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Abstract 

Periostin is a secreted, extracellular matrix (ECM) protein widely expressed within 

collagen-rich fibrous connective tissues of the body including the periodontal ligament (PDL), 

bone, skin, heart, and cornea. Periostin has been shown to serve many important regulatory 

functions including cell adhesion, cell motility, wound healing and of particular importance to 

the dental field, differentiation of osteoblasts. The deletion of periostin compromises osteoblast 

attachment to bone matrix and induces a reduction in mineralization and expression of bone 

markers, including type I collagen, osteocalcin, osteopontin and alkaline phosphatase. Periostin 

has also been shown to play a significant role in collagen fibrillogenesis by enhancing the 

proteolytic activation of lysyl oxidase, which is required for collagen cross-linking. 

Immunohistochemistry studies have revealed high levels of periostin expression in the PDL with 

the periostin expressing cells identified as the fibroblastic cells in the PDL and osteoblastic cells 

on the alveolar bone surfaces. The significance of periostin to bone and PDL development was 

further demonstrated in a study on periostin knockout mice. These mice displayed a unique 

phenotype with significant changes to the periodontium: gingival tissue atrophy, PDL damage 

and loss of bone around the molars, underscoring the importance of periostin as a key ECM 

protein within the PDL. In controlling osteoblast differentiation and collagen fibrillogenesis, 

periostin has a critical role in maintaining bony architecture and density, which suggests that it 

may be able to act as another layer of therapeutic control on bone homeostasis.  

Cytokines of the transforming growth factor-beta (TGF-β) superfamily of proteins 

including TGF-β1 have been implicated in the regulation of periostin expression in bone. In 

particular, studies have shown that periostin expression is enhanced with increasing levels of 
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TGF-β1 until bone mineralization begins. At that point, periostin expression is negatively 

regulated as mineralization proceeds, suggesting that TGF-β1 may play a role during the 

initiation of bone mineralization. Another member of the TGF-β superfamily, bone 

morphogenetic protein 2 (BMP2), has also been demonstrated to enhance periostin expression in 

osteoblasts. Recently, there has been increasing interest in bone morphogenetic proteins (BMPs) 

due to their therapeutic potential in orthopedics, oral surgery and other disciplines. BMPs are 

members of the TGF-β superfamily of proteins and act as regulators during embryogenesis and 

bone and cartilage formation and repair. Research in the area of BMP action has revealed great 

complexity with far reaching effects among the many members of the various BMPs. Although 

periostin expression in pre-osteoblastic cells, specifically MC3T3-E1 mouse pre-osteoblasts, has 

been studied in response to TGF-β1 and BMP2, other BMP members have not been considered.  

Given that different BMP family members are differentially expressed in tissues of the body with 

various physiological functions, it is reasonable to assume that they may have different effects on 

periostin expression as well. For example, BMP2, BMP4 and BMP7 all play key roles in bone 

and cartilage development whereas BMP3 has been characterized as an antagonist to the 

osteogenic effects of the other BMPs.  

The objective of this study was to demonstrate the in vitro expression of periostin in 

MC3T3-E1 mouse pre-osteoblast cells in response to different BMPs. Previous studies 

describing the regulation of periostin expression by TGF-β1 suggests that periostin has the 

potential to be a downstream effector of the TGF-β superfamily of proteins. In this study, the 

expression of periostin was hypothesized to increase with BMP2, BMP4 and BMP7 treatment, 

supporting the notion of these BMPs as enhancers or agonists of periostin expression. In contrast, 

BMP3 was hypothesized to suppress periostin expression due to its innate inhibitory potential. 
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However, BMP3 does possess modulator activity and could also enhance periostin expression 

under some conditions as well. Unlike other studies, this research is unique in attempting to 

determine not only the effects of BMP2, but also BMP4 and BMP7 on periostin expression, 

which, to our knowledge, have never been considered. In addition, no previous studies have 

considered the antagonistic effects of BMP3. As a way to further analyze this relationship, the 

effect of concentration was to be considered as well. Ultimately, understanding the effects of 

BMPs on periostin expression will contribute to our overall understanding of the complex 

mechanisms involved in maintaining osteoblasts in an undifferentiated state as well as their 

therapeutic applications in the clinical setting. In the future, this knowledge may have important 

clinical implications in the modulation of osteoblast activity, which may be applicable to the 

dental field in the regulation of tooth movement, regeneration of the periodontium and de novo 

bone formation.  

MC3T3-E1 pre-osteoblast cells were prepared and treated in duplicate with BMP2, 

BMP3, BMP4 and BMP7 with two concentrations: 10 ng/mL and 25 ng/mL. After 24 hours of 

incubation under controlled conditions, cells were lysed and total RNA was purified, extracted 

and stored at -80°C. Reverse transcription polymerase chain reaction (RT-PCR) was performed 

on all samples using periostin primers and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

primers. These particular primers were selected to amplify a region of periostin cDNA as well as 

the typical housekeeping protein (GAPDH) as a normalization factor for cell number. Amplified 

products were run on a 2% agarose gel for two hours followed by visualization and image 

capture under a UV light. Expected products were identified against the known base pair values 

of periostin and GAPDH. Pixel density was quantified for each band and periostin bands were 

normalized against their corresponding GAPDH bands. Results indicated that periostin 
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expression was significantly increased in both BMP2 and BMP3 treatments. The following 

increases in periostin expression from baseline were observed: BMP2 (10 ng/mL): +29%, BMP2 

(25 ng/mL): +26%, BMP3 (10 ng/mL): +24% and BMP3 (25 ng/mL): +17%. Periostin 

expression was also increased under BMP4 (+9% and +11% for 10 ng/mL and 25 ng/mL 

concentrations respectively) and BMP7 (+5% and +11% for 10 ng/mL and 25 ng/mL 

concentrations respectively) conditions, although this was not statistically significant. These 

findings confirm the observation from other studies that BMP2 enhanced periostin expression. 

However, BMP3 showed contrasting results and actually increased periostin expression, 

suggesting a modulator role for BMP3 on periostin expression. BMP4 and BMP7 did not elicit 

significant changes on periostin expression, which may be due to a number of factors. 

Concentration-dependence was not observed for any of the BMPs. Future studies are needed to 

further evaluate the relationship between periostin expression and BMPs.  
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Preface 

In the field of molecular proteomics, periostin is considered to be a relatively novel 

protein. Previously known as osteoblast-specific factor 2 (osf-2), periostin is a secretory protein 

originally isolated in the periosteum and periodontal ligament (PDL) of mouse cells and renamed 

shortly thereafter. Horiuchi et al. (1999), the researchers who first isolated and renamed 

periostin, correctly hypothesized that periostin must have a role in regulating the functions and 

processes of bone formation and PDL metabolism due to its physical proximity to both of these 

structures (Horiuchi et al., 1999). Results from their study demonstrated periostin’s role in cell 

adhesion and osteoblast-like cell recruitment and a differential expression pattern (Horiuchi et 

al., 1999). Conclusions derived from their experiments ultimately put periostin on the scientific 

map and garnered significant interest from the scientific community including researchers from 

disciplines outside of bone biology. Since then, other studies have shown that periostin’s 

expression is, in fact, ubiquitous throughout the body with a particular localization in collagen-

rich fibrous connective tissues (Nicolas Bonnet, Garnero, & Ferrari, 2016; Horiuchi et al., 1999; 

Shimazaki et al., 2008). This type of connective tissue functions to maintain the structural 

integrity of various organ systems subject to daily mechanical stresses, suggesting that periostin 

may have important implications in maintaining these structures (Horiuchi et al., 1999). Periostin 

has also been demonstrated to have key roles in early development of the heart, teeth and 

periodontium (Hakuno et al., 2010; Lindner, Wang, Conley, Friesel, & Vary, 2005). Other 

studies have identified periostin during pathological states including cancer, cardiovascular 

injury, bone disease and wound healing (Kashima et al., 2009; Lindner et al., 2005; Ontsuka et 

al., 2012; Ruan, Bao, & Ouyang, 2009). Collectively, it is clear that periostin has a wide array of 

roles throughout the body and is an important player for physiologic homeostasis.  
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Of particular interest to dental professionals and researchers is the periodontium. The 

periodontium, also known as the periodontal apparatus, is a highly organized structure that 

maintains and supports the dentition within the maxillary and mandibular dental bases using a 

molecular backbone of fibrous connective tissue. It consists of four key elements: the PDL, 

alveolar bone, cementum and gingiva (Padial-Molina et al., 2012). Not only does it act as a 

foundation for the teeth by attaching them to the bones of the jaws, the periodontium also plays a 

role in proprioception, nociception and cushioning impact during mastication (Padial-Molina et 

al., 2012). The integrity of the periodontium is absolutely vital in maintaining healthy support of 

the teeth and without it, teeth would become loose and eventually be lost. As it turns out, 

periostin is highly expressed in the PDL of the periodontium and shown to be involved in 

regulating bone metabolism in that region (Horiuchi et al., 1999; H. Rios et al., 2005). This fact 

raises two important questions: 1) Can periostin expression in the PDL be controlled or 

regulated? And if so, 2) does this level of control bring about any benefits on a clinical and 

patient care level? Previous research has shown that certain cytokines, small biologically active 

signaling proteins, play a role in regulating the expression of periostin (Ali & Brazil, 2014; 

Carreira et al., 2014; Oryan, Alidadi, Moshiri, & Bigham-Sadegh, 2014). The transforming 

growth factor beta (TGF-β) superfamily of proteins is a large group of regulatory proteins, which 

share certain structural similarities amongst each other due to a common homology (Ali & 

Brazil, 2014; Carreira et al., 2014; Oryan et al., 2014). These proteins have been examined 

extensively and been shown to have an effect on periostin expression; specifically, transforming 

growth factor beta 1 (TGF-β1) and bone morphogenetic protein 2 (BMP2) of the TGF-β 

superfamily have been demonstrated to enhance the expression of periostin along an osteoblast 

cell line (Horiuchi et al., 1999; Ji et al., 2000; Blandine Merle, Bouet, Rousseau, Bertholon, & 
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Garnero, 2014). Despite similarities in structure, members of the TGF-β superfamily carry 

surprisingly different functions and roles depending on where they are expressed in the body, 

which suggests a possible means of control of periostin expression. Extrapolating this notion 

would suggest that other proteins of the TGF-β superfamily may not necessarily have the same 

effect on periostin expression, despite a shared homology.  

Known members of the TGF-β superfamily understood to play a role in bone and 

cartilage development include the following bone morphogenetic proteins (BMPs): BMP3, 

BMP4 and BMP7. To our knowledge, these proteins have never been studied in conjunction with 

periostin, a clear gap in the knowledge of this area. If these particular cytokines have a role in 

bone metabolism, perhaps they may have a regulatory function on periostin expression as well. 

The purpose of this research was to demonstrate whether BMP3, BMP4 and BMP7 have an 

effect on periostin expression and if so, whether this effect was stimulatory, inhibitory or 

inconclusive in nature. BMP2 will also be examined and was hypothesized to enhance periostin 

expression, as demonstrated on multiple occasions in the literature (Ji et al., 2000; Blandine 

Merle et al., 2014). The results from this study will be important to elucidate the layers of control 

governing periostin expression which may, in fact, cross over on a clinical level, not only in 

dentistry, but in other disciplines as well.  

The following excerpts will provide a detailed review of the most current literature 

surrounding periostin and the different BMPs and along the way, further illuminate the 

importance of periostin as a research focal point. Pertinent background, relevant research studies 

as well as reasons for consideration will all be discussed in an in depth manner to ultimately 
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provide a global understanding of periostin and BMPs. Justification for the selection of the 

various BMPs involved in this study will become clearer through the literature review. 
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Chapter 1: Introduction 

1.1: Periostin 

Takeshita et al. (1993) originally discovered periostin as osteoblast-specific factor 2 (osf-

2) using a subtraction hybridization library from the cDNA of a MC3T3-E1 pre-osteoblast 

mouse cell line (Takeshita et al., 1993). Using a similar technique, Horiuchi et al. (1999) delved 

further into the investigation and uncovered periostin’s potential role in bone and tooth formation 

(Horiuchi et al., 1999). Using a mouse probe, the human variant of periostin was discovered with 

a 90% homology to the mouse variant. Despite a shared homology, there are some differences 

between the two variants. For one, mouse periostin is located on chromosome 3 while the human 

variant is on chromosome 13, both consisting of 23 exons (Kudo, 2017). Mouse periostin is also 

slightly larger at 838 amino acids whereas human periostin is 836 amino acids in length (Kudo, 

2017). The signaling peptide for the mouse and human variants are 24 and 22 amino acids long 

respectively (Kudo, 2017). Taking into account the signaling peptides which are post-

translationally cleaved, the final product is 814 amino acids long for both types of periostin and 

thus, exactly the same in size and molecular weight. In its final form, periostin is a small, 

secreted, N-glycosylated protein at 90 kDa with a highly complex molecular structure. Its 

structure contains the secretory signaling peptide, cysteine-rich elastin microfibril interfacer-like 

(EMI) domain at the amino terminal (N-terminus), four internal fasciclin-1 (Fas-1) domains and 

a variable carboxy-terminal domain (CTD) (Horiuchi et al., 1999; Kudo, 2011; Sugiura, 

Takamatsu, Kudo, & Amann, 1995). The EMI domain is a small module rich in cysteine residues 

that can interact with type I collagen, fibronectin and Notch1 whereas the Fas-1 domains have 

been demonstrated to interact with tenascin-C and BMP1 (Kii et al., 2010; Maruhashi, Kii, Saito, 
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& Kudo, 2010; Tanabe et al., 2010). Indeed, periostin is classified as a member of the fasciclin 

family of proteins in having the highly conserved Fas-1 domains, which have been shown to be 

involved primarily in cell adhesion (Kim et al., 2000). Periostin’s function in cell adhesion is 

likely due to its interactions with ανβ3 and ανβ5 integrins, transmembrane proteins responsible 

for facilitating cell-cell and cell-matrix interactions for cell migration and cell adhesion. Laminin 

γ2 is another protein that interacts with periostin in a similar manner, although its exact purpose 

is still unknown (Conway et al., 2014; Kudo, 2011). The Fas-1 domains, rich in glutamate 

residues, act as the recognition and modification site for the enzyme, γ-glutamyl carboxylase 

(Coutu et al., 2008; Du & Li, 2017). This vitamin K-dependent enzyme post-translationally 

modifies the Fas-1 domain and converts the glutamate residue to γ-carboxyglutamate at one of 

the many carboxylation sites (Coutu et al., 2008; Du & Li, 2017). It is unclear whether this 

carboxylation exists in bone and affects the function of periostin, as it does for other bony 

proteins such as osteocalcin (Coutu et al., 2008). Cell adhesion sites within the Fas-1 domain 

allow periostin to interact with the above mentioned proteins, tenascin-C and BMP1 (Horiuchi et 

al., 1999; Kii et al., 2010). In a similar manner, the EMI domain within the N-terminus of 

periostin is responsible for protein-protein interactions. It is this particular site that interacts with 

the macromolecules, collagen type I, fibronectin and Notch1 (Kii, Nishiyama, & Kudo, 2016; 

Maruhashi et al., 2010; Morris et al., 2007). The EMI domain also has the potential to form 

disulfide-bonded dimers (Kii et al., 2010; B. Merle & Garnero, 2012; G. Takayama et al., 2006). 

The CTD is variable and contains four N-glycosylation sites and a heparin binding domain 

allowing it to bind to glycoproteins, glycosaminoglycans and proteoglycans (Sugiura et al., 

1995). The CTD also possesses alternative splicing, which can produce at least five different 

human isoforms, adding yet another layer of structural complexity to this protein (Hoersch & 
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Andrade-Navarro, 2010b). In one instance, TGF-β1 treatment in mouse pre-osteoblast cells has 

been shown to produce splice variants, which increase in response to increasing TGF-β1 

concentrations, suggesting that splice variants may be externally controlled with cytokines 

(Kudo, 2017). From its conserved structure, it can be seen that periostin has the potential to 

interact with a number of different proteins on many levels to help facilitate its functions. As a 

whole, the structural complexity and wide myriad of interactions that periostin facilitates 

suggests that this protein not only provides structural support, but also is involved in many 

different aspects of connective tissue differentiation, function and morphology (Cobo et al., 

2016).   

Alternative splicing of the CTD of periostin creates a number of periostin isoforms, 

which are differentially expressed in different tissue types, development stages and pathologies 

(B. Merle & Garnero, 2012). The CTD is encoded by exons 15 through 21 and identified by the 

corresponding six cassette exons, a through f. This nomenclature system was bestowed by 

Horiuchi et al. (1999) during the initial discovery of periostin (Horiuchi et al., 1999). Exon 

cassettes are added or deleted from the final periostin messenger RNA (mRNA), which gives rise 

to the different periostin isoforms (Horiuchi et al., 1999). For instance, periostin isoform 1 

contains all six cassettes whereas periostin isoform 3 only has five cassettes as cassette e has 

been spliced out (Litvin et al., 2004). Another isoform missing both cassettes b and e has been 

shown to be highly expressed in the periosteum and PDL as well as during myocardial infarction, 

solidifying the notion of a differential expression pattern for each periostin isoform (Kudo, 2011; 

B. Merle & Garnero, 2012). Despite the fact that periostin is a known secreted protein, some 

isoforms of periostin such as periostin isoform 3 have been identified to carry a nucleus 

localization sequence within the CTD, which suggests that periostin may have extracellular as 
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well as intracellular roles (Kudo, 2011). Together, the splice variants of the CTD generate 

numerous periostin isoforms, each with a differential expression pattern. No matter the isoform, 

the CTD couples with the other domains of periostin, forming a complex, three-dimensional, 

functional protein. The proposed three-dimensional structure of periostin is as follows: four Fas-

1 domains containing a secondary structure of helix-turn-helix motifs and the CTD with beta-

strand structural elements (Coutu et al., 2008; Hoersch & Andrade-Navarro, 2010b; B. Merle & 

Garnero, 2012; Takeshita et al., 1993). 

When periostin was first identified, it was initially thought to be specific to the 

periosteum of long bones and the PDL, hence the name. However, periostin is actually broadly 

expressed throughout the body within many tissue systems and by studying the areas with the 

highest levels of expression, the functions of periostin become more apparent. By employing 

cross-reactive antibodies to periostin, studies have demonstrated that periostin is primarily 

localized to the collagen-rich fibrous connective tissues of the body including the PDL, 

periosteum, aorta, stomach, lower gastrointestinal tract, placenta, uterus, thyroid tissue, cornea 

and breast (Nicolas Bonnet et al., 2016; Horiuchi et al., 1999; Shimazaki et al., 2008). Within the 

periosteum, osteoblasts have been shown to secrete periostin, which is involved during 

embryogenesis, bone repair and bone remodeling during mechanical stress (Nicolas Bonnet et 

al., 2009; Litvin et al., 2004). Periostin’s role during osteoblast differentiation and collagen 

fibrillogenesis underscores its importance as a key regulator of bone and connective tissue 

microarchitecture and strength, which adds further evidence to the notion of periostin as a 

structural protein (Litvin et al., 2004; Maruhashi et al., 2010; Blandine Merle et al., 2014; H. 

Rios et al., 2005). The common underlying factor of all of the tissues where periostin is highly 

expressed is that they are all subject to mechanical stresses in one form or another through every 
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day physiologic functions, particularly the heart valves, PDL, tendons and bones (Nicolas 

Bonnet et al., 2016; Horiuchi et al., 1999). During physiologic homeostasis, periostin is involved 

in cell adhesion and cell migration through its Fas-1 domain interactions (Cobo et al., 2016; Kim 

et al., 2000). During unregulated periostin expression, physiology leads to pathology as the lack 

of control of cell adhesion and structural integrity results in compromised tissue systems. 

Abnormal periostin expression has been implicated in cases of myocardial infarction, respiratory 

diseases, fibrosis, wound healing and cancer-associated stroma (Fukushima, Kikuchi, Nishiyama, 

Kudo, & Fukayama, 2008; Kudo & Kii, 2017; Nishiyama et al., 2011; Okamoto et al., 2011; 

Shimazaki et al., 2008; G. Takayama et al., 2006). Taken together, this evidence suggests that 

periostin has a structural and regenerative capacity throughout the body during normal 

physiology, which can become pathologic in the absence of control.   

While scientists have taken a significant interest in periostin since its discovery, much of 

the current literature on periostin’s functions is scattered across many disciplines, fragmenting 

the overall understanding of this protein (Conway et al., 2014; Horiuchi et al., 1999). Still, 

extensive research on periostin has defined specific functions across many domains including 

osteology, periodontology, wound healing, oncology, cardiovascular and respiratory diseases and 

in various inflammatory states linked to cell adhesion and structural microarchitecture (Cobo et 

al., 2016; Lindner et al., 2005; Litvin et al., 2004; H. Rios et al., 2005; Tilman, Mattiussi, 

Brasseur, van Baren, & Decottignies, 2007). In a study by Morris et al. (2007), periostin 

knockout mice demonstrated a disruption in collagen fibrillogenesis within the periosteum and 

tendons resulting in an overall decrease in bone mass and bone strength (Morris et al., 2007). Not 

only were the bones affected, the skin dermis, a tissue packed with collagen, was also weakened. 

This reduction in strength across both tissues was attributed to aberrant collagen matrix 
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formation as a consequence of periostin absence, which ultimately had an inhibitory effect on 

bone remodeling and collagen formation and cross-linking (Morris et al., 2007). A reduction of 

mineralization and expression of key bone markers including type I collagen, osteocalcin, 

osteopontin and alkaline phosphatase was also noted in a different study (N Bonnet, Conway, & 

Ferrari, 2012; Litvin et al., 2004). A study by Kii et al. (2010) demonstrated similar findings in 

collagen fibrillogenesis in periostin knockout mice (Kii et al., 2010). Compared to the control 

group, periostin knockout mice developed tibial periostitis as a consequence of abnormal 

bridging between tenascin-C and the ECM, findings which suggest a key ECM bridging function 

for periostin (Kii et al., 2010). Periostin enhances the proteolytic activation of lysyl oxidase, 

which is a necessary step for collagen cross-linking (Kudo, 2011). Other studies have shown 

periostin acting as a scaffold and enhancing the intermolecular interactions between a number of 

ECM proteins and accessory proteins, processes necessary for the formation and organization of 

a cohesive ECM (Kii et al., 2010; Kudo & Kii, 2017). The interaction between periostin and the 

ECM proteins largely occurs via transmembrane ανβ3 and ανβ5 integrins, which is responsible 

for physiologic maintenance of tissue integrity under mechanical stress (Cobo et al., 2016).  

Extrapolating these results to the PDL, another highly collagenous tissue, suggest a 

parallel relationship for periostin in mechanotransduction during masticatory loading and stress 

as well (Conway et al., 2014; Morris et al., 2007). Periostin’s role in dental development and in 

particular, periodontology, is emphasized in another set of periostin knockout mice studies. In a 

study by Rios et al. (2005), periostin knockout mice were generated to investigate the role of 

periostin during dental development (H. Rios et al., 2005). The pervasiveness of periostin’s 

involvement during development was immediately evident as 14% of periostin knockout mice 

died before weaning and the remaining mice experienced severe delays in growth (H. Rios et al., 
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2005). Not only was dwarfism apparent, the remaining mice also demonstrated early-onset 

periodontal disease, gingival atrophy, bone loss around the molars, PDL damage and enamel 

defects, suggesting that periostin is critical to both dental development and reinforcing the 

integrity of the PDL (H. Rios et al., 2005). Periostin immunoreactivity at the bell and cap stages 

of tooth development, along the alveolar bone surface and within fibrous bundles of the PDL 

further confirm its involvement during dental development (Romanos, Asnani, Hingorani, & 

Deshmukh, 2014; H. Suzuki et al., 2004). Immunolocalization experiments by Suzuki et al. 

(2004) showed periostin expression restricted to the cytoplasmic extensions of immature 

fibroblasts only and not mature fibroblasts, which highlights the participation of periostin during 

development and remodeling of the PDL (H. Suzuki et al., 2004). Periostin also has a role in 

inducing bone formation through an increase in osteoblast differentiation and proliferation (S. 

Zhu et al., 2009). Overexpression of periostin resulted in greater mineralization and calcium 

deposition in vitro and in vivo when injected into a rat femur (S. Zhu et al., 2009). By controlling 

osteoblasts, periostin facilitates the bone remodeling process to enhance bone deposition and 

bone strength. Periostin expression is also increased during times of tissue repair as well as in 

some cancers. Studies have shown that periostin promotes wound healing by inducing the 

activation, differentiation and contraction of fibroblasts (Elliott et al., 2012; Nishiyama et al., 

2011; Ontsuka et al., 2012). Increased expression of periostin was observed in the granulation 

tissues within the wounds of injured mice whereas in periostin knockout mice, wound repair and 

re-epithelialization was significantly impaired, all of which imply periostin’s role in wound 

healing (Jackson-Boeters, Wen, & Hamilton, 2009; Nishiyama et al., 2011; Ontsuka et al., 2012). 

In oncology, the expression of periostin is up-regulated in certain cancers to promote tumor 

angiogenesis, migration and metastases as a direct consequence of malicious cell adhesion and 
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migration (Siriwardena et al., 2006). Periostin contributes to tumor development, angiogenesis 

and migration through its interactions with ανβ3 and ανβ5 integrins, promoting cell adhesion 

necessary for tumor growth and tumor cell motility (Cobo et al., 2016; Sasaki et al., 2003; Shao 

et al., 2004). A study by Bao et al. (2004) showed that a colon cancer cell line, having low 

metastatic potential initially, was able to develop enhanced metastatic potential upon being 

transduced to overexpress periostin (Bao et al., 2004). Cancer cell apoptosis was prevented and 

in fact, cancer cells were augmented to overgrow leading to angiogenesis (Bao et al., 2004). 

Overexpression of serum periostin in some cancers appears to be linked to an overall lower 

prognosis of survival, suggesting that periostin may be significant in controlling tumor 

progression towards metastasis (Bao et al., 2004; Ruan et al., 2009).  

Finally, periostin has a role as a mediator of inflammation through its interactions with 

inflammatory cytokines (Cobo et al., 2016). Chronic inflammation of the airway is one of the 

hallmark features of asthma. Woodruff et al. (2009) demonstrated that the T-helper type 2 (Th2) 

cells are at least partially responsible for propagating the inflammatory response in asthmatics 

(Woodruff et al., 2007). Specifically, Th2 cells produce the inflammatory cytokine, interleukin 

(IL)-13, which induces expression of periostin by bronchial epithelial cells leading to airway 

hyper-responsiveness, inflammation, mucous production and activation and proliferation of 

airway fibroblasts (Woodruff et al., 2007). Additionally, periostin can act as a guide to facilitate 

granulocyte infiltration, which supports the inflammatory response (Johansson, Annis, & 

Mosher, 2013). The inflammatory response is active during the allergic response when periostin 

expression is up-regulated by type-2 inflammatory cytokines (G. Takayama et al., 2006; 

Woodruff et al., 2007, 2009). A literature review by Izuhara et al. (2014) defined periostin’s role 

in allergic inflammation as a downstream effector of the inflammatory cytokines, IL-4 and IL-13 
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(Izuhara et al., 2014). Reduction in periostin expression or blockage of the periostin-integrin 

interaction has been demonstrated to reduce the intensity of this Th2-mediated inflammatory 

allergic reaction, signifying the potential for periostin to be used in a therapeutic manner (Izuhara 

et al., 2014).  

Collectively, these studies suggest that periostin has a role in cell adhesion that facilitates 

cellular growth under normal physiological conditions. However, abnormal periostin control has 

been implicated in pathological conditions such as injury wound healing, metastatic growth and 

inflammation as a consequence of defects in cell adhesion and connective tissue integrity. The 

specific roles of periostin on a molecular level are still vague and unclear, but what is certain is 

the fact that periostin’s influence touches all facets of normal development and physiology.  

Despite the widespread expression of periostin across many tissues, the most abundant 

levels of periostin by far are found in the PDL, the tissue of most interest to the dental field 

(Yamada et al., 2014). Immunohistochemistry studies have revealed the highest levels of 

periostin expression in the PDL with a primary localization to the fibroblasts of the PDL and 

osteoblasts of the alveolar bone proper (Horiuchi et al., 1999; I. Takayama & Kudo, 2012; 

Wilde, Yokozeki, Terai, Kudo, & Moriyama, 2003; Yamada et al., 2014). The PDL consists of 

the following cell types: fibroblasts, osteoblasts, cementoblasts, osteoclasts, mast cells and 

undifferentiated periodontal ligament stem cells (PDLSCs) (Matsuzawa et al., 2015; Seo et al., 

2004). The PDL is represented as a tissue with rapid turnover, endless remodeling and high 

regenerative capacity in relation to other connective tissues (Beertsen, 1975; Matsuzawa et al., 

2015; Sodek, 1977). Most of these characteristics are attributed to the fibroblasts and PDLSCs, 

which play important roles in maintaining and supporting the PDL (Matsuzawa et al., 2015; Seo 
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et al., 2004). As in other connective tissues, periostin is a key component to maintaining the 

homeostasis of the PDL, which withstands the continuous day-to-day stresses of mastication. 

Periostin maintains the integrity of the PDL allowing it to adapt to and cushion occlusal forces, 

while simultaneously relaying sensory feedback to the masticatory system during such functions 

(Yamada et al., 2014). During oral development, periostin has also been reported to exist within 

developing tooth buds between the epithelium and mesenchyme, a location that further suggests 

its role in ECM organization within the oral tissues (Ma et al., 2011). The PDL contains 

undifferentiated PDLSCs, which are capable of differentiating into mineral forming cells such as 

osteoblasts and cementoblasts (Seo et al., 2004; Yamada et al., 2014). Not only is periostin 

correlated with osteoblast differentiation from pre-osteoblasts, the up-regulation of periostin has 

also been shown to increase the adhesion to and overall cohesiveness of the ECM and limit the 

total migration of pre-osteoblasts in vitro, indicating the impact of periostin on bone cell 

development and physiology (Cobo et al., 2016). Contrary evidence was found by Matsuzawa et 

al. (2015) as periostin was, in fact, shown to promote the migration of PDLSCs through the 

integrin ανβ3-FAK signaling pathway, which illustrates the complex nature of periostin 

involvement in migratory control (Matsuzawa et al., 2015). Periostin also plays a role in 

angiogenesis of the PDL as it has been demonstrated to up-regulate matrix metalloproteinase-2 

(MMP-2) and vascular endothelial growth factor (VEGF) through the integrin ανβ3-ERK 

signaling pathway; MMP-2 and VEGF are two factors critical for angiogenesis (Watanabe, 

Yasue, Fujihara, & Tanaka, 2012). Similar findings were recorded by Yamada et al. (2014) as 

they demonstrated that periostin within the PDL had the highest binding affinity towards the 

integrin ανβ3, suggesting that cytodifferentiation of osteoblasts, angiogenesis and osteoblast 

migration all likely occur through this particular integrin (Yamada et al., 2014). Thus, periostin 
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increases cell migration, recruitment and attachment to the PDL as well as promotes 

angiogenesis, key processes underlying orthodontic tooth movement (OTM) and periodontal 

wound healing (Romanos et al., 2014; Watanabe et al., 2012; Yamada et al., 2014). During 

OTM, periostin expression has been identified to increase on the compressive side and also 

known to be up-regulated by hypoxia (P. Li, Oparil, Feng, & Chen, 2004; Ouyang et al., 2009; 

Wilde et al., 2003). By promoting differentiation and migration of fibroblasts and osteoblasts, 

periostin may regulate OTM by controlling the rate of PDL and alveolar bone turnover as well as 

regulating angiogenesis (Romanos et al., 2014). Periodontal wound healing is likely also 

regulated through similar mechanisms of action (Romanos et al., 2014). Within the PDL, 

periostin maintains homeostasis and enhances OTM and periodontal wound healing through its 

regulation of ECM integrity, cell migration, cell differentiation and angiogenesis of new blood 

vessels (Romanos et al., 2014). Periostin’s fundamental influence within the PDL suggests that 

therapeutic control to enhance or suppress periostin expression could be important in 

orthodontics, periodontics and all aspects of dentistry. 

Because of periostin’s wide array of functions and influences within the PDL and in other 

tissues, transcriptional control of periostin is paramount to ensuring the proper degree of 

expression of the protein. Numerous transcription factors are involved along many complex 

pathways to regulate the transcription and ultimately, expression of periostin. Factors controlling 

osteoblast differentiation and subsequent bone mass, bone strength and bone remodeling include: 

Runx2/cbfa1, Wnt/β-catenin and osterix, all of which play a role in committing pluripotent 

mesenchymal cells towards the osteoblast lineage (Toshihisa Komori, 2006; B. Merle & 

Garnero, 2012). In particular, overexpression of Runx2 has been shown to be positively 

associated with periostin expression, suggesting its role in early osteoblast differentiation (Stock, 
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Schäfer, Fliegauf, & Otto, 2004). Surprisingly, Wnt-3 was demonstrated to be a negative 

regulator of periostin, which suggests that not all factors within the Wnt pathway affect periostin 

expression in the same manner (Haertel-Wiesmann, Liang, Fantl, & Williams, 2000). Twist-1 is 

another transcription factor with both positive and negative controls on periostin expression. 

Specifically, Twist-1 homodimers bind to the periostin promoter region and up-regulate its 

transcription whereas Twist-1 heterodimers do the exact opposite and down-regulate its 

transcription leading to an increase or decrease in osteoblast differentiation respectively 

(Connerney et al., 2006; Oshima et al., 2002). Thus, transcriptional control of periostin appears 

to be dynamic and multi-factorial in nature. Another transcription factor involved in periostin 

regulation is c-Fos/AP-1. Mice overexpressing c-FOS developed sclerotic lesions in bone with 

differentiated osteoblasts showing high levels of periostin, which was not evident in normal 

osteoblasts (Kashima et al., 2009). Similarly in humans, patients with fibrous dysplasia 

demonstrated osteosclerotic bone lesions with increased expression of c-Fos and high levels of 

periostin, underscoring the transcriptional control of c-Fos over periostin (Kashima et al., 2009). 

External influences over periostin expression also exist through various cytokines, hormones and 

growth factors. Parathyroid hormone (PTH) and sex steroids are anabolic elements, which 

increase bone mass. PTH treatment in vitro has been demonstrated to enhance periostin 

expression and bone deposition through ERK, BMP and Wnt signaling pathways (Ogita, Rached, 

Dworakowski, Bilezikian, & Kousteni, 2008); PTH may also enhance bone deposition by 

inhibiting sclerostin, an inhibitory element on bone formation (Ogita et al., 2008). PTH works to 

enhance bone formation using multiple avenues of control. Estrogens have also been reported to 

stimulate osteoblast differentiation and bone formation by increasing alkaline phosphatase and 

osteocalcin activity (Mamalis, Markopoulou, Lagou, & Vrotsos, 2011). Other studies have 
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showed more ambiguous results where estrogens increase immature periosteal cell proliferation, 

but not differentiation by regulating PTH and BMP2, which suggests that periostin is controlled 

in many ways (Ogita et al., 2008). Other prominent cytokines known to enhance periostin 

expression are platelet-derived growth factor (PDGF), basic fibroblast growth factors (FGF-1 

and FGF-2), angiotensin II and tumor necrosis factor α (TNFα), although not all have been 

demonstrated in vivo (B. Merle & Garnero, 2012). Environmental conditions such as mechanical 

stress and hypoxia stimulate periostin expression as a way to increase cell survival under harmful 

conditions (Ouyang et al., 2009; H. F. Rios et al., 2008). Finally, several members of the TGF-β 

superfamily of proteins have also been demonstrated to stimulate periostin expression in 

osteoblasts namely, TGF-β, BMP2, activin and retinoic acid (Eijken et al., 2007; Horiuchi et al., 

1999; G. Li et al., 2006; Lindner et al., 2005; Wen et al., 2010). In summary, periostin affects 

predominantly pre-osteoblasts rather than mature osteoblasts and can thus be viewed as a marker 

for pre-osteoblasts. Its regulation is one that is dynamic, complex and significant to modulate the 

degree of osteoblast differentiation and subsequent bone formation within the PDL (B. Merle & 

Garnero, 2012).  

As the crux of this study focuses on the association between periostin and BMPs, the next 

section of this literature review will discuss BMPs in depth followed by the rationale for its 

selection for study.  

1.2: Bone Morphogenetic Proteins (BMPs) 

 At the end of the nineteenth century, ground demineralized bone matrix material was 

already being used as an aid in bone healing in cases of bone fracture. It was not until the 1960s, 

however, when the significance of BMPs was first noted by Urist (1965) for their osteoinductive 
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potential in bone formation (Carreira et al., 2014; Marshall R Urist, 1965). This discovery was 

important as it spurred the beginning of a path towards keying in on the role of this group of 

proteins in bone differentiation and formation. In 1979, Urist et al. (1979) furthered the literature 

again when they isolated BMPs, characterized them as glycoproteins and demonstrated their 

innate ability to induce bone morphogenesis, both within and between species (M R Urist, 

Mikulski, & Lietze, 1979). Their findings suggest that BMPs possess a highly conserved 

structure that translates to function, which is maintained across the animal kingdom. In the 

1980s, Wozney et al. (1988) isolated and cloned the first BMPs from bovine serum extract and 

demonstrated that they could each independently direct bone differentiation and formation 

(Wozney et al., 1988); these BMPs were BMPs 1, 2 and 3. This discovery solidified the 

significance of BMPs as a critical component of bone morphogenesis and led to further 

experiments to fully characterize these proteins. Since then, more than 20 different types of 

BMPs have been identified in humans and other species, each playing a crucial role in the 

development and role of the tissue type (Carreira et al., 2014). Surprisingly, despite the 

nomenclature, BMPs are not just involved in osteogenesis (Lissenberg-Thunnissen, De Gorter, 

Sier, & Schipper, 2011). BMPs have been noted to be involved in embryogenesis as well as the 

development of other tissue systems as well. Specifically, BMPs have been shown to regulate the 

development of the teeth, nervous system, eye, lung, heart, kidney and genitalia (Bragdon et al., 

2011; Oryan et al., 2014). To appreciate the extensiveness of their influence, BMPs can be 

subdivided into four main categories based on sequence similarity and function: BMPs 2 and 4; 

BMPs 5, 6, 7, 8a and 8b; BMPs 9 and 10; and finally, BMP3. The first three classes have been 

recognized to be osteogenic, but the last class, BMP3, is a notable inhibitor of osteogenesis (Jain, 

Pundir, & Sharma, 2013; Lissenberg-Thunnissen et al., 2011; Tsiridis, Upadhyay, & Giannoudis, 
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2007). Of all of the BMPs, BMPs 2, 4, and 7 show the most promise as they each have intrinsic 

osteogenic potential (Carreira et al., 2014). 

With the exception of BMP1, which is part of the metalloprotease group of proteins, 

BMPs are considered to be a part of the TGF-β superfamily of proteins with conserved structural 

elements and derived from approximately 50 genes (Carreira et al., 2014). BMPs are dimeric, 

glycoproteins with sites for N- and O-linked glycosylation, which increase the stability and 

efficacy of these proteins in the body. The fully transcribed peptide sequence of BMPs consists 

of a signal peptide at the N-terminus, a polypeptide sequence of the mature protein at the C-

terminus and a non-conserved prodomain region connecting the two termini, which controls the 

proper folding of the protein (Ali & Brazil, 2014). After translation, the premature protein is 

cleaved by subtilisin-like convertase (SCP) to produce the mature protein, which spans 100-140 

amino acid residues in length (Carreira et al., 2014). Its structure contains seven conserved 

cysteine residues total, six of which form three intramolecular disulfide bonds known as cysteine 

knots. The remaining cysteine residue is involved in forming an intermolecular disulfide bond 

with another BMP monomer producing the final, biologically active BMP homodimer; BMPs 

only exist as homodimers in the body as this relationship is both critical and necessary to their 

biological activity (Carreira et al., 2014). In essence, BMP homodimers are the predominant 

form of signaling of each type of BMP and are antagonized by other homodimeric proteins such 

as noggin and gremlin (W. Zhu et al., 2006).  

The mechanism of action by which BMPs elicit their effects is a tightly controlled, 

complex signaling cascade with regulators at every level. The process begins with the binding of 

BMPs to one of two types of transmembrane serine/threonine kinase receptors: type I (BMPR-1) 
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and type II (BMPR-II) kinase receptors (Rosenzweig et al., 1995). Within each type of receptor, 

there are three subcategories of receptors, which BMPs preferentially bind. For BMPR-I, the 

subtypes are: activin receptor-like kinase (ALK) 2, ALK3 (BMPRIA) and ALK6 (BMPRIB). As 

for BMPR-II, the subtypes include: BMP type II receptor (BMPR2), activin A receptor type II 

(ActR2) and activin A receptor type IIB (ActR2B) (Nohe, Keating, Knaus, & Petersen, 2004). 

Within the type I category, the binding affinity for each receptor subtype varies depending on the 

BMP. For instance, BMP4 has a higher affinity towards ALK3 and ALK6 whereas for BMPs 6 

and 7, ALK2 is the preferred receptor (Aoki et al., 2001). In most cases, BMPs initially either 

bind to type I receptor or preformed type I/type II receptor complexes. If bound to a type I 

receptor first, this ligand-receptor complex then recruits a constitutively active type II receptor, 

which catalyzes the trans-phosphorylation of the type I receptor at its glycine and serine rich 

cytoplasmic domain (GS domain), thereby activating the type I receptor (Miyazono, Kamiya, & 

Morikawa, 2010). This conduit is not the only method of activation, however. There are some 

BMPs such as BMP7, which bind first to the type II receptor followed by type I receptor 

recruitment and subsequent phosphorylation (Oryan et al., 2014). Though, it is believed that 

BMPR-II does not actually bind to the ligand, but instead, mediates the interaction between the 

ligand and BMPR-I or merely accelerates this phenomenon (Oryan et al., 2014). Nevertheless, 

the activated BMPR-I proceeds to phosphorylate downstream Smads1, 5 and 8, which are 

primarily responsible for controlling gene expression (Oryan et al., 2014).  

In the realm of cell signaling, Smad proteins play a crucial role in propagating and 

mediating the downstream signal, ultimately modifying gene expression within the nucleus. 

Smad proteins are homologs of both the Drosophila melanogaster mothers against 

decapetaplegic and related, Caenorhabditis elegans Sma gene (Ali & Brazil, 2014; Riggins et al., 
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1996). These proteins are intracellular mediators that transduce extracellular signals from the 

TGF-β superfamily of proteins, such as BMPs, to the cell nucleus where they modify gene 

transcription of targeted genes (Ali & Brazil, 2014). Currently, there are a total of eight known 

Smads that are divided into three groups based on their functions. Smads1, 2, 3, 5 and 8 are 

known as receptor Smads (R-Smads). Among the R-Smads, Smads1, 5 and 8 are the substrates 

for BMP receptors and upon activation, act downstream to enable transcription of targeted genes 

(Oryan et al., 2014). The second group contains the common mediator Smad (co-Smad), Smad4, 

which works in concert with R-Smads to facilitate their effects (Oryan et al., 2014). Finally, the 

last group is the inhibitory Smads, Smad6 and Smad7, which antagonize the effects of R-Smads 

and prevent their association with the co-Smad (Oryan et al., 2014). After activation and 

formation of the ligand-receptor complex at the cell surface, cytoplasmic R-Smads associate with 

the co-Smad mediator, Smad4, forming a Smad/co-Smad complex (Ali & Brazil, 2014). This 

complex is the active constituent responsible for regulating gene expression and thus, its 

formation is absolutely critical to fully realize the effects of BMPs. Together, this protein 

complex translocates to the nucleus to modify gene expression of key transcription factors 

responsible for bone and cartilage formation: Runx2, Dlx5, Osterix and Sox2 (Ali & Brazil, 

2014; Carreira et al., 2014; W. Shi et al., 2007). The significance of these transcription factors is 

seen in cases of Runx2 mutations. Specifically, patients with Runx2 mutations develop 

cleidocranial dysplasia exhibiting hallmark features such as short stature and the lack of a 

clavicle (F Otto, Kanegane, & Mundlos, 2002). Runx2 deficient mice are also completely 

nonviable due to severe faults in osteogenesis, highlighting the importance of Runx2 and other 

transcription factors along the Smad signaling pathway for osteoblast differentiation (T. Komori 

et al., 1997; Florian Otto et al., 1997). Deletion of Runx2 and Osterix inevitably results in the 
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loss of bone formation (Carreira et al., 2014). There are, however, antagonistic elements to the 

Smad pathway, which act as a layer of control. Extracellular antagonists include noggin, chordin, 

twisted gastrulation (Tsg), gremlin and follistatin, all of which contain cysteine-knots which 

attract and bind to BMPs, effectively preventing their association with their respective receptors 

(Carreira et al., 2014). There are intracellular inhibitors as well: Smad6, Smad7, Smad8b, 

Smurf1 and Smurf2 (Carreira et al., 2014; C. Suzuki et al., 2002). These intracellular antagonists 

either interfere with the Smad/co-Smad association or direct the Smad/co-Smad complex 

towards proteosomal degradation. In both cases, the Smad/co-Smad complex is eliminated 

entirely, preventing signal propagation and the modification of gene expression affecting bone 

and cartilage development (Carreira et al., 2014). The Smad pathway is the principle pathway by 

which BMPs elicit their effects and the numerous regulators helps to ensure that the proper 

downstream response is achieved.  

While the Smad pathway is the predominant form of signaling for BMPs, there are also 

Smad-independent or non-Smad pathways of signal transmission via mitogen activated protein 

kinases (MAPK), small Rho GTPase and Akt pathways (Oryan et al., 2014). As the 

nomenclature suggests, MAPKs work without the use of Smads, but rather utilize other protein 

kinases instead for signaling. The beginning of Smad-independent pathways operate in a similar 

fashion to Smad-dependent signaling with BMPs initially binding to a type I receptor, which 

leads to the recruitment of an active type II receptor for trans-phosphorylation (Oryan et al., 

2014). BMPs can also bind to preformed complexes of type I/type II receptors to trigger the 

downstream signaling cascade. Upon phosphorylation, BMPR-I becomes active and transduces 

the signal to downstream kinases in an interaction catalyzed by a three membered protein 

complex consisting of: TAK1 (MAP3K7IP1), co-activator TAB1 (MAP3K7) and X-linked 
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inhibitor of apoptosis protein (XIAP) (Oryan et al., 2014). Altogether, this protein complex 

works in tandem with the activated BMPR-I to facilitate phosphorylation of downstream MAPKs 

in a role similar to Smad4 in Smad-dependent signaling. The targeted MAPKs in this pathway 

include: p38 (MAPK14), ERK (MAPK1) and JNK (MAPK8) (Oryan et al., 2014). Osteoblast 

differentiation and subsequent bone formation are reliant upon the p38/ERK MAPK pathway 

(Oryan et al., 2014). The ERK MAPK and TAK1 proteins also have important roles in regulating 

BMP Smad-dependent signaling, which suggests that the two BMP signaling pathways may not 

function independently of one another, but rather in a cooperative manner. TAK1 possesses a 

dual role and functions as both a BMP agonist and antagonist. Specifically, TAK1 synergizes 

with Smads 1 and 5 as an agonist, but also can behave as an inhibitor by binding and interfering 

with R-Smad trans-activation, ultimately inhibiting BMP-induced osteodifferentiation 

(Beederman et al., 2013; Oryan et al., 2014). These contrasting functions suggest that TAK1 may 

be a key modulator in BMP response. TAK1 is also able to independently promote 

phosphorylation of Smads1, 5 and 8 and thus, regulate control of the Smad pathway on its own, 

further underscoring the importance of this protein in BMP regulation along both Smad-

independent and Smad-dependent pathways (Oryan et al., 2014; S. Shi, de Gorter, Hoogaars, ’t 

Hoen, & ten Dijke, 2013). Currently, it is unclear how the versatility and functionality of TAK1 

is regulated and able to act upon both Smad-independent and dependent pathways. Upon 

phosphorylation, MAPKs translocate to the nucleus whereby they activate the above mentioned 

osteogenic transcription factors initiating gene expression (Oryan et al., 2014). In addition to 

MAPKs, Smad-independent signaling can proceed along other pathways as well namely, small 

Rho GTPase and Akt pathways (Oryan et al., 2014). Activation of PI3K, a non-MAPK member, 

results in signal transduction along these pathways that affect gene transcription (Oryan et al., 
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2014). The complexity and overlapping functions of the various proteins within each pathway 

suggests that BMP signal propagation is not a simple process, but instead one that is deeply 

intertwined and not solely governed by any single pathway or regulator.  

Outside of Smad and non-Smad regulation, there are, in fact, additional mechanisms of 

control in BMP signaling. As Smad-independent and Smad-dependent regulation are arguably 

the primary players in this process, the following controllers can be considered auxiliary 

regulators in BMP signaling (Ali & Brazil, 2014; Oryan et al., 2014). CRIM1 is a 

transmembrane protein containing six cysteine-rich repeats that regulates the delivery of BMPs 

to the cell surface (Carreira et al., 2014). The cysteine-rich domains of CRIM1 have a strong 

binding affinity towards the cysteine knots of the BMPs. As a result of this interaction, CRIM1 

limits the amount of mature BMP that is secreted, thereby controlling the degree of osteogenic 

gene activation of the target cell (Wilkinson et al., 2003). Another transmembrane protein, 

BAMBI pseudo-receptor (BMP and activin membrane-bound inhibitor), possesses sequence 

similarity to type I receptors which allows it to block BMP signaling via competitive inhibition 

and thereby prevent the formation of the ligand-receptor complex necessary to propagate the 

signal to downstream kinases (Onichtchouk et al., 1999). Endoglin (CD105) is another 

transmembrane protein involved in inhibiting the TGF-β and BMP signaling pathway (Ishibashi 

et al., 2010). Protein phosphorylation is a common cellular mechanism of activation and how 

kinases function as regulators. Not surprisingly, protein dephosphorylation plays a vital role in 

the regulation of BMP signaling as well. Proteins involved in dephosphorylation are called 

phosphatases and function by inactivating targeted proteins through the removal of a phosphate 

group (Ali & Brazil, 2014). Specifically, protein phosphatase-1 (PP1) dephosphorylates BMP 

receptors whereas protein phosphatase 1A (PPM1A) dephosphorylates R-Smads, both of which 
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inhibit BMP signaling in their own right through the removal of phosphate groups (Ali & Brazil, 

2014; Lin et al., 2006; Weibin Shi et al., 2004). From extracellular to intracellular control, it is 

clear that the BMPs are tightly regulated on multiple levels through auxiliary regulators to ensure 

that the appropriate cellular response is achieved and maintained.  

Despite the number of BMPs discovered, only a select few have been shown to be 

involved in osteogenesis. The remainder of this review on BMPs will focus on those BMPs 

having a role in bone formation and bone differentiation. The human skeleton consists primarily 

of cartilage and bone that is under a constant state of remodeling by chondrocytes, osteoblasts 

and osteoclasts respectively (Ali & Brazil, 2014). Chondrocytes are responsible for maintaining 

the integrity and metabolic balance of the cartilage whereas osteoblasts and osteoclasts are the 

bone forming and bone resorbing cells within the bone respectively (Tanaka, Nakayamada, & 

Okada, 2005). As previously discussed, bone remodeling overseen by these cells is a tightly 

controlled process involving BMPs and the downstream signaling cascade of R-Smads. Secreted 

BMPs affect bone remodeling in one of three ways: 1) bind and activate BMP receptors to 

initiate the signaling cascade in a stimulatory fashion, 2) become inhibited by secreted 

antagonists that suppress BMP action or 3) bind ECM proteins such as collagen and act as a 

reservoir of BMP for future use (Ali & Brazil, 2014; Miyazono et al., 2010). BMP2, BMP4 and 

most recently, BMP7 are three primary BMP candidate proteins that have been shown to be 

involved in initiating bone formation and maintaining bone homeostasis (Carreira et al., 2014; 

Deschaseaux, Sensébé, & Heymann, 2009). In one study, BMP2 was injected onto the calvaria 

of mice resulting in bona fide periosteal bone formation on the surfaces of the calvaria (D. Chen 

et al., 1997). Another study demonstrated the ability of BMP2 to restore mineralization in 

inhibited osteoblast cultures, highlighting the importance of BMP2 as an osteogenic factor and a 
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potential initiator in the bone formation process (Luppen, Smith, Spevak, Boskey, & Frenkel, 

2003). Together, BMP2 and BMP4 were also shown to be powerful inducers of chondrocyte and 

osteoblast differentiation, key processes leading to cartilage and bone development respectively 

(Nishimura, Hata, Matsubara, Wakabayashi, & Yoneda, 2012). BMP2 and BMP4 are so critical 

to this process that their combined loss led to a severe failure in osteoblast differentiation 

altogether (Oryan et al., 2014; Stewart, Gomez, Armstrong, Henner, & Stankunas, 2014). The 

significance of these proteins is so deeply intertwined with skeletogenesis and growth and 

development that BMP2 and BMP4 knockout mice are completely nonviable. In two separate 

studies, homozygous knockout BMP2 and BMP4 mice died shortly after birth and showed severe 

developmental abnormalities related to the heart, skeleton and mesoderm (Winnier, Blessing, 

Labosky, & Hogan, 1995; Zhang & Bradley, 1996). Although less thoroughly examined, BMP7 

has also been shown to have osteogenic activity. In one study, various cells were induced to 

differentiate into osteoblasts upon BMP7 gene transduction using an adenovirus vector 

(Franceschi, Wang, Krebsbach, & Rutherford, 2000). In another instance, both BMP2 and BMP7 

genes were transduced in a rodent model and resulted in significantly increased osteoblast 

activity more so than any one individual BMP gene transfer alone. Not only is BMP7 a critical 

factor in regulating osteoblast differentiation, it may also act in a synergistic manner with other 

osteogenic BMPs to further accelerate osteogenesis as suggested by this study (W. Zhu et al., 

2004). A more recent study demonstrated that human recombinant BMP7 stimulates 

osteodifferentiation and in vivo bone formation, further underlining the significance of BMP7 

and marking a shift towards clinical applicability of BMPs (F. Chen et al., 2017). There is one 

notable BMP that is antagonistic to osteodifferentiation and it is BMP3. BMP3 has been shown 

to inhibit osteogenesis by antagonizing the effects of BMP2 and BMP4 (Daluiski et al., 2001; 
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Gamer, Nove, Levin, & Rosen, 2005). BMP3 also plays a role in fracture healing as well as 

modulating the effects of osteogenic BMPs to maintain bone homeostasis (Chang, Lu, Shibata, 

Tsukazaki, & Yamaguchi Dr., 2012; Oryan et al., 2014). Overexpression of BMP3 in transgenic 

mice, however, induced spontaneous fractures, suggesting that BMP3 expression and its 

influence on the bone remodeling process is tightly controlled (Gamer, Cox, Carlo, & Rosen, 

2009). The most recent evidence indicate that BMP3 has an overwhelming potential to suppress 

osteodifferentiation in progenitor bone cells more than initially believed in the past. The ability 

of BMP3 to reverse cells predetermined to become osteoblasts illustrates the penetrating 

inhibitory ability of BMP3 in the bone remodeling process and underscores the importance of 

this protein as an osteogenic modulator (Kokabu et al., 2012). Although most of the studies have 

been performed on mice, previous studies on BMPs 2, 3, 4 and 7 collectively illustrate the 

dynamic interplay between agonistic and antagonistic elements to moderate the bone remodeling 

process, an interaction which likely carries over to some extent in humans as well.  

The findings of BMPs as the underlying mechanism in the bone remodeling process is 

pioneering, but also raises the question as to whether there is any clinical applicability to BMPs 

and if so, how to best employ them pharmacologically to treat disease. In order to utilize BMPs 

as pharmaceuticals in humans, the cDNAs of the BMPs are first cloned and reproduced using 

genetic recombination techniques to create biologically active, human recombinant BMPs 

(rhBMPs) (Carreira et al., 2014). RhBMPs can then be strategically applied at target sites to 

enhance bone remodeling. The only two BMPs to achieve full FDA approval for use in patient 

care are BMPs 2 and 7 in their recombinant forms as rhBMP2 and rhBMP7 respectively 

(Carreira et al., 2014). Between the two rhBMPs, rhBMP2 is the most widely studied and 

utilized rhBMP for its therapeutic benefits in orthopedics and in dentistry (Ali & Brazil, 2014). 
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Studies have demonstrated clinical efficacy of rhBMP2 in cases of open or closed long bone 

fractures, maxillofacial defects, joint arthrodesis and in particular, spinal fusion of various types 

(Aro et al., 2011; Fourman, Borst, Bogner, Rozbruch, & Fragomen, 2014; Lyon et al., 2013; 

Marx, Armentano, Olavarria, & Samaniego, 2013; Oryan et al., 2014; Roh, Yeung, Field, & 

McClellan, 2013). In one study, patients with open tibia fractures were treated with standard 

surgical fixation to facilitate fracture healing, which was supplemented with either rhBMP2 or a 

placebo. The rhBMP2 and placebo were delivered to the site using an absorbable type I collagen 

sponge to enhance uptake of the materials. The results of this study showed that patients treated 

with rhBMP2 had accelerated fracture and wound healing, in addition to less surgical 

complications such as infection, compared to the placebo group (Ali & Brazil, 2014; Govender et 

al., 2002). Follow-up studies have also proved the clinical efficacy of rhBMP2 treatment under 

similar scenarios as well as in combination with bone allografting (Nauth, Ristiniemi, McKee, & 

Schemitsch, 2009; Swiontkowski et al., 2006). Although not as extensively studied as rhBMP2, 

rhBMP7 has also been shown to accelerate wound healing and reduce the need for secondary 

procedures when used together with surgical repair of fractures (Ristiniemi et al., 2007). 

RhBMP7 may also be efficacious in controlling osteoarthritis by inducing ECM collagen 

formation to counteract the breakdown of articular cartilage in the joints (Fan et al., 2004). In 

dentistry, rhBMPs have been implicated for off-label usage in periodontal regeneration, bone 

healing, implant osteointegration, ridge augmentation and oral surgery (Carreira et al., 2014; 

Hong, Boyd, Beyea, & Bezuhly, 2013). With both rhBMP2 and rhBMP7, collagen sponge 

delivery media were historically used, but recent studies have experimented with hybrid 

nanofiber mesh/alginate media, among others, to further enhance rhBMP uptake (Boerckel et al., 

2011). Currently, novel approaches utilizing mesenchymal stem cells as the transport medium for 
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rhBMPs are being tested (Liebergall et al., 2013). Despite the therapeutic potential of rhBMPs, 

numerous undesirable side effects have been noted including hematoma, swelling, surgical site 

infection, wound complication, ectopic bone formation and bone resorption (Ali & Brazil, 2014; 

Oryan et al., 2014). It has been suggested that some of these side effects may be from the 

inductive nature of rhBMPs on the inflammatory host response (Arrabal, Visser, Santos-Ruiz, 

Becerra, & Cifuentes, 2013; Oryan et al., 2014). Together with the high treatment cost of 

rhBMPs, further studies are necessary to outline the best indications for their usage so that 

clinical efficiency and efficacy are maximized while side effects and costs are limited (Ali & 

Brazil, 2014; Garrison et al., 2010).   

1.3: Periostin & Bone Morphogenetic Proteins 

The relationship between periostin and BMPs was first explored by Horiuchi et al. (1999) 

during periostin’s discovery (Horiuchi et al., 1999). It was shown that TGF-β1 and BMP2, 

members of a greater TGF-β superfamily of proteins, increase the expression of periostin to 

initiate bone formation (Horiuchi et al., 1999). Delving into this relationship further showed that 

TGF-β1 increases periostin expression only up until the point that bone formation occurs, at 

which point periostin expression actually decreases, suggesting that TGF-β1 may have a role in 

regulating the beginning of bone mineralization (Eijken et al., 2007). The association between 

periostin and BMPs garnered scientific interest upon its inception by Horiuchi et al. (1999) and 

the interest was maintained as more studies further validated this connection (Horiuchi et al., 

1999; Ji et al., 2000; Blandine Merle et al., 2014). Ji et al. (2000) examined the association 

between another member of the TGF-β superfamily namely, BMP2, and periostin, and 

demonstrated that it too increased the expression of periostin (Ji et al., 2000). These findings 
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collectively showed that members of the TGF-β superfamily of proteins could indeed regulate 

periostin expression and perhaps even manipulate its expression to achieve a desired response 

(Horiuchi et al., 1999; Ji et al., 2000; Blandine Merle et al., 2014). The versatility of BMPs in 

clinical applications in orthopedics, dentistry and other disciplines begs the question as to 

whether BMPs can effectively and predictably affect periostin expression (Horiuchi et al., 1999; 

Hussein et al., 2013; Papakostidis, Kontakis, Bhandari, & Giannoudis, 2008). As discussed 

earlier, BMPs are tightly controlled cytokines with a wide spectrum of roles ranging from 

development to bone and cartilage formation and repair (Oryan et al., 2014). As pharmaceuticals, 

they have also been effective primarily as adjuncts to accelerate wound healing in medicine and 

in dentistry, further validating their significance (Oryan et al., 2014). The overlapping roles of 

periostin and BMPs in osteoblast differentiation and wound healing present an interesting 

opportunity to determine the significance of this relationship and how it can be controlled and 

applied therapeutically. As a symbolic marker of osteoblasts, periostin expression can be 

interpreted as a sign of sustained osteoblast differentiation and proliferation, the control of which 

could be potentially significant under various clinical settings. Although TGF-β1 and to a lesser 

extent, BMP2, have been examined with respect to periostin expression in bone cells, there have 

not been any reports on the effects of other BMP family members on periostin expression, 

despite a shared homology between the BMPs. Given that different BMPs are differentially 

expressed in tissues of the body with different physiological functions, it is reasonable to assume 

that they may have different effects on periostin expression (Oryan et al., 2014). Other than 

BMP2, only a select few BMPs are known modulators of osteogenesis and they include: BMP3, 

BMP4 and BMP7. Previous experiments have demonstrated the osteogenic potential of BMP4 

and BMP7 and thus, they are expected to have similar effects on periostin expression (Franceschi 
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et al., 2000; Nishimura et al., 2012; S. Zhu et al., 2009). BMP3, however, has previously been 

demonstrated to have a modulation type of effect and could enhance or suppress periostin 

expression (Chang et al., 2012; Daluiski et al., 2001; Gamer et al., 2005). To date, the effect of 

varying concentrations of BMPs has not been examined. By analyzing the effect of BMP 

concentration on periostin expression, a more global understanding of the dynamics of this 

relationship may be conferred.    

1.4: Research Questions 

 Based on the periostin and BMP literature review, research questions were formulated to 

guide the investigation and focus the experiments accordingly. The following research questions 

were asked and null and alternative hypotheses presented as follows: 

i. Do BMP2, BMP4 and BMP7 treatment increase periostin expression in pre-osteoblast 

cells? 

Ho – BMP2, BMP4, BMP7 do not increase periostin expression.  

HA – BMP2, BMP4, BMP7 increase periostin expression.   

ii. Does BMP3 treatment reduce periostin expression in pre-osteoblast cells? 

Ho – BMP3 does not decrease periostin expression. 

HA – BMP3 does decrease periostin expression.  

iii. For all BMPs, do increasing concentrations cause significant changes in periostin 

expression in pre-osteoblast cells? 

Ho – Concentration does not affect periostin expression. 

HA – Concentration does affect periostin expression.  
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1.5: Study Objective 

The objective of this study was to demonstrate the in vitro expression of periostin in 

MC3T3-E1 mouse pre-osteoblast cells in response to different BMPs at varying concentrations 

and if present, to quantify the differences in periostin expression. MC3T3-E1 cells were selected 

as they are the gold standard murine cell for studying pre-osteoblast cells and have also been 

employed in previous studies on periostin. Previous studies describing the regulation of periostin 

expression by TGF-β1 suggests that periostin has the potential to be a downstream effector to 

treatment by the TGF-β superfamily of proteins (Horiuchi et al., 1999; Ji et al., 2000; Blandine 

Merle et al., 2014). In this study, the expression of periostin was hypothesized to increase with 

BMP2, BMP4 and BMP7 treatment, supporting the notion of these BMPs as enhancers or 

agonists of periostin expression. In contrast, BMP3 was hypothesized to suppress periostin 

expression due to its innate inhibitory potential. However, BMP3 does possess modulator 

activity and could also enhance periostin expression under the right conditions as well. For all 

BMPs examined in this study, varying concentrations were hypothesized to have an effect on 

periostin expression. To be specific, periostin expression was expected to increase, as in the case 

for BMP2, BMP4 and BMP7, and decrease, as in the case for BMP3, with higher concentrations 

of the respective BMPs. Unlike other studies, this research was unique in attempting to 

determine not only the effects of BMP2, but also BMP4 and BMP7 on periostin expression, 

which, to our knowledge, have never been considered. In addition, no previous studies have 

considered the modulatory effects of BMP3 on periostin expression. The effect of varying BMP 

concentrations adds another layer of complexity to this study as well. By incorporating both 

hypothesized agonists (BMP2, BMP4 and BMP7) and antagonists (BMP3) to periostin 

expression in the study, a more complete understanding of periostin regulation can be achieved. 
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Ultimately, understanding the effects of BMPs on periostin expression will contribute to our 

overall understanding of the complex mechanisms involved in osteoblast differentiation and 

proliferation as well as their therapeutic applications in the clinical setting. This knowledge may 

have important clinical implications in the modulation of osteoblast activity, which may be 

applicable to the dental field in the regulation of tooth movement, regeneration of the 

periodontium and even de novo bone formation.  
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Chapter 2: Methodology 

2.1: Cell Cultivation 

MC3T3-E1 mouse pre-osteoblast cells (MC3T3-E1 Subclone  4, ATCC CRL-2593) were 

obtained from the American Type Culture Collection (Manassas, VA). Cells were cultured in 

Alpha Minimum Essential Medium (α-MEM) (HyClone, Logan, UT) supplemented with 10% 

fetal bovine serum (FBS) (HyClone Bovine Growth Serum Supplemented Calf, Logan, UT), 1% 

penicillin and 1% streptomycin. The α-MEM also contained 2 mM L-glutamine, ribonucleosides 

and deoxyribonucleosides. Cells were grown in standard cell culture conditions of 37°C, 95% 

humidity and 5% CO2. Media was changed every 2 days. All plates were examined using light 

microscopy to confirm adequate confluency (70-80%) before beginning BMP treatment. 

2.2: BMP Treatment 

 BMP2 (catalog # 4577-10), BMP3 (catalog # 4573-10), BMP4 (catalog # 4578-10) and 

BMP7 (catalog # 4579-10) were obtained from BioVision (Milpitas, CA). Each vial containing 

10 µg of lyophilized BMP was reconstituted to 200 ng/µL in water containing 0.5% BSA and 

stored at -20°C.  A further dilution to 5 ng/µL in water was prepared as a working stock for use 

in the following treatments: 10 ng/mL (low concentration) and 25 ng/mL (high concentration). 

All 12-well plates were seeded with cells to provide duplicate wells according to the nine 

experimental conditions described in Table I. The control group received the same media used to 

culture cells, with no added BMPs. Treatment groups received specific BMPs in either low (10 

ng/mL) or high (25 ng/mL) concentrations depending on the treatment assigned. Two 

concentrations for each BMP were used to determine concentration-dependent effects on 
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periostin expression and were selected based on concentrations used in comparable experiments 

within the literature (Horiuchi et al., 1999; Ji et al., 2000; Blandine Merle et al., 2014). In all 

cases, a total of 1 mL of treatment media was used in all groups. Following the addition of BMP-

media or media alone, plates containing cells were incubated in an incubator for 24 hours at 

37°C, 95% humidity and 5% CO2.  

 

 

 

Group BMP Level BMP Concentration (ng/mL) 

Control N/A 0 

BMP2 Low 10 

BMP2 High 25 

BMP3 Low 10 

BMP3 High 25 

BMP4 Low 10 

BMP4 High 25 

BMP7 Low 10 

BMP7 High 25 

Table I. BMP treatment consisted of nine experimental conditions. Each BMP was used in a low (10 ng/mL) and a 
high (25 ng/mL) concentration. A control group with no BMP was utilized as a baseline for periostin expression, 
which all other BMP treatment groups were compared. Treatments were in duplicate and performed in three 
independent experiments.  
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2.3: RNA Isolation 

 After 24 hours of incubation, cells were removed from the incubator and visualized under 

a light microscope to confirm that no significant cell death, aberrant cell growth or unwanted 

contamination had occurred. RNA isolation was performed using TRIzol reagent (Invitrogen, 

Carlsbad, CA) following the manufacturer’s recommended protocol to ensure maximum yield. 

Treatment media was removed from all cell plates using a suction pipettor. TRIzol reagent (600 

µL) was added to each well containing cells and pipetted vigorously to fully lyse cells and then 

transferred to Eppendorf tubes to begin RNA isolation. Chloroform (120 µL) was added to each 

tube and pipetted vigorously followed by placement of the tubes on ice to preserve the integrity 

of the extracted RNA. Eppendorf tubes were spun in a centrifuge (Eppendorf Centrifuge 5415D, 

Hamburg, Germany) at 11,000 RPM, 4°C for 15 minutes. The aqueous portion (supernatant) 

containing the RNA was subsequently transferred to a second set of Eppendorf tubes for further 

purification. 350 µL of isopropanol was added to the second set of tubes containing the aqueous 

portion for RNA separation. The tubes were centrifuged at 12,000 RPM, 4°C for 15 minutes to 

pellet the RNA. The supernatant was then removed leaving behind a visible, white RNA pellet at 

the base of the tube. The pellet was re-suspended in 600 µL of 75% ethanol and centrifuged 

again at 10000 RPM, 4°C for 10 minutes as a washing step. Supernatant was removed gently 

without disturbing the pellet and the RNA pellet was allowed to air dry for 10 minutes before 

being re-suspended in 25 µL of de-ionized, ultra-filtered (DIUF) water. All BMP treatment and 

RNA isolation experiments were performed in triplicate. Isolated RNA samples were collected 

and stored at -80°C inside a designated laboratory freezer until all experiments were complete 

and ready for further processing.  
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2.4: Reverse Transcription Polymerase Chain Reaction (RT-PCR) and Gel Electrophoresis 

 Reverse transcription polymerase chain reaction (RT-PCR) was performed using the 

Verso 1-step RT-PCR Hot-Start kit  (Thermo Fisher Scientific, Waltham, MA) to first reverse 

transcribe messenger RNA (mRNA) into complementary DNA (cDNA) followed by PCR 

amplification using specific primers. Before performing RT-PCR on treatment samples, it was 

important to determine the most ideal primers for this component of the study to maximize the 

amount of PCR product yield. The two primer sets needed were for mouse periostin and 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The GAPDH housekeeping gene was 

selected as a control for cell number to normalize periostin gene expression between the 

individual experiments. Two sets of periostin (Periostin A and Periostin B) primers and GAPDH 

(GAPDH A and GAPDH B) primers were identified from previous studies and used with 

selected samples to determine the primer sets giving the cleanest and greatest yield of amplified 

product. The primers and their respective sequences are listed in Table II. Each RT-PCR reaction 

contained a final volume of 25 µL and was prepared and run according to the manufacturer’s 

protocol as indicated in Table III.  
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Primer Set Forward Sequence (5’ to 3’) Reverse Sequence (5’ to 3’) 

Periostin A* AACCAAGGACCTGAAACACG TGTGTCAGGACACGGTCAAT 

Periostin B TGCCCAGCAGTTTTGCCCAT CGTTGCTCTCCAAACCTCTA 

GAPDH A GCATCTCCCTCACAATTTCCA GTGCAGCGAACTTTATTGATGG 

GAPDH B* TGCACCACCAACTGCTTA GGATGCAGGGATGATGTTC 

Table II. Periostin and GAPDH primer sets. Two sets of periostin and GAPDH primers were selected to determine 
the primer set giving rise to the highest yield of PCR product. Sequences for the periostin and GAPDH primers are 
listed. Periostin A and GAPDH B sets produced the highest yield and were selected for use on all samples in the 
study (marked with an *). 

 

 

 

 

Step Temperature (°C) Time Cycles 

1) cDNA Synthesis 50  30 min 1 

2) Verso Enzyme 

Inactivation 

95 15 min 1 

3) Denaturation 95 20 sec 35 total 

4) Annealing 55 30 sec 35 total 

5) Extension 72 1 min 35 total 

6) Final Extension 72 5 min 1 

Table III. RT-PCR reaction steps. RT-PCR was performed using a 1-step technique to first reverse transcribe all  
mRNA into cDNA using random primers. Next, PCR amplification of specific sequences of periostin and GAPDH 
cDNA was performed until the endpoint was reached. Thermocycling conditions followed the manufacturer’s 
suggested protocol to ensure the highest yield possible.  
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The RT-PCR reaction was performed with the Verso 1-step RT-PCR Hot-Start kit 

following the manufacturer’s recommendations. The Verso Enzyme Mix included the Verso 

Reverse Transcriptase, which is responsible for converting mRNA into cDNA. The Mix also 

included an RNase inhibitor to prevent RNA degradation from occurring as a result of 

contaminants. The 2X 1-Step PCR Hot-Start Master Mix contained a specialized buffer solution 

to optimize reverse transcription and PCR amplification in the same reaction vessel. The Master 

Mix also contained the enzyme for the PCR amplification reaction to catalyze the extension of 

the cDNA segments: Thermo Scientific Thermo-Start DNA polymerase. RT Enhancer was also 

included to breakdown any residual DNA and remove contaminants. The thermocycling was 

performed with an Eppendorf Mastercycler Gradient 5331 (Eppendorf, Hamburg, Germany). In 

preparation for agarose gel electrophoresis, amplified PCR products (8 µL) were combined with 

2 µL of Thermo Scientific 6X Orange DNA Loading Dye (Thermo Fisher Scientific, Waltham, 

MA). Samples were loaded and electrophoresed through a 2% agarose gel at 70 volts for 2 hours 

in a buffer solution of 1X Tris/Borate/EDTA (TBE). One lane of each gel included a DNA 

standard ladder (Thermo Scientific O’GeneRuler Ultra Low Range DNA Ladder, Waltham, MA) 

with known base pair (bp) values to assist with confirmation of the corresponding periostin and 

GAPDH bands. The base pair values for the DNA standard ladder in descending order were: 300 

bp, 200 bp, 150 bp, 100 bp, 75bp, 50bp, 35 bp, 25 bp, 20 bp, 15 bp and 10 bp. For both periostin 

and GAPDH, the bp range of the PCR amplicons were from 171-196 bp (Lee, Lee, Park, & Kim, 

2017; Matsuzawa et al., 2015; Tilman et al., 2007). Visualization of gels under UV light showed 

the most abundant product arising from periostin “A” and GAPDH “B” primer sets.  The 

periostin “A” and GAPDH “B” primers were then used for the RT-PCR of all samples. The 

selected periostin and GAPDH primers will henceforth be known as merely periostin and 
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GAPDH primers with no letter designation, indicating the usage of the most effective primer 

pairs.  

 For all samples of the three separate experiments, RT-PCR was performed using the 

selected periostin and GAPDH primers according to the protocol described in Table III. 

Following RT-PCR amplification, PCR products together with a DNA standard ladder, were 

loaded onto a 2% agarose gel following the same protocol and settings described earlier. Two 

gels were run for each of the three sets of experiments: one gel for periostin PCR products and 

another gel for its corresponding GAPDH PCR products. Between the three experimental setups, 

a total of six gels were run and produced. 

2.5: Gel Visualization and Analysis 

 Visualization of the gels was performed under UV light and images of the gels were 

captured using a specialized Kodak Gel Logic 100 Imaging System (Rochester, NY) linked to its 

corresponding software, Kodak 1D Image Analysis Software (Rochester, NY). Bands indicative 

of periostin and GAPDH were identified and noted based on the relative base pair values of the 

PCR products. Gel images were analyzed using the Kodak 1D Image Analysis Software to 

quantify the pixel density of the different bands, which served as an indication of periostin 

mRNA expression in each treatment group. For the comparison between experiments, periostin 

bands were normalized against corresponding GAPDH bands for each experiment. After 

normalization, pixel densities between treatment groups were compared with each other to 

determine the effect of different BMPs on periostin expression. 

2.6: Statistical Analysis 
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 All experiments were performed in triplicate. Pixel densities of bands were expressed as 

normalized values with standard errors and later aggregated to form normalized means and 

standard error of the means. Changes in band density for each of the BMP treatment groups were 

compared to the control group individually using the student’s t-test with a p-value ≤ 0.05.  
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Chapter 3: Results 

3.1: Periostin and GAPDH Primer Selection 

 Before starting experiments to assess the relationship between periostin and BMPs, it was 

first important to identify the most ideal periostin and GAPDH primers to be used during the RT-

PCR portion of the experiments in order to maximize the endpoint yield of PCR product. 

Although there are numerous periostin and GAPDH primers documented in the literature, it is 

reasonable to assume that the efficacies of the various primers in PCR amplification may be 

different. In the first part of this study, we examined two sets of periostin and GAPDH primers 

gathered from previous studies and tested their effectiveness in RT-PCR on a randomized set of 

samples (Lee et al., 2017; Matsuzawa et al., 2015; Blandine Merle et al., 2014; Tilman et al., 

2007).  

Following BMP treatment, cells were lysed and RNA isolation and purification were 

performed to collect the total RNA within the cells in preparation for RT-PCR. The first step of 

RT-PCR involved reverse transcriptase, which converted all of the mRNA into cDNA using a 

variety of non-specific primers. Once all of the mRNA was converted into cDNA, specific 

primers to periostin and GAPDH were used to propagate the desired amplicons for the periostin 

and GAPDH genes. Two sets of periostin and GAPDH primers were selected and arbitrarily 

designated as Periostin A, Periostin B, GAPDH A and GAPDH B. A selection of MC3T3-E1 

RNA samples were used for RT-PCR using each pair of primers followed by gel electrophoretic 

separation and visualization under UV light. Each primer pair was tested under two experimental 

conditions and in duplicate to minimize the chance of error as well as the effect of particular 

experimental conditions on the efficacy of the PCR reaction. PCR products from periostin and 
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GAPDH primer sets after gel electrophoresis are depicted in Figure 1 and Figure 2. Figure 1 

represents the PCR products produced from Periostin A and GAPDH A primers while Figure 2 

shows the PCR products from Periostin B and GAPDH B primers. The contents of each lane for 

the gels shown in Figures 1 and 2 are described in detail in Tables IV and V respectively. For 

both gels, lane 1 was loaded with a DNA standard ladder, which was used to identify periostin 

and GAPDH bands based on known sizes, while lane 2 was left empty as a negative control. In 

Figure 1, increased band intensity was detected in lanes 5, 6, 9 and 10, indicative of a greater 

PCR yield associated with Periostin A primers. On the other hand, lanes 3, 4, 7 and 8 did not 

show any definitive bands, which indicated the lack of PCR product generated from GAPDH A 

primers. Figure 2 shows the results of the second primer sets, Periostin B and GAPDH B. In 

Figure 2, intense bands were evident in lanes 3, 4, 5 and 6 corresponding to GAPDH B primers 

while lanes 7, 8, 9 and 10, representing Periostin B primers, did not have any significant bands. 

From these two figures, it can be concluded that the Periostin A and GAPDH B primers provide 

the strongest responses, which indicates that these particular primer pairs were the most effective 

in the RT-PCR reaction for maximum yield. Because the contrast between the different primers 

was so pronounced and obvious, visual analysis and comparison was sufficient to determine the 

most effective primers. No other comparison was necessary or conducted. Thus, Periostin A and 

GAPDH B primers are the most effective and appropriate primers for maximizing the RT-PCR 

reaction and were the primers chosen for use across all experimental samples.  
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Figure 1. Gel electrophoresis of RT-PCR products using Periostin A and GAPDH A primer sets. Lane 1 contained 
the DNA standard ladder. Lane 2 was left empty as a negative control. Lanes 3, 4, 7 and 8 contained RT-PCR 
products generated from GAPDH A primers. Lanes 5, 6, 9 and 10 contained RT-PCR products generated from 
Periostin A primers. From this figure, it can be concluded that the yields from Periostin A primers (lanes 5, 6, 9, 10) 
were significant and the yields from GAPDH A (lanes 3, 4, 7, 8) were minimal as indicated by the intensity of the 
Periostin A bands versus GAPDH A bands. 

 

 

 

Lane Contents/Primers used Experimental Condition 
1 DNA Standard Ladder N/A 
2 Empty Empty 
3 GAPDH A No BMP 
4 GAPDH A BMP2 
5 Periostin A No BMP 
6 Periostin A BMP2 
7 GAPDH A No BMP 
8 GAPDH A BMP2 
9 Periostin A No BMP 
10 Periostin A BMP2 
Table IV. Contents of each lane for the gel electrophoresis of Periostin A and GAPDH A primer sets. Lane 1 
contained the DNA standard ladder used to assist in the identification of periostin and GAPDH bands. Lane 2 was 
left empty as a negative control. All other wells contained Periostin A and GAPDH A primer products under 
different experimental conditions. Two experimental conditions, selected at random and in duplicate, were used to 
test each primer to eliminate any experimental error and confounding variables associated with the experimental 
condition itself (with or without BMP treatment).  
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Figure 2. Gel electrophoresis of RT-PCR products using Periostin B and GAPDH B primer sets. Lane 1 contained 
the DNA standard ladder. Lane 2 was left empty as a negative control. Lanes 3-6 contained RT-PCR products 
generated from GAPDH B primers. Lanes 7-10 contained RT-PCR products generated from Periostin B primers. 
From the figure, it can be concluded that the yields from GAPDH B primers were significant and the yields from 
Periostin B were minimal as indicated by the intensity of the GAPDH B bands versus Periostin B bands. 

 

 

 

Lane Contents/Primers used Experimental Condition 
1 DNA Standard Ladder N/A 
2 Empty Empty 
3 GAPDH B No BMP 
4 GAPDH B BMP2 
5 GAPDH B No BMP 
6 GAPDH B BMP2 
7 Periostin B  No BMP 
8 Periostin B BMP2 
9 Periostin B No BMP 
10 Periostin B BMP2 
Table V. Contents of each lane for the gel electrophoresis of Periostin B and GAPDH B primer sets. Lane 1 
contained the DNA standard ladder used to assist in the identification of periostin and GAPDH bands. Lane 2 was 
left empty as a negative control. All other wells contained Periostin B and GAPDH B primer products under 
different experimental conditions. Two experimental conditions, selected at random and in duplicate, were used to 
test each primer to eliminate experimental error and any confounding variables associated with the experimental 
condition itself (with or without BMP treatment).  
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3.2: BMP-Induced Periostin Expression 

Periostin expression is known to be up-regulated by TGF-β1 and BMP2 as demonstrated 

in previous studies (Horiuchi et al., 1999; Ji et al., 2000; Blandine Merle et al., 2014). These 

factors are a part of the larger TGF-β superfamily of proteins and because of the shared 

homology, it can be expected that other BMPs would affect periostin expression in some manner. 

To investigate the effect of BMPs on periostin expression, BMPs with a known role in 

osteogenesis were selected and applied as treatment conditions to MC3T3-E1 pre-osteoblast 

cells: BMP2, BMP3, BMP4 and BMP7. After RNA purification, reverse transcription and PCR 

amplification using specific primers, the amplified cDNA segments were separated on a 2% 

agarose gel to identify the bands corresponding to the periostin and GAPDH amplified products. 

Figure 3 is an example of a gel separating periostin amplified products and a gel of GAPDH 

products derived from the same experimental RNA samples; labeled (A) and (B) respectively. 

For Figure 3, the contents of each lane are indicated in Table VI. Visual analysis and 

photography were used to confirm and quantify periostin cDNA bands based on pixel density, 

which were later normalized against corresponding GAPDH cDNA bands. After normalization, 

adjusted density values were obtained, which were used to compare individual experiments. 

Averages in band pixel density were generated as a reflection of the amount of periostin and 

GAPDH expressed and a student’s t-test was used to evaluate significant changes in periostin 

expression in comparison to the control group (p-value ≤ 0.05).  

Periostin expression was significantly increased with BMP2 and BMP3 treatments with 

both low (10 ng/mL) and high (25 ng/mL) concentrations. BMP2 treatment increased periostin 

expression by 29% and 26% under low and high concentrations, respectively. BMP3 treatment 
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showed an increase of 24% and 17%, respectively. All values were statistically significant (p-

value ≤ 0.05). BMP2 treatment showed a larger increase in periostin expression relative to 

BMP3, reaffirming the powerful osteoinductive nature of BMP2 and confirming the findings 

from previous studies (Horiuchi et al., 1999; Ji et al., 2000; Blandine Merle et al., 2014). 

Collectively, the range of percent change in periostin expression was between 17%-29% for 

BMP2 and BMP3 treatments. Other BMPs tested, including BMP4 and BMP7, also increased 

periostin expression under low and high concentrations. For BMP4 treatment, a 9% and 11% 

increase in periostin expression was observed under low and high concentrations, respectively. 

BMP7 treatment demonstrated a 5% and 11% increase in periostin expression, respectively. 

However, these increases in periostin expression by BMP4 and BMP7 were not statistically 

significant in either low or high concentrations (p-value ≤ 0.05). Figure 4 illustrates the changes 

in periostin expression under each treatment condition and is based on the adjusted density 

values presented in Table VII. Table VII details the adjusted density values representing changes 

in periostin expression and consequent t-test values used to determine significance. It was 

hypothesized that BMP2, BMP4 and BMP7 would significantly increase periostin expression 

based on previous studies describing the osteoinductive nature of these BMPs (Carreira et al., 

2014; Oryan et al., 2014). In addition, BMP3 was expected to reduce periostin expression and 

behave as an antagonist.  This was not observed in our data.  Instead, BMP3 increased periostin 

expression by a significant margin. Overall, periostin expression was enhanced both with low 

(10ng/mL) and high concentrations (25 ng/mL) of BMP2 and BMP3 only. Although BMP4 and 

BMP7 also increased periostin expression, this finding was not significant, but at the same time, 

it does not discount the potential role of these particular BMPs on periostin expression. Taken 
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together, these findings support the intrinsic ability of the TGF-β superfamily of proteins to 

affect periostin expression to varying degrees.  
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(A)                       

  
(B) 

 
Figure 3. PCR products of periostin and GAPDH primers after gel electrophoresis. Label (A) indicates the gel 
containing periostin PCR products while label (B) shows the GAPDH PCR products. Lane 1 contained the DNA 
standard ladder. Lanes 2-10 contained PCR products from different experimental conditions, which are outlined in 
Table VI. Periostin and corresponding GAPDH bands were identified and quantified for pixel density. To compare 
across experimental conditions, periostin bands were normalized against the corresponding GAPDH bands, creating 
adjusted density values. In total, three independent sets of experiments were performed, each with their own 
periostin and GAPDH paired gels. 
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Lane Experimental condition BMP Concentration (ng/mL) 

1 DNA Standard Ladder N/A 
2 Control (no BMP) 0 
3 BMP2 (low) 10 
4 BMP2 (high) 25 
5 BMP3 (low) 10 
6 BMP3 (high) 25 
7 BMP4 (low) 10 
8 BMP4 (high) 25 
9 BMP7 (low) 10 
10 BMP7 (high) 25 
Table VI. Contents of each lane of the gel electrophoresis of periostin and GAPDH PCR products. Lanes are 
numbered to identify periostin and GAPDH PCR product in the gels shown in Figure 3.  

 

 

 
Figure 4. Effect of different BMPs on periostin expression. Periostin expression was normalized against the 
corresponding GAPDH expression to achieve adjusted values, which could be compared between experiments. 
Although all BMP treatment groups appeared to increase periostin expression relative to the control group (no 
BMP), significant increases in periostin expression were only observed with BMP2 and BMP3 at 10 ng/mL and 25 
ng/mL. Statistical significance was established at p-value ≤ 0.05. Significant increases in periostin expression are 
indicated with *. 
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Treatment Group Adjusted 

Density 

Percent 

Change 

(%) 

T-Test (BMP to 

Control) 

T-Test (low 

to high BMP) 

Standard 

Deviation 

Standard 

Error of Mean 

Control 1 N/A N/A N/A 0 0 

BMP2 (10 ng/mL) 1.29 28.8 0.0342* 0.377 0.147 0.0849 

BMP2 (25 ng/mL) 1.26 25.5 0.0373* 0.377 0.138 0.0799 

BMP3 (10 ng/mL) 1.24 24.0 0.0325* 0.171 0.116 0.0668 

BMP3 (25 ng/mL) 1.17 17.3 0.0135* 0.171 0.0555 0.0320 

BMP4 (10 ng/mL) 1.09 8.70 0.113 0.201 0.101 0.0581 

BMP4 (25 ng/mL) 1.11 11.1 0.134 0.201 0.148 0.0854 

BMP7 (10 ng/mL) 1.05 4.60 0.374 0.218 0.231 0.134 

BMP7 (25 ng/mL) 1.11 11.1 0.143 0.218 0.140 0.0811 

Table VII. Adjusted density values illustrating the changes in periostin expression under different experimental 
conditions. Increase in periostin expression was significant under the following conditions: BMP2 (10 ng/mL), 
BMP2 (25 ng/mL), BMP3 (10 ng/mL) and BMP3 (25 ng/mL). Fold change in periostin expression were noted as 
29%, 26%, 24% and 17% respectively. Concentration-dependent relationships between BMPs and periostin 
expression were not observed. Student’s t-test was used to determine significance at p-value ≤ 0.05. Standard 
deviation and standard error of the mean are noted above. Significant increases in periostin expression are indicated 
with *.  

 

3.3: Concentration-Dependent Relationships between BMP and Periostin Expression 

 The above findings suggest that members of the TGF-β superfamily of proteins 

specifically, BMPs, do have the ability to influence the expression of periostin. However, one 

relationship that has not been considered is the concentration-dependent effects of BMPs. In 

varying the concentrations of the different BMPs of 10 ng/mL and 25 ng/mL, the effect of BMP 

concentration on periostin expression was evaluated. Using the same experimental protocol, 

concentration-dependent relationships were evaluated by comparing the adjusted densities, 

which again reflect periostin expression, between low and high concentrations within the same 
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BMP group. For each experiment, periostin and GAPDH bands were identified and quantified 

based on pixel density followed by normalization to generate adjusted density values. Adjusted 

densities for each treatment group are listed in Table VII. To determine significance, adjusted 

densities of low versus high concentration of BMPs were compared and contrasted against the 

control group using a student’s t-test with significance set as p-value ≤ 0.05. For all samples, 

significant changes in periostin expression as a function of concentration were not observed. In 

other words, although periostin expression varied depending on concentration, these differences 

were not significant enough to suggest that concentration-dependent relationships between BMP 

and periostin were present (p-value ≤ 0.05). The relationship between BMP concentration and 

periostin expression is illustrated in Figure 5 (BMP2), Figure 6 (BMP3), Figure 7 (BMP4) and 

Figure 8 (BMP7). In each of the figures, different concentrations of BMPs are represented and 

subsequently compared to determine the significance of concentration on periostin expression. 

Overall, concentration-dependent relationships in periostin expression were not observed for any 

of the BMPs.  
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Figure 5. Effect of BMP2 concentration on periostin expression. Although a change in adjusted density, indicative of 
periostin expression, was observed, this change was not significant (p-value ≤ 0.05).  
 
 
 
 
 
 

 
Figure 6. Effect of BMP3 concentration on periostin expression. Although a change in adjusted density, indicative of 
periostin expression, was observed, this change was not significant (p-value ≤ 0.05). 
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Figure 7. Effect of BMP4 concentration on periostin expression. Although a change in adjusted density, indicative of 
periostin expression, was observed, this change was not significant (p-value ≤ 0.05). 
 
 
 
 
 
 

 
Figure 8. Effect of BMP7 concentration on periostin expression. Although a change in adjusted density, indicative of 
periostin expression, was observed, this change was not significant (p-value ≤ 0.05 
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Chapter 4: Discussion 

 At the beginning of this thesis, an extensive background on periostin and BMPs was 

provided as a guide to formulate appropriate research questions and hypotheses as well as direct 

the purpose of this study. Upon its discovery, periostin was initially identified as a small, 

secreted 90 kDa glycoprotein with a specific localization towards the periosteum of long bones 

and the PDL (Horiuchi et al., 1999). We now understand that periostin’s expression is ubiquitous 

throughout the body with an increased expression within collagen fibrous connective tissues of 

the body, especially within those tissues under mechanical stresses (Nicolas Bonnet et al., 2016; 

Horiuchi et al., 1999; Shimazaki et al., 2008). More detailed studies uncovered a complex 

molecular structure to periostin, which served as evidence to help explain the various functions 

and roles of the protein (Horiuchi et al., 1999; Kudo, 2011; Sugiura et al., 1995). In addition to 

acting as pillars of support during mechanical stress, periostin has been shown to be involved in 

many important processes including growth and development, cell adhesion, ECM organization 

and maintenance, cytodifferentiation, wound healing, inflammation and various pathologies 

within the body (Kudo, 2017; Kudo & Kii, 2017; Ruan et al., 2009; Yamada et al., 2014). As a 

key component of so many processes, periostin regulation is paramount and has been 

demonstrated by many transcription factors, processes and notably, cytokines (B. Merle & 

Garnero, 2012). One of the most well studied and discussed cytokines are BMPs, members of the 

TGF-β superfamily of proteins. BMPs were first noted for their intrinsic osteoinductive potential 

on bone formation (Marshall R Urist, 1965). Since then, numerous isoforms of BMPs have been 

identified and all have crucial roles in physiology and growth and development (Carreira et al., 

2014). The tight regulation of BMPs is also important and occurs along both SMAD-dependent 

and SMAD-independent pathways, which helps control the degree of BMP expression and 
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ensure that the proper response is elicited (Oryan et al., 2014). From the literature review as a 

whole, it is clear that periostin and BMPs possess a global influence over the growth and 

development of an individual. The commonality that brings these two proteins together is their 

innate ability to govern osteodifferentiation and subsequent bone formation (Horiuchi et al., 

1999; Oryan et al., 2014). Previous studies have provided confirmatory evidence of the 

connection between periostin and BMPs. Specifically, periostin expression is increased in the 

presence of TGF-β1 and BMP2, which is significant as it suggests the possibility of controlling 

the expression of one with the other (Horiuchi et al., 1999; Ji et al., 2000; Blandine Merle et al., 

2014). Given the numerous isoforms of BMPs discovered, with each having a differential pattern 

of expression, the logical question that follows and one which, to our knowledge, has never been 

asked is: How does periostin expression change with respect to other BMPs? To answer this 

question, our study examined periostin expression in relation to other BMPs known to play a role 

in osteogenesis: BMP3, BMP4 and BMP7. BMP2 was also re-examined to confirm the findings 

from previous studies. To further our understanding of the relationship between periostin 

expression and BMPs, the effect of concentration was assessed as well.  

 The present study is the first and only study to examine periostin expression as it relates 

to the entire gamut of BMPs known to play a role in osteogenesis: BMP2, BMP3, BMP4 and 

BMP7. To our knowledge, it is also the only known study to consider concentration-dependence 

as a way to further analyze the relationship between periostin expression and BMPs. Based on 

the current understanding of osteogenic BMPs, we initially hypothesized that periostin 

expression would be enhanced by BMP2 (shown previously), BMP4 and BMP7. We also 

hypothesized that periostin expression would be suppressed by BMP3, given its modulatory type 

of activity with antagonistic elements. We predicted that any relationship observed between 
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periostin expression and BMP treatment would be further amplified with increasing 

concentration, confirming a concentration-dependent type of relationship. Furthermore, we did 

not anticipate that any of these relationships would be completely reversed by changing the 

concentrations of BMPs. For instance, if BMP2 was shown to increase periostin expression, we 

did not expect BMP2 to suddenly decrease periostin expression with changing concentrations. 

To test these hypotheses, murine cells were treated with different BMPs under varying 

concentrations followed by RT-PCR and gel electrophoresis to identify and quantify changes in 

periostin expression. 

The underlying objective of this study was to demonstrate an in vitro change in periostin 

expression upon exposure to varying BMPs at different concentrations. MC3T3-E1 pre-

osteoblast cells were selected as they are the gold standard murine cell for studying bone 

biology, as indicated by their use in countless studies on osteodifferentiation and mineralization 

(Cobo et al., 2016; Lee et al., 2017; Lindner et al., 2005; Blandine Merle et al., 2014). It is an 

ideal model for studying transcriptional control of osteoblasts for many reasons including cost, 

convenience, ease of cultivation and its ability to be easily inducible in terms of gene alteration 

(Wang et al., 1999). The selection of MC3T3-E1 cells is further supported by evidence 

demonstrating periostin as a marker for the pre-osteoblastic stage of bone cell maturation 

(Horiuchi et al., 1999). For our purposes, the ability of the MC3T3-E1 cells to undergo effective 

and rapid changes in periostin gene expression with BMP treatment is critical to ensure that any 

changes in periostin expression are fully realized as well as to maximize the overall efficiency of 

the experiments. After BMP treatment, RT-PCR was performed followed by gel electrophoretic 

separation to quantify, compare and contrast the degree of periostin expression between the 

treatment groups. A comparison of specific primers to periostin and GAPDH, a housekeeping 
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gene, were necessary to optimize the RT-PCR experimental conditions. Each set of primers 

served a unique purpose in this study to ensure the validity of our results. Periostin primers were 

utilized to amplify a portion of the periostin cDNA. This provided an assessment of up-

regulation, down-regulation or perhaps even no change, depending on periostin’s transcriptional 

response to the different BMP treatments. In a similar manner, GAPDH primers were employed 

to amplify a part of the GAPDH cDNA, which acts as a baseline measure for the total number of 

cells in each experiment. As a housekeeping gene, GAPDH is constitutively active in all live 

cells and thus, reflects the total cell count (Lee et al., 2017; Blandine Merle et al., 2014). The 

assumption is that cell numbers between each of the experiments varies to a certain degree and 

consequently, in order to compare the actual periostin expression between the experiments, a 

normalization to cell number must be considered. If this normalization is not performed, then any 

changes in periostin expression could be attributed to differences in cell number, which would 

weaken any claims of association between periostin expression and BMPs.  

In the first part of our study, different periostin and GAPDH primers were evaluated to 

determine whether different primer sets demonstrated significant differences in efficiency during 

RT-PCR. In theory, the most complementary primer sequences to the target gene should possess 

the greatest binding affinity and therefore, bear the most efficient transcription for the 

corresponding gene. Despite their conserved gene sequences, there are still a plethora of 

potential periostin and GAPDH primers for RT-PCR, each with different primer sequences and 

presumptively, transcriptional efficiencies. To determine the most ideal primers, two different 

primer sets for periostin and GAPDH were drawn from the literature and tested. Selecting from 

recent literature increases the probability that the primers selected would be robust and capable 

of efficient amplification, since they would have already been successfully utilized in other 
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studies (Lee et al., 2017; Matsuzawa et al., 2015; Blandine Merle et al., 2014; Tilman et al., 

2007). A consideration was given to include more than two primer sets for both periostin and 

GAPDH to be as comprehensive as possible. However, it was decided that two primer sets, 

especially if taken from the literature and utilized in previous studies, would be adequate, 

especially considering other aspects such as cost, time and simplification of the overall 

methodology. Unsurprisingly, some periostin and GAPDH sets were more efficient than others 

for RT-PCR. Despite being key proteins that are evolutionarily conserved across species, 

periostin and GAPDH gene sequences cannot be expected to be 100% conserved given 

individual variations in the genetic code, genetic mutations and splice variations (Hoersch & 

Andrade-Navarro, 2010a; Horiuchi et al., 1999; Seidler, 2013). For all of these reasons, it was 

expected that some primers would perform better than others and this was observed. However, 

since these primer sets were taken from the literature, we did not expect such a wide discrepancy 

in RT-PCR efficiency. For both periostin and GAPDH, the poorly performing primer did not 

show any definitive bands, indicating that the specific amplification did not occur at all. This 

finding could be attributed to variations in the DNA sequence of the MC3T3-E1 subclones 

giving rise to an ineffective primer-gene association. Nevertheless, once the most efficient 

primers were identified, these primers were employed to examine the effect of BMPs on 

periostin expression.  

In the second and main part of our study, the effect of varying concentrations of different 

BMPs on periostin expression was examined. The results of our study showed mixed findings, 

some congruent and others incongruent with our original hypotheses. Predictably, BMP2 was 

found to significantly increase periostin expression by 29% and 26% under low (10 ng/mL) and 

high (25 ng/mL) concentrations respectively relative to the control (no BMP), confirming 
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previous findings within the literature (Horiuchi et al., 1999; Ji et al., 2000; Blandine Merle et 

al., 2014). Interestingly, BMP3 was also found to increase periostin expression by 24% and 17% 

under low and high concentrations respectively, which was not anticipated. No statistically 

significant increase in periostin expression was observed with BMP4 or BMP7. BMP2 has been 

extensively studied and has been reliably shown to enhance periostin expression on many 

occasions (Horiuchi et al., 1999; Ji et al., 2000; Blandine Merle et al., 2014). Findings from our 

study complement the growing body of knowledge surrounding BMP2 and its powerful 

osteoinductive properties, paving the way for a greater understanding of the relationship between 

these osteogenic proteins (Ali & Brazil, 2014; Oryan et al., 2014). Examining periostin and 

BMP2 closer reveals many overlapping functions in ECM organization, osteodifferentiation and 

osteogenesis (Ali & Brazil, 2014; Horiuchi et al., 1999; Kudo, 2011; Kudo & Kii, 2017; Oryan et 

al., 2014). Horiuchi et al. (1999) showed that periostin expression is enhanced until the point 

when mature osteoblasts appear and bone mineralization begins, suggesting that periostin may be 

involved in initiating osteodifferentiation (Horiuchi et al., 1999). As an integral component to 

osteogenesis, BMP2 plays a significant role in ensuring that osteodifferentiation and bone 

formation continue towards completion (Oryan et al., 2014). Taken together, it is likely that the 

functions of periostin and BMP2 are intertwined to coordinate the initiation and propagation of 

osteoblast differentiation and bone formation processes, underscoring the dynamic interplay 

between these proteins (Horiuchi et al., 1999; Oryan et al., 2014). Contrary to our hypothesis, we 

observed a significant increase in periostin expression with BMP3. In knowing the association 

between periostin and osteodifferentiation, we hypothesized that BMP3 would suppress periostin 

expression given its powerful inhibitory nature on osteogenesis (Daluiski et al., 2001; Gamer, 

Nove, Levin, & Rosen, 2005). BMP3 has even been demonstrated to be capable of reversing the 
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differentiation of cells already destined to become osteoblasts, further emphasizing the 

overwhelming osteosuppressive potential of BMP3 (Kokabu et al., 2012). Despite all of the 

evidence of BMP3 as an osteoinhibitor, there has been some evidence that suggests otherwise. 

BMP3 has, in fact, been shown to elicit modulatory activity in fracture and wound healing and be 

a keystone to bone homeostasis (Chang et al., 2012). This evidence goes against the conventional 

thinking of BMP3 as an inhibitor to bone differentiation and suggests that BMP3 may not be 

purely inhibitory. In considering the findings by Chang et al. (2012) and our own, we postulate 

that BMP3 has the potential to be inhibitory or modulatory depending upon external factors and 

the surrounding conditions, which may alter its response (Chang et al., 2012). Unlike BMP3, 

there has been conclusive evidence of BMP4 and BMP7 as osteogenic factors responsible for 

inducing osteoblast differentiation and subsequent bone formation, which makes our findings all 

the more surprising (Franceschi et al., 2000; Nishimura et al., 2012; W. Zhu et al., 2004). 

Periostin, like many key proteins, is regulated by several external controllers, any of which could 

have played a role in concealing the true effect of BMP4 and BMP7 on periostin expression. In 

addition, the lack of periostin expression could have also been the result of less than optimum 

concentrations of BMPs. At the current concentrations, our results suggest that BMP2 and BMP3 

affect periostin expression, but it is possible that this osteoblast model was not sensitive enough 

to detect and respond to BMP4 and BMP7 at the prescribed concentrations. In other words, 

concentrations of BMP4 and BM7 may have been too low to induce a periostin response. 

Furthermore, in all cases, periostin expression was evaluated after 24 hours of incubation. 

Although this time frame may be adequate in a majority cases, extending the incubation period 

would increase the time that BMPs are exposed to the cells, which may have an effect on 

periostin expression.  
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In the final part of our study, the effect of concentration-dependence was evaluated to 

determine whether varying the concentrations of BMPs could change periostin expression. From 

our findings, we found that there was no difference in periostin expression at the concentrations 

tested. For each of the BMPs, two concentrations were selected and used to treat the cells: 10 

ng/mL (low) and 25 ng/mL (high). The concentrations selected have been shown to be effective 

in other studies on cytokines, which makes their selections appropriate (Horiuchi et al., 1999; 

Blandine Merle et al., 2014). There are many possibilities to explain the observations in our 

study. As previously mentioned, cells may not have been sensitive enough to BMP4 and BMP7 

to elicit a change in periostin expression. Increasing the concentration of BMPs would be an 

ideal technique to fully realize the effect of concentration-dependence on periostin expression. 

Furthermore, a wider range of concentrations, perhaps from 10 ng/mL to 100 ng/mL, should also 

be considered to fully appreciate the effect of BMP concentration on periostin expression and 

establish any dose-dependent relationships. By incorporating higher concentrations and 

expanding the range of concentrations, the complete relationship between periostin expression 

and concentration-dependence can be established, which may be important on a therapeutic level 

in the future. Although the effect of concentration was not observed in our study, concentration-

dependent relationships may very well exist at concentrations outside of our range and will need 

to be further examined in future studies. 

 The FDA has approved BMP2 and BMP7 to be used therapeutically in their recombinant 

forms as rhBMP2 and rhBMP7 respectively (Carreira et al., 2014). To date, rhBMP2 and 

rhBMP7 have widespread acceptance and have been demonstrated to be beneficial in 

orthopedics, dentistry and wound healing (Carreira et al., 2014). Given the interrelated functions 

between periostin and BMPs, it is probable that periostin is involved in these observations, 
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working in tandem with BMPs to facilitate bone formation, although this notion has yet to be 

proven. Specifically, periostin may act as an initiator of osteodifferentiation and synergize with 

BMPs to accelerate osteodifferentiation and subsequent bone formation (Horiuchi et al., 1999). 

In relation to dentistry and in particular, orthodontics, periostin expression has been 

demonstrated to be increased on the compressive side of a tooth during orthodontic tooth 

movement (OTM) and during hypoxia (P. Li et al., 2004; Wilde et al., 2003). Moreover, 

periostin is a ligand for ανβ3 and ανβ5 integrins and promotes integrin-dependent cell adhesion, 

which may be critical for the osteodifferentiation and migration of osteoblasts during OTM 

(Cobo et al., 2016; Conway et al., 2014). With shared roles in bone remodeling, the joint 

application of periostin and BMPs may grant increased therapeutic benefits, not only in OTM, 

but also in orthopedics, dentistry and wound healing. Within orthodontics, clinical benefits from 

periostin and BMP treatment may include enhanced treatment results, accelerated treatment 

times and increased overall patient satisfaction. In orthopedics and wound healing, enhanced 

bone remodeling may translate to improved wound and fracture healing as well as shorter 

durations of treatment. Thus, the functions and roles of periostin and BMPs appear to be linked, 

and together, their combination and synergy may equate to therapeutic improvements across 

many disciplines. One caveat to consider would be the high anticipated costs, since recombinant 

periostin would need to be produced and thoroughly tested to ensure safety prior to clinical use. 

Further research with an in vivo model is necessary to examine the relationship between periostin 

and BMPs and determine whether the therapeutic benefits, if present, are substantial enough to 

warrant pharmaceutical consideration.  

Our study evaluated periostin expression in response to different BMPs under various 

concentrations. However, there are certain limitations to our study. For one, our study evaluated 
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each of the BMPs independently and in an in vitro setting, which may not be completely valid in 

vivo. We also utilized only two concentrations of BMPs, a low and a high concentration, and 

followed the experiments for 24 hours, both of which could have limited the total amount of 

periostin expression possible. To build upon our research, higher concentrations of BMPs with a 

wider range can be employed to define any concentration-dependent relationships. The effect of 

time can also be included to realize any time-dependent relationships as well. Given that gene 

regulation is typically multi-factorial, it would be interesting to examine periostin expression 

using the BMPs in combination. Treating cells with BMPs in combination would more closely 

follow gene regulation on a physiological level, as it is rare for any gene to be regulated by only 

a single factor. In regard to visualization and quantification, periostin gene expression can be 

measured using other methods, which may potentially be more sensitive and accurate. These 

methods include Northern blotting, real-time PCR (qPCR) and fluorescent in situ hybridization. 

Western blotting can also be considered and would be an ideal way to measure the amount of 

periostin RNA that is fully translated into the final, functional protein. As the research on 

periostin and BMPs continues to grow and expand, it is likely that other factors affecting 

periostin expression will come into play and these factors need to be considered as well. To date, 

most of the experiments examining periostin expression and BMPs have been performed in vitro, 

which does not always translate to an in vivo setting. Future research should also focus on 

establishing an in vivo experimental model for external validity and applicability or at the very 

least, employ as many physiologic elements as possible to mimic an in vivo setting. In doing so, 

the relationship between periostin expression and BMPs can be more fully understood for what it 

really is in nature.  
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Chapter 5: Conclusion 

1. Periostin expression is increased by BMP2 in MC3T3-E1 pre-osteoblast cells by 29% and 

26% under low (10 ng/mL) and high (25 ng/mL) concentrations respectively. 

2. Periostin expression is increased by BMP3 in MC3T3-E1 pre-osteoblast cells by 24% and 

17% under low (10 ng/mL) and high (25 ng/mL) concentrations respectively. 

3. Periostin expression is unaffected by BMP4 and BMP7 in MC3T3-E1 pre-osteoblast cells 

at any concentration. 

4. Concentration-dependent relationships were not observed between periostin expression 

and any of the tested BMPs within the concentrations examined. 
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