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ABSTRACT 

STRUCTURAL EVOLUTION OF THE MAYNARD LAKE FAULT (MLF) 

WITHIN THE LEFT-LATERAL PAHRANAGAT SHEAR ZONE (PSZ), 

NEVADA, USA 

By  

Mahmud Muhammad 

Dr. Wanda J. Taylor, Examination Committee Chair  

Professor of Geoscience  

University of Nevada, Las Vegas 

The Pahranagat shear zone (PSZ) contains three ENE-striking left-lateral strike-slip faults: The 

Arrowhead Mine fault (AMF), Buckhorn fault (BF), and Maynard Lake fault (MLF) from north 

to south. This shear zone lies along the boundary between the northern and central Basin and 

Range physiographic sub-provinces (NBR-CBR). In addition, this zone is positioned SW of a 

regional strike-slip zone, the Caliente-Enterprise zone (CEZ), and surrounded by extensional 

domains with differences in timing and magnitude of extension. Hence, understanding the 

development of the PSZ, particularly the MLF, is essential to better understanding tectonic 

evolution of the boundary zone between the northern and central Basin and Range including the 

formation of strike-slip zones, geometry of structures, timing of deformation, and kinematic 

history.  

The knowledge of structural development of the western MLF, which has the largest offset of all 

faults within the PSZ, is needed to increase the understanding of the development of a major 
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strike-slip zones within the NBR-CBR boundary. Key aspects in the development include the 

timing of deformation, heterogeneous deformation along strike-slip zones such as strike-slip 

duplex formation, and possibility of strain transfer locally between faults and regionally between 

extensional domains. The western extent of the MLF, geometry of the MLF, and occurrence of 

reverse faults within the MLF zone were unclear prior to this study. In this study, a new 1:12000 

scale map of the western MLF and northwestern part of the Sheep Range provides data on the 

formation of strike-slip zones, timing of deformation, kinematic history, and geometry of 

structures. 

I used a well-documented regional stress field measurement for the area, as well as my own 

observations of fault strike orientation, map cross-cutting relationships, the attitude of beds and 

compaction foliations from ash-flow tuffs, and contractional features such as folds, to analyze 

the kinematic compatibility and timing of deformation for the PSZ including the MLF zone.  The 

data and analysis show that the MLF is a sinistral strike-slip fault that transfers strain between 

two extended regions separated by a less extended region south of the MLF. This transfer zone, 

the PSZ and MLF, represents the SW continuation of the larger strike-slip zone, CEZ, in the 

vicinity of the NBR-CBR boundary. In addition, at least three stages of deformation were 

documented for the MLF zone; (1) Pliocene to Quaternary (2) middle-Miocene to Pliocene (3) 

early-middle Miocene. 

Keywords: Maynard Lake Fault, Pahranagat Shear Zone, Strike-slip duplex, Apparent Reverse 

Faults, Extensional Tectonics, Timing of deformation. 
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CHAPTER 1 

INTRODUCTION 

 The Basin and Range province (BRP) in western North America contains four sub-provinces: 

Northwestern, Northern, Central, and Southern (NWBR, NBR, CBR, and SBR) (Fig. 1) (Jones et 

al., 1992; Wernicke 1992; Sonder and Jones, 1999; Colgan et al., 2004, 2006; Hammond and 

Thatcher, 2005). The sub-provinces differ in basin elevations such that the NBR has the highest 

basin elevation, and the SBR has the lowest. The boundary between the NBR and CBR is 

indicated by anomalies in gravity, differences in patterns of magmatism (Figs. 2 and 3), and 

particularly a transition between a zone of no surface volcanism and a zone with volcanism (Fig. 

3). In addition, the local correlation between magmatism and extension is poor (Taylor et al., 

1989; Axen et al., 1993; Liu, 1996). This boundary also is marked by caldera complexes and left-

lateral fault zones, one of which is the Paharanagat shear zone (PSZ) (Figs. 1 and 4). 

Furthermore, the NBR-CBR boundary accommodates a regional strike-slip zone including the 

Caliente-Enterprise zone (CEZ) (Jayko, 1990; Axen, 1998). Understanding the sub-province 

boundary development, in particular the PSZ, will aid in further characterizing the regional 

tectonic development of the BRP. 

The timing of the initiation of extension and its spatial distribution in the sub-provinces vary, 

which also suggests the presence of rift segment boundaries between them. In the NWBR at the 

latitude of Oregon extension began about 15 Ma (Colgan et al., 2004, 2006; Hammond and 

Thatcher, 2005); in the NBR, Oligocene-Miocene regional extension began about 40 to 30 Ma, 

in the Southern Basin and Range (SBR) about 25 Ma; and in the Central Basin and Range (CBR) 

about 18 to 13 Ma (Axen et al., 1993; Sonder and Jones, 1999 and references therein; Anderson 

and Beard, 2010; Bidgoli et al., 2015). In addition, in the northeastern part of the NBR, some 
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areas extended during Cretaceous to Eocene overall contraction (e.g., Wells et al., 2012). 

Extension in the SBR migrated from the south toward the CBR ( Sonder and Jones, 1999) and 

extension in the NBR began in two N-S oriented belts (Axen et al., 1993). In contrast, extension 

in the CBR initiated and occurred across the entire width of the Basin and Range during a short 

time interval in post middle Miocene time (Wernicke, 1992). 

 The boundary zone between the NBR and CBR (Fig. 1) encompasses the PSZ, which includes 

three major northeast-striking, left-lateral strike-slip faults: The Arrowhead Mine, Buckhorn, and 

Maynard Lake faults (MLF) (Fig. 4), and two caldera complexes. This shear zone was first 

mapped by Tschanz and Pampeyan (1970). These three post-early Miocene faults have a total 

apparent offset as great as 15 km (Liggett and Ehrenspeck, 1974; Jayko, 2007). Ekren et al. 

(1977) confirmed the post- early Miocene movement of the PSZ. To date, studies have not 

documented pre-Tertiary extension within the PSZ (e.g., Jayko, 1990; Taylor and Bartley, 1992; 

Axen et al., 1993; Scott et al., 1995; Switzer and Taylor, 2001; this study). 

The motivation behind conducting research on the PSZ, particularly the left-lateral strike-MLF, 

stems from the location of this structure along the boundary between NBR and CBR (Fig. 1). 

Documenting the geometry, kinematics and timing of deformation along the PSZ, especially the 

MLF, will place constraints on the development of the boundary zone. The recently published 

geologic map (1:100,000; Jayko, 2007) lacks the detail to provide these constraints; particularly, 

existing map relations are unclear about whether the MLF bends southwest along the western 

Sheep Range or continues WSW toward the Desert Range. 

This paper has five goals to investigate the MLF, the longest fault in the PSZ.  1. Ascertain a left-

lateral motion for the PSZ including the MLF zone. Previous studies suggested a lefl-lateral 

motion for the PSZ and the MLF due to the apparent offset of units and slickenlines exposed at 
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the eastern part of the MLF; however, the continuation and sense of movement is poorly known 

west of the PSZ and the MLF zone.   

2. Whether the MLF bends, ends or splays in the northwestern Sheep Range will determine how 

strain is distributed along the NBR-CBR boundary. Previous work suggested that the MLF may 

either bend southwest along strike from a NE-strike in the northern Sheep Range to N-strike 

along the western Sheep Range or the MLF may continue westward from the western Sheep 

Range toward the Desert Range (Tschanz and Pampeyan, 1970; Ekren et al., 1977). Constraining 

whether the MLF bends or splays is essential to understand and model the distribution of strain 

and the deformation style such as simple shear, pure shear or a combination of both. 

3. The geometry and style of deformation along the western end of the MLF was examined to 

evaluate how local contractional structures are related to the formation of a duplex structure 

within the current strike-slip system. Byron (1995) recognized contractional structures along the 

northeastern part of the MLF and found that these structures are coeval with strike-slip faulting 

and normal faulting. However, she has not explained the geometry and cause of these local 

contractional features. 

 4. Defining the structural geometry and kinematics of the PSZ contributes to  understanding the 

development of the Basin and Range sub-province boundaries. The PSZ lies southwest of a 

major strike-slip zone, CEZ, within the NBR-CBR boundary. Therefore, the structural geometry 

and kinematics of the PSZ can constrain the southwest boundary of a major strike-slip zone, 

CEZ, within the NBR-CBR sub-province boundaries. Constraining the timing of deformation, as 

part of the kinematics, is essential to understanding how extension correlates to magmatism in 

the region, in particular within the PSZ and NBR-CBR boundary.  
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5. Documenting the detailed location of young fault scarps along the MLF is critical to 

understanding the Quaternary tectonics and seismic hazards. This zone previously was suggested 

to transfer motion from the Wasatch fault zone to the Eastern California Shear zone (Kreamer et 

al., 2010) (Fig.5). Therefore, understanding the Quaternary deformation within the PSZ and 

MLF may aid in mitigation of seismicity threats to the people living in Alamo and the Las Vegas 

area. 

This master’s thesis is part of a bigger project, along with master’s theses research by two of my 

colleagues Michael Evans and Thomas Price. The larger project includes mapping the entire 

Lower Paharanagat Lake NW 7.5’ quadrangle and surrounding area of the PSZ at 1:12000 scale; 

to better document the boundary zone between the NBR and CBR sub-provinces.  

I used the documented regional stress field for the area (e.g., Zoback, 1989), fault strike 

orientation, mapped cross-cutting relationships, the attitude of beds and compaction foliations 

from volcanic rocks, and contractional features such as folds, to determine the kinematic 

compatibility and timing of deformation for the PSZ, particularly the MLF zone.  The data show 

that the MLF is a sinistral strike-slip fault that transfers strain between two extended regions 

separated by a less extended region north of the Sheep Range. In addition, at least three stages of 

deformation were documented for the MLF zone; (1) Pliocene-Quaternary (2) latest Miocene- 

Pliocene (3) early-middle Miocene; suggesting that deformation occurred late in the sub-

province boundary development. 
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CHAPTER 2 

GEOLOGIC SETTING 

The rocks in the NBR-CBR boundary zone experienced multiple deformations since Jurassic. 

These deformations include Mesozoic shortening and Cenozoic extension. This boundary zone is 

largely superimposed on the shortening structures and developed during Cenozoic extension. 

Marked Cenozoic geologic differences occur across the boundary. 

JURASSIC TO CRETACEOUS SHORTENING 

The western United States experienced various orogenies that caused the formation of fold and 

thrust belts from late Devonian until about the Eocene. The Jurassic-Eocene Sevier orogeny 

structures are well known in south and east-central Nevada. The Gass Peak thrust, which 

correlates to the Golden Gate-Mount Irish thrust and the rest of the Garden Valley thrust system 

are Sevier orogeny structures within the vicinity of the NBR-CBR boundary (Taylor et al., 

2000). The northward correlation of the Gass Peak thrust with the Pahranagat and Golden-Gate-

Mount Irish thrusts is consistent with a left-lateral offset of the Paharanagat shear zone (Taylor et 

al., 2000).   

Extensive Tertiary deposits, mainly Oligocene-Miocene ignimbrites unconformably overlie the 

fold and thrust belt and aid in reconstructions (e.g., Long, 2012).  The post Oligocene offset of 

the volcanic rocks is overprinted on the folds and thrusts (Taylor et al., 2000) and must be 

removed to restore and correlate the older structures. Determining which structures are overlain 

by the ignimbrites and which structures cut them allows structures to be temporally 

distinguished.  
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LATE CRETACEOUS TO EOCENE EXTENSION 

 At the end of the Sevier and the Laramide orogenies, which over thickened the western North 

American crust, roll back of the shallowly subducted oceanic slab underneath the Northern 

American plate caused a switch to normal subduction and back arc extension at about 50-20 Ma 

(Atwater, 1971; Zoback et al., 1981; Stewart, 1998; Dickinson, 2006). This switch of subduction 

angle was most probably caused by the delamination of the previously subducted flat slab and/or 

changes in mantle flow.  The late Cretaceous to Eocene extension is attributed to gravitational 

collapse as a response to the over thickened crust or lithospheric delamination (Sonder and 

Jones, 1999; Liu, 2001; Wells et al., 2012). In the NBR, Late Cretaceous extension is 

documented in northeastern Nevada, northwestern Utah, and southeastern Idaho within the 

Pequop, Raft River, and Black Pine Mountains (Camilleri, 1997; Wells et al., 2012), however, 

extension did not appear within the Pahranagat area until about Late Eocene (Axen et al., 1993; 

Scott et al., 1995; Taylor and Switzer, 2001).  

OLIGOCENE AND MIOCENE EXTENSION  

NORTHERN BASIN AND RANGE 

In general, four stages of extension are suggested for the NBR within Nevada and close to the 

Paharanagat area, although only the last two stages may appear within the Paharanagat area (e.g., 

Taylor and Bartley, 1992; Axen, 1993; Scott et al., 1995; Switzer and Taylor, 2001). The stages 

are as follows: 1. Pre-32 Ma extension identified from the accumulation of thick pre-late 

Oligocene conglomerate and lacustrine limestone suggests a pre-volcanic extension for the Dry 

Lake area in the North Pahroc Range, northeast of the PSZ (Fig. 6). 2. An early mild syn-

volcanic extension at about 30 Ma to 27 Ma (Taylor et al., 1989) is supported by angular 

unconformities within the Oligocene ash-flow tuff sequence within the North Pahroc Range. 3. 
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The peak extension during 22 Ma to 12 Ma is associated with stratal tilting and detachment faults 

(Axen, 1993; Anderson et al., 2010) and strike-slip, oblique-slip and high-angle normal faulting 

(Scott et al., 1995). 4. The last stage is the post 10-Ma extension that defined the current Basin 

and Range topography (Anderson et al., 1983). 

The 34-17 Ma voluminous volcanic eruptions in the NBR, which are called the ignimbrite flare-

up, indicate that there should be a strong mantle upwelling prior to extension (Liu and Shen, 

1998). Sonder and Jones (1999) attributed the NBR extension to the combination of potential 

energy forces originated from crustal thickening and asthenospheric upwelling. The role of 

asthenospheric upwelling is not simple in this extension because the timing relations between 

extension and volcanism vary. The NBR extension in some places precedes volcanism, for 

example, >70 km to the north and northeast of the PSZ along the Snake-Stampede detachment 

system, which consists of the Snake Range decollement, Stampede detachment and Seaman 

breakaway fault (Taylor and Bartley, 1992; Axen et al., 1993). In contrast, the syn-volcanic 

extension is identified north of the PSZ within the North Pahroc, Golden Gate, Hiko and 

Highland Peak ranges (Taylor and Switzer, 2001). Post-volcanic extension is documented 

regionally, such as within the Hiko Range, western Timpahute Range, and within and around the 

Meadow Valley southeast of the Pahranagat shear zone (Axen et al., 1993; Scott et al., 1995; 

Switzer and Taylor, 2001). 

Volcanism within the NBR sub-province swept southward through time (Sonder and Jones, 

1999; Henry, 2008; Best et al., 2013a, b). The major phase of volcanism within this part of the 

northern Basin and Range did not start until about Late Eocene-Oligocene (Best et al., 1993; 

Best et al., 2013 a and b). The southward sweep of volcanism ends approximately at the latitude 

of 37o N to 36oN around the PSZ. 
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The PSZ is surrounded by caldera complexes: the centers of the Southern Nevada volcanic field 

to the west, Central Nevada caldera complex to the north, Caliente and Indian Peak caldera 

complexes to the east; and Kane Springs Wash caldera to the southeast. The tuffs within and near 

the PSZ mainly originated from the Central Nevada and Caliente-Indian Peak caldera complexes. 

The radiometrically dated tuffs of the Central Nevada caldera complex have ages between 36.1 

Ma and 18.57 Ma (Best and Christiansen, 1991; Best et al., 2013a and b) and the radiometrically 

dated tuffs which erupted from the Caliente and Indian Peak caldera complexes have ages 

between 36.2 Ma and 18.1 Ma (Best and Christiansen, 1991; Best et al., 2013 a and b). In 

addition, the 14.5 Ma Kane Springs Wash Tuff (Best and Christiansen, 1991; Best et al., 2013a 

and b) is deposited within the PSZ. The Kane Springs Wash Tuff does not appear at the 

northwestern end of the Sheep Range or in the mapped area. The current (Plate 1, Fig. 6) and 

previous geologic maps (Jayko, 2007; Price, in progress MS thesis; Evans, in progress MS 

thesis) of the Pahranagat area including the PSZ show deformation of tuffs as young as 14.5 Ma 

and tuffs as old as 27.57 Ma. Therefore, exposed extension within the PSZ must be middle 

Miocene or younger. 

The direction of least principal stress has changed a few times since the Eocene within the NBR 

(Zoback et al., 1981; Best, 1988; Zoback, 1989; Taylor and Switzer, 2001).  The direction of 

least principal stress changed from NNW to ENE at about 50 Ma to 30 Ma, but the timing of this 

change was not synchronous for the entire western United States (Best, 1988). The change of the 

least principal stress direction started first in the southeastern part of the western United States 

and swept toward the northwestern of the western United States (Best, 1988).  For almost the 

entire Oligocene a NNW least principal stress direction is documented (Zoback et al., 1981; 

Best, 1988). During the Late Oligocene- Early Miocene, a NW to NE direction of least principal 



9 
 

stress is identified; furthermore, a N to E with an average ENE direction is identified for the 

entire Miocene (Zoback et al., 1981; Best, 1988; Axen, 1993; Switzer and Taylor 2001). 

Additionally, during volcanism a 90o change is suggested, at least locally, for the direction of 

least principal stress within the NBR (Best and Christiansen, 1991; Switzer and Taylor, 2001; 

Bidgoli, 2005). 

Rowley (1998) suggested that most transverse zones act as boundaries separating zones of a 

different style, amount, and rate of strain. In other words, they are accommodation zones and/or 

transfer faults. Moreover, related extensional faults are commonly bounded by transverse zones. 

The NBR is well known to have major transverse zones, one of which is the CEZ or Escalante 

zone. The Paharanagat shear zone has been suggested to form the western part of the CEZ 

(Axen, 1998). Transverse zones and the CEZ including the Pahranagat Shear Zone are further 

discussed below.   

CENTRAL BASIN AND RANGE 

The Central Basin and Range extension south of the PSZ is defined by two major zones of 

Neogene extension of the upper crust: The Lake Mead extended domain to the east and the Death 

Valley extended domain to the west (Wernicke, 1992; Wernicke and Snow, 1998).  

Approximately 50 km north of Lake Mead, and east and southeast of the Pahranagat and the 

Sheep ranges, the extended eastern domain includes three detachment faults: The Castle Cliffs, 

Tule Springs and Mormon Peak detachments (Fig. 6) (Bidgoli et al., 2015). The Castle Cliffs 

detachment lies at the eastern boundary of the CBR separating the highly extended region to the 

west from the relatively stable Colorado Plateau to the east. This detachment fault is the oldest 

among the three faults with footwall exhumation evident at 18-17 Ma (Bidgoli et al., 2015). The 

middle detachment fault, the Tule Springs detachment, appears in the Tule Springs Hills (Fig. 6). 
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The relative age of the Tule Springs detachment derived from the cross-cutting relationship 

between this fault and dated Tertiary volcanic rocks suggests that the Tule Springs detachment 

was active from the middle to late Miocene (Axen, 1993; Bidgoli et al., 2015). The Mormon 

Peak detachment must be active at least no earlier than late Miocene.  Recent data (Bidgoli et al., 

2015) suggests that the Mormon Peak detachment was active since 14 Ma. The onset of 

extension among the above mentioned detachment faults decreases from east to west (Bidgoli et 

al., 2015).  

The area north of the Mormon Mountains, prior to 23 Ma, was the site of lacustrine deposition. 

Afterwards, the southward migration of volcanism destroyed the lake environment (Anderson et 

al., 2010). Between 24 Ma and 17 Ma, a block to block change in stratigraphy might indicate an 

early stage of deformation; in addition, about 45o of easterly tilting of blocks followed the 

deposition of the basin assemblage after 14 Ma. 

In the Kane Wash area (Fig. 6), east of the Sheep Range and the PSZ, variations in distribution, 

degree, style, and timing of deformation demonstrate heterogeneous extension (Scott et al., 

1995). In addition, approximately 55o of progressive tilting of the Oligocene-Miocene volcanic 

units is documented to the area northeast of the Kane Wash caldera and north of the Meadow 

Valley Mountains (Scott et al., 1992).  

The above three detachment faults, Castle Cliff, Tule Springs and Mormon Peak, are located in 

an area east of an east-trending zone of magmatic gap or amagmatic zone (Anderson et al., 2010; 

Rau and Forsyth, 2011). This amagmatic zone formed between the southward sweep of 

magmatism from the NBR and the northward sweep of magmatism from the SBR (Axen et al. 

1993; Anderson et al., 2010; Rau and Forsyth, 2011).  Despite the fact that the amagmatic zone 

refers to a zone of no volcanism, it is surrounded by active and young volcanism like the Coso 
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volcanic field to the west (Rau and Forsyth, 2011). Rau and Forsyth (2011) suggested that the 

amagmatic zone and CBR might have melt at depth, but it is expected to be trapped by the low-

angle normal faults (e.g., Castle Cliff, Tule Springs and Mormon Peak detachments) which 

limited surface volcanism.  

The extended western zone of the CBR, southwest of the PSZ, lies in the area between the mildly 

extended Spring Mountain block and the Sierra Nevada normal fault system (Wernicke, 1988; 

Wernicke and Snow, 1998). This zone, north of the Las Vegas Valley shear zone, and west of the 

Sheep Range, includes structures that accommodated extension and approximately 20o eastward 

tilting of the Sheep Range as a result of three high-angle normal faults (Fig. 6) (Guth, 1981). 

This part of the CBR also has detachment faults like the Sheep Range detachment and Hoodoo 

Hills Havoc detachment (Guth, 1981). The area west of the Sheep Range extended about 100% 

since faulting started during the Miocene whereas the area south of the Las Vegas Valley shear 

zone did not extend significantly in the Miocene, and thus the Las Vegas Valley shear zone 

bounded the extending terranes on the south and acted as a transfer fault (Guth, 1981). In 

addition, extension within the area between the Las Vegas Range and the Desert Range is not 

associated with volcanism, intrusion or metamorphism (Guth, 1981).  

The CBR is characterized by two major strike-slip fault zones; the Las Vegas Valley Shear Zone, 

and the left-lateral Lake Mead fault system. The Las Vegas Valley shear zone ends on the 

southeast where it reaches to the Lake Mead fault system. Both the Las Vegas Valley shear zone 

and the Lake Mead fault system are thought to have acted together and compensated the 

localized extension between the Colorado Plateau and the vicinity of the Specter Range to the 

west (Guth, 1981). In addition, recent work (Abdelhaleem, 2015) suggests that the Las Vegas 

Valley shear zone is deformed by younger structures which suggest that it is no longer active. 
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PLIOCENE-QUATERNARY EXTENSION 

Quaternary faults within and around the PSZ at the boundary between the NBR-CBR sub-

provinces were documented previously (U.S Geological Survey and Nevada Bureau of Mines 

and Geology, 2006). However, the spatial distribution and extent of many of these faults need 

closer attention. The activities of the Quaternary faults are essential to better understanding the 

seismicity of the region. The Quaternary faults south of the PSZ, in particular adjacent to the 

MLF, that may have related to the PSZ include the MLF, the Sheep Range fault, Sheep Basin 

fault, Sheep-East Desert Range fault, Coyote Spring fault, Arrow Canyon Range fault, Wildcat 

Wash fault, and Kane Spring Wash fault (Fig. 6). In addition, north of the PSZ the Quaternary 

faults include the unnamed faults of the Badger Valley, Tikaboo fault, Pahroc fault, Dry Lake 

fault, Delamar Mountains fault, and Delamar Valley fault (Fig. 6). 

The spatial distribution of the Quaternary faults is essential to define different extensional 

boundaries. The Sheep Basin fault starts north of the Las Vegas shear zone right at the northern 

end of the Mormon Pass fault and extends toward the northwestern end of the Sheep Range 

(Guth, 1981; Guth, 1990; Anderson, 1999b). The southern portion of the Sheep Basin fault lies 

between the western base of Mule Deer Ridge and the western Sheep Range. The southwestern 

Sheep Range block, south of the Sheep Basin fault between the Mormon Pass fault and the 

Wilde Horse Pass fault dips an average of 20o E (Fig. 6) (Guth, 1981). Contrastingly, the 

northwestern end of the Sheep Range adjacent to the northern part of the Sheep Basin fault dips 

average about 15o east (Plate 1). This change in the dip of the rocks may be accommodated by 

heterogeneous slip along the Sheep Basin fault from the southwestern Sheep Range towards the 

northwestern end of the Sheep Range. 
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The Sheep Range fault lies east of the Sheep Basin fault and east of the Sheep Range. This fault 

strikes north and bounds the north and northwestern part of Coyote Valley. Extending toward the 

north, it probably intersects the east-northeast-striking MLF (Piety, 1996). The Sheep Basin fault 

and Sheep Range fault are suggested to strike north-northeast and north respectively. However, 

previously Piety (1996) and Anderson (1999b) suggested that the Sheep Basin fault veers into a 

northeast strike at the northwestern end of the Sheep Range; this study is in discordance with 

that. I suggest that the Sheep Basin fault may reactivate, cut or terminate into the MLF. 

East and northeast of the Sheep Range fault is the Coyote Spring fault (Fig. 6). This north-

striking fault extends north to the Delamar Mountains. This fault is considered to be a down-to-

the west Basin and Range fault that splits the Delamar Mountains from the northern Sheep 

Range (Anderson, 1999c). Anderson (1999c) referenced to Schell (1981), suggested that this 

fault may merge with the Kane Spring Wash fault, which lies to the south. 

South and southeast of the Coyote Spring fault is the Kane Spring Wash fault. The Kane Spring 

Wash fault is a sinistral northeast-striking fault and is suggested by Ekren et al. (1977) to be part 

of the PSZ. Harding et al. (1992) observed twenty faults including strands of the Kane Spring 

Wash fault and they measured slickenlines on the faults. Fifteen of the faults had components of 

strike-slip and five of the faults had pure-dip slip. Among the faults with strike-slip components 

eight of them show a normal left-lateral slip, however, a few faults have normal right-lateral slip 

(Harding et al. (1992). Furthermore, Harding et al. (1992) showed left-lateral offset of the Kane 

Springs Wash caldera, suggesting that the majority of slip along the Kane Springs Wash fault has 

a sinistral motion. 
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CALIENTE ENTERPRISE ZONE 

Major east-trending lineaments have been mapped within the NBR such as Timpahute lineament, 

Pioche mineral belt, Delamar mineral belt, and CEZ (e.g., Ekren et al. 1976; Ekren et al. 1977; 

Jayko, 1990; Axen, 1998; Switzer and Taylor, 2001). These east-trending lineaments coincide 

with areas of lithologic boundaries, faults, caldera boundaries, ends of ranges and valleys, and 

magnetic interruptions (Ekren et al., 1976; Hudson et al., 1998; Rowley, 1998). The magnetic 

disruptions and anomalies along these lineaments can be related to the juxtaposition of different 

rocks by faulting and plutonic rock intrusions into structures along the lineaments (Ekren et al., 

1976). The CEZ (Fig. 6), an east-northeast trending zone about 220 km long, interrupts north-

south structures of the Basin and Range; this zone either lies directly NE of the PSZ or is 

continuous with the PSZ. 

The CEZ (Fig. 6) is divided into three parts; eastern, central and western. This zone extends from 

the western boundary of the mildly extended Colorado Plateau to its western end at the PSZ. The 

eastern part lies along an east-west trending part of the Colorado Plateau margin; the central part 

coincides with the Caliente Caldera Complex, and the western part coincides with or ends at the 

PSZ (Axen, 1998).   

The CEZ may have originated during late Eocene-early Oligocene extension at the boundary 

between the Stampede detachment system to the north and the inactivity to the south (Axen et 

al., 1993; Axen, 1998) (Fig. 6) or in the Miocene between areas of differential extension between 

the Highland detachment system and high angle normal faults to the north and the Mormon 

Peak-Tule Springs-Castle Cliff detachments to the south. The CEZ probably formed the southern 

boundary of a north trending extensional belt in the NBR (Axen et al., 1993; Axen, 1998).  In 

addition, along the southwestern of the CEZ is a corridor of relatively low extension in the 
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Arrow Canyon Range, northern Sheep Range, southern Delamar Mountains, and Meadow Valley 

Mountains (Wernicke et al., 1988) (Fig. 6).  

A transfer fault model was suggested for the CEZ including the Pahranagat Shear zone (Jayko, 

1990, 2007; Hudson et al., 1998). Hudson et al. (1998), using paleomagnetic data, described and 

interpreted the orientation and variation of rotation in the CEZ; they suggested about 40 km of 

offset along the eastern Caliente-Enterprise zone, between a westward jog of the Colorado 

Plateau and a corridor of high extension in the eastern NBR to the north (Fig. 6). In general, 

rotation and tilting decreases from the east to the west along the CEZ. Within the central part of 

this zone, on the south between the Beaver Dam and Mormon Mountains (Fig. 6), sinistral offset 

decreases as a result of the large magnitude extension and, hence, it helps to reduce the rotation 

and tilting (Hudson et al., 1998). Similarly, farther west near the Kane Springs Wash fault zone 

and the PSZ (Fig. 6) rotation decreases as the offset is accommodated by discrete sinistral faults 

(Hudson et al., 1998).  
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CHAPTER 3 

METHODOLOGY 

About 35 km2 around the southern PSZ including the western part of the MLF and the 

northwestern end of the Sheep Range mapped at 1:12000 scale to obtain spatial, geometric and 

kinematic data.  Standard geologic field techniques using a Brunton compass, topographic base 

map, satellite imagery and hand lens were used in the field. Structural data including planar 

features such as bedding, compaction foliation and fault planes were measured using the Brunton 

compass. The Fieldmove-clino program was used as a portable field geodatabase to store the 

measured data from both compass and Fieldmove-clino.  

Classic three-point problem calculations and the data-layer ArcMap tool, provided for free 

through personal communication with the authors (Kneissl et al, 2010), were used to calculate 

the fault attitudes. Field measurement data such as attitudes of compaction foliations and bedding 

as well as calculated structural data were used to construct cross-sections from the geologic map. 

Stereonet techniques and software (Allmendinger et al., 2014) were used to plot the gathered 

structural data such as faults and folds to determine their orientation and validate the kinematic 

compatibility of the structures.  Rose diagrams were constructed of compaction foliations from 

the different domains of the map area to understand the spatial change in the attitude of the units. 
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CHAPTER 4 

STRATIGRAPHY 

Previous stratigraphic studies were done on the marine deposits that range from Ordovician to 

Devonian in age and Oligocene-Miocene volcanic deposits (e.g. Dolgoff; 1963; Reso, 1963; 

Tschanz and Pampeyan, 1970; Ekren et al., 1977; Jayko, 1990; Best et al., 1993; Byron 1995; 

Jayko, 2007; Best et al. 2013a, b). The marine units include the Ordovician Pogonip Group and 

Eureka Quartzite, and Devonian Sevy and Simonson dolomites (Figs. 7A & B). In addition, an 

unknown carbonate unit crops out within the map area; this unit is highly sheared and brecciated, 

but most likely is Devonian and (or) Silurian in age (e.g., Jayko, 2007). Tertiary-Cretaceous 

sediments also crop out within the mapped area and regionally predate the Oligocene volcanic 

rocks (Tschanz and Pampeyan, 1970; Jayko, 2007). The Tertiary-Cretaceous sediments are in 

fault contact with the Tertiary volcanic rocks in the mapped area. The sequence of the volcanic 

deposits from older to younger includes Monotony Tuff, Shingle Pass Tuff, Leach Canyon 

Formation, Pahranagat Formation, Harmony Hill Tuff, and Hiko Tuff. The approximately 14 Ma 

Kane Wash Tuff (Jayko, 1990, 2007) also is observed within the Paharanagat shear zone, but it 

does not appear within the mapped area.  

PRE-VOLCANIC STRATIGRAPHY 

PALEOZOIC ORDOVICIAN AND DEVONIAN UNITS 

Two units of Ordovician age crop out in the map area: Pogonip Group and Eureka Quartzite. 

Reso (1963) described the Pogonip Group in detail in the Pahranagat Range. He divided the 

Pogonip Group into three limestone units: Lower, Middle, and Upper. The Eureka Quartzite is a 

silica-cemented Quartz sandstone named by Hague (1883).  
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Three members of the Pogonip Group are recognized within the mapped area. The lower and 

middle member are mapped as one unit and the upper member is mapped separately (Plate 1). 

The lower member consists of limestone with abundant chert nodules, and intraformational 

pebble conglomerate with sandy beds; no fossils were found although Reso (1963) indicated 

their presence (Fig. 8 A). The lower part of the middle Pogonip consists of dark gray thin bedded 

limestone with fewer or lack of chert nodules; as well as fossils like gastropods (Fig. 8 B). The 

upper part of the middle Pogonip consists of a thinly laminated layer of olive gray and brownish 

gray limestone (argillaceous limestone) (Fig. 9).  

The argillaceous limestone of the middle member of the Pogonip (Fig. 9) is used as a marker bed 

to separate the middle member from the upper member. In this study, the argillaceous limestone 

was mapped at the top of the middle Pogonip. However, Reso (1963) mapped this argillaceous 

limestone within the lower part of the upper Pogonip. The upper unit of Pogonip consists of dark 

gray limestone, broken shells of various fossils, abundant gastropods and bivalves. Also, a 

relatively a thin strip of the weathered brownish dolomite occurs within the upper part of the 

upper Pogonip unit below the Eureka Quartzite (Fig. 10). 

An undefined carbonate unit within the study area consists of dark gray, medium to fine grained 

dolomite. This unit consists of dark gray, medium to fine grained dolomite where less deformed. 

This unit is highly folded in the middle and intensely brecciated where faulted, particularly on 

the western side where it is in fault contact with Simonson and Sevy formations. No fossils were 

found, but Jayko (2007) assigned it a Devonian and/or Silurian age. I suggest that this unit could 

either belong to Ely-Spring dolomite or Laketown Dolomite, according to stratigraphic order 

around the study area (e.g. Reso, 1963, Tschanz and Pampeyan, 1970). 



19 
 

The Sevy Dolomite consists of yellowish gray phaneritic to aphanitic dolomite with zones of 

brecciated quartz-rich sandstone and/or quartzite (Fig. 11 A). This quartz-rich sandstone either 

belongs to the Oxyoke Canyon Formation (Jayko, 2007) or the uppermost part of the Sevy 

(Reso, 1963; P. 909).  

The Simonson Dolomite overlies the Sevy Dolomite and rests above the rich-quartz sandstone 

mapped as the top of Sevy. The Simonson Dolomite consists of alternating bands of dark and 

light gray color, coarse to fine-grained dolomite (Fig. 11 B). The top of the Simonson Dolomite 

is eroded away within the map area, which makes it difficult to calculate the actual thickness 

from the map. 

TERTIARY-CRETACEOUS SEDIMENTS (TKs)  

The Tertiary-Cretaceous sediments are described by Tschanz and Pampeyan (1970) as one of 

three sedimentary deposits within Lincoln County that unconformably overlie Paleozoic 

formations and are overlain by late Oligocene-Miocene tuffs (Tschanz and Pampeyan, 1970; 

Jayko, 1990, 2007). This unit includes a thick layer of conglomerate ranging from a meter to tens 

of meters thick with clasts of various ages of Paleozoic carbonate and quartzite rocks. Also, it 

includes freshwater limestone. The Tertiary-Cretaceous sediments unconformably overlie the 

Ordovician Pogonip Group within the mapped area. Also, this unit is in fault contact with the 

tuffs as young as 26.4 Ma, the Shingle Pass Formation. 

OLIGOCENE-MIOCENE VOLCANIC STRATIGRAPHY  

The volcanic stratigraphy of Nevada is well described (e.g., Cook, 1965; Best et al. 1993; Best et 

al., 2013a, b) in terms of thickness, origin, age, and distribution (Fig. 7 A). The map area is 

located in an area between the Indian Peak–Caliente caldera complex on the east, the central 
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Nevada caldera complex on the northwest, and the southern Nevada volcanic field on the west. 

The mapped tuffs originated from the central Nevada and the Indian Peak-caldera complexes. 

The Monotony Tuff, Shingle Pass Formation, and Paharanagat Formation (Fig. 7 A) originated 

from the central Nevada caldera complex whereas the Leach Canyon Formation, Harmony Hills 

Tuff, and Hiko Tuff originated from the Indian Peak–Caliente caldera complex (Best et. al., 

2013a, b). 

Each of the ash-flow tuffs in the map area are single cooling units except for the Shingle Pass 

Formation. Best et al. (2013a) divided the Shingle Pass Formation into five units (Sawmill 

Canyon Tuff Member, Egan Tuff Member, Tikaboo Tuff Member, Hancock Tuff Member, and 

Coyote Summit Tuff Member. Within the mapped area only three members are distinguished: 

Lower Shingle Pass Formation is equivalent to the Coyote Summit Tuff Member, Middle 

Shingle Pass Formation is equivalent to the Tikaboo Tuff Member, and Upper Shingle Pass 

Formation is equivalent to the Egan Tuff Member. The extent of the Upper and Middle Shingle 

Pass Formation is consistent with the thickness distribution by Best et. al. (2013a) whereas the 

Lower Shingle Pass extent and distribution is not consistent, but expands it (Fig. 12). 
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CHAPTER 5 

STRUCTURE AND DATASET 

Since Tschanz and Pampeyan’s (1970) work that used apparent offset of units to suggest left-

lateral strike-slip, little detailed work has been done on the structural geometry of the PSZ 

including the MLF. Byron (1995) mapped a small part of the eastern MLF at 1:24000 scale, but 

her map had a limited extent and did not show structural detail on the western portion of the 

MLF. In this study, I mapped the western portion of the MLF at 1:12000 scale. Within the 

mapped area, strike-slip, extensional and local contractional structures were documented. A 

strike-slip duplex was documented in the east-central part of the area that has a combination of 

strike-slip, normal and reverse faults. The duplex faults dominantly strike ENE. Also, three fault 

sets striking NW, N-S, and ENE were mapped around the duplex structure (Fig. 13). The 

mapped area is divided into three domains; domain A is the duplex structure, domain B lies 

north-northwest of the duplex structure, and domain C lies west-southwest of the duplex 

structure (Figs. 14 and 15). 

DOMAIN A (DUPLEX STRUCTURE) 

The duplex structure is located along the MLF in the eastern and central part of the study area 

(Plate 1 and 2; Figs. 14 and 15A1). The duplex extends beyond the mapped area to the east 

where it connects the duplex faults to the master fault or the main strand of the MLF. An 

orthoimage with 1-meter resolution was used to extrapolate the duplex faults and connect them 

to the main strand of the MLF adjacent to the map area.  (Figs. 14 and 15).  

The western end of the MLF is mostly covered by Quaternary deposits and the fault surfaces are 

not commonly preserved. Therefore, other kinematic indicators such as trend of the folds and 
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spatial and temporal change in strike of compaction foliations were used to identify the type of 

motion along the fault zone. The presence of the contractional structures in overall extension and 

significant change in the strike and dip of both bedding and compaction foliation along the 

western MLF are consistent with the ENE-striking faults having components of both strike and 

dip slip. Also, Byron (1995) mapped two strands of the MLF farther east; there, the measured 

slickenlines of the ENE-striking faults show strike-slip, normal-oblique slip, and reverse-oblique 

slip.  

On the north, the duplex is bounded by a sinistral reverse-oblique fault, FB1, which is an ENE-

striking fault, dipping about 75o E (Fig. 15A1).  This fault mostly deforms younger rocks such as 

Oligocene-Miocene tuffs. 

On the south, the duplex is bounded by a sinstral normal-oblique fault, FB2, that strikes ENE and 

dips about 55o W (Fig. 15A1). This fault, from the map, appears to accommodate the maximum 

change of strike of the compaction foliations along strike of the fault (Figs. 15A1, Plate 1). The 

constructed cross-sections along with the stratigraphic relationships were used to obtain the fault 

slip type (Fig. 16, Plate 2). In the footwall of the southern duplex bounding fault is a relatively 

thick sedimentary unit including conglomerate approximately 10 meters thick and freshwater 

limestone. This unit unconformably overlies Ordovician Pogonip Group and underlies 

Oligocene-Miocene tuffs.  

In general, the duplex structure consists of 11 faults including the bounding faults. Among the 11 

faults, only two faults appear to have reverse-slip motion. Reverse faults can coexist with normal 

faults (e.g., Fossen, 2010; Dubey, 2014) and may accommodate extension, particularly parallel to 

the tilted beds. I will explain the kinematics of formation of the local contractional structures in 

the discussion section in Chapter Six. 
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The duplex faults deformed both Paleozoic marine and Tertiary volcanic rocks, and contain folds 

associated with the strike-slip deformation. Four minor folds (I, M1, M2, and N) and two major 

folds were observed within the Paleozoic units (Fig. 15A1). Fold, FDC1 has a plunge and trend 

of 14o, 340o; an axial plane strike and dip of 339o, 86o E, and a 120o interlimb angle (Fig. 15A2). 

Fold, FDC2, which is in contact with the northern domain, has a plunge and trend of 20o, 233o, 

and an axial plane, strike, and dip of 178o, 24o W with a 155o interlimb angle (Fig. 15A2). Also 

due to erosion and faulting, most of the fold crests are not preserved well. Therefore, most of the 

folds are distinguished from the bedding measurements.  

Four minor folds were mapped approximately in the middle part of the duplex structure 

(Figs.15A1 and 17A). Minor fold i trends 194o and plunges 7.8o. This fold is located on the 

northwestern side of fold FDC2. Minor folds m1and m2 are located on the western side of fold 

FDC1 and both trend west, 272o and 287o, and plunge 36o W and 38o W, respectively. 

Contrastingly, minor fold n, which is located at the eastern side of fold, FDC1, trends east about 

076o and plunges 18o E. 

At the southwestern end of the duplex, fold, FDS1 was mapped, and this fold is covered by 

Quaternary deposits. This fold is mapped from the cross section and the field data such as the 

attitude of compaction foliations in the units (Figs. 12 and 16 section CC’; Plate 2). The plunge 

and trend of this fold is 4o, 37o; it has an axial plane, strike and dip of 220o, 53o W with a 124o 

interlimb angle (Fig. 15A2). Also, three sets of minor folds were observed in the footwall of the 

southern duplex bounding fault within the Ordovician Pogonip Group. The minor folds trend N-

S, E-W, and NW-SE (Figs. 15A1 and 17B).  
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DOMAIN B 

This domain is entirely underlain by volcanic rocks, with ages from 27 to 18 Ma, and Quaternary 

deposits (Figs. 14 and 15B1, Plate 1). The youngest exposed rocks are as young as 

approximately 18.5 Ma (Hiko Tuff), but faulted tuffs as young as 14.5 Ma (Kane Wash Tuff) 

occur along the MLF, particularly adjacent to the northern domain and to the east. Therefore, 

domain B and the mapped area contain faults as young as 14.5 Ma or younger. However, no 

Quaternary faults were mapped within this domain. 

Domain B is bounded on the south by ENE-striking faults, and it includes three fault sets that 

strike N-S, NW and ENE (Plate 1; Figs. 14 and 15B1). The N-S striking fault set cuts the NW-

striking fault set, and the ENE-striking fault set both cuts and is cut by the N-S striking fault set 

(Figs. 13 and 15B1). The ENE-striking faults cut rocks as young as Hiko Tuff.  

Two main faults compose the ENE-striking fault set in domain B: FN1 and FN4. FN1 is non-

planar along strike and FN1 dips 75o W; the cross-section shows 38 m of throw and 7 m of heave 

(Fig. 16, Plate 2). This fault accommodates a significant change in the strike and dip of the 

compaction foliations of the hanging wall along the fault strike. In the hanging wall of this fault 

along strike, the dip magnitude changes from 40o to 12o E (Fig. 15B1; Plate 1). This 

characteristic of the change of dip of the hanging wall and the presence of a fault tip at the north 

end of the fault are compatible with a hybrid or rotational fault in which the dip of the hanging 

wall changes along a fault strike. FN4 dips 70o W shows 75 m of throw and 26 m heave (Figs. 

15B1 and 16, Plate 2).  

The N-S striking fault set mostly dips 50 to 65o W and the faults are non-planar along strike. 

Like the ENE-striking faults, the hanging wall strike and dip of compaction foliations changes 
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along strike of the N-S striking faults. Therefore, it’s most likely that the N-S striking fault set 

may have a combination of strike and dip-slip motion.  

 In contrast, the NW-striking fault set is relatively planar along strike and does not show 

significant change in strike and dip of the hanging wall units along the fault strike. Thus, it seems 

that the NW-striking fault set has a smaller component of strike-slip and may have dominant dip-

slip motion. The NW-striking fault set dips about 75o to 80o W (Figs. 14, 15B1 and 16).  

Two faults (X and Y) were mapped based on the orthoimage and unpublished map of Taylor 

(2015, personal communication) (Figs. 13 and 14). I have no conclusive data to suggest whether 

fault X has a strike-slip component. In contrast, Fault Y as mapped by Taylor (2015, personal 

communication) north of the mapped area, does have horizontal slickenlines which indicate that 

fault Y has a component of strike-slip motion.  

Five folds were mapped within this domain. Fold E lies among the N-S striking fault, FN5 and 

an ENE-striking fault adjacent to the northern duplex bounding fault, FB1, and an inferred fault 

(Fault X). This fold has a plunge and trend of 2o, 349o an axial plane strike and dip of 181o, 11o 

W, and an interlimb angle of 152o (Fig. 15B2). This fold formed oblique to both faults the ENE-

striking fault adjacent to the fault, FB1and sub-parallel to the fault FN5. These spatial and 

geometric relations may suggest that this fold is either associated with a strike-slip deformation 

in which folds formed oblique to the extension direction or this fold formed as a drag fold in the 

hanging wall of fault FN5 (Fig. 15 B1). The other four folds (A, B, C, and D) are formed either 

as longitudinal (drag) or transverse folds parallel, sub-parallel or perpendicular and oblique to the 

fault strikes (Plate 1; Figs. 14 and 15B1). In addition, some of the folds may have formed due to 

volume change between faults at depth. Detailed descriptions of formation of the folds are found 

in Chapter Six. 
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DOMAIN C 

This domain mainly exposes Paleozoic and Quaternary units but does contain three volcanic 

units (Plate 1; Figs. 14 and 15C). The Paleozoic units include the Ordovician Pogonip Group and 

Ordovician Eureka Quartzite. The Quaternary deposits consist of two units: An older bedded 

Quaternary unit that dips 5 to 15o E or W and the younger Quaternary unit that consists of non-

bedded, unlithified poorly sorted sediments.  The volcanic units include Shingle Pass Formation, 

Harmony Hills Tuff and Hiko Tuff. 

Domain C contains three fault sets that strike N-S, ENE, and NW. The N-S striking fault set cut 

rocks as young as Hiko Tuff. One NW-striking fault is mapped within this domain (Figs. 14 and 

15 C). This fault, FS3, dips about 80o W and is located in the eastern part of this domain. The 

calculated net slip for fault FS3 is 9 m of throw and 2 m heave (Fig. 16, Plate 2).  

An ENE-striking fault, FS7, was mapped in the western part of this domain within the 

Ordovician Pogonip Group (Figs. 14 and 15C). This fault dips about 80o E and is cut by N-S 

striking fault FS5. A horizontal stylolite parallel to the strike of the fault requires that the 

maximum principal stress was vertical when the stylolite formed (Fig. 18). The rocks dip 10o to 

12o E in the footwall while the dip in the hanging wall is 6o to 8o W. Such data suggest a slightly 

concave down (anti-listric) fault if it is a normal fault. 

MEAN DIRECTION OF STRIKE OF COMPACTION FOLIATIONS 

Oligocene-Miocene volcanic units north of the duplex in domain B are divided into three parts; 

east, central, and west (Fig. 19).  Compaction foliations were measured in all of the units: 

Shingle Pass Formation, Harmony Hills Tuff, and Hiko Tuff.  Rose diagrams of strikes of 

compaction foliations were constructed for individual units according to their distance along the 

MLF zone.  All three Shingle Pass members were plotted together because of their similarity in 



27 
 

age. The Hiko Tuff from east to west shows a mean strike of compaction foliations of 275o ± 13o, 

348o ± 13o, and 307o ± 18o in each of the three parts of this domain respectively (Fig. 19). The 

Harmony Hills Tuff from east to west shows a mean strike of compaction foliations 280 o ± 18o, 

352o ± 11o, and 331o ± 8o, respectively. The Shingle Pass Formation from east to west has a 

mean strike of compaction foliations of 327o ± 8o, 360o ± 16o, and 341o ± 10o, respectively (Fig. 

19). All of these values correspond well with one of the three different mapped fault strikes in 

this domain. 

The constructed rose diagrams show two types of relations; temporal and spatial relationships 

(Table 4, Fig. 19). Temporally, all compaction foliations strike change anticlockwise consistently 

in between approximately 26 Ma and 18.5 Ma for all locations; east, center and west. In addition, 

spatially, a very strong relationship was noticed between mean vector of strike of compaction 

foliations within the center and west regions (NNW) which distinguishes them from those in the 

east that have more westerly mean vector of strike of compaction foliations, closer to the duplex 

structure. 
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CHAPTER 6 

DISCUSSION 

FOLDS AND REVERSE FAULTS 

Contractional features such as folds and reverse faults are expected within the compressional 

tectonic regime; however, folds and reverse faults can exist within extensional regions, which are 

associated with normal and strike-slip faults (Becker, 1995; Schlishe, 1995; Graseman et al., 

2005; Fossen, 2010; Dubey, 2014). The spatial distribution, arrangement, and attitude of the 

folds are of interest of this study to test the kinematic compatibility of structures in the studied 

area. Hence, I briefly point to the types and origin of folding within extensional regions. Folds in 

extensional regions can form in different ways and can be explained in different ways such as 

drag folds (Fig. 20A) including normal and reverse drag (Fig. 21), fault-propagation fold 

associated with normal and strike-slip faults, folds that accommodate changes in volume with 

depth (Fig. 22) and en echelon folds associated with strike-slip deformation. Drag folds have 

various interpretations through time. Some authors used the term drag folds as one type of fault-

related fold (Sylverster, 1988; Becker, 1995; Schlische, 1995). In this study, I follow Schlische 

(1995) and divide the fault-related folds into longitudinal (drag) and transverse folds. A fold is 

longitudinal or drag (normal and reverse drag) if the fold hingeline forms parallel or sub-parallel 

to the strike of the fault (Fig. 20A) and a fold is transverse if the fold hingeline forms 

perpendicular to the fault strike (Fig. 20B) (Schlische, 1995). Hamblin (1965) discussed the 

formation of reverse drag relative to listric normal faults; In contrast, other authors (King et al., 

1988; Gibson et al., 1989; Ma and Kusznir, 1993; Reches and Eidelman, 1995; Schlische, 1995; 

Grasemann et al., 2003; Graseman et al., 2005) argued that a listric normal fault is not a 

prerequisite to forming a reverse drag fold. In the case of normal drag, the anticline forms in the 
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footwall and the syncline forms in the hanging wall (Fig.21A). In contrast, with reverse drag, the 

anticline forms in the hanging wall and the syncline forms in the footwall (Fig. 21B).  

Grasemann et al. (2005) associated the formation of normal and reverse drag folds with the dip 

angle of the faults whereas Schlische (1995) explains that reverse drag forms when displacement 

decreases with distance from the fault surface. The Grasemann et al. (2005) model showed that 

in the case of a steeper normal fault a normal drag fold is likely to form; in contrast, a relatively 

shallower dip angle can form a reverse drag fold (Fig. 21). Transverse folds form as a result of 

fault displacement variations along strike (Fig. 20B) (Schlische, 1995). 

 The mapped area contains en echelon, longitudinal and transverse folds. Folds B and E within 

domain B may have formed as longitudinal folds parallel or sub-parallel to the N-striking fault 

set. Fold E is an anticline in the hanging wall of fault FN5 and fold B an anticline on the hanging 

wall of fault FN7. On the other hand, folds A and C may have formed as transverse folds that 

formed nearly perpendicular to the ENE and N-striking fault sets, respectively (Figs. 14 and 15). 

Contrastingly, fold C may have formed among faults with different attitudes to accommodate 

changes in volume with depth (Fig. 20). 

En echelon folds form as a series of overlapping folds parallel to each other and oblique about 

45o to the extension direction. Examples of en echelon fold may be folds FDC1 and FDC2 within 

domain A (Fig.15A1). However, en echelon fold may appear as drag folds where they rotate 

along the strike-slip faults (Sylvester, 1988 referenced to Moody, 1973) but the kinematics of en 

echelon folds is very different from the drag folds (Sylvester, 1988). 

Folds can be used to determine direction and sense of slip within fault zones (e.g. Sylvster, 1988; 

Becker, 1995).  An anti-clockwise spatail change in fold axis orientation was documented within 

domains A and B. The folds within domain B are interpreted to form as fault related folds that 
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accommodate change in volume with depth or drag folds, and folds within  domain A are 

interpreted to form either as drag fold or as en echelon folds. The anti-clockwise change in fold 

axes orientation is compatible with the left-lateral motion of the MLF zone, which is consistent 

with the mapped left-lateral apparent offset. 

Reverse faults can coexist with  normal faults. The  geometry and charactersitics of such reverese 

faults are described by Fossen (2010) and Dubey (2014). One  such situation can occur when 

earlier faults are tilted by later faults in a progressive deformation (Fig. 23). Faults mostly evolve 

into more fault segments as either  the hanging wall or the footwall collapses. This hanging wall 

or footwall collapse may cause  rotation and tilting of previous faults. Therefore, faults that 

formed earlier as normal faults may appear as a reverse fault due to more rotation and tilting of 

the beds and faults  through  the evolution of the normal fault system with time (e.g., Fossen, 

2010; Dubey, 2014).  

The duplex along the  MLF contains both normal and apparent reverse faults despite the fact that 

the duplex lies in a transtentional bend. Two of the reverse faults were mapped within the duplex 

adjacent to the northern duplex bounding fault (Figs. 15A1 and 23A). Faults inside the duplex 

are controlled by the bounding faults rather than the regional stress field. Therefore, the 

bounding faults should form first, and eventually faults inside the duplex start to form. As the 

duplex grows, it causes rotation and tiliting of the beds and faults inside the duplex (Fig. 23). As 

a result, faults that formed as an early normal fault may be tilted and appear as a reverse fault in 

later stages (Fig. 23), which suggests that the apparent reverse  faults accommodated extension 

rather than compress ion within the duplex. 
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DEFORMATION STYLE 

The kinematics and geometrical relationship between a strike-slip fault zone and the arrangement 

of faults and folds within it are explained experimentally by the concepts of pure and simple 

shear deformation (Sylvester, 1988). The mechanism of pure shear deformation was first 

described by Anderson (1905). Normal faults and extension fractures will form perpendicular to 

the extension axis, and reverse faults and folds will form perpendicular to shortening axis (Fig. 

24). In this case, a conjugate set of complementary sinistral and dextral strike-slip faults may 

form. It’s important to fulfill the requirements of pure-shear deformation that the two conjugate 

sinistral and dextral strike-slip faults occur simultaneously and have similar amounts of offset 

(Sylvester, 1988). Therefore, the conjugate faults in pure shear deformation can only 

accommodate irrotational bulk strain (Sylvester, 1988). A space problem or gap will occur if the 

two conjugate sets of sinistral and dextral strike-slip faults do not act simultaneously. This gap 

and space problem can be solved only by rotation and alternating differential slip on each of the 

conjugate faults.  

An alternative model to pure shear deformation is simple shear deformation (Fig. 24). Simple 

shear is rotational. Thus, it has a monoclinic symmetry of strain and it includes a greater variety 

of structures than pure shear (Sylvester, 1988). In the case of simple shear, the extensional 

fractures and normal faults form at an oblique angle to the shortening axis. Also, the folds and 

reverse faults will form at an oblique angle to the principle deformation zone (i.e., the strike-slip 

fault) (Fig. 24A). Furthermore, synthetic and antithetic (R and R’) Riedel shear fractures form at 

low and high angle to the principle deformation zone, respectively (Fig. 24). 

The PSZ includes three east-northeast-striking parallel or sub-parallel sinistral strike-slip faults 

that accommodate approximately east-west extension (Tschanz and Pampeyan, 1970; Jayko, 
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1990; Byron, 1995). To answer the question whether the PSZ experienced simple shear 

deformation, pure shear deformation or a combination of both is challenging. It’s important to 

understand the geometric relationship, arrangement, and distribution of the extensional and 

contractional structures within the PSZ and the timing and kinematics of the adjacent structures. 

In the northern PSZ, near the Arrowhead Mine fault, Evans (2016 MS in progress) documented 

three fault sets: NW-striking normal faults, NNE-striking normal faults and the ENE-striking 

sinistral strike-slip Arrowhead Mine fault. In the southern PSZ near the MLF (this study), three 

fault sets were mapped: NW-striking normal, N-S striking normal, and an ENE-striking oblique 

and strike-slip fault set, which is the MLF. Contractional features such as folds in the PSZ trend 

N-S, NW-SE, and SW-NE (this study). Jayko (2007) mapped a few NE-trending folds in the 

middle part of the PSZ in the vicinity of the Buckhorn fault. Additionally, transtentional strike-

slip duplex structures were mapped within the MLF zone and the Arrowhead Mine fault (Evans, 

2016 MS in progress; this study) (Figs.13A1 and 23). Approximately, 10o-15o rotation (Axen, 

1998; Hudson et al., 1998) and 40o-50o tilting (Hudson et al., 1998; this study) were identified 

for the western part of the CEZ including the PSZ and MLF zone based on the paleomagnetic 

data.  

The two end member laboratory based and theoretical concepts of simple and pure shear 

deformation are applied to a homogeneous medium. However, a heterogeneous medium is 

common in nature. Most people agree that strike-slip deformations occur due to simple shear 

deformation, but formation of duplexes, bends, or stepovers within strike-slip deformations can 

generate internal deformation which might cause rock volume change, uplift in the case of a 

transpressional duplex or subsidence in the case of a transtentional duplex. Therefore, 

deformation can occur heterogeneously along strike of the strike-slip zones; simple shear 
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deformation can occur dominantly within less complex strike-slip zones and a combination of 

pure and simple shear may occur within strike-slip duplexes (Fig. 25).  

By comparing the PSZ with the simple and pure shear models, it can be inferred that the PSZ 

experienced simple shear deformation and/or a combination of simple and pure shear 

deformation as follows: (1) The absence of a well-defined conjugate set of strike-slip faults with 

a similar magnitude of offset refutes pure shear deformation. (2) The arrangement of extensional 

features such as normal faults and contractional features such as folds within the PSZ and MLF 

area support simple shear deformation. (3) The existence of tilting and rotation documented in 

the vicinity of the PSZ implies that deformation occurred as a result of simple shear. (4) 

Contrastingly, the presence and geometries of duplex structures in the northern and southern PSZ 

along the MLF and Arrowhead Mine fault zones suggest that they may have accommodated a 

slight rock volume change; thus, a simple shear deformation with a component of pure shear can 

happen at the vicinity of the duplex structures. The above observations imply that deformation is 

heterogeneous within the MLF zone; combined simple and pure shear deformation may have 

occurred dominantly within a restricted region (duplex zone) and simple shear deformation may 

have occurred across other regions. 

TRANSFER ZONES 

The heterogeneous distribution of slip on individual normal faults can cause segmentation of 

extended terranes (Faulds and Varga, 1998). Extended terranes can be partitioned into regionally 

extensive domains of uniformly and/or oppositely dipping normal fault systems that are 

associated with tilt-block domains (Stewart, 1980; Faulds and Varga, 1998). The asymmetry of 

the extended terranes is known from geologic data such as geologic maps, cross-sections, 

isopach maps and geophysical data such as seismic reflection profiles and gravity data (Faulds 
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and Varga, 1998). In general, all normal faults systems have to terminate along and across strike 

either as transfer zones or accommodation zones (Faulds and Varga, 1998).  Accommodation 

zones consist of zones of overlapping fault terminations that can separate either uniformly or 

oppositely dipping normal faults; the fault systems can strike parallel, oblique, or perpendicular 

to the extension direction. Contrastingly, transfer zones are defined as discrete zones of strike-

slip or oblique-slip faulting striking parallel to the direction of extension. Transfer faults 

accommodate strain transfer between extended domains. In transfer zones, both strike-slip and 

oblique-slip faults are closely linked kinematically with major normal fault systems. Transfer 

zones connect spatially different loci of extension along strike that may have variations in both 

magnitude and sense of motion. In addition, local normal and reverse faults may form in the 

vicinity of releasing and restraining fault bends (Faulds and Varga, 1998).  

Within the mapped area along the MLF and in the northern PSZ along the Arrowhead Mine 

fault, ~N-striking normal faults terminate at ENE-striking strike-slip and oblique-slip faults that 

are most likely parallel or sub-parallel to the extension direction (Evans, 2015; this study). 

Consequently, I suggest that the MLF is a transfer fault and PSZ is a transfer zone spatially 

connecting different loci of extension.  

East and west of the PSZ lie two different extensional domains with different ages, locations, and 

magnitudes of extension. On the east is the extensional domain, the Mormon Peak-Tule Springs-

Castle Cliffs detachments that was active from 18 Ma to ~7 Ma (Axen, 1993; Bidgoli et al., 

2015).  On the west is pre-volcanic (Oligocene) extension in the vicinity of the Jumbled Hills 

(Jayko, 1990) and a younger extensional domain along the Sheep Range detachment system that 

was active since early Miocene (Guth, 1981, 1990; Axen et al., 1993). A less extended region in 

the Meadow Valley Mountains and the Sheep Range occupies the area between the two extended 
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regions (Fig. 6). Extension starts earlier west of the PSZ, about middle Oligocene, and was active 

into the latest Miocene or Pliocene to present; in contrast, extension starts later, probably late 

Miocene, east-southeast of the PSZ (Jayko, 1990; Axen et al., 1993; Bidgoli et al., 2015).    

Therefore, the PSZ including the mapped area appears to be a transfer zone that connects two 

different extensional domains: the domain of the Mormon Peak-Tule Springs-Castle Cliffs 

detachments on the east and the Sheep Range detachment system on the west (Fig. 6) (Liggett 

and Ehrenspeck, 1974; Jayko, 1990: Evans, 2015; this study).  This interpretation is consistent 

with previous models that proposed the PSZ formed as a result of east-west differential crustal 

extension ( Ligget and Ehrenspeck, 1974). 

TIMING OF DEFORMATION 

Cenozoic extension in the western United States took place episodically. The Basin and Range 

physiographic province within the western US is related to the latest stage of the Cenozoic 

extensional tectonic evolution, called Basin and Range extension and occurred at < 10 Ma 

(Zoback et al., 1981). This last stage of the extension is distinguished from the earlier Cenozoic 

extension based on an angular unconformity, change in structural configurations such as 

differences in fault strikes and spacing, and chemistry of magmatism such as basaltic magmatism 

(Zoback et al., 1981; Taylor and Switzer, 2001).  

Taylor and Switzer (2001) previously used a change in fault strike as a proxy for the change in 

regional stress field. Their interpretation from the fault strike was compatible with other studies 

(Zoback et al., 1981; Best, 1988; Axen, 1993). Fault strike is not a very sensitive indicator of the 

principal stress directions (Taylor and Switzer, 2001), but given the limited availability of 

kinematic indicators, fault strike can be used as a second alternative. Fortunately, local and 

regional studies around the PSZ previously documented a change in regional field stress 
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particularly, the direction of least principal stress adjacent to the PSZ (Zoback et al., 1981; Best, 

1988; Axen, 1993; Hudson et al., 1998; Switzer and Taylor 2001).  

Three sets of faults striking NNW, N-S, and ENE were identified within the southwestern part of 

the PSZ and the mapped area. The regional least principal stress direction was documented to be 

approximately ENE for most of Miocene (Best, 1988) which is compatible with the NNW-

striking normal fault set. The NNW-striking normal fault set is cut by the ENE and N-S striking 

fault sets, and so, it is the earliest fault set. Additionally, an E-W least principal stress direction 

documented after 10 Ma (Zoback et al., 1981) is consistent with the N-S-striking normal fault 

set. The ENE-striking strike-slip fault set cut and is cut by the N-S striking normal fault set, 

which suggests that they are synchronous. Importantly, rocks as young as 18-15 Ma are cut by 

the faults. Thus, the timing of strike-slip deformation within the MLF and PSZ initiated in late 

Miocene or later according to the mapped cross-cutting relationships and regional stress field 

direction.  In addition, geostatistical analysis of compaction foliations that shows different 

patterns of strike and dip for tuffs <22 Ma relative to tuffs as old as 26.5 Ma (Fig. 19) is 

consistent with the fault sets and map cross-cutting relationships. Furthermore, the Quaternary 

fault scarp documented within domain C implies a Quaternary deformation within the MLF zone 

and the PSZ.   

The timing and sequence of deformation within the PSZ including the MLF can be explained 

according to the data from this study and regional works around the PSZ as follow: 1.  Pliocene 

to Quaternary deformation is shown by the Quaternary fault scarp mapped within the studied 

area. 2.  Mid-Miocene to Pliocene deformation is documented by N-S and ENE-striking fault 

sets 3. Early middle Miocene deformation is documented by NW-striking normal faults which 

cut rocks as young 22 Ma and are cut by the N-S and ENE-striking slip fault sets. 
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CHAPTER 7 

CONCLUSIONS 

The timing and loci of extension in the Basin and Range sub-provinces are variable and the 

structural style includes transfer zones and accommodation zones. Some of the crustal 

adjustments necessitated by these differences occur along the boundary between the NBR and 

CBR especially strike-slip zones such as the PSZ and CEZ. The PSZ contains three sinistral 

strike-slip faults including the MLF. Based on the new map data in 35 km2 of the western portion 

of the MLF and published regional works; this study constrained the timing of deformation, 

structural style and kinematic compatibility of the structures in the western MLF zone. The fault 

geometry, kinematics, and local and regional geologic events within the NBR-CBR sub-province 

boundary, in particular within the PSZ and MLF suggest the following interpretations. 

1. A left-lateral motion is confirmed for the western MLF based on the orientation of the 

folds and apparent unit offsets within the MLF zone and previous studies of the eastern 

MLF zone. 

2. The current data show that the MLF continues WSW towards the Desert Range through 

an extensional strike-slip duplex. This duplex suggests heterogeneous deformation 

occurred along the MLF zone. The MLF deformation is dominated by simple shear. 

3. The origin of contractional features such as apparent reverse faults within the extensional 

duplex structure is explained by progressive development with tilting and rotation of the 

early formed faults within the duplex. The apparent reverese faults formed as normal 

faults and were tilted during progressive deformation. 

4. The PSZ including the mapped area appears to be a transfer zone that connects two 

different extensional domains: the domain characterized by the the Mormon Peak, Tule 
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Springs, and Castle Cliffs detachments on the east and the Sheep Range detachment 

system on the west. In addition, the fault geometry within the PSZ including the MLF 

and Arrowhead Mine fault is compatible with a transfer fault model. Therefore, the PSZ 

demonstrates a SW continuation of the left-lateral motion of CEZ. 

5. The current data show that deformation within the PSZ post-dates volcanism, which 

supports previous studies around the PSZ. In addition, at least three episodes of 

deformation are documented within the MLF zone:  

A. Pliocene to Quaternary deformation documented by the Quaternary fault scarp 

exposed within domain C.  

B. Late Miocene to Pliocene deformation is documented from the cross cutting 

relationship between fault sets in which the N-S and ENE strike fault sets cut the 

NW strike fault set.  

C. Early middle Miocene deformation is documented by the NW-striking fault set 

and rose diagrams of strike of compaction foliations.  

6. Pliocene-Quaternary deformation along the MLF, shown by a fault scarp in Quaternary 

deposit is compatible with the Quaternary faults within and around the PSZ and the seismicity of 

the region. Therefore, the MLF is part of the active tectonic regime.  
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Figure 1. The Pahranagat shear zone and NBR-CBR boundary zone. 

The Pahranagat shear zone is located along the boundary zone of the Basin and Range sub-provinces. 

CBR: Central Basin and Range. NBR: Northern Basin and Range. NWBR: Northwestern Basin and 

Range SBR: Southern Basin and Range. CCC: Caliente Caldera Complex. SNVF: CP: Colorado Plateau. 

PSZ: Pahranagat shear zone. Southern Nevada Volcanic Field.
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Figure 2. Bouguer gravity map. 

The gravity signatures vary among the sub-provinces with a low gravity value in the NBR, a high gravity 

value in the SBR, and a change of gravity from low to high within the boundary zone between the NBR & 

CBR. BR: Basin and Range. CBR: Central Basin and Range. NBR: Northern Basin and Range. NWBR: 

Northwestern Basin and Range SBR: Southern Basin and Range.  CP: Colorado Plateau. PSZ: Pahranagat 

shear zone. Gravity data downloaded from http://gis.utep.edu/subpages/GMData.html. 

NWBR 

http://gis.utep.edu/subpages/GMData.html
http://gis.utep.edu/subpages/GMData.html
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Figure 3. The patterns of magmatism and the amagmatic zone. 

Timing of magmatism varies among the Basin and Range sub-provinces; the large arrows show migration 

of magmatism southward in the Northern Basin and Range (NBR) and northward in Southern Basin and 

Range (SBR). AMZ shaded region shows amagmatic zone. Contour lines represent isochrons of volcanic 

centers in Ma after (Rau and Forsyth, 2011). Other abbreviations in Figures 1 and 2.
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Figure 4. Major faults within the PSZ and location of the mapped area. 

Shaded relief map showing the PSZ and major faults in Pahranagat shear zone. Studied area shown by the 

ruled pattern. AMF: Arrowhead Mine Fault. BF: Buckhorn Fault Zone. MLF: Maynard Lake Fault.

Sheep Range 
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Figure 5. Regions of active seismicity. 

Notice that the locations of the amagmatic zone (AMZ), NBR to CBR boundary zone, and Pahranagat 

Shear Zone (PSZ) coincide with the Southern Nevada Seismic Belt. The size of the green dots represents 

magnitude of earthquakes. SNSB: Southern Nevada Seismic Belt. WFZ: Wasatch Fault zone. NASB: 

Northern Arizona Seismic belt. ECSZ: East California Shear Zone. CNSB: Central Nevada Seismic Belt. 

Earthquake data taken from USGS earthquake database.
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Figure 6. Simplified regional geologic map from the USGS 1:500000 scale (Stewart, 1978). 

Shows the Pahranagat shear zone (PSZ) faults and other structures around the PSZ. The location of the structures is taken from (U.S. Geological 

Survey, Nevada - Nevada Bureau of Mines and Geology, 2006; Guth, 1990; Hudson et al. 1998; Axen, 1998; Petronis et al., 2014; Bidgoli et al., 

2015). Approximate age of extension areas taken from Axen et al., (1993). CEZAreas of Caliente-Enterprise zone where most previous authors 

positioned it with; CEZ? Areas of CEZ where some authors positioned it. TMR: Timpahute Range. SR: Sheep Range, MMT: Mormon 

Mountain, TSH: Tule Springs Hill, LVR: Las Vegas Range, SPTR: Spotted Range. EDR: East Desert Range, PR: Paharanagat Range, NPR: North 

Pahranagat Range, EPR: East Pahranagat Range SPHR: South Pahroc Range, NPHR: Northern Pahroc Range, SMR: Seaman Range, PWR: 

Pintwater Range, DMT: Delamar Mountains.
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Figure 7 A. Stratigraphic columns of volcanic units. 

Thicknesses are measured from the current geologic map were applicable; Ages of volcanic units and modal phenocryst percentage are derived 

from Best et. al. (1993) and Best et al. (2013a and b).
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Figure 7 B. Stratigraphic columns of marine and volcanic units. 

Stratigraphic column for the volcanic units. B. Stratigraphic column for the pre-volcanic sedimentary units. Thicknesses are measured from the 

current geologic map were applicable; ages of marine deposits were taken from Reso (1963).
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Figure 8. Lithology of Lower and Middle Pogonip Group. 

A. lithology of the Lower Pogonip Group. Notice the abundance of chert nodules. B. Shows the lithology 

of the lower part of the middle member of the Pogonip Group. Notice the abundance of fossils.

A B 
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Figure 9. Lithology of the Middle Pogonip Group. 

Shows the lithology of the upper part of 

the middle member of the Pogonip group.
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 Figure 10. Lithology of the Upper Pogonip Group. 

 Notice the brownish dolomite strip within the limestone of the Upper member (outlined); the top brownish color is Eureka Quartzite. 
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Figure 11. Lithology of Simonson and Sevy dolomites. 

A. Dark grey dolomite within the upper part of Simonson Formation. B. Brecciated quartz-rich sandstone 

and/or quartzite in the upper part of the Sevy Dolomite and base of the Simonson Dolomite.

A 

B 
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Figure 12.  Isopachs of Shingle Pass Formation. 

Stratigraphic thicknesses (in meters) and distribution of the Shingle Pass Formation including all three 

members. Notice the dashed red line shows the adjusted extent of the Lower Shingle Pass Formation 

(Modified from Best et. al., 2013a).
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Figure 13. Fault set map. 

This figure shows the different strikes of the fault sets mapped. Yellow lines refer to the N-S-striking fault 

set: Green lines refer to the NW striking fault set: Purple lines refer to the ENE-strike fault set.

X 

Y 
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Figure 14. Geologic map of the western Maynard Lake fault. 

Index map show locations of domains A, B, and C. For detail description of the units refer to Plate 1 in 

Appendix 1.  The blue dotted lines represent faults that were extrapolated based on 1-meter resolution 

ortho-imagery. Refer to Plate 1 for the detailed map at 1:12000 scale.
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Figure 15. Structural domains and stereographs of folds. 
A1. Geologic map showing units and structures of domain A. Triangles indicate intensely brecciated 

areas. A2. Plotted stereographs of folds: FDC1, FDC2 and FDS1. B1. Geologic map showing units and 

structures of domain B. B2. Plotted stereograph of folds: A, B, C, D and E.  

C. Geologic map shows units and structures of domain C. Refer to Appendix 2 for the fold data.

C 
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Figure 16. Geologic cross-sections.  

Cross-sections AA’, BB’, and CC’. Locations of the section lines are plotted in figures 13 and 14, and 

plate 1.

Meters 
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Figure 17. Rose diagrams of the trend of the fold axes of minor folds. 

(A). Shows rose diagram of the fold axis trend of minor folds i, m1, m2, and n which are approximately 

in the middle of the strike-slip duplex.  (B). Shows rose diagram of trend of fold axes for the minor folds, 

i, j, k, h, g, e1, e2, f1, and f2 which are adjacent to the southern boundary of the strike-slip duplex. Notice: 

clockwise change of the minor fold axis southeast of the strike-slip duplex structure. The locations of the 

folds are shown on Figure 15A1. Also, the geographic coordination values are given in Table 3. 

(A) (B) 
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Figure 18. ENE-striking fault surface within domain C.  

Notice the formation of the stylolite parallel to the strike of the fault. The maximum principal stress 

direction is inferred from the formation of the stylolite. Maximum principal stress needs to be vertical to 

form a horizontal stylolite.
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Figure 19. Structural map and spatial distribution of compaction foliation of different ages. 

A. Structural map shows faults and locations of compaction foliations that were used to construct rose 

diagrams. B. Rose diagrams show change in the strike of the compaction foliations from the eastern side 

of the map area towards western side. Tsp: Shingle Pass Formation, Thh: Harmony Hills Tuff, Th: Hiko 

Tuff. The y-axis represents age of units, and the x-axis represents distance from the eastern side of the 

map area towards the western part of the map area. Notice temporally, all compaction foliations strike 

changes anticlockwise consistently in between approximately 26 Ma to 18.5 Ma for all locations; east, 

center and west of study area. The stars refer to the eastern map area, diamonds refer to the central central 

map area, and triangles refer to western map are

A 
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Figure 20. Longitudinal and transverse fold. 

A. Shows the formation of a longitudinal drag fold parallel to the fault strike. B. Shows the formation of a 

transverse drag fold perpendicular to the fault strike (After Schlische, 1995). 

 

Figure 21. Geometry of longitudinal drag folds. 

A. Normal drag fold along a relatively low-angle normal fault.  Notice formation of a syncline in the 

hanging wall and an anticline in the footwall. B. Reverse drag fold along a relatively high angle normal 

fault. Notice formation of an anticline in the hanging wall and a syncline in the footwall (Modified from 

Grassman et al., 2005)

A B 

A 
B 



64 
 

 

Figure 22. Cartoon model showing a fold formed between fault-sets with different strikes. 

The formed drag fold is a transverse fold if it’s made by the north-striking fault and the drag fold is a 

longitudinal fault if it’s formed by the ENE-striking fault. The fold may also be a result of a downward 

decrease in rock volume between the faults, which requires local shortening. Note: Usually longitudinal 

and transverse drag folds can be distinguished from the cross-section if it’s formed by a single and/or 

uniform fault strike trend, also, they are easily distinguished in the map view. 

 

 

 

 

 

 

 

 

 

 

 



65 
 

Figure 23.Explains coexisting reverse faults within extensional regions.  

A: Geologic map shows locations of faults FC4, FC5, FC6, and FC7. Also, it displays tilting and rotation 

as the strike of the bedding changes in the vicinity of faults, FC4, FC5, FC6, and FC7. B1. 2D model 

shows final stage of the formation of the apparent reverse faults in a normal fault system. B2: 2D model 

that explains stages in formation of the reverse fault among the normal faults (After Fossen, 2010). Notice 

that with time as the beds are tilted and rotated, the faults which formed as a normal will become revers 

faults. C. Geologic cross-section BB’ shows the duplex structure containing both normal and apparent 

reverse faults. 

Duplex 

C Meters 

FC5 FC6 FC7 

FC7 

FC6 FC5 FC4 

A 

B1 

B2 
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Figure 24. Strain ellipsoid of strike-slip deformation modified from Sylvester (1988). 

A. Explains simple shear deformation and its associated structures. R and R' are synthetic and antithetic 

shears, respectively; P is a secondary fracture that may have synthetic shear; PDZ = principal 

displacement zone. B.  Explains pure shear deformation and its associated structures.

A 

B 
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Figure 25. Schematic ellipsoid model explains a combination of the simple and pure shear deformations. 

Notice: This model might only apply to the duplex zone (restricted region).
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APPENDICES 

APPENDIX A 

PLATES 

Plate 1. Geologic map of the Maynard Lake fault and northwest Sheep Range, Lincoln County, Nevada, 

USA. (Please find the attachment entitled Geologic Map of MLF)
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Plate 2. Geologic cross-sections of some parts of Maynard Lake fault zone. 

(Please find Plate 2 in the attachment entitled Geologic Cross-sections of MLF)
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APPENDIX B 

Tables 

 

 

Table 1. Calculated heave and throw of faults 

 

Fault Name Fault strike set Slip Type Domain Throw Heave dip angle 

and 

direction 

FN1 ENE Normal slip B 38.07 m 7.25 m 75W 

FN2 ENE Normal oblique-slip B 74.86 m 26.37 m 70W 

FB1(FN7) Duplex fault Reverse oblique slip B 236.70 m 70.04 m 74 E 

FN4 ENE Normal dip-slip B 277.16 m 5.49 m 85 W 

FN5 N-S Normal oblique-slip B 129.26 m 60.21 m 65 W 

FN6 N-S Normal oblique-slip B 97.68 m 69.11 m 54 W 

FB2 Duplex fault Normal oblique slip A 1171.03 m 541.00 

m 

65 E 

FC2 Duplex fault Normal dip slip A 32.38 m 22.26 m 55 E 

FC3 Duplex fault Normal oblique slip A 30.87 m 23.28 m 53 E 

FC4 Duplex fault Normal oblique slip A 106.76 m 58.69 m 61 E 

FC5 Duplex fault Normal dip slip A 6.47 m 2.77 m 66 E 

FC6 Duplex fault Reverse oblique slip A 384.17 m 199.32 

m 

63 E 

FS3 NW Normal dip-slip C 9.14 m 1.65 m 80 W 

FS4 N-S Normal dip-slip C 1571.54 m 92.67 m 85 E 

FS5 N-S Normal oblique-slip C 495.24 m 96.12 m 79 W 

FS6 N-S Normal oblique-slip C 171.28 m 62.41 m 70 W 
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Table 2. Major fold data 

 

 

Fold 

Name 

Domain Type Trend, 

plunge of 

fold axis 

Strike and dip of 

Axial plane 

Inter-limb 

angle 

Class 

A B syncline 052.2,  06.7 232.2,  89.6 N 164.6o gentle 

B B anticline 284.2,  01.6 277.9, 14.3 N 155.4o gentle 

C B  syncline 058.0, 29.3 041.0, 62.5 E 138o gentle 

D B syncline 329.7, 14.3 321.5, 60.7 E 113.2o open 

E B antilcine 341.3, 01.8 340.7, 71.3 E 151.7o gentle 

FDC1 A syncline 339.9, 14.4 338.9, 86.0 E 120.4° gentle 

FDC2 A anticline 233.3,  20.4 178.3,  24.4 W 155o gentle 

FDS1 A Syncline 037.0,  04.0 220.1,  53.1 W 123.5° gentle 
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Table 3. Minor fold data 

 

Table 4. Mean vector of strike of compaction foliations 

Mean strike 

compaction foliation 

cluster 

East Center West *Number of entries 

east to west 

respectively 

Hiko Tuff 275 ± 13 348 ± 13 307 ± 18 8, 19, and 14 

Harmony Hills Tuff 280 ± 18 352 ± 11 331 ± 8 9, 25, and 26 

Shingle Pass Formation 327 ± 8 360 ± 16 341 ±10 22, 12, and 9 

*represents number of strike and dip of compaction foliation taken from different tuffs 

X Y fold name Axial 

plan, 

strike 

Axial 

Plan, dip 

Dip 

direction 

Hingline 

trend 

Hingline 

plunge 

interlimbangle Class 

-115.138 37.13389 e1 114.64 64.4 S 115.6 2 135 gentle 

-115.138 37.13389 e2 96.9 81.8 S 98.3 9.8 139.4 gentle 

-115.138 37.13427 f1 172.2 41.1 w 324.4 22.1 137.5 gentle 

-115.138 37.13427 f2 67.6 70.1 S 70 6.5 142.2 gentle 

-115.145 37.12062 g 56.8 11.5 S 187.5 8.8 139.5 gentle 

-115.146 37.12043 h 13.8 18.8 E 18.7 1.7 114.1 gentle 

-115.146 37.12099 i 41.9 16.6 E 194.7 7.8 111.3 open 

-115.146 37.11985 j 1.8 10.2 E 10.1 1.5 161.4 open 

-115.145 37.1209 k 35.1 16.7 E 195.8 5.7 149.3 gentle 
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