463	1.0802
	Hyperdivergent	Normodivergent	14634	.20077	.768	6634	.3707
		Hypodivergent	51697	.21872	.077	-1.0802	.0463
CBB232M	Normodivergent	Hypodivergent	35746	.25623	.390	-1.0173	.3024
		Hyperdivergent	15301	.20960	.768	6928	.3867
	Hypodivergent	Normodivergent	.35746	.25623	.390	3024	1.0173
		Hyperdivergent	.20445	.22834	.673	3836	.7925
	Hyperdivergent	Normodivergent	.15301	.20960	.768	3867	.6928
		Hypodivergent	20445	.22834	.673	7925	.3836
CLB132M	Normodivergent	Hypodivergent	46921	.23842	.162	-1.0832	.1448
	···	Hyperdivergent	.30869	.19503	.300	1935	.8109
	Hypodivergent	Normodivergent	.46921	.23842	.162	1448	1.0832
		Hyperdivergent	.///90	.21246	.004	.2308	1.3250
	Hyperdivergent	Normodivergent	30869	.19503	.300	8109	.1935
	NI - was a ally composed	Hypodivergent	///90	.21246	.004	-1.3250	2308
CLB232M	Normodivergent	Hypodivergent	50603	.10580	.017	9332	0789
	Lunadivorgent	Hyperalvergen	.09111	.13007	./99	2583 0790	.4405
	Hypodivergeni	Normodivergent	.50003	10000	.017	.0709	.9332
		Normodivergent	.09/14	.14/00	.001	.2105	.9110
	Пурегиметует		09111	14780	.199	4403	- 2165
RR2M	Normodivergent	Hypodivergent	-1 01032*	34713	024	-1 9043	2103
DDZIVI	Nonnouvergent	Hyperdivergent	- 45948	28395	285	-1 1907	2718
	Hypodivergent	Normodivergent	1.01032*	34713	.024	.1164	1.9043
	Typouroigent	Hyperdivergent	.55084	30934	.222	2458	1.3475
	Hvperdivergent	Normodivergent	.45948	.28395	.285	2718	1.1907
	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Hvpodivergent	55084	.30934	.222	-1.3475	.2458
BHT2M	Normodivergent	Hypodivergent	-1.73873	1.10786	.306	-4.5917	1.1142
	č	Hyperdivergent	.86026	.90623	.642	-1.4735	3.1940
	Hypodivergent	Normodivergent	1.73873	1.10786	.306	-1.1142	4.5917
		Hyperdivergent	2.59899*	.98725	.044	.0566	5.1414
	Hyperdivergent	Normodivergent	86026	.90623	.642	-3.1940	1.4735
		Hypodivergent	-2.59899*	.98725	.044	-5.1414	0566
BW132M	Normodivergent	Hypodivergent	02270	.79307	1.000	-2.0650	2.0196
		Hyperdivergent	.54562	.64873	.705	-1.1250	2.2162
	Hypodivergent	Normodivergent	.02270	.79307	1.000	-2.0196	2.0650
		Hyperdivergent	.56832	.70673	.726	-1.2517	2.3883
	Hyperdivergent	Normodivergent	54562	.64873	.705	-2.2162	1.1250
		Hypodivergent	56832	.70673	.726	-2.3883	1.2517
BW232M	Normodivergent	Hypodivergent	.24444	.74831	.948	-1.6826	2.1715
		Hyperdivergent	28497	.61212	.898	-1.8613	1.2914
	Hypodivergent	Normodivergent	24444	.74831	.948	-2.1715	1.6826
		Hyperdivergent	52941	.66685	.732	-2.2467	1.1878
	Hyperdivergent	Normodivergent	.28497	.61212	.898	-1.2914	1.8613

		Hypodivergent	.52941	.66685	.732	-1.1878	2.2467
TIncl2M	Normodivergent	Hypodivergent	8429	3.1975	.966	-9.077	7.391
		Hyperdivergent	1.9235	2.6155	.765	-4.812	8.659
	Hypodivergent	Normodivergent	.8429	3.1975	.966	-7.391	9.077
		Hyperdivergent	2.7664	2.8494	.629	-4.571	10.104
	Hyperdivergent	Normodivergent	-1.9235	2.6155	.765	-8.659	4.812
		Hypodivergent	-2.7664	2.8494	.629	-10.104	4.571
BIncl2M	Normodivergent	Hypodivergent	1238	2.8364	.999	-7.428	7.180
		Hyperdivergent	4.7627	2.3201	.139	-1.212	10.738
	Hypodivergent	Normodivergent	.1238	2.8364	.999	-7.180	7.428
		Hyperdivergent	4.8866	2.5276	.172	-1.622	11.396
	Hyperdivergent	Normodivergent	-4.7627	2.3201	.139	-10.738	1.212
00040414	Nie was endlingen eine	Hypodivergent	-4.8866	2.5276	.172	-11.396	1.622
CBB131M	Normodivergent	Hypodivergent	-1.00778	.26591	.003	-1.6926	3230
	Llupodiyorgont	Normodivergent	13042	.21751	.020	0900	.4247
	Hypodivergent	Normodivergent	1.00778	.26591	.003	.3230	1.6926
	Hupordivorgant	Normodivergent	.07233	.23090	.004	.2021	1.4620
	Hyperdivergent	Hupodivorgent	.10042	.21731	.025	4247	.0900
CBB231M	Normodivergent	Hypodivergent	07233	2/111	.004	-1.4020	2021
	Nonnouvergent	Hyperdivergent	09730	10722	.001	- 6/25	.0230
	Hypodivergent	Normodivergent	10002 50720	24111	.191	0433	1 2182
	riypouvergent	Hyperdivergent	46168	21486	117	0230	1 0150
	Hyperdivergent	Normodivergent	13562	19723	791	- 3723	6435
	riyperaivergent	Hypodivergent	- 46168	21486	117	-1 0150	0916
CLB131M	Normodivergent	Hypodivergent	- 83698*	27422	017	-1 5432	- 1308
0LD IOIIII	Honnourorgoni	Hyperdivergent	.02444	.22431	.994	5532	.6021
	Hypodivergent	Normodivergent	.83698*	.27422	.017	.1308	1.5432
		Hyperdivergent	.86143*	.24437	.006	.2321	1.4907
	Hyperdivergent	Normodivergent	02444	.22431	.994	6021	.5532
	<i>, , , , , , , , , ,</i>	Hypodivergent	86143 [*]	.24437	.006	-1.4907	2321
CLB231M	Normodivergent	Hypodivergent	45508	.21492	.124	-1.0086	.0984
	Ū	Hyperdivergent	.05131	.17581	.958	4014	.5040
	Hypodivergent	Normodivergent	.45508	.21492	.124	0984	1.0086
		Hyperdivergent	.50639*	.19153	.043	.0132	.9996
	Hyperdivergent	Normodivergent	05131	.17581	.958	5040	.4014
		Hypodivergent	50639 [*]	.19153	.043	9996	0132
BB1M	Normodivergent	Hypodivergent	58794	.32735	.216	-1.4309	.2551
		Hyperdivergent	34046	.26777	.455	-1.0300	.3491
	Hypodivergent	Normodivergent	.58794	.32735	.216	2551	1.4309
		Hyperdivergent	.24748	.29172	.701	5037	.9987
	Hyperdivergent	Normodivergent	.34046	.26777	.455	3491	1.0300
		Hypodivergent	24748	.29172	.701	9987	.5037
BHT1M	Normodivergent	Hypodivergent	70889	1.32454	.867	-4.1198	2.7021
		Hyperdivergent	17183	1.08347	.988	-2.9620	2.6183
	Hypodivergent	Normodivergent	.70889	1.32454	.867	-2.7021	4.1198
	L h un a nalis sa nas a st	Hyperdivergent	.53706	1.18034	.902	-2.5025	3.5767
	Hyperalvergent	Normodivergent	.17183	1.08347	.988	-2.0183	2.9620
D\A/4.24M	Normodivorgent	Hypodivergent	53706	1.16034	.902	-3.5707	2.3023
DVVIJIVI	Normodivergent	Hypodivergent	32009	.70040	.915	-2.3300	1.0010
	Hypodiyoraont	Normodivorgent	.93041	.03043	.304	7077	2.3003
	riypoulvergeni	Hyperdivergent	1 26520	60551	208	- 5258	2.5500
	Hyperdivergent	Normodivergent	- 936/1	63843	.200	5250	7077
	riyperaivergent	Hypodivergent	-1 26520	60551	208	-3 0561	5258
BW231M	Normodivergent	Hypodivergent	- 50762	80270	820	-2 5750	1 5597
57720 HVI	ronnouvergent	Hyperdivergent	- 19804	65668	956	-1 8801	1 4930
	Hypodivergent	Normodivergent	50762	.80279	820	-1 5597	2 5750
		Hyperdivergent	30958	.71539	.911	-1.5327	2,1519
	Hyperdivergent	Normodivergent	19804	.65668	.956	-1,4930	1.8891
		Hypodivergent	30958	.71539	.911	-2.1519	1.5327
TIncl1M	Normodivergent	Hypodivergent	-2.8143	2.7336	.594	-9.854	4.225
		Hyperdivergent	1.7765	2.2361	.732	-3.982	7.535

	Hypodivergent	Normodivergent	2.8143	2.7336	.594	-4.225	9.854
		Hyperdivergent	4.5908	2.4360	.187	-1.682	10.864
	Hyperdivergent	Normodivergent	-1.7765	2.2361	.732	-7.535	3.982
		Hypodivergent	-4.5908	2.4360	.187	-10.864	1.682
BIncl1M	Normodivergent	Hypodivergent	-1.1413	2.7520	.918	-8.228	5.946
		Hyperdivergent	1.7327	2.2511	.746	-4.064	7.530
	Hypodivergent	Normodivergent	1.1413	2.7520	.918	-5.946	8.228
	J1	Hyperdivergent	2.8739	2.4524	.511	-3.441	9,189
	Hyperdivergent	Normodivergent	-1.7327	2.2511	.746	-7.530	4.064
	,pordirorgoni	Hypodivergent	-2 8739	2 4524	511	-9 189	3 441
CBB132P	Normodivergent	Hypodivergent	- 37968	20104	185	- 8974	1380
	Nonnouvergent	Hyperdivergent	21183	16445	.105	- 2117	6353
	Hypodiyoraopt	Normodivorgant	.21103	20104	.440	1290	.0555
	riypoulvergent	Hupordivorgont	.57500 50151*	.20104	.105	1300	1 0520
	Llupordivergent	Normodivergent	.09101	.17913	.010	.1302	1.0529
	Hyperdivergent	Normodivergent	21103	.10445	.440	0303	.2117
		Hypodivergent	59151	.17915	.010	-1.0529	1302
CBB232P	Normodivergent	Hypodivergent	36619	.19085	.176	8577	.1253
		Hyperdivergent	04745	.15611	.955	4495	.3546
	Hypodivergent	Normodivergent	.36619	.19085	.176	1253	.8577
		Hyperdivergent	.31874	.17007	.190	1192	.7567
	Hyperdivergent	Normodivergent	.04745	.15611	.955	3546	.4495
		Hypodivergent	31874	.17007	.190	7567	.1192
CLB132P	Normodivergent	Hypodivergent	36365	.21614	.259	9203	.1930
		Hyperdivergent	.05895	.17680	.946	3963	.5143
	Hypodivergent	Normodivergent	.36365	.21614	.259	1930	.9203
		Hyperdivergent	.42261	.19261	.107	0734	.9186
	Hyperdivergent	Normodivergent	05895	.17680	.946	5143	.3963
	J1	Hypodivergent	42261	.19261	.107	9186	.0734
CLB232P	Normodivergent	Hypodivergent	- 41190	17919	.088	8734	.0495
	riennearergent	Hyperdivergent	02784	14658	982	- 3496	4053
	Hypodivergent	Normodivergent	.02704	17010	088	- 0495	873/
	riypoulvergent	Hypordivorgent	.41150	15069	.000	0495	.0734
	Hypordivorgont	Normodivorgant	.43373	14659	.034	.0203	3406
	riyperuivergeni	Hupodivorgent	02704	.14030	.902	4033	.3490
DDOD	Normodivorgent	Hypodivergent	43973	.10908	.034	0010	0203
вв2р	Normodivergent	Hypodivergent	76206	.39012	.100	-1.7007	.2420
	11 12 1	Hyperdivergent	09660	.31911	.955	9184	.7252
	Hypodivergent	Normodivergent	.76206	.39012	.166	2426	1.7667
		Hyperdivergent	.66546	.34765	.178	2298	1.5607
	Hyperdivergent	Normodivergent	.09660	.31911	.955	7252	.9184
		Hypodivergent	66546	.34765	.178	-1.5607	.2298
BHT2P	Normodivergent	Hypodivergent	-1.40444	1.26648	.547	-4.6659	1.8570
		Hyperdivergent	89033	1.03598	.694	-3.5582	1.7775
	Hypodivergent	Normodivergent	1.40444	1.26648	.547	-1.8570	4.6659
		Hyperdivergent	.51412	1.12860	.902	-2.3923	3.4205
	Hyperdivergent	Normodivergent	.89033	1.03598	.694	-1.7775	3.5582
		Hypodivergent	51412	1.12860	.902	-3.4205	2.3923
BW132P	Normodivergent	Hypodivergent	.46698	.72658	.815	-1.4041	2.3381
		Hyperdivergent	1.62673*	.59434	.035	.0962	3.1573
	Hypodivergent	Normodivergent	46698	.72658	.815	-2.3381	1.4041
		Hyperdivergent	1.15975	.64748	.218	5076	2.8271
	Hyperdivergent	Normodivergent	-1.62673 [*]	.59434	.035	-3.1573	0962
	,	Hypodivergent	-1.15975	.64748	.218	-2.8271	.5076
BW232P	Normodivergent	Hypodivergent	- 17413	.70672	.970	-1.9941	1.6458
		Hyperdivergent	34621	.57810	837	-1 1425	1 8349
	Hypodivergent	Normodivergent	17/12	70672	070	-1 6458	1 00/1
	rypoureigent	Hyperdivergent	52024	62072	71/	-1 10450	2 1/22
	Hupordivorgant	Normodivorgent	.02004	.02310	./ 14	-1.1013 0400 F	2.1422
	riyperuivergent	Lupodivergent	34021	.3/010	.037 744	-1.0049	1.1420
Tipol2D	Nomodiverset	Hypodivergent	52034	.02978	./14	-2.1422	1.1015
TINCI2P	ivormodivergent	nypoalvergent	.5206	3.0438	.985	-7.318	8.359
		Hyperdivergent	5.1954	2.4898	.131	-1.216	11.607
	Hypodivergent	Normodivergent	5206	3.0438	.985	-8.359	7.318
		Hyperdivergent	4.6748	2.7124	.243	-2.310	11.660
	Hyperdivergent	Normodivergent	-5.1954	2.4898	.131	-11.607	1.216
		Hypodivergent	-4.6748	2.7124	.243	-11.660	2.310
-----------	--------------------------	-----------------	--------------------	-----------------	--------------	---------------------	-----------------
BIncl2P	Normodivergent	Hypodivergent	3270	2.3593	.990	-6.403	5.749
		Hyperdivergent	1.3092	1.9299	.796	-3.661	6.279
	Hypodivergent	Normodivergent	.3270	2.3593	.990	-5.749	6.403
		Hyperdivergent	1.6361	2.1025	.741	-3.778	7.050
	Hyperdivergent	Normodivergent	-1.3092	1.9299	.796	-6.279	3.661
		Hypodivergent	-1.6361	2.1025	.741	-7.050	3.778
CBB13CI	Normodivergent	Hypodivergent	51651	.17151	.019	9582	0748
		Hyperdivergent	11458	.14029	.719	4759	.2467
	Hypodivergent	Normodivergent	.51651	.1/151	.019	.0748	.9582
		Hyperdivergent	.40193	.15284	.045	.0083	.7955
	Hyperdivergent	Normodivergent	.11458	.14029	./19	2467	.4759
000001	N	Hypodivergent	40193	.15284	.045	7955	0083
CBB23CI	Normodivergent	Hypodivergent	01175	.19001	.998	5011	.4776
	L hun e elli ve neve set	Hyperdivergent	.02229	.15543	.990	3780	.4225
	Hypodivergent	Normodivergent	.01175	.19001	.998	4776	.5011
	Llunardivergent	Hyperdivergent	.03403	.16933	.980	4020	.4701
	Hyperdivergent	Normodivergent	02229	.15543	.990	4225	.3780
	Normodivorgent	Hypodivergent	03403	21953	.900	4701	.4020
OLD I JOI	nonnouvergent	Hyperdivergent	01009	.21004 17076	.990	110C דסרנ	.0439
	Hypodiyoraont	Normodivorgent	.13170	21954	./04	3201	.3921
	riypouvergent	Hyperdivergent	.01009	10/75	.990 744	0439	.0017
	Hyperdivergent	Normodivergent	- 13170	17876	.744	5009	3287
	riyperdivergent	Hypodivergent	- 15059	19475	.704	5521	.5207
CL B23CL	Normodivergent	Hypodivergent	- 81302	35258	087	-1 7210	.0000
OLD2001	Nonnouvergent	Hyperdivergent	32026	28841	.007	- 4224	1 0630
	Hypodivergent	Normodivergent	81302	35258	087	- 0949	1,0000
	riypouvergent	Hyperdivergent	1 13328*	.00200	.007	.0040	1 9424
	Hyperdivergent	Normodivergent	32026	.28841	.547	-1.0630	.4224
	ijporanoigoni	Hypodivergent	-1.13328*	.31419	.005	-1.9424	3242
BBCI	Normodivergent	Hypodivergent	63905	.38604	.270	-1.6332	.3551
		Hyperdivergent	.09020	.31578	.960	7230	.9034
	Hypodivergent	Normodivergent	.63905	.38604	.270	3551	1.6332
		Hyperdivergent	.72924	.34401	.123	1567	1.6151
	Hyperdivergent	Normodivergent	09020	.31578	.960	9034	.7230
		Hypodivergent	72924	.34401	.123	-1.6151	.1567
BHTCI	Normodivergent	Hypodivergent	73921	1.52986	.890	-4.6789	3.2005
		Hyperdivergent	-2.48072	1.25142	.158	-5.7034	.7419
	Hypodivergent	Normodivergent	.73921	1.52986	.890	-3.2005	4.6789
		Hyperdivergent	-1.74151	1.36331	.452	-5.2523	1.7693
	Hyperdivergent	Normodivergent	2.48072	1.25142	.158	7419	5.7034
		Hypodivergent	1.74151	1.36331	.452	-1.7693	5.2523
BW13CI	Normodivergent	Hypodivergent	12841	.72249	.984	-1.9890	1.7321
		Hyperdivergent	1.60209*	.59099	.037	.0802	3.1240
	Hypodivergent	Normodivergent	.12841	.72249	.984	-1.7321	1.9890
		Hyperdivergent	1.73050	.64383	.039	.0725	3.3885
	Hyperdivergent	Normodivergent	-1.60209	.59099	.037	-3.1240	0802
DIMOROL		Hypodivergent	-1.73050	.64383	.039	-3.3885	0725
BW23CI	Normodivergent	Hypodivergent	-2.42302	.96586	.057	-4.9103	.0643
	Libert a Processes of	Hyperdivergent	1.29379	.79007	.277	7408	3.3284
	Hypoalvergent	Normoalvergent	2.42302	.96586	.057	0643	4.9103
	Hypordivergent	Normodivergent	3./1081	.000/1	.001	1.5003	5.9333
	nyperdivergent	Hypodivorgent	-1.293/9	.1900/	.211	-3.3204	./408
TipelCl	Normodivorgent	Hypodivergent	-3./1081	2 0012	.001	-0.9333	-1.5003
	normodivergent	Hyperdivergent	-4.0222	3.0013	.501 100	-14.311	0.20/ 14.600
	Hypodivergent	Normodivergent	0.0013	2 8012	.123	-1.400 _5 267	14.009
	riypouivelgeni	Hyperdivergent	4.0222 11 1025*	3.0013	.501	-3.207	14.311
	Hyperdivergent	Normodivergent	-6 6012	3 100/	122	-14 600	1 1047
	riyperdivergent	Hypodivergent	-0.0013	3 3871	.123	-14.009 -10 8/17	-2 400
BinciCi	Normodivergent	Hypodivergent	-6 5444	2 7181	071	-13 544	<u>4</u> 55
	Ronnouvergent	Hyperdivorgent	2 0.095	2.7101	0.02 0.22	2 717	
		riyperuivergeni	2.0000	2.2234	.009	-3.717	1.134

Hypodivergent	Normodivergent	.5444	2.7181	.071	455	13
	Hyperdivergent	8.5529 [*]	2.4222	.005	2.315	14
Hyperdivergent	Normodivergent	-2.0085	2.2234	.669	-7.734	3
	Hypodivergent	-8.5529 [*]	2.4222	.005	-14.791	-2

*. The mean difference is significant at the 0.05 level.

References

- American Academy of Pediatrics (2011). Clinical Practice Guideline for the Diagnosis, Evaluation, and Treatment of Attention-Deficit/Hyperactivity Disorder in Children and Adolescents. *Pediatrics*, 128(5): 1007-1022.
- Bjork, A. (1955). Facial growth in man, studied with the aid of metallic implants. *Acta Odontologica Scandanavica*, 13(1): 9-34.
- Bjork, A. (1969). Prediction of mandibular growth rotation. *American Journal of Orthodontics*, 55(6), 585-599.
- Bjork, A., & Skieller, V. (1972). Facial development and tooth eruption: an implant study at the age of puberty. *American Journal of Orthodontics*, 62(4), 339-383.
- Bouvier, M., & Hylander, W. L. (1981). Effect of bone strain on cortical bone structure in macaques (macaca mulatta). *Journal of Morphology*, 167(1), 1-12. doi:10.1002/jmor.1051670102 [doi]
- Bresin, A., Kiliaridis, S., & Strid, K. G. (1999). Effect of masticatory function on the internal bone structure in the mandible of the growing rat. *European Journal of Oral Sciences*, *107*(1), 35-44.
- Chan, H. J., Woods, M., & Stella, D. (2008). Mandibular muscle morphology in children with different vertical facial patterns: A 3-dimensional computed tomography study. American Journal of Orthodontics and Dentofacial Orthopedics: Official Publication of the American Association of Orthodontists, its Constituent Societies, and the American Board of Orthodontics, 133(1), 10.e1-10.13.
- Chen, Y. J., Chang, H. H., Huang, C. Y., Hung, H. C., Lai, E. H., & Yao, C. C. (2007). A retrospective analysis of the failure rate of three different orthodontic skeletal anchorage systems. *Clinical Oral Implants Research*, *18*(6), 768-775. doi:CLR1405 [pii]
- Damstra, J., Fourie, Z., Huddleston Slater, J. J., & Ren, Y. (2010). Accuracy of linear measurements from cone-beam computed tomography-derived surface models of different voxel sizes. American Journal of Orthodontics and Dentofacial Orthopedics: Official Publication of the American Association of Orthodontists, its Constituent Societies, and the American Board of Orthodontics, 137(1), 16.e1-6; discussion 16-7.
- Dean, J., McDonald, R., & Avery, D. (2011) *McDonald and Avery's Dentistry for the Child and Adolescent*. Maryland Heights, MO: Mosby Inc.

- Deguchi, T., Nasu, M., Murakami, K., Yabuuchi, T., Kamioka, H., & Takano-Yamamoto, T. (2006). Quantitative evaluation of cortical bone thickness with computed tomographic scanning for orthodontic implants. American Journal of Orthodontics and Dentofacial Orthopedics: Official Publication of the American Association of Orthodontists, its Constituent Societies, and the American Board of Orthodontics, 129(6), 721.e7-721.12.
- Driscoll-Gilliland, J., Buschang, P. H., & Behrents, R. G. (2001). An evaluation of growth and stability in untreated and treated subjects. *American Journal of Orthodontics and Dentofacial Orthopedics: Official Publication of the American Association of Orthodontists, its Constituent Societies, and the American Board of Orthodontics, 120(6), 588-597.*
- Farman, A., Scarfe, W. (2009. The basics of maxillofacial cone beam computed tomography. *Seminars in Orthodontics*, 15(1), 2-13.
- Farnsworth, D., Rossouw, P. E., Ceen, R. F., & Buschang, P. H. (2011). Cortical bone thickness at common miniscrew implant placement sites. *American Journal of Orthodontics and Dentofacial Orthopedics : Official Publication of the American Association of Orthodontists, its Constituent Societies, and the American Board of Orthodontics, 139*(4), 495-503. doi:10.1016/j.ajodo.2009.03.057 [doi]
- Garcia-Morales, P., Buschang, P. H., Throckmorton, G. S., & English, J. D. (2003). Maximum bite force, muscle efficiency and mechanical advantage in children with vertical growth patterns. *European Journal of Orthodontics*, 25(3), 265-272.
- Han, M., Wang, R. Y., Liu, H., Zhu, X. J., Wei, F. L., Lv, T., . . . Wang, C. L. (2013). Association between mandibular posterior alveolar morphology and growth pattern in a chinese population with normal occlusion. *Journal of Zhejiang University.Science.B*, 14(1), 25-32.
- Hannam, A. G., & Wood, W. W. (1989). Relationships between the size and spatial morphology of human masseter and medial pterygoid muscles, the craniofacial skeleton, and jaw biomechanics. *American Journal of Physical Anthropology*, 80(4), 429-445. doi:10.1002/ajpa.1330800404 [doi]
- Horn, A. J. (1992). Facial height index. American Journal of Orthodontics and Dentofacial Orthopedics: Official Publication of the American Association of Orthodontists, its Constituent Societies, and the American Board of Orthodontics, 102(2), 180-186.
- Horner, K. A., Behrents, R. G., Kim, K. B., & Buschang, P. H. (2012). Cortical bone and ridge thickness of hyperdivergent and hypodivergent adults. *American Journal of Orthodontics* and Dentofacial Orthopedics: Official Publication of the American Association of Orthodontists, its Constituent Societies, and the American Board of Orthodontics, 142(2), 170-178.
- Hylander, W. L. (1979). The functional significance of primate mandibular form. *Journal of Morphology*, *160*(2), 223-240. doi:10.1002/jmor.1051600208 [doi]

- Hylander, W. L., Johnson, K. R., & Crompton, A. W. (1987). Loading patterns and jaw movements during mastication in macaca fascicularis: A bone-strain, electromyographic, and cineradiographic analysis. *American Journal of Physical Anthropology*, 72(3), 287-314. doi:10.1002/ajpa.1330720304 [doi]
- Ichim, I., Kieser, J. A., & Swain, M. V. (2007). Functional significance of strain distribution in the human mandible under masticatory load: Numerical predictions. *Archives of Oral Biology*, 52(5), 465-473.
- Jacobson, R. & Jacobson J.L. (2006). *Radiographic cephalometry from basics to 3-D imaging* (2nd ed). Hanover Park, IL: Quintessence Publishing Co. Inc.
- Kasai, K., Enomoto, Y., Ogawa, T., Kawasaki, Y., Kanazawa, E., & Iwasawa, T. (1996). Morphological characteristics of vertical sections of the mandible obtained by CT scanning. *Anthropological Science*, 104(3), 187-198.
- Kitai, N., Fujii, Y., Murakami, S., Furukawa, S., Kreiborg, S., & Takada, K. (2002). Human masticatory muscle volume and zygomatico-mandibular form in adults with mandibular prognathism. *Journal of Dental Research*, *81*(11), 752-756.
- Kobayashi, K., Shimoda, S., Nakagawa, Y., & Yamamoto, A. (2004). Accuracy in measurement of distance using limited cone-beam computerized tomography. *The International Journal of Oral & Maxillofacial Implants*, 19(2), 228-231.
- Kohakura, S., Kasai, K., Ohno, I., & Kanazawa, E. (1997). Relationship between maxillofacial morphology and morphological characteristics of vertical sections of the mandible obtained by CT scanning. *The Journal of Nihon University School of Dentistry*, *39*(2), 71-77.
- Korioth, T. W., Romilly, D. P., & Hannam, A. G. (1992). Three-dimensional finite element stress analysis of the dentate human mandible. *American Journal of Physical Anthropology*, 88(1), 69-96. doi:10.1002/ajpa.1330880107 [doi]
- Leung, C. C., Palomo, L., Griffith, R., & Hans, M. G. (2010). Accuracy and reliability of conebeam computed tomography for measuring alveolar bone height and detecting bony dehiscences and fenestrations. *American Journal of Orthodontics and Dentofacial Orthopedics: Official Publication of the American Association of Orthodontists, its Constituent Societies, and the American Board of Orthodontics, 137*(4 Suppl), S109-19.
- Mah, J. K., Danforth, R. A., Bumann, A., & Hatcher, D. (2003). Radiation absorbed in maxillofacial imaging with a new dental computed tomography device. *Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 96*(4), 508-513.
- Mah, J., & Hatcher, D. (2004). Three-dimensional craniofacial imaging. American Journal of Orthodontics and Dentofacial Orthopedics: Official Publication of the American Association of Orthodontists, its Constituent Societies, and the American Board of Orthodontics, 126(3), 308-309.

- Mah, J. K., Huang, J. C., & Choo, H. (2010). Practical applications of cone-beam computed tomography in orthodontics. *Journal of the American Dental Association (1939), 141 Suppl* 3, 7S-13S.
- Masumoto, T., Hayashi, I., Kawamura, A., Tanaka, K., & Kasai, K. (2001). Relationships among facial type, buccolingual molar inclination, and cortical bone thickness of the mandible. *European Journal of Orthodontics*, 23(1), 15-23.
- Motoyoshi, M., Inaba, M., Ono, A., Ueno, S., & Shimizu, N. (2009). The effect of cortical bone thickness on the stability of orthodontic mini-implants and on the stress distribution in surrounding bone. *International Journal of Oral and Maxillofacial Surgery*, 38(1), 13-18. doi:10.1016/j.ijom.2008.09.006 [doi]
- Nanci, A. (2008). *Ten Cate's oral histology: development, structure, and function (7th Ed.).* St. Louis, MO: Mosby Inc.
- Ozdemir, F., Tozlu, M., & Germec-Cakan, D. (2013). Cortical bone thickness of the alveolar process measured with cone-beam computed tomography in patients with different facial types. *American Journal of Orthodontics and Dentofacial Orthopedics: Official Publication of the American Association of Orthodontists, its Constituent Societies, and the American Board of Orthodontics, 143*(2), 190-196.
- Pancherz, H. (1980). Temporal and masseter muscle activity in children and adults with normal occlusion an electromyographic investigation. *Acta Odontologica Scandinavica*, 38(6), 343-348.
- Patcas, R., Muller, L., Ullrich, O., & Peltomaki, T. (2012). Accuracy of cone-beam computed tomography at different resolutions assessed on the bony covering of the mandibular anterior teeth. American Journal of Orthodontics and Dentofacial Orthopedics: Official Publication of the American Association of Orthodontists, its Constituent Societies, and the American Board of Orthodontics, 141(1), 41-50.
- Proffit, W., Fields, H., & Nixon, W. (1983). Occlusal forces in normal- and long-face adults. *Journal of Dental Research*, 62(5), 566-570.
- Proffit, W., Fields, H., & Sarver, D. (2013). *Contemporary Orthodontics (5th Ed.)*. St. Louis, MO: Mosby Inc.
- Ricketts., RM., Roth RH., Chaconas SJ., Schulhof RJ., Engel GA (1982). Orthodontic diagnosis and planning. Denver: Rocky Mountain Orthodontics.
- Riedel, R. (1952). The relation of maxillary structures to cranium in malocclusion and in normal occlusion. *The Angle Orthodontist*. 1952;22:142-145.
- Sadek, M. M., Sabet, N. E., & Hassan, I. T. (2015). Alveolar bone mapping in subjects with different vertical facial dimensions. *European Journal of Orthodontics*, 37(2), 194-201.

- Satiroglu, F., Arun, T., & Isik, F. (2005). Comparative data on facial morphology and muscle thickness using ultrasonography. *European Journal of Orthodontics*, 27(6), 562-567.
- Schendel, S. A., Eisenfeld, J., Bell, W. H., Epker, B. N., & Mishelevich, D. J. (1976). The long face syndrome: Vertical maxillary excess. *American Journal of Orthodontics*, 70(4), 398-408.
- Schudy, FF. Vertical growth versus anteroposterior growth as related to function and treatment. *The Angle Orthodontist*. 1964;34:75-93.
- Schwartz-Dabney, C. L., & Dechow, P. C. (2003). Variations in cortical material properties throughout the human dentate mandible. *American Journal of Physical Anthropology*, 120(3), 252-277.
- Skieller, V., Bjork, A., & Linde-Hansen, T. (1984). Prediction of mandibular growth rotation evaluated from a longitudinal implant sample. *American Journal of Orthodontics*, 86(5), 359-370.
- Sun, Z., Smith, T., Kortam, S., Kim, D. G., Tee, B. C., & Fields, H. (2011). Effect of bone thickness on alveolar bone-height measurements from cone-beam computed tomography images. American Journal of Orthodontics and Dentofacial Orthopedics: Official Publication of the American Association of Orthodontists, its Constituent Societies, and the American Board of Orthodontics, 139(2), e117-27.
- Swasty, D., Lee, J., Huang, J. C., Maki, K., Gansky, S. A., Hatcher, D., & Miller, A. J. (2011). Cross-sectional human mandibular morphology as assessed in vivo by cone-beam computed tomography in patients with different vertical facial dimensions. *American Journal of Orthodontics and Dentofacial Orthopedics: Official Publication of the American Association of Orthodontists, its Constituent Societies, and the American Board of Orthodontics, 139*(4 Suppl), e377-89.
- Throckmorton, G. S., Finn, R. A., & Bell, W. H. (1980). Biomechanics of differences in lower facial height. *American Journal of Orthodontics*, 77(4), 410-420.
- Timock, A. M., Cook, V., McDonald, T., Leo, M. C., Crowe, J., Benninger, B. L., & Covell, D. A.,Jr. (2011). Accuracy and reliability of buccal bone height and thickness measurements from cone-beam computed tomography imaging. *American Journal of Orthodontics and Dentofacial Orthopedics : Official Publication of the American Association of Orthodontists, its Constituent Societies, and the American Board of Orthodontics, 140*(5), 734-744.
- Tsunori, M., Mashita, M., & Kasai, K. (1998). Relationship between facial types and tooth and bone characteristics of the mandible obtained by CT scanning. *The Angle Orthodontist*, 68(6), 557-562.

Wood, R., Sun, Z., Chaudhry, J., Tee, B. C., Kim, D. G., Leblebicioglu, B., & England, G. (2013). Factors affecting the accuracy of buccal alveolar bone height measurements from cone-beam computed tomography images. *American Journal of Orthodontics and Dentofacial Orthopedics: Official Publication of the American Association of Orthodontists, its Constituent Societies, and the American Board of Orthodontics, 143*(3), 353-363.

Curriculum Vitae

Graduate College University of Nevada, Las Vegas

Annie Hsu

Email:Annie.Hsu@sdm.unlv.edu

Degrees: Bachelor of Arts in Economics, 1998 University of California, Berkeley

Doctor of Dental Surgery, 2009 University of California, Los Angeles, School of Dentistry

Thesis Title: CBCT Evaluation of Adolescent Mandibular Morphology in Different Classifications of Facial Type

Thesis Examination Committee: Chairperson, James K. Mah, D.D.S., M.S., D.M.Sc. Committee Member, Edward Herschaft, D.D.S., M.A. Committee Member, Bob Martin, D.D.S. Graduate Faculty Representative, Debra Martin, Ph.D. Graduate Coordinator, James K. Mah, D.D.S., M.S., D.M.Sc.