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Abstract 

Aerial gamma ray surveys have many applications in geology and science in 

general, such as locating mining prospects, defining radioactive plumes, and 

detecting nuclear weapons. Unfortunately there is currently no simple way to 

separate the natural gamma radiation of soil and rocks from that of contaminants 

such as radioactive plumes. This project used geochemical data (uranium, 

potassium and thorium concentrations) collected from national databases, private 

companies, and the NURE (National Uranium Resource Evaluation) Survey, to 

create forward models of exposure rates measured by aerial gamma ray surveys. 

We developed these techniques using an area in north central Arizona known as 

the Navajo Mines area, chosen for its optimal conditions for aerial gamma ray 

surveys and readily available survey data. Models based on geochemical 

analyses from databases were not found to be successful, in part due to lack of 

data for some units. Models based on NURE data sorted by geologic unit were 

successful at replicating the aerial gamma ray survey, though units with Uranium 

mineralization proved difficult. ASTER visualizations were effectively used to 

create subunits of similar exposure rate within the Chinle Formation which 

contains multiple lithologies. For alluvial units, models based on drainage basin 

were attempted with success. With these models we are developing techniques 

to estimate the natural radiation generated by the rocks and soils of an area, 

making aerial gamma ray surveys more effective. 
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Chapter 1: Introduction 

Radiation measurement via aerial gamma ray surveys is important 

because it can give us insight into the spread of radioactive plumes, the location 

of nuclear weapons or dirty bombs and where to prospect for important 

resources (Dickson and Scott, 1997). This radiation can come from natural 

sources such as soil or bedrock, and from anthropogenic radionuclide 

contamination including nuclear fallout. Past studies have focused on identifying 

fallout from nuclear weapons testing (Grasty et al., 1984; Books, 1962), and 

trying to predict bedrock type from an aerial gamma ray survey (Griscom and 

Peterson, 1961; Pitkin et al.,1964). Instead, our study attempts to take the 

measured geochemistry of the bedrock and model the natural background 

measured in an aerial gamma ray survey. A successful model will allow the 

natural signal from the bedrock to be subtracted from aerial gamma ray surveys 

allowing for better detection of valuable ores and hazards.  

 Airborne gamma-ray spectroscopy measures the gamma radiation emitted  

at or near the surface of the Earth, from materials such as soil, rock and 

overburden. When radioactive isotopes decay, alpha, beta, and gamma radiation 

can be released. Neither alpha nor beta radiation can be used for aerial surveys, 

because both are released in the form of particles, (an alpha particle is two 

protons and two neutrons, while a beta particle is only an electron) that interact 

with nuclei in the rock, soil and air, never making it to detectors (Minty, 1997). 

Gamma radiation consists of high energy photons and is able to penetrate about 

30 cm of rock or soil and a few hundred meters of air. The energy released 
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during decay is different for each radioactive isotope (Dickson and Scott, 1997). 

The decay series of Uranium (U), Potassium (K) and Thorium (Th) are the only 

naturally occurring radioactive isotopes that exist in large enough quantities and 

decay with high enough energies to be measured during an aerial survey (Minty, 

1997); which are typically conducted several hundred feet off the ground. When a 

gamma-ray interacts with a scintillation detector, light is released and the 

intensity of this light is directly related to the energy of the gamma ray that struck 

it (Minty, 1997). Based on the intensity of the light emitted from the scintillation 

detector one can figure out which isotope released that gamma ray (Minty, 1997).  

 K, a common element in rocks and soils, makes up approximately 2% of 

the Earth’s crust. 0.012% of all K is its radioactive isotope, 40K.  When 40K decays 

to Argon with a branching ratio of 11%, it releases a gamma ray with a 

characteristic energy of 1.46 MeV, making 40K easy to identify in a gamma ray 

spectrum. The specific activity of K is low, but it exists in such great quantities 

that it can to be detected during aerial surveys (Minty, 1997). K is most abundant 

in K-feldspars and micas, making K more prevelant in felsic igneous rocks such 

as granite, and less abundant in mafic rocks. When K-rich minerals are 

weathered the K may be incorporated in new clay minerals (Dickson and Scott, 

1997) that can then be incorporated into soils or sedimentary rocks. Sedimentary 

rocks such as arkose, and fine grained sedimentary rocks (shale, mudstone, etc.) 

are also rich in K (Ulbrich et al., 2009).  

 232Th is a radioactive isotope ubiquitous in rocks and soils, with a decay 

series that releases a number of gamma rays that can be detected by aerial 
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gamma ray surveys.  232Th itself does not release any high energy, high intensity 

gamma rays when it decays to Radium-228 (Ra). Instead, the subsequent 

daughters in its decay series release these gamma rays as they decay to the 

final stable daughter isotope, Lead-208 (Pb). The series of discrete gamma rays 

released by the daughter isotopes are used to calculate an equivalent Th (eTh) 

concentration. Th is much less abundant than K, making up only 12 ppm of the 

Earth’s crust. Th occurs in significant quantities in minor minerals such as 

allanite, monazite, xenotime and zircon (Dickson and Scott, 1997). These 

minerals are found mostly in felsic igneous rocks. Zircon and monazite are of 

particular importance because they are resistant to weathering and thus remain 

in the soil and can accumulate in heavy mineral sands (Ulbrich et al., 2009). 

When Th is weathered out of a mineral, it tends to stay in place because of its 

low solubility. It can be taken up by clays or iron oxides, and if adsorbed by 

colloidal clays, can be transported out of the system.  An exception to Th’s low 

solubility is in acidic environments, and neutral environments in the presence of 

organic compounds such as humic acid (Dickson and Scott, 1997). 

 U is another important contributor to the gamma radiation background that 

occurs in many of the same environments, minerals and rocks as Th when in its 

reduced state (U4+). The solubility of U is highly affected by the presence of 

organic compounds, allowing U to concentrate where organic content is high. In 

peat and black shales, U concentrations can reach 10,000 times expected values 

(Ulbrich et al., 2009).  Unlike Th, U also has an oxidized state (U6+) that is soluble 

and therefore mobile. Like Th, 238U does not release high energy, high intensity 
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gamma rays when it decays to 234Th, but the subsequent daughters in its decay 

series release these gamma rays as they decay to the final stable daughter 

isotope, 206Pb. The series of discrete gamma rays released by the daughter 

isotopes are used to calculate an equivalent U (eU) concentration. U occurs in 

the Earth’s crust at a concentration of about 3 ppm, and has two major isotopes: 

238U and 235U, with 238U being far more abundant. U occurs in minor quantities in 

oxides and silicates and along grain boundaries, and in higher concentrations in 

zircon, monazite and xenotime (Dickson and Scott, 1997).  

Disequilibrium can affect the decay series of U and Th, causing eU and 

eTh to vary from actual U and Th concentrations. U concentration is mainly 

calculated from the spectra of Bismuth-214, and Th concentration is mainly 

calculated from the spectra of Thalium-208 (Minty, 1997). In order for this type of 

measurement to be valid, the isotope and its daughters must be in equilibrium. In 

a closed system equilibrium occurs after 10 times the length of the half-life of the 

daughter with the longest half-life has passed if the parent has a significantly 

longer half-life. Once equilibrium is established, everything in the decay chain will 

be decaying at such a rate that the number of atoms of each daughter remains 

constant. Th has very short lived daughters and only requires 40 years to reach 

equilibrium with its daughters, so Th is rarely found in disequilibrium (Dickson 

and Scott, 1997). U is much more likely than Th to be in disequilibrium because it 

takes at least 1.5 million years to reach equilibrium (Dickson and Scott, 1997). 

Disequilibrium can also occur through the preferential removal of the parent or 

daughter isotope through weathering. Due to the low mobility of Th and its 
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daughters in aqueous environments, the Th decay chain is less susceptible to 

disequilibrium. In contrast, due to the higher solubility of U6+ as well as the 

volatility of its daughter Radon-222 (Rn), a gas that can easily escape both soil 

and rock, equilibrium in the U decay chain cannot be taken for granted.  

Previous studies concerning the relationship between aerial gamma ray 

surveys and geology have focused on how to discern geologic units from survey 

results. Aerial gamma surveying of the US began in the 1950s with the ARMS 

(Aerial Radiological Measurement Survey) aerial gamma ray surveys of areas 

around nuclear facilities to create a baseline to detect future anomalies (Pitkin et 

al., 1964). These surveys were not done for the purpose of examining lithology, 

but the USGS used the data to study the relationship between radiation and 

geology. Pitkin et al. (1964) summarizes findings in aerial gamma ray surveys 

and geology comparisons across the US, drawing conclusions such as faults 

being denoted by higher exposure rates due to leaking radon. Griscom and 

Peterson (1961) reviewed an aerial gamma ray survey done of the Maryland 

Piedmont by the USGS itself that found previously unknown mafic intrusions. 

Moxham (1963) concluded that surface radiation is dominated by contribution 

from rock, not soil. In the study an equation was also devised to calculate U 

concentration from net radioactivity. By creating and solving computational 

models of photon emission, Lovborg and Kirkegaard (1974) and Beck et al. 

(1972) proposed that exposure rates could be calculated from a linear 

combination of K, U, and Th concentrations. Grasty et al. (1984) compared the 
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resulting equations to his own calculated equations and assigned average 

constant values seen in Equation 1: 

D = 1.32 K + 0.548 eU +0.272 eTh (Equation 1) 

Where D is exposure rate in mircoR/hr, K is weight percent K, eU is ppm 

U, and eTh is ppm Th. Taking the ARMS program further, from 1973 to 1980, an 

aerial gamma ray survey known as the NURE (National Uranium Resource 

Evaluation) survey was done by the Atomic Energy Commission for the purpose 

of evaluating U resources in the US. Most of the continental US was flown with 

10 km line spacing. The data are reported as K, U and Th concentrations, and 

exposure rate may be calculated using Equation 1. More recent research using 

aerial gamma ray surveys and geology has focused primarily on exploration for 

U, Th, and precious metals (Mernagh and Miezitis, 2008; Dickson and Scott, 

1997; Dickson, 1995). Dickson and Scott (1997) discuss using K, U and Th ratios 

in aerial gamma ray surveys to find metal ore deposits. Dickson (1995) studied 

equilibrium across Australia, and found that aerial gamma ray survey 

interpretation would not be affected by disequilibrium. Mernagh and Mietzitis 

(2008) provide an overview of Th resources in Australia, including an aerial 

gamma ray survey of the majority of Australia and table of average U, K, Th 

concentrations for basic rock types.  

While averages of radioactive isotope content in each rock type have been 

published (Mernagh and Miezitis, 2008; Dickson and Scott, 1997), rocks are 

highly variable. The ranges of concentration of radioactive isotopes are too wide 
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and overlapping to be able to take these concentrations from an aerial gamma 

ray survey and predict what rock type is on the ground (Dickson and Scott, 

1997). However, aerial gamma ray surveys can be used to see boundaries 

between adjacent geologic units (Griscom and Peterson, 1961; Pitkin et al., 

1964; Moxham, 1963), and trends can be seen in radioelement content and rock 

type.  

The purpose of this study is to create a way to model background 

radiation emanating from surficial rocks and soils using geochemical data and 

geologic maps. This would allow for simple identification of anomalies in the 

survey, assisting in ore location and national security. Comparing a radiation 

model created from geochemical data and an aerial gamma ray survey can 

become difficult as a real world survey has additional components such as 

ubiquitous background radiation from other sources adding to the total radiation, 

and vegetation attenuating gamma rays. According to Minty (1997) background 

radiation from the equipment itself, cosmic radiation, and radon in the 

atmosphere are also measured during aerial gamma ray surveys; these signals 

are measured and subtracted out of the spectrum to correctly interpret the 

concentrations of U, K and Th which are being modeled with geochemical data. 

The radiation measured during an aerial gamma ray survey can possibly be 

obscured by the presence of vegetation, and there is currently no way to adjust 

the spectra for this minor effect. Vegetation absorbs radiation that would be read 

by an aerial survey, thus making it appear as if the concentration of radioactive 

isotopes is less than it actually is (Minty, 1997), thus an arid environment with 
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little vegetation should be an optimal candidate for modeling an aerial gamma ray 

survey. Another complication with aerial gamma ray surveys is due to aeolian 

addition. In temperate climates, soil is typically formed from the weathering of the 

bedrock it sits on, which is why the concentration of radioactive isotopes in soil is 

usually correlated to the concentration of radioactive isotopes in the bedrock. In 

aeolian addition, an important process in the formation of arid desert soils, dust is 

transported into the area that has no relation to the bedrock it is deposited on. 

Books (1962) examined an aerial gamma ray survey of the Los Angeles area, 

and concluded only generalizations can be made between geology and radiation 

in the area, because alluvium does not generally overlie parent rock. 
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Chapter 2: Methods 

In this research we focused on modelling background radiation from an 

area in north central Arizona, near Cameron, AZ (Figure 1). Located in and 

around the Navajo Nation, this area was mined for U from the 1940s through the 

1960s (Hendricks, 2001). The study area was chosen because a high resolution 

aerial gamma ray survey was performed by personnel of the Remote Sensing 

Laboratory located in Las Vegas, Nevada, (a facility of the U.S. Department of 

Energy, National Nuclear Security Administration Nevada Operations 

Office),from 1994-1999 to assess the risk associated with exposure to radiation 

in this area. This area has optimal conditions for aerial gamma ray surveys: 

sparse vegetation and an arid environment.  

 In order to predict exposure rates, geolocated geochemical data 

containing U, K, Th concentrations were obtained from national databases 

(USGS, IEDA, and GeoRoc) and DIR Exploration, a private U mining company 

(Table 1). The USGS data was accessed through the IEDA database, providing 

over 350 data points, mostly of volcanic rocks. These analyses vary in whether or 

not they include U, K and Th.  GeoRoc yielded 10 additional data points all of 

which were basalt analyses and included only K data. We also obtained 

geolocated data from a private uranium mining company, DIR Exploration, who 

provided over 170 U concentrations for rocks of unspecified type in our mapping 

area. These data were then sorted and culled for internal consistency. The 

geochemical data was synthesized into a single data set and sorted with ArcMap 

by geologic unit based on its reported location and the 2007 USGS map 
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(Billingsley et al., 2007) (Figure 2).  Geochemical data occurring outside the 

modeling area was included in the dataset, if it was from a bedrock unit that also 

occurred in the modeling area. No alluvial unit data was brought into the dataset 

from outside the modeling area. The meta data associated with each of the 

analyses provided by these databases varied greatly based on what the 

contributor chose to include, in many cases the rock type of the sample was not 

reported; geologic units were rarely reported.  

Data points were examined, and discarded or moved to an appropriate 

unit based on whether or not the description was consistent with the geologic unit 

assigned by location. If the author of the geochemical analysis stated that the 

sample was from a unit other than the one that occurred at its geolocation, it was 

moved to the author’s specified unit. If the rock type of the data point was not 

consistent with the description of the geologic map unit (Billingsley et al., 2007), it 

was discarded. Most chemical analyses do not include a full set of U, K, and Th 

concentrations, the majority only contain K concentrations. For samples that had 

multiple analyses using different methods, the geochemical data were combined 

by choosing the most accurate method of analysis for each U, K, and Th 

concentration. This left us with 552 geochemical data points out of over 1000 

original data points for 31 geologic units. For the 2 bedrock units that did not 

have a full suite of associated U, K, and Th concentrations, average 

concentrations from an Australian geochemical survey (Dickson and Scott, 1997; 

Bruce Dickson, personal communication) and data from Mernagh and Miezitis 

(2008), were used to fill in these missing concentrations, as the arid climate 
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mimics that of the southwestern United States. An average was taken of the 

concentration of each U, K and Th for all major rock types present in the unit 

based on the USGS description (Billingsley et al., 2007). TRmhm (Holbrook and 

Moqui Members of the Moenkopi Fm) was created entirely from the data from the 

Australian survey. The second unit was a small volcanic unit, Qbt, that contained 

only K concentration. Ten alluvial units (which cover about 10% of the modeling 

area) had no associated geochemical data points. The majority of the data is 

associated with 2 geologic units: Pkh with 184 data points and Qa2 with 227. 

Table 1 gives the number of data points per unit.  

Mean, median, and standard deviation were calculated for K, U and Th 

concentrations for each unit (Table 1). Mean values can be skewed by large 

outliers, especially with regards to U, since this area hosts ore grade U 

concentrations, in some cases up to 17,000 ppm U. Thus median concentrations 

were used and converted into exposure rate, a measure of radiation, using 

Equation 1. This allowed us to compare the geochemical model (GM) to aerial 

gamma ray exposure rate data.  

The National Security Technologies, LLC (NSTec), Aerial Measuring 

System (AMS) section provided us with a digital data set for the exposure rate 

map published in Hendricks (2001). This survey data, consisting only of exposure 

rate values, was also sorted by geologic unit using ArcMap. The mean, median, 

and standard deviations of exposure rate were calculated for each unit (Table 2). 

NURE aerial survey data was obtained from the USGS database. In the 

study area there are 8 East/West NURE flight lines through the area and 1 



12 
 

North/South flightline (Figure 3). This survey reports eU, K and eTh 

concentrations, thus Equation 1 was used to calculate total exposure rate. 

ArcMap was used to sort this data by the geologic unit to create a NURE model 

(NM) for direct comparison to the other data sets. All data sets (including the 

geologic map) were reprojected to the global coordinate system WGS 1984 used 

by the NURE dataset for accurate comparison.  

Alluvial units were modelled in 2 ways: by geologic unit and by drainage 

basin. Drainage basins for the Little Colorado River and its tributaries were 

manually drawn in ArcMap based on DEMs (Digital Elevation Models) (Figure 4). 

Nineteen basins were identified, each representing a separate main tributary and 

all the streams in its headwater. Geologic units identified as alluvium within each 

drainage basin were joined into single alluvial units, resulting in 19 alluvial units 

(Figure 5). AMS exposure rate data occurring within alluvial units was sorted into 

these 19 alluvial units to create a new standard AMSDB, (AMS Drainage Basin) 

to compare with NURE models created in the same way. Geochemical data had 

to be resampled from databases as some basins extended almost 50 km outside 

of the modeling area. NURE data was resampled for the entirety of the drainage 

basins and used to create three separate models. The first model includes all 

NURE data present in drainage basins (AN); the second model is all NURE data 

present in the drainage basins excluding points located over rock units within the 

study area (ANNR); and the last model is NURE data only within the study area, 

excluding points located over rock units (SAONR).  
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To minimize the possible effect of geolocation uncertainties, data points 

within 50 meters of a geologic unit boundary were eliminated from NURE and 

AMS data sets, creating “buffer” models (NBM and AMSB respectively). The 

footprint of an aerial gamma ray survey point is approximately 91 meters, thus 

data points within 50 meters of a geologic boundary may have a significant 

contribution from more than one unit, the buffer mitigates this possible source of 

uncertainty.  The 50 m buffer was also applied to the 19 drainage basin alluvial 

units for the AMS data (AMSBB) and the NURE data through the SAONR model 

(SAONRB). 

Remote sensing models were created for the TRcs and TRcp members of 

the Chinle Formation, both sedimentary units that showed large standard 

deviations in the AMS data. Each of these members consists of many different 

lithologies, including sandstone, limestone, conglomerate and shale. These rock 

types all have potentially different average K, U, Th content, making it difficult to 

assign single K, U, and Th concentrations to these very widespread units. 

Satellites, such as the Terra satellite, collect data over a wide range of the 

electromagnetic spectra, including UV and infrared. Data from ASTER 

(Advanced Spaceborne Thermal Emission and Reflection Radiometer), an 

instrument aboard Terra, were used to separate geologic units into 

mineralogically similar subunits. Each of the 14 bands gives different information 

about the same area, highlighting lithological differences, emphasizing different 

minerals (van der Meer et al., 2012) or vegetation. Combination images or 

‘visualizations’ were created by combining three bands from the ASTER science 
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package on the Terra satellite in ENVI. A 7-3-1 band combination image, which 

discriminates lithology, and a 2-6-10 band combination image, which highlights 

alteration, were used for the study area. Ratio images were created by making a 

ratio of the intensities of the 2 ASTER bands. A 2/1 ratio image, which highlights 

ferric iron on the surface, and a 4/5 ratio image, which highlights the clay mineral 

laterite, were used for the study area. Both types of images highlight differences 

in lithology and were classed into 5 classes of differing lithology. They were then 

polygonised in ArcMap and unioned with the Chinle Fm geologic map to create 5 

subunits for each of the Chinle’s 2 main members, creating up to 10 subunits in 

total. NURE data occurring in the Chinle Fm was sorted into these subunits to 

create a new model for the Chinle Fm, which was compared to AMS survey data 

sorted into the same subunits. Geochemical data was not considered for this 

type of modeling, as there were only 11 geochemical analyses for TRcp and 6 for 

TRcs, not enough data points to create a significant model.  

To determine if there were systematic differences in AMS and NURE 

survey exposure rates, a point to point comparison was made, where the AMS 

data point closest to each NURE data point was selected and the exposure rates 

were compared. A histogram of the differences between the exposure rates of 

each pair points is shown in Figure 6. The histogram was fitted with a gaussian 

distribution, yielding an average difference in exposure rate of 0.972 microR/hr 

with a standard deviation of 1.91. This average difference was added to NURE 

based models to account for the systematic offset between the two aerial gamma 

ray surveys.  



15 
 

Chapter 3: Results 

 The AMS measured exposure rate over the study area is shown in Figure 

7. The mean and median AMS exposure rate calculated for each geologic unit is 

given in Table 2. The average standard deviation of AMS data separated into 

geologic units is 1.44. When the 50 m buffer was applied, one geologic unit, a 

small isolated dune unit, Qbd, lost all AMS data. However this unit also lacked 

geochemical data as well as NURE data. Almost 50% of the AMS data was 

eliminated by adding this buffer. This lowered the standard deviation of exposure 

rate grouped by geologic unit, the average standard deviations dropped from 

1.44 to 1.24 

The average difference between the exposure rate predicted by the 

geochemical model (GM) and the AMS measured exposure rate ranged from 

5.81 microR/hr to -235.94 microR/hr. The average absolute difference is 19.60 

microR/hr. Values for the GM are reported in Table 3. Only 2 units used data 

from the Australia geochemical survey. The first of these units was a sedimentary 

rock unit, TRmhm, that was created entirely from the data from the Australian 

survey. The second was a small volcanic unit, Qbt, that contained only K 

concentration; Australian survey was used to estimate and fill the gaps for U and 

Th.  

The NM (NURE model) had an average absolute difference in exposure 

rate from the AMS data of 0.62 microR/hr. The average standard deviation of the 

NM is 1.26. Values for NM are reported in Table 4. 

 The addition of the 50 m buffer to both data sets lowered the average 

absolute difference between the AMS and NURE exposure rates (AMSB and 
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NBM) to 0.51 microR/hr. The average standard deviation of the NURE data is 

1.25. Values for AMSB and NBM are reported in Table 5.  

For drainage basins three NURE models were tested:  AN, ANNR, and 

SAONR. For AN the average of the absolute value of exposure rate difference is 

0.97 microR/hr. Values for AN are reported in Table 6. For the ANNR model the 

average absolute difference in exposure rate is 1.06 microR/hr. Values for ANNR 

are reported in Table 7. For SAONR the average of the absolute value of 

exposure rate difference is 0.65 microR/hr. This model lacked data for one basin. 

Values for SAONR are reported in Table 8.   

The average of the absolute differences in exposure rate between 

SAONRB and the AMSBB is 0.65 microR/hr. Values for SAONRB are reported in 

Table 9. 

 The average of the absolute differences in exposure rate between NURE 

and AMS data for the 2-6-10 image of the Chinle Fm is 0.92 microR/hr for TRcp 

and 0.86 microR/hr for TRcs. The average standard deviation of the AMS data 

sorted into the Chinle subunits created by the 2-6-10 visualization is 1.70 for both 

TRcp and TRcs. The average of the standard deviations of the NURE model are 

1.22 for TRcp and 1.16 for TRcs. Values for the 2-6-10 image are reported in 

Table 10 and 11. Figure 8 displays the 2-6-10 image and classes.  Figure 9 is a 

large scale comparison of a satellite image of the geology overlain by the classes 

created from the 2-6-10 image for a small area within the Chinle. The average of 

the absolute differences in exposure rate between NURE and AMS data for the 

2/1 image is 0.77 microR/hr for TRcp and 0.75 microR/hr for TRcs. The average 



17 
 

standard deviations of the NURE model are 1.4 for TRcp and TRcs. Values for 

the 2/1 image are reported in Table 10 and 11. The average of the absolute 

differences in exposure rate between NURE and AMS data for the 7-3-1 image 

was 1.18 microR/hr for TRcp and 0.69 microR/hr for TRcs. The average standard 

deviations of the AMS data sorted into the 7-3-1 subunits is 2.43 for TRcp and 

2.31 for TRcs. The average standard deviations of the NURE model are 1.53 for 

TRcp and 1.62 for TRcs. Values for the 7-3-1 image are reported in Tables 10 

and 11. The 4/5 image has an average of the absolute differences in exposure 

rate between NURE and AMS data of 1.1 microR/hr.  
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Chapter 4: Discussion 

The goal of this study is to use preexisting geochemical data and geologic 

maps to predict exposure rate measured in aerial gamma ray surveys. Such a 

predictive modeling capability would allow for better evaluation of anomalies in 

surveys, and thus location of both hazards and possible mineral resources. In 

order for a background model to be useful it needs to predict the probability of 

obtaining a given exposure rate at any particular location. With these predictions 

a small standard deviation is necessary to illustrate accuracy in the method from 

area to area. This would indicate that there is geochemical significance to how 

we are modeling exposure rate. A standard deviation of exposure rate smaller 

than the standard deviation of the whole data set indicates a background 

radiation unit is more homogenous, and thus significant. A successful model is 

defined by how well the model matches the AMS data for the defined background 

radiation unit. A model with an average exposure rate difference of less than ±1 

microR/hr with the AMS data is defined as successful because the uncertainty of 

aerial gamma ray survey measurements is approximately 10%, and an average 

background radiation from the surface of the Earth is approximately 10 

microR/hr. 

 Models created with sets of NURE data had the lowest standard 

deviations, and thus the highest unit homogeneity. For NURE data the lowest 

standard deviation is 1.25, occurring when data was sorted by drainage basin 

and by geologic unit with a 50 meter buffer. The NURE data set as a whole has a 

standard deviation of 1.77, so the model creates a noticeable decrease.  
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For AMS data, the lowest standard deviation is 1.19, present when data 

was sorted by geologic unit and a 50 meter buffer was applied. The AMS data 

set as a whole has a standard deviation of 2.41, so the sorting and culling of data 

creates a significant improvement of the standard deviation. AMS data was also 

sorted by the 2-6-10 visualization for the entire study area, resulting in an 

average standard deviation of 1.88. This justifies sorting AMS data into geologic 

units, as it creates units of more uniform exposure rate than the whole data set, 

and the AMS data set sorted into remote sensing units. 

 Models based on geochemistry were not found to be successful in this 

area. This could be due to a number of factors, but most likely related to outliers, 

preferred sampling, and lack of data. While median concentrations were used to 

mitigate outliers, for units with less than 5 data points, outliers had a large effect. 

For example, TRmw had three geochemical data points, but only 2 of the 

samples had U concentrations, and one of 840 ppm, over 2 orders of magnitude 

higher than the crustal average of 3 ppm. This outlier U concentration lead to an 

exposure rate of 243 microR/hr, much higher than the average of the AMS data 

at 8.26 microR/hr. Another hypothesis as to why the geochemical model did not 

work for this particular area is the large volume of U mining that occurred in this 

area, many of these samples could be related to prospecting. A possible issue 

that could explain units with much higher exposure rates than the AMS data 

(TRmw and TRmss) is a sampling bias. This could have occurred where samples 

collected in this area were focused mostly on U prospecting, and thus samples of 

high U concentration are more likely to be in the databases. It would be valuable 



20 
 

to further explore using geochemistry to model aerial gamma ray surveys in an 

area lacking significant radioelement mineralization. Another problem with this 

model is possible geolocation issues. Qa2 has 225 samples that were recorded 

to have been collected in the exact same location. The USGS data is self-

reporting and thus does not contain a minimum number of recorded decimals in 

latitude and longitude, leading to uncertainty in where a sample was actually 

collected. The database also has no way of connecting data collected with 

possible published work, making it impossible to perform checks on data with 

published maps or contact authors. These data points were of similar rock type 

that could have occurred in Qa2, and thus were not culled. Overall, our 

geochemical model tended to under predict exposure rate, and it is unclear why 

this occurred. 

 Alluvial units are difficult to model based on geochemical sample data 

because of the heterogeneous nature of alluvial units. A sample that is collected 

and analyzed for U, K, and Th is not going to represent the variation occurring 

within the unit. Alluvial units are also categorized by age and how they were 

formed, so many times a single alluvial unit occurs in many points within the 

study area, possibly with vastly different parent rocks. 

 More success was had with modeling bedrock units based on 

geochemical data. For example, Pkh, a limestone and sandstone unit, had an 

average difference of 0.93 microR/hr. This is most likely due to the fact that there 

were 184 data points within this unit, so the variation within the unit would be 

represented.  
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 The most successful models were based on the NURE aerial gamma ray 

survey data set sorted into geological units. These models are probably more 

successful because aerial gamma ray survey data is being compared to aerial 

gamma ray survey data, so factors such as vegetation, soil moisture and radon in 

the soil are included in both datasets. These factors would present additional 

considerations moving forward with modeling gamma radiation with 

geochemistry, as they would have to be factored into Equation 1. NM and the 

AMS data sorted into geologic units had low standard deviations, and thus more 

homogenous units. The difference between NM and the AMS data had an 

average of 0.62 microR/hr, a successful model. The addition of a 50 meter buffer 

improved the homogeneity of the AMS data set and the overall difference 

between the model and the AMS data set (Figure 10). The overall average 

difference between the model and the AMS data was 0.51 microR/hr, while the 

average difference of the medians was 0.46 microR/hr. The overall improvement 

of results with the buffer indicates that the buffer is removing data points that are 

being contributed to by more than one geologic unit. 

 Drainage basin models were not as successful as models based on 

geologic units, but could be a viable option in other study areas. The best basin 

model was the SAONR model, which included the least amount of data. The 

average difference between the SAONR model and the AMS model is 0.65 

microR/hr. The average standard deviation of AMS data was 1.5, and the 

average standard deviation of the SAONR model is 1.25. This is most likely the 

best basin model because AMS and NURE data are being compared for the 
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same areas, whereas the ANNR model and the AN model take data from outside 

the study area, where there is no AMS data. The addition of the 50 m buffer to 

the SAONR model made little difference to the overall results. The average 

difference between the model and the AMS data was 0.65microR/hr. The 

average standard deviation of the AMS data was 1.41 and the average standard 

deviation of the SAONR model with buffer was 1.33. With the addition of this 

buffer only 30% of the data was lost.  

 Using remote sensing to model the TRcp and TRcs members of the 

Chinle Fm was successful in that the average difference between the models and 

the AMS data decreased, and the standard deviations of each data set for these 

units was lowered. The model with the most homogenous units was based on the 

2-6-10 visualization, providing lower standard deviations than the NURE buffer 

model. The success of this image, which emphasizes alteration, over other 

images points to a possible relationship between alteration and exposure rate.  

Of interest is also the trend observed in all of the models (excluding AN), 

of the average difference in exposure rate between the median AMS and median 

NURE data being significantly lower than the difference between the mean AMS 

and mean NURE data. For example, for the 2/1 model the difference is 

approximately a 40% change. This could indicate that the median is minimizing 

the skew of the dataset. 

The correction constant of 0.972 microR/hr that was added to NURE data 

to account for the systematic offset between the NURE and AMS aerial surveys 
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was remarkably successful. The average between the two data sets was 

significantly improved for all of our models involving NURE data by adding this 

simple constant. Studies of other areas will need to be done to see if the amount 

of correction needed varies from location to location.  

 A concern to be addressed is the applicability of this method to the rest of 

the United States, where optimal conditions for aerial gamma ray surveys are not 

present. As NURE data is available for a majority of the continental US, and a 

comparison between aerial gamma ray surveys is being made, factors such as 

increased vegetation and soil moisture should not affect the success of this 

model (Moxham, 1963; Griscom & Peterson, 1961). However, if NURE data were 

at its lowest density (one line every 10 km), there could be a problem of lack of 

data in other areas. Whether this kind of modeling is replicable in countries other 

than the US depends on the public availability of pre-existing aerial gamma ray 

survey data for the area in question.  
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Chapter 5: Conclusion 

 This study has explored a number of methods for creating homogenous 

background radiation units to successfully model background gamma radiation in 

the environment. The use of NURE data and geologic maps has proved to create 

the most successful models, with the addition of a 50 meter buffer generating 

further successful models. It is possible the success of these models is due to 

the fact that they are comparing two aerial gamma ray surveys, so the same 

screening and environmental factors affect each one. 

Geochemical data did not produce successful models, possibly due to lack 

of data or sampling bias. Further work on the relationship between radiation 

measurements and geochemical analysis could assist in improving these 

models. 

The 2-6-10 ASTER visualization highlighting alteration successfully 

improved models of the TRcs and TRcp members of the Chinle Fm.  

It is important to remember that our definition of success was provided to 

us by AMS. While some of these techniques may not fit within their narrow range 

of success, in the event of a nuclear disaster these techniques could still prove 

useful. 

The further research and use of these techniques to model background 

radiation will allow for easier recognition of anomalies on aerial gamma ray 

surveys, and thus location of valuable resources and hazards. 
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Chapter 6: Tables 

Table 1: Geochemical Data 

Geo Unit 
Number 
of  Data 
Points 

Mean U 
(ppm) 

Median 
U 

(ppm) 

Standard 
Deviation 

U 

Mean 
Th 

(ppm) 

Median 
Th 

(ppm) 

Standard 
Deviation 

Th 

Mean 
K  

(wt%) 

Median 
K  

(wt%) 

Standard 
Deviation 

K 

Pkh 184 185.26 1.45 1670.25 6.54 6.52 5.23 0.65 0.37 0.95 

Qa1 18 37.02 1.80 88.12 11.90 11.90 1.27 0.93 0.88 0.51 

Qa2 228 1.63 0.98 1.51 9.78 3.65 11.35 1.48 1.17 0.98 

Qae 4 1.37 1.50 0.32       0.96     

Qbt 2             1.58   0.48 

Qd 1             0.70     

Qes 1 1.50                 

Qf 1 1.10                 

Qg1 2 1.90           1.09     

Qg3 1 13.40     6.79     0.02     

Ql 7 4.64 6.38 3.19 24.43 32.20 18.51 1.62 0.91 1.38 

Qs 8 1.71 1.60 0.59 1.40 1.40 1.84 0.26 0.10 0.37 

Qv 63 1.62 1.40 0.95 4.78 4.78 4.21 0.56 0.31 0.49 

Tbpb 4 0.78     2.74     0.91 0.91 0.02 

TRcp 11 16.67 4.80 33.45 14.90 13.70 5.32 1.21 1.20 0.50 

TRcs 6 14.95 5.14 21.76 17.53 15.70 7.92 1.59 1.30 1.27 

TRmss 4 1088.52 40.90 2121.25 8.11   2.15 2.05 2.30 0.96 

TRmw 3 421.57   591.76 33.95   25.67 2.11 2.30 0.45 

TRco 1 2.94     4.90     1.60     

Total 552 
         

           

 

Table 1: Displays only collected geochemical data, units with values filled in from Dickson and 

Scott (1997) survey in Table 3. 
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Table 2: AMS Data 

Geo Unit 

Avg AMS 
Aerial Survey 

Exposure Rate 
(µR/hr) 

Median AMS Exp 
Rate (µR/hr) 

AMS Std 
Dev 

Pkh 3.99 3.87 0.83 

Qa1 8.36 7.95 1.99 

Qa2 8.15 7.82 1.97 

Qae 8.25 7.89 2.18 

Qbt 6.39 6.54 0.91 

Qd 7.00 6.64 1.10 

Qes 7.50 7.23 1.62 

Qf 7.06 7.03 1.30 

Qg1 7.65 7.47 1.40 

Qg3 7.64 7.19 1.80 

Ql 4.61 4.55 0.82 

Qs 7.12 6.80 1.73 

Qv 8.29 8.30 1.50 

Tbpb 5.72 5.83 0.61 

TRcp 9.64 9.29 2.45 

TRcs 9.44 9.35 2.09 

TRmss 6.47 6.18 0.93 

TRmw 7.35 7.39 1.51 

Ts 5.81 5.82 0.17 

QTg4 6.90 6.48 1.81 

QTg5 7.63 7.67 1.17 

Qg2 7.86 7.16 3.00 

Qa3 8.11 8.35 1.35 

Qdb 6.81 7.42 0.48 

Qdl 7.72 7.50 1.25 

Qdp 7.71 7.50 1.22 

Qtr 4.65 4.17 1.20 

TRco 6.40 6.35 1.02 

TRmhm 8.08 7.83 1.58 

Qps 7.21 6.40 2.22 

  
Average: 1.44  
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Table 3: Geochemical Model Results 

Geo 
Unit 

Avg AMS 
Aerial Survey 

Exposure Rate 
(µR/hr) 

Geochemistry 
Calculated 

Exposure Rate 
(µR/hr) 

Difference 
(µR/hr) 

Pkh 3.99 3.06 0.93 

Qa1 8.36 5.28 3.09 

Qa2 8.15 3.07 5.07 

Qae 8.25   

Qbt 6.39 3.44* 2.95 

Qd 7.00   

Qes 7.50   

Qf 7.06   

Qg1 7.65   

Qg3 7.64 9.22 -1.58 

Ql 4.61 13.46 -8.85 

Qs 7.12 1.77 5.35 

Qv 8.29 2.48 5.81 

Tbpb 5.72 2.37 3.34 

TRcp 9.64 7.94 1.70 

TRcs 9.44 8.80 0.63 

TRmss 6.47 27.66 -21.18 

TRmw 7.35 243.29 -235.94 

Ts 5.81     

QTg4 6.90     

QTg5 7.63     

Qg2 7.86     

Qa3 8.11     

Qdb 6.81     

Qdl 7.72     

Qdp 7.71     

Qtr 4.65     

TRco 6.40 5.06 1.34 

TRmhm 8.08 5.98* 2.10 

Qps 7.21     

  
Average: 19.60 

 

Table 3: To get a calculated exposure rate units had to have K, U and Th data. 

*These values were calculated using Dickson and Scott (1997, whole survey provided by Bruce Dickson) 

and Mernagh and Miezitis (2008) 
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 Table 4: NURE Model Results 

Geo Unit 
Avg AMS 
Exp Rate 
(µR/hr) 

Avg 
NURE 

Exp Rate 
(µR/hr) 

Difference 
(µR/hr) 

Median 
AMS 
Exp 
Rate 

(µR/hr) 

Median 
NURE 

Exp Rate 
(µR/hr) 

Difference 
(µR/hr) 

AMS 
Std 
Dev 

NURE 
Std 
Dev 

Pkh 3.99     3.87     0.83   

Qa1 8.36 8.48 -0.11 7.95 7.96 0.00 1.99 2.34 

Qa2 8.15 7.55 0.60 7.82 7.45 0.37 1.97 1.20 

Qae 8.25 7.69 0.55 7.89 7.82 0.07 2.18 1.30 

Qbt 6.39 7.53 -1.15 6.54 7.67 -1.13 0.91 0.82 

Qd 7.00 7.41 -0.42 6.64 7.16 -0.52 1.10 1.34 

Qes 7.50 7.58 -0.09 7.23 7.34 -0.11 1.62 1.76 

Qf 7.06 6.95 0.10 7.03 6.86 0.17 1.30 1.28 

Qg1 7.65 7.96 -0.31 7.47 7.82 -0.35 1.40 1.59 

Qg3 7.64 7.52 0.12 7.19 6.62 0.57 1.80 2.39 

Ql 4.61 5.51 -0.91 4.55 5.48 -0.93 0.82 0.79 

Qs 7.12 7.52 -0.40 6.80 7.41 -0.61 1.73 1.57 

Qv 8.29 7.65 0.64 8.30 7.60 0.70 1.50 1.37 

Tbpb 5.72 6.05 -0.34 5.83 6.37 -0.55 0.61 0.89 

TRcp 9.64 8.53 1.12 9.29 8.75 0.54 2.45 1.49 

TRcs 9.44 8.77 0.67 9.35 8.67 0.69 2.09 1.60 

TRmss 6.47     6.18     0.93   

TRmw 7.35 8.12 -0.77 7.39 7.84 -0.45 1.51 0.72 

Ts 5.81     5.82     0.17   

QTg4 6.90 6.84 0.06 6.48 7.05 -0.57 1.81 1.54 

QTg5 7.63 6.83 0.80 7.67 6.83 0.84 1.17 0.23 

Qg2 7.86 8.38 -0.52 7.16 8.70 -1.54 3.00 2.39 

Qa3 8.11 9.48 -1.37 8.35 9.48 -1.13 1.35   

Qdb 6.81     7.42     0.48   

Qdl 7.72 6.88 0.84 7.50 6.88 0.61 1.25 0.63 

Qdp 7.71 8.06 -0.35 7.50 8.16 -0.66 1.22 0.77 

Qtr 4.65     4.17     1.20   

TRco 6.40 7.36 -0.96 6.35 7.54 -1.18 1.02 0.89 

TRmhm 8.08 6.52 1.56 7.83 6.81 1.02 1.58 1.28 

Qps 7.21 6.41 0.79 6.40 6.41 -0.02 2.22 0.18 

  
Average: 0.62 

  
0.61 1.44 1.26 
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Table 5: NURE Buffer Model Results 

Geo 
Unit 

Average 
AMS 

Buffer 
Exp Rate 
(µR/hr) 

Average 
NURE 
Buffer 

Exp Rate 
(µR/hr) 

Difference 
(µR/hr) 

Median 
AMS 

Buffer 
Exp 
Rate 

(µR/hr) 

Median 
NURE 
Buffer 
Exp 
Rate 

(µR/hr) 

Difference 
(µR/hr) 

AMS 
Buffer 

Std 
Dev 

NURE 
Buffer 

Std 
Dev 

Pkh 3.75     3.81     0.54    

Qa1 8.20 8.43 -0.22 7.85 7.90 -0.05 1.81 2.32 

Qa2 8.13 7.59 0.54 7.70 7.51 0.19 2.04 1.18 

Qae 8.33 7.68 0.66 7.97 7.82 0.15 1.94 1.29 

Qbt 6.86 7.28 -0.42 6.71 7.04 -0.34 0.76   0.81 

Qd 6.86 7.30 -0.44 6.59 6.97 -0.39 0.95 1.35 

Qes 7.43 7.81 -0.38 7.08 7.62 -0.54 1.56 1.71 

Qf 7.04 6.86 0.18 7.01 6.81 0.20 0.98 1.05 

Qg1 7.38 7.77 -0.39 7.35 7.51 -0.16 1.05 1.65 

Qg3 7.50 6.82 0.68 6.98 6.35 0.64 1.71 1.65 

Ql 4.49 5.48 -0.99 4.47 5.31 -0.84 0.48 0.86 

Qs 6.29 7.25 -0.96 6.01 7.13 -1.11 1.03 1.49 

Qv 8.21 8.84 -0.62 8.34 8.06 0.28 1.42 1.16 

Tbpb 5.83 6.15 -0.32 5.93 6.37 -0.44 0.55 0.86 

TRcp 10.01 8.87 1.14 9.65 8.98 0.67  2.43  1.13  

TRcs 9.47 8.51 0.96 9.43 8.49 0.94 1.98   1.32 

TRmss 6.18     6.10     0.51   

TRmw 7.98 8.24 -0.26 8.13 8.21 -0.08 0.94   0.76 

Ts 5.80     5.82     0.11   

QTg4 6.64 6.81 -0.17 6.17 7.10 -0.93 1.59 1.34 

QTg5 7.61     7.47     0.98   

Qg2 7.12 6.94 0.18 6.53 6.83 -0.30 1.91 0.99 

Qa3 7.81     8.01     1.36   

Qdb                 

Qdl 7.31     7.49     0.45   

Qdp 7.76 8.08 -0.32 7.78 8.08 -0.30 1.59   

Qtr 4.20     4.12     0.27   

TRco 6.39 7.20 -0.81 6.31 7.32 -1.01 0.72  0.85 

TRmhm 8.26 8.13 0.13 8.11 8.13 -0.02 1.22    

Qps 6.78     6.16     1.50   

  
Average: 0.51 

  
0.46 1.19 1.25 
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Table 6: Basin AN Model Results 

Basin 

Avg 
AMS Exp 

Rate 
(µR/hr) 

Avg AN 
Exp Rate 
(µR/hr) 

Difference 
(µR/hr) 

Median 
AMS 
Exp 
Rate 

(µR/hr) 

Median 
AN Exp 

Rate 
(µR/hr) 

Difference 
(µR/hr) 

AMS 
Std 
Dev 

AN 
Std 
Dev 

A 7.41 7.33 0.08 7.24 7.25 -0.01 1.27 1.62 

B 7.00 7.20 -0.20 6.82 7.16 -0.35 0.91 1.57 

C 9.26 8.48 0.78 8.85 8.39 0.46 2.52 1.17 

D 8.98 6.06 2.92 8.80 5.68 3.12 1.79 1.73 

E 9.35 10.51 -1.16 9.30 10.71 -1.42 0.82 1.80 

F 7.75 6.28 1.47 7.75 5.52 2.23 1.23 2.28 

G 7.57 5.48 2.09 7.62 5.31 2.31 0.93 1.44 

H 7.77 7.73 0.05 7.61 7.46 0.15 1.54 1.65 

I 8.66 6.06 2.60 8.33 5.63 2.71 2.01 1.76 

J 9.34 8.27 1.07 9.06 8.79 0.26 2.71 2.87 

K 6.22 7.33 -1.11 5.54 6.86 -1.32 2.18 2.27 

L 6.99 4.88 2.11 7.26 4.87 2.39 1.20 0.77 

M 6.61 7.06 -0.45 6.65 6.84 -0.19 0.70 1.36 

N 6.70 5.62 1.08 6.53 5.40 1.13 0.74 1.50 

O 7.14 7.04 0.09 6.73 6.74 -0.01 1.82 1.82 

P 6.93 6.97 -0.05 6.94 6.90 0.04 0.97 1.39 

Q 6.94 6.72 0.21 6.80 6.50 0.30 1.67 1.26 

R 7.26 6.91 0.35 7.31 7.01 0.31 0.19 1.09 

S 7.67 7.15 0.52 7.28 7.23 0.05 3.27 1.05 

  
Average: 0.97 

  
0.99 1.50 1.60 
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Table 7: Basin ANNR Model Results  

Basin 

Avg 
AMS 
Exp 
Rate 

(µR/hr) 

Avg 
ANNR 

Exp Rate 
(µR/hr) 

Difference 
(µR/hr) 

Median 
AMS 
Exp 
Rate 

(µR/hr) 

Median 
ANNR 
Exp 
Rate 

(µR/hr) 

Difference 
(µR/hr) 

AMS 
Std 
Dev 

ANNR 
Std 
Dev 

A 7.41 6.98 0.43 7.24 6.69 0.54 1.27 1.53 

B 7.00 6.95 0.05 6.82 6.87 -0.06 0.91 1.57 

C 9.26 8.39 0.87 8.85 8.34 0.52 2.52 1.24 

D 8.98 5.94 3.04 8.80 5.60 3.20 1.79 1.63 

E 9.35 10.58 -1.24 9.30 10.74 -1.44 0.82 1.79 

F 7.75 5.84 1.92 7.75 4.95 2.80 1.23 2.18 

G 7.57 5.48 2.10 7.62 5.30 2.31 0.93 1.43 

H 7.77 7.98 -0.20 7.61 7.64 -0.03 1.54 1.75 

I 8.66 5.77 2.89 8.33 5.45 2.89 2.01 1.53 

J 9.34 7.67 1.67 9.06 8.09 0.96 2.71 3.54 

K 6.22 6.90 -0.68 5.54 6.22 -0.68 2.18 2.25 

L 6.99 4.88 2.11 7.26 4.87 2.39 1.20 0.77 

M 6.61 7.08 -0.48 6.65 6.84 -0.19 0.70 1.38 

N 6.70 5.62 1.08 6.53 5.40 1.13 0.74 1.50 

O 7.14 7.00 0.14 6.73 6.78 -0.05 1.82 1.70 

P 6.93 6.98 -0.05 6.94 6.91 0.03 0.97 1.39 

Q 6.94 6.70 0.24 6.80 6.50 0.30 1.67 1.21 

R 7.26 6.91 0.35 7.31 7.01 0.31 0.19 1.09 

S 7.67 7.09 0.58 7.28 7.19 0.09 3.27 1.07 

  
Average: 1.06 

  
1.05 1.50 1.61 
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Table 8: Basin SAONR Model Results 

Basin 

Avg 
AMS 
Exp 
Rate 

(µR/hr) 

Avg 
SAONR 

Exp Rate 
(µR/hr) 

Difference 
(µR/hr) 

Median 
AMS 
Exp 
Rate 

(µR/hr) 

Median 
SAONR 

Exp 
Rate 

(µR/hr) 

Difference 
(µR/hr) 

AMS Std 
Dev 

SAONR 
Std Dev 

A 7.41 8.62 -1.21 7.24 8.76 -1.52 1.27 1.07 

B 7.00 7.82 -0.82 6.82 7.75 -0.93 0.91 1.17 

C 9.26 8.36 0.89 8.85 8.34 0.52 2.52 1.37 

D 8.98 7.99 0.99 8.80 7.93 0.87 1.79 0.97 

E 9.35 8.43 0.92 9.30 8.33 0.97 0.82 0.24 

F 7.75 7.25 0.50 7.75 7.29 0.46 1.23 1.36 

G 7.57 7.92 -0.35 7.62 7.92 -0.30 0.93 0.65 

H 7.77 8.03 -0.26 7.61 7.70 -0.09 1.54 1.79 

I 8.66 8.13 0.53 8.33 7.97 0.36 2.01 1.29 

J 9.34 10.19 -0.85 9.06 9.33 -0.27 2.71 2.78 

K 6.22 8.02 -1.80 5.54 7.68 -2.14 2.18 2.27 

L 6.99     7.26 
 

  1.20   

M 6.61 6.93 -0.33 6.65 6.67 -0.01 0.70 1.32 

N 6.70 6.20 0.50 6.53 6.21 0.32 0.74 0.60 

O 7.14 7.13 0.01 6.73 6.88 -0.15 1.82 1.75 

P 6.93 6.14 0.78 6.94 5.74 1.20 0.97 1.20 

Q 6.94 6.70 0.24 6.80 6.50 0.30 1.67 1.21 

R 7.26 7.06 0.20 7.31 7.21 0.11 0.19 0.49 

S 7.67 7.22 0.46 7.28 7.39 -0.11 3.27 0.97 

  
Average: 0.65 

  
0.59 1.50 1.25 
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Table 9: Basin SAONR Buffer Model Results 

Basin 

Avg 
AMS 

Buffer 
Exp 
Rate 

(µR/hr) 

Avg 
SAONR 
Buffer 

Exp Rate 
(µR/hr) 

Difference 
(µR/hr) 

Median 
AMS 

Buffer 
Exp 
Rate 

(µR/hr) 

Median 
SAONR 
Buffer 

Exp 
Rate 

(µR/hr) 

Difference 
(µR/hr) 

AMS 
Buffer 

Std 
Dev 

SAONR  
Buffer 

Std Dev 

A 7.22 8.54 -1.31 6.87 8.68 -1.80 1.20 1.10 

B 6.95 7.73 -0.77 6.76 7.75 -0.99 0.87 1.15 

C 9.23 8.39 0.84 8.86 8.34 0.52 2.37 1.25 

D 8.74 8.05 0.70 8.47 8.01 0.46 1.86 1.02 

E 9.14     9.04 
 

  0.61   

F 7.64 8.29 -0.65 7.67 8.29 -0.62 0.88   

G 7.46     7.50 
 

  0.76   

H 7.50 7.90 -0.40 7.33 7.60 -0.27 1.39 1.80 

I 8.49 8.00 0.49 8.10 7.58 0.52 1.95 1.35 

J 9.09 10.60 -1.50 8.82 9.29 -0.48 2.39 3.38 

K 5.62 6.76 -1.14 5.19 6.59 -1.39 1.58 1.25 

L 6.94     7.28 
 

  1.04   

M 6.62 6.88 -0.26 6.68 6.60 0.07 0.68 1.30 

N 6.66 6.23 0.43 6.51 6.22 0.29 0.68 0.59 

O 7.05 6.84 0.21 6.70 6.88 -0.18 1.62 0.81 

P 6.84 6.25 0.59 6.92 5.69 1.22 0.84 1.34 

Q 6.69 6.71 -0.02 6.64 6.58 0.06 1.39 1.21 

R         
 

      

S 7.57 7.16 0.41 7.27 7.39 -0.12 3.23 1.03 

  
Average: 0.65 

  
0.60 1.41 1.33 
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Table 10: TRcp Remote Sensing Models 

Unit 
 Avg AMS 
Exp Rate 
(µR/hr) 

Avg NURE 
Exp Rate 
(µR/hr) 

Difference 
(µR/hr) 

Median AMS Exp 
Rate (µR/hr) 

Median NURE 
Exp Rate 
(µR/hr) 

Difference 
(µR/hr) 

AMS 
Std Dev 

NURE 
Std Dev 

TRcp 9.64 8.53 1.12 9.29 8.75 0.54 2.45 1.49 

2-6-10 
        

TRcp2A 10.26 8.73 1.53 9.84 8.73 1.11 2.46 0.83 

TRcp3A 9.28           0.19   

TRcp4A 9.91 8.74 1.18 9.52 8.97 0.55 2.43 1.47 

TRcp5A 7.82 7.78 0.04 7.46 7.86 -0.40 1.72 1.35 

2/1 
 

Average: 0.92 
  

0.52 1.70 1.22 

TRcp1B 10.00 8.76 1.23 9.76 8.97 0.79 1.75 1.32 

TRcp2B 9.95 8.76 1.18 9.31 8.97 0.34 2.71 1.20 

TRcp3B 9.45 8.66 0.79 9.05 8.92 0.13 2.63 1.54 

TRcp4B 8.57 7.95 0.62 8.31 7.89 0.42 2.22 1.44 

TRcp5B 7.87 7.83 0.04 7.31 7.94 -0.63 1.55 1.52 

7-3-1 
 

Average: 0.77 
  

0.46 2.17 1.40 

TRcp1C 10.41     9.74     2.67   

TRcp2C 10.32 8.53 1.78 9.98 8.66 1.32 2.26 1.63 

TRcp3C 10 8.65 1.36 9.72 8.83 0.89 2.49 1.51 

TRcp4C 9.83 8.58 1.25 9.39 8.92 0.47 2.48 1.62 

TRcp5C 8.8 8.47 0.33 8.58 8.67 -0.09 2.23 1.35 

4/5 
 

Average: 1.18 
  

0.69 2.43 1.53 

TRcp1D 9.55 8.67 0.89 9.21 8.94 0.26 2.42 1.44 

TRcp2D 9.36 8.36 1.00 9.04 8.55 0.49 2.32 1.40 

TRcp3D 9.64 8.55 1.09 9.27 8.93 0.34 2.41 1.47 

TRcp4D 9.50 8.23 1.27 9.21 8.43 0.78 2.29 1.35 

TRcp5D 10.15 8.84 1.31 9.92 9.07 0.85 2.74 1.45 

  
Average: 1.11 

  
0.55 2.44 1.42 
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Table 11: TRcs Remote Sensing Models 

Unit 

 Avg 
AMS Exp 

Rate 
(µR/hr) 

Avg NURE 
Exp Rate 
(µR/hr) 

Difference 
(µR/hr) 

Median AMS Exp 
Rate (µR/hr) 

Median NURE 
Exp Rate 
(µR/hr) 

Difference 
(µR/hr) 

AMS 
Std Dev 

NURE 
Std Dev 

TRcs 9.44 8.77 0.67 9.35 8.67 0.54 2.09 1.6 

2-6-10 
        

TRcs2A 9.54 8.73 0.83 9.55 8.46 1.09 2.46 0.83 

TRcs3A 9.16   0.96 8.89 8.20 0.69 0.19   

TRcs4A 9.39 8.74 0.58 9.33 8.78 0.55 2.43 1.47 

TRcs5A 8.40 7.78 1.08 8.37 7.45 0.92 1.72 1.35 

2/1 
 

Average: 0.86 
  

0.81 1.70 1.22 

TRcs1B 9.57 8.88 0.69 9.36 8.65 0.71 2.22 0.99 

TRcs2B 10.05 8.94 1.10 9.70 8.84 0.86 2.88 1.46 

TRcs3B 9.67 9.39 0.29 9.56 9.30 0.26 2.02 1.51 

TRcs4B 9.19 8.56 0.64 9.24 8.44 0.80 1.73 1.53 

TRcs5B 8.81 7.79 1.02 8.90 8.00 0.90 1.70 1.49 

7-3-1 
 

Average: 0.75 
  

0.71 2.11 1.40 

TRcs1C 9.4 8.46 0.93 9.43 8.35 1.08 1.44 1.35 

TRcs2C 9.33 8.84 0.48 9.38 8.83 0.55 1.63 1.47 

TRcs3C 9.22 8.57 0.65 9.24 8.58 0.66 1.88 1.42 

TRcs4C 9.88 9.1 0.79 9.52 8.88 0.64 2.93 2.01 

TRcs5C 9.6 9.01 0.59 9.12 8.49 0.63 3.68 1.85 

4/5 
 

Average: 0.69 
  

0.69 2.31 1.62 

TRcs1D 9.39 8.91 0.48 9.34 9.03 0.31 2.26 1.26 

TRcs2D 9.09 8.21 0.88 9.06 8.17 0.90 1.91 1.26 

TRcs3D 9.42 8.66 0.76 9.36 8.57 0.80 2.03 1.42 

TRcs4D 9.17 8.25 0.92 9.14 8.08 1.06 2.33 1.92 

TRcs5D 9.72 9.18 0.54 9.59 9.06 0.53 1.90 1.68 

  
Average: 0.71 

  
0.72 2.09 1.51 
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Chapter 7: Figures 

Figure 1: Relationship Between Geology and Radiation 

 

Figure 1: Aerial gamma ray survey of the study area done by AMS (left), satellite image (right, 

from USDA Farm Service). The yellow arrow points to an oval blue ring on the aerial gamma ray 

survey, that corresponds to a basalt flow on the satellite image. 
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Figure 2: Geochemical Data 

 

Figure 2: Distribution of geochemical data points and location of uranium mines is indicated with 

symbols. Geologic reference map of the study area.  
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Figure 3: NURE Data Distribution 

 

Figure 3: Grey outline indicates modeling area. NURE aerial survey data points occur every 100 to 

200 ft along the line, so individual data points are not visible. 
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Figure 4: Drainage Basins  

 

Figure 4: Map of the Little Colorado River and its tributaries. Drainage basins that overlap the 

study area are shown in grey. 
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Figure 5: Alluvial Units Sorted by Drainage Basin 

 

Figure 5: Map of the 19 alluvial units created by joining the alluvial units in each basin.  
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Figure 6: NURE Correction Constant 

 

Figure 6: Histogram displaying point to point comparison of AMS and NURE data. 
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Figure 7: AMS Exposure Rate Distribution 

 

Figure 7: The distribution of exposure rate over the study area. Geologic boundaries are displayed 

for context. 
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Figure 8: 2-6-10 Visualization 

 

 

Figure 8: 2-6-10 ASTER visualization (left), classification of TRcs and TRcp based on 2-6-10 

(right).  
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Figure 9: 2-6-10 Visualization Geology Comparison 

 

Figure 9: Close up of 2-6-10 classes in relationship to geologic formations on satellite image.  
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Figure 10: NURE Buffer Model Results 

 

Figure 10: Predicted exposure rate by the NURE Buffer model, versus the measured AMS 

exposure rate for each unit. The shaded yellow area is our desired range of exposure rates. The 

inset maps shows the geologic units within this desired range in blue, and those outside the range 

in red. 
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Appendix: Unit Reports 

Parent Units 

Qbt: Brunhes (Pleistocene) age basalt flow, USGS classifies as clinopyroxene-

olivine and alkali-olivine basalt with a groundmass rich in glassy plagioclase 

(Billingsley et al., 2007).  We have 2 data points in this unit from the USGS and 

NAVDAT, both only list Potassium weight percent. NAVDAT reports rock type as 

basalt which is consistent with the unit, so no data points will be eliminated.  

Qbt Field Notes: We were not able to reach this small unit as it was fenced in. 

 K (wt %) U (ppm) Th (ppm) 

mean 1.5814 N/A N/A 

Standard 
deviation 

0.4755 N/A N/A 

range 0.6724 N/A N/A 

median 1.5814 N/A N/A 

mode N/A N/A N/A 

 

Qbt NURE Histogram: 
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Qbt AMS Histogram: 

 

 There are only 4 NURE Qbt survey points, so a full comparison cannot be 

made, but both occur over the same range of values and have means within 

error. The AMS data is right skewed.  

Qbt 50 m Buffer NURE Histogram: 
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Qbt 50 m Buffer AMS Histogram:  

 

Qbt AMS Distribution: This unit occurs in the northern part of the area, and has 

a no apparent overall trends, and the exposure rate ranges from 4.625 to 9.811 

microR/hr. The unit does not appear like a basalt flow from the aerial imagery.  

Qbt AMS Exposure Rate Data 
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Tbpb: This unit is identified by the USGS as a Pleistocene (K-Ar age: 

2.43±0.32Ma) basalt flow know as Black Point. It is a plagioclase-aphyric basalt 

with large amounts of plagioclase and olivine phenocrysts in a feldspathic 

groundmass (Billingsley et al., 2007). There are 4 data points in this unit from 

NAVDAT and the USGS, all are identified as basalt, consistent with Tbpb, so no 

data points will be removed. Only one data point provides U and Th 

concentration: 0.78 ppm U and 2.74 ppm Th. George Ulrich is identified as 

working on this basalt flow and also dating the flow, he worked extensively in this 

area and wrote several field guides. This leads me to think there may be many 

more data points on this basalt flow that are not currently known to us. I have 

been unsuccessful in contacting him, as he has been retired for some time.  

Tbpb Field Notes: Basalt clasts are overall smaller, dominated by medium to 

coarse sand, and 2 mm+ clasts, largest is fist sized. Less aeolian material here. 

Unclear why this is categorized as the basalt flow itself, no bedrock present as 

far as we can tell over the whole basalt flow. 

Similar to Qes cool but some additional eolian material. 

 This is not consistent with the USGS description which states the basalt 

flow ‘weathers smooth’. The basalt flow was so covered in alluvium we never 

actually saw its surface. We were confused as to why this unit was called Tbpb 

instead of another alluvium unit. Soil was developed with moderate vegetation, 

not consistent with the reported smooth basalt flow.  

 K (wt %) U (ppm) Th (ppm) 

mean 0.91 N/A N/A 

Standard 
deviation 

0.0249 N/A N/A 

range 0.0498 N/A N/A 

median 0.91 N/A N/A 

mode N/A N/A N/A 

   

 

0

1

2

3

4

0.2 0.4 0.6 0.8 1

Fr
e

q
u

e
n

cy
 

K wt % 

Tbpb K wt % 



 

51 
 

Tbpb NURE Histogram: 

 

Tbpb AMS Histogram: 

 

 This unit lacks enough NURE data to make a full curve, and the difference 

between AMS and NURE data is over error, with AMS being higher. The AMS 

data is also left skewed, which would only go towards helping the means be 

closer together.  

 

 

0

1

2

3

4

5

6

7

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 6.4 6.8 7.2 7.6

Fr
e

q
u

e
n

cy
 

Exposure Rate (microR/hr) 

Tbpb NURE Data 

0

50

100

150

200

250

300

350

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 6.4 6.8 7.2

Fr
e

q
u

e
n

cy
 

Exposure Rate (microR/hr) 

Tbpb AMS Data 



 

52 
 

Tbpb 50 m buffer NURE Distribution: 

 

Tbpb 50 m buffer AMS Distribution: 
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Tbpb AMS Distribution: This unit is the black point basalt flow. It tends to be 

cool on the rim and hot on the inside, but the range of exposure rates is small, 

from 3.476 to 6.885 microR/hr.  

Tbpb AMS Exposure Rate Data 
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TRco: Owl Rock Member of the Chinle Formation, contains cherty limestone, 

siltstone and sandstone (Billingsley et al., 2007). There was a single point added 

to this unit because of a collector’s classification. It was identified as a limestone, 

with 1.6 wt % K, 2.94 ppm U, and 4.9 ppm Th. 

TRco Field Notes: Red limestone with grey alteration spots. Some are more 

green than grey in alteration. Little bit of chert, not much, more in very thin layers 

than in nodules. Grey sometimes looks like separate beds. Limestone is blueish 

in places.  

Reddish limestone with blue/grey alteration. Not much chert. Bedrock is massive 

 It’s important to note that we observed this unit north of the field area 

where it was accessible, but still within the quad the USGS described. Field 

description of a cherty limestone is consistent with USGS description. However, 

the USGS lists the color as white to purple, while we noticed some green and 

blue staining, the limestone was in majority red.  

TRco NURE Histogram: 
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TRco AMS Histogram: 

 

TRco 50 m buffer NURE Histogram: 
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TRco 50 m buffer AMS Histogram: 

 

TRco AMS Distribution: We can see very little of this unit as a whole so we do 

not get any sense of overall trends we may see in this unit. The exposure rate 

range of this unit is from 4.677 to 13.241. 

TRco AMS Exposure Rate Data 
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TRcp: The USGS identifies this unit as the Petrified Forest Member of the Chinle 

Formation, consisting of mudstone, siltstone, and sandstone (Billingsley et al., 

2007). One of the rock samples was identified by the collector as being part of 

the Owl Rock Member of the Chinle Formation, TRco. This sample was also 

limestone, which is not consistent with TRcp. This point was moved to TRco. 

There are 11 data points in this unit. Identified rock types are shale, mudstone 

and conglomerate. 

TRcp average Field Notes: This area is more grey than blue, though some 

areas have blue staining, though more areas have a reddish/purple staining. 

Surface is broken up mudcracks of grey clay, partially cemented, homogenous. 

Float is large, mostly fist sized, rounded to subangular, chert and basalt.  

Blue grey mud cracks. Fine grey dust. Some about 5 cm clasts, mostly chert. 

Some grey sandstone outcrops. Massive no beds. Fine grained. No vegetation. 

TRcp hot Field Notes: Lots of exposed bedrock in this area, could explain why 

this area is hotter. Grey mud cracked soil with chert and basalt on top. Grey is 

red stained in areas, no blue. Not laterally continuous, small exposed area, 

ground is very hard, no exposed bedrock. Sparse vegetation.  

Grey mudcracked surface partially covered by gravels less than 2 cm. Gravel 

mostly cherts, some outcrops at grey sandstone. But not much. Sparse to 

moderate grasses, some shrubs. 

TRcp average Field Notes: The road was washed out and we were unable to 

reach TRcp average. 

 These field observations are consistent with the USGS description as a 

greyish blue mudstone or siltstone with significant amounts of clays. This is also 

the unit where we observed petrified logs in the southwest of the field area, this 

makes sense as it is the Petrified Forest Member and presence of these fossils is 

noted in the USGS description. Based on the threatening signage present and 

the local gift shop, we think most of the petrified wood has been pillaged from this 

unit.   

 K (wt %) U (ppm) Th (ppm) 

mean 1.2112 16.6714 14.9043 

Standard 
deviation 

0.4980 33.4485 5.3215 

range 2.1170 89.63 13.69 

median 1.2 4.8 13.7 

mode 1.2 N/A N/A 
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 In the conglomerate there is an outlier U value of 92.5 ppm not shown on 

the histogram.  
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TRcp Soil: The soil on TRcp is described as low relief desert scrub on top of 

shale (USGS, 2004), this is consistent with the TRcp rock unit description. There 

is only one soil chemistry data point with 18 ppm Th and 4 ppm U. This is 

consistent with the rock unit median values of 13.7 ppm Th and 4.8 ppm U.  

TRcp NURE Histogram: 

 

TRcp AMS Histogram: 

 

 The AMS and NURE average values are significantly far apart, this could 

be due to the extremely large skew on the AMS data, going to over 40 microR/hr.  

TRcp with 50m NURE buffer histogram:  
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TRcp with 50m AMS buffer histogram:  

 

 

TRcp AMS Distribution:  This unit is widely distributed throughout the area, and 

tends to be cooler in the east than the west. This unit has a large range of 

exposure rates, from 4.583 to 43.515. 
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TRcp AMS Exposure Rate Data 
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TRcs: The USGS identifies this unit as the Shinarump Member of the Chinle 

Formation, consisting of sandstone, siltstone, mudstone and conglomerate. They 

estimate a breakdown of this member to be 75% sandstone, 20% conglomerate, 

and 5% mudstone/siltstone. Conglomerate contains pebbles of quartzite and a 

black siliceous material. This unit was mined for Uranium in the Little Colorado 

River valley starting about 60 years ago, with uranium occurring in the sandstone 

and petrified wood material (Billingsley et al., 2007). One sample was identified 

by the collector as coming from the Moenkopi Formation. Based on this sample’s 

description as a red sandstone it most likely belongs to TRmw, the only member 

of the Moenkopi Formation identified by the USGS to have red sandstone. This 

sample was moved to TRmw. After eliminating sample repeats, there are 6 data 

points from the USGS in this rock unit.  Identified rock types include sandstone 

and conglomerate, consistent with TRcs.  

TRcs average Field Notes: Huge variation, covered with alluvium and every few 

feet another rock type dominates the alluvium. We found what we believe to be 

exposed bedrock and put the detector on the bedrock. Alluvium clasts are large 

and angular. Many egg size or larger. Chert, sandstone and basalt dominate. 

Bedrock exposed is highly weathered, varies from grey to white to red 

sandstone. Sandstone is coarse and poorly sorted, subangular grains, not 

evolved. Consists mostly of quartz (dominate) then rock fragments and feldspar.  

White to red medium grained sandstone mostly covered by 5 cm chert clasts and 

eolian sand. Sparse vegetation. Basaltic sand in parts. 

TRcs hot Field Notes: Lots of exposed bedrock in this area, could explain why 

this area is hotter. Fine sand, no clasts, homogenous, medium vegetation. Large 

exposures of outcrop in this area are red and white sandstone. Cause of high 

radiation is probably this sandstone: poorly sorted, very coarse sandstone, 

mostly quartz, with feldspar and rock fragments, grains sub angular. Cross 

bedding present.  

Red and white sandstone. Fine eolian sand of same character. Moderate shrubs 

and grasses. Few clasts aside from weathered in place sandstone. 

TRcs cool Field Notes: The road was washed out and we were not able to 

reach this location.  

 These field observations are consistent with the USGS description of a 

brown to white conglomeritic sandstone with cross beds present. However, no 

siltstone, mudstone, or conglomerate were observed.  
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 K (wt %) U (ppm) Th (ppm) 

mean 1.5868 14.96 17.525 

Standard 
deviation 

1.2670 21.7592 7.9185 

range 3.1759 45.24 17.9 

median 1.2985 5.14 15.7 

mode N/A N/A N/A 

 

 

 

 There is one outlier U concentration of 47.4 ppm in the conglomerate not 

displayed on the histogram. 
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TRcs NURE Histogram: 
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TRcs AMS Histogram: 

 

 While the averages are very different, they have about the same central 

peak coming in at around 8. The AMS data is right skewed, going as high as 

62.9, which is probably what’s causing the discrepancy between means. 

TRcs with 50 m NURE buffer histogram:  
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TRcs with 50m AMS buffer histogram:  

 

TRcs AMS Distribution: This unit occurs widely throughout the area, with no 

general trends, but many localized hot spots. This unit has one of the largest 

ranges of exposure rates, from 3.202 to 65.749 

TRcs AMS Exposure Rate Data 
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TRmss: The USGS identifies this unit as the Shnabkaib Member of the 

Moenkopi Formation, consisting of early Triassic sandstone and calcareous 

siltstone (Billingsley et al., 2007). There are 3 data points in this unit from the 

USGS, and a drill core that was originally reported as Pkh. There are 2 reported 

Th concentrations of 9.63 and 6.59 ppm. There are 4 reported U concentrations 

of 2.27, 6.6, 75.2 and 4270 ppm. It should be noted that the sample containing 

4270 ppm U was taken from the Riverview Mine.  

 TRmss Field notes: Thinly bedded, fine-grained, sandstone. Fissile. Contains 

ripple marks. Fissile. Contains marks that look like vugs, pitting? This unit 

appears continuous with no variation. Sandstone appears highly evolved, mainly 

composed of quartz. Layer of broken rock present on surface, beneath that fines 

(clay). Thin bedded sandstone. Fine grained medium red. Ripple marks medium. 

Vegetation mostly dry grasses. 

 Field description of fine grained sandstone is consistent with USGS 

description, however the USGS lists the color as light brown, and it was definitely 

red in the field.  

 K (wt %) U (ppm) Th (ppm) 

mean 2.05 1088.5175 8.11 

Standard 
deviation 

0.9574 2121.2514 2.1496 

range 2 4267.73 3.04 

median 2.3 40.9 8.11 

mode N/A N/A N/A 
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TRmss AMS Histogram: 

 

TRmss 50 m buffer AMS Histogram: 

 

TRmss AMS Distribution: This unit is part of the hogback, and seems to have a 

no pattern in variation. The exposure rate varies from 5.056 to 11.616. 
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TRmss AMS Exposure Rate Data 
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TRmw: The USGS identifies this unit as the Wupatki Member of the Moenkopi 

Formation, consisting of early Triassic sandstone, siltstone and mudstone 

(Billingsley et al., 2007). One sample was eliminated because the reported rock 

type of basalt wasn’t consistent with TRmw. A data point originally from TRcs 

was added due to the collector’s notes that it was from TRmw. There are 3 data 

points total in this unit from USGS. The reported rock type is conglomerate. 

There are 2 reported Th concentrations of 52.1 and 15.8 ppm in the 

conglomerate. There are 2 reported U concentrations of 3.13 and 840 ppm in the 

conglomerate. There seems to be a trend across the units that conglomerates 

have very high concentrations of U.  

TRmw Field Notes: No basalt float. Very Fine grained sandstone. No variation 

throughout unit. Excellent ripple marks. Sample taken home. Red in color, some 

layers grey.  

Dark red sandstone, some asymmtrical ripple marks. Fine grained. Sparse 

flowery vegetation. 

 No conglomerate was observed in the field area, inconsistent with the rock 

types reported by the USGS database. Red, fine grained sandstone observed in 

the field is consistent with the USGS unit description. No mudstone was 

observed.  

 K (wt %) U (ppm) Th (ppm) 

mean 2.1141 421.565 33.95 

Standard 
deviation 

0.4487 591.7565 25.6680 

range 0.8378 836.87 36.3 

median 2.3 421.565 33.95 

mode N/A N/A N/A 
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TRmw NURE Histogram: 

 

TRmw AMS Histogram: 

 

 These means are significantly different, and neither histograms is skewed, 

this difference is probably due to the fact that the NURE data only has 10 data 

points. 
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TRmw 50 m buffer NURE Histogram: 

 

 

TRmw 50 m buffer AMS Histogram: 

 

TRmw AMS Distribution: This unit follows the general trend of the other units, 

with cooler values in the south and hotter values in the north. What’s interesting 

is in the north there are cool and hot points bordering each other.  
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TRmw AMS Exposure Rate Data 
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Pkh: Harrisburg Member of the Kaibab Formation, early Permian in age. 

Contains gypsum, siltstone, sandstone and limestone (some with chert) 

(Billingsley et al., 2007). We originally had 244 data points within this unit, from 

the DIR, USGS, and NAVDAT. Rock types that were identified in the data include 

basalt, limestone, sandstone, dolomite, conglomerate, and one point each 

andesite and rhyolite. DIR did not record rock type but reported they focused 

largely on sandstone. This unit has one third of our data, but occupies under 10% 

of the mapping area. One of these data points is labeled as being from the 

Moenkopi Formation, and is a drill core. Data points labelled as basalt, andesite 

or rhyolite were removed from Pkh, and the points labeled Moenkopi Formation 

were moved to TRmss. While these points were not specified to be TRmss, the 

listed rock type of calcareous very fine grained sandstone is consistent with the 

listed rock types in TRmss. Also each rock sample was limited to one data point. 

This left us with 184 Pkh data points, though only 7 have Th concentrations as K 

and Th concentrations were removed for all DIR data points. 

Pkh Field Notes: Fine grained, well sorted, sandstone bedrock exposed, 
weathering is in a limestone style, must be a limey sandstone. In the float there is 
chert and conglomerate. Chert is bright orange only. Medium vegetation cover. 
Mostly limey sandstone occuring as float. Some bedrock. Some vegetation 
cover. Occasional basaltic boulders, chert and pendent formation in the limey 
sandstone. 
 
 This description is overall consistent with the USGS description, which 
mentions part of Pkh contains chert. Conglomerate was present as float, and 
Dan recorded that there was one piece of basalt float, which could explain the 
USGS reported rock types.  
 

 K (wt %) U (ppm) Th (ppm) 

mean 0.6525 185.26 6.5386 

Standard 
deviation 

0.9459 1670.2507 5.2315 

range 4.1938 16599.7 13.1 

median 0.37 1.45 6.52 

mode 0.04 1.9 N/A 

 

 Mean values tend to be skewed by outliers, especially in the case of 

Uranium because of this area’s richness in Uranium, so median values are more 

representative of the data points. Because of the wealth of data points for this 

area we are confident about our representative values for radioelement 

concentration.  
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There are 2 outliers not displayed on the graph collected by the USGS in 

the same location (35.65, -111.35) from siltstone and conglomerate of 16600 and 

13800 ppm Uranium. A flaw of some of the data collected from IEDA, originally 

recorded by the USGS, is that there will be in excess of ten data points recorded 

at the same location, with multiple different rock types listed. To me this is 

suspect because the coordinates are only taken out to the second decimal 

places, which is not up to industry standard (4 decimal places). 
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Pkh soil: is defined as tan, fine to coarse grained sand, with moderate to sparse 

vegetation (USGS, 2004). Points have been recorded to overlay unconsolidated 

valley fill and volcanic rock, inconsistent with Pkh. There are 4 points total, only 

one of which has a Th concentration, reported as 7.56 ppm. 

 K (wt %) U (ppm) Th (ppm) 

mean 1.8225 2.14 7.56 

Standard 
deviation 

0.1776 0.0490 N/A 

range 0.4 0.1 N/A 

median 1.815 2.13 7.56 

mode N/A 2.1 N/A 

 

Comparing the soil mean values to the rock median values, the soil has 
higher values of K, U, and Th. Though it should be taken into account that there 
is only one Th measurement, which could be skewing the results, as there were 
rock samples with Th measurements over 7.56 ppm.  There are also few U and K 
measurements, so the difference could simply be a lack of data. Overall, the soil 
averages exist in the ranges of the rock data which is a positive outcome. 
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Pkh AMS Histogram: 

 

 There are only 8 NURE points that occurred within Pkh, so a curve is not 
formed.  

Pkh with 50m AMS buffer histogram:  

 

Pkh AMS Distribution: Pkh occurs in two main areas, on the western edge of 
Black Point, and north there is an exposure at the river. By Black Point there is a 
clear trend in the AMS exposure rate data with lower exposure rates towards the 
west and higher in the east, and there is a corresponding  Uranium mine 
bordering the ‘hot’ east portion. All of the data points in the north have relatively 
high exposure rates. In this unit exposure rates vary from 2.434 to 9.665. This 

0

20

40

60

80

100

120

140

160

180

200

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 6.4 6.8 7.2 7.6 8 8.4 8.8 9.2 9.6

Fr
e

q
u

e
n

cy
 

Exposure Rate (microR/hr) 

Pkh AMS Data 

0

20

40

60

80

100

120

140

160

180

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 6.4 6.8 7.2

Fr
e

q
u

e
n

cy
 

Exposure Rate (microR/hr) 

Pkh AMS Buffer Data 



 

81 
 

unit only occurs in the southwest portion of the map and thus does not display 
the overall trends seen in other units in the area.  

Pkh AMS Exposure Rate Data 
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Daughter Units 

Qaf: This is a manmade unit, consisting of Holocene sediment and unidentified 

bedrock that was excavated during construction. Importantly it contains talus 

from Uranium mining activity (Billingsley et al., 2007). We have 3 data points for 

this unit from the USGS after eliminating duplicates from the same rock sample. 

This unit could contain any rock types based on the fact it is a manmade 

formation, no data points will be eliminated. One sample was identified as latite, 

while the rest were unidentified. The latite sample is also the only one that 

reported Th and U concentrations. The Thorium and Uranium values for this unit 

are quite high, which could be related to the uranium mining talus the USGS 

states is present in this unit.   

Qaf Field Notes: As this is a manmade unit it was not visited during field work.  

 K (wt %) U (ppm) Th (ppm) 

mean 2.2559 9.45 49.9 

Standard 
deviation 

0.7603 N/A N/A 

range 1.3220 0 0 

median 2.6897 9.45 49.9 

mode N/A N/A N/A 

 

 

 The latite sample has a Thorium measurement of 49.9 ppm and a 

Uranium measurement of 9.45 ppm. 

Qaf Soil: There is one soil sample for Qaf, it is described as a coarse, tan, sand 

with moderate vegetation occurring on unconsolidated valley fill (USGS, 2004). 

Valley fill is consistent with Qaf, as Qaf is a talus and Holocene sediment unit. It 

has a K wt % of 1.7% and a U concentration of 2.2 ppm.  The K and U are lower 

than that of the rock unit, but this could be largely due to the small amount of 

points for both the rock and soil. 
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Qaf NURE Histogram: 

 

Qaf AMS Histogram: 

  

 The AMS mean is almost twice that of the NURE data, this is probably due 

to the fact that there are only 7 NURE survey data points and the AMS data is 

highly right skewed. 
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Qaf 50 m buffer NURE Histogram: 

 

Qaf 50 m buffer AMS Histogram: 

 

Qaf AMS Distribution: This unit is widely distributed but occurs in small 

quantities. This makes sense as it is a manmade construction unit, which is 

obvious by its high concentration in the uranium mine areas. This unit has a very 

wide range in exposure rate, from 3.88 to 66.661, most likely due to the presence 

of uranium talus, and the fact that this unit is not defined by a common geology.  
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Qaf AMS Exposure Rate Data 
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Qs: The USGS classifies this unit as poorly sorted, Holocene age, stream 

channel deposits, ranging in grain size from silt to gravel (Billingsley et al., 2007). 

No comment is made on composition, so it is difficult to compare accuracy to the 

reported rock types of limestone and basalt, as a part of stream sediments will be 

coming from outside the mapping area. All data points will remain in Qs, as a 

stream channel deposit it could easily contain all listed rock types.  There are 8 

data points in this unit from the USGS and DIR. Thorium concentration is not well 

represented, as only 1 data point has Th ppm.  

Qs Field Notes: No data could be collected from this unit, one point was off a 

cliff and the other was down a road that washed out.  

 K (wt %) U (ppm) Th (ppm) 

mean 0.3 1.7065 2.7 

Standard 
deviation 

0.3867 0.5913 N/A 

range 1.05 2.018 N/A 

median 0.12 1.6 2.7 

mode N/A 1.6 N/A 

 

 

 

There is only one listed Th concentration of 2.7 ppm. 
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Qs Soil: This soil is described as occurring on volcanic rock of low relief and 

sparse vegetation (USGS, 2004). This could be consistent with Qs, as it is a 

stream channel deposit and could easily contain volcanic rock which frequently 

occurs in the mapping area. There are 2 data points within this soil. 

 K (wt %) U (ppm) Th (ppm) 

mean 1.6495 3.12 10.38 

Standard 
deviation 

0.4943 0.5515 0.8768 

range 0.699 0.78 1.24 

median 1.6495 3.12 10.38 

mode N/A N/A N/A 

 

 The soil has higher concentrations of U, K and Th. The soil unit has a 

mean K concentration of over ten times that of the median concentration of the 

rock unit, a mean U concentration about twice that of the median concentration of 

the rock unit, and a mean Th of almost 4 times that of the rock median.  

Qs NURE Histogram: 
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Qs AMS Histogram: 

 

 These histograms are almost within error. They both are right skewed, but 

the AMS histogram is significantly more so, which is probably causing the 

difference that is above error.  

Qs 50 m buffer NURE Histogram: 
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Qs 50 m buffer AMS Histogram: 

 

Qs AMS Distribution: This widespread alluvial unit shows clear trends. It is 

cooler in the southeast and gets warmer as one moves to the northwest, and 

overall is cooler in the Little Colorado River than it is in the tributaries. There is a 

stark contrast in the south between east and west of the river. There are also 

localized hot spots throughout this unit, some corresponding to uranium mines. 

The exposure rate range of this unit is from 3.634 to 16.368. 
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Qs AMS Exposure Rate Data 
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Qf: The USGS classifies this unit as Holocene flood-plain deposits of clay to 

sand size with little clay, it is partially cemented by gypsum and calcite 

(Billingsley et al., 2007). One point has a reported rock type of basalt, which is 

not consistent with Qf, so this point was eliminated.  Thus there is only one data 

point for this unit from DIR. It is of an unidentified rock type and contains 1.1 ppm 

Uranium.  

Qf Field Notes: Silty/clay dirt with no cement. Clasts of limestone, sandstone 

and chert. Not an even distribution in size, location or type of clasts. Medium to 

sparse vegetation. Some small aeolian dune build up in vegetation. No basalt.  

Exposed slightly mud cracked red brown soil. Few clasts of limestone and chert. 

Moderate shrubs. 

 No basalt was seen in this area, consistent with eliminating the point 

labelled basalt. This unit was inconsistent with the USGS description as some 

clasts were present and we observed it to be mostly clay, the opposite of what is 

listed by the USGS. We also did not find it to be partially cemented as listed in 

the USGS description. 

Qf NURE Histogram: 

 

  

0

2

4

6

8

10

12

0

0
.6

1
.2

1
.8

2
.4 3

3
.6

4
.2

4
.8

5
.4 6

6
.6

7
.2

7
.8

8
.4 9

9
.6

1
0

.2

1
0

.8

1
1

.4 1
2

Fr
e

q
u

e
n

cy
 

Exposure Rate (microR/hr) 

Qf NURE Data 



 

92 
 

Qf AMS Histogram:  

 

 The differences in means is probably due to the right-skewedness of the 

AMS data, however the medians do not appear to be within error either.  

Qf 50 m buffer NURE Histogram: 
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Qf 50 m buffer AMS Histogram: 

 

Qf AMS Distribution: This unit occurs mainly in the river bed, and the exposure 

rates do not display any overall trend. The range is from 4.477 to 18.43. 

Qf AMS Exposure Rate Data 
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Qd: USGS classifies as Holocene age dune sand and sand sheets. Sand ranges 

from fine to coarse grained, and consists of quartz and chert from Pkh (Billingsley 

et al., 2007). We only have one data point for this unit from the USGS, it is listed 

as a glassy basaltic ash from the Lou-Lan interdune. This is consistent with Qd 

as a dune sand unit. The USGS only reported Potassium weight percent, and it is 

listed as 0.6973%. However, the composition of this data point is not consistent 

with a mainly quartz sand unit and thus may not be representative of Qd.  

Qd Field Notes: Dune sands, very homogenous, asymmetrical ripples. 

Moderately vegetated. Sand is very fine, made up mostly of quartz (85%) and 

rock fragments (15%), grains are subrounded. No variation in unit. 

Eolian sand deposits. Dunes. Moderate to dense shrubs. Fine sand, light brown 

in color, no clasts. 

 These field observations are consistent with the USGS description of Qd 

as mostly quartz sand with some rock fragments. No ash was seen in the field as 

reported by the USGS rock database. This is the only data point for Qd, and 

should be removed, thus we will have no data for Qd. 

Qd NURE Histogram:  
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Qd AMS Histogram: 

 

 These histograms are pretty far off, neither the measured means of the 

observed means are close to one another. The mean difference can be 

explained by the AMS data being right skewed, but the observed median 

difference cannot.  

Qd 50 m buffer NURE Histogram: 
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Qd 50 m buffer AMS Histogram: 

 

Qd AMS Distribution: This alluvial unit has a wide distribution and some distinct 

trends. On the east side of the map there are large cool alluvial fans. North of 

these alluvial fans are smaller very hot areas. On the west side of the map 

there’s more of a random distribution of hotter points, though to the north west in 

the channels of the Little Colorado River the unit is cooler. Overall this unit has a 

wide range, from 4.693 to 26.84. 
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Qd AMS Exposure Rate Data 
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Qes: This unit is extremely similar to Qd, it is classified by the USGS as late 

Holocene eolian sand sheets consisting of fine to coarse quartz and chert from 

Pkh (Billingsley et al., 2007). We only have one point from this unit from DIR with 

1.5 ppm Uranium. 

Qes cool (on basalt) Field Notes: Mostly basaltic sand to aeolian material. 

Basalt clasts vary from smoothed to angular. Vary in size from fist to sand.  

Mostly basaltic sand with small basalt clasts. Some eolian material but less than 

Ts. Moderate to sparse grasses 

Qes hot (off basalt) Field Notes: All fine grained material, lacks clasts, no 

basalt. The amount of vegetation varies from little to medium. Based on sand 

filling in plants, highly aeolian area. The sand is composed of: basalt, quartz 

(dominate), feldspar, limestone. Sand varies greatly. Coarse to fine grained. Mud 

cracks present in some areas.  

Fine grained sand and alluvium. No clasts at all. Sand is red to black but 

dominately red. Moderate grasses and bushes. 

 Qes hot is more consistent with the USGS description, as it contained all 

sand, whereas Qes cool contained clasts of basalt, which are not mentioned. 

Units on the basalt flow are significantly different than off and are not included in 

the USGS descriptions. Both locations included aeolian sand deposits consistent 

with the USGS description. Qae cool is mostly likely cooler than Qae hot due to 

the large presence of basalt.  

Qes Soil: This soil is described as occurring in a flat desert scrub environment 

on a mafic volcanic rock (USGS, 2004). This is not consistent with Qes which is a 

eolian sand unit. However, basalt occurs widely within the mapping area so it is 

within reason that some basalt could be within this eolian unit, or the unit could 

be overlaying basalt, and the basalt could be exposed in some areas. The soil 

sample had a U concentration of 2.2, and a Th concentration of 9 ppm. The 

differences between rock and soil could be due to the fact that there is only one 

data point for each.   
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Qes NURE Histogram: 

 

Qes AMS Histogram:  

 

 The observed medians between these two histograms look similar. The 

difference in mean, which is above error, can be explained by the right skewed 

AMS Histogram.  
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Qes 50 m buffer NURE Histogram: 

 

Qes 50 m buffer AMS Histogram: 

 

Qes AMS Distribution: This alluvial unit has a wide distribution across the area. 

There is an observed trend that this unit is cooler in the southeast and gets hotter 

to the northwest, but this is overly generalized as there are many localized hot 

and cold areas. The range of this unit is from 4.304 to 22.089. 
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Qes AMS Exposure Rate Data 
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Qg1: These deposits are classified by the USGS as late Holocene terrace-gravel 

deposits, with silt to boulder sized clasts of sandstone, chert, and limestone of 

local origin occurring throughout the unit. This unit changes throughout the 

mapping area with basalt becoming dominant in the south. The unit report also 

states that clasts of metamorphic rocks such as quartzite appear in the southeast 

but I’ve concluded this is outside our survey area (Billingsley et al., 2007). There 

are 2 data points in this area from NAVDAT and DIR. One point is specified as a 

basalt, which is consistent with Qg1, and has 1.0875 wt % Potassium. The other 

point is of an unspecified rock type with 1.9 ppm Uranium.  

Qg1 North (cool) Field Notes: Light sand color matrix. Clasts of chert, 

sandstone, and limestone. Border of this unit is being heavily affected by the 

sand dunes next to it. Adding more matrix. Medium vegetation, but mostly dead. 

Clasts are mostly subrounded. Nothing like Qg1 south. Possible petrified wood. 

Sample taken. Gravel studded surface, weak pavement. Gravels intermixed with 

eolian sands, gravel composed of sandstone, limestone, and cherts. Small 

shrubs moderately dispersed. 

Qg1 South (hot) Field Notes: No clasts of any kind. Brown-red clay with 

mudcracks, thick clay. Medium vegetation. Small crystals of gypsum in dirt. Very 

different from other Qgs. 

Mud cracked surface, no clasts, consists of red silt. Moderate thorn bushes with 

some tall bushes or short trees. 

 No clasts of basalt were seen in this unit, which is not consistent with the 

USGS description or database. The hotter Qg1 contained no clasts at all, which 

is not consistent with a gravel unit. The cool Qg1 is consistent with sandstone, 

chert, and limestone clasts as in the description. It is strange that the hotter unit 

contains no clasts at all, the radiation difference may be coming from the clay 

itself then. 
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Qg1 NURE Histogram: 

 

Qg1 AMS Histogram: 

 

 The NURE data does not have a well-developed curve, perhaps there 

aren’t enough data points. The differences between the means are outside of 

error and most likely due to the right skewedness of the AMS data. 
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Qg1 50 m buffer NURE Histogram: 

 

Qg1 50 m buffer AMS Histogram: 

 

Qg1 AMS Distribution: This unit occurs mostly along the river and its 

‘tributaries’. The west side of the river is in general hotter than the east side, this 

is especially obvious in the south. The tributaries west of the river are hotter than 

those of the east. The range of this unit is from 4.355 to 22.724. 
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Qg1 AMS Exposure Rate Data 
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Qa1: Holocene alluvial fan deposits, grain size varies widely (silt to boulder). The 

composition depends on what area of the survey the deposit is from. To the north 

it consists of limestone, chert and sandstone clasts from nearby Triassic and 

Permian units. To the south the USGS states it is dominated by basalt, andesite 

and pyroclastic fragments (Billingsley et al., 2007). This large variation in 

composition based on location suggests we should divide this unit into two 

different radioelement contents, instead of averaging all of the points together. 

There are 4 rocks identified as basalt, and 4 as sandstone, the other 9 points are 

unidentified. We could also act on the assumption that all points from DIR are 

sandstone. The basalt points, which occur farther south than the sandstone 

points, only have K measurements, with an average of 0.88 K wt %, while the 4 

sandstone points have an average of 0.73 K wt %. DIR measurements of K are 

not being considered.  Once multiple measurements from the same rock sample 

were eliminated, we have 17 data points in this area from the USGS, DIR and 

NAVDAT. Recorded rock types include basalt, sandstone and arkose, which is 

consistent with the USGS unit description.  

Qa1 Field Notes: Gravel with some sand (mostly sticking to plants, aeolian). 

Random large basalt float present. Very hard surface under gravel. Gravel is 

mostly sub angular. Gravel is mostly chert, with some basalt, quartz and 

sandstone.  

Gravels with some sand Coppice dunes around sparse grasses. Gravels less 

than 5 cm composed of basalt, chert. Hard mud cracked surface under thin 

gravel layer. 

 This field observations of chert, sandstone and basalt clasts are consistent 

with the USGS description and database.  

 K (wt %) U (ppm) Th (ppm) 

mean 0.9341 37.0208 11.9 

Standard 
deviation 

0.5063 88.1206 1.2728 

range 1.8375 291 1.8 

median 0.8800 1.8 11.9 

mode 0.8800 1.8 N/A 

 

 The median values again are a better representation of the data than the 

mean for radioelement concentration due to high U concentrations. 
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There are 4 outlier values for Uranium of 150, 160, 270, and 292 ppm. 

These are all values reported by the USGS in the same location in arkose and 

other unidentified sedimentary rocks. 

There are only two Th values of 11 and 12.8 ppm. 

Qa1 Soil: This soil is described as low relief, coarse to fine grained gray sand, 

with sparse vegetation. The soil is reported to be on top of unconsolidated valley 

fill, felsic and mafic igneous rock, and shale (USGS, 2004). Because this is an 

alluvial rock unit, all these rock types are possible as they occur in and around 

the mapping area, though shale is not specifically listed in the USGS description. 

There are 8 data points from the USGS all collected for NURE.  
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 K (wt %) U (ppm) Th (ppm) 

mean 1.5469 2.7575 8.8633 

Standard 
deviation 

0.4727 1.2531 2.9402 

range 1.159 3.64 7.7 

median 1.799 2.915 8.53 

mode 1.9 N/A N/A 

 

 Comparing these mean concentrations to the median concentrations of 

the rock unit, U and K are higher within the soil. For K this is by a less than a 

factor of 2, though there are values within the rock unit that record K values this 

high. For U there’s a difference of less than 1 ppm.  For Th the median value in  

the rock data is higher than the average value in the soil.  

 

 

0

0.5

1

1.5

2

2.5

3

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Fr
e

q
u

e
n

cy
 

K wt % 

Qa1 Soil K wt % 

0

1

2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

Fr
e

q
u

e
n

cy
 

U ppm 

Qa1 Soil U ppm 



 

110 
 

 

Qa1 NURE Histogram: 
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Qa1 AMS Histogram: 

 

 This unit has similar histograms, both are right skewed with averages of 

about 8. While the differences of the means are not within error, this could be 

due to the fact that the AMS data is more skewed, with highs more than twice 

that of the NURE data.  

Qa1 50 m buffer NURE Histogram: 
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Qa1 50 m buffer AMS Histogram: 

 

Qa1 AMS Distribution: This is a widespread alluvial unit, so high amounts of 

variation is expected. We can see that in the east on the alluvial fans this unit is 

cooler, and even in the north, east of the river is overall cooler than the west. 

There are localized hot spots, some of them categorized by uranium mines. The 

exposure rate range of this unit is large, from 3.688 to 37.191 
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Qa1 AMS Exposure Rate Data 
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Qa2: The USGS reports that this unit is similar to Qa1, but is ‘partly cemented by 

calcite and gypsum’ and is earlier Holocene in age (older). This unit also exhibits 

the change in composition as one moves across our mapping area. Basalt clasts 

dominate in the south and chert clasts dominate in the north. Much of this unit is 

covered by sand (Billingsley et al., 2007), so remote sensing may be best for this 

unit. All of the data points not listed as basalt will be left in this unit, it is an 

alluvium, so it is possible that nearby volcanic rocks such as andesite, dacite, 

latite, rhyolite, gabbro, peridotite, dunite, granulite, and diabase could be present. 

The USGS does not give a comprehensive composition of this alluvium so the 

rock type cannot by narrowed further.  We have 228 data points for this unit, 

about one third of all of our data points. There are only 7 points with Uranium 

concentrations, and 14 points with Thorium concentrations, so for these isotopes 

this data is not as representative as it may seem. All but one of these data points 

is from the USGS, the single point is from DIR. The USGS data points are all 

from igneous rocks, and thus representing only the southern portion of the unit. 

The rock types recorded are basalt, andesite, dacite, latite, rhyolite, gabbro, 

peridotite, dunite, granulite, and diabase. Also 225 of these points are listed at 

the same location (35.5, -111.5). So while there are many points within this unit, 

they are all very similar (in that many are from the same location and only have K 

values), and do not give the type of range we would like. 

Qa2 hot Field Notes: Fine to coarse sand with clasts of basalt, chert, black 

sandstone (from Qg2 hot), light grey sandstone from possible TRcs. In order of 

abundance: mostly chert and smaller pieces of light sandstone, then basalt and 

grey sandstone.  

Float consisting of mostly chert and basalt, some black sandstone like from Qg2 

hot, sparse bushes and grasses. 

Qa2 cool Field Notes: Mostly sand, raised humps with clasts. Sand is fine 

grained, about the same composition as aeolian but with clays. Clasts: chert, 

banded sandstone and limestone, grey brown sandstone, limestone, basalt. 

Sand lacks ripples. 

 Clay infused quartz sand, gravel in places consisting of grey sandstone, chert, 

sparse limestone. Moderate grasses. 

 Qa2 hot had more prevalent, larger clasts than Qa2 cool and less 

vegetation, possibly explaining the difference in radiation. This unit contained 

basalt, but no other igneous rocks, nothing to explain the extreme amount of 

igneous rocks reported in the USGS database. However, the clast composition 

was consistent with the USGS description, though we did not find it to be partially 

cemented.  
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 K (wt %) U (ppm) Th (ppm) 

mean 1.4847 1.6314 9.781 

Standard 
deviation 

0.9806 1.5059 11.3472 

range 4.4426 3.89 32.31 

median 1.1705 0.979 3.65 

mode 0.9962 N/A 1.24 
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Qa2 Soil: This soil is described as sandy and occurs on top of felsic volcanic and 

unconsolidated valley fill (USGS, 2004). As this is an alluvium unit this is 

consistent with the rock unit description. There are 2 soil data points collected by 

the USGS, with only one K wt % measurement of 1.3.  

 K (wt %) U (ppm) Th (ppm) 

mean 1.3 2.33 8.8485 

Standard 
deviation 

N/A 0.5233 2.1425 

range N/A 0.74 3.03 

median 1.3 2.33 8.485 

mode N/A N/A N/A 

 

 Comparing the rock and soil concentrations, the K is similar om rock and 

soil, while the U and Th are higher in the soil than the rock. However, the soil U 

and Th values are within the range of the rock U and Th values.  

Qa2 NURE Histogram: 
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Qa2 AMS Histogram: 

 

 The means vary significantly between these two histograms, this is most 

likely due to how right skewed the AMS histogram is.  
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Qa2 50 m buffer NURE Histogram: 

 

Qa2 50 m buffer AMS Histogram: 

 

Qa2 AMS Distribution: This unit does not have an overall trend, hotter areas 

seem to be concentrated just north of Black point, but distribution overall seems 

random. This alluvial unit has a large range as would be expected: from 3.71 to 

27.863. 
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Qa2 AMS Exposure Rate Data 
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Qg3: This unit is lithologically similar to Qg1, but earlier Holocene in age (older). 

USGS describes this unit as silt to boulder sized terrace gravel, clasts come 

mainly from Pkh and Triassic units, and basalt clasts in the southern portion of 

the mapping area. This unit is partially cemented by gypsum and calcite. The 

USGS states it differs from Qg1 also by the presence of volcanic and quartzite 

clasts, though both of these are also reported in Qg1 (Billingsley et al., 2007). 

There are 4 USGS data points for this unit but they are all the same rock sample, 

so it has been made into one data point by choosing the point with the sampling 

method with the highest accuracy. The sample is 0.0249 wt % K, 13.4 ppm U, 

and 6.79 ppm Th. This rock is listed as a sandstone from the Shinarump Member 

of the Chinle Formation, consistent with TRcs. I have chosen to leave the data 

point within Qg3, as Qg3 contains TRcs, and this data point occurs within the 

mapping area, so it is a good representation of this specific location.   

Qg3 Field Notes: This unit was not visited as the road was washed out. 

Qg3 NURE Histogram: 
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Qg3 AMS Histogram: 

 

 While the means are not within error, the majority of the AMS points 

appear to be between 4.6 and 10.6 which is about the range of the majority of the 

NURE model. Thus the difference in means could be due to the right 

skewedness of the AMS histogram.   

Qg3 50 m Buffer AMS Histogram: 
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Qg3 50 m Buffer AMS Histogram: 

 

Qg3 AMS Distribution: This alluvial unit lacks overall trends with respect to 

exposure rate. There seems to be localized highs and lows. The area southeast 

of the river is a large cool area, but contains a ‘hot spot’ in relation to the uranium 

mines. This unit has a large range of exposure rates, from 4.555 to 31.439. 
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Qg3 AMS Exposure Rate Data 
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Qae: The USGS describes this unit as Holocene and Pleistocene aged 

interbedded alluvium and eolian deposits ranging in size from clay to gravel. 

Consists mainly of chert fragments from Pkh, TRco, and the Navajo Sandstone 

(Billingsley et al., 2007). The reported rock types are basalt, andesite and a 

bentonite clay listed as coming from the Chinle Fm by the collector. The Chinle 

Formation data point is ambiguous because there are three separate members of 

the Chinle in this mapping area, none of which list a bentonite clay and was 

removed. The points labeled basalt and andesite should also be removed as they 

do not represent Qae, but the underlying bedrock. These points are not even 

within the mapping area, but were correlated in because they fell within the same 

rock unit. By removing the basalt, andesite, clay, and Chinle Fm data points, and 

also all data points that were repeats of the same sample we are left with 4 data 

points, with only 1 K concentration and no Th data. 

Qae (on basalt) Field Notes: Basalt clasts, some basalt sand, and aeolian 

addition in the form of a brown matrix underneath weathered basalt. Basalt clasts 

range in size from sand to 2 fist size.  

Basaltic sand with basalt clasts, brown eolian dust on top of and internatlized 

with basalt sand. Sparse to moderate vegetation. 

Qae hot (off basalt) Field Notes: All fine sand, no clasts, thus incredibly 

different than on the basalt flow. Overall a lighter brown sand, very thick, sink in. 

Medium vegetation. Sand is made up of quartz, basalt, limestone, feldspar, chert. 

No cementation, overall homogenous. Closer to the road is more soil formation, 

more fine grained. 

Red brown fine sand, no clasts or soil formation, moderate to dense grasses and 

bushes. 

 Based on our observations in the field the Qae point that was collected as 

basalt should be added back into the geochemical data, as on the basalt flow, 

the unit consists entirely of basalt. The basalt dominated Qae is cooler because it 

is dominated by a rock that is cooler. We are not sure why Qae hot is hot, since it 

consisted only of sand, mostly likely an aeolian deposit. This sand however is 

consistent with the USGS description. Strangely enough the presence of basalt 

clasts is not mentioned by the USGS description. 

 K (wt %) U (ppm) Th (ppm) 

mean 0.9630 1.3667 N/A 

Standard 
deviation 

N/A 0.3215 N/A 

range N/A 0.6 N/A 

median 0.9630 1.5 N/A 

mode N/A N/A N/A 
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 There is only 1 listed K concentration of 0.9630 wt %. 

 

Qae Soil: This soil is described as a coarse, dark grey sand of low relief with 

moderate vegetation. This soil occurs on unconsolidated valley fill and sandstone 

(USGS, 2004). The rock description has this unit as an alluvium unit with clasts 

of sandstone, which is consistent with the Qae soil description. There are 4 data 

points for this soil. 

 K (wt %) U (ppm) Th (ppm) 

mean 2.100 2.8175 9.7030 

Standard 
deviation 

0.3607 0.4538 2.1361 

range 0.7 0.82 4.1 

median 1.999 2.825 9.01 

mode N/A N/A N/A 
 

 Comparing these values to that of the rock unit, the K of the soil is more 

than 2 times that of the rock unit, and the rock unit does not contain any K values 

that high (though there is only one K value in the rock unit). The U values of the 

soil are also higher than that of the rock, almost by a factor of 2. There are no Th 

rock values to compare to the soil. 
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Qae NURE Histogram: 

 

Qae AMS Histogram: 

 

 The difference in mean between these two histograms is very large, and 

this could be due to the right skewedness of the AMS histogram. The majority of 

the AMS data points occurs between 4.2 and 9.6, this corresponds to about the 

range of the NURE histogram. 
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Qae 50 m buffer NURE Histogram: 

 

Qae 50 m buffer AMS Histogram: 

 

Qae AMS Distribution: This alluvial unit has a wide distribution throughout the 

mapping area, the general trend seems to be that it is hotter in the north than the 

south. Black Point seems to be the coolest portion of this unit, and the exposure 

rate has a large range, from 4.195 to 57.672. 
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Qae AMS Exposure Rate Data 
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Ql: The USGS classifies this unit as Holocene and Pleistocene landslide deposits 

(Billingsley et al., 2007). These vary in composition based on location, see map. 

There are 7 USGS data points within this unit, and all of them are listed as 

igneous, 5 being basalt and the rest being unknown. Four of these data points 

are listed at the same location.  All data points will be left in Ql, as this unit occurs 

around Black Point, making it plausible that all the landslide material is basalt. 

Ql hot Field Notes: This point was not visited as the road was washed out. 

Ql cool Field Notes: While driving around the basalt flow throughout the 

afternoon we noticed that there are larger boulders at the top of the cliff, and the 

size fines downward. This unit is coarser basalt, more large clasts, and more 

variety in the degree of sphericity of clasts. Largest clasts are about 20 cm. 

Medium vegetative coverage.  

Mostly basalt clasts, significant portion greater than 10 cm. Eolian sands, 

medium grasses, some shrubs. 

 These field observations are consistent with the USGS descriptions as a 

landslide deposit off of a basalt flow, and with the basalt rocks in the USGS 

database. 

 K (wt %) U (ppm) Th (ppm) 

mean 1.6190 4.6367 24.4333 

Standard 
deviation 

1.3777 3.1855 18.5149 

range 3.62 5.61 34.5 

median 0.9132 6.38 32.2 

mode 0.9132 N/A N/A 
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Ql Soil:   This soil is described as being collected from a flat area of sparse 

vegetation occurring on top of felsic volcanic rock (USGS, 2004). This is 

consistent with the Ql being a landslide deposit and felsic volcanic rock occurring 

within the mapping area. The soil sample has a K concentration of 1.7 wt %, 

almost twice as much as the median rock concentration, but within its range; a U 

concentration of 2.67, less than half that of the median concentration of the rock 

but within the rock’s range, and a Th concentration of 10.1, a third of the median 

concentration in the rock but also within the rock’s range. 

  

0

1

2

0
.2

0
.6 1

1
.4

1
.8

2
.2

2
.6 3

3
.4

3
.8

4
.2

4
.6 5

5
.4

5
.8

6
.2

6
.6

Fr
e

q
u

e
n

cy
 

U ppm 

Ql U ppm 

0

1

2

3

4
.2

5
.4

6
.6

7
.8 9

1
0

.2

1
1

.4

1
2

.6

1
3

.8 1
5

1
6

.2

1
7

.4

1
8

.6

1
9

.8 2
1

2
2

.2

2
3

.4

2
4

.6

2
5

.8 2
7

2
8

.2

2
9

.4

3
0

.6

3
1

.8 3
3

3
4

.2

3
5

.4

3
6

.6

3
7

.8

Fr
e

q
u

e
n

cy
 

Th ppm 

Ql Th ppm 



 

132 
 

Ql NURE Histogram: 

 

Ql AMS Histogram: 

 

 The means of these histograms are within error. That is surprising given 

the small amount of NURE data points and the right skewedness of the AMS 

histogram. 
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Ql 50 m buffer NURE Histogram: 

 

 

Ql 50 m buffer AMS Histogram: 

 

Ql AMS Distribution: This unit occurs mostly on the slopes of Black Point and 

also in a small area in the northwest. This small area is distinctly hot. The area 

around Black Point displays its own trends, having a hotter outer edge and cooler 

inside. This unit has a small range of exposure rates, from 3.195 to 11.658. 
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Ql AMS Exposure Rate Data 
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Qv: This unit is Holocene and Pleistocene age valley-fill deposits, with silt to 

gravel sized clasts of limestone, chert, and basalt, partially cemented by calcite 

and gypsum, according to the USGS (Billingsley et al., 2007). This is consistent 

with the recorded rock types of basalt and limestone in the 46 data points in this 

unit from the USGS, DIR and NAVDAT, so no data points will be removed. 

Qv Field Notes: This unit was not visited as it was over a cliff. 

 K (wt %) U (ppm) Th (ppm) 

mean 0.5612 1.6206 4.78 

Standard 
deviation 

0.4913 0.9472 4.2144 

range 1.2650 5.311 5.96 

median 0.31 1.4 4.78 

mode 1.1622 1.1 N/A 

 

 

 

There are 2 reported Th concentrations of 7.76 and 1.8 ppm. 

0

2

4

6

8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Fr
e

q
u

e
n

cy
 

K wt % 

Qv K wt % 

0

2

4

6

8

10

0
.2

0
.6 1

1
.4

1
.8

2
.2

2
.6 3

3
.4

3
.8

4
.2

4
.6 5

5
.4

5
.8

6
.2

Fr
e

q
u

e
n

cy
 

U ppm 

Qv U ppm 



 

136 
 

Qv Soil: This soil is described as a coarse brown to grey sand with moderate to 

sparse vegetation occurring on sandstone and unconsolidated valley fill (USGS, 

2004). This is consistent with Qv as it is valley fill, and it is possible it could 

contain sandstone clasts despite the fact that the USGS does not specifically list 

this in their description. There are 4 data points within this soil unit.  

 K (wt %) U (ppm) Th (ppm) 

mean 2.0648 2.3925 10.85 

Standard 
deviation 

0.4401 0.8517 1.0607 

range 1.07 1.83 1.5 

median 2.0645 2.27 10.85 

mode N/A N/A N/A 

 

 The mean concentrations of the soil U, K and Th vary from the median 

rock unit concentrations. K is almost 7 times greater in the soil than the rock, U is 

much closer with a difference of about 59%, and Th is twice as prevalent in the 

soil than rock.  
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 There are two Th concentrations recorded of 10.1 and 11.6 ppm. 

Qv NURE Histogram: 
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Qv AMS Histogram: 

 

 The means of these histograms is not within error, this is probably due to 

the fact that there are only 17 NURE survey data points and the data is not 

making a clear curve. However the majority of the AMS data falls between 6.2 

and 10.3, a similar range to that of the NURE data. 

Qv 50 m buffer NURE Histogram: 
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Qv 50 m buffer AMS Histogram: 

 

Qv AMS Distribution: This unit has a trend that is backwards of most other 

units. Its hottest areas are in the southeast, and it gets cooler to the northwest. 

However this unit is not very widespread and the range of its exposure rate is not 

great, 4.881 to 14.426 
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Qv AMS Exposure Rate Data 

 

 

  



 

141 
 

Parent Units 

TRmhm: Holbrook and Moqui Members of the Moenkopi Formation, Early to Mid 

Triassic in age. Composed mainly of claystone, siltstone and sandstone, in some 

locations includes gypsum, limestone and conglomeratic sandstone (Billingsley 

et al., 2007).  

TRmhm Field Notes:  Basalt float present, unit is a fine grained red sandstone. 

When broken unweathered surface is pinkish grey. Lack of ripple marks.  

Dull red sandstone, some white, fine grained, rare cross stratification. Vesicular 

basaltic boulders. Some bushes and grasses, sparse. 

 These field observations are consistent with the USGS description of a 

fine grained red sandstone, however, no limestone, claystone, gypsum, or 

conglomeritic sandstone was observed. 

TRmhm NURE Histogram: 
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TRmhm AMS Histogram:  

 

 The means of these 2 histograms are significantly different. There are few 

points in the NURE survey data, and it has a smaller range that is lower in 

exposure rate than the majority of the AMS data points. The AMS data is also 

slightly right skewed.  

TRmhm 50 m buffer NURE Histogram: 
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TRmhm 50 m buffer AMS Histogram: 

 

TRmhm AMS Distribution: This unit occurs in two main areas in the south by 

black point and north surrounding the river. It follows most trends as the south is 

cooler than the north, but taking a closer look at the points in the north 

surrounding the river there is a strange trend. The west side of the river is 

significantly cooler than the east side. It seems strange to see so much variation 

in a rock unit, and could possibly be due to alluvial contamination. This unit does 

not have as wide of range as other bedrock units, 4.375 to 14.583. 
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TRmhm AMS Exposure Rate Data 
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Daughter Units 

Qdl: Very few small occurrences. Holocene linear dune deposits, consists of 

quartz sand (Billingsley et al., 2007). 

Qdl Field Notes: This unit was not visited due to road construction. 

Qdl NURE Histogram: 

 

Qdl AMS Histogram: 

 

 The means of these histograms are not within error. This is most likely due 

to the fact that there are only two data points for the NURE survey, and one of 
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them is below the range of the AMS data. The AMS data is right skewed and 

does not form a good curve.  

Qdl 50 m buffer AMS Histogram: 

 

Qdl AMS Distribution: This unit is very small and thus does not display any 

overall trends. It has a small range of exposure rates, from 6.074 to 13.385. That 

is a higher minimum than most other units but could be due to small sample size.  
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Qdl AMS Exposure Rate Data 
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Qdp: Very few small occurrences. Holocene parabolic dune deposits composed 

of quartz sand. The USGS report states that ‘bedrock or older sand 

accumulations often exposed within interior of isolated parabolic dunes’ 

(Billingsley et al., 2007). This indicates that for modeling an aerial gamma ray 

survey the unit beneath Qdp may become important. 

Qdp Field Notes: Cemented mudcracks, sand surrounding the unit. There is 

channeling present on the mud cracks. Exposure of bedrock is not apparent. The 

unit is crescent shaped. Very small unit, not sure it really counts as a dune.  

Cemented mud cracks with some eolian sands on top. Some channeling with 

small about 1 cm clasts of limestone, chert, rare basalt, no vegetation. 

 This unit is not in the correct location on the geologic map, it’s about 75 m 

north. This unit was consistent with the USGS description in shape, but very 

different in every other way. The USGS describes it as loose unconsolidated 

quartz sand, whereas we saw mud cracks with very little sand on top. Dunes shift 

frequently in this windy area, so this type of inconsistency is expected in dune 

units.  

Qdp NURE Histogram: 
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Qdp AMS Histogram: 

 

 The means of these histograms are not within error. This is due to the fact 

that there is only one NURE survey data point, and it occurs at the minimum of 

AMS data. 

Qdp 50 m buffer NURE Distribution: 
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Qdp 50 m buffer AMS Distribution: 

 

Qdp AMS Distribution: This unit has a small distribution, but appears to 

become hotter to the southeast, opposite of the trend of most other units. It has a 

small range of exposure rates, from 5.846 to 10.823. 

Qdp AMS Exposure Rate Data 
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Qdb: This unit only has 2 small occurrences. Holocene barchan dune deposits, 

consists of quartz sand (Billingsley et al., 2007).  

Qdb Field Notes: This unit was not visited. 

Qdb AMS Histogram: 

 

Qdb 50 m buffer AMS Distribution: The 50 m buffer causes an elimination of 

this unit. 

Qdb AMS Distribution: This unit is very small and does not display overall 

trends. There are so few points it could not be separated into nine classes. Its 

range of exposure rates is very small, from 6.425 to 7.354. 
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Qdb AMS Exposure Rate Data 
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Qg2: Holocene gravel deposit, silt to gravel sized clasts. Matrix of silt and sand 

with clasts of Pkh and basalt in the southern portion of the map. USGS classifies 

this unit as lithologically similar to Qg1 (Billingsley et al., 2007).  

Qg2 hot Field Notes: This gravel unit consists of mostly clasts of dark 

sandstone we haven't yet seen. It could be TRcp, but it's a very dark grey. Little 

basalt and chert. The sandstone is mostly quartz and feldspar with black matrix, 

sample in bag. Sand underneath is brown, poorly sorted, coarse to fine, 

composed mainly of rock fragments including basalt and limestone.  

Dark sandstone covered in eolian dust, some mud cracks. Sandstone possibly 

derived from basalt at black point. Little vegetation. 

Qg2 cool Field Notes: Channeling with respect to clast size. More rounded 

clasts. Dominated by chert. Moderate vegetation. Fine aeolian sand beneath 

clasts. Extremely different from other Qg2. No bedrock outcrops. Fairly 

continuous in composition, seems continuous underneath top layer. This unit has 

clasts in the sand, not just sand.  

Weak desert pavement, bars of clasts about 1-2 cm in width. Channels of finer 

clasts less than 1 cm. Clasts consist of chert. Moderate vegetation. 

 These field observations are consistent with the USGS description of a 

gravel unit with sandstone and basalt clasts, chert is not mentioned specifically, 

but it was most likely derived from the limestone the USGS lists as a source rock. 

Qg2 hot could be hotter due to the larger clast size and also the dark grey 

sandstone that wasn’t present in Qg2 cool. 

Qg2 NURE Histogram: 
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Qg2 AMS Histogram: 

 

 These histograms have means that are within error. They are both right 

skewed, though the AMS histogram is significantly more so.  

Qg2 50 m buffer NURE Histogram: 
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Qg2 50 m buffer AMS Histogram: 

 

Qg2 AMS Distribution: This unit has a large distribution and a large range of 

exposure rates, from 4.766 to 61.883. A trend occurs in the southern portion of 

the map where west of the river is hotter than the east.  

Qg2 AMS Exposure Rate Data 
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Qa3: Holocene and Pleistocene alluvial fan deposit, silt to gravel in size, partially 

cemented by gypsum and calcite. Lithologically similar to younger alluvial 

deposits, Qa1 and Qa2 (Billingsley et al., 2007). 

Qa3 Field Notes: More developed surface. Surface is all clasts (large) 

underneath is a grey brown soil. Clasts are conglomerate, chert, basalt, and 

brown sandstone like TRmhm or the like. There is also light sandstone like TRcs 

(large) and black limestone, found a piece with 2 large calcite crystals in it. Black 

limestone is fine grained and lacks other clasts (mudstone). More basalt as move 

towards black point.  

Large clasts less than 5-10 cm of basalt, red sandstone, conglomerate, chert, 

white sandstone, black limestone. Below the surface is fine eolian sand, mud 

cracked when exposed. 

 These field observations are inconsistent with the USGS descriptions as 

we saw much larger clasts than are reported. Though we did find the surface to 

be more cemented as in the USGS description. The USGS description also only 

mentions basalt and chert as clasts, we found these to be clasts, but also had 

more varied rock types that would be expected to be seen in alluvial units in the 

area. 

Qa3 NURE Histogram: 
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Qa3 AMS Histogram:  

 

                 The means of these two histograms are significantly different. This is 

expected as there are only 6 NURE survey data points. The AMS histogram is 

left skewed, but this skewed portion represents the range of the NURE data.  

Qa3 50 m buffer AMS Distribution: 

 

Qa3 AMS Distribution: This unit does not have a large distribution and lacks 

overall trends. It has a small range of exposure rates, from 4.36 to 11.51. 
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Qa3 AMS Exposure Rate Data 
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Qps: Holocene and Pleistocene age ponded sediments, composed mainly of 

clay to sand with some chert and limestone gravel, partially cemented by calcite 

and gypsum. The USGS classifies this unit as similar to Qf (Billingsley et al., 

2007). 

Qps (on basalt) Field Notes: Fine brown aeolian material/dust. Mudcracks 

present in this material. There are vesicular basalt clasts on top.Basalt clasts 

appear more weathered and rounded here than in Ts and Qae (on basalt). Clasts 

range from sand sized to 2 fists. This unit has no apparent variation. Little 

vegetation is present in this unit.  

Brown mudcracked sediment with basalt clasts on top. Clasts less than 1 mm to 

10 cm. 

Qps hot (off basalt) Field Notes: Large chert nodules and small basaltic gravel 

present on top of red brown dirt. There is a lot of variation in the amount of chert 

nodules. The basaltic gravel appears to be lineated by the wind (present in 

stripes). There are mud cracks in the red brown dirt. 

Brown mud cracked surface. Cherty clasts sparse to moderate about 5 cm in 

size. Some basaltic pebbles, non continuous. Sparse/no vegetation. 

 These field observations were consistent with the USGS description as 

partially cemented sediments with chert gravel, though no mention was made of 

basalt gravel that we saw at both sites. The only real difference between Qps hot 

and cool was the presence of chert and the basalt clasts were smaller in Qps hot, 

the pictures even look very similar. This unit did not resemble Qf, there was no 

basalt present in Qf (which dominated Qps) and the surface was not as well 

developed. 

Qps Soil: This soil is described as sandy with moderate vegetation occurring on 

mafic volcanic rock (USGS, 2004). This is consistent with Qps as Qps is a 

sediment unit that occurs on top of basalt. There is one data point for this unit 

with a K wt % of 1.7% and a U concentration of 1.8 ppm.  
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Qps NURE Histogram: 

 

Qps AMS Histogram: 

 

 The means for these histograms are almost within error, this is surprising 

since there are only 3 data points from the NURE survey and the AMS data is 

right skewed. 
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Qps 50 m buffer AMS Histogram: 

 

Qps AMS Distribution: This unit occurs throughout the mapping area in very 

small pockets. It does not display any overall trends, though the portion on Black 

Point is cooler than the rest of the unit.  

Qps AMS Exposure Rate Data 
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Qtr: Holocene and Pleistocene age talus and rock fall deposits. Silt to gravel 

matrix with boulders of limestone, chert and sandstone from Pkh and others, 

partially cemented by calcite and gypsum (Billingsley et al., 2007). 

Qtr Field Notes: This unit was inaccessible in the field area. 

Qtr AMS Histogram: 

 

Qtr 50 m buffer AMS Histogram: 

 

Qtr AMS Distribution: This unit has a small range, lacks any overall trends or 

patterns, and has a small range of exposure rates, 3.368 to 9.597. 
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Qtr AMS Exposure Rate Data 
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QTg4: Pleistocene terrace-gravel deposits, clasts ranging in size from silt to 

boulder, though largely sand and gravel clasts from Pkh, TRmw, TRmhm and 

TRmss. Some locations include basalt clasts from the southern portion of the 

mapping area (Billingsley et al., 2007).  

QTg4 hot Field Notes: Construction prevented us from viewing this point. 

QTg4 cool Field Notes: sand and clay matrix, moderate vegetation, light grey 

limestone clasts dominate, TRcs? Chert also present, clasts are overall angular. 

Limestone is very fine grained, has red chert clasts, only red, dull light grey 

overall. Some basalt. Some green alteration.  

Lime mudstone. Sandy with moderate gravels. Gravel composed of altered 

limestone, chert and unaltered fine grey limestone. Sand is mostly quartz, red in 

color. Sparse vegetation mostly bushes. 

 These field observations are consistent with the USGS description of a 

gravel deposit with basalt, limestone, and chert clasts.  

QTg4 NURE Histogram: 
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QTg4 AMS Histogram: 

 

 The difference between these two histograms’ means is greater than 

error. There are few points in the NURE histogram, and the AMS histogram has 

a large right skewed ‘tail’ probably both causes of error.  

QTg4 50 m NURE Distribution: 
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QTg4 50 m AMS Distribution: 

 

QTg4 AMS Distribution: This unit occurs as 2 main blobs, a cooler blob to the 

south east and a hotter blob to the northwest, following the trend that occurs 

through most of the units. This unit has a range of exposure rate from 4.125 to 

24.41. 
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QTg4 AMS Exposure Rate Data 
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QTg5: Pleistocene and Miocene terrace gravel deposits, silt to cobble in size. 

Consist of limestone and chert clasts from Pkh, and sandstone clasts from 

TRmw, TRmhm and TRmss. Hypothesized to be equivalent to Ts (Billingsley et 

al., 2007). 

QTg5 Field Notes: Mostly dark brown very fine grained sandstone clasts with 

clay underneath. Also clasts of chert and basalt present. Not homogenous, large 

variation across unit with respect to clast size. Gravel, mostly dark brown 

sandstone (less than 1 cm), some cherts (2-5 cm) 

 These field observations are consistent with the USGS description of this 

gravel unit. However, we did not agree that the unit was similar to Ts, which was 

dominated by basaltic sand and basalt clasts, though it did contain limestone and 

chert clasts like QTg5. 

 

QTg5 NURE Histogram: 
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QTg5 AMS Histogram: 

 

 It is not surprising that these histograms do not have means that are within 

error. The NURE data contains only 3 data points, not enough to create a curve 

or show trends. The AMS data has 2 separate peaks and is left skewed, which 

should only help in making the means closer together.  

QTg5 50 m buffer AMS Distribution: 

 

QTg5 AMS Distribution: This unit has a small distribution, and is hotter to the 

northwest, following the trend of most other units. It has a small range of 

exposure rates of 4.26 to 9.66. 
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QTg5 AMS Exposure Rate Data 
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Ts: Occurs in the Black Point area in the south of the map, near Tbpb. 

Pleistocene and Miocene stream-channel deposits. Contains siltstone, 

sandstone, ‘arkosic gravel and lenticular conglomerate’ according to the USGS 

(Billingsley et al., 2007).  

Ts Field Notes: Does not appear recently active, no cementation observed. 

Contains: fist sized vesicular basalt clasts and smaller (sub angular, 

larger=smoother), chert clasts of 1-3 cm, rough limestone, smooth chert. Medium 

amount of vegetation.  

Mostly basaltic sand and basalt float about a decimeter in size. Some cherty 

float. Little aeolian addition. Moderate grasses and bushes. 

 These field observations are not consistent with the USGS description in 

that no sandstone, siltstone, arkosic gravel or lenticular conglomerate were 

observed. We saw only basalt and chert (which is not mentioned in the USGS 

description. However we only observed this stream channel at the top at Black 

Point, not at the base where these rock types may accumulate.  

Ts AMS Histogram: 
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Ts 50 m buffer AMS Histogram: 

 

Ts AMS Distribution: This unit has a very small range on Black Point, and a 

very small range of exposure rates from 5.372 to 6.19. There are no observable 

patterns or trends.  

Ts AMS Exposure Rate Data 
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Units in the Literature 

Chinle Fm (TRc prefix): The Petrified Forest Member of the Chinle Formation 

contains silicified wood, formed in the bottom of a swamp or stagnant pond. The 

sandstone occurring coeval with the wood contains clay formed from volcanic 

ash, the source of the silica. Petrified wood can also occur in other members of 

the Chinle. The shales and sandstones of the Chinle were deposited by ‘streams 

meandering northward across a broad depositional basin containing numerous 

shallow lakes and swamps’ (Sigleo, 1979). This is confirmed by Howell and 

Blakey (2013), who states it ‘is a mud-dominated fluvial system deposited within 

a backarc basin.’  These streams were flowing to the south to the late Triassic 

Sea of Nevada. Of most interest to this research is the Uranium concentrations 

which are found in the Chinle Fm and more specifically the Shinarump 

conglomerate. We also concluded that conglomerates tend to have very high U 

values from our database findings. Clays in the Chinle also have high U, and it is 

proposed by Hinckley (1955), that these clays are the source of the U, with a 

solution containing U being forced into the underlying sand and gravel layers, by 

compaction from the volcanic ash and debris. This corresponds with his findings 

that U favors coarser material. U deposits are usually found as bedded deposits, 

lens deposits, and in silicified trees. Perhaps the most relevant portion of his 

research is that he also did aerial radiation mapping, and when radiation 

anomalies were found, ground checks were done. Usually during these ground 

checks a silicified tree was found. Around these logs are  oxidized halos of 

bedrock. Since these logs tend to occur in clusters, they could be the cause of 

the small areas of high radioelement content in the west of the aerial gamma ray 

survey (Hinckley, 1955).  

San Francisco Volcanic Field (Tbpb): The basalt flow known as Black Point 

(Tbpb) is on the edge of the San Francisco Volcanic Field (SFVF). There are 

approximately 600 vents in the SFVF, all of which formed in the last 5 Ma. Silicic 

and mafic rocks were being produced at the same time in this area. The source 

is thought to be upper mantle, with interaction between upper mantle basalts and 

the silicic crust (Chen and Arculus, 1995). The composition of the SFVF varies so 

much over its area, that data points outside the mapping area are not likely to be 

relevant to the composition of flows within the mapping area. 

Harrisburg Member, Kaibab Formation (Pkh): This unit was deposited in a 

dolomitic mudflat or Sabkha environment, with a gypsum precipitating lagoonal 

environment to the west. It was an arid environment with shallow water (Clark, 

1981). 
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DIR Report 

Pkh with DIR: 

 K (wt %) U (ppm) Th (ppm) 

mean 0.1987 185.26 0.7250 

Standard 
deviation 

0.5464 1670.2507 1.7651 

range 4.2238 16599.7 14.2 

median 0.03 1.45 0.3 

mode 0.02 1.9 0.2 

 

Pkh without DIR: 

 K (wt %) U (ppm) Th (ppm) 

mean 0.6352 898.5842 6.5386 

Standard 
deviation 

0.9207 3645.4628 5.2315 

range 4.1938 16599.596 13.1 

median 0.37 1.875 6.52 

mode 0.04 1.39 0.2 

 

Pkh DIR only: 

 K (wt %) U (ppm) Th (ppm) 

mean 0.03672 1.5267 0.4176 

Standard 
deviation 

0.04301 0.8935 0.3574 

range 0.31 5.6 1.7 

median 0.02 1.4 0.3 

mode 0.02 1.9 0.2 

 

Pkh Soil: 

 K (wt %) U (ppm) Th (ppm) 

mean 1.8225 2.14 7.56 

Standard 
deviation 

0.1776 0.0490 N/A 

range 0.4 0.1 N/A 

median 1.815 2.13 7.56 

mode N/A 2.1 N/A 
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 While removing DIR for Pkh limited our data to only 52 points (down from 

184), the averages without DIR are significantly closer to the soil values, 

especially with regards to Th. When looking at the table with only DIR data it 

becomes obvious that K and Th are significantly lower than expected for this 

area.  
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Qa1 with DIR: 

 K (wt %) U (ppm) Th (ppm) 

mean 0.5104 37.0208 2.77 

Standard 
deviation 

0.5856 88.1206 4.848 

range 1.9475 291 12.6 

median 0.13 1.8 0.35 

mode 0.02 1.8 0.3 

 

Qa1 without DIR: 

 K (wt %) U (ppm) Th (ppm) 

mean 0.9341 93.454 11.9 

Standard 
deviation 

0.5063 129.7129 1.2728 

range 1.8375 290.2 1.8 

median 0.8800 9.19 11.9 

mode 0.8800 N/A N/A 

 

Qa1 DIR only: 

 K (wt %) U (ppm) Th (ppm) 

mean 0.03375 1.75 0.4873 

Standard 
deviation 

0.01685 0.8767 0.4673 

range 0.04 2.7 1.4 

median 0.03 1.55 0.3 

mode 0.02 1 0.3 

 

Qa1 Soil: 

 K (wt %) U (ppm) Th (ppm) 

mean 1.5469 2.7575 8.8633 

Standard 
deviation 

0.4727 1.2531 2.9402 

range 1.159 3.64 7.7 

median 1.799 2.915 8.53 

mode 1.9 N/A N/A 

 

For Qa1 elimination the DIR data points brought K closer to that of the 

soil, but drove U and Th over the recorded concentrations of the soil, though Th 
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was overall closer in value. Without the DIR data we went from 17 data points to 

10, with only two Th measurements and 4 U measurements, 2 of which are 

outliers. This is probably the cause of the extreme increase of U median value. If 

we average the 2 non-outlier U concentrations we get 3.04 ppm, very close to the 

soil average of 2.7575 ppm. When looking at the DIR only statistics it becomes 

obvious that K and Th values are much lower than expected. 
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Qa2 is interesting in that it has a large amount of data points (228) only 1 of 

which is DIR, and this is the unit that has averages that are similar, in this unit it 

may be applicable to look only at the averages as the rock values lack outliers. 

Perhaps we should define an outlier and use that to decide what units should be 

defined by mean or median. Qa2’s DIR data point is 0.05 wt % K, 1.1 ppm U, and 

0.7 ppm Th. We expect the Th values for DIR’s data to be low, but K is also a 

problem. 

Qa2 with DIR:  

 K (wt %) U (ppm) Th (ppm) 

mean 1.4782 1.6314 9.1324 

Standard 
deviation 

0.9832 1.5059 11.1689 

range 4.4426 3.89 32.31 

median 1.1705 0.979 3.025 

mode 0.9962 N/A 1.24 

 

Qa2 without DIR: 

 K (wt %) U (ppm) Th (ppm) 

mean 1.4847 1.7073 9.781 

Standard 
deviation 

0.9806 1.6100 11.3472 

range 4.4426 3.89 32.31 

median 1.1705 0.898 3.65 

mode 0.9962 N/A 1.24 

 

Qa2 Soil: 

 K (wt %) U (ppm) Th (ppm) 

mean 1.3 2.33 8.8485 

Standard 
deviation 

N/A 0.5233 2.1425 

range N/A 0.74 3.03 

median 1.3 2.33 8.485 

mode N/A N/A N/A 

 

 For Qa2 removing the DIR data point made the rock averages for K and 

Th go farther away from the soil averages, while the U concentration was closer 

to that of the soil. An important thing to remember is despite the large amount of 

data points there were only 7 data points with U, and 14 with Th. The fact that 
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removing the DIR data point had the most positive effect on the category with the 

least data points may speak to this being a good idea.  
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Qg1: This unit has one data point from NAVDAT and one from DIR, NAVDAT 

only lists K so this is all we can compare. DIR reports a K of 0.05 wt %, while 

NAVDAT reports a K of 1.0875 wt %. This is a significant difference in values.  
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Qae: By removing the DIR data points from Qae we are only left with one data 

point with only a K value of 0.963 wt % K, compared to an average K of 0.2532% 

and a median of 0.02%. Eliminating the DIR data points brings us closer to the 

soil values as the average for soil was 2.1%. It’s also important to note that for 

this unit the rock had ridiculously little U and Th compared to the soil. 

Qae with DIR: 

 K (wt %) U (ppm) Th (ppm) 

mean 0.2532 1.3667 0.1667 

Standard 
deviation 

0.4732 0.3215 0.0577 

range 0.953 0.6 0.1 

median 0.02 1.5 0.2 

mode 0.02 N/A 0.2 

  

Qae Soil:  

 K (wt %) U (ppm) Th (ppm) 

mean 2.100 2.8175 9.7030 

Standard 
deviation 

0.3607 0.4538 2.1361 

range 0.7 0.82 4.1 

median 1.999 2.825 9.01 

mode N/A N/A N/A 

 

Qae DIR Only: 

 K (wt %) U (ppm) Th (ppm) 

mean 0.017 1.3667 0.1667 

Standard 
deviation 

0.006 0.3215 0.0577 

range 0.01 0.6 0.1 

median 0.02 1.5 0.2 

mode 0.02 N/A 0.2 
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Ql: This unit has no DIR data points, but it is also interesting to note that this is 

the first unit that has a K concentration in the soil that is extremely close to that in 

the rock, and a U and Th that are significantly higher in the rock than the soil (see 

unit report for graphs). 
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Qs with DIR: 

 K (wt %) U (ppm) Th (ppm) 

mean 0.2638 1.7065 1.4 

Standard 
deviation 

0.3724 0.5913 1.8385 

range 1.09 2.018 2.6 

median 0.1 1.6 1.4 

mode N/A 1.6 N/A 

 

Qs without DIR: 

 K (wt %) U (ppm) Th (ppm) 

mean 0.3 1.7217 2.7 

Standard 
deviation 

0.3867 0.6370 N/A 

range 1.05 2.018 0 

median 0.12 1.6 2.7 

mode N/A N/A N/A 

 

Qs Soil: 

 K (wt %) U (ppm) Th (ppm) 

mean 1.6495 3.12 10.38 

Standard 
deviation 

0.4943 0.5515 0.8768 

range 0.699 0.78 1.24 

median 1.6495 3.12 10.38 

mode N/A N/A N/A 

 

 Qs went from 8 data points to 7 with the elimination of DIR, and this 

caused little change in any of the values, but all of that change was closer to soil 

averages. It should be noted that now there is only one recorded Th 

concentration. Qs has one DIR data point of 0.01 K, 1.6 ppm U and 0.1 Th. The 

Th and K values of this data point are unreasonable compared to the rest of the 

data. 
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Qv with DIR: 

 K (wt %) U (ppm) Th (ppm) 

mean 0.2963 1.6206 0.7344 

Standard 
deviation 

0.4360 0.9472 1.5137 

range 1.2850 5.311 7.66 

median 0.04 1.4 0.4 

mode 0.03 1.1 0.4 

 

 

Qv without DIR:  

 K (wt %) U (ppm) Th (ppm) 

mean 0.5612 1.7433 4.78 

Standard 
deviation 

0.4913 1.4222 4.2144 

range 1.2650 5.311 5.96 

median 0.31 1.27 4.78 

mode 1.6221 N/A N/A 

 

Qv just DIR: 

 K (wt %) U (ppm) Th (ppm) 

mean 0.0313 1.5565 0.3826 

Standard 
deviation 

0.02361 0.6021 0.2741 

range 0.11 2.4 0.9 

median 0.03 1.5 0.4 

mode 0.04 1.1 0.4 

 

Qv Soil:  

 K (wt %) U (ppm) Th (ppm) 

mean 2.0648 2.3925 10.85 

Standard 
deviation 

0.4401 0.8517 1.0607 

range 1.07 1.83 1.5 

median 2.0645 2.27 10.85 

mode N/A N/A N/A 
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 Eliminating DIR data points was a positive change for K, U and Th. When 

comparing the means of the soil and rock they are closer without DIR, supporting 

my theory that DIR is skewing our averages lowers, especially in a unit like Qv 

where it makes up a large portion of the data points. Before Qv had 46 data 

points, now there are 23. 

By eliminating DIR data points we lost all data for the following units: Qes, 

Qf 
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