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Abstract 

Prevalence of Cariogenic Microbial Flora Among Scardovia Wiggsiae-Positive and Negative 

Patients  

By: 

Amy Siu-Yin Tam 

Dr. Karl Kingsley, Examination Committee Chair 
Professor of Biomedical Sciences 
University of Nevada, Las Vegas 

School of Dental Medicine 

The formation of dental caries (cavities) is a complex, multi-dimensional process that necessarily 

involves many risk factors – including the acquisition and colonization of cariogenic oral 

bacteria. The most frequently associated oral pathogens are the acid-producing and acid-tolerant 

oral streptococcus species, such as Streptococcus mutans (S. mutans or SM). Many studies have 

established and confirmed the critical role of the formation of biofilm in the virulence of S. 

mutans, and the critical role this may play in determining the balance of the oral microbiome 

towards health or disease.  

More recent efforts have discovered a novel cariogenic pathogen, Scardovia wiggsiae (S. 

wiggsiae or SW) among the oral bacteria of children with severe early childhood caries. This 

pathogen has also been confirmed among the oral microbiota among patients with increased 

caries risk, such as orthodontic patients. Despite these efforts, much remains unknown about the 
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prevalence of this organism and the potential interactions with other cariogenic bacteria that 

might influence oral health or disease.  

 

Studies from this group have surveyed the prevalence of oral microbial pathogens, such as S. 

mutans among pediatric and orthodontic populations. In addition, pilot studies to evaluate the 

presence of S. wiggsiae among this patient population have also emerged.  However, to date few 

(if any) of these studies have performed simultaneous screenings of other organisms, such as S. 

mutans and S. wiggsiae to determine if the presence of either organism might be associated with 

differences in the prevalence of the other.  The primary goal of this study was to determine the 

types of oral microbial associations that may exist among S. wiggsiae-positive and -negative 

patient samples. 
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Chapter 1 

 Introduction 

Background and Significance 

About half of the general population is affected by dental caries [1]. High levels of Streptococcus 

mutans (SM) associated with dental decay appear to be the causative agent of caries [2]. Dental 

caries develop when early colonizers from the Streptococcus and Actinomyces species adhere to 

the tooth pellicle. Late colonizers including Selenomonas noxia (SN), Tannerella forsythia (TF), 

Fusobacterium nucleatum (FN), and Treponema denticola (TD) contribute to the progression of 

dental caries [3]. Recent evidence has identified another cariogenic pathogen, Scardovia 

wiggsiae (SW), present in the oral flora of a smaller subset of dental patients [4]. Although 

studies have been conducted to study the prevalence of SW in both pediatric and adult 

populations, the prevalence of cariogenic microbial flora among SW-positive and -negative 

orthodontic patients have not been studied. The aim of this study was to assess the prevalence of 

oral microbial flora including SN, SM, TF, FN, AA in SW-positive and -negative patients within 

a dental school population. To better study the oral microbial associations that exist between SW, 

this paper is divided into chapters that will help give further insight on these relationships. 

Chapters 2, 3, and 4 are individual studies that have been published in separate journals that help 

elucidate such relationships.  

 

Selenomonas noxia and Streptococcus mutans remain two of the most prevalent cariogenic 

pathogens to date. They are associated with poor oral health and oral prevalence of these 

organisms may be useful as biomarkers to determine patient oral health. Current studies reveal 
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novel insights into the epidemiology of S. wiggsiae, although few studies have explored the oral 

microbial ecology with respect to this oral pathogen.  Based upon the lack of information 

regarding the oral microbial ecology, this study screened an existing saliva repository to more 

accurately assess the microbial flora present (or absent) including S. wiggsiae and more 

specifically S. noxia and S. mutans. The findings from this study are published in the 

Microbiology Research Journal International and the Journal of Advances in Microbiology and 

presented in Chapters 2 and 3 of this paper respectively. 

 

The prevalence of S. wiggsiae in the context of additional caries risk factors, such as orthodontic 

treatment has yet to be fully explored.  Fixed orthodontic appliances influence the quantity and 

quality of cariogenic microbial flora. Fixed appliances may prevent the oral cavity’s innate 

ability to self cleanse through salivary flow and soft tissue movements of the cheeks, lips, and 

tongue. Standard oral hygiene practices may not be sufficient to remove plaque accumulation on 

teeth especially around bracket interfaces. Specific changes in the oral environment results in 

increased plaque accumulation, microbial colonization, and development of pre-carious and 

carious lesions [5]. About 73% of orthodontic patients develop at least one new lesion during the 

duration of their orthodontic treatment [6,7]. Thus, it is important to understand how dental 

caries form and which causal bacteria are involved in the process so that clinicians are better able 

to assess caries risk factors and find preventative techniques to reduce the disease process. 

Recent studies at this institution have characterized the microbial ecology of Scardovia wiggsiae-

positive and -negative saliva samples within a dental school setting. The findings from this study 

are published in the Journal of Scientific Discovery and presented in Chapter 4 of this paper. 
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Materials and Methods 

A retrospective analysis of previously collected saliva samples from pediatric and adult patients 

will be used. Samples from the previous study (Protocol OPRS #1502-5068M: The Prevalence of 

Oral Microbes in Saliva from the University of Nevada, Las Vegas School of Dental Medicine 

(SDM) pediatric and adult clinical population) approved on February 6, 2105 will be used. 

 

In brief, patients from the pediatric, orthodontic, and general UNLV-SDM clinics were asked to 

participate in the study. Patients (and parents or guardians) who participated in the study were 

required to provide informed consent, while pediatric patients were required to provide pediatric 

assent (written consent to participate). Exclusion criteria included any parent, guardian or patient 

(pediatric or adult) who declined to participate. Subjects who agreed to participate were given a 

small, sterile saliva collection container, 50mL sterile polypropylene tube (Fisher Scientific: Fair 

Lawn, New Jersey, USA) and asked to spit into it for a minute. Samples were stored on ice until 

transport to a biomedical laboratory for analysis. Each saliva sample was assigned a unique, 

randomly generated number to prevent research bias. On all subjects, the following data was 

collected concurrently: gender, race/ethnicity, age, and number of decayed, missing, or filled 

teeth (DMFT). 

 

For this project, DNA was isolated from these samples and subsequently screened for Scardovia 

wiggsiae (SW), Streptococcus mutans (SM), Selenomonas noxia (SN), Tannerella forsythia 

(TF), Fusobacterium nucleatum (FN) using real time polymerase chain reaction (qPCR) and 

primers specifically designed to distinguish these organisms.  
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Research Questions 

1. Does the prevalence of cariogenic microbial flora vary in SW-positive patients? 

H0: The prevalence of cariogenic microbial flora in SW-positive patients is similar.  

HA: The prevalence of cariogenic microbial flora in SW-positive patients is different.  

2. Does the prevalence of SM vary in SW-positive and negative patients? 

H0:  The prevalence of SM in SW-positive and negative patients is similar. 

HA: The prevalence of SM in SW-positive and negative patients is different. 

 

Research Design 

The primary research design of this study will be retrospective and observational in nature. Only 

existing saliva samples collected in UNLV clinics will be analyzed in the study. Since no new 

samples are to be collected, a request for an IRB exemption will be filed. The main outcome 

variable will consist of a binary PCR screening result: positive (+) or negative (-). Additional 

information can be evaluated regarding relative levels (CFU/mL of saliva). The main predictor 

variable will consist of orthodontic treatment. The confounding variables will consist of 

demographic variables including age, gender, race/ethnicity, and some basic clinical and health 

information.  

Statistical Analysis 

Because the difference in prevalence between groups (SW-positive, SW-negative) are to be 

measured from a cross-section of samples taken from a cohort or convenience sample, a 
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preliminary analysis using a two-tailed t-test can be reasonably employed to discern any 

statistical difference. As long as the sample size is at least moderate from each group (~20), quite 

severe departures from normality make little practical difference in the conclusions reached from 

these analyses. In addition with a sample size of (~20) a chi-square can easily be used to discern 

any statistical correlation between prevalence and age of the patient.  

 

The analyses involving multiple two sample t-tests have a higher probability of Type I error, 

leading to false rejection of the null hypothesis, H0.  To confirm the effects observed from these 

experiments and minimize the possibility of Type I error, further analysis of the data will be 

facilitated using ANOVA with SPSS (Chicago, IL) to more accurately assess relationships and 

statistical significance among and between groups.   
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Chapter 2 

Oral Microbial Ecology Of Selenomonas Noxia And Scardovia Wiggsiae 

 

Introduction 

Selenomonas noxia is an organism within the Veillonella family, which is widely distributed 

among various animal species [1-3].  Although S. noxia is commonly found in the 

gastrointestinal tract, it is also found in the oral cavity and may be found in higher levels among 

patients with poor oral health [4-6]. The recent developments of a rapid PCR-based detection 

assay and anaerobic culturing conditions have made the screening for oral S. noxia more 

accessible and cost effective [7-9].  

 

Many patients with poor oral health often harbor multiple disease-causing organisms that may 

contribute to one or more pathologies within the oral cavity [10-12]. Recently, a new oral 

pathogen Scardovia wiggsiae was discovered in patients with poor oral health [13,14]. Although 

some screenings for Scardovia are now beginning to emerge, much remains to be discovered 

about the oral ecology and microbial interactions that facilitate or inhibit the growth of this 

organism [15-17].  

 

Based upon the lack of information regarding the oral microbial ecology of these specific 

organisms, the primary objective of this study was to screen an existing saliva repository to more 

accurately assess the microbial flora present (or absent) with S. wiggsiae, with specific emphasis 

on S. noxia. 

 

Methodology 

Project Approval 

Approval for this study was granted by the Institutional Review Board (IRB) and the Office for 

the Protection of Human Subjects (OPRS) under Protocol #875879-1 “Selenomonas noxia 
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prevalence in DNA previously isolated from pediatric patient saliva samples” in March 2016. 

The retrospective nature of this study qualified as “exempt” according to federal regulatory 

statute 45CFR46.101(b).   

 

The saliva repository was originally created under the OPRS-IRB Protocol #1305-4466M “The 

Prevalence of Oral Microbes in Saliva from the UNVL School of Dental Medicine Pediatric and 

Adult Clinical Population” approved in June 2013. Briefly, this involved the collection of 

unstimulated saliva from pediatric and adult patients from the University of Nevada, Las Vegas 

(UNLV) School of Dental Medicine (SDM) dental clinic. Patients (and parents or guardians) 

were required to provide informed consent, while pediatric patients were also required to provide 

pediatric assent (written consent to participate). Exclusion criteria included any parent, guardian 

or patient (pediatric or adult) who declined to participate.  

 

Saliva Repository 

During the original saliva collection, demographic information (age, sex, and race/ethnicity) and 

saliva samples were obtained from approximately 250 patients. In brief, each study participant 

was provided a sterile 50 mL saliva collection container with a target of collecting 5mL. All 

samples were placed on ice until transfer and storage in the biomedical research laboratory. Each 

sample was given a unique, randomly generated unique identifier to prevent any personal or 

patient information from accompanying the sample outside of the clinic. No patient-specific 

identifying information was subsequently available to any member of this research project. 

 

DNA Isolation 

The current study involved a retrospective analysis of saliva samples available in the repository. 

All the available (remaining) samples (n=240) were located and then evaluated to ascertain if 

enough saliva remained for the DNA isolation required to perform the PCR screening.  Out of 

the 240 samples identified, a smaller subset off n=162 contained sufficient volume (>0.5 mL) for 

inclusion in this study.  Isolation of DNA was facilitated using the Amersham Bioscience 
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(Buckinghamshire, UK) GenomicPrep DNA isolation kit. The DNA from each sample was 

suspended in 50 uL of DNA hydration solution from Amersham Bioscience (Buckinghamshire, 

UK) and stored at 4C. Quality and quantity of the DNA isolated from each sample was 

calculated using measurements of absorbance at 260 and 280 nm to calculate the A260:A280 

ratio. 

 

PCR Screening 

All DNA isolates with sufficient quantity (1 ng/uL or greater) and sufficient quality (A260:A280 

ratio >1.65) were screened using qPCR to assess the presence of several oral microbial species.  

The qPCR used an initial incubation of 50C for 2 minutes, followed by 10 minute denaturation at 

95C and 40 cycles at 95C for 15 seconds and 60C for 1 minute.  The DNA positive controls were 

S. noxia reference strains obtained from American Type Culture Collection (ATCC)-43541,-

51893,-700225), as previously described [7]. The positive DNA controls for S. wiggsiae were 

derived from previously identified SW-positive samples, as previously described [15,18,19]. 

TaqMan universal PCR master mix with the following primers from Eurofins MWG Operon 

(Huntsville, AL) was used, resulting in a final probe concentration of 0.2 uM with 5 uL of 

template (sample) DNA in each reaction.  Sterile, nuclease-free distilled water from Promega 

(Madison, WI) was used to adjust the final reaction volume to 25 uL. Each screening was 

performed in duplicate.  

 

S. noxia Forward primer- SNF1, TCTGGGCTACACACGTACTACAATG (25 bp)  

S. noxia Reverse primer- SNR1, GCCTGCAATCCGAACTGAGA (20 bp) 

SnP[ 6 ~ FAM]CAGAGGGCAGCGAGAGAGTGATCTTAAGC [TAMRA] 

 

S. wiggsiae Forward primer-SW, GTGGACTTTATGAATAAGC (19 bp)  

S. wiggsiae Reverse primer- SW, CTACCGTTAAGCAGTAAG (18 bp) 

SwP[ 6 ~ FAM] 5’-AGCGTTGTCCGGATTTATT-3’G [TAMRA] 
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The selected probes (SnP, SwP) were labeled with the reporter dye 6-carboxyfluorescein (FAM) 

at the 5’-end and with the reporter dye tetramethyl-6-carboxyrhodamine (TAMRA) at the 3’-end.  

 

Statistical Analysis 

The information regarding this retrospective sample were summarized using simple descriptive 

statistics and analyzed using Chi Square (χ2) analysis software from GraphPad (San Diego, CA) 

[20]. 

 

Results  

All potential samples (n=162) were identified and their demographic information was compiled 

for analysis (Table 1). In brief, the study sample was comprised of nearly equal numbers of 

males and females, which is similar to the patient composition from the clinic population 

(p=0.5484). The demographic analysis by race or ethnicity, however, revealed the overwhelming 

majority of samples were derived from minority patients (mostly Hispanic), which is 

significantly higher than the proportion of minorities from the clinic population (p<0.001). The 

ages of patients included in the study sample ranged from 5 – 73 years of age, compared with 2 – 

91 years of age from the general clinic population. 

 

 

 

 

 

 

 

 



 11 

Table 1. Study Sample Demographic Information 

 Sample (n=162) UNLV-SDM Clinic Analysis 

Sex    

Female n=87 (53.7%) 50.9% χ2=0.360 d.f.=1 

Male n=75 (46.3%) 49.1% p=0.5484 

Race/Ethnicity    

White n=26 (16.0%) 41.4% χ2=25.837 d.f.=1 

Minority n=136 (83.9%) 58.6% p<0.001 

Hispanic n=91 (56.2%) 35.9%  

Black n=24 (14.8%) 13.1%  

Asian/Other n=21 (13.0%) 4.2%  

    

Age Range 5 – 73 yrs. 2 – 91 yrs.  

  

DNA from each of the study samples was extracted, which revealed many samples had either 

insufficient quantity or insufficient quality for further processing (Table 2). More specifically, 

out of the total number of potential samples identified, only n=48/162 or 29.6% had sufficient 

DNA quality with an absorbance ration (A260:A280) ratio within the manufacturer range 1.70 – 

2.00 and sufficient DNA quantity (100-1000 ng/uL) for further processing. 

 

Table 2. Analysis of DNA from Study Sample 

 DNA Recovery DNA Quantity DNA Quality 

Study Samples n=48/162 (29.6%) 631.2 ng/uL+/-51.3 A260:A280 ave=1.72 

Manufacturer 90-95% 100-1000 ng/uL A260:A280 1.70-2.00 

 

Each of the samples containing DNA of sufficient quantity and quality was processed using 

qPCR (Figure 1).  The analysis of this screening revealed that only a small proportion of the 

overall study sample harbored DNA specific for S. noxia (n=6/42 or 14.3%). This data was 
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significantly different for DNA specific to S. wiggsiae, which was found in a much higher 

number of patient samples (n=27.42 or 64.3%). These results were verified by subsequent 

screening in duplicate. 

 

 

Figure 1. qPCR Screening for Selenomonas and Scardovia. qPCR screening of patient samples 

revealed differing prevalence of these organisms, with 14.3% of patient samples testing positive 

for DNA from S. noxia, while 64.3% tested positive for S. wiggsiae.  

 

A more detailed analysis revealed that none of the samples that tested positive for S. wiggsiae 

(n=27/42 or 64%) harbored DNA for S. noxia (Figure 2). Conversely, the samples that tested 

positive for S. noxia also tested negative for S. wiggsiae (n=15/42 or 35%).   In addition, 

although A. actinomycetemcomitans was only present in a small subset of samples, this organism 

was only found among SW-positive samples.  Other organisms, including T. forsythia (TF), and 

F.nucleatum (FN) were present in both SW-positive and SW-negative samples although their 

prevalence differed greatly. 

S. noxia qPCR screening results

SN-positive n=6/42 (14.3%)
SN-negative n=36/42 (85.7%)

S. wiggsiae qPCR screening results

SN-positive n=27/42 (64.3%)
SN-negative n=15/42 (35.7%)
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Figure 2. Analysis of SW- and SN-Positive Samples.  Detailed analysis revealed that SW-

positive samples (64%) did not harbor SN, while SN-positive samples (14%) did not harbor SW. 

Differential results were obtained from screening for other organisms, including T. forsythia 

(TF), F. nucleatum (FN) and A. actinomycetemcomitans. 

 

Conclusion 

This study may be the first to present oral microbial data which suggest SW may participate in 

direct or indirect bacterial interactions that influence the potential for other organisms to flourish 

within the oral microbiome.  This data may suggest that SN and SW may occupy distinct, non-

overlapping niches, which may differ significantly from the interactions observed with 

A.actinomycetemcomitans, F. nucleatum, and T. forsythia. Further research will be needed to 

fully elucidate these interactions and to explore the potential ramifications for oral microbial 

ecology and the implications for predictive saliva screening. 

 

Discussion 

The primary objective of this study was to screen an existing saliva repository to more accurately 

assess the microbial flora present (or absent) with S. wiggsiae, with specific emphasis on S. 

noxia. This screening revealed that more than half of the samples evaluated harbored S. 

wiggsiae, with a much smaller subset of samples testing positive for S. noxia.  Interestingly, none 
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of the Scardovia-positive samples had detectable levels of DNA for S. noxia, while none of the 

Selenomonas-positive samples tested positive for S. wiggsiae. 

 

These results may suggest that some oral microbial communities may facilitate the growth of 

specific species, while inhibiting the growth of others [21,22]. The observation that A. 

actinomycetemcomitans was found only among the Scardovia-positive samples, while 

differential results were observed for F. nucleatum, and T. forsythia only strengthens the 

evidence for this hypothesis [23,24]. While more evidence will be needed to validate these 

findings, this study may be the first to present oral microbial data which suggest that either S. 

wiggsiae or S. noxia (or possibly both) may participate in direct or indirect bacterial interactions 

that influence the potential for other organisms to flourish within the oral microbiome. 

 

Due to the retrospective nature of this study, some limitations were inherent and should also be 

considered.  For example, the length of storage time for these saliva samples may have varied 

greatly, which has been demonstrated to significantly affect both the quality and quantity of 

DNA isolates [25,26]. In addition, the higher proportion of minority patient samples from this 

public dental school patient population may also have influenced these results – mainly due to 

the limited resources and low socioeconomic status of the majority of these clinic patients [27-

29]. 
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Chapter 3 

Screening a Saliva Repository for Scardovia wiggsiae and Streptococcus mutans: A Pilot 
Study  

 

Introduction 

The formation of dental caries (cavities) is a complex, multi-dimensional process that necessarily 

involves many risk factors – including the acquisition and colonization of cariogenic oral 

bacteria [1,2]. The most frequently associated oral pathogens are the acid-producing and acid-

tolerant oral streptococcus species, such as Streptococcus mutans (S. mutans) [3,4]. Many studies 

have established and confirmed the critical role of the formation of biofilm in the virulence of S. 

mutans, and the critical role this may play in determining the balance of the oral microbiome 

towards health or disease [5-7].  

 

More recent efforts have discovered a novel cariogenic pathogen, Scardovia wiggsiae (S. 

wiggsiae) among the oral bacteria of children with severe early childhood caries [8-10]. This 

pathogen has also been confirmed among the oral microbiota among patients with increased 

caries risk, such as orthodontic patients [11,12]. Despite these efforts, much remains unknown 

about the prevalence of this organism and the potential interactions with other cariogenic 

bacteria that might influence oral health or disease [13-15].  

 

Studies from this group have surveyed the prevalence of oral microbial pathogens, such as S. 

mutans among pediatric and orthodontic populations [16,17]. In addition, pilot studies to 

evaluate the presence of S. wiggsiae among this patient population have also emerged [12,18,19].  

However, to date few (if any) of these studies have performed simultaneous screenings of both S. 

mutans and S. wiggsiae to determine if the presence of either organism might be associated with 

differences in the prevalence of the other.  The primary goal of this study was to determine if this 

type of association may exist among the oral microbiota of patient samples obtained from an 

existing saliva repository. 
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Methodology 

Study Design 

This was a retrospective study to evaluate the presence of both S. wiggsiae and S. mutans among 

patient samples from an existing saliva repository using qPCR. SW-positive (n=27) and SW-

negative (n=15) samples were subsequently screened for the presence of SM.  The samples were 

nearly evenly divided between males and females (45%, 55%, respectively) and were mostly 

Hispanic minorities (n=22/42 or 52%). Approval for this study was granted from the Institutional 

Review Board (IRB) under Protocol #1502-5068M - The Prevalence of Oral Microbes in Saliva 

from the University of Nevada Las Vegas (UNLV) School of Dental Medicine (SDM) pediatric 

and adult clinical population. Samples were originally collected between 2010 and 2016. In brief, 

each sample was given a unique, non-duplicated randomly generated identification number to 

protect patient anonymity – with only basic demographic information (age, sex, race/ethnicity) 

noted at the time of saliva collection.  

 

Sample Selection 

Patient saliva samples that were previously identified as harboring S. wiggsiae DNA were 

selected for screening using qPCR (n=27). Selected samples that were previously identified as 

not harboring S. wiggsiae DNA were also identified from patient collections during the same 

time period (n=15), which would reduce the potential for time-dependent degradation of samples 

to influence the outcome and final results. DNA was then isolated from each clinical sample 

using the Amersham Biosciences GenomicPrep DNA isolation kit and the manufacturer 

recommended protocol, as previously described [20-22].  

 

qPCR Screening 

DNA screening was accomplished using primers specific for each organism [17,23]. The probes 

for S. wiggsiae (SwP)and S. mutans (SmP) were each labeled with 6-carboxyfluorescein (FAM) 

at the 5’end and with tetramethyl-6-carboxyrhodamine (TAMRA) on the 3-end, as specified: 
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Forward primer-SW, GTGGACTTTATGAATAAGC (19 bp)  

Reverse primer-SW, CTACCGTTAAGCAGTAAG(18 bp) 

SwP[ 6 ~ FAM] 5’-AGCGTTGTCCGGATTTATT-3’G [TAMRA] 

Forward primer-SM, GCCTACAGC TCAGAGATGCTATTCT (26 bp) 

Reverse primer-SM, GCCATACACCACTCATGAATTGA (23 bp) 

SmP [6 ~ FAM] 5’-GAAACCAACCCAACTTTAGCTTGGAT-3’G [TAMRA] 

 

All qPCR reactions were performed using TaqMan universal PCR master mix with the probe 

concentration at 0.2 uM and a minimum of 5.0 uL of target (sample) DNA. All reactions were 

performed in duplicate using incubation at 50C (2 min), denaturation at 95 C (10 min), 40 cycles 

at 95C (15 sec) and 60C (1 min).  

 

Statistics 

Demographic information was summarized and presented as simple, descriptive statistics (both 

number and percentage). The composition of the study sample was compared with the overall 

clinic composition from which it was originally collected and these data were analyzed using Chi 

Square (χ2) software from GraphPad (San Diego, CA) [24]. This analysis was also used to 

analyze the qPCR results. 

 

Results  

The demographic analysis revealed that the study samples (n=42) were derived from nearly 

equal numbers of females and males (Table 1). However, the racial and ethnic composition of 

the study sample had a much higher proportion from minority patients than the overall clinic 

population from which that sample was collected (p=0.0005). The study sample was comprised 

of both pediatric and adults, ranging in age from 12 – 41 years. 
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Table 1. Study Sample 

 Study Sample (n=42) Clinic Population Statistical Analysis 

Sex    

Male 45.2% (n=19) 49.1%  χ2=0.640, d.f.=1 

Female 54.8% (n=23) 50.9% p=0.4236 

    

Ethnicity / Race    

White 23.8% (n=10) 41.4% χ2=11.947, d.f.=1 

Minority 76.2% (n=32) 58.6% p=0.0005 

Hispanic 52.4% (n=22) 35.9%  

African American 16.7% (n=7) 13.1%  

Other 7.1% (n=3) 4.2%  

    

Age Range 12-41 yrs. 2 – 91 yrs.  

DNA was subsequently isolated from the pre-selected samples, which was within the range 

specified by the manufacturer (Table 2). Successful isolation was accomplished and the quality 

assessed using absorbance readings at 260 and 280 nm (A260:A280 nm ratio). Quantity of DNA 

was also determined to be sufficient for qPCR screening of all samples. 

Table 2. DNA Isolation and Analysis 

 Study Sample (n=42) 

DNA Recovery n=42/42 (100%) 

Range (manufacturer estimate) 95-100% 

  

DNA Purity A260:A280 range: 1.51 – 2.00  Ave: 1.71 

Acceptable range (manufacturer) 1.65 – 2.00 

  

DNA Concentration [316.2 ng/uL] range: 91.2 – 873.4 

Manufacturer range: 100 – 1000 ng/uL 
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The screening of study samples using qPCR was performed, which revealed differential results 

for each of the organisms evaluated (Figure 1). More specifically, qPCR screening of the 

previously identified S. wiggsiae-positive samples confirmed n=27 samples harbored DNA from 

this organism. qPCR analysis confirmed the S. wiggsiae-negative samples (n=15) and revealed 

only a small fraction (27%) harbored DNA from S. mutans (Fig 1B).  

 

Figure 1. Screening of Study Samples Using qPCR. A) Screening of Scardovia-positive samples 

revealed more than half also harbor S. mutans DNA (55%). B) Screening of Scardovia-negative 

samples revealed relative few also contain DNA from S. mutans (27%). 

 

A more detailed analysis of these results revealed that 45% of samples (n=19/42) harbored SM. 

The vast majority of S. mutans-positive samples (n=15/19 or 79%) were derived from S. 

wiggsiae-positive samples (Figure 2). Only a small percentage of S. mutans positive samples 

(n=4/19 or 21%) were derived from the S. wiggsiae-negative samples.  Chi-square analysis of 

these results strongly suggests this distribution was unlikely due to chance (p<0.00001).  

A

B

qPCR screening of S. wiggsiae-positive samples (n=27)

S. mutans-positive (n=15) 55%

S. mutans-negative (n=12) 45%

qPCR screening of S. wiggsiae-negative samples (n=15)

S. mutans-positive (n=4) 27%

S. mutans-negative (n=15) 73%
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Figure 2. Statistical Analysis of S. wiggsiae and S. mutans Screening. Although S. mutans was 

found in both Scardovia-positive and -negative samples, detailed analysis of the qPCR screening 

results demonstrates a statistically significant difference was observed among the Scardovia-

negative samples, with a much lower percentage also harboring S. mutans (p<0.0001).  

 

Conclusion 

The limited numbers of studies available regarding S. wiggsiae prevalence have suggested that S. 

wiggsiae and S. mutans may inhabit similar and overlapping niches within the oral microbiome. 

In fact, some work has suggested the potential for competition and interactive inhibition between 

these organisms within the oral cavity.  The preliminary data from this pilot study suggest S. 

mutans and S. wiggsiae may, in fact, be present in the same patients and may not therefore be 

exclusively competitive – at least in this cross sectional study.  However, due to the large 

differences observed among these samples, further research will be needed to further elucidate 

and validate these findings. 
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Discussion 

The primary goal of this study was to perform highly sensitive qPCR screenings of patient saliva 

samples for both S. mutans and S. wiggsiae to determine if the presence of either organism might 

be associated with differences in the prevalence of the other using an existing saliva repository. 

This pilot study has revealed that both cariogenic pathogens S. mutans and S. wiggsiae may, in 

fact, be present in the same patients and are therefore unlikely to be exclusively competitive 

[25,26]. However, the discrepancy in the prevalence of S. mutans among S. wiggsiae-positive 

and -negative samples may suggest alternative factors may be influencing the microbial 

composition of patient oral flora [27,28].  

 

Recent studies have now demonstrated that the salivary microbiota differ significantly among 

patients with different caries risk and experience [29,30]. This evidence has provided increasing 

support for the hypothesis that co-association of cariogenic and pathogenic oral microbes, may 

be understood more clearly as moving in tandem and providing commensal opportunities rather 

than merely as competitors for limited resources and available space [31,32]. Although much 

remains to be discovered regarding the epidemiology of these organisms in oral disease and 

prevention, these data suggest a more thorough understanding of prevalence will help clinicians 

and healthcare providers in both disease prevention and treatment. 

 

Although these findings represent novel information regarding co-association and prevalence of 

Scardovia in relationship to S. mutans, there are some limitations of this study that must be 

considered.  First, the retrospective nature of this study did not allow for the collection of 

samples based upon caries risk or caries experience, which may represent a significant 

confounding variable.  In addition, the original establishment of the saliva repository was done as 

a convenience sample at a low-income, public university-based dental school – which may 

represent patients with more limited access to healthcare and more likelihood to have low levels 

of health literacy and insurance [33-35].  
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Chapter 4 

Microbial Ecology of Scardovia wiggsiae-Positive and Negative Samples 

 

Introduction 

The studies from this institution were initiated to reveal whether samples from pediatric (and 

some adult) patients harbored DNA specific for Scardovia wiggsiae (S. wiggsiae) [1]. Although 

the first descriptions of this organism were from children with severe early childhood caries, the 

main finding from this initial pilot study was the discovery of S. wiggsiae in approximately one-

quarter of both the pediatric and adult patient saliva samples [2,3]. A more recent study from this 

group confirmed these findings among a much larger sample of both pediatric and adult patients, 

further support for the growing evidence that Scardovia may be part of the oral microbial flora in 

patients with severe early childhood caries, as well as in pediatric and adult patients with other 

caries risk factors and profiles [4-6]. 

 

Some evidence has suggested S. wiggsiae may be a smaller part of the normal oral flora in 

patients without caries [7,8]. However, other studies have now demonstrated that orthodontic 

therapy may increase the risk of both caries and of high levels of Scardovia in some patients [9]. 

This observation has also been made in studies from this group, which has demonstrated the 

presence of this organism in nearly twice the percentage of pediatric orthodontic patients 

compared with either adult orthodontic patients or pediatric patients without orthodontic 

appliances [10]. In fact, two additional studies of orthodontic patients have recently been 

completed, which provide more support for these observations [11,12].  

 

These studies provide the rationale for a more thorough investigation and screening of patient 

samples, which have been demonstrated to harbor S. wiggsiae [13,14]. Based upon these studies, 

sufficient data now exist to provide a more detailed analysis and description of the microbial 

ecology found among Scardovia-positive and -negative patients samples. 
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Results 

Using the previous microbial screening studies from this institution, results for the prevalence of 

several oral microbial species were compiled for analysis (Figure 1).  This data clearly 

demonstrate that bridge species, such as Fusobacterium nucleatum (FN) are present in the 

overwhelming majority of samples – supporting other similar observations [15-17]. This data 

demonstrate that both the cariogenic pathogens S. wiggsiae (SW) and Streptococcus mutans 

(SM) are found in nearly half of all patient samples [1,4,9,11-14]. However, other oral 

pathogens, such as T. forsythia (TF) and Selenemonas noxia (SN) were only found in 

approximately one-quarter of patient samples [13,18].  

 

 

Figure 1. Combined Analysis of Institutional Screening Studies of Oral Microbial Pathogens. An 

analysis of all patient saliva screening studies revealed most samples harbored DNA from the 

%
% positive samples
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periodontal pathogen F. nucleatum (FN), while smaller subsets were found to contain the 

cariogenic pathogens S. wiggsiae (SW) and S. mutans (SM). Additional oral microbes T. 

forsythia (TF) and S. noxia (SN) were also present in approximately one-quarter of all samples 

analyzed.  

 

While these data provide some limited information regarding prevalence for several important 

oral species, more detailed analysis of data specific to each sample screened for multiple studies 

can provide a more comprehensive profile of the microbial flora (Figure 2). More specifically, a 

subset of samples that were screened in multiple studies provides a detailed analysis of the major 

pathogenic organisms, such as S. wiggsiae and S. mutans, which were present in nearly half of 

the same samples – either alone or in combination with F. nucleatum.  These data clearly 

demonstrate that although S. wiggsiae and S. mutans are commonly found with F. nucleatum, 

they may also both be found concomitantly.  
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Figure 2.  Comprehensive Microbial Oral Patient Sample Profile.  Most samples harbored the 

microbial bridge species F. nucleatum (FN), which was often found in combination with other 

oral pathogens. The cariogenic pathogens S. wiggsiae (SW) and S. mutans (SN) were found in 

combination with FN  in approximately one-fourth of samples analyzed, and were also found to 

be present concomitantly in another subset (26.3%). Other organisms, such as T. forsythia (TF), 

were found in smaller subsets, while  S. noxia (SN) was only found among the SW-negative 

samples. 

 

Conclusion 

These data may suggest that S. noxia and S. wiggsiae may occupy distinct, non-overlapping 

niches, which may differ significantly from the interactions observed with F. nucleatum. The 

limited numbers of studies available regarding S. wiggsiae prevalence have suggested that S. 

wiggsiae and S. mutans may inhabit similar and overlapping niches within the oral microbiome. 

In fact, studies now suggest the potential for both competition and interactive inhibition between 

these organisms within the oral cavity.  The preliminary data from this pilot study suggest S. 

mutans and S. wiggsiae may, in fact, be present in some of the same patients and may not 

therefore be exclusively competitive – at least in this patient population.  However, due to the 

large differences observed among these samples, further research will be needed to more fully 

elucidate these interactions and to explore the potential ramifications for oral microbial ecology 

and the implications for predictive saliva screening. 
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Chapter 5 

Summary and Conclusions 

 

As caries continues to remain widespread among the general population, being able to prevent 

the disease is equally as important as finding a way to treat it. Understanding the prevalence and 

ecology of cariogenic pathogens will help clinicians and oral healthcare providers better 

understand disease prevention and treatment. To date, there are a few studies on the novel 

cariogenic pathogen Scardovia wiggsiae and even fewer on its prevalence with other cariogenic 

pathogens. For this reason, this study’s initial focus was to assess the prevalence of oral 

microbial flora in SW-positive and negative patients. 

 

The first manuscript titled “Oral Microbial Ecology Of Selenomonas Noxia and Scardovia 

Wiggsiae” describes the ecology between SW and SN, two oral pathogens associated with poor 

oral health. The data suggests SN and SW may occupy distinct, non-overlapping niches within 

the oral microbiome and may be exclusively competitive. While SN and SW may not coinhabit 

the same niche, the interactions between SW, AA, FN, and TF show that they can. AA was only 

present among SW-positive samples, while FN and TF were present in both SW-positive and 

negative samples with variable prevalence. Previous studies have shown a strong correlation 

between SW and advanced early childhood caries. If treatment can change the oral microbiota in 

favor of SN, the treatment of dental caries may be improved. 

 

The second manuscript titled “Screening a Saliva Repository for Scardovia wiggsiae and 

Streptococcus mutans: A Pilot Study” shows that SW and SM may inhabit similar and 
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overlapping niches within the oral microbiome. SM exists in the absence of SW, but in lower 

numbers. Similarly, SW can thrive in the absence of SM. This data suggests that SM and SW 

may not be exclusively competitive, but rather commensal organisms.  

 

The third manuscript titled “Microbial ecology of Scardovia wiggsiae-positive and negative 

samples” analyzed the microbial pathogens in patient saliva screenings. FN was present in 93% 

of samples. SW (47%) and SM (40%) were present in nearly half of the patient samples. TF 

(29%) and SN (21%) were found in approximately one-quarter of the patient samples. SW, SM, 

and FN were found to coinhabit the same niche in approximately one-fourth of the samples 

analyzed. 

 

This study helps to gain novel insight on the prevalence of specific microbiota in the oral cavity. 

Although far from preventing or treating oral disease completely, the data presented suggests a 

thorough understanding that will aid clinicians and healthcare providers in disease prevention 

and treatment. There is much more to be discovered about the epidemiology of cariogenic 

microbial pathogens, their interactions, and potential ecology.  

 

Research Questions 

1. Does the prevalence of cariogenic microbial flora vary in SW-positive patients? 

H0: The prevalence of cariogenic microbial flora in SW-positive patients is similar.  

HA: The prevalence of cariogenic microbial flora in SW-positive patients is different.  
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The null hypothesis is rejected because the prevalence of cariogenic microbial flora in SW-

positive patients is different. 

2. Does the prevalence of SM vary in SW-positive and negative patients? 

H0:  The prevalence of SM in SW-positive and negative patients is similar. 

HA: The prevalence of SM in SW-positive and negative patients is different. 

 

The null hypothesis is rejected because the prevalence of SM in SW-positive and negative 

patients is different. 

 

Limitations and Recommendations 

As one of the first studies to describe the interactions and potential ecology between oral 

microbial pathogens, there are some limitations that should be considered for future studies. 

First, our patient selection consisted of subjects who were patients of record at a public dental 

school with the majority of patients coming from low-income families and low socioeconomic 

backgrounds. This predisposes the patient pool to a bias among patients with higher caries risk 

and similar ethnic backgrounds. Both pediatric and adult patients were also used for this study, 

therefore no age specific information was provided. Secondly, because of the retrospective 

nature of this study, caries risk level was not documented. The variance in caries risk levels (low, 

moderate, and high) may affect the prevalence of specific cariogenic pathogens directly.  Lastly, 

the storage of the saliva samples varied significantly which may have affected the quality and 

quantity of DNA isolated.  
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To continue elucidating the prevalence of oral microbial organisms, future studies can obtain 

new saliva samples from age specific patients, different ethnic backgrounds, and of different 

caries risk levels. Because orthodontic treatment changes the caries risk levels in individuals, 

studies can document the prevalence of specific organisms pre-, during, and post- orthodontic 

treatment to gain a better understanding between caries risk and microbial prevalence. Future 

studies can also include treatments done in the home such as chlorhexidine rinses, baking soda 

remedies, and toothpaste aids to observe their effect on microbial prevalence before and after 

treatment. If one treatment is more effective than another in changing the ecology and prevalence 

of specific organisms, then healthcare providers and clinicians may help treat oral diseases by 

placing greater emphasis on specific techniques during oral hygiene instruction.  
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