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Abstract 

 

 

New Mouthguard Design with Intermediate Nickel-Titanium and Foam Layer 

by 

Freddie Martinez 

Dr. James Mah, Examination Committee Chair 

Director of Orthodontics and Dentofacial Orthopedics  

Graduate Coordinator 

University of Nevada, Las Vegas 

School of Dental Medicine 

 
 

 Mouthguards help prevent orofacial injuries in many physical activities, 

commonly to the maxillary incisors. Mouthguards have many different properties which 

can be idealized. One property involves the amount of impact force the mouthguard can 

dissipate, commonly referred to as shock absorption. The aim of this study was to 

improve shock absorption capabilities beyond the protection that a mouthguard made of 

Ethylene Vinyl Acetate (EVA) can offer. A Nickel-Titanium (NiTi) and/or foam 

intermediate layer was placed between EVA. Seven configurations were fabricated at 3 

different thicknesses. The configurations consisted of an intermediate layer composed of 

NiTi, foam, or NiTi/foam. The NiTi strips varied in porosity: 0%, 31%, and 50%. A drop 

tower was used for two different test methods. In the first test method, samples were 

placed on a flat plate attached to a force sensor that recorded transmitted peak force. The 

second testing method involved a simply supported aluminum plate that allowed some 

deflection allowing the calculation of energy absorption using transmitted peak force and 

strain energy data.  Configurations with a NiTi intermediate layer in the three thickness 

groups performed significantly worse than the control in both the flat plate test and the 
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simply supported beam test. The configurations with foam performed significantly better 

in the 2mm thickness group (P<.05) and the 3mm thickness group (P<.05), but not in the 

4mm thickness group (P>.05). Configurations with NiTi/foam did not perform 

significantly different from the control except for the samples in the 4mm thickness 

group which tested significantly worse (P<.05). The same configurations tested 

significantly better in the second test (P<.05), except in the 4mm Thickness group 

(P>.05). No difference was observed between the varying porosities (P>.05).  
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Chapter 1: Introduction 

Background and Significance 

 Mouthguards have played a large role in protecting athletes from orofacial 

injuries in modern times. They help to reduce injuries by absorbing some of the impact 

and redistributing the force. The American Dental Association (ADA) recognizes the 

importance of wearing mouthguards and recommends their use in 29 sporting activities. 

Currently, many organized sports at different levels mandate the use of mouthguards. The 

number of injuries prevented by mouthguard wear each year is difficult to determine due 

to lack of data but the ADA estimates that athletes are sixty times more likely to suffer 

injury to teeth without one  (ADA Council 2006). Often these injuries remain with the 

individual for the rest of their life.  For example, a dental injury can require numerous 

visits to the dentist for treatment and follow up. Other issues include significant costs, 

esthetic and functional problems.  

 In general, there are three types of mouthguard. The most common is the mouth 

formed mouthguard, otherwise known as a boil and bite. This type is widely available 

and low cost. The athlete simply places the mouthguard in hot water and moulds it to his 

teeth by biting.  The resulting product varies significantly and is generally not well 

adapted to the teeth resulting in a poor fit. This has a significantly negative effect on the 

mouthguard’s shock absorption capability (Vieira 2008). In addition, this type of 

mouthguard can be very thin in critical areas such as the occlusal surface and incisal 

edges depending on the bite force, technique and variables such as mouthguard 

temperature at the time of moulding. The second type is a stock mouthguard which is the 

simplest of all the mouthguard options. This type is manufactured in a variety of sizes 
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and is ready to use without further modifications. As a result, stock mouthguards have 

very poor fit and are the least protective of the three types (Patrick 2005). Lastly, custom 

made mouthguards are those fabricated by a laboratory usually through a dental office. 

These offer the best fit and most protection (Patrick 2005). They are fabricated in a multi-

step process, by first taking an impression of the patient’s teeth, gums, and vestibule, and 

creating a stone model of the mouth. The dental laboratory will then thermoform a 

specially designed mouthguard material onto the stone model. The mouthguard material 

is typically ethylene vinyl acetate (EVA) and is trimmed and polished to its final form.  

 At this time, there is no body or authority that has officially specified a particular 

material or method of fabrication or design. As such, many fabrication materials have 

been explored. EVA seems to be the most widely used material and offers a good 

combination of desirable properties (Going 1974).   Mouthguard design features and 

variables include: extension into the vestibule, the posterior length, coverage of the palate 

and occlusion. One of the most important design variables is thickness which has a direct 

correlation with the amount of protection offered up to a certain thickness (Westerman 

2002).   Mouthguard thickness is a critical variable given the fabrication methods 

available today.  

 Custom mouthguards are often fabricated using one of two thermoforming 

methods. The first method is a vacuum form machine which uses suction to help adapt 

the heated mouthguard material around a model. This method is relatively inexpensive 

but difficult to operate and technique sensitive. It is difficult to produce a consistent 

product using a vacuum form machine. The second type is a pressure-form machine 

which uses pressure above the mouthguard material to adapt the softened mouthguard 
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material to the stone model. This machine offers a more consistent product with better 

adaptation but is more expensive. The pressure form machine is user friendly and many 

of the settings are automated. It is possible to laminate layers of material due to the 

heating process this method employees.  In either case significant thinning occurs over 

the incisal edges and occlusal surfaces of teeth. In this area, EVA has an advantage over 

other materials since it can be laminated. Additional layers may be thermoformed and 

adhered to the first layer to increase overall thickness.  

 The lamination property of EVA allows for design modifications which include a 

middle layer of another material. The purpose of the middle layer is to improve shock 

absorption beyond the capabilities of EVA alone. Sponges, sorbothane, stainless steel 

wires, air inclusions, hard inserts, have all been used as intermediate layers (Knapik 

2007). A spongy intermediate layer has proven to be the best improvement when it comes 

to shock absorption by reducing the transmitted force by 49% compared to EVA alone 

(deWett 1999). This was most likely due to absorption of the impact by the material and 

the buffer zone the material creates. This buffer zone may only be protective up to a 

certain impact force and may not be as protective with impact objects that are already soft 

These sorts of impact objects require distribution of force as opposed to energy 

absorption. In the same study by deWett et al (1999) the stainless steel wire performed 

30% better than the EVA. The improvement observed by both a hard (stainless steel 

wire) and soft (sponge) layer points to different methods of reducing the transmitted 

impact. The sponge layer seems to have its effect through energy absorption and the 

stainless steel wire through force distribution. Although the stainless steel wire performed 

well, it poses obvious concerns. Stainless steel is very malleable and can permanently 
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deform during ancillary deformation. In addition, a wire can protrude out of the 

mouthguard creating a potential for injury.  An ideal intermediate material should 

overcome both of these issues such as nickel-titanium (NiTi) designed in a rectangular 

form.  

 All mouthguard shock absorption studies have been in vitro for obvious reasons. 

Most testing involves either a drop weight or a pendulum as a mode of impact. In the 

drop weight method, an impactor object of a known weight and hardness is selected. 

Traditionally, the impactor of choice has been a stainless steel object. Kinetic energy is 

calculated using the weight of the impactor and height at which it is released. The desired 

energy can be determined by varying the height or the impactor. In a pendulum testing 

apparatus, the impactor is attached to the end of the pendulum.  In both methods, results 

are gathered using a force transducer or by recording rebound height.  

Statement of Purpose 

 The purpose of this project was to improve shock absorption capabilities beyond 

the protection EVA alone can offer. This investigation involved a novel design where a 

layer of NiTi strip and/or foam is placed between layers of conventional EVA. The EVA 

layers were also varied in thickness.  Each testing sample was compared to an EVA only 

control group of the same thickness. The rationale behind these design features was that 

the NiTi redistributed forces while the sponge layer absorbed forces.   

Research Questions and Hypotheses 

1. Will mouthguard configurations with the nickel-titanium intermediate layer offer 

greater shock absorption? 
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H0: No, there is no difference in shock absorption between configurations with a 

NiTi intermediate layer when compared to EVA alone 

HA: Yes, there is a difference in shock absorption between configurations with a 

NiTi intermediate layer when compared to EVA alone 

2. Will configurations with a NiTi intermediate layer distribute forces better upon 

deflection in the simply supported beam testing method? 

H0: No, there is no difference in shock absorption between configurations with a 

NiTi intermediate layer in the simply supported beam testing method when 

compared to results from the flat plate testing method 

HA: Yes, there is a difference in shock absorption between configurations with a 

NiTi intermediate layer in the simply supported beam testing method when 

compared to results from the flat plate testing method 

3. Will porosity of the NiTi mesh play a role in shock absorption? 

H0: No, porosity will not have an effect on shock absorption 

HA: Yes, porosity will have an effect on shock absorption 

4. Will a NiTi/sponge intermediate layer offer better shock absorption than either 

intermediate material by itself? 

H0: No, the configurations with a NiTi/sponge intermediate layer will not perform 

better than either intermediate material by itself 

HA: Yes, the configurations with a NiTi/sponge intermediate layer will perform 

better than either intermediate material by itself 

5. If the novel designs provide better shock absorption, will thickness play a role? 
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H0: No, thickness will not have an effect on the amount of protection offered by 

the novel designs 

HA: Yes, thickness will have an effect on the amount of protection offered by the 

novel designs 
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Chapter 2: Literature Review 

Mouthguards were first introduced in the 1920s in the sport of boxing. Football 

players and coaches soon took notice and began experimenting with the use of 

mouthguards. By the 1960’s, the use of mouthguards was mandated in many high school 

football and junior colleges. In 1973, the National Collegiate Athletic Association 

(NCAA) mandated athletes to wear mouthguards (Heintz 1975).  The NCAA now 

requires a mouthguard in multiple sports including hockey, men’s lacrosse, and women’s 

field hockey. In 1998 New Zealand changed a rule requiring rugby players of all levels to 

wear a mouthguard. Although no law mandated by the government exists in the U.S. 

requiring athletes to wear mouthguards, the ADA recommends their use in 29 sports or 

activities (Knapik 2007). 

Although the incidence of dental trauma in sports is minor compared to other 

injuries, the related recovery costs are high and disproportionate to the number of 

accidents. In 1992, the cost to replace a single lost tooth could cost $10-15,000, according 

to the National Youth Sports Foundation for the Prevention of Athletic injury Inc. On top 

of the cost, countless hours are spent in the dental chair and the injury can lead to other 

dental diseases such as periodontal problems. It is well documented that most dental 

injuries affect the maxilla, in particular the maxillary incisors (Newsome 2001). A study 

found that up to 80% of dental trauma is concentrated to the maxillary incisors 

(Stockwell 1988).  

In general, there are three types of mouthguards. The most common is the mouth 

formed mouthguard, otherwise known as a boil and bite. This type is widely available 

and low cost. The athlete simply places the mouthguard in hot water and moulds it to his 
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teeth by biting.  The resulting product varies significantly and is generally not well 

adapted to the teeth resulting in a poor fit. This has a significantly negative effect on the 

mouthguard’s shock absorption capability (Vieira 2008). In addition, this type of 

mouthguard can be very thin in critical areas such as the occlusal surface and incisal 

edges depending on the bite force, technique and variables such as mouth guard 

temperature at the time of moulding. Children with developing dentition can benefit 

from this design since it can be readapted to the changing dentition and cheap enough to 

simply replace once the fit worsens. One of the tradeoffs is the poor fit. Boil and bites 

have a generic flange extending to the vestibule which leads to poor adaptation, 

extension, and overall retention. Also, the molding process is sensitive and any deviation 

from the manufacturer’s instructions may worsen the already poor fitting mouthguard. 

This short coming could be a distraction and even a hazard to an athlete during the 

event. The second type is a stock mouthguard which is the simplest of all the 

mouthguard options. This type is manufactured in a variety of sizes and is ready to use 

without further modifications. In other words, there is no moulding or adaptation 

process. The only retention comes from the wearers bite force and lip pressure. As a 

result, stock mouthguards have very poor fit and are the least protective of the three 

types (Patrick 2005). These mouthguards are commonly worn by those undergoing 

orthodontic treatment. Lastly, custom made mouthguards are those fabricated by a 

laboratory usually through a dental office. These offer the best fit and most protection 

(Patrick 2005). They are fabricated in a multi-step process, by first taking an impression 

of the patient’s teeth, gums, and vestibule, and creating a stone model of the mouth. The 

dental laboratory then thermoforms a specially designed mouthguard material onto the 
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stone model. The mouthguard material is typically ethylene vinyl acetate (EVA) and is 

trimmed and polished to its final form. 

A mouthguard serves to reduce the likelihood of suffering from many types of 

orofacial injuries including mandibular fractures and concussions (Takeda 2005). 

Mouthguards also reduce laceration and bruising of the lips and cheeks by separating soft 

tissue from hard tissue. Lastly, absorbing and redistributing potentially damaging blows 

as well as protecting teeth by discluding the maxillary and mandibular teeth from 

contacting each other during strenuous physical activity. 

There are many physical properties that are important in mouthguard material. 

Ideally, the material should have high shock absorption, high tensile strength, low water 

absorption, high tear strength, biocompatible, suitable for the oral environment, and a 

balance between hardness and stiffness. Many materials were investigated over the 

years.. Among these materials were Ethylene Vinyl Acetate (EVA), PolyUrethane (PU), 

rubber latex, thermoplastic material, PolyVinyl Acetate (PVC), silicon, and different 

resins (Craig&Godwin 1967; Going 1974; Loehman 1975).  They found that although 

EVA was not the most shock absorbent material in all three studies, it did perform 

exceptionally well. Another study found silicone rubbers with variation in glass fibers 

and silicone oils were also comparable to EVA in shock absorption and biocompatibility 

but not necessarily better (Auroy ’96). With these findings, EVA has become the most 

commonly used material for its superior shock absorption, ease in fabrication, and 

relative safety.  

The research done in this study dealt with shock absorption. This property is a 

function of protection.  All mouthguard shock absorption studies have been in vitro for 
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obvious reasons. Most testing involves either a drop weight or a pendulum as a mode of 

impact. In the drop weight method, an impactor object of a known weight and hardness is 

selected. Traditionally, the impactor of choice has been a stainless steel object. Kinetic 

energy is calculated using the weight of the impactor and height at which it is released. 

The desired energy can be determined by varying the height or the impactor. In a 

pendulum testing apparatus, the impactor is attached to the end of the pendulum.  In both 

methods, results are gathered using a force transducer or a record of rebound height. Most 

studies use around 1-4J of potential energy. 

One of EVA’s main components is polyvinyl acetate (PVA). This component 

increases the shock absorption and decreases water absorption in mouthguards but at the 

same time decreases hardness and tear strength. It became important to determine the 

optimal ratio of PVA that offers the most shock absorption without compromising other 

properties. Researchers attempted to answer that very question by testing different 

physical properties of EVA at varying PVA ratios. 9 samples were tested for energy 

absorption, compressibility, and tear strength. They found that 18% PVA provided the 

most shock absorption while still offering the desired characteristics of low water 

sorption, high tear strength, good elasticity and compression behavior (Bishop 1985).  

Today, the exact ratio of PVA and other ingredients are not freely disclosed by 

companies and are in some cases proprietary.  

Another aspect of mouthguard research relates to the appropriate thickness. Park 

et al (1994) decided to investigate this matter due to concerns of material thinning during 

the fabrication of boil and bite mouthguards and custom made mouthguards. The 

researchers wanted to know if sufficient protection was being offered by mouthguards 
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that were thinned in certain areas of the appliance. Park et al used two steel balls of 

different diameter as the impactor and a drop tower testing method. Samples were made 

in 4 varying thicknesses: 1, 1.5, 2, and 4mm EVA.  The intuitive thought that protection 

is decreased with decreased thickness was confirmed by this study (Park 1994). Later, 

Westerman et al (2002) discovered this was true only to a point. This group of 

researchers tested 5 different thicknesses of EVA: 1, 2, 3, 4, 5, and 6mm. A pendulum 

testing method was used to strike each sample with a force strong enough to cause 

damage to orofacial structures. There was great improvement in protection as the 

thickness increased from 2mm to 4mm. After 4mm, the improvement in shock absorption 

tapers off and little benefit is observed with the thicker thicknesses. They concluded that 

a 4mm thickness provided a balance between protection and comfort, and anything 

thicker than 4mm only offered a minute amount of increased protection. 

Many modifications have been attempted in an effort to produce a mouthguard 

more shock absorbent than EVA alone. Most modifications take advantage of the 

lamination property of EVA. Foams, sorbothane, stainless steel wires, air inclusions, hard 

inserts, have all been used as intermediate layers (Knapik 2007). De Wet et al 

experimented with a stainless steel wire and foam as the intermediate layer. All testing 

samples were roughly 5mm thick. They found that the mouthguard with a spongy 

intermediate layer performed the best. This design was able to reduce the transmitted 

force by 49% compared to EVA alone (deWett 1999). This was most likely due to 

absorption of the impact by the material and the buffer zone the material creates. This 

buffer zone may only be protective up to a certain impact force and may not be as 

protective with impact objects that are already soft and require an intermediate layer that 
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distributes the force as opposed to absorbs the energy. In the same study by, the stainless 

steel wire performed 30% better than the EVA control (1999). The improvement 

observed by both a hard and soft layer points to different methods of reducing the 

transmitted impact. The foam layer seems to have its effect through energy absorption 

and the stainless steel wire through force distribution. 

 Many factors play a role when it comes to wear compliance such as: 

comfort, wearability, stability, retention, speech, ability to breadth, and appearance. The 

mouthguard must be comfortable and not feel awkward or distracting in the athlete’s 

mouth. Factors that play a big role in this area are design and thickness of the 

mouthguard. In addition, stability and retention are closely related to the adaptation 

method. A custom-made mouthguard offers a superior fit than the other options due to its 

fabrication method (Deyounge 1994). Also, many wearers must be able to talk while 

participating in their respective sports. Therefore, the mouthguard should not impede 

speech. Many athletes cite this as the reason they forgo the use of a mouthguard 

(Westerman 2002). Breathing is a key determinant to whether an athlete uses a 

mouthguard. Anecdotal accounts from athletes about breathing difficulties due to a 

mouthguard have been around for many years. Francis et al did in fact find this to be true 

along with increased resistance to air flow (1991). A possibility is the discomfort that was 

felt by the subjects in the study could be tied to bulky mouthguard designs. In a study 

done by Vieira et al, they found that rugby players thought custom-made mouthguards 

offered a superior breathing and speaking capability than a boil and bite mouthguard 

(2008).  The ideal mouthguard would offer a balance between the aforementioned factors 
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and protection from damaging blows experienced while participating in some form of 

activity. 

Since many sports have both high and low impact forces such as basketball, 

materials or mouthguard designs that confer force distribution and absorption have been 

studied. A stiffer material is better equipped to distribute high impact forces, similar to 

the role the stainless steel wire played in the study previously mentioned. Nickel-titanium 

metal may be stiff enough to serve this purpose. In addition, it is well known for its 

superelasticity and shape memory which are ideal properties to retain its form during 

placement and removal along with any ancillary deformations. Nickel-Titanium has a 

good track record in the medical field as a biocompatible material and is consistently 

used in both the medical and dental field.  As previously stated, an intermediate foam 

layer has proven to be very effective at energy absorption (de Wet 1999).  The use of 

both NiTi and foam simultaneously as an intermediate layer can potentially add more 

versatility to the types of impacts sustained. This design may solve the hard versus soft 

impact dilemma and preclude many sport-specific mouthguards. 
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Chapter 3: Methods and Materials 

Our novel design incorporates a NiTi facial intermediate layer from canine to 

canine.  The NiTi strip is intended to distribute forces over a larger surface area. Previous 

designs incorporated a stainless steel wire which provided the same role but posed safety 

concerns (deWett 1999). A rectangular strip design addresses the safety issues posed by a 

wire that could potentially cause soft tissue damage. Furthermore, porosities were added 

to allow for variation in stiffness and to allow the two EVA layers to laminate together 

within the strip providing better mechanical retention.  As previously stated, mouthguards 

with an intermediate foam layer have been one of the most shock absorptive designs (de 

Wet 1999).  Additional to the NiTi, a sponge layer posterior to the NiTi strip can provide 

further shock absorption properties and even allow more deformation of the NT strip.  

This combined intermediate layer is well suited to deal with a range of impact forces 

making it more versatile in its use. 

 A total of 260 mouthguard testing samples were fabricated for this study, 

consisting of 210 experimental samples and 50 control samples. A total of 7 experimental 

configurations were investigated, each at 3 different thickness groups. The different 

configurations consisted of EVA outer layers and varied in intermediate layer 

composition. They were fabricated into flat rectangles with dimensions approximating 

the anterior region of the mouth from incisal edge to vestibule. Flat samples meant to 

represent mouthguards are common in the literature and were chosen in this study to 

control for a multitude of variables (Knapik 2007).  

 Two test methods were employed using a drop tower. The first method involved a 

testing sample being placed over a flat aluminum plate. A load cell was placed under the 
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plate and the peak force transmitted through the sample was recorded. In the second 

method, a simply supported aluminum beam was used and is discussed more thoroughly 

later.  

Ethylene Vynil Acetate 

Conventional EVA was purchased from the manufacturer for the fabrication of 

mouthguards (Great Lakes Orthodontics, Tonowanda, NY). EVA was chosen over other 

commercially available materials because it is the most commonly used material to 

fabricate mouthguards and it’s the standard testing material in previous studies. To 

achieve varying thicknesses among the groups, EVA layers of different thicknesses were 

laminated. EVA layers with the initial thicknesses of 1mm, 2mm and 3mm were used 

(Figure 1). Each layer came in a 125mm diameter circular plate designed to fit the 

fabrication machine.  

 

 

Figure 1. EVA at different thicknesses 
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Nickel-Titanium 

One Nickel Titanium sheet of a 103x455x.33mm was purchased and processed 

for the fabrication of the intermediate layer strips (Memry GmbH, Weil am Rhein, 

Germany). The NiTi sheet was of the superelastic type and annealed oxide free. The sheet 

was sent to an outside company to be laser-cut into 27 strips, each measuring 48mm in 

length and 9mm in width (Directed Light Inc, San Jose, CA). These dimensions were 

chosen to approximate the maxillary canine to canine region. The strips were designed to 

be cut into 3 configurations varying in porosity (Figure 2). In order to achieve the desired 

porosity, 1.5mm holes were laser cut and spaced evenly. A simple way of classifying 

these three groups is as a percentage of porosity to overall area of the NiTi strip. For 

example, 0% porosity means no holes were cut into the NiTi strip. Our three designs 

consisted of 0%, 31%, and 50% porosity. 

 

 

Figure 2. three different porosities of NiTi strips 
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Foam 

 A PVC foam tape was purchased from McMaster-Carr. Foam in the tape form 

proved to be the best option in order to achieve a predictable thickness. The foam was 

.79mm thick and had acrylic adhesive on both sides (Figure 3). The final length and 

width was made to the same dimensions of the NiTi strip, 48mmx9mm. 

  

 

Figure 3. Foam tape 

Fabrication 

A Ministar S pressure forming machine illustrated in figure 4 was used to 

fabricate mouthguard samples in this study (Great Lakes Orthodontics, Tonewanda, NY). 

A pressure forming machine was chosen over a vacuum form due to its consistency and 

ease of use. The process began with the outlining of 3 mouthguard samples on the EVA 

inner layer. Intermediate layers were then placed on this layer of EVA in the outlined 

position. The outer EVA plate was heated to the manufacturer’s specification and 

laminated to the inner layer. The machine automatically determined the amount of time 
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and pressure needed to complete the process. In order to avoid air bubbles in our samples 

two 1mm holes were made on the inner layer before lamination. These holes were made 

at each end of the sample and were far from the area of impact. The final dimensions of 

the samples were made using a box cutter and a metal ruler as a guide and cutting edge 

(Figure 5). Using a fine cutting instrument like a box cutter allowed for precise 

dimensions.  

 

 

Figure 4. Ministar S pressure forming machine 
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Figure 5. Fabrication of testing samples 

 

The fabrication of the experimental samples with a NiTi strip was limited by the 

quantity of strips available. Due to the high cost, only 9 strips per porosity design were 

fabricated and thus had to be reused. Care was taken to remove the strips without any 

damage. Any residual adhesive left on the NiTi strip from the foam was removed using 

acetone.  

Testing 

An Instron
TM

 Dynatup drop tower was used in this experiment and is shown in 

figure 6 (Norwood, MA). The testing samples were placed on an aluminum plate and 

secured with a double sided tape. A 5000lbf load cell was attached to an aluminum plate 

that was bolted to the base of the drop tower. This force sensor was made by PCB 

Piezotronics model 200M70 ICP
®
 (Depew, NY). A 2” diameter aluminum cylinder was 

used as the impactor. The cylinder was attached to a larger unit that was held by two 
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aluminum plates bringing the total weight of the impactor to 2.745kg (Figure 7).  The 

impactor unit was then dropped from a two inch height onto the center of the testing 

coupon. The two inch height was set at the beginning of the experimental set up using a 

rectangular metal block (Figure 7). The drop tower was configured to automatically 

return to the same height after every round of testing. The total potential energy as 

determined from the mass, height, and gravity was 1.368 Joules.  

 

 

Figure 6. Instron
TM

 Dynatup drop tower 
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Figure 7. Impactor components and method used to set height 

 

Two testing methods were used in this investigation. The first was a flat plate 

testing which allowed for a standard reading of shock absorption (Figure 8). Upon 

releasing the impactor, gravity was the driving force of impaction and the load cell 

recorded the transmitted force. This method is a common method of testing shock 

absorbency but has some shortcomings. The flat plate testing only allows for 

compression as a form of shock absorbency. The maxillary complex itself experiences 

some deflection at impact. The traditional flat plate testing design does not allow 

deflection and negates a form of energy dissipation. Our second configuration, the simply 

supported beam testing, was designed to allow for minor deflection at impact (Figure 9). 

No attempt was made at replicating the exact deflection exhibited by a human’s anterior 

maxillary complex as this would be extremely challenging and varies greatly. This test 

recorded strain as well as peak force. The aluminum plate from the flat plate test was 
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modified to accept two 0.25” diameter steel dowel pins 3.5” apart. A 4”x2”x.25” 

aluminum plate was then placed on top of the dowel pins to create a simply supported 

beam. The supported plate allowed for some give which was recorded through a strain 

gauge attached under the beam (Vishay, model CEA-06-240UZ-120). Force-time data 

and strain-time data were collected in this configuration. 

 

 

Figure 8. Flat plate testing method 

 

 

Figure 9. Simply supported beam testing method 
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The peak force and strain data was recorded on a Yokogawa DL750 ScopeCorder 

oscilloscope. The reading first passed through a signal conditioner before being recorded 

on the oscilloscope. Data was collected at a rate of 1 million samples per second. The 

oscilloscope was configured to record 20% of the data prior to impact, which was about 2 

milliseconds.  

Testing Groups 

Seven configurations were fabricated at 3 different thicknesses (Table 1). The first 

3 configurations consisted of only a NiTi strip laminated between two EVA layers. The 

NiTi strips in these three configurations varied in porosity: 0%, 31%, 50%. The fourth 

configuration consisted of a foam intermediate layer. The last three configurations 

consisted of a NiTi strip anterior to a foam layer varying in porosity.  

Thicknesses were varied by using different inner and outer EVA thickness plates. 

One thickness group was fabricated with a 1mm outer EVA layer, an intermediate layer, 

and a 1mm inner EVA layer. This thickness group was designated the 1-1 group. The 

second thickness group consisted of a 1mm outer EVA layer, an intermediate group, and 

a 2mm inner group. Configurations with these layers fell under the 1-2 group. Finally, the 

2-2 group consisted of configurations with a 2mm outer EVA layer, an intermediate 

layer, and a 2mm outer EVA layer. 

The control groups were laminated EVA sheets of 1mm/1mm, 1mm/2mm, 2mm/2mm, 

2mm/3mm, 3mm/3mm, with no intermediate layer. The 2-3 and 3-3 controls are not 

shown in figure 9. 

The configurations were labeled based on their composition. The labeling 

consisted of a number representing the outer EVA thickness, an abbreviation for the 
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intermediate layer, a number representing the inner EVA thickness, and a percentage 

representing the porosity of the NiTi layer when appropriate. For example, a 1NF2 50% 

represents the configuration with a 1mm outer EVA layer, a NiTi and Foam intermediate 

layer, a 2mm inner EVA layer, and the NiTi strip has a 50% porosity. 

In all, twenty-one experimental testing groups falling into 3 thickness groups were 

fabricated. In addition, five control groups were fabricated, one per thickness group and 

two of thicker dimensions. 

 

 Table 1.  

Testing Matrix  

 

1-1 Group 1-2 Group 2-2 Group 

Control 1-1 Con 1-2 Con 2-2 Con 

EVA/NT/EVA 

1N1 0% 1N2 0% 2N2 0% 

1N1 31% 1N2 31% 2N2 31% 

1N1 50% 1N2 50% 2N2 50% 

EVA/Foam/EVA 1F1 1F2 2F2 

EVA/NT-
Foam/EVA 

1NF1 0% 1NF2 0% 2NF2 0% 

1NF1 31% 1NF2 31% 2NF2 31% 

1NF1 50% 1NF2 50% 2NF2 50% 
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Chapter 4: Results 

Flat Plate Testing 

Three test groups were produced by thermoforming layers of EVA of 1 and 2 mm 

thicknesses together. Results for this test were broken down into 3 groups: 1mm EVA-

1mm EVA (1-1 group), 1mm inner EVA-2mm outer EVA (1-2 group), and 2mm EVA-

2mm EVA (2-2 group). The results for each group are given in chart form in Figure 10-

12.  The same information is also illustrated in figure 13 in as a graph plotting thickness 

against peak force transmitted through the sample. Therefore, the higher the transmitted 

force the less shock absorption the sample offers. In addition to the three control 

thicknesses that pair with each group, two more EVA-only controls of a 5mm and 6mm 

thickness were tested and can be seen in figure 13. 

 

 

Figure 10. Transmitted peak force for 1-1 group 
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Figure 11. Transmitted peak force for 1-2 group 

 

 

Figure 12. Transmitted peak force for 2-2 group 
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Figure 13. Results from flat plate testing 

 

Figures 10-13 indicate that there is not a linear relationship between thickness and 

transmitted peak force. That is, there are large decreases in transmitted peak force as 

thicknesses increase in the thinner samples but the decrease in transmitted force begins to 

taper in the thicker samples.  

An analysis of variance (ANOVA) was done to determine if there was a 

difference between the 3 types of porosities (Appendix A). A summary of the results are 

given in table 2. In all cases except the 1N2 group had no statistical significance. The 

difference in stiffness by varying the porosity of the NiTi strip did not seem to have much 

effect on the transmitted force. The three porosities behaved the same except for in one 

group. In any case, the 1N2 configurations performed significantly worse than the EVA 

control.  
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Table 2 

Summary of ANOVA Comparison of Porosities in Flat Plate Test 

Summary of ANOVA Comparison of Porosities 

config F P-value F-critical 

1N1-0%, 31%, 50% 1.37 0.27 3.35 

1N2-0%, 31%, 50% 8.41 0.001* 3.35 

2N2-0%, 31%, 50% 1.53 0.24 3.35 

1NF1-0%, 31%, 50% 0.59 0.56 3.35 

1NF2-0%, 31%, 50% 0.19 0.83 3.35 

2NF2-0%, 31%, 50% 3.08 0.06 3.35 

  

Although the same EVA layer thicknesses were used within each of the three 

groups, the overall thicknesses varied between the different configurations due to the 

addition of an intermediate layer. In order to normalize for thickness, a curve was fitted 

to the transmitted peak force of the EVA-only (Figure 14). The two additional control 

groups of the 5mm and 6mm thickness were used to give a more complete set of data and 

a more accurate fitted curve. 

 

 

Figure 14. Best Curve Fit of EVA-only Controls 
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Using the formula yielded by the fitted curve, configurations of the same 

thickness group was compared to a calculated EVA-only sample of the same thickness. 

Figures 15-17 illustrate this information. 

 

 

Figure 15. Comparison of 1-1 group with the calculated EVA control 

  

 

Figure 16. Comparison of 1-2 group with the calculated EVA control   
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Figure 17. Comparison of 2-2 group with the calculated EVA control   
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Figure 18. Confidence Interval comparison in the flat plate test  

 

Table 3. 

95% CI for 1-1 Group 

Flat Plate-Confidence Interval Comparison: 1-1 Group  

config 1-1 thickness peak (kN) -95% 95% 

1N1 0% 2.44 4.24* 3.64 3.94 

1N1 31% 2.46 4.41* 3.61 3.91 

1N1 50% 2.50 4.24* 3.57 3.86 

1F1 2.92 3.08* 3.12 3.36 

1NF1 0% 3.24 2.93 2.87 3.07 

1NF1 31% 3.16 2.97 2.93 3.13 

1NF1 50% 3.05 3.08 3.02 3.24 
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Table 4.  

95% CI for 1-2 Group 

Flat Plate-Confidence Interval Comparison: 1-2 Group  

Config 1-2 thickness peak (kN) -95% 95% 

1N2 0% 3.46 3.42* 2.71 2.90 

1N2 31% 3.39 3.61* 2.76 2.95 

1N2 50% 3.53 3.16* 2.67 2.85 

1F2 3.99 2.37* 2.41 2.56 

1NF2 0% 4.11 2.44 2.35 2.49 

1NF2 31% 4.16 2.41 2.32 2.46 

1NF2 50% 4.01 2.44 2.39 2.54 

 

Table 5.  

95% CI for 2-2 Group 

Flat Plate-Confidence Interval Comparison: 2-2 Group  

config 2-2 thickness peak (kN) -95% 95% 

2N2 0% 4.50 2.9* 2.17 2.30 

2N2 31% 4.52 2.91* 2.17 2.29 

2N2 50% 4.45 2.78* 2.19 2.32 

2F2 4.87 2.10 2.03 2.14 

2NF2 0% 5.30 1.99 1.89 1.99 

2NF2 31% 5.16 2.11* 1.94 2.04 

2NF2 50% 5.07 2.14* 1.97 2.07 

 

 The NiTi-only intermediate layer configuration performed statistically worse than 

the calculated EVA-only control of the same thickness in all three thickness groups. 

Tables 3-5 show the NiTi-only configurations transmitted 0.3-0.6kN more than the upper 

limit of the 95% confidence interval. As mentioned above, the change in porosity did not 

influence the performance of the samples except for the 1N2 group. Varying the Stiffness 

of the NiTi strip seemed to play no role in shock absorption. The foam groups performed 
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the best and had a statistically significant improvement in shock absorption. The 1-1 and 

1-2 groups transmitted a peak force of 3.08, 95% CI[3.12, 3.36], and 2.37, 95% CI[2.41, 

2.56], respectively. The 2-2 foam configuration seemed to behave more like the EVA 

control transmitting 2.10 kN of peak force and did not have a statistically significant gain 

in shock absorption (95% CI[2.03, 2.14]). As for the configurations with both a NiTi and 

foam intermediate layer, they performed the same as the calculated EVA-only control in 

the 1-1 and 1-2 thickness groups. The 1NF1 and 1NF2 configurations all tested within the 

+95% CI range (Table 3-4). In the 2-2 group, all three NF configurations transmitted a 

peak force at or above the 95% confidence interval (Table 5). Therefore, the Niti/foam 

configurations in the 2-2 group performed statistically worse than the calculated control.   

 Another analysis that was done in order to confirm our results was an ANOVA. 

This was done by comparing each configuration to a control sample with the closest 

thickness. Therefore, the 1-1 configurations were individually compared to the 1-2 

control sample. The same was done for the 1-2 and the 2-2 configurations. The full 

results of the ANOVA analysis can be found in Appendix B. Tables 6-8 show the 

summary of the results.    
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Table 6.  

Summary of 1-1 Group ANOVA Comparison to 1-2 Control 

Summary of 1-1 Group ANOVA Comparison to 1-2 

Control 

config F P-value F-critical 

1N1 0% 109.68 4.37E-9* 4.41 

1N1 31% 377.83 1.57E-13* 4.41 

1N1 50% 119.07 2.29E-9* 4.41 

1F1 2.79 0.11 4.41 

1NF1 0% 0.01 0.93 4.41 

1NF1 31% 0.08 0.78 4.41 

1NF1 50% 0.83 0.37 4.41 

 

Table 7. 

Summary of 1-2 Group ANOVA Comparison to 2-2 Control 

Summary of 1-2 Group ANOVA Comparison to 2-2 

Control 

config F P-value F-critical 

1N2 0% 216.63 1.77E-11* 4.41 

1N2 31% 384.59 1.35E-13* 4.41 

1N2 50% 57.32 5.32E-7* 4.41 

1F2 0.05 0.82 4.41 

1NF2 0% 5.02 0.037904* 4.41 

1NF2 31% 2.28 0.15 4.41 

1NF2 50% 2.63 0.12 4.41 
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Table 8 

Summary of 2-2 Group ANOVA Comparison to 2-3 Control 

Summary of 2-2 Group ANOVA Comparison to 2-3 

Control 

config F P-value F-critical 

2N2 0% 322.23  6.17E-13* 4.41 

2N2 31% 235.03 8.94E-12* 4.41 

2N2 50% 92.21 1.66E-8* 4.41 

2F2 10.40 0.004703* 4.41 

2NF2 0% 0.47 0.50 4.41 

2NF2 31% 8.16 0.010494* 4.41 

2NF2 50% 8.09 0.010779* 4.41 

 

 The ANOVA analysis shows that in all three thickness groups the Niti-only 

configurations tested significantly different from the control (P<.05). No significant 

difference was found in the foam-only configurations except in the 2-2 group. This was 

the opposite finding from the confidence interval analysis. For the NiTi/foam 

configurations, only three had statistically significant results. The 1NF2 0%, 2NF2 31%, 

and 2NF2 50% had a P value below .05. The 2NF2 configuration results were above the 

95% confidence interval in the previous analysis. This was similar to what was observed 

with the ANOVA analysis except for the 2NF2 configuration.  

 One must be careful interpreting the data yielded from the ANOVA analysis.  It is 

not possible to normalize for thickness using ANOVA. A percent difference in thickness 

from the control sample was calculated for each configuration. The configurations with 

the thicker intermediate layer like the NiTi/Foam group did not differ much from the 

control (Appendix C). On the other hand, the NiTi-only configurations showed the largest 

difference from the control, especially in the thinner samples.  
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Simply Supported Beam Method 

 In this method, deflection was introduced as a form of energy absorption. A 

sample was placed on a simply supported beam and the deflection was recorded as strain 

energy, along with transmitted peak force. Figures 19-21 show the peak forces and strains 

for each thickness group and the associated standard errors.  

 

 

Figure 19. Peak force and strain energy results for the 1-1 group 

 

 

Figure 20. Peak force and strain energy results for the 1-2 group 
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Figure 21. Peak force and strain energy results for the 2-2 group 
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EA= Ek-U 

Where EA is energy absorbed by the sample, Ek is kinetic energy with which the sample is 

struck with, and U is strain energy. Ek was calculated for each sample in order to account 

for the change in impactor height due to varying thickness in samples. The energy 

absorbed was then divided by the thickness of the tested sample and expressed as a 

percentage: 
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%Abs = EA/Ekx100  

                      mm        thickness 

 

 As with the flat plate testing, the results cannot be compared to the EVA-only 

control of the same thickness group because the thicknesses within the group vary 

significantly. Therefore, results from figures 19-21 can be misleading. To normalize for 

thickness the same method was employed as with the previous test. The EVA-only 

control samples were plotted and a curve fit was calculated as with the flat plate testing 

method (Appendix D). The curve allowed for normalization of thickness and each 

configuration was compared to a calculated EVA-only control of the equivalent thickness 

in figure 22-24. 

 

 

Figure 22. 1-1 Group: percent of energy absorbed per mm Compared to Calc. Control 
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Figure 23. 1-2 Group: percent of energy absorbed per mm Compared to Calc. Control 

 

 

Figure 24. 2-2 Group: percent of energy absorbed per mm Compared to Calc. Control 
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Figure 25. 1-1 Group: percent difference compared to calculated control 

 

 

Figure 26. 1-2 Group: percent difference compared to calculated control 
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Figure 27. 2-2 Group: percent difference compared to calculated control 
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Figure 28. Confidence interval comparison in simply supported beam test  

 

Table 9.  

95% Confidence Interval for 1-1 Group in Simply Supported Beam Test 

Simply Supported Beam- Confidence Interval Comparison: 1-1 Group  

config 1-1 thickness %abs/mm -95% 95% 

1N1 0% 2.44 22.81* 23.73 25.27 

1N1 31% 2.46 22.17* 23.59 25.12 

1N1 50% 2.50 22.63* 23.38 24.88 

1F1 2.92 23.45* 21.15 22.38 

1NF1 0% 3.24 20.97* 19.83 20.91 

1NF1 31% 3.16 21.32* 20.14 21.25 

1NF1 50% 3.05 22.01* 20.60 21.77 
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Table 10.  

95% Confidence Interval for 1-2 Group in Simply Supported Beam Test 

Simply Supported Beam- Confidence Interval Comparison: 1-2 Group  

config 1-2 thickness %abs/mm -95% 95% 

1N2 0% 3.46 18.33* 19.03 20.02 

1N2 31% 3.39 18.13* 19.27 20.28 

1N2 50% 3.53 18.64* 18.79 19.75 

1F2 3.99 18.71* 17.38 18.19 

1NF2 0% 4.11 18.12* 17.06 17.83 

1NF2 31% 4.16 18.02* 16.93 17.68 

1NF2 50% 4.01 18.93* 17.31 18.12 

 

Table 11.  

95% Confidence Interval for 2-2 Group in Simply Supported Beam Test 

Simply Supported Beam- Confidence Interval Comparison: 2-2 Group  

config 2-2 thickness %abs/mm -95% 95% 

2N2 0% 4.50 14.92* 16.10 16.78 

2N2 31% 4.52 15.08* 16.06 16.73 

2N2 50% 4.45 15.6* 16.22 16.90 

2F2 4.87 15.53 15.32 15.92 

2NF2 0% 5.30 14.96 14.52 15.04 

2NF2 31% 5.16 14.84 14.77 15.31 

2NF2 50% 5.07 15.34 14.93 15.49 

 

 Similar to the flat plate testing, the NiTi-only configurations in all thickness 

groups tested below the lower limit of the 95% confidence interval (Tables 9-11). That is, 

the NiTi-only samples absorbed significantly less energy per mm than the calculated 

EVA control of the same thickness. The foam-only configurations also tested as in the 

flat plate method. The 1F1 and 1F2 samples absorbed significantly more energy per mm 

at 23.45%/mm (95% CI [21.15, 22.38]) and 18.71%/mm (95% CI [17.38, 18.19]), 
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respectively. The 2F2 configuration did not show a difference from the control with 

15.53% absorption per mm, 95% CI [15.32, 15.92]). A main difference in the results 

from the flat plate method was the results for the NiTi/Foam configurations. The 1NF1 

and 1NF2 configurations absorbed significantly more energy per mm than the calculated 

control (Tables 3-4). The 2NF2 configurations all tested within the 95% confidence 

interval range and were not considered significantly different from the controls (Table 5).  

Once again, an ANOVA analysis was done for samples containing NiTi to find if there 

was a difference between the 3 types of porosities within each thickness group. The full 

results of the ANOVA analysis can be found in appendix E. The results are summarized 

in Table 6. All P-values were above 0.05 therefore, no difference was found between the 

porosities. This was similar to the results found in the flat plate test. The varying of 

stiffness by the different porosities did not play a role in shock absorption  

 

Table 12.  

ANOVA Comparison of Porosities in Simply Supported Beam Test   

Summary of ANOVA comparison to control 

config F P-value F-critical 

1N1-0%, 31%, 50% 0.96 0.40 3.35 

1N2-0%, 31%, 50% 1.43 0.26 3.35 

2N2-0%, 31%, 50% 2.66 0.09 3.35 

1NF1-0%, 31%, 50% 1.91 0.17 3.35 

1NF2-0%, 31%, 50% 1.66 0.21 3.35 

2NF2-0%, 31%, 50% 1.67 0.21 3.35 

 

 

 An ANOVA analysis was also done for the simply supported beam test data in 

order to confirm our results. This was done similar to the flat plate method. Each 

configuration was compared to a control sample with the closest thickness. The full 
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results of the ANOVA analysis can be found in Appendix F. Tables 7-9 show the 

summary of the results. 

 

Table 13.  

Summary of 1-1 Group ANOVA Comparison to 1-2 Control 

Summary of 1-1 Group ANOVA Comparison to 1-2 

Control 

config F P-value F-critical 

1N1 0% 70.79 1.19E-7* 4.41 

1N1 31% 54.46 7.58E-7* 4.41 

1N1 50% 36.32 0.00001* 4.41 

1F1 39.60 6.22E-6* 4.41 

1NF1 0% 7.39 0.01* 4.41 

1NF1 31% 7.28 0.01* 4.41 

1NF1 50% 19.19 0.0004* 4.41 

 

Table 14.  

Summary of 1-2 Group ANOVA Comparison to 2-2 Control 

Summary of 1-2 Group ANOVA Comparison to 2-2 

Control 

config F P-value F-critical 

1N2 0% 71.87 1.06E-7* 4.41 

1N2 31% 53.30 8.79E-7* 4.41 

1N2 50% 47.63 0.000002* 4.41 

1F2 48.98 0.000002* 4.41 

1NF2 0% 10.20 0.005* 4.41 

1NF2 31% 9.45 0.007* 4.41 

1NF2 50% 37.95 0.00001* 4.41 
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Table 15.  

Summary of 2-2 Group ANOVA Comparison to 2-3 Control 

Summary of 2-2 Group ANOVA comparison to 2-3 

control 

config F P-value F-critical 

2N2 0% 15.60 0.001* 4.41 

2N2 31% 8.97 0.008* 4.41 

2N2 50% 0.28 0.60 4.41 

2F2 4.40 0.05 4.41 

2NF2 0% 14.80 0.001* 4.41 

2NF2 31% 26.00 0.0001* 4.41 

2NF2 50% 6.13 0.02* 4.41 

  

Similar to the flat plate testing results, the NiTi-only configurations performed 

significantly different when compared to the respective EVA-only control (P<.05). There 

was one exception, the 2N2 50% did not show a difference from the 2-3 control (P=0.6). 

The foam-only group had a statistically significant difference in the 1-1 and 1-2 groups 

but was not statistically significant in the 2-2 group (Table 7-9). These results were 

comparable to the results for the confidence interval analysis. The NiTi/Foam 

configurations were statistically significant in all three thickness groups with P-values 

below 0.05. This differed from the flat plate test as the NiTi/Foam configurations in the 

2-2 group were not found to be statistically significant. 

 As was the case with the ANOVA results for the flat plate method, the thickness 

was only approximated and could not truly be normalized. The percent difference in 

thickness found in the tables in appendix C should be kept in mind when reading the 

results of the ANOVA analysis.  
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Chapter 5: Discussion and Conclusion 

The goals of this study were to elucidate on the effect a NiTi intermediate layer 

has on the shock absorptive capacity of a mouthguard. The initial idea was the stiffer 

NiTi layer would distribute the force better than the EVA due to its stiffness while 

retaining its shape. A softer foam intermediate layer was also tested. The softer layer has 

tested well in the literature and absorbs energy by compressing and recovering better 

than EVA. The testing configurations with both a NiTi strip and foam intermediate layer 

were expected to surpass the shock absorptive capabilities of any configuration with 

either intermediate layer component alone by taking advantage of both forms of energy 

dissipation.    

The aforementioned expectations are not what were found in this study. Using a 

traditional drop tower method, the NiTi-only configurations offered significantly less 

shock absorption when compared to an EVA-only control. This does not necessarily 

mean that it is detrimental to the overall protection a hard insert design can offer. 

Although more impact force was transmitted, further research will be needed to quantify 

the area that the force is distributed across. No trend was observed as the thickness 

increased among the three groups although it did follow the EVA-only curve. The 

analysis using a confidence interval and ANOVA are in agreement and support the 

significant decrease in shock absorption. The results were similar to those of a study 

investigating the effects of a hard insert (Westerman 2002). In the study, they concluded 

that a hard insert reduces the shock absorption capability of a mouthguard but did not 

explore force distribution. In addition, the study did not take into account any deflection 

that may be experienced by the maxillofacial complex and only looked at compression 
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as a form of force dissipation. Therefore, adding an incompressible component to the 

testing sample would hinder energy absorption.  

It was a surprise to get the same results in the simply supported beam testing 

method. The idea behind the testing design was to allow for some deflection to occur and 

therefore, introducing an added form of energy dissipation. The NiTi-only configurations 

absorbed significantly less force per millimeter than the control samples. In this case, 

force distribution did not play the role that was expected.  

The NiTi/foam configurations performed similar to the control in the flat plate 

testing method except in the 2-2 thickness group. The foam seemed to counteract the 

negative effects of the NiTi layer in the thinner thickness groups. This compensation is 

lost as the samples get thicker. On the other hand, the same NiTi/foam configuration 

samples performed better than the control in two of the three thickness groups in the 

simply supported beam method. . The increase in absorption was not great but it was 

statistically significant. The effect peaked in the 1-2 thickness group and began to 

resemble the control in the thicker group. The gain in energy absorption could be due to 

the way the intermediate components were layered. The NiTi strip was placed facial to 

the foam. This was done to allow more deformation of the NiTi strip into the foam layer. 

The added deformation of the test design seemed to have a positive effect on the energy 

absorption of the samples.  

The foam intermediate layer mouthguard has proven to be one of the most shock 

absorbent designs in the literature (Knapik 2007). It performed as expected in the 

traditional drop tower testing method.  The improved shock absorbency tapered as the 

thickness of the samples increased. The increase in energy absorption was statistically 
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significant in the thinner groups but was indistinguishable from the control in the 2-2 

thickness group. In the simply supported beam test, the foam samples behaved much like 

the NiTi/foam samples. 

It was interesting to see that as the thickness of the samples increased the more 

their shock absorptive capabilities resembled the control. This finding is in agreement 

with a study which found that after 4mm of thickness, any gains in protection were only 

minimal (Westerman, 2000). Indeed, our findings show that the trend is not linear and 

gains in shock absorption begin to plateau around the same 4mm thickness mark. The 

aforementioned study tested EVA-only samples while this study tested EVA with 

intermediate layers.  The plateau effect observed in this study is likely due to the increase 

ratio of EVA to intermediate layer as thickness of samples increase. 

Overall, one of the two novel designs performed just as well as foam in the simply 

supported beam method. As mentioned previously, foam has been one of the most 

effective intermediate layers tested in previous studies. The improvement was only 

marginal and only in the thinner samples but it was statistically significant. 

Limitations of the Study 

In this study, the manufacturing and testing had to be done multiple times due to 

the amount of NiTi strips. The cost of the NiTi sheets and the laser cutting were very 

expensive and only 9 strips per porosity design were manufactured. This introduced  

various sources of error. One of the main sources of error was due to the multiple rounds 

of testing. The drop tower had to be set up at every round and calibrated. This became 

significant as friction could have varied from setup to setup. Friction was potentially 

introduced between the crossheads and the guide rods leading to a decrease in impact 
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force. Also, the height of the impactor potentially varied by .5mm during different rounds 

of testing. This amounts to about .021J of potential energy and may not be significant.  

Finally, variations in the sensors may have been accentuated by the multiple rounds of 

testing. 

An obstacle that was not expected was the fracture of some NiTi strips. A few of 

the 50% porosity NiTi strips fractured at the point of impact. The issue was observed 

when it happened and new samples were created and tested. The 50% porosity may have 

made the NiTi strip too weak to support the repeated impacts. The fracturing of the strips 

required more rounds of testing and therefore, introducing more potential for error.  

Recommendations for Further Research 

The simply supported beam is a testing method that offers a more complete 

picture. Other studies should use or improve on this design. One improvement may be an 

attempt at replicating the deflection experienced by the dentoalveolar complex. Further 

research involving a hard insert should attempt to quantify the area to which the impact 

force is distributed. A possible method could be using multiple strain gauges spread over 

the sample’s testing area.  

Foams and sponges come in a wide array of designs that can be tailored to the 

function of a mouthguard. Further research could concentrate on optimizing the 

composition and design of a foam.  

Future research should also focus on a more realistic impact object. One study 

tested shock absorption using multiple impact objects found in common sports like a 

hockey puck and a bat (Taekeda 2004). We attempted to test a baseball as the impactor 

but did not see a difference between the different configurations. It seems most of the 
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energy might have been absorbed by the baseball itself. Testing was discontinued early 

due to the non-differential results. Future studies may focus on varying the energy in 

which the baseball or other sport object strikes the sample.  
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Appendix A      

ANOVA for Difference in Porosities- Flat Plate 

Anova: Single Factor 
      

       SUMMARY 
      Groups Count Sum Average Variance 

  1N1 0% 10 42397.5 4239.75 103889.398 
  1N1 31% 10 44061.09 4406.109 7033.0815 
  1N1 50% 10 42391.67 4239.167 91650.1643 
  

       
       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 185151 2 92575.48 1.37099677 0.270966 3.3541308 
Within Groups 1823154 27 67524.21 

   
       Total 2008305 29         

 

Anova: Single Factor 
      

       SUMMARY 
      Groups Count Sum Average Variance 

  1N2 0% 10 34239.42 3423.942 46115.75 
  1N2 31% 10 36092.85 3609.285 34252.11 
  1N2 50% 10 31555.62 3155.562 105308.2 
  

       

       ANOVA 
      Source of Variation SS df MS F P-value F crit 

Between Groups 1040815 2 520407.4 8.408313 0.00145 3.354131 

Within Groups 1671084 27 61892.01 
   

       Total 2711899 29         
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Anova: Single Factor 
      

       SUMMARY 
      Groups Count Sum Average Variance 

  2N2 0% 10 28981.71 2898.171 19155.84 
  2N2 31% 10 29144.69 2914.469 30543.45 
  2N2 50% 10 27755.47 2775.547 63669.95 
  

       
       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 115338.6 2 57669.32 1.526057 0.235558 3.354131 

Within Groups 1020323 27 37789.75 
   

       Total 1135662 29         
 

Anova: Single 
Factor 

      
       SUMMARY 

      Groups Count Sum Average Variance 
  1NF1 0% 10 29328.58 2932.858 63171.9958 
  1NF1 31% 10 29708.15 2970.815 57468.7506 
  1NF1 50% 10 30826.16 3082.616 188836.36 
  

       
       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 121225.5 2 60612.76 0.58756618 0.562627 3.3541308 

Within Groups 2785294 27 103159 
   

       Total 2906519 29         
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Anova: Single 
Factor 

      
       SUMMARY 

      Groups Count Sum Average Variance 
  1NF2 0% 10 24405.91 2440.591 8134.955 
  1NF2 31% 10 24139.02 2413.902 8902.4 
  1NF2 50% 10 24423.71 2442.371 22846.97 
  

       

       ANOVA 
      Source of Variation SS df MS F P-value F crit 

Between Groups 5086.517 2 2543.258 0.191298 0.826996 3.354131 
Within Groups 358959 27 13294.78 

   
       Total 364045.5 29         

 

Anova: Single Factor 
      

       SUMMARY 
      Groups Count Sum Average Variance 

  2NF2 0% 10 19919.12 1991.912 10451.54 
  2NF2 31% 10 21090.43 2109.043 18295.66 
  2NF2 50% 10 21413.77 2141.377 31534.53 
  

       
       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 123683.1 2 61841.57 3.077628 0.062511 3.354131 
Within Groups 542535.6 27 20093.91 

   
       Total 666218.7 29         
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Appendix B      

ANOVA for Flat Plate Test 

Anova: Single Factor 
     

       SUMMARY 
      Groups Count Sum Average Variance 

  1-2 Con 10 29417.63 2941.763 49720 
  1N1 0% 10 42397.5 4239.75 103889.4 
  

       

       ANOVA 
      Source of 

Variation SS df MS F P-value F crit 

Between 
Groups 8423851 1 8423851 109.6789 4.37E-09 4.413873 
Within Groups 1382485 18 76804.7 

   
       Total 9806336 19         

       
       Anova: Single Factor 

     

       SUMMARY 
      Groups Count Sum Average Variance 

  1-2 Con 10 29417.63 2941.763 49720 
  1N1 31% 10 44061.09 4406.109 7033.081 
  

       
       ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 10721546 1 10721546 377.8313 1.57E-13 4.413873 

Within Groups 510777.7 18 28376.54 
   

       Total 11232324 19         
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Anova: Single Factor 

       SUMMARY 
      Groups Count Sum Average Variance 

  1-2 Con 10 29417.63 2941.763 49720 
  1N1 50% 10 42391.67 4239.167 91650.16 
  

       
       ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 8416286 1 8416286 119.0674 2.29E-09 4.413873 
Within Groups 1272331 18 70685.08 

   
       Total 9688617 19         

       
       Anova: Single Factor 

     
       SUMMARY 

      Groups Count Sum Average Variance 
  1-2 Con 10 29417.63 2941.763 49720 
  1F1  10 30752.01 3075.201 14069.41 
  

       
       ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 89028.5 1 89028.5 2.791325 0.112072 4.413873 
Within Groups 574104.7 18 31894.71 

   
       Total 663133.2 19         
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Anova: Single Factor 

       SUMMARY 
      Groups Count Sum Average Variance 

  1-2 Con 10 29417.63 2941.763 49720 
  1NF1 0% 10 29328.58 2932.858 63172 
  

       
       ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 396.4951 1 396.4951 0.007024 0.934132 4.413873 
Within Groups 1016028 18 56446 

   
       Total 1016424 19         

       Anova: Single Factor 
     

       SUMMARY 
      Groups Count Sum Average Variance 

  1-2 Con 10 29417.63 2941.763 49720 
  1NF1 31% 10 29708.15 2970.815 57468.75 
  

       
       ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 4220.094 1 4220.094 0.078741 0.78221 4.413873 
Within Groups 964698.7 18 53594.37 

   
       Total 968918.8 19         
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Anova: Single Factor 

       SUMMARY 
      Groups Count Sum Average Variance 

  1-2 Con 10 29417.63 2941.763 49720 
  1NF1 50% 10 30826.16 3082.616 188836.4 
  

       
       ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 99197.84 1 99197.84 0.831651 0.373848 4.413873 
Within Groups 2147007 18 119278.2 

   
       Total 2246205 19         

       
                     
       Anova: Single Factor 

     
       SUMMARY 

      Groups Count Sum Average Variance 
  2-2 Con 10 23542.9 2354.29 6700.647 
  1N2 0% 10 34239.42 3423.942 46115.75 
  

       
       ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 5720777 1 5720777 216.6288 1.77E-11 4.413873 
Within Groups 475347.6 18 26408.2 

   
       Total 6196125 19         
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Anova: Single Factor 

       SUMMARY 
      Groups Count Sum Average Variance 

  2-2 Con 10 23542.9 2354.29 6700.647 
  1N2 31% 10 36092.85 3609.285 34252.11 
  

       
       ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 7875062 1 7875062 384.5926 1.35E-13 4.413873 
Within Groups 368574.8 18 20476.38 

   
       Total 8243637 19         

       
       Anova: Single Factor 

     
       SUMMARY 

      Groups Count Sum Average Variance 
  2-2 Con 10 23542.9 2354.29 6700.647 
  1N2 50% 10 31555.62 3155.562 105308.2 
  

       
       ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 3210184 1 3210184 57.32021 5.32E-07 4.413873 
Within Groups 1008079 18 56004.4 

   
       Total 4218263 19         
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Anova: Single Factor 

       SUMMARY 
      Groups Count Sum Average Variance 

  2-2 Con 10 23542.9 2354.29 6700.647 
  1F1 10 23658.62 2365.862 18765.11 
  

       
       ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 669.5559 1 669.5559 0.052585 0.82121 4.413873 
Within Groups 229191.8 18 12732.88 

   
       Total 229861.4 19         

       
       Anova: Single Factor 

     
       SUMMARY 

      Groups Count Sum Average Variance 
  2-2 Con 10 23542.9 2354.29 6700.647 
  1NF2 0% 10 24405.91 2440.591 8134.955 
  

       
       ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 37239.31 1 37239.31 5.020263 0.037904 4.413873 
Within Groups 133520.4 18 7417.801 

   
       Total 170759.7 19         
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Anova: Single Factor 

       SUMMARY 
      Groups Count Sum Average Variance 

  2-2 Con 10 23542.9 2354.29 6700.647 
  1NF2 31% 10 24139.02 2413.902 8902.4 
  

       
       ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 17767.95 1 17767.95 2.277498 0.148617 4.413873 
Within Groups 140427.4 18 7801.523 

   
       Total 158195.4 19         

       
       Anova: Single Factor 

     
       SUMMARY 

      Groups Count Sum Average Variance 
  2-2 Con 10 23542.9 2354.29 6700.647 
  1NF2 50% 10 24423.71 2442.371 22846.97 
  

       
       ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 38791.31 1 38791.31 2.625681 0.122534 4.413873 
Within Groups 265928.6 18 14773.81 

   
       Total 304719.9 19         

       
        
 
 
 
 
 

     



62 

 

Anova: Single Factor 

       SUMMARY 
      Groups Count Sum Average Variance 

  2-3 Con 10 19625.59 1962.559 8010.189 
  2N2 0% 10 28981.71 2898.171 19155.84 
  

       
       ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 4376849 1 4376849 322.2295 6.17E-13 4.413873 
Within Groups 244494.3 18 13583.02 

   
       Total 4621343 19         

       
       Anova: Single Factor 

     
       SUMMARY 

      Groups Count Sum Average Variance 
  2-3 Con 10 19625.59 1962.559 8010.189 
  2N2 31% 10 29144.69 2914.469 30543.45 
  

       
       ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 4530663 1 4530663 235.0317 8.94E-12 4.413873 
Within Groups 346982.7 18 19276.82 

   
       Total 4877646 19         
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Anova: Single Factor 

       SUMMARY 
      Groups Count Sum Average Variance 

  2-3 Con 10 19625.59 1962.559 8010.189 
  2N2 50% 10 27755.47 2775.547 63669.95 
  

       
       ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 3304747 1 3304747 92.20817 1.66E-08 4.413873 
Within Groups 645121.3 18 35840.07 

   
       Total 3949869 19         

       
       Anova: Single Factor 

     
       SUMMARY 

      Groups Count Sum Average Variance 
  2-3 Con 10 19625.59 1962.559 8010.189 
  1F1 10 21040.08 2104.008 11234.27 
  

       
       ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 100039.1 1 100039.1 10.39667 0.004703 4.413873 
Within Groups 173200.1 18 9622.229 

   
       Total 273239.2 19         
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Anova: Single Factor 

       SUMMARY 
      Groups Count Sum Average Variance 

  2-3 Con 10 19625.59 1962.559 8010.189 
  2NF2 0% 10 19919.12 1991.912 10451.54 
  

       
       ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 4307.993 1 4307.993 0.466694 0.503211 4.413873 
Within Groups 166155.6 18 9230.867 

   
       Total 170463.6 19         

       
       Anova: Single Factor 

     
       SUMMARY 

      Groups Count Sum Average Variance 
  2-3 Con 10 19625.59 1962.559 8010.189 
  2NF2 31% 10 21090.43 2109.043 18295.66 
  

       
       ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 107287.8 1 107287.8 8.156956 0.010494 4.413873 
Within Groups 236752.6 18 13152.92 

   
       Total 344040.4 19         
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Anova: Single Factor 

       SUMMARY 
      Groups Count Sum Average Variance 

  2-3 Con 10 19625.59 1962.559 8010.189 
  2NF2 50% 10 21413.77 2141.377 31534.53 
  

       
       ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 159879.4 1 159879.4 8.086005 0.010779 4.413873 
Within Groups 355902.5 18 19772.36 

   
       Total 515781.8 19         
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Appendix C 

Percent Difference in Thickness 

 

 

configuration thickness % diff 

1-2 Con 3.36 0.00 

1N1 0% 2.44 27.47 

1N1 31% 2.46 26.82 

1N1 50% 2.50 25.74 

1F1 2.92 13.01 

1NF1 0% 3.24 3.69 

1NF1 31% 3.16 5.98 

1NF1 50% 3.05 9.32 
 

configuration thickness % diff 

2-2 Con 4.35 0.00 

1N2 0% 3.46 20.57 

1N2 31% 3.39 22.14 

1N2 50% 3.53 18.94 

1F2 3.99 21.38 

1NF2 0% 4.10 5.77 

1NF2 31% 4.16 4.39 

1NF2 50% 4.01 7.77 
 

configuration thickness % diff 

2-3 Con 5.04 0.00 

2N2 0% 4.50 10.71 

2N2 31% 4.52 10.38 

2N2 50% 4.45 11.81 

2F2 4.87 3.41 

2NF2 0% 5.30 -5.24 

2NF2 31% 5.16 2.75 

2NF2 50% 5.07 -0.62 
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Appendix D    

 Curve Fit Graph for Simply Supported Beam Test 
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Appendix E      

ANOVA for Difference in Porosities-Simply Supported Beam 

Anova: Single Factor 
     

       
SUMMARY 

      
Groups Count Sum Average Variance 

  
1N1 0% 10 

2.986309
05 0.2986309 0.000153 

  
1N1 31% 10 

2.900956
6 0.2900956 0.000109 

  
1N1 50% 10 

2.958574
17 0.2958574 0.000332 

  

       

       
ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 

0.000
37913 2 0.000189 0.958604 

0.3960
96 

3.35413
1 

Within Groups 
0.005

33935 27 0.000197 
   

       
Total 

0.005
71849 29     

 
  

       

        
 
Anova: Single Factor 

     

       
SUMMARY 

      
Groups Count Sum Average Variance 

  
1N2 0% 10 2.34921 0.234921 2.85E-05 

  
1N2 31% 10 2.3272 0.23272 4.01E-05 

  
1N2 50% 10 

2.386222
1 0.23862221 0.000118 
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ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 

0.000
17793 2 

8.89657E-
05 1.431172 

0.2565
89 

3.3541
31 

Within Groups 
0.001
6784 27 

6.21628E-
05 

   

       
Total 

0.001
85633 29         

       
Anova: Single Factor 

     

       
SUMMARY 

      
Groups Count Sum Average Variance 

  
2N2 0% 10 1.87056 0.187056 4.86E-05 

  
2N2 31% 10 1.88948 0.188948 6.28E-05 

  
2N2 50% 10 

1.958298
3 0.19582983 0.000129 

  

       

       
ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 

0.000
4264 2 

0.00021319
9 2.659245 

0.0882
72 

3.3541
31 

Within Groups 
0.002

16466 27 
8.01727E-

05 
   

       
Total 

0.002
59106 29         

 
Anova: Single Factor 

     

       
SUMMARY 

      
Groups Count Sum Average Varia
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nce 

1NF1 0% 10 2.70007 0.270007 
0.00

0157 
  

1NF1 31% 10 2.75036 0.275036 
0.00

0387 
  

1NF1 50% 10 2.846207 0.284621 
0.00
032 

  

       

       
ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 

0.001
102 2 0.000551 

1.91
2221 0.167234 3.354131 

Within Groups 
0.007

783 27 0.000288 
   

       
Total 

0.008
885 29         

       

       

       
Anova: Single Factor 

     

       
SUMMARY 

      
Groups Count Sum Average 

Varia
nce 

  
1NF2 0% 10 2.29163 0.229163 

0.00
0325 

  
1NF2 31% 10 2.27681 0.227681 

0.00
0296 

  
1NF2 50% 10 2.399007 0.239901 

0.00
0184 

  

       

       
ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 

0.000
889 2 0.000445 

1.65
8279 0.209282 3.354131 



71 

 

Within Groups 
0.007

24 27 0.000268 
   

       
Total 

0.008
13 29         

       

       
Anova: Single Factor 

     

       
SUMMARY 

      
Groups Count Sum Average 

Varia
nce 

  
2NF2 0% 10 1.84353 0.184353 

9.74
E-05 

  
2NF2 31% 10 1.83386 0.183386 

5.42
E-05 

  
2NF2 50% 10 1.899717 0.189972 

7.61
E-05 

  

       

       
ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 

0.000
253 2 0.000126 

1.66
623 0.207806 

3.3541
31 

Within Groups 
0.002

049 27 7.59E-05 
   

       
Total 

0.002
302 29         
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Appendix F 

ANOVA for Simply Supported Beam Test 

 
Anova: 
Single 
Factor 

             SUMMAR
Y 

      Groups Count Sum Average Variance 
  

1-2 con 10 2.56 0.256157 
0.00010

2 
  

1N1 0% 10 2.986 
0.29863090

5 
0.00015

3 
                ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 0.00902016 1 0.009020163 

70.7861
5 1.187E-07 4.4138 

Within 
Groups 0.00229371 18 

0.00012742
8 

          Total 0.01131387 19         

               
Anova: 
Single 
Factor 

             SUMMAR
Y 

      Groups Count Sum Average Variance 
  

1-2 con 10 2.56 0.256157 
0.00010

2 
  

1N1 31% 10 2.900 0.2900957 
0.00010

9 
                ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 0.00575917 1 0.00575917 54.4609 7.5836E-07 4.4138 
Within 
Groups 

0.00190347
9 18 

0.00010574
9 

          
Total 

0.00766265
6 19         

              Anova: 
Single 
Factor 
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SUMMAR
Y 

      Groups Count Sum Average Variance 
  

1-2 con 10 2.56157 0.256157 
0.00010

2 
  

1N1 50% 10 2.958574 0.2958574 
0.00033

2 
                ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 

0.00788060
9 1 

0.00788060
9 

36.3243
9 1.0665E-05 

4.41387340
5 

Within 
Groups 

0.00390511
6 18 

0.00021695
1 

          
Total 

0.01178572
5 19         

              Anova: 
Single 
Factor 

             SUMMAR
Y 

      Groups Count Sum Average Variance 
  

1-2 con 10 2.56157 0.256157 
0.00010

2 
  

1F1  10 3.03943 0.303943 
0.00047

4 
         ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 0.01141750 1 0.01141750 39.5965 6.2247E-06 4.41387340 
Within 
Groups 0.00519022 18 0.00028834 

          Total 0.01660773 19         

               
 
 
 
 
Anova: 
Single 
Factor 

             SUMMAR
Y 

      Groups Count Sum Average Variance 
  1-2 con 10 2.56157 0.256157 0.00010

  



74 

 

2 

1NF1 0% 10 2.70007 0.270007 
0.00015

7 
                ANOVA 

      Source of 
Variation SS df MS F P-value 

F 
crit 

Between 
Groups 0.00095911 1 0.00095911 7.38511 0.0141150 4.4138 
Within 
Groups 0.00233768 18 0.00012987 

          Total 0.00329679 19         

              Anova: 
Single 
Factor 

             SUMMAR
Y 

      Groups Count Sum Average Variance 
  1-2 con 10 2.56157 0.256157 0.00010 
  1NF1 31% 10 2.75036 0.275036 0.00038 
                ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 0.00178208 1 0.00178208 7.27776 0.0147223 4.4138 
Within 
Groups 0.00440760 18 0.00024486 

   
Total 

0.00618968
4 19         

       Anova: 
Single 
Factor 

             SUMMAR
Y 

      Groups Count Sum Average Variance 
  

1-2 con 10 2.56157 0.256157 
0.00010

2 
  

1NF1 50% 10 
2.846206

7 0.28462067 0.00032 
                ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 

0.00405090
3 1 

0.00405090
3 

19.1865
9 

0.0003608
9 

4.41387340
5 

Within 
Groups 

0.00380037
6 18 

0.00021113
2 

          Total 0.00785127 19         
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8 
 

Anova: Single Factor 
     

       SUMMARY 
      Groups Count Sum Average Variance 

  2-2 con 10 2.09275 0.209275 6.3E-05 
  1N2 0% 10 2.34921 0.234921 2.85E-05 
  

       

       ANOVA 
      Source of 

Variation SS df MS F P-value F crit 

Between Groups 0.003289 1 0.003289 71.86609 1.06E-07 4.413873 
Within Groups 0.000824 18 4.58E-05 

   

       Total 0.004112 19         

       
       Anova: Single Factor 

     

       SUMMARY 
      Groups Count Sum Average Variance 

  2-2 con 10 2.09275 0.209275 6.3E-05 
  1N2 31% 10 2.3272 0.23272 4.01E-05 
  

       

       ANOVA 
      Source of 

Variation SS df MS F P-value F crit 

Between Groups 0.002748 1 0.002748 53.30132 8.79E-07 4.413873 
Within Groups 0.000928 18 5.16E-05 

   

       Total 0.003676 19         

       
       Anova: Single Factor 

     

       SUMMARY 
      Groups Count Sum Average Variance 

  2-2 con 10 2.09275 0.209275 6.3E-05 
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1N2 50% 10 2.386222 0.238622 0.000118 
  

       

       ANOVA 
      Source of 

Variation SS df MS F P-value F crit 

Between Groups 0.004306 1 0.004306 47.63417 1.88E-06 4.413873 
Within Groups 0.001627 18 9.04E-05 

   

       Total 0.005934 19         

       

       Anova: Single Factor 
     

       SUMMARY 
      Groups Count Sum Average Variance 

  2-2 con 10 2.09275 0.209275 6.3E-05 
  1F2 10 2.37155 0.237155 9.57E-05 
  

       

       ANOVA 
      Source of 

Variation SS df MS F P-value F crit 

Between Groups 0.003886 1 0.003886 48.97878 1.56E-06 4.413873 
Within Groups 0.001428 18 7.94E-05 

   

       Total 0.005315 19         

       
       Anova: Single Factor 

     

       SUMMARY 
      Groups Count Sum Average Variance 

  2-2 con 10 2.09275 0.209275 6.3E-05 
  1NF2 0% 10 2.29163 0.229163 0.000325 
  

       

       ANOVA 
      Source of 

Variation SS df MS F P-value F crit 

Between Groups 0.001978 1 0.001978 10.20358 0.005025 4.413873 
Within Groups 0.003489 18 0.000194 
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       Total 0.005466 19         

       
       Anova: Single Factor 

     

       SUMMARY 
      Groups Count Sum Average Variance 

  2-2 con 10 2.09275 0.209275 6.3E-05 
  1NF2 31% 10 2.27681 0.227681 0.000296 
  

       

       ANOVA 
      Source of 

Variation SS df MS F P-value F crit 

Between Groups 0.001694 1 0.001694 9.445376 0.00655 4.413873 
Within Groups 0.003228 18 0.000179 

   

       Total 0.004922 19         

       
       Anova: Single Factor 

     

       SUMMARY 
      Groups Count Sum Average Variance 

  2-2 con 10 2.09275 0.209275 6.3E-05 
  1NF2 50% 10 2.399007 0.239901 0.000184 
  

       

       ANOVA 
      Source of 

Variation SS df MS F P-value F crit 

Between Groups 0.00469 1 0.00469 37.95136 8.13E-06 4.413873 
Within Groups 0.002224 18 0.000124 

   

       Total 0.006914 19         
 

Anova: Single 
Factor 

      
       SUMMARY 
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Groups Count Sum Average Variance 
  2-3 con 10 1.979266 0.197927 2.71E-05 
  2N2 0% 10 1.87056 0.187056 4.86E-05 
  

       
       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.000591 1 0.000591 15.60399 0.000938 4.413873 
Within Groups 0.000682 18 3.79E-05 

   
       Total 0.001272 19         

       
       Anova: Single 
Factor 

      
       SUMMARY 

      Groups Count Sum Average Variance 
  2-3 con 10 1.979266 0.197927 2.71E-05 
  2N2 31% 10 1.88948 0.188948 6.28E-05 
  

       
       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.000403 1 0.000403 8.969423 0.007771 4.413873 
Within Groups 0.000809 18 4.49E-05 

   
       Total 0.001212 19         

       
       Anova: Single 
Factor 

      
       SUMMARY 

      Groups Count Sum Average Variance 
  2-3 con 10 1.979266 0.197927 2.71E-05 
  2N2 50% 10 1.958298 0.19583 0.000129 
  

       
       ANOVA 

      Source of Variation SS df MS F P-value F crit 
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Between Groups 2.2E-05 1 2.2E-05 0.281535 0.602183 4.413873 

Within Groups 0.001405 18 7.81E-05 
   

       Total 0.001427 19         

       
       Anova: Single 
Factor 

      
       SUMMARY 

      Groups Count Sum Average Variance 
  2-3 con 10 1.979266 0.197927 2.71E-05 
  2F2 10 1.931465 0.193146 2.48E-05 
  

       
       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.000114 1 0.000114 4.402978 0.050255 4.413873 
Within Groups 0.000467 18 2.59E-05 

   
       Total 0.000581 19         

       

       Anova: Single 
Factor 

      
       SUMMARY 

      Groups Count Sum Average Variance 
  2-3 con 10 1.979266 0.197927 2.71E-05 
  2NF2 0% 10 1.84353 0.184353 9.74E-05 
  

       
       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.000921 1 0.000921 14.80331 0.00118 4.413873 
Within Groups 0.00112 18 6.22E-05 

   
       Total 0.002041 19         

       
       Anova: Single 
Factor 
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       SUMMARY 
      Groups Count Sum Average Variance 

  2-3 con 10 1.979266 0.197927 2.71E-05 
  2NF2 31% 10 1.83386 0.183386 5.42E-05 
  

       
       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.001057 1 0.001057 25.99727 7.5E-05 4.413873 
Within Groups 0.000732 18 4.07E-05 

   

       Total 0.001789 19         

       
       Anova: Single 
Factor 

      
       SUMMARY 

      Groups Count Sum Average Variance 
  2-3 con 10 1.979266 0.197927 2.71E-05 
  2NF2 50% 10 1.899717 0.189972 7.61E-05 
  

       
       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.000316 1 0.000316 6.134964 0.023404 4.413873 
Within Groups 0.000928 18 5.16E-05 

   
       Total 0.001245 19         
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