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Abstract 

Dissolution of Nontronite in Low Water Activity Brines and Implications for the 

Aqueous History of Mars 

Steiner, M.  

Keywords: Mars, brines, clay minerals, astrobiology 

Water is essential to life on Earth and is likely to play a role in determining the 

habitability of other planets. Pure liquid water is not stable on the surface of Mars but 

brines can temporarily remain liquid, and increasing evidence suggests the presence of 

recent liquid water, including brines, on Mars. Brines can host life at temperatures as low 

as -30 ºC and some organisms can live at activities of water as low as 0.61. Therefore, if 

brines have been present on Mars, they may act as habitable environments. 

The Fe-rich smectite nontronite, (CaO0.5,Na)0.3 Fe3+
2(Si,Al)4O10(OH)2·nH2O, has been 

detected on the surface of Mars, particularly in ancient terrains. If the surface of Mars 

experienced brine solutions throughout its history, those brines have likely impacted 

nontronite.  Therefore, understanding alteration of nontronite in brines can help interpret 

past aqueous, and potentially habitable, conditions on Mars.     

To interpret interactions of nontronite with brines, duplicate batch experiments 

were used to measure the dissolution rates of nontronite at 25 ºC at activities of water 

(aH2O) of 1.00 (0.01 M CaCl2 or NaCl representative of dilute waters), 0.75 (saturated 

NaCl and 3.00 mol kg-1 CaCl2), and 0.50 (5.00 mol kg-1 CaCl2). Experiments at aH2O = 1 

(0.01 M CaCl2) were also conducted at 4 ºC, 25 ºC, and 45 ºC to calculate an apparent 

activation energy for dissolution of nontronite.     
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Results indicate that with decreasing activity of water the dissolution rate of 

nontronite also decreases. Dissolution rates at 25 ºC in CaCl2-containing solutions 

decreased with decreasing activity of water as follows: 1.18x10-12 ± 9.30 x10-14 moles 

mineral m-2 s-1(aH2O = 1)> 2.36x10-13  ± 3.07 x10-14 moles mineral m-2 s-1( aH2O = 

0.75)> 2.05x10-14  ± 2.87 x10-15 moles mineral m-2 s-1 ( aH2O = 0.50). Similar results 

were observed at 25 ºC in NaCl-containing solutions with dissolution rates as follows: 

1.89x10-12 ± 9.59 x10-14 moles mineral m-2 s-1 (aH2O = 1)>  1.98x10-13 ± 2.26x10-14 moles 

mineral m-2 s-1(aH2O = 0.75). An apparent activation energy of 54.6 ± 1.0 kJ/mol was 

calculated from the following dissolution rates in dilute CaCl2- containing solutions at 

temperatures of 4 ºC, 25 ºC, and 45 ºC: 2.33x10-13 ± 1.25x10-14 moles mineral m-2 s-1( 4 

ºC), 1.18x10-12 ± 9.30 x10-14 moles mineral m-2 s-1( 25 ºC), and 4.98x10-12 ± 3.84 x10-13 

moles mineral m-2 s-1( 45 ºC). 

These results suggest that martian nontronite perceptibly altered by brines at low 

temperatures may have experienced very long periods of water-rock interaction, with 

important implications for the paleoclimate and long-term potential habitability of Mars.  
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Chapter 1 Introduction 

Liquid water is a necessary ingredient for life on Earth and its history on Mars is 

therefore essential to understanding the potential habitability of that planet. High ionic 

strength solutions (up to ~6.15 m) like brines are also able to host life at a wide range of 

temperature and water activities (Jones and Lineweaver, 2010). While current surface 

conditions on Mars are not able to sustain pure liquid water, brines may exist temporarily 

(Henderson-Sellers and Meadows, 1976; Brass, 1980; Haberle et al., 2001; Jones and 

Lineweaver, 2010; Martín-Torres et al., 2015). Chloride and chloride plus sulfate brines 

could be stable at present day temperatures on Mars (Brass, 1980) and increasing 

evidence points to their presence. Recurring Slope Lineae (RSL) growth observed by the 

Mars Reconnaissance Orbiter are attributed to seasonal flow suggestive of liquid brines 

(McEwen et al., 2011; Martínez and Renno, 2013). Correlation of Mg with S and 

enrichment of S, Cl, and Br measured by the MER Spirit Rover at Gusev crater suggests 

transport by saline solutions through soils (Haskin et al., 2005; Wang et al., 2006; Ming 

et al., 2008). Relative humidity and temperature measurements from the Rover 

Environmental Monitoring Station on the Curiosity Rover has also detected conditions 

capable of supporting perchlorate brines (Martín-Torres et al., 2015), and perchlorate 

measurements at the Phoenix landing site suggests thin films of perchlorate solutions 

(Cull et al., 2010).  The Phoenix Lander has also measured oxygen isotopes that indicate 

influences by modern liquid water (Niles et al., 2010), and ice excavated by the Phoenix 

Lander has also been argued to have formed from a frozen brine because of its relative 

softness (Rennó et al., 2009; Smith et al., 2009). Therefore, over the course of martian 

history, a significant proportion of exposed land surfaces have likely been impacted by 
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interaction with liquid water and, at least recently, that water is likely to have been a 

brine.   

The Fe-rich smectite nontronite has been detected on the surface of Mars, 

particularly in ancient terrains (Poulet et al., 2005; Thomson et al., 2011). Nontronite has 

been found intimately mixed with sulfates at Gale Crater (Milliken et al., 2010) and it has 

also been found beneath Al-rich silicates at Mawrth Vallis (Bibring et al., 2006; Bishop et 

al., 2008; Wray et al., 2008; McKeown et al., 2009; Loizeau et al., 2010; Noe Dobrea et 

al., 2010).  Fe-Mg-rich phyllosilicates have also been documented in multiple locations 

on the surface of Mars by the Compact Reconnaissance Imaging Spectrometer for Mars 

(CRISM) on the Mars Reconnaissance Orbiter and the Observatoire pour la Mineralogie, 

L’Eau, les Glaces et l’Activite (OMEGA) spectrometer on the Mars Express orbiters 

(Poulet et al., 2005; Bishop et al., 2008; Mustard et al., 2008; Murchie et al., 2009). If 

brines have been active throughout Mars history, it is likely that at least some of the 

observed nontronite deposits have been altered by brines.  

Few studies have examined mineral dissolution rates in brines (Hausrath and 

Brantley, 2010; Pritchett et al., 2012; Dixon et al., 2015; Olsen et al., 2015), and none 

that we know of have analyzed nontronite dissolution rates in brines. In previous work, 

dissolution of basaltic glass, forsterite, and fayalite in a near-eutectic Ca-Na-Cl brine was 

significantly slower than dissolution in dilute and ionic strength = 0.7 m solutions 

(Hausrath and Brantley, 2010).  Forsterite dissolution has been shown to slow in high 

ionic strength Mg-sulfate brines (Olsen et al., 2015). Jarosite dissolution rates in batch 

reactors are also decreased relative to dilute rates, although slower initial rates increase in 

longer term experiments due to Cl- complexation after gypsum precipitation occurs 
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(Pritchett et al., 2012). Similarly, jarosite dissolution rates in brines measured in flow-

through reactors are slightly slower than the initial rates measured in brines in batch 

reactors (Dixon et al., 2015). Previous work therefore suggests that mineral dissolution 

slows significantly in high-ionic strength brines, and we therefore propose to test the 

importance of that effect on nontronite likely exposed for billions of years on Mars.  

Dissolution rates of nontronite were measured as a function of activity of water (aH2O) at 

aH2O = 1.00, 0.75 and 0.5, and temperature at 4º, 25º, and 45 ºC, and reacted material 

was examined to analyze alteration resulting from brine dissolution. The results of this 

work can help interpret past aqueous conditions on Mars and provide a better 

understanding of the possible habitability of past martian environments. 
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Chapter 2 Materials and Methods 

 Materials 

The Clay Mineral Society nontronite standard NAu-1 

(M+
1.05[Si6.98Al1.02][Al0.29Fe3.68Mg0.04]O20(OH)4) was used in all mineral dissolution 

experiments.  NAu-1 was mined from Uley Graphite Mine, Australia (Keeling et al., 

2000) and has been previously characterized as predominantly nontronite with traces of 

kaolin, quartz, biotite and goethite totaling approximately 10% (Keeling et al., 2000). It 

has also previously been used in dissolution experiments to examine the effect of pH on 

nontronite dissolution (Gainey et al., 2014).   

Nontronite was crushed using an agate mortar and pestle and sieved to a size 

fraction of 40-125 µm (120-325 mesh). Powdered and sieved nontronite was then 

ultrasonicated in ethanol at two minutes intervals until the supernatant was clear.  A 

significant decrease in fine particles was observed when mineral surfaces were examined 

by Scanning Electron Microscopy (SEM) using a JSM-5600 Scanning Electron 

Microscope after washing, although occasional fine particles remained.  Surface area of 

the washed nontronite was determined using a Quantachrome NOVA 2000e Surface area 

and Pore Size Analyzer. Nontronite was outgassed under vacuum at 50 ºC for 24 hours 

before measuring a six-point BET (Brunauer-Emmett-Teller) nitrogen adsorption 

isotherm (Brunauer et al., 1938). Dissolution rates were normalized to the measured 

nontronite surface area (30.865 ± 1.54 m2 g-1). 

Batch Dissolution Experiments 

 To test the effect of activity of water on nontronite dissolution, batch experiments 

were performed in CaCl2- and NaCl-containing solutions with activities of water equal to 
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1.00, 0.75 and 0.5, and 1.00 and 0.75, respectively.   The 1.00 dilute solutions contained 

0.01M NaCl and 0.01M CaCl2, which had an activity of water = 0.999 calculated using 

PhreeqC (Parkhurst and Appelo, 1999), similar to the ionic strength of natural soil waters 

(Harter and Naidu, 2001).  Dissolution experiments are commonly performed in low 

ionic strength solutions rather than pure water to prevent rapid changes in the activity of 

water as the mineral dissolves.  The 0.75 aH2O CaCl2 brine was made by adding 166.66 g 

of anhydrous CaCl2 to 500 g of 18.2 MΩ water, and the 0.50 aH2O CaCl2 brine was made 

by adding 360.68g of anhydrous CaCl2 to 500 g of 18.2 MΩ water (Rard and Clegg, 

1997).  The NaCl brine was made by adding 150 g of NaCl to 356 g of 18.2 MΩ water 

(Chirife and Resnik, 1984).    

All solutions were adjusted to an initial pH = 2.0 using high purity HCl. Previous 

measurements of pH in brines have employed multiple techniques, and double junction 

fast flow pH electrodes have been commonly used (Bowen and Benison, 2009; Hausrath 

and Brantley, 2010). Although dissolution behavior as a function of pH is not the primary 

concern of this work, as changing nontronite dissolution rates as a function of pH under 

acidic conditions was previously measured by Gainey et al. (2014), it was necessary to 

ensure that the initial pH was the same in all conditions. To ensure this, all pH 

measurements were made with the same Mettler Toledo InLab® Expert Pro pH electrode. 

This electrode has a double junction and temperature sensor, both of which increase 

accuracy when measuring pH in brines. We also measured the starting pH of the brines 

with a VWR sympHony™ High-flow pH electrode designed for hard-to-measure samples 

and measured values within 0.1 pH units of the target pH of 2.  We therefore make the 

assumption that although uncertainties on pH measurements are higher in brines, these 
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measurements are sufficiently precise to allow comparison between activities of water 

and with previous data.  

For each experimental condition except the 0.50 activity experiments, which 

contained 5.0g of nontronite to increase solution concentrations, 0.5-1.0g of powdered, 

washed nontronite was combined with 200ml of solution in an acid-washed Low Density 

Polyethylene (LDPE) batch reactor.  To test the effect of activity of water and brine 

composition, experiments were performed with CaCl2- and NaCl-containing solutions 

with activities of water described above.  To test the effect of temperature and calculate 

an apparent activation energy of dissolution, experiments were performed in 0.01M 

CaCl2 solutions at 4 ºC, 25 ºC, and 45 ºC on an orbital shaker in a temperature-controlled 

cold-room (4.0 ± 0.1 ºC), or in temperature-controlled shaking water baths (25.0±0.1 ºC 

and 45.0  ±0.1 ºC). All solutions were equilibrated to the correct temperature for 24 hours 

prior to the addition of nontronite. In all cases, batch reactors were agitated at 100 strokes 

per minute.  

To sample the reactors, ten ml of sample were removed at regular time intervals 

that varied depending on the temperature and solution composition and were based on 

preliminary experiments. A minimum of 13 samples was collected during the short initial 

period of the experiments, and then batch reactors were allowed to react for an additional 

1-4 months to collect long term points under steady conditions. The pH of each sample 

was measured on a separate aliquot of unfiltered sample at room temperature, with the 

remainder of the sample filtered through a 0.45 µm polypropylene syringe filter, acidified 

to 1% v/v with high purity HNO3, and stored at 20º C until analysis. Each condition was 
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run in duplicate, with at least one blank for each condition.  A complete list of 

experimental conditions, including duplicates, is shown in Table 1. 

Analytical Methods 

Silica concentrations were measured with a Thermo Genesys 10S UV-Vis 

spectrophotometer at a wavelength of either 700nm (dilute solutions and NaCl brines) or 

400 nm (CaCl2 brines) using methods slightly modified from the ASTM and USGS 

methods to optimize analysis in high ionic strength solutions (ASTM D859-10; Fishman 

and Friedman, 1989).  The silica analysis consists of two steps: 1) the addition of an acid 

and ammonium molybdate to form silicomolybdate which produces a yellow color the 

intensity of which reflects the concentration of available silica (ASTM D859-10) and 2) 

the reduction of silicomolybdate which produces a blue color  the intensity of which 

reflects the concentration of available silica (Fishman and Friedman, 1989). Performing 

both steps increases the measurement range to 0.1-100 ppm measured at 700 nm, 

compared to a measurement range of 0.1-1.0ppm when only performing the first step 

measured at 400nm (ASTM D859-10; Govett, 1961). The first step is from ASTM D859-

10 and the second step from the USGS test method I-1700-85 to avoid interference 

caused by precipitation of Ca sulfites within the brines, which occurs during the second 

reducing step of the ASTM D859-10 method after adding an amino-naphthol-sulfonic 

acid solution (ASTM D859-10; Fishman and Friedman, 1989). Both steps were used for 

samples from all dilute experiments at all temperatures and NaCl brines with aH2O = 

0.75. Only the first step was used for aH2O = 0.75 CaCl2 and aH2O = 0.50 CaCl2 brines 

because precipitation occurred when adding sodium sulfite as a reducing agent in part 

two. In order to match the solution matrices for the standards and the samples, standards 
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were prepared in 18.2 MΩ water and then combined with a solution matching the 

composition of the sample solution in a 1:1 ratio, and samples were diluted 1:1 with 18.2 

MΩ water. The average standard error of thirteen silica calibration curves measured on 

the Thermo Genesys 10S UV-Vis spectrophotometer was found to be 4 ± 3%, with the 

highest value = 8%. Based on that, we assume a maximum uncertainty of 10% on silica 

measurements.  

Iron concentrations were measured using a Thermo Scientific iCE 3000 series 

Atomic Absorption spectrometer for all samples for which sufficient solution remained 

after silica measurements.  All samples were treated with a CaCO3 solution to reduce 

interference following the method described by Eaton et al. (2005). Samples from 

experiments with aH2O = 1.00 were analyzed for iron concentrations without dilution. 

Brine samples require dilution 1:8 to prevent damage to the AA (Pritchett et al., 2012). 

Uncertainty of analysis for Fe concentrations is ±0.0164 ppm (Tu et al., 2014).  

 Characterization of Reacted Material 

 After collection of the long-term solution chemistry point(s) for each experiment 

(~3-6 months), solutions were decanted and the remaining material was rinsed with 18.2 

MΩ water. Rinsed reacted material was frozen for at least 24 hours, and then freeze dried 

for 24 hours to remove all ice. Reacted material and unreacted NAu-1 for comparison 

was carbon coated, and observed using a JSM-5600 Scanning Electron Microscope using 

Energy Dispersive Spectroscopy (EDS) with a working distance between 18-20 mm, a 40 

µm spot size, and 20kV acceleration voltage.  Samples were also analyzed using Visible 

Near Infrared (VNIR) and Infrared (IR) reflectance spectroscopy to further constrain 

alteration and to be able to make a direct comparison to Mars.  VNIR spectra were 
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measured at the California Institute of Technology using an Analytical Spectra Devices 

(ASD) VNIR and InfraRed (IR) reflectance spectra were measured using a Fourier 

Transform Infrared Spectrometer. Spectra were measured over a range of 0.4 to 2.5 µm 

and 2.5 to 25 µm. ENVI version 4.7 was used to remove the continuum and to identify 

the absorption wavelengths. SEM, VNIR, and IR analysis also included reacted 

nontronite removed from a set of experiments within a saturated CaCl2 brine. Those 

experiments provided sufficient reacted material for analysis but had Fe and Si 

concentrations below detection for all samples and were not included in the kinetic 

portion of this study.  
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Chapter 3 Results 

Solution Chemistry  

The pH of each experiment typically remained relatively steady, increasing 

somewhat over time (see Supplemental Material). In general, experiments in dilute 

solutions remained most stable with measured pH values for aH2O = 1.00 conditions 

ranging from 1.84 to 2.54 at 25 ºC, 1.92 to 2.43 at 45 ºC, and 1.98 to 2.08 at 4 ºC. 

Experiments performed in lower activity solutions had larger changes with measured pH 

values for aH2O = 0.75 ranging from 1.90 to 3.05 and aH2O = 0.5 ranging from 1.78 to 

2.6 (see Supplemental Material).  

Moles released of silica and iron were corrected for solution volume removed 

during sampling after Welch and Ullman (2000):   

mt= mt-1 + (c(t) – c(t-1))V(t-1)       (Eq. 1) 

where m is moles of silica or iron released, c(t) and c(t-1) are the concentrations of silica or 

iron in moles•liter-1 at time intervals t and t-1, and V is volume in liters.   

All samples with sufficient solution remaining after measurement of silica were 

analyzed for Fe concentrations but only experiments at aH2O = 1.0 had detectable 

concentrations after dilution.  Fe release increased over time, approaching steady state 

(Supplemental Materials) In all cases, Fe: Si ratios were below the Fe: Si ratio in 

nontronite, indicating incongruent dissolution and/or precipitation in experiments at 

aH2O = 1.0 (Figure 1).  This is consistent with previous work (Metz et al., 2005; Gainey 

et al., 2014), which concluded that that Fe is not released stoichiometrically during 

smectite dissolution because of preferential Fe reabsorption and precipitation.  
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Similarly, silica concentrations in samples collected during the initial short-term 

period of the experiments showed a non-linear relationship indicative of an approach to 

steady state or equilibrium (Appendix figures 1-14). Silica release from a Na-smectite has 

been attributed to release from the tetrahedral site, and is therefore considered the rate-

limiting step (Marty et al., 2011). Although Al is present in nontronite, Si occupies 90% 

of the tetrahedral sites (Velde, 1995; Keeling et al., 2000; Gainey et al., 2014).  We 

therefore calculated dissolution rates from silica release.   

Due to the effect of the opposing precipitation reaction affecting silica release, it 

was important to measure long term steady state conditions when the forward and 

opposing reaction are assumed to be equal.  Therefore, several approaches were followed 

to ensure that there was at least one steady state point for all experiments. Unless steady 

state was obviously reached during the first measured 13points (aH2O = 0.5 conditions 

only), at least one point was measured after a significantly longer time period than the 

duration of the initial shorter-term experiments (1-4 months). For experiments in 

solutions with activity of water = 1.00 and 0.75, that point, or the average of multiple 

such points, was used as the steady state condition for calculation of dissolution rates.  

For the aH2O = 0.5 experiments, the average of the last 5 points was used as the steady 

state value – steady state conditions were defined as unchanged concentrations for three 

or more days.  The earlier approach to steady state in the aH2O = 0.50 brines is not 

unexpected as silica solubility is lower in brines than in dilute solutions and silica 

precipitation rates increase with increasing ionic strength (Iler, 1979; Icopini et al., 2005). 

In all cases but the experiments performed at 4 ºC, silica release had clearly 

approached steady state conditions by the long-term point (Figure 2, 3).  In experiments 
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performed at 4 ºC, silica release less obviously reaches steady state. However, the 

measured silica concentrations display curvature over time (Figure 2), and long term 

silica concentrations at 4 ºC are only slightly lower than the long term points measured at 

25 ºC and 45 ºC, and therefore likely represent a good approximation of steady state 

conditions.   

 In order to calculate dissolution rates that account for the importance of the 

opposing precipitation reaction, equal to dissolution at steady state, dissolution rates were 

calculated after Hausrath and Brantley (2010): 

−𝑚𝑠𝑠    𝑙𝑛  (1−   
!
!!!
)   =     𝐴𝑘𝑑𝑖𝑠𝑠𝑡  + 𝐶     (Eq. 2)  

where m is moles released of silica, calculated by multiplying the change in [SiO2] by the 

volume of remaining solution at each time point as described in equation 1, mss is moles 

released at steady state based on the long term point(s) measured after 5-179 days, A is 

the surface area measured by BET analysis as described above, kdiss is the dissolution rate 

in mol m-2 s-1, and t is time in seconds. The uncertainty on the dissolution rate was 

estimated from the standard error on the rate regression (mol s-1) with the 5% uncertainty 

of the BET surface area (m2) propagated through, and divided by the stoichiometric 

coefficient.  

     Dilute experiments had the highest dissolution rates (1.18x10-12 mol mineral m-2 

s-1 ± 9.30x10-14 average for CaCl2 aH2O=1.00 and 1.89x10-12 ± 9.59x10-14 mol mineral m-

2 s-1 average for NaCl aH2O = 1.00). With decreasing activity of water, the dissolution 

rates decreased for both the NaCl and CaCl2 brines (2.36x10-13 mol mineral m-2 s-1 

±3.07x10-14 average for CaCl2 aH2O = 0.75, 2.05x10-14 mol mineral m-2 s-1 ±2.87x10-15 

average for CaCl2 aH2O = 0.50 and 1.98x10-13 ± 2.26x10-14 mol mineral m-2 s-1 average 
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for NaCl aH2O = 0.75) (Figure 4). Similarly, dissolution rates decreased as temperature 

decreased with nontronite dissolving in 45 ºC solutions at 4.98x10-12 ±3.84x10-13 mol 

mineral m-2 s-1, in 25 ºC solutions at 1.18x10-12 mol mineral m-2 s-1  ± 9.30x10-14 and in 4 

ºC solutions at 2.33x10-13  ± 1.25x10-14 mol mineral m-2 s-1 (Figure 2). An apparent 

activation energy was calculated by plotting the natural log of the dissolution rates versus 

1000/T, where T is the temperature in K. The apparent activation energy is the negative 

slope of that line multiplied by the universal gas constant (8.31 J K-1 mol-1). In these 

experiments, dissolution rates from batch reactors with aH2O = 1.0 containing CaCl2 

were used to calculate an apparent activation energy (Figure 5) of 54.6 ± 1.00 kJ/mol. 

 SEM Results 

 No observations indicated significant alteration or secondary mineral 

precipitation. Textured surfaces were found in both reacted and unreacted nontronite with 

no observable difference with changing activity of water and temperature (Figure 6).  

Nontronite with rounded, rough edges was more common than nontronite with smooth 

sharp surfaces. Despite being washed, some fine particles are observed on unreacted 

nontronite, specifically on smooth, flat surfaces (Figure 6A). Fine particles dissolve very 

quickly and as a result are less visible on reacted nontronite  (Figure 6B-F).  

IR Results 

Changes in the VNIR spectra due to interaction with liquid water or brines are 

slight if present (Figure 7). A slight shift of about 10nm can be seen between 2.4 and 2.5 

µm in samples exposed to saturated CaCl2 brines compared to all other brine and dilute 

experiments. While subtle, this shift could be explained by an extra absorption caused by 

differences in water content or crystallinity. 
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FTIR spectra have more noticeable spectral changes. The Si-O stretch near 1000 

cm-1 becomes narrower for all reacted samples. A reflectance maximum/emission 

minimum at 1220 cm-1 and a feature at 790 cm-1 disappear in reacted samples compared 

to the unreacted NAu-1 spectra. The Al/Si-O-Si deformations between 600 and 400 cm-1 

change in shape for all 25º C and 45 ºC experiments. This change is more similar to 

dioctohedral smectites and could be caused by the removal or transformation of the minor 

phases detected by Keeling et al. (2000) in NAu-1 (Michalski et al., 2005).   
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Chapter 4 Discussion  

Although the surface of Mars is currently both too cold and too dry to allow pure 

water to remain liquid (Henderson-Sellers and Meadows, 1976; Brass, 1980; Haberle et 

al., 2001), brines can remain liquid briefly under specific conditions.  There is increasing 

evidence for liquids present on modern day Mars, many of which are likely brines 

(Knauth and Burt, 2002; McEwen et al., 2011; Martínez and Renno, 2013; Martín-Torres 

et al., 2015). Flowing liquid brines have been argued to have formed surface features 

such as slope streaks (Kreslavsky and Head, 2009), recurring slope lineae (McEwen et 

al., 2011), and gullies (Knauth and Burt, 2002). Concentrated salt solutions can form by 

deliquescence and freeze at low temperatures to form ice (Ingersoll, 1970), and melting 

of such non-pure water ice has been suggested to cause the formation of gullies and 

depressions (Hecht, 2002). Ice excavated at the Phoenix Lander has also been argued to 

have formed from a frozen brine because of its softness(Rennó et al., 2009; Smith et al., 

2009). Additionally, spheroids on the strut of the Phoenix Lander have been postulated to 

have grown by deliquescence and eventually dripped off the strut, both of which would 

suggest that the spheroids were liquid brines (Rennó et al., 2009).  Humidity and surface 

temperatures measured up to 9km from the Bradbury landing over the span of one full 

martian year by the Mars Curiosity Rover also indicate the likelihood of perchlorate 

brines at Gale Crater (Martín-Torres et al., 2015).  

Evidence for brines has also been observed in martian meteorites. Bridges et al. 

(2001) suggested that secondary mineral assemblages found in SNC-meteorites including 

Fe-Mg-Ca carbonates, anhydrite, gypsum, halite, and clays are formed by evaporation of 

low temperature brines. Salt veins rich in chloride have also been found in nakhlite 
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meteorites, and are similar to measurements at Gusev crater and Meridiani Planum (Rao 

et al., 2005).     

 Although the composition of potential martian brines is not known, they may 

have contained high chloride concentrations such as those observed in martian meteorites 

discussed above and used in these experiments.  Models of evaporation of putative 

martian solutions have generated Cl-rich brines (Tosca and McLennan, 2006; Fairen et 

al., 2009) and chlorides have been detected using Mars Odyssey Thermal Emission 

Imaging System (THEMIS), Mars Global Surveyor, and Mars Reconnaissance Orbiter 

data (Osterloo et al., 2008; Osterloo et al., 2010).  Chloride solutions are therefore likely 

throughout martian history, and since chloride solutions can impact mineral dissolution 

(Hausrath and Brantley, 2010; Pritchett et al., 2012; Dixon et al., 2015), determining the 

effects of chloride brines on clay mineral dissolution can help interpret the past aqueous 

history and possible habitability of Mars. 

Effect of brines on nontronite dissolution rates 

In these experiments, dissolution of nontronite was slower in lower water activity 

brines than in dilute solutions (Figure 4).  Dissolution rates of nontronite in aH2O = 0.75 

CaCl2 solutions were 0.20 times as fast when compared to dissolution rates of nontronite 

in aH2O = 1.00 CaCl2 solutions, while dissolution rates of nontronite in aH2O = 0.50 

CaCl2 solutions were 0.017 times as fast when compared to dissolution rates in aH2O = 

1.00 CaCl2 solutions.  Additionally, dissolution rates for nontronite in aH2O = 0.75 NaCl 

solutions were 0.11 times as fast when compared to dissolution rates of nontronite in 

aH2O = 1.00 NaCl solutions.  
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Previous studies examining mineral dissolution rates in the presence of brines 

have similarly shown that dissolution rates decrease with decreasing water activity 

(Hausrath and Brantley, 2010; Pritchett et al., 2012; Dixon et al., 2015; Olsen et al., 

2015). Hausrath and Brantley (2010) documented a decrease in olivine dissolution rates 

of an order of magnitude in CaCl2-NaCl-H2O near-eutectic brines compared to dilute 

solutions. Olsen et al. (2015) suggested that dissolution rates of forsterite are slowed in 

Mg-sulfate-rich brines because the decreased aH2O decreases the available water that 

participates as a ligand in the dissolution reaction. Pritchett et al. (2012) documented a 

decrease in jarosite dissolution rates in early experiments of almost two orders of 

magnitude in an aH2O = 0.35 brine compared to dilute solutions. The early decrease in 

jarosite dissolution was then followed by an increase in jarosite dissolution rates 

following gypsum precipitation allowing Cl- complexation, although rates were still 

slower than in dilute solutions. Dixon et al. (2015), who performed batch jarosite 

dissolution experiments similar to Pritchett et al. (2012) but also performed experiments 

in flow-through reactors, confirmed the decreased dissolution rates in brines in general, 

as well as the increase in jarosite dissolution rates in saturated calcium chloride brines 

over time. Both Olsen et al. (2015)  and Pritchett et al. (2012) show a linear decrease in 

dissolution rates with decreasing activities of water. 

 Our results also show a linear decrease in dissolution rates with decreasing 

activities of water, with very similar relationships between the activity of water and 

dissolution rates as Olsen et al. (2015) and Pritchett et al. (2012) (Figure 8).  Solutions 

used by Olsen et al. (2015) at pH = 2 covered activities from 1.0 to 0.91, and showed a 

slope of the decreasing rates with decreasing activity of water differing from this study by 
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11%. In Pritchett et al. (2012) dissolution of jarosite was measured in CaCl2 and NaCl 

brines (aH2O = 1.0-0.35) using ultrapure deionized water with a pH of ~ 3-4 (personal 

communication M. Elwood Madden). These jarosite experiments showed a linear 

decrease in rates with decreasing activity of water that differed from the slope measured 

in this study by only 4% (Figure 8).  Our results, which are similar to those of Olsen et al. 

(2015) and Pritchett et al. (2012), are therefore also consistent with the decreased activity 

of water acting as a ligand (Olsen et al., 2015).  

Nontronite dissolution rates in the CaCl2 and NaCl aH2O = 0.75 brines were 

within uncertainty of each other, but nontronite dissolution rates in the aH2O = 1.00 

CaCl2 solutions were 0.62 times as fast as the nontronite dissolution rates in the aH2O = 

1.00 NaCl solution. Multiple factors could be contributing to the difference between the 

dissolution rates in the 0.01 M NaCl and CaCl2 solutions, including differences in the 

ionic strength and the ions in the solution, as well as the identity of the ions (Ca versus 

Na) present within the interlayer of the clay mineral.  The 0.01 M solutions of CaCl2 and 

NaCl have different ionic strengths (0.01 mol for the NaCl solutions and 0.02 mol for 

CaCl2 solution).  Icenhower and Dove (2000) have shown that amorphous silica 

dissolution can increase by as much as 21x in NaCl solutions of up to 0.05 m because of 

enhanced surface reactivity.  It was also predicted that other major solutes, including K, 

Mg, and Ca, would have a similar effect (Icenhower and Dove, 2000).   The difference 

between the ionic strengths of the two solutions would therefore likely cause enhanced 

dissolution in the CaCl2 solution, and instead we see enhanced dissolution in the presence 

of the NaCl solution.  Therefore, the difference in ionic strengths between the two 
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solutions is likely not the controlling factor in the differences between the dissolution 

rates measured in aH2O = 1 solutions.   

The presence of the Ca ion in the nontronite interlayer, rather than Na, may cause 

dissolution to be faster in the presence of the NaCl rather than the CaCl2 solutions. Bibi et 

al. (2011) have observed increased dissolution when Na/K ion exchange occurs in the 

interlayer of illite between pH 2-4. The fact that the dissolution rates in these experiments 

are faster in the presence of the NaCl rather than the CaCl2 solutions suggests that the 

difference is due to interaction with Ca within the interlayer.   

Dissolution of nontronite in dilute 0.01M CaCl2 and NaCl solutions was faster 

than nontronite dissolution rates previously measured using flow-through reactors at a 

similar pH (Figure 4) (Gainey et al., 2014). Nontronite used in the Gainey et al. (2014) 

study was the same NAu-1 as the nontronite used in this study, with the same size 

fraction (40-125 µm), but Gainey et al. (2014) used the final surface area rather than the 

initial surface area used in this study. When the Gainey et al. (2014) rates are normalized 

to the initial surface area of washed nontronite used in this study, dissolution rates were 

approximately 0.11-0.35x as fast as those measured here (Figure 4).  This is consistent 

with previous studies which have shown that dissolution rates of smectite minerals 

measured in batch reactors were three times faster than smectite dissolution rates in flow-

through reactors (Furrer et al., 1993). The difference in rates measured in batch and 

mixed flow reactors can be caused by different particle aggregation as a result of the 

difference in mixing methods (Furrer et al., 1993).  In addition, Gainey et al. (2014) 

calculated rates from the last 5 data points of each steady state condition, whereas in this 

study we used the solution chemistry over the entire duration of the experiments. 
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Both the nontronite dissolution rates measured in this study as well as the rates measured 

by Gainey et al. (2014) are similar to previous measurements of clay mineral dissolution 

rates in the literature (Wieland and Stumm, 1992; Cama et al., 2002; Rozalén et al., 

2008). Wieland and Stumm (1992) measured dissolution rates for kaolinite using Si 

release of 9.73x10-13  ±1.07x10-13 mol m-2 s-1 at a pH of 2.00 and Cama et al. (2002) 

measured dissolution rates for kaolinite based on silica of 3.61x10-14 ± 5.77x10-15 mol m-2 

s-1at pH 2.04, both in flow-through reactors. Rozalén et al. (2008) measured Si release of 

7.76x10-14 mol m-2 s-1 (error <15%) for montmorillonite at pH 2.05. Our measured rate of 

1.18x10-12 ± 9.30 x10-14 mol mineral m-2 s-1 was faster than kaolinite rates measured by 

Wieland and Stumm (1992) and Cama et al. (2002) but slightly slower than 

montmorillonite rates measured by Rozalén et al. (2008). 

Effect of Temperature 

Brines remain liquid at lower temperatures than dilute solutions, including the low 

temperatures on present day Mars (Brass, 1980; Haberle et al., 2001). Nontronite 

dissolution rates as a function of temperature are therefore relevant to interpreting past 

aqueous interactions on Mars. Using nontronite dissolution rates measured in dilute 

CaCl2 solutions at 4º C, 25º C, and 45º C as described in the methods, an apparent 

activation energy of 54.6 ± 1.00 kJ/mol was calculated. To the best of our knowledge, 

this is the first measured apparent activation energy for nontronite dissolution.    

This apparent activation energy for nontronite dissolution is similar to previously 

measured apparent activation energies for clay mineral dissolution. Apparent activation 

energies for smectite dissolution have been reported as 87 kJ/mol (no error reported, 

although the error on the rate is reported at 15%) for K-montmorillonite when measured 
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in flow-through and batch reactors over a pH range of 1.0-5.8 and a temperature range of 

25º-70 ºC(Rozalén et al., 2008).  Cama et al. (2002) report an apparent activation energy 

of 78.4 kJ/mol for kaolinite dissolution at pH 2.0 in flow-through reactors at temperatures 

ranging from 25º-70 ºC (Cama et al., 2002). Palandri and Kharaka (2004) calculated an 

apparent activation energy of dissolution for smectite of 23.6 kJ/mol, kaolinite of 65.9 

kJ/mol and montmorillonite of 48.0 kJ/mol using dissolution data from Carroll and 

Walther (1990); Nagy et al. (1991); Soong (1993); Ganor et al. (1995); Huertas et al. 

(1999a); Huertas et al. (1999b) for kaolinite, Nagy (1995) for montmorillonite, and 

Sverdrup (1990); Zysset and Schindler (1996); Bauer and Berger (1998); Huertas et al. 

(2001) for smectite. 

Implication for Mars 

The low temperatures of the present-day martian surface, where only brines are 

likely to be liquid, make aqueous alteration by brines likely on Mars, and these brines 

could be habitable environments.   Although rare, life on Earth has been found at 

activities of water as low as 0.61 in a high-sugar food and also in saturated NaCl brines 

with an aH2O = 0.75 (Grant, 2004). Gale Crater has shown the potential to support 

conditions to keep perchlorate brines liquid. These brines have temperatures and 

activities of water that are too low to support terrestrial life, but areas with high humidity 

and temperatures could allow brines of other compositions to exist (Martín-Torres et al., 

2015). NaCl brines are habitable on Earth and would be stable on Mars at higher 

temperatures and humidities.  

Dissolution rates of nontronite in high ionic strength solutions and low 

temperatures such as potentially habitable NaCl brines on Mars are significantly slower 
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than in dilute solutions, suggesting that clay minerals altered by brines on Mars may 

appear much less altered than clay minerals altered by dilute solutions.  In order to 

quantify this effect, using dissolution data from this study and Gainey et al. (2014) we 

have calculated rates under a range of pH, temperature, activity of water, and 

hydrodynamic conditions that are relevant to Mars (Figure 9). Results indicate that 

dissolution of nontronite on Mars may be very slow, and that the activity of water effect 

examined in this study has a larger impact on dissolution than the temperature or pH 

range examined. Weathering of nontronite on Mars would occur much more slowly under 

conditions of low temperature and low activity of water compared to warmer and more 

dilute conditions on Earth.  

Spectral evidence exists for widespread silica on the surface of Mars (Michalski et 

al., 2003), which has been attributed to surficial aqueous activity (Kraft et al., 2003). 

Martian silica coatings may be similar to coatings found on Earth in cold and dry 

environments (Dorn, 1998; Dixon et al., 2002; Hausrath et al., 2008). The decreased 

release of silica from the dissolution of nontronite over time in these experiments could 

be due to the precipitation of amorphous silica, which has been detected in previous 

dissolution experiments of nontronite (Gainey et al., 2014).  Equilibrium with amorphous 

silica is reached faster and at lower concentrations with decreasing activity of water 

(Icopini et al., 2005). In previous work, silica concentrations in equilibrium with 

amorphous silica decreased from an average of 3.76 mmol SiO2 in dilute solutions to 3.43 

mmol SiO2 in the presence of Na-K-Ca-Cl-HCO3
- -H2O solutions ranging from 0.01 

molal to 0.24 molal (Icopini et al., 2005). Dissolution of olivine in the presence of Ca-

Na-Cl solutions also resulted in decreased steady state silica concentrations in the 



 25 

presence of increased concentrations of Ca-Na-Cl, with steady state concentrations in 

near eutectic brines at 22.1 ºC with forsterite, fayalite and basaltic glass ranging from 

0.17 to 0.45 mm (Hausrath and Brantley, 2010). Precipitated silica would be expected to 

form a silica-rich coating on the nontronite mineral surfaces. On these samples, silica-rich 

coatings were not detected using either SEM or VNIR spectroscopy, possibly due to the 

relatively short duration of the experiments (85-179 days for the final time point), and the 

low total amount of dissolution (~2-5% for dilute solutions at all temperatures, and < 1% 

for all brines). FTIR wavelengths show subtle but important differences. Instruments 

using FTIR on Mars (TES and MiniTES) have difficulty identifying phyllosillicates 

above background in spectra (Michalski and Fergason, 2009; Michalski et al., 2010). This 

may be caused by a lack of abundance or the fact that TIR spectral libraries do not 

contain abundant phyllosillicates(Ehlmann et al., 2011; Ehlmann et al., 2012).  In these 

experiments, FTIR does not change appreciably with dissolution except for the removal 

of some accessory contaminant phases.  

Low Fe/Si ratios also indicate that Fe is less mobile than silica. Fe3+ is found in 

nontronite and is also observed in nanophase hematite on Mars.  Our results may result 

from either non-stoichiometric dissolution, or precipitation of Fe-bearing phases A 

combination of precipitated Fe-oxides and possible formation of reprecipitated nontronite 

through an opposing reaction at equilibrium could also explain the similarities between 

reacted and unreacted nontronite.  Metz et al. (2005) observed lower than expected Fe 

release compared to Al in smectite dissolution caused by preferential Fe reabsorption or 

precipitation. Smectite can also alter to chlorite when Al and Fe from the octahedral or 

tetrahedral layers form oxides in the interlayer (Barnhisel and Bertsch, 1989). Low iron 
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release was also observed in nontronite dissolution by Gainey et al. (2014) at pH 0.9 and 

1.7.  

Conclusion 

There is abundant evidence for past liquid water on Mars observed both by 

orbiters and rovers as well as in meteorites (Ingersoll, 1970; Brass, 1980; Bridges et al., 

2001; Haskin et al., 2005; Rao et al., 2005; Wang et al., 2006; Ming et al., 2008; Rennó et 

al., 2009; Smith et al., 2009; Cull et al., 2010; Niles et al., 2010; McEwen et al., 2011; 

Martín-Torres et al., 2015).  On Earth, brines can support life at temperatures as low as -

30 ºC and activity of water down to 0.61(Jones and Lineweaver, 2010). A saturated NaCl 

brine with an aH2O = 0.75, like the one used in this study, can remain liquid down to -21 

ºC (Bauer et al., 1988) and has hosted life for a few eukaryotes on Earth (Grant, 2004).  

Environments on Mars that contain brines may therefore be currently habitable 

environments.   

 Nontronite has been detected on the surface of Mars, particularly in ancient 

terrains that have been exposed at the surface for billions of years (Poulet et al., 2005; 

Bibring et al., 2006; Bishop et al., 2008; Ehlmann et al., 2009; Milliken et al., 2010; 

Thomson et al., 2011). To interpret interactions between nontronite and water on Mars, 

we measured dissolution rates of nontronite in batch reactors with solutions with 

activities of water ranging from 1.00 to 0.50 and temperatures ranging from 4º-45 ºC.  

Results indicate that with decreasing activity of water, rates of dissolution for nontronite 

decrease as well. Dissolution rates also decreased with decreasing temperature and an 

apparent activation energy of 54.6 ± 1.0 kJ/mol was calculated, similar to other apparent 

activation energies of smectite dissolution. These results suggest that nontronite reacting 
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under cold and briny conditions, perhaps similar to present day Mars, would appear much 

less altered than nontronite reacting with dilute solutions. Perceptibly altered martian 

nontronite may therefore indicate potentially habitable conditions occurring over very 

long timescales on Mars. 
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Appendix A Tables and Figures 

Table A. Experimental conditions 

T (ºC)1 Salt aH2O2 Duration 
(days) 

Rate (mol 
mineral m-2 s-1) 

Uncertainty3 

25.0 CaCl2 1.00 179	   1.23x10-12	   9.54x10-‐14	  
	  

25.0 CaCl2 1.00 179	   1.13x10-12	  
	  

9.06x10-‐14	  
25.0 CaCl2 0.75 179	   2.13x10-13	   3.23x10-‐14	  
25.0 CaCl2 0.75 179	   2.59x10-13	   2.92x10-‐14	  
25.0 CaCl2 0.50 15	   1.41x10-14	   1.72x10-‐15	  
25.0 CaCl2 0.50 15	   2.69x10-14 4.03x10-‐15 
25.0 NaCl 1.00 105	   1.74x10-12	  

	  

8.75x10-‐14	  
	  

25.0 NaCl 1.00 105	   2.06x10-12	   1.04x10-‐13	  
25.0 NaCl 0.75 147	   1.94x10-13	   2.41x10-‐14	  
25.0 NaCl 0.75 147	   2.04x10-13	   3.45x10-‐14	  
45.0 CaCl2 1.00 85	   5.22x10-‐12	  

	  

3.84x10-‐13	  
	  

45.0 CaCl2 1.00 85	   4.73x10-‐12	   3.85x10-‐13	  
4.0 CaCl2 1.00 105	   2.39x10-‐13	   1.31x10-‐14	  
4.0 CaCl2 1.00 105	   2.28x10-‐13	   1.18x10-‐14	  
1Temperature measured to 0.1 ºC using the internal thermometer on the water bath and 

cold-room.  

2aH2O from Rard and Clegg (1997) for CaCl2 brines, Chirife and Resnik (1984) for NaCl 

brine, and calculated using PhreeqC (Parkhurst and Appelo (1999)) for all 0.01 M 

solutions.  

3Uncertainty is estimated using the standard error of the rate (mol s−1) propagated through 

the 5% uncertainty of the surface area (m2) and divided by the stoichiometric coefficient 

of Si in nontronite to obtain the uncertainty in mol mineral m−2 s−1.  
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Figure 1.  

Fe: Si ratios for experiments at 25 ºC where [Fe] was above detection. The solid line 

represents the stoichiometric ratio of Fe: Si in the unreacted nontronite (0.52).  

Experiments at 25 ºC remain relatively stable near 0.20 over time. Analytical uncertainty 

on solution chemistry is smaller than all points.  
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Figure 2. 

Moles silica released as a function of time at temperatures of 4º C, 25º C, and 45º C.  

Steeper slopes indicate faster dissolution rates.  These experiments indicate dissolution 

increased with increasing temperature, and the dissolution rates at different temperatures 

were used to calculate an apparent activation energy of 54.6 ± 1.0 kJ/mol. Samples were 

taken at different time intervals to accommodate the different dissolution rates. The 25º 

and 45º C experiments were sampled 2-3 times a day for one week while the 4º C 

experiments were sampled daily for three weeks. Analytical uncertainty is smaller than 

all points. 
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Figure 3.  

Moles silica released as a function of time at aH2O of 1.00, 0.75, and 0.50 at 25 ºC. 

Steeper slopes indicate faster dissolution rates.  These experiments indicate dissolution 

increased with increasing activity of water, and that in very dilute solutions, presence of 

0.01 M NaCl solutions increases dissolution over presence of 0.01 M CaCl2 solutions. 

Samples were taken at different time intervals to accommodate different dissolution rates. 

The 1.00 aH2O and 0.75 aH2O experiments were sampled 2-3 times a day for one week 

while the 0.50 aH2O experiments were sampled daily for three weeks. Analytical 

uncertainty is smaller than all points.   
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Figure 4.  

Log nontronite dissolution rates as a function of activity of water for dilute and brine 

experiments at 25º C and pH 1.8-2.0 show a linear relationship between activity of water 

and the dissolution rate.  Rates from Gainey et al. (2014) were measured at flow rate = 

0.1609 ml/h and pH = 1.8 using the same size fraction NAu-1 as that used in this study.  

The rate plotted here is the rate reported in Gainey et al. (2014) normalized to the initial 

surface area (30.865 ± 1.54 m2 g-1) used in this study  (4.18x10-13 ± 2.79x10-14 moles 

mineral m-2 s-1) to better compare to our rates.    
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Figure 5.  

The natural log of the nontronite dissolution rate versus 1000/T (K). The slope of this line 

was used to calculate an apparent activation energy. Measured uncertainties are smaller 

than all points. Final calculated apparent activation energy was 54.6 ± 1.00 kJ/mol.  
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Figure 6. 

 Unreacted and reacted surfaces of NAu-1. (A) Unreacted sieved and washed NAu-1 

observed before dissolution experiments, compared to reacted NAu-1 removed from 

dissolution experiments conducted at  (B) 25º C 1.00 aH2O CaCl2, (C) 25º C 0.75 aH2O 

CaCl2, (D) 25º C 0.5 aH2O CaCl2, (E) 4º C 1.00 aH2O CaCl2, (F) 45º C 1.00 aH2O CaCl2. 

Surface textures appear similar for all experiments as well as the unreacted material. 
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Figure 7.  

 

Top: FTIR spectra of unreacted and reacted nontronite, with the whole spectra from 

wavenumber 2000 – 480 cm-1 top left, and enlargement from wavenumber 1400 – 380 

cm-1 top right. The Si-O stretch near 1000 cm-1 becomes narrower for all reacted samples. 

A reflectance maximum/emission minimum at 1220 cm-1 and a feature at 790 cm-1 

disappear in reacted samples compared to the unreacted NAu-1 spectra. The Al/Si-O-Si 

deformations between 600 and 400 cm-1 change in shape for all 25º C and 45 ºC 

experiments. 



 36 

Bottom: IR spectra of unreacted and reacted nontronite at wavelengths from 0.5-2.5 µm, 

offset for clarity, enlargement from 2.10 µm to 2.45 µm shown to the right. Little change 

is noted with reaction - for samples treated with the 0.75 aH2O CaCl2 brine, there is a 

slight change in absorbance near 2.43 µm with a subtle shift of about 10nm near 2.40 µm 

and 2.45 µm.  
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Figure 8.  

Comparison of dissolution rates of nontronite, jarosite and olivine as a function of 

activity of water. Activities cover a range of 1.0-0.5 for nontronite, 1.0-0.35 for K- and 

Na-jarosite, and 1.0-0.91 at pH 2.00 for olivine. All rates were calculated from 

experiments performed at temperatures from 23-26º C. For jarosite experiments with 

aH2O < 1.00 the pH was not measured, but is assumed to be 3-4 (personal 

communication M. Elwood Madden). Olivine experiments showed decreasing rates with 

decreasing activity of water differing from this study by 11%. Jarosite experiments 

showed a decrease in rate with decreasing activity of water that differed from this study 

by only 4%.  
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Figure 9.   

Nontronite dissolution as a function of pH, temperature, activity of water, 

thermodynamics and hydrodynamics showing rates likely relevant to martian conditions. 

Vertical black lines show the range of dissolution rates under each condition. Horizontal 

lines show dissolution rates from this study with pH dependence under acidic conditions 

from Gainey et al. (2014). Changes to the rate caused by changes in activity of water 

measured here have a larger impact than temperature and pH under the range of 

conditions examined here while use of a either a batch or flow-through reactor is nearly 

equivalent to a change in temperature from 4º C to 25º C.
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Appendix B Supplementary Material   

Appendix Table 1. Location of appendix figure by reactor and conditions  

   

Reactor Name T (ºC) Salt aH2O Duplicate 
Number 

Silica 
Analysis 

Iron 
Analysis 

Silica 
Duplicate 

Iron 
Duplicate 

25-Ca-1.00-1 25.0 CaCl2 1.00 1 1 15 23 30 
25-Ca-1.00-2 25.0 CaCl2 1.00 2 2 16 23 30 
25-Ca-0.75-1 25.0 CaCl2 0.75 1 3 n/a1 24 n/a1 
25-Ca-0.75-2 25.0 CaCl2 0.75 2 4 n/a1 24 n/a1 
25-Ca-0.50-1 25.0 CaCl2 0.50 1 5 n/a1 25 n/a1 
25-Ca-0.50-2 25.0 CaCl2 0.50 2 6 n/a1 25 n/a1 
45-Ca-1.00-1 45.0 CaCl2 1.00 1 7 17 26 31 
45-Ca-1.00-2 45.0 CaCl2 1.00 2 8 18 26 31 
4-Ca-1.00-1 4.0 CaCl2 1.00 1 9 19 27 32 
4-Ca-1.00-2 4.0 CaCl2 1.00 2 10 20 27 32 
25-Na-1.00-1 25.0 NaCl 1.00 1 11 21 28 33 
25-Na-1.00-2 25.0 NaCl 1.00 2 12 22 28 33 
25-Na-0.75-5 25.0 NaCl 0.75 5 13 n/a1 29 n/a1 
25-Na-0.75-6 25.0 NaCl 0.75 6 14 n/a1 29 n/a1 
1Analysis below detection or not performed due to lack of sample.  

  

Appendix Figure Location 



 

 

Appendix Figure 1.  

Silica analysis for experiment 25-Ca-1.00-1 

 
  



 

 

Appendix Figure 2. 

Silica analysis for experiment 25-Ca-1.00-2 

 

  



 

 

Appendix Figure 3.  

Silica analysis for experiment 25-Ca-0.75-1 

 
  



 

 

Appendix Figure 4.  

Silica analysis for experiment 25-Ca-0.75-2 

 
  



 

 

Appendix Figure 5.  

Silica analysis for experiment 25-Ca-0.50-1 

 
  



 

 

Appendix Figure 6.  

Silica analysis for experiment 25-Ca-0.50-2 

 
  



 

 

Appendix Figure 7.  

Silica analysis for experiment 45-Ca-1.00-1 

 
  



 

 

Appendix Figure 8.  

Silica analysis for experiment 45-Ca-1.00-2 

 
  



 

 

Appendix Figure 9.  

Silica analysis for experiment 4-Ca-1.00-1 

  



 

 

Appendix Figure 10.  

Silica analysis for experiment 4-Ca-1.00-2 

 
  



 

 

Appendix Figure 11.  

Silica analysis for experiment 25-Na-1.00-1 

 
  



 

 

Appendix Figure 12.  

Silica analysis for experiment 25-Na-1.00-2 

 
  



 

 

Appendix Figure 13.  

Silica analysis for experiment 25-Na-0.75-5 

 
  



 

 

Appendix Figure 14.  

Silica analysis for experiment 25-Na-0.75-6 

 
  



 

 

Appendix Figure 15.  

Iron analysis for experiment 25-Ca-1.00-1 

 
  



 

 

Appendix Figure 16.  

Iron analysis for experiment 25-Ca-1.00-2 

 
  



 

 

Appendix Figure 17.  

Iron analysis for experiment 45-Ca-1.00-1 

 
  



 

 

Appendix Figure 18.  

Iron analysis for experiment 45-Ca-1.00-2 

 
  



 

 

Appendix Figure 19.  

Iron analysis for experiment 4-Ca-1.00-1 

 

  



 

 

Appendix Figure 20.  

Iron analysis for experiment 4-Ca-1.00-2 

 
  



 

 

Appendix Figure 21.  

Iron analysis for experiment 25-Na-1.00-1 

 
  



 

 

Appendix Figure 22.  

Iron analysis for experiment 25-Na-1.00-2 

 
  



 

 

Appendix Figure 23.  

Duplicate silica analysis for experiment 25-Ca-1.00-1 and 25-Ca-1.00-2 

 
  



 

 

Appendix Figure 24.  

Duplicate silica analysis for experiment 25-Ca-0.75-1 and 25-Ca-0.75-2 

  



 

 

Appendix Figure 25. 

Duplicate silica analysis for experiment 25-Ca-0.50-1 and 25-Ca-0.50-2 

 
  



 

 

Appendix Figure 26.  

Duplicate silica analysis for experiment 45-Ca-0.50-1 and 45-Ca-0.50-2 

 



 

 

Appendix Figure 27. 

 Duplicate silica analysis for experiment 4-Ca-0.50-1 and 4-Ca-0.50-2 



 

 

Appendix Figure 28. 

 Duplicate silica analysis for experiment 25-Na-1.00-1 and 25-Na-1.00-2 

  



 

 

Appendix Figure 29.  

Duplicate silica analysis for experiment 25-Na-0.75-5 and 25-Na-0.75-6 



 

 

Appendix Figure 30.  

Duplicate iron analysis for experiment 25-Ca-1.00-1 and 25-Ca-1.00-2 

  



 

 

Appendix Figure 31.  

Duplicate iron analysis for experiment 45-Ca-1.00-1 and 45-Ca-1.00-2 

  



 

 

Appendix Figure 32.  

Duplicate iron analysis for experiment 4-Ca-1.00-1 and 4-Ca-1.00-2 



 

 

Appendix Figure 33.  

Duplicate iron analysis for experiment 25-Na-1.00-1 and 25-Na-1.00-2 
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