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ABSTRACT 

Stable Isotope Analysis of Bison latifrons and Paleoecological Inferences 

by 

Fabian Cerón Hardy 

 

Dr. Stephen M. Rowland, Examination Committee Chair 

Professor of Geology 

University of Nevada, Las Vegas 

 

Bison latifrons was a large Pleistocene herbivore that is traditionally hypothesized to 

have been adapted to living in forest openings and woodlands.  According to this view, the 

species was primarily a browser of high-growing, woody plants.  Very little isotopic work has 

been conducted on this species, and there have been no prior studies of high altitude localities 

containing this species.  This study aims to address both of these issues. 

B. latifrons is known from sites in several states, including California, Idaho, Colorado, 

Nevada, and Florida, among others.  These sites provide diverse examples of this species’ 

habitat and the opportunity to collect a robust data set for the purpose of characterizing its 

paleoautecology. 

I analyzed carbon and oxygen stable isotopes from tooth enamel to test hypotheses 

concerning the diet and possible migration patterns of these animals.  Data for B. latifrons were 

collected from a variety of sites, including Diamond Valley Lake, CA, American Falls, ID, and 

Snowmass, CO.
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Oxygen isotopic values of meteoric water vary seasonally, with low values occurring in 

cold months and higher values in warm months.  B. latifrons teeth were serially sampled from 

occlusal surface to root, representing a period of about 18 months and multiple seasons.  

Seasonal climatic variation within individuals was exhibited in the bison teeth sampled, with the 

American Falls population subjected to a higher degree of seasonality.  The Diamond Valley Lake 

population possessed a slightly dampened seasonal signal that may be the result of seasonal 

migration.  The signal from Snowmastodon was intermediate between the two. 

The average δ13C value of B. latifrons in this study was -8.39‰, which is intermediate 

between a pure C3 browser (approximately -14‰) and pure C4 grazer (approximately 0‰).  This 

indicates that the species was primarily a mixed feeder.  This diet was maintained throughout 

changes in intra-annual climate, as shown by variation in δ18O values.  The data also suggest that 

B. latifrons adjusted its diet based on the different composition of vegetation communities in 

each site.  This is primarily seen in data from the American Falls and Snowmastodon sites, where 

the populations consumed a higher proportion of C4 plants especially during winter months.  B. 

latifrons at all sites in this study were indiscriminate feeders, eating plant material based 

primarily on availability.
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1 - Introduction 

The purpose of this study is to use carbon and oxygen isotopes to test the hypothesis 

that Bison latifrons was a C3 browser.  Bison latifrons was a North American species of 

Pleistocene long-horned bison.  This species’ temporal range was roughly 160 – 20 ka, which 

includes portions of the Illinoian and Wisconsin glacial periods and intervening Sangamon 

Interglacial (130 – 85 ka) (McDonald, 1981).  B. latifrons went extinct well before the main 

megafaunal extinction event at the end of the Pleistocene (Green, 1962; McDonald, 1981).   

B. latifrons is the largest known bison species to have ever lived.  It stood up to 2.5 

meters at the shoulder, with long and heavy limbs to support its mass (McDonald, 1981).  

Previous workers have inferred that the height of this species facilitated a diet of shrubs and 

small trees found in forests (McDonald, 1981, Widga, 2006).  This large size, presumed 

specialized diet, and relatively small populations distinguish it as a K-selected species 

(McDonald, 1981).  According to this inference, modern moose (Alces alces), which are reliant 

on ephemeral openings in forests, would be ecological analogues to B. latifrons. 

The body morphology of B. latifrons (an extremely large and heavy head held high off 

the ground by long limbs) suggests that it preferred C3 browse over C4 grass-dominated 

vegetation, as a function of mechanical efficiency (McDonald, 1981).  Partly for this reason, it is 

commonly assumed that B. latifrons was adapted to forest and woodland environments, which 

were prevalent in the Great Plains and Great Basin regions of North America when this species 

was present (McDonald, 1981).  This hypothesis is testable using stable isotopic analysis of 

carbon recorded in tooth enamel (MacFadden and Cerling, 1996; Koch and Hoppe, 1998; 

Feranec and MacFadden, 2000). 
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Fossil remains of B. latifrons occur in “a crescent from the Pacific coast of California, 

across the northern Great Basin, onto the Great Plains, and south onto the coastal plain of 

Texas,” (McDonald, 1981, p. 71).  B. latifrons was a large animal, and it must have required 

significant forage to meet its energy requirements (McDonald, 1981).  If its primary habitat was 

limited to forest openings, it may have lived in relatively small social groups which did not travel 

long distances. 

To determine the dietary characteristics of this species, I sampled tooth enamel from 

sites across a wide range of altitudes and latitudes.  These sites include a high-elevation site at 

Snowmass, Colorado, an intermediate-elevation site in Idaho, and a low-elevation site in 

southern California.  δ13C values of approximately -14‰ would have confirmed a C3 dominated 

diet, while values in the range of 0 to -8‰ would indicate a mixed C3-C4 diet (Koch et al., 1998).   

In addition to carbon, I measured oxygen isotopic variation, which can be used as a 

proxy for the values found in drinking water consumed by the animal (Baumann and Crowley, 

2014).  Oxygen isotopes, which are temperature sensitive, record variations in air temperature 

during the biomineralization of the tooth.  Such variations may be used to track changes in diet 

during colder and warmer time periods (Baumann and Crowley, 2014).  Each tooth represents 

about 18 months of growth, over multiple seasons.  Serial sampling allowed me to measure 

climatic variation within the 18-month interval of tooth mineralization (Higgins, 2004).  My goal 

was to use the data gathered to place temporally similar, but geographically disparate bison into 

a paleoenvironmental context. 
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2 - Bison Phylogeny and Paleoecology 

Dispersal corridors between Eurasia and North America alternately formed and 

disappeared during the Pleistocene, allowing species to sporadically travel between these 

continents (Shapiro et al., 2004).  Bison is an Old World genus that immigrated to North America 

across Beringia (Kurtén, 1980).  The most important barrier to be removed, permitting the 

introduction of this genus into North America, was the Bering Strait (McDonald, 1981).  Bison 

have a history of flexibility in response to environmental and evolutionary pressures, making 

them ideal candidates for such large scale range shifting (McDonald, 1981; Shapiro et al., 2004).  

The arrival of Bison into North America about 220 thousand years ago defines the beginning of 

the Rancholabrean North American Land Mammal Age (Savage, 1951).  Figure 1 displays a 

proposed phylogeny of North American species and subspecies within this genus. 

Availability of browse was in decline during the Middle Pleistocene due to dry climates 

and expansion of C4 grasses.  This in turn led to increased competition between megaherbivores 

(McDonald, 1981; Shapiro et al., 2004).  Savanna and steppe habitats expanded throughout 

North America, and large body size became a prevalent adaptation among various taxa as a 

means to compete for resources and deter predators (Prothero, 2012).  Niche partitioning 

became another important strategy among sympatric species as a means of avoiding 

competition and maximizing survivability (Feranec, 2000; Rivals and Semprebon, 2011).  These 

two factors are likely mechanisms that led to habitat specialization and distribution seen among 

the North American taxa within genus Bison.  
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Figure 1:  Simplified phylogeny of the genus Bison, with emphasis on North American lineages.  
(Adapted from McDonald, 1981, and Prusak, 2004).  Bison phylogeny is highly debated; this 
chart represents a synthesis of current hypotheses. 
 
 

Bison made their initial appearance in North America in the form of Bison priscus during 

the Middle Pleistocene (McDonald, 1981).  B. priscus is most probably the ancestor of all 

subsequent North American Bison species, as well as the extant European Bison bonasus.  This 

ancestry is supported by cytochrome b gene sequencing of the modern North American Bison 

bison and European Bison bonasus (Prusak, 2004).  This method of genetic analysis was used by 

Prusak (2004) to help clarify the phylogenetic relationship between these two closely related 

extant species.  The ancestry of B. bison was traced back to B. antiquus, itself a descendent of 

the earlier B. priscus (McDonald, 1981; Prusak, 2004). 

B. priscus arrived via the Bering land bridge and radiated throughout Alaska and Canada 

(Prusak, 2004).  The timing of maximum lowering of sea level at about 191 ka during the Illinoian 
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glaciation roughly coincides with the arrival of B. priscus from Eurasia (Kurtén, 1980; McDonald, 

1981; Scott, 2010).  This species, which was roughly intermediate in size between B. antiquus 

and B. latifrons, is referred to as the “steppe bison” for its common distribution in mid-latitude 

Eurasia and North America’s savanna-type environments (Kurtén, 1980; McDonald, 1981). 

As the range of B. priscus shifted southward into mid-latitude North America, it diverged 

into two daughter species, Bison latifrons and Bison antiquus, between 22 and 15 ka (Fig. 1) 

(Skinner and Kaisen, 1947; Kurtén, 1980; McDonald, 1981; Prusak, 2004, Shapiro et al., 2004).  

The ancestor-descendant relationship between B. priscus and B. antiquus was strengthened by 

the recovery of an apparent B. priscus/B. antiquus hybrid at Cambridge, Massachusetts, dated to 

between 31 and 21 ka (McDonald and Anderson, 1975).  The progenitor species became fully 

extinct toward the end of the late Wisconsin glaciation or in the early Holocene (Kurtén, 1980; 

McDonald, 1981). 

A subspecies, Bison priscus alaskensis, appeared in mid-Pleistocene Eurasia and reached 

a wider range of localities throughout North America (McDonald, 1981).  Its distribution pattern 

suggests that it was a browser that preferred woodland environments (McDonald, 1981).  It was 

a large subspecies which has been hypothesized to be a transitional form between B. priscus and 

B. latifons (Kurtén, 1980; McDonald, 1981; Prusak, 2004).   

B. latifrons is most commonly identified by its extremely large horn cores (55-109 cm in 

length) (McDonald, 1981).  B. latifrons remains have been dated as far back as the late Illinoian 

glacial stage, at about 160 Ka.  The species became extinct at about 20 Ka, with a possible relict 

population in Florida surviving into the latest Pleistocene (McDonald, 1981; MacFadden and 

Cerling, 1996; Koch et al., 1998).  B. latifrons was the largest species of bison to have lived, and 
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fossil assemblages suggest that it had less complex herd structure and interaction than its sister 

taxon B. antiquus (McDonald, 1981). 

Bison antiquus evolved in North America between 83 and 64 Ka (Harrington and Clulow, 

1973; Wilson et al., 2008; Scott, 2010).  It was contemporaneous with B. latifrons for 

approximately 40 - 60 thousand years.  B. antiquus is typically interpreted to have occurred 

farther south than B. latifrons, but an overlap in ranges is apparent throughout much of North 

America, including sites in California, Idaho, and Florida (McDonald, 1981; Scott, 2010) (Fig. 2).  

As a descendant of the steppe-dwelling B. priscus, B. antiquus is found in historically open 

environments.  B. antiquus was slightly larger than its ancestor, but possessed shorter, less 

robust legs, suggesting an inclination toward grazing behavior (McDonald, 1981).  Several prior 

carbon isotope studies have demonstrated that B. antiquus tooth enamel possesses relatively 

enriched δ13C values, which indicates a diet dominated by C4 plants (Fricke and O’Neil, 1996; 

Connin et al., 1998; Koch et al., 1998; Yann and DeSantis, 2014). 

B. antiquus occidentalis and B. antiquus antiquus were a pair of contemporaneous 

subspecies which appeared during the latest Pleistocene or possibly early Holocene (McDonald, 

1981; Scott, 2010).  B. a. occidentalis is a controversial subspecies which may have arisen as a 

result of small populations becoming separated by geographic barriers, early human hunting, or 

interbreeding of isolated groups with relict B. a. antiquus populations (McDonald, 1981).  This 

subspecies was smaller in stature than the parent taxon and is frequently associated with 

abnormalities in morphology, implying isolated inbreeding within small populations (McDonald, 

1981). 
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Figure 2: Reported occurrences of B. latifrons and B. antiquus.  Black dots indicate fossil sites; 

orange dots indicate sites sampled in this study.  Dot size indicates the approximate population 

size of an assemblage, with larger dots representing a larger population.  The line dividing the B. 

antiquus sites indicates the northern boundary of B. antiquus prior to the late Wisconsin glacial 

period; in the latest Wisconsin B. antiquus occurs north of this line.  Adapted from McDonald, 

(1981). 

 

 

Late in the Wisconsin glacial period, B. a. antiquus began to shift its range northward, 

likely interacting with B. latifrons in the boreal forests of North America.   The larger size of B. a. 

antiquus relative to B. a. occidentalis presumably provided it with a means of competing with B. 

latifrons for habitat space.  B. a. antiquus dispersed into Eurasia during the late Wisconsin glacial 

period (McDonald, 1981), eventually evolving into Bison schoetensacki, an early Holoene 

Eurasian species.  B. schoetensacki in turn gave rise to Bison bonasus, the European analogue to 

the North American Bison bison (Prusak, 2004).  Similarities in morphology between B. bonasus 

and B. bison are apparent, and a similar evolutionary history led to the success of B. bonasus in 
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central Europe and the establishment of the European species whose common name is the 

wisent (Prusak, 2004). 

A direct descendent of B. a. occidentalis, Bison bison first appeared at approximately 9.5 

ka, when populations of bison had recovered from the general decline during the Wisconsin 

glaciation and expanded their range in the early Holocene (McDonald, 1981; Stuart, 1991).  The 

species trended toward a smaller overall body size and a preference for C4 grazing in a plains 

environment (McDonald, 1981; Tieszen, 1998; Widga, 2006). 

Prior to the late 19th century and near-extinction of the species, B. bison diversified into 

two morphologically similar, but behaviorally distinct subspecies (McDonald, 1981, Hoppe, 

2006b).  Bison bison bison is the modern plains bison, which consumes a diet of almost 

exclusively C4 grasses in open plains regions (Hoppe, 2006b).  Bison bison athabascae, commonly 

called the wood bison, was traditionally found farther north, in Canada, in herds that did not 

range south of the Canadian/United States border (Feldhamer et al., 2003).  B. b. athabascae 

persists today in regions dominated by woodlands, exhibiting the ecological flexibility of its 

parent species by incorporating a greater percentage of C3 material into its diet (Feldhamer et 

al., 2003).  This behavior has been confirmed by multiple dietary analyses where wood bison 

have been seen to prefer leafy C3 plants to C4 graze (Larter et al., 2000; Bergman et al., 2001).  

Some debate still lingers concerning the taxonomic position of B. b. athabascae as a subspecies.  

It is significantly larger than B. b. bison, with distinctive postcranial pelage, but genetic 

differences have not been identified (Geist, 1990).  The possibility for variable phenotypic 

expression lies in the fundamentally disparate climates of the two major regions in which these 

subspecies are found (Geist, 1990; Feldhamer et al., 2003). 
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Unlike many other species of Pleistocene megaherbivores, B. bison may have avoided 

extinction by specializing in open grasslands more completely than did Native American humans 

(McDonald, 1981; Stuart, 1991).  Bison were able to more fully utilize the resources of the North 

American plains than were Paleoindians, who required more shelter and greater variety in 

dietary intake than the grasslands provided (McDonald, 1981). 

The fossil remains of Pleistocene bison are often found in conjunction with other 

megaherbivores, such as American mastodon (Mammut americanum), camelids, or closely 

related species of bison (Springer et al., 2009; Scott; 2010; Pigati et al., 2013).  Intermittent 

overlap in range between them suggests that differences in feeding habits and adaptability were 

a necessity (Calandra et al., 2008). 

The vast majority of dietary studies on modern bison have sampled living and recently 

expired B. b. bison from the lower 48 states region of North America (McDonald, 1981; Koch et 

al., 1998; Hoppe, 2006b; Widga, 2006).  Tooth meso- and microwear analysis is the primary 

method by which the diets of modern and fossil animals have been assessed, but this method 

provides evidence for only the most recent vegetation consumed (Rivals and Semprebon, 2011).  

Stable isotope analysis provides a quantitative measurement that can be used independently, or 

in conjunction with tooth wear data to constrain the dietary preference of a fossil specimen 

(Widga, 2006; Rivals and Semprebon, 2011).  Isotopic studies on bison have focused on the 

extant B. bison.  These studies provide a clear picture of the species’ preference for C4 grazing 

with δ13C (VPDB) averages of -0.7‰ (Koch et al., 1998), 2.4‰ (Larson, 2001), -3.9‰ (Widga 

2010).  These isotopic results match well with observable behavior.  McDonald (1981) suggested 

that the smaller body size of B. bison, compared to the ancestral B. antiquus, is evidence for a 

change toward r-type selection, which is defined by relatively rapid and low-cost reproduction.  
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A shift toward quicker reproduction and a short maturation cycle was a potential difference in 

the biology of Holocene bison when compared with extinct congeners, and a probable response 

to multiple new ecologic factors such as the increasing prominence of the savanna biome and 

early human hunting (McDonald, 1981, Rivals et al., 2007). 

Cannon (2004) reported a modern Bison bison skull radiometrically dated to 150 ± 40 yrs 

BP recovered in 2003 from a high altitude site (3,840 m) in the Uinta Mountains of northeastern 

Utah.  The site is dominated by tundra vegetation, and the fossil was located in a marsh.  The 

δ13C values of the horn sheath averaged -22.51‰ VPDB.  This implies that the animal primarily 

consumed C3 browse, which correlates well with the low amount of available C4 vegetation at 

the recovery site (Cannon, 2004).  An increase in the relative abundance of C3 browse material is 

correlated with increasing altitude and latitude (Cannon, 2004).  Previous mesowear analyses 

have shown that all species of Pleistocene bison consumed a less abrasive diet than do modern 

bison, indicating a greater percentage of C3 material than is consumed by their modern 

counterparts (Rivals et al., 2007).  The isolated bison skull from an atpyical modern locality 

provides an example of the adaptability of bison to their environment, a trait that was almost 

certainly shared by their ancestors.  Dietary plasticity may have been present throughout the 

genus and is further examined in this study. 

  



11 
 
 

 

3 - Carbon and Oxygen Isotope Paleoecology 

3.1 - Carbon Reservoirs in Plants 

Reduced organic carbon is formed by the reduction of CO2 during photosynthesis 

(Sharp, 2007).  Terrestrial plants utilize atmospheric CO2 to obtain their carbon, removing ~10% 

from the atmosphere each year (Sharp, 2007).  This percentage is balanced by the later 

decomposition of plant material (Sharp, 2007).  C3 plants have δ13C values that typically range 

from -20 to -34‰, with an average of -27‰.  C4 plants have δ13C values ranging from -6 to -

23‰, averaging -13‰ (Ehleringer, Cerling, and Helliker, 1997).  Seasonal variations in plant δ13C 

values can be up to 0.5‰ (Hoppe, 2006b).   

Most woody plants, including trees, shrubs, and aquatic plants utilize the C3 

photosynthetic pathway (Connin et al., 1998).  These plants thrive in cool climates and high 

latitudes.  Forest floor plants may have a δ13C signal that is up to 5‰ lower than the signal 

found in the canopy, because the decaying biomass surrounding them continuously releases 13C-

depleted CO2 (Cerling, 2004, Sharp, 2007). 

Hatch and Slack (1966) showed that the C4 photosynthetic pathway minimizes water 

loss and is therefore utilized by many arid-adapted plant species.  There is a strong correlation 

between the percentage of C4 plants in a community and minimum growing-season 

temperature (Terri and Stowe, 1976).   C4 plants are more sensitive to temperature, and their 

growth may be inhibited in cooler regions (Poorter and Navas, 2003).  C4 photosynthesis is more 

water efficient than C3, while being less energy efficient, promoting the expansion of C4 plants in 

arid regions (Ehleringer, Cerling, and Helliker, 1997). 

McDonald (1981) suggested that the B. latifrons diet consisted mainly of C3 plants, but 

this inference has not previously been tested using stable isotopes. 
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3.2 - Oxygen Isotopic Signatures in Precipitation 

Atmospheric moisture is mainly derived from evaporation from the oceans in warm 

areas (Sharp, 2007).  The δ18O value of water is subject to both equilibrium and kinetic 

fractionation as phase change from liquid to vapor occurs.  The various effects on the isotopic 

value of meteoric water are collectively named Rayleigh fractionation (Dansgaard, 1964). 

As an air mass travels, it undergoes depletion in 18O, especially when travelling over 

raised topography.  Due in part to cold temperatures at high elevations, air masses lose 

significant amounts of vapor as they travel upward over topographic relief.  The general signal 

for the altitude effect is -0.26‰ per 100 meters (Dansgaard, 1964). 

There is a strong correlation between surface temperature and the isotopic composition 

of meteoric water.  Lower temperature equates to lower δ18O values of precipitation.  Cold air is 

less capable of retaining moisture, so, as a general rule, δ18O values of meteoric water are 

~0.2‰ to 0.9‰ higher with each degree C of increase in air temperature (Sharp, 2007).  

As an air mass moves inland away from its source, it moves through cycles of 

precipitation, which in turn cause more fractionation.  This continentality effect is seen more 

strongly in cold conditions and is more pronounced when there is a large difference between 

the current location of the air mass and its source.  The general effect in modern conditions is -

1.5‰ to -3‰ per 1000 kilometers (Dansgaard, 1964). 

The latitude of a site also influences the δ18O value of meteoric water due to increasing 

rainout, with a drop of about 0.5‰ per degree of latitude (Dansgaard, 1964).  At higher 

latitudes, the isotopic signal of meteoric water is mainly influenced by temperature variations, 

as there is less evaporation of rainfall (Dansgaard, 1964; Higgins and MacFadden, 2004).  Higher 

latitudes are also subject to greater seasonality, as a result of increased variation in annual solar 
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insolation (Dutton et al., 2005).  Oxygen isotope values at high latitude sites are thus expected 

to have a greater absolute range over the course of a year (Dansgaard, 1964; Sharp, 2007). 

Each fossil site investigated in this study should have a distinctive range of oxygen 

isotopic values that were present when the bison were living there.  Snowmass, Colorado, for 

example, is a Sangamonian Interglacial site located at high elevation (2,087 m), in a mid-

continental setting.  The cold temperatures at that site will determine the range of possible δ18O 

values.  In comparison, the low-latitude, and low-elevation (451 - 481 m) population from the 

Diamond Valley Lake site is expected to display more positive δ18O values.  The isotopic values of 

fossil material should reflect those expected at the site, based on the sum of the myriad 

fractionation effects.  These values provide insight into the temperatures experienced by each 

of the studied populations. 

The sum of these effects on the fractionation of oxygen isotopes in meteoric water can 

be seen in a simple comparison of absolute values.  Enriched δ18O values indicate warm 

weather, while depleted δ18O values indicate cooler weather (Higgins and MacFadden, 2004). 

 

3.3 - Properties of Enamel and Use in Isotopic Studies 

Enamel from bison teeth can be used to obtain δ13C and δ18O values, which reflect the 

isotopic fractionation between the animal and its environment.  Stable isotopic analysis is a 

more reliable means of tracking long-term dietary trends than other techniques, such as tooth 

microwear analysis or morphology alone (Grine, 1986; Lambert et al., 2004).  The mineral in 

tooth enamel is hydroxylapatite, which has the chemical formula Ca10[PO4]6[OH]2.  Carbonate is 

found as a replacement within both the phosphate and hydroxyl sites (LeGeros, 1981; Crowley, 

2012).  This material is almost entirely inorganic (<2%), non-porous, and highly crystalline, with 
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relatively large crystals (130 x 30 nm) that are resistant to defects and substitutions (LeGeros, 

1981).  The carbonate found within tooth enamel hydroxylapatite is more retentive of primary 

isotopic signatures than that of bone or dentin (Wang and Cerling, 1994). 

Consumed water is the dominant factor in determining the δ18O value of an animal’s 

body water, and mammalian teeth mineralize at a constant temperature of about 37 oC, in 

equilibrium with body water (Luz, 1984).  The δ18O value preserved in the tooth enamel of a 

water-dependent animal is closely correlated with the value in local precipitation (Ayliffe, 1992).  

As an animal grows, the mineralization of the enamel in its teeth record the succession of 

changes in the isotopic composition of water it ingested (Fricke and O’Neil, 1996).  In living 

bison, individuals within a population may have enamel δ18O values that vary from one another 

1-3‰, averaging 1.4‰, and it is expected that fossil bison would have had similar variability 

within a single population (Hoppe, 2006a).  These variations may be caused by changes in δ18O 

of environmental water on an inter-annual time scale.  Hoppe (2006a) recommended that a 

minimum of eight individuals be sampled whenever possible in a living population.  Access to 

this number of samples is unrealistic in most fossil assemblages, as fragmentary and 

unidentifiable specimens tend to dominate collections.  The level of uncertainty within fossil 

assemblages is therefore expected to be greater than 1.4‰ if the number of samples is fewer 

than eight. 

Hoppe (2006b) showed that modern bison tooth enamel exhibits a δ13C fractionation of 

+14.6 ± 0.3‰ from the plants in their diet, leading to expected mean values of -14‰ for a C3 

browsing animal and 0‰ for a C4 grazing diet.  Koch (1994) found that in a different community, 

the fractionation was closer to +11‰ (Fig. 3), but this difference may be due to variation within 

individuals in either population of up to ±3‰.   By combining the known biogenic δ13C 



15 
 
 

 

fractionation ranges of bison tooth mineralization (+14.6 to +11‰ VPDB) with known δ13C 

ranges in plant communities, I was able to estimate reasonable values for C3 and C4 specialists.  

An animal that consumed primarily C3 vegetation should display a δ13C range of -10 to -19‰, 

while a C4 graze-dominated diet should lead to a δ13C range of +3 to -1‰.  By observing modern 

bison, McDonald (1981) concluded that, in mixed C3/C4 environments, the bison preferentially 

feed on C3 plants.  Feranec (2007) showed that isotopic values confirm this conclusion.  B. 

latifrons may also have preferred a C3 diet, but they may have been forced to consume some 

amount of C4 plants due to resource availability (Tieszen, 1998).   

 

Figure 3:  Carbon isotopic fractionation from dietary source to mammalian body tissue.  Muscle 
exhibits low fractionation, bone collagen has a mean fractionation of +4‰, and tooth enamel 
hydroxylapatite exhibits fractionation of roughly +11 to +14.6‰.  C3 browse plants (such as 
trees and shrubs) fall to the more negative range of the chart (-30 to -20‰), while C4 plants (arid 
adapted grasses) are found with values that are closer to -23 to -6‰ (Adapted from Koch, 1994). 
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3.4 - Isotopic Signals of Seasonality 

Extant bison populations have predictable reproductive patterns, with their birthing 

season universally occurring during spring (Berger and Cunningham, 1994).  The M3 tooth 

mineralizes beginning at 9 months of age and is fully developed by 24 months (Berger and 

Cunningham, 1994).  These patterns have been observed in multiple modern herds, and it is 

reasonable to assume that extinct bison exhibited similar synchronicity (Hoppe, 2006a).  Due to 

the orderliness of these processes, seasonal isotopic values found in teeth can be predicted 

(Hoppe, 2006a).  An animal that did not migrate would be exposed to the variation of weather 

and temperature patterns of the site, and record the changes in plant communities at its 

habitat. 

Holroyd et al. (2014) demonstrated that serial sampling of mammalian enamel does not 

capture a precise seasonal signal because of the low resolution of the sampling method.  For 

that reason, I interpret intra-tooth variation observed in this study to be a blurred seasonal 

signal.  Pleistocene bison were very likely migratory, and they were certainly exposed to 

seasonal variations of weather regardless of movement.  This may help to explain the variable 

δ18O signal seen in nearly all teeth sampled in this study. 

Bovid tooth formation is overall sequential, beginning at the cusp and progressing to the 

root, but the details of two-phase matrix deposition and maturation lead to potential overlap in 

isotopic values (Towers et al., 2014).  The majority of mineralization occurs during the 

maturation phase, which takes several months and produces a degree of intra-tooth isotopic 

variability among layers (Towers et al., 2014).  Bovid teeth do maintain a relatively constant rate 

of matrix progression as they develop, and an overall signal can be gleaned from sampling the 

surface enamel (Towers et al., 2014). 
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A graph of isotopic values in a hypothetical idealized M3 tooth of a non-migratory bison 

is presented in Figure 4.  This graph assumes a minimum loss of the occlusal end of the tooth, as 

would be the case in a relatively young animal.  A slight lag time is estimated to allow for a 

period of mineralization after ingestion of meteoric precipitation.  The M3 begins to form during 

late winter (9 months after birth), and low temperatures result in depleted δ18O values near the 

occlusal surface.  These values become more enriched as temperatures increase, peaking 

roughly halfway through the tooth (16 months) during the transition between summer and 

autumn.  The values become more depleted toward the lower 1/3 of the tooth during winter, 

reaching a low point near 21 months, during the animal’s second winter.  A final predicted 

enrichment should become evident as the root tapers at 24 months (Fig. 4). 

 

Figure 4: Idealized patterns of isotopic variation in a hypothetical, non-migratory individual.  The 
two isotopic systems exhibit positive covariance, in response to seasonality.  In old animals the 
left side of the graph will be truncated by wear on the tooth. 
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 Carbon values in the idealized tooth follow a similar pattern.  C3 browse material thrives 

in cooler environments, and its greater availability during the cool season leads to higher 

consumption by a population.  In the idealized tooth, this is reflected by depleted δ13C values 

during these months.  C4 vegetation expands during warm and dry seasons, and the δ13C values 

are accordingly expected to become more enriched (Figure 4).  An exception to this pattern 

would occur in deciduous forests, where C3 vegetation would be scarce during the fall and 

winter months, but abundant in the spring and summer.  I will use this idealized isotopic pattern 

to assist in the interpretation of data obtained in this study. 
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4 - Geologic Setting of Localities 

 

4.1 - American Falls Reservoir Mid-elevation (1,330 m) Fossil Site, American Falls, Idaho 

The American Falls Reservoir (AF) fauna was collected over a period of 70 years between 

1920 to 1990, beginning with the construction of a dam in the 1920s (Pinsof, 1992).  The strata 

are primarily alluvial to lacustrine in origin, and units contain clasts that range from gravel to 

clay/silt in size (Pinsof, 1992).  Two prominent fossiliferous horizons are present in the local 

reservoir deposits, referred to as the B and E layers.  The faunal assemblage from the upper B 

horizon was described by McDonald and Anderson (1975), while Pinsof (1992) focused on the 

recovered specimens from the E layer.  This unit is a 15- to 16-meter-thick fluvial deposit of sand 

and gravel, at an elevation of about 1,330 m (Pinsof, 1992).  Radiometric dating of sedimentary 

and volcanic units that bracket the fossiliferous horizons show that the unit was deposited 

sometime between 210 and 72 ka (Pinsof, 1992).  The site was placed into the Sangamon 

Interglacial due to the presence of Panthera leo atrox (American lion), which does not appear 

south of Alaska prior to this interval.  This further constrains the site to 125 to 72 ka (Pinsof, 

1992). 

Five thousand specimens, representing a minimum of 51 taxa, have been recovered 

from the lower member of the American Falls Fm.  The most abundant taxon is Bison spp., and 

the locality also contains Equus scotti (horse), Camelops hesternus (camel), Megalonyx 

jeffersonii and Paramylodon harlani (ground sloths), Mammuthus columbi (Columbian 

mammoth), and Mammut americanum (mastodon) (Pinsof, 1992).  Some of the Bison spp. 

specimens in this assemblage were later identified as Bison latifrons based primarily on horn 

cores (Pinsof, 1992), so it is generally assumed that all of the bison from this site belong to this 
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species.  The Sangamon Interglacial temporal setting of the site further supports this 

interpretation, as B. antiquus had not yet reached the region (Fig. 2). 

Based upon this diverse assemblage of megafaunal herbivores, Pinsof (1992) interpreted 

the site to contain a minimum of four communities within the depositional basin of the 

ancestral Snake River.  He reviewed nine Sangamon local faunas from North America to support 

his position and concluded that a predominance of large herbivores and mild climate indicated 

the dominant habitat of the locality to be grassland/steppe.  

4.2 - Ziegler Reservoir High-elevation (2,087 m) Fossil Site, Snowmass, Colorado 

Snowmass, CO is home to the high altitude fossil site known as Snowmastodon.  Around 

140 kyr ago, the Snowmass Creek valley was occupied by a glacier during the Illinoian Bull Lake 

glaciation.  The glacier extended above the ridge where Snowmass Village is currently located 

(Johnson and Miller, 2012).  This glacier carved a 30-acre basin at the top of the ridge, and the 

basin was filled by melt-water as the Sangamon interglacial arrived (~120 ka) (Pigati et al., 2014).  

The result was Glacial Lake Ziegler (Johnson and Miller, 2012).  The lake was filled with sediment 

between 130 and 40 ka, primarily by airborne dust and landslides from the moraine around its 

edges (Johnson and Miller, 2012).  The lake became shallower and eventually transitioned to a 

marsh environment, which possibly catered to the dietary needs of Mammut americanum 

(mastodon) and B. latifrons (Johnson and Miller, 2012). 

The glacial moraine forms the basement layer of the site, comprised of large boulders and 

poorly sorted clasts (Johnson and Miller, 2012).  This unit is overlain by a thick layer of smooth, 

dark gray silt, up to 4.5 meters thick (Johnson and Miller, 2012).  The silt interfingers with several 

coarse clastic lobes interpreted to be debris flows, each of which is ~0.6 m thick.  These coarse 
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intervals contain boulders, mixed clasts, tree branches, and fossils within a mixed matrix of clay, 

silt, and sand (Knell, 2009).  Several specimens of B. latifrons were found in the silty layer (Johnson 

and Miller, 2012).  A layer of brown, organic peat lies above the debris flows.  This peat layer 

contains moss, leaves, and other fossil plant material (Johnson and Miller, 2012).  The site is 

capped by a ~0.6 m thick layer of clay, which contained a young Columbian mammoth (Johnson 

and Miller, 2012). 

The Snowmass fossil assemblage was spared from destruction by the later Wisconsin 

Pinedale glaciation (~21 ka), which created a glacier in the same valley.  The younger glacier was 

not large enough to reach the top of the ridge, so it did not destroy the Ziegler fossil site (Pigati 

et al., 2014). 

The 2011 excavation at the Ziegler Reservoir site in Snowmass Village, Colorado, revealed 

over 5,000 fossil bone specimens, including a minimum of four B. latifrons, eight to ten American 

mastodons (Mammut americanum), and four Columbian mammoths (Mammuthus columbi).  It is 

the highest elevation B. latifrons site known, and provides an opportunity to examine high-

altitude fossil bison paleoecology. 

4.3 - Diamond Valley Lake Reservoir Low-elevation (451 - 481 m) Fossil Site, Hemet, California 

The Diamond Valley Lake Reservoir (DVL) assemblage is notable in that it is the largest 

open-environment, non-asphaltic late Pleistocene assemblage known from the North American 

southwest (Springer et al., 2009).  The DVL site is rimmed by granitic and metamorphic basement 

rocks, and the basin itself is filled with alluvial sediments with paleosols (Morton, 2004).  More 

recent alluvial fans and recent soils overlie the slopes of the surrounding hills, and older alluvial 

sediments contain alternating beds of silt, clay, and coarse-grained stream sediments (Springer et 

al., 2009).  This sequence implies a braided stream environment; it is unconformably overlain by 
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an extensive lacustrine unit (Springer et al., 2009).  The fossils occurred in the lacustrine unit, and 

preservation is excellent (Springer et al., 2009). 

Approximately 100,000 identifiable fossils, representing 105 distinct taxa were recovered 

during the 1993-2000 excavation period.  Numerous B. latifrons and B. antiquus specimens are 

included in the assemblage (Springer et al., 2009).  Bison sp. is the most abundant large mammal 

taxon within the assemblage (24%), with some elements identified to species level.  This 

abundance, together with the presence of both B. latifrons and B. antiquus, makes this site ideal 

for a study of the relationship between populations of these two species of Pleistocene bison.  

Other large herbivores present include Mammuthus (mammoth), Mammut americanum 

(American mastodon), Paramylodon harlani, Megalonyx jeffersoni, and Nothrotheriops shastensis 

(three species of giant ground sloth), Camelops (camel), and numerous Equus sp. (horse).  The 

presence of Bison indicates that the assemblage is Rancholabrean, and sediments from DVL 

contained wood that was radiocarbon dated to between 48 – 34 ka (Springer et al., 2009). 
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5 - Methodology 

In this study, I sampled as many individuals as possible at each locality, but material was 

typically limited to only a few individuals of each species.  While there is a greater variability of 

δ13C and δ18O values within terrestrial environments than in aquatic ecosystems, Clementz and 

Koch (2001) determined that a standard error on both δ13C and δ18O values within terrestrial 

populations is 0.01‰ when n=5, and they concluded that five samples is sufficient for the 

purpose of comparing mean variations between different populations.  In fossil collections, it is 

often impossible to sample this number of individuals from a single site.  The methods 

presented here therefore are less precise than a similar study of modern populations; a slightly 

greater range of values still provides significant insights into the paleoecology of an extinct 

species. 

I photographed each tooth prior to sampling (Figs. 5-26).  Where possible, I sampled 

M3/m3 molars, as these teeth are biomineralized after the animal is weaned (Gadbury, 2000).  

This prevents isotopic influence of the mother’s milk, thereby achieving a primary signal of the 

animal being studied (Bryant, 1994).  Initially, I used a Dremel rotary tool with a 0.5 mm 

diamond bit to drill out enamel powder in a serial sequence from the occlusal surface to the 

root of the tooth, as recommended by Bernard et al. (2009).  However, complications in 

collection and potential cross-contamination from previously sampled surfaces resulted from an 

air vent directly adjacent to the rotary head of the tool.  In subsequent sampling I solved this 

problem by using a snake attachment on the Dremel tool.  This allowed for greater control on 

the amount of enamel powder collected, and it eliminated the problem of air vented from the 

Dremel motor blowing powder away.  Prior to sampling a tooth, I scoured the surface of the 

tooth with the Dremel tool, to remove any cementum or secondary calcification from the 
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surface of each sample site.  I collected approximately 3 mg of enamel powder from each point 

on the tooth, and I placed each sample in a plastic centrifuge vial.  After I drilled a groove and 

collected a sample of powder, I cleaned the surface with a combination of brushes and air-

blasting in order to remove any excess powder before I began to drill another sample pit. 

Back in the lab, I weighed each powder sample and then placed the sample in a 1 mL 

plastic centrifuge vial.  In order to eliminate as much organic material and diagenetic carbonate 

minerals as possible, I followed the procedure recommended by Koch (1997).  I treated each 

sample with 0.1 volume to sample weight of 30% H2O2 and refrigerated it for 24 hours.  I 

agitated the samples three times within this resting period.  I then centrifuged each sample for 9 

minutes, and removed the H2O2.  I rinsed the samples with distilled, deionized water four times, 

and pipetted 0.05 volume to sample weight of 0.1M Ca-buffered acetic acid into each vial.  This 

treatment preserves hydroxylapatite while removing organic matter and secondary adsorbed 

carbonate (Koch, 1997).  I again refrigerated the new solution for 24 hours, and agitated each 

sample three times prior to the next step.  I then aspirated out the acetic acid and washed the 

samples with 1mL of distilled, deionized water four times.  I froze the samples for storage, and 

finally lyophilized them prior to final processing to remove any excess water. 

During processing, each powder sample was transferred from the plastic centrifuge vials 

into glass vials compatible with the Kiel IV carbonate device, and stored at 60 oC in the Las Vegas 

Isotope Science (LVIS) Lab at the University of Nevada Las Vegas.  To ensure analytical accuracy, 

two USC-1 standards were loaded before each run of experimental samples, and one standard 

at the end of each run.  Each sample was processed in the following manner: five drops of 

phosphoric acid were added to the samples and given 10 minutes to react.  Gas was then 

collected in a trap cooled by liquid nitrogen.  The temperature in the trap was lowered to -170oC 
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to freeze excess water, and it was then heated to -90 oC to allow CO2 gas to escape into a 

Thermo Electron Delta V Plus Mass Spectrometer, where the ratio of heavy to light isotopes was 

measured and reported to the control station. 

Mechanical issues led to downtime in the LVIS Lab, and subsequent samples were run at 

the University of Utah Stable Isotope Ratio Facility for Environmental Research (SIRFER) to 

maintain a reasonable timetable for the project. 

Percentage of C4 plants consumed was calculated following the methodology of Koch et 

al. (1998).  Atmospheric CO2 is assigned an average value of 0.5‰ based on a range for glacial to 

interglacial times.  The δ13C value for a pure C4 feeder is assigned to be 1.6‰ and a pure C3 

browser has a δ13C value of about -12.4‰.  X represents the percent of C4 plants consumed in 

the following equations: 

δ13Capatite = (δ13C pure C4 feeder)(X) + (δ13C pure C3 feeder)(1 – X) 

or 

X = (δ13C + 12.4)/14  
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6 - Results and Interpretation 

Data from all three sites are presented here, and summarized in Table 1.  Each site is 

given its own section, with photos of individual teeth displayed next to their respective graphs.  

Interpretations for each site follow the graphs, and raw data may be found in Appendices (2-6). 

Table 1:  Isotopic mean values for each individual sampled in this study, with percent C4 plants 
consumed.  Percentage is calculated following the methodology of Koch et al. (1998). 

Specimen ID Locality Species δ13C δ18O Percent C4 

IMNH  17906 American Falls Bison latifrons -7.33 -5.61 36.18 

IMNH  17909 American Falls Bison latifrons -7.91 -6.70 32.08 

IMNH  17922 American Falls Bison latifrons -7.79 -10.71 32.90 

IMNH  17931 American Falls Bison latifrons -6.69 -12.20 40.77 

IMNH  17930 American Falls Bison latifrons -8.35 -9.25 28.96 

IMNH  17917 American Falls Bison latifrons -7.34 -9.56 36.15 

IMNH  17915 American Falls Bison latifrons -8.61 -10.51 27.06 

Site Average American Falls Bison latifrons -7.72 -9.22 33.43 
      

L2726-16708 Diamond Valley Lake Bison latifrons -11.07 -10.35 9.50 

L2726-10492 Diamond Valley Lake Bison latifrons -11.43 -8.56 6.93 

L2726-22118 Diamond Valley Lake Bison latifrons -8.56 -8.48 27.43 

L2726-22135 Diamond Valley Lake Bison latifrons -9.50 -8.40 20.71 

Site Average Diamond Valley Lake Bison latifrons -10.13 -8.94 16.21 
      

L2726-775 Diamond Valley Lake Bison antiquus -10.23 -9.48 15.50 

L2726-4039A Diamond Valley Lake Bison antiquus -9.38 -8.26 21.57 

L2726-4039B Diamond Valley Lake Bison antiquus -10.46 -7.92 13.86 

L2726-21338C Diamond Valley Lake Bison antiquus -6.82 -6.66 39.86 

Site Average Diamond Valley Lake Bison antiquus -9.22 -8.08 22.71 

Site Average Diamond Valley Lake Combined -9.68 -8.51 19.43 
      

DMNH  60.703 Snowmastodon Bison latifrons -7.72 -13.63 33.43 

DMNH  58.446 Snowmastodon Bison latifrons -7.24 -12.44 36.86 

DMNH  59.005 Snowmastodon Bison latifrons -7.30 -15.22 36.43 

DMNH  56.322 Snowmastodon Bison latifrons -7.06 -12.48 38.14 

DMNH  67.512 Snowmastodon Bison latifrons -7.98 -12.14 31.57 

DMNH  67.517 Snowmastodon Bison latifrons -5.75 -16.28 47.50 

DMNH  67.505 Snowmastodon Bison latifrons -7.82 -12.92 32.71 

DMNH  67.503 Snowmastodon Bison latifrons -7.37 -11.51 35.93 

Site Average Snowmastodon Bison latifrons -7.32 -13.11 36.29 
      

Taxon Average Combined Bison latifrons -8.39 -10.42 28.64 

Taxon Average Combined Combined -8.60 -9.84 27.16 
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6.1 - American Falls Formation Results 

Measured isotopic values of teeth from the American Falls Formation (AF) yielded mean 

δ13C values between -8.61 to -6.69‰ VPDB, while mean δ 18O values range from -12.20 to -

5.61‰ VPDB.  The mean values for the site are -7.72‰ δ13C VPDB and -9.22‰ δ 18O VPDB.  

Specimen IMNH 17906 exhibits a spike in δ 18O at +7.0‰.  This anomalously high value has been 

omitted from calculations as it was likely an error that occurred during processing.  The 

magnitude of intra-population variation caps at ± 6.59‰ VPDB.  The most depleted δ13C value 

within the population is -10.6 ‰ VPDB.  The maximum variation between bulk δ13C values 

among the population is ± 1.92‰ VPDB.  Several teeth (IMNH 17922, 17930, 17931, 17915) do 

not have values plotted near the occlusal surface due to lack of pristine enamel, complications 

during preparation, or analysis that produced unreliable results. 

Several teeth sampled at this location exhibited intervals of positive covariation.  IMNH 

17906 displays positive covariation near the occlusal surface of the tooth, and also toward the 

root, but negative covariation near the midpoint of the tooth from 12 to 27 mm (Fig. 5).  A δ18O 

value is not plotted at 7.5 mm; the value reported by the lab was +7.0‰, which (compared to a 

δ13C value of -7.5‰) is clearly a spurious value.  Positive covariation between both isotopic 

systems is seen throughout IMNH 17909 (Fig. 6). The greatest change in values is seen 

approaching 17 mm, with a maximum δ 18O shift of ± 6.1‰.  IMNH 17922 displays positive 

covariation between both isotopic systems near the root of tooth (Fig. 7).  δ18O is more variable 

than oxygen within this tooth.  δ13C is relatively consistent, with a range of ± 0.9‰.  The 

majority of samples were taken near the root, as pristine enamel powder was unobtainable 

closer to the occlusal surface 
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IMNH specimens 17931, 17930, 17917, and 17915 present a more complex pattern of 

negative covariation between isotopic systems, particularly specimens IMNH 17915 and 17917, 

while maintaining a mean deviation of ± 5.4‰. 

IMNH 17931 displays negative covariance of the two isotopic systems throughout the 

midsection of the tooth.  δ 18O is more variable than carbon, with a maximum difference of ± 

2.65‰, while δ 13C varies roughly ± 1.0‰.  Enamel closer to the occlusal surface did not yield 

pristine powder from this tooth. 

IMNH 17930 displayed the highest variability in δ 18O values seen at this location (Fig. 9).  

Value vary up to ± 7.1‰, and ± 1.2‰ in δ 13C.  Values closer to the occlusal surface were 

unreliable due to small sample size. 

IMNH 17917 displays relatively constant δ 13C values, only varying ±1.9‰, while δ 18O 

exhibits much greater variability.  δ 18O ranges from -12.7‰ to -5.1‰ Negative covariance is 

seen at various sections of the tooth, notably from 5 – 14 mm and from 23 – 32 mm. 

A correlation is seen between both isotopic systems in IMNH 17915 from 29 – 47 mm, 

where oxygen becomes more negative, while carbon values increase in the positive direction 

(Fig. 11).  This trend continues until 41 mm, where the values of both systems begin to 

converge. 
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Figure 5:  IMNH 17906.  Note positive covariation near occlusal surface and also toward root.  

Negative covariation from 12-27 mm (near midpoint). 

 

 

 

 

Figure 6:  IMNH 17909.  Positive covariation near midpoint of tooth.  Values from other locations 

in this tooth are not due to loss during preparation or contamination during analysis. 
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Figure 7:  IMNH 17922.  Samples taken near root, showing pattern of positive covariation 

between isotopic systems.  Values from closer to the occlusal surface were unreliable based on 

known isotopic ranges in a biogenic system, or due to errors during preparation or analysis. 

 

 

 

Figure 8:  IMNH 17931.  Note negative covariance throughout tooth.  Enamel near occlusal 

surface provided brown/tan powder, as opposed to the pristine white seen in samples that 

yielded reliable results. 
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Figure 9:  The maximum difference in δ 18O values in IMNH 17930 is 7.1‰, and 1.2‰ in δ 13C.  

Values closer to the occlusal surface were unreliable due to small sample size. 

 

 

 

Figure 10:  IMNH 17917.  Negative covariance is seen at various sections of the tooth, 

particularly from 5 – 14 mm and from 23 – 32 mm. 
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Figure 11:  IMNH 17915.  Negative covariation occurs between systems throughout tooth.  

Values converge toward midpoint and again near root. 

 

6.2 - American Falls Formation Interpretation 

The American Falls (AF) population of B. latifrons all consumed greater than 25% C4 

plants.  A majority was measured to have consumed greater than 32%, implying that a full third 

of their diets consisted of C4 plants at this location.  A diet consisting of such a large percentage 

implies that C4 plants were readily available during the interval in which the AF fauna was 

preserved (125 – 72 ka).  B. latifrons in this habitat presumably incorporated a significant 

amount of C4 material into its diet due to the abundance of warm-weather grasses. 

A positive rootward shift in δ13C fractionation implies that the relative abundance of C4 

plant material in the animal’s diet increased during the interval of time that the sampled tooth 

was mineralizing.  This is a trend seen in the majority of individuals sampled from this 

population (Figs. 8, 9, 10, 11). 
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Changes in δ18O values imply a change in temperature, with more negative values as a 

signal of cooler climate.  The variation in δ18O may also indicate a change in feeding location, 

especially when it occurs in conjunction with variation in δ13C values.  A positive rootward shift 

in δ18O indicates that the animal experienced an increase in ambient temperature, which could 

be the result of seasonality, movement to a lower elevation or lower latitude, or some 

combination of these factors.  When coupled with a positive shift in δ13C, I interpret the animal 

to have moved to a warmer location, and possibly a lower elevation, with a higher percentage of 

C4 grasses occurring where the weather is warmer (Fig. 4).  Similar behavior has been 

documented in historic American and European bison, which undergo home range contraction 

of up to 32 km and migrate to lower elevations (downslope 1300 - 1700 m) during winter (van 

Vuren, 1983, Kowalczyk et al., 2013).  Modern populations exhibit such patterns despite artificial 

barriers; prehistoric bison would have had greater freedom to migrate during cold periods. 

AF teeth 17906 and 17909 (Figs. 5, 6) show slight positive correlation trends, as carbon 

isotopes indicate that the animals consumed a modestly higher amount of C4 plants during 

warm intervals, but their diets remained constant otherwise.   Teeth 17931 and 17930 (Figs. 8, 

9) exhibit sharp declines in δ18O values, while δ13C values remain fairly constant; this suggests 

that the animals’ diets were not linked to changing temperature.  AF teeth 17922, 17917 and 

17915 (Figs. 7, 10, 11) are notable in that the individuals sampled were subject to a much wider 

range of temperatures, but maintained a relatively constant δ13C level between -9 and -7‰; this 

indicates that these animals consumed roughly 30% C4 plants regardless of climate.  AF teeth 

17917 and 17915 in particular experienced multiple cold intervals, probably within the span of a 

single year. 
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The areas inhabited by this population were open, with high insolation and a high 

minimum growing-season temperature (Terri and Stowe, 1976).  The warm climate of the 

Sangamon Interglacial compared to modern conditions was conducive to the expansion of C4 

plants, especially in a mid-elevation (1,330 m) site such as the AF locality.  The isotopic data thus 

support Pinsof’s (1992) interpretation of a grassland/steppe-dominated environment.  The data 

also demonstrate that B. latifrons exhibited dietary plasticity in this environment.  Evidence for 

indiscriminate grazing and browsing is apparent in the mean δ13C value of -7.72‰ of the 

population at this site, which is notably more enriched than values expected of a C3 specialist, 

yet not as extreme as a C4 exclusive feeder. 

Only one individual at the AF site, 17906 (Fig. 5), conforms to the seasonal signal 

displayed in the hypothetical nonmigratory tooth.  The rest of the teeth with enough data to 

address this question diverge from this pattern, indicating a different behavioral pattern. 

6.3 - Snowmastodon Results 

Initial results from the Snowmastodon site in Snowmass, CO were inconclusive.  The 

majority of samples were determined to be inaccurate representations of the isotopic values of 

the sites.  Measured δ13C values have a range between -5.34 to +8.93‰ VPDB, with a mean 

value of +0.93‰.  The range in δ 18O values is -8.99 to -5.20‰ VPDB, with a site average of -

7.49‰.  DMNH 60.703 and DMNH 56.322 in particular display extreme variation in carbon 

values, on the order of ± 13‰, while oxygen values stay relatively consistent.  These samples 

were determined to be problematic due to losing too much mass during preparation, or 

contaminated by water while in transition from carbonate device to mass spectrometer.  My 

original sampling method did not include a snake attachment on the Dremel tool, which may 

have contributed to cross-contamination of sample points.  Additionally, the surface of each 
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tooth contains secondary material, which must be scoured using physical or chemical means 

from the surface.  In most cases, the drilling depth was not sufficient to penetrate this layer, and 

enamel powder collected was typically light tan to brown in color. 

Due to these problematic results, I resampled teeth from the Snowmastodon site, using 

a revised sampling technique.  Enamel powders collected during this process were uniformly 

white in color, which is characteristic of successful samples from other sites in this study.  Some 

previously sampled portions of the teeth were excluded from sampling, mainly near the 

midsection to root.  This was due to the inability to separate enamel from dentin in these 

locations.  Results from the second round of sampling appear to be primary signals, and reflect a 

range of values that are reasonable for a site such as Snowmass.   

 Second round δ13C values at Snowmastodon have a range from -9.1 to -4.7‰ (Appendix 

5).  The mean δ13C value for the population is -7.32‰ (Table 1).  The magnitude of 

intrapopulation δ13C variance is ±4.4‰, and the maximum variation among bulk values for 

individuals is ±2.23‰.  The mean δ18O value is -13.11‰, with a range from -16.28 to -11.51‰ 

(Table 1).  The range of oxygen values is greater than that of AF. 

 DMNH 60.703, 58.446, and 67.505 display positive covariation between isotopic 

systems from occlusal surface to roughly halfway down the tooth (Figs. 12, 13, 18).  DMNH 

67.512 and 67.503 display negative covariation between systems, trending toward convergence 

of values (Figs. 16, 19).  In DMNH 67.512, the values diverge once again at 21 mm (Figs. 16).  

DMNH 59.005 and 67.517 display relatively enriched carbon values in the presence of 

significantly depleted oxygen values (Figs. 14, 17).  DMNH 56.322 primarily displays positive 

covariance between both systems, with the exception of a short interval of convergence from 3 

to 15.5 mm (Fig. 15). 
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Figure 12:  DMNH 60.703.  Note positive covariance from 2.5 to 13 mm, followed by 

convergence toward midpoint of tooth.  Further sampling was prevented by presence of the 

alveolus. 

 

 

 

  

Figure 13: DMNH 58.446.  Note extreme depletion of δ18O toward midpoint.  Samples from past 

midpoint provided unreliable values, as enamel was not pristine past this point.  
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Figure 14:  DMNH 59.005.  Negative covariance appears between both isotopic systems near 

occlusal surface until 12 mm.  Samples past 14 mm were not pristine 

 

 

 

 

  

Figure 15:  DMNH 56.322.  Note predominantly declining δ13C values from 9 to 27.5 mm, despite 

enriched δ18O values. 
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Figure 16:  DMNH 67.512.  Original sampling was under specimen ID: DMNH 58.394. Note peak 

δ18O value near midpoint of tooth (21 mm), followed by negative covariation of isotopic systems 

afterwards. 

 

 

 

  

Figure 17:  DMNH 67.517.  Original sampling under specimen ID: DMNH 60.022.  δ18O is more 

variable than δ13C in this tooth.  Positive covariation runs from 4 to 8 mm.  Further samples were 

unreliable based on first-round sampling, as enamel powder was no longer pristine.  
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Figure 18:  DMNH 67.505.  Positive covariation is dominant throughout the tooth, until 11mm.  

Note consistent values in both isotopic systems from 5 to 11 mm.  Further sampling was 

prevented by the presence of the alveolus. 

 

 

 

 

Figure 19:  DMNH 67.503.  Negative covariation begins near occlusal surface until 12 mm, where 

positive correlation becomes the dominant trend.  Further sampling was blocked by the 

presence of the alveolus. 
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6.4 - Snowmastodon Interpretation 

Snowmastodon is a unique site in that it is the highest elevation (2,087 m) assemblage 

known to contain B. latifrons.  The animals here were exposed to a colder climate than those at 

the other sites in this study.  The plant material at this site was expected to have been 

comprised of a higher percentage of C3 vegetation, due to its high altitude and low 

temperatures.  On average, B. latifrons at this site consumed 36.29% C4 vegetation (Table 1), 

indicating a greater availability of C4 plants at the site than expected.  The majority of individuals 

exhibited a relatively stable δ 13C signal, similar to the patterns seen at AF. 

The population at Snowmastodon displays an intermediate degree of seasonality.  The 

isotopic spread of δ 18O is ± 4.77‰, which lies between the isotopic width of AF and DVL.  

Oxygen values shift roughly with the onset of each season, but overall the data are significantly 

more depleted and confirm a much colder environment at Snowmastodon than the other sites 

in this study.  These shifts are sometimes correlated with significant shifts in δ 13C (Figs. 15, 16), 

but the majority of δ 13C values remain relatively constant (Figs. 13, 14, 17, 18).  This is evidence 

for a decoupled relationship between season and diet in the Snowmastodon population. 

B. latifrons values at the Snowmastodon site display a similar δ 13C signal regardless of 

season, which corresponds with the primary pattern seen at AF.  They apparently consumed 

whatever vegetation was available, and maintained this diet during seasonal changes.  Bison 

recovered from this site may have been migratory, and the presence of this pattern at two 

independent sites is an indicator of similar behavior in the absence of the closely related B. 

antiquus. 

Of the teeth sampled, DMNH 56.322, 60.703 and 59.005 share similarities to the 

hypothetical “homebody bison” in that positive covariation is seen between both isotopic 



41 
 
 

 

systems during expected seasonal intervals (Fig. 4).  However, teeth 60.703 and 59.005 have 

evidently lost several mm due to wear (Figs. 12, 14).   

6.5 - Diamond Valley Lake Results 

The Diamond Valley Lake Reservoir (DVL) fauna contains a mix of B. latifrons and B. 

antiquus, which provided the opportunity to directly compare the diets of these closely related 

taxa.  B. latifrons recovered from the DVL site displayed an average δ13C value of -10.13‰, and δ 

18O of -8.94‰ VPDB (Table 1).  On average, the population at this site consumed about 16% C4 

vegetation, but the values are highly variable, ranging from about 7% in one animal to about 

27% in another (Table 1). 

Positive covariance of the two isotopic systems is seen in all teeth with the exception of 

specimen WSC 22135, in which they diverge roughly halfway down the tooth.  In contrast to B. 

latifrons, B. antiquus at the DVL site consumed an average of 22.71% C4 plants (Table 1).  The 

mean δ13C value of the population was -9.22‰ VPDB, with a maximum of -6.82‰ and minimum 

of -10.46‰.  Average δ 18O was measured to be -8.08‰ VPDB, with an absolute variation of 

2.82‰ (Table 1). 

 B. latifrons teeth at this location show a trend of positive covariance until the midpoint 

of each tooth, where the values begin to diverge.  This is seen in teeth WSC 16708, 10492, and 

22135.  It is unknown whether tooth 22118 exhibits this behavior, as samples near and proximal 

to the midpoint were contaminated or lost during preparation and analysis. 

In B. latifrons tooth WSC 16708, the sample taken at 2 mm contains an unusually 

negative, and potentially spurious δ13C value of -21.8.  The remainder of carbon values range 

between -11.5‰ and -8.3‰ VPDB, with an absolute variation of 3.2‰ (Fig. 20).  Oxygen values 
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exhibit positive covariance with oxygen values until the midpoint of the tooth at H1E (11 mm) 

and again at H1K (23 mm).  Tooth WSC 10492 exhibits a δ13C range of ± 3.5‰ VPDB and a 

relatively narrow δ18O range of ± 2.1‰ VPDB (Fig. 21).  Tooth WSC 22135 exhibits slight 

negative covariance between sample sites H8C (12 mm) and H8J (36 mm), followed by 

convergence toward the root (Fig. 23).  δ13C varies ± 2.6‰ VPDB, while δ18O is more variable, 

with an absolute difference of ± 3.5‰. 

The three DVL B. antiquus teeth display generally positive covariance of carbon and 

oxygen values (Figs. 24, 25, 26), although WSC 775 displays negative covariance in the middle of 

the tooth (Fig. 24).  This tooth has a maximum δ13C value of -7.2‰ VPDB, with a minimum value 

of -14.2‰ (Fig. 24).  δ18O values range from a maximum value -7.9‰ to a minimum of -10.8‰. 

B. antiquus specimens WSC 4039A & 4039B are from the same individual (Fig. 25).  Both 

specimens were m3 molars from opposite sides of the mandible, providing the opportunity to 

roughly confirm the accuracy of serial sampling of an individual’s tooth.  A δ13C range of only ± 

0.5‰ VPDB and a δ18O range of ± 1.1‰ was seen between the two sides of the mandible.  

Positive covariance is seen throughout the tooth.  δ13C values have a maximum difference of 

±5.3‰ and δ18O values display a maximum difference of ± 5.4‰. 



43 
 
 

 

 

Figure 20:  WSC 16708, B. latifrons.  Note positive covariance near occlusal surface, divergence 

near midpoint, and reconvergence near root.  Sample at 2 mm contains a potentially spurious 

δ13C value of -21.8‰. 

 

Figure 21:  WSC 10492, B. latifrons. Note negative covariance in most proximal segment (24.5 to 

32 mm). 
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Figure 22:  WSC 22118, B. latifrons.  Enamel from distal portion was lost during preparation and 
analysis. 

 

 

 

 

 

Figure 23:  WSC 22135, B. latifrons.  Note negative covariance between sample sites H8C (12 

mm) and H8J (36 mm). 
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Figure 24:  WSC 775, B. antiquus.  Negative covariance near midsection of tooth, from 11 mm to 

26 mm. 

 

 

 

 

Figure 25:  WSC 4039A & 4039B, B. antiquus.  Both samples from same individual, opposite sides 

of the mandible.   Note positive covariance throughout sampled locations, and close proximity 

between A and B teeth. 
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Figure 26:  WSC 21338C, B. antiquus. Note increased variability of oxygen values with respect to 

carbon. 
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percentages at this site are highly variable, ranging from 6.9% in specimen WSC 10492 to 27.4% 

in specimen 22118 (Table 1).  This variation may be a result of individuals occupying the area at 

different times when the plant communities were different.  A δ13C change as little as 1‰ can 

be the result of as much as a 7% increase in consumed C4 vegetation.  This reflects the amount 

of C4 plants necessary to shift the value in a biogenic system. 

DVL tooth WSC 16708 exhibits variable carbon values, with a preference for enriched 

δ13C plants during the earlier interval of tooth mineralization as indicated by the proximal 

portion of the tooth (Fig. 20).  Following this interval, it consumed a lower proportion of C4 

plants than during its early development.  This may be a signal of seasonal migration within a 

single individual, especially due to the distinct shift at approximately 15 mm. 

DVL tooth 10492 exhibits more constant δ13C values through time, with a positive spike 

near the root at 24.5 mm (Fig. 21).  This point correlates with warming temperatures as shown 

by the oxygen value of the sample.  Although the animal’s δ13C values are predominantly those 

of a browser, C4 plants were more heavily consumed as the temperature rose.  The animal 

transitioned back to a higher percentage of C3 browse between points H2E and H2F (24.5 to 32 

mm). 

Teeth 22118 and 22135 record less variation in diet than the other teeth from this site, 

but the animals consumed a higher percentage of C4 plants than the other B. latifrons sampled 

at DVL (Figs. 22, 23).  Tooth 22135 displays a preference for more browse as the weather 

warmed.  The animal may have travelled to a new source of C3 material as the temperature 

increased. 

Half of the B. latifrons sampled at DVL had diets that fluctuated with temperature and 

seasonal changes, while the others maintained a more constant percentage of C4 throughout 
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M3 tooth mineralization.  This split may be evidence of multiple herds occupying the area during 

different time intervals. 

 

DVL B. antiquus 

On average, the population of B. antiquus recovered from DVL consumed 22.71% C4 

plants (Table 1), a higher proportion than B. latifrons. 

DVL teeth 4039A and 4039B and their corresponding samples (Fig. 25) were collected 

from the same individual, represented by a complete dentary.  The jaw was split at the 

mandibular symphysis, and I opted to serially sample one tooth while collecting a bulk sample 

from its opposite.  The comparison samples were collected from approximately the same 

location in each tooth.  The δ13C values between right and left sides of the jaw were off by 

0.5‰, while δ 18O had an absolute difference of 1.1‰; these variations are well within the 

expected variability range of an individual (MacFadden and Cerling, 1996; Koch et al., 1998; 

Hoppe, 2006b). 

DVL tooth 775 (Fig. 24) exhibits the greatest variability at the site, with one sample 

yielding a depleted δ13C value of -14.2‰.  This value is surprising for an animal that is expected 

to have spent the majority of its time in a mid-elevation environment with access to abundant 

C4 plants to graze upon.  The relatively constant temperature indicated by the δ18O values of the 

tooth do not seem to have heavily influenced the feeding habits of the animal. 

DVL 21338C (Fig. 26) contains a highly enriched δ13C signal, and I calculated its diet to 

average 39.86% C4.  Throughout the tooth, oxygen values fluctuate with a range of ± 7.6‰.  

Carbon maintains a relatively constant value, with the exception of a positive spike of -1.1‰ at 

point H6I (38.5 mm), followed by a rapid drop to -10.3‰ at point H6J (42.5 mm).  This rapid 
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variation occurs near the root of the tooth, implying a mobile individual following its preferred 

food source.  Alternatively, the rapid drop in both carbon and oxygen values could be recording 

the arrival of cold winter temperatures in the second winter of this animal’s life, along with a 

drop in the abundance of C4 grasses. 

In both species, half of the individuals sampled consumed a significantly higher 

proportion of C4 plants, on the order of 8-20% more than the remainder of the population.  This 

increase in C4 grass consumed correlates directly with a positive increase in δ 18O values.  Slight 

niche partitioning is seen between the taxa, as B. latifrons consumed 6.5% less C4 plant material 

than B. antiquus.  This suggests that there was overlap between the habitats of both taxa, but 

the degree of competition is unclear.  B. latifrons samples from this site display a preference for 

C3 browse plants, but they were apparently opportunistic grazers, consuming a mixed diet of 

both plant types.  δ13C values at this site are more variable than at the AF locality, especially in B. 

antiquus, exemplifying the adaptability of the genus.  Plant communities change over time, and 

bison inhabiting the site may have occurred during these multiple time intervals.  The presence 

of both species during these intervals may be accounted for as evidenced by the similar patterns 

of isotopic fractionation seen in half of the individuals from each species. 

The presumed contemporaneous presence of both species of bison at DVL implies that 

there was a mechanism through which they partitioned resources.  Kleynhans et al. (2011) 

established that seasonal migration, habitat segregation, and differing food resources are all 

strategies employed by African savanna grazers to avoid competition.  There is certainly overlap 

in habitat and diet consumed, both of which are criteria for interspecific competition between B. 

latifrons and B. antiquus (Mysterud, 2000).  The third strategy, partitioning food resources, is 

difficult to critically evaluate in a fossil assemblage.  Both species consumed C4 grass as roughly a 
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quarter of their diets, implying that the more nutritious C3 browse material must have been 

present in considerable abundance.  
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7 - Cross-site Comparison 

Across all sites, while excluding the first run of Snowmastodon data, B. latifrons data 

display mean values of -8.39‰ δ 13C VPDB, and -10.42‰ δ 18O VPDB.  The overall average 

percentage of C4 plants consumed by the species is 28.64% (Table 1). 

I plotted the data from all sites in a pair of bivariate scatter graphs (Figs. 27, 28).  I 

selected oxygen values as the y-axis in part to illustrate the effect of a decrease in temperature; 

δ18O values tend to become more negative as temperature lowers and altitude decreases.  

Carbon serves as the x-axis, and trends toward the positive direction as more C4 plant material is 

consumed.  These graphing conventions help to illustrate the trends between carbon and 

oxygen isotopes in a biogenic system. 

Figure 27:  Scatterplot of all localities studied, including multiple samples from individual teeth.  

All points are B. latifrons, with the exception of purple “diamond” symbols, which represent B. 

antiquus.  American Falls, Snowmastodon, and Diamond Valley Lake assemblages lump together 

in Quadrant IV. 
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Data from all three sites are distributed exclusively in Quadrant IV.  Several outlier 

points are excluded (Appendices 1-3), as I consider them to be spurious data points.  Oxygen 

values from these sites have a maximum range of ± 14.3‰ among the populations (ignoring an 

outlier in Quadrant I).  Carbon values display a maximum range of ± 13.1‰. 

The majority of DVL δ13C B. latifrons values group between -6‰ to -13‰ VPDB, while 

δ18O values fall between -7‰ and -11‰.  The seasonality of the DVL site is dampened in 

comparison to the AF and Snowmastodon localities, and the δ13C values are much more 

depleted than at the other two sites.  Coupled with the relatively close grouping of δ13C values, 

this suggests that B. latifrons consumed C3 browse when it was available in a relatively mild, 

constant climate, but supplemented this intake with abundant C4 graze.  B. latifrons exhibited a 

consistent mixed feeder diet in all sites (Figs. 27, 28).  B. antiquus had a more variable diet which 

incorporated a greater percentage of C4 plants. 

B. latifrons at the AF and Snowmastodon sites consumed a narrower range of plant 

types (27 to 40% and 31 to 47%, respectively) than those at DVL (7 to 27%).  These ranges may 

have been influenced by the availability of plant material, high seasonality of the site, or 

successful migration in pursuit of a preferred diet.   

The AF site oxygen values (-4.5 to -14.7‰) display greater variability than those at other 

sites.  I interpret this high variability to be the result of a high degree of seasonality, due to the 

site’s continentality and relatively flat topography.  The Snowmastodon oxygen data (values 

from -9.1 to -17.4‰) reveal a moderate degree of seasonality, but the site remained cool 

throughout all seasons, consistent with its high elevation. 

I combined data points from each tooth into average values for each individual sampled.  

Figure 28 is a representation of the individuals from each population placed into context. 
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Figure 28:  Scatterplot of all localities studied, illustrating isotopic space of individual animals 

from each population.  Each point represents one bison.  All points are B. latifrons with the 

exception of purple diamonds that represent B. antiquus, and unspecified B. latifrons or B. 

antiquus within “Published extinct Bison sp. Data.”  Note that the majority of points fall within 

the mixed feeder zone.  (Includes data from:  Connin, et al., 1998; Feranec and MacFadden, 

2000; Yann and DeSantis, 2014.)  

 

I isolated δ13C values of individuals from each population to better illustrate the isotopic 

range of each study location (Fig. 29).  AF and Snowmastodon B. latifrons exhibit similar mean 

range in δ13C values, at ± 1.92 and ± 2.23‰, while DVL B. latifrons has a spread of ± 2.87‰.  In 

addition, the populations at DVL generally displayed more depleted values than at the other 

locations.  Previously published B. latifrons data from Nevada and Florida appear much more 

enriched, with Florida in particular having an even greater spread of ± 4.80‰.  
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Figure 29:  Mean δ13C values of individuals.  Note greater isotopic range and depleted δ13C 

values in both taxa from the DVL population.  Published B. latifrons are from Tule Springs, NV 

(1), and several from Florida (2,3) that display a highly enriched δ13C signal.  (Includes data from:  
1Connin, et al., 1998; 2Feranec and MacFadden, 2000; 3Yann and DeSantis, 2014). 

 

To test the statistical significance of the variance between isotopic values of each bison 

population, I performed a series of Student’s t-tests on the δ13C data (Table 2).  The outputs of 

the tests are in the form of P-values (highlighted in blue in Table 2), measured against t-values.  

In a two-tailed t-test, populations are statistically distinct with a 95% certainty when P-values 

are < 0.05.  This statistical analysis suggests three levels of distinction between populations.  AF 

B. latifrons are very distinct from DVL B. latifrons (Table 2A).  Snowmastodon B. latifrons are 

very statistically distinct from either species at DVL (Table 2C, E, H).  Population pairs with a 

lesser statistical distinction are DVL B. antiquus vs DVL B. latifrons (Table 2F), and the AF 

assemblage vs DVL assemblage (Table 2G).  There is a statistical distinction, but to a much lesser 

degree between AF B. latifrons and Snowmastodon B. latifrons (Table 2B,). 
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Table 2:  Results of Student’s t-tests on δ13C of bison populations in this study.  All populations in 

this study are statistically distinct from one another at 95% certainty, with the exception of DVL 

B. antiquus vs AF B. latifrons (D).  B. latifrons as a taxon is not statistically distinct from DVL B. 

antiquus, but more data are required to properly make this distinction (I).  Note negative 

exponents in (A, C, G, and H).  Yellow fields indicate statistical similarity. 

 

 
 

There is no statistical distinction between AF B. latifrons and DVL B. antiquus, which 

suggests that the taxa behaved similarly at each of these locations.  The large disparity between 

diets in AF B. latifrons and DVL B. latifrons (Table 2A), combined with a surprising lack of 

A)  AF Blat vs DVL Blat B)  AF Blat vs Snowmastodon Blat C)  Snowmastodon Blat vs DVL Blat

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

tstat > tcrit = statistically distinct tstat < -tcrit = statiscially distinct tstat > tcrit = statistically distinct

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2

Mean -7.789455802 -10.4726167 Mean -7.789455802 -7.315873 Mean -7.315873016 -10.472617

Variance 1.172139897 6.117112305 Variance 1.172139897 1.012002 Variance 1.012002048 6.1171123

Observations 35 30 Observations 35 63 Observations 63 30

Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0

df 38 df 66 df 34

t Stat 5.506965346 t Stat -2.127452625 t Stat 6.730700837

P(T<=t) one-tail 1.35052E-06 P(T<=t) one-tail 0.01856151 P(T<=t) one-tail 4.92258E-08

t Critical one-tail 1.68595446 t Critical one-tail 1.668270514 t Critical one-tail 1.690924255

P(T<=t) two-tail 2.70104E-06 P(T<=t) two-tail 0.037123019 P(T<=t) two-tail 9.84516E-08

t Critical two-tail 2.024394164 t Critical two-tail 1.996564419 t Critical two-tail 2.032244509

D)  DVL Ant vs AF Blat E)  DVL Ant vs Snowmastodon Blat F)  DVL Ant vs DVL Blat

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

-tcrit < tstat < tcrit = no significant difference tstat < -tcrit = statistically distinct tstat > tcrit = statistically distinct

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2

Mean -8.574667399 -7.7894558 Mean -8.574667399 -7.315873 Mean -8.574667399 -10.472617

Variance 7.50352013 1.172139897 Variance 7.50352013 1.012002 Variance 7.50352013 6.1171123

Observations 23 35 Observations 23 63 Observations 23 30

Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0

df 27 df 24 df 45

t Stat -1.309177544 t Stat -2.151538428 t Stat 2.606680369

P(T<=t) one-tail 0.100753496 P(T<=t) one-tail 0.02085495 P(T<=t) one-tail 0.006177789

t Critical one-tail 1.703288446 t Critical one-tail 1.71088208 t Critical one-tail 1.679427393

P(T<=t) two-tail 0.201506992 P(T<=t) two-tail 0.0417099 P(T<=t) two-tail 0.012355578

t Critical two-tail 2.051830516 t Critical two-tail 2.063898562 t Critical two-tail 2.014103389

G)  AF Blat vs DVL sp. H)  Snowmastodon Blat vs DVL sp. I) All sites Blat vs DVL Ant

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

tstat > tcrit = statistically distinct tstat >tcrit = statistically distinct -tcrit < tstat < tcrit = no significant difference

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2

Mean -7.789455802 -9.64897832 Mean -7.315873016 -9.648978 Mean -8.185230106 -8.5746674

Variance 1.172139897 7.487892604 Variance 1.012002048 7.4878926 Variance 3.858691473 7.5035201

Observations 35 53 Observations 63 53 Observations 128 23

Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0

df 73 df 64 df 26

t Stat 4.448024015 t Stat 5.881776709 t Stat 0.652344792

P(T<=t) one-tail 1.52204E-05 P(T<=t) one-tail 8.06238E-08 P(T<=t) one-tail 0.259952524

t Critical one-tail 1.665996224 t Critical one-tail 1.669013025 t Critical one-tail 1.70561792

P(T<=t) two-tail 3.04408E-05 P(T<=t) two-tail 1.61248E-07 P(T<=t) two-tail 0.519905048

t Critical two-tail 1.992997126 t Critical two-tail 1.997729654 t Critical two-tail 2.055529439
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statistical distinction at 95% certainty between AF B. latifrons and DVL B. antiquus (Table 2D), 

suggests that in the presence of another large taxon with similar dietary needs, B. latifrons 

readily adjusts its diet to avoid competition.  The isotopic data support this, as DVL B. latifrons 

possess a more depleted δ13C signature than at the other sites in this study.  Other contributors 

to this shift in diet may have been the presence of Equus or camel, both of which are specialized 

grazers. 

When viewed as a taxon, B. latifrons does not possess a δ13C signature different from 

that of the DVL B. antiquus, although more data from both species are required to confirm this 

similarity in diet. 

  



57 
 
 

 

8 - Discussion 

The majority of individuals sampled in this study fall within the mixed-feeder range, with 

only four bison (two from each species) within the browse-specialist zone (Figs. 27, 28, 29).  A 

compilation of data points from previous isotopic studies of extinct bison is included to compare 

my new data with the larger set.  Most previous samples have not been identified to species 

level, but their temporal and geographic settings limit them to B. latifrons and B. antiquus.  

Bison have been included as portions of larger studies of fauna from Arizona, Florida, Nevada, 

and New Mexico.  The majority of previously published data comes from multiple assemblages 

from AZ and FL, and suggests that bison of either species at these sites were primarily grazers 

(Connin et al., 1998 and Feranec and MacFadden, 2000). 

The consistent pattern of stable carbon values with variable oxygen values at the 

American Falls and Snowmastodon sites indicates a pair of mutually compatible possibilities:  

the animals were mobile in pursuit of suitable environments and food sources, or they were 

exposed to a wide range of temperatures due to the increased seasonality of the site.  Mobility 

apparently increased as the animals matured, as evidenced by increased variation in δ18O values 

in the later-mineralizing (root) portion of the teeth.  This positive covariance between oxygen 

and carbon isotopic systems in many animals (e.g., Figs. 15, 23, 26) strongly enforces my 

hypothesis that Pleistocene bison altered their diet and habitat in response to intra-annual 

weather variations.  The close grouping of data points of both species at the DVL site (Figs. 27, 

28) suggests that they experienced similar temperatures and utilized similar food sources. 

The amount of C3 browse in the diet of an individual B. latifrons varied with habitat and 

season, and my data show two distinct patterns.  The first is a direct correlation between δ13C 

and δ18O, which indicates that the animal’s diet changed according to weather and seasons, as 
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seen in teeth WSC 4039 and 21338C (Figs. 25, 26).  This pattern most closely adheres to the 

hypothetical, idealized, nonmigratory bison tooth (Fig. 4), and manifests primarily in the DVL 

populations of both taxa.  This is not to say that the patterns are identical, as there are several 

individuals that display correlation between both isotopic systems, but deviate at some point 

during enamel development (IMNH 17922, WSC 16708, 10492, 775) (Figs. 7, 20, 21, 24). 

At the DVL site, where the two species co-occur, B. latifrons exhibited more variability in 

its diet, possibly in response to the presence of B. antiquus (Fig. 29).   

Fluctuations in the diet of B. antiquus do line up with the interpreted seasons shown in 

the idealized nonmigratory bison (Fig 4), but WSC 775 notably shows a preference for C3 browse 

during a cold interval (Fig 24).  Without more data, it is unclear whether this individual is 

representative of a larger herd or a solitary outlier, possibly a wandering bull. 

The second pattern is a generally stable level of δ13C despite fluctuations in δ18O.  This 

pattern is primarily seen at the AF and Snowmastodon sites, and best illustrated by teeth IMNH 

17917 and 17915 (Figs. 10, 11) and DMNH 58.446 (Fig. 13).  This signal tells me that the animal 

consumed a similar diet regardless of season, which is a possible indicator of seasonal migration.  

Migration is likely, and my conclusions fit into a model of currently observed behavior of large 

herbivores. 

In either scenario – seasonally changing diet or stable diet - B. latifrons consumed C3 

vegetation, but incorporated a non-trivial amount of C4 plants into its diet.   

My data support the hypothesis that B. latifrons was an indiscriminate feeder, and 

consumed C3 and C4 vegetation based on resource availability.  This contradicts the long held 

view that the taxon was a C3 browse specialist put forth by McDonald (1981).  B. latifrons was 

more adaptable than previously thought, especially when in the presence of other competitors. 
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8.1 - A Hypothesis Regarding Niche Partitioning in Bison 

During the multiple time intervals during which two taxa of bison coexisted in North 

America (Fig. 1), a recurring pattern occurs in which one taxon was adapted to steppe/savanna 

settings while the other taxon was adapted to tundra/woodland habitats (Table 3).  Dietary 

analyses of fossil species are incomplete, and this study is focused on the paleoecology of B. 

latifrons, but inferences about the dietary habits of various taxa can be made based on the 

distribution of fossil localities.  The distribution of these taxa suggest that as bison evolved in 

North America, each taxon selected its preferred habitat and followed these biomes as seasons 

and climate changed over time.  However, the data I collected for B. latifrons portray the taxon 

as an indiscriminate feeder that opportunistically consumed both C3 and C4 vegetation.  

McDonald (1981) and others utilized fossil localities to place taxa into paleoecological context, 

but this new information suggests that bison were defined by their habitat rather than their 

diet. 

 

Savanna/Steppe Woodland 

Bison priscus Bison priscus alaskensis 

Bison antiquus Bison latifrons 

Bison antiquus occidentalis Bison antiquus antiquus 

Bison bison bison Bison bison athabascae 
 
Table 3:  “Couplets” of coexisting taxa.  When two taxa of bison were contemporaneous, 
resource partitioning developed in the form of specialization of one taxon toward a 
savanna/steppe habitat and specialization of the other taxon toward a woodland habitat. 
 
 

Resource partitioning remained a viable means of reducing competition between 

species, and may have been a driver of bison diversification.  The range dynamics explored by 
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McDonald (1981) help to explain the distribution patterns of each species, particularly between 

B. latifrons and B. antiquus, but their function in a given niche may have been more malleable 

than previously thought.  

B. latifrons was the most wide-spread species of bison throughout North America from 

its initial appearance in the Illinoian glaciation until its decline beginning in the Sangamon 

Interglacial.  B. latifrons may have excluded B. antiquus from potential habitats due to 

competition, while successfully cohabitating these areas with other megaherbivores such as 

American mastodon.  B. antiquus may have been pressured to find ecologic success in the more 

open plains, developing a preference for C4 vegetation.  The population density and range of B. 

antiquus increased throughout the Sangamon in response to the increase in its savanna habitat 

(McDonald, 1981).  Increase in range is a strategy employed by growing populations, but several 

geographic and ecological barriers were in place during the Sangamon-Wisconsin transition 

which limited dispersal options.  The Laurentide ice sheet closed off the northern corridor, and 

the Pacific Ocean prevented a further westward range shift. 

During the late Wisconsin glaciation, B. antiquus underwent a significant northward 

range expansion (Fig. 2), in response to the northward expansion of suitable habitat.  This range 

expansion coincided with the extinction of B. latifrons, the former presence of which may have 

inhibited synchronous habitation (McDonald, 1981).  Over time, new taxa of bison emerged to 

take advantage of the expanding grasslands of North America (Geist, 1966; McDonald, 1981). 

Extant bison exist as a pair of subspecies (Bison bison bison and Bison bison athabascae), 

but do not necessarily provide a reliable modern analogue for this niche partitioning model.  The 

subspecies occupy different niches and geographic regions.  Nor do they have access to their 

historical range and are kept within artificial boundaries.  But similar niche partitioning behavior 
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is seen among the two extant species of wildebeest.  As a pair of large, ruminant species of 

bovids with expansive geographic ranges, wildebeest have the potential to be used as a 

paleoecological model for North American Pleistocene bison.  The blue wildebeest 

(Connochaetes taurinus), the larger of the two species, inhabits a large geographic area 

throughout Angola, Botswana, Mozambique, Namibia, and Zimbabwe.  These countries contain 

a variety of habitats, including savanna, semi-desert, and woodland (Andere, 1981; Estes, 1991; 

Ackermann, 2010).  The black wildebeest (Connochaetes gnou) occupies a much smaller region 

of open grassland in South Africa (Estes, 1991; Codron and Brink, 2007).  Both species are 

primarily grazers, but they have the ability to incorporate C3 browse plants into their diets 

(Codron and Brink, 2007; Ackermann, 2010).  The two species are often found to be sympatric; 

due to their similar dietary needs, there is selective pressure for these species to partition 

resources and minimize competition (Codron and Brink, 2007).  Carbon isotopic studies of 

dentine collagen and feces by Codron and Brink (2007) showed that herds of blue wildebeest 

are more likely to adjust their diets in the presence of competitor species. 

Codron et al. (2010) further examined the relationship between these co-existing 

species in both sympatric and allopatric populations.  When allopatric, both taxa independently 

exhibit similar isotope niche breadths.  However, in sympatric situations, black wildebeest have 

a narrower δ13C range than blue wildebeest, which indicates a nearly exclusive diet of C4 grasses.  

Blue wildebeest behave as a submissive species and must adapt their feeding behavior to 

contain a greater proportion of C3 plants in order to minimize competition. 

This relationship may mirror the late Pleistocene interaction between B. latifrons and B. 

antiquus, especially as seen in the DVL assemblage studied here.  The allopatric population of B. 

latifrons at AF had an average δ13C range of ± 3.1‰, and the Snowmastodon population had a 
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δ13C range of ± 2.2‰.  The DVL population of B. latifrons had a spread of ± 4.5‰, while the 

sympatric B. antiquus at DVL had a range of ± 8.5‰.  The wider δ13C range of both taxa at the 

DVL site indicates competitive pressure to adopt a broader diet to minimize competition.  B. 

latifrons evolved first and had already radiated throughout a much larger region by the time B. 

antiquus arrived on the scene.  Early interaction between the taxa may have been dominated by 

the northern competitive exclusion of B. antiquus prior to the Wisconsin glaciation (Fig. 2). 

In both wildebeest and Bison, the larger taxon altered its diet in sympatric situations, 

while retaining a larger geographic range across multiple niches.  

Isotopic evidence of this adaptability in bison helps to explain how two large taxa of 

megaherbivores were able to coexist throughout North America, but this hypothesis requires 

additional research and sampling of localities which contain both species of fossil bison 

contemporaneously. 

Ultimately, it appears that niche partitioning between these two species was not 

sufficiently effective to permit them to coexist.  B. antiquus was evidently the superior 

competitor, and B. latifrons became extinct.  
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8.2 - Summary and Conclusions 

To test the hypothesis that B. latifrons was primarily a C3 browser, I examined the 

paleoecology of the Pleistocene Bison latifrons in this study.  I selected sites from Idaho, 

California, and Colorado in order to study the species in a variety of altitudes and latitudes.  I 

analyzed carbon and oxygen stable isotopes collected from tooth enamel. 

I collected 180 samples from 22 individuals.  Nineteen of the individuals were from B. 

latifrons and three were from co-occurring Bison antiquus.  I determined the δ13C and δ18O 

values of these samples, and I calculated the percentage of C4 plants consumed by each animal.  

I determined mean values for each population to gain an understanding of their function within 

an assemblage, and I also examined the range and sequence of values within individual teeth to 

evaluate seasonal variations in diet. 

I found B. latifrons to have been an indiscriminate mixed-feeder.  This species consumed 

C4 graze, but it also incorporated C3 browse into its diet when required by its environment.  

Changes in intra-annual climate do not appear to have affected the plant types consumed, but 

the species was seen to adapt its diet based on availability of forage in its home range.  I 

described several couplets of contemporaneous North American taxa, which utilized niche 

partitioning as a strategy to reduce competition with coexisting taxa.  Extant wildebeest serve as 

a modern analogue for this behavior.  Ultimately niche partitioning was not sufficiently effective 

to permit two species of large bison to coexist during the late Rancholabrean LMA, and B. 

latifrons went extinct. 

Dietary plasticity in Bison was a strategy that was fundamental to their radiation 

throughout Pleistocene North America.  It led to the continued ecological success of the genus 

through diversification up until the modern era. 
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8.3 - Future Work 

Further study of the assemblages examined here should include tooth microwear 

analysis, which serves as a proxy for diet at the time the locality was occupied (Rivals, 2011).  

This test has the capability of narrowing down the plants consumed by an animal to genus or 

species (Rivals et al., 2011).  Analysis of strontium isotopes from tooth enamel would be a 

method of further testing the hypothesis that bison migrated in search of food sources, and 

would help estimate the range of individuals within each population.  87Sr/86Sr is an indicator of 

an animal’s movement patterns throughout its life (Hoppe, et al. 1999).  The ratio varies 

between habitats due to differences in bedrock and soil, and is recorded as a tooth mineralizes.  

Covariation among all three isotopic systems (carbon, oxygen, and strontium) could shed light 

on the hypothesis of seasonal migration of bison populations in pursuit of food sources in 

response to changing climate. 

Regional differences in B. latifrons δ13C signatures may be the result of differing plant 

communities or the presence of other megaherbivores that competed for resources.  A broader 

dataset of serial δ13C values sampled from various taxa across North America will help to 

pinpoint their dietary preferences and habits. 
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Appendix 1:  Initial Snowmastodon Results 

Initial results from the Snowmastodon site in Snowmass, CO were inconclusive.  The 

data presented here are a representation of tooth enamel sample locations with especially 

anomalous samples removed.  Samples determined to be problematic are those which had 

either lost too much mass during preparation, or were contaminated by water while in 

transition from carbonate device to mass spectrometer.  Measured δ13C values have a range 

between -5.34 to +8.93‰ VPDB, with a mean value of +0.93‰.  The range in δ 18O values is -

8.99 to -5.20‰ VPDB, with a site average of -7.49‰.  Most teeth sampled at this location 

display positive covariation of the two isotopic systems.  DMNH 56.322 (D4 A–F) and 60.022 (D6 

A-H) are exceptions to this trend, displaying negative covariation toward the midpoint of the 

tooth, with a spike in oxygen values seen in DMNH 60.022.  When several outlier data points 

were removed from charting DMNH 60.022, a positively covarying signal was seen, suggesting 

that the individual samples were not accurate representations of the tooth as a whole.  DMNH 

60.703 (D1 A-P) and DMNH 56.322 in particular display extreme variation in carbon values, on 

the order of ± 13‰, while oxygen values stay relatively consistent. 

Due to these problematic results, I resampled teeth from the Snowmastodon site.  My 

previous data are included here to illustrate the importance of proper collection and 

preparation of enamel tooth powder. 
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DMNH 60.703 displays high variability between sample points, particularly in carbon values.  

Oxygen values remain relatively constant by comparison. 

 

 

 

 

DMNH 59.005 exhibits positive covariation with a sharp negative drop in both isotopic systems 

6mm from the occlusal surface. 
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DMNH 58.446 exhibits positive covariation between isotopic systems throughout. 

 

 

 

 

The majority of samples from DMNH 56.322 were discarded due to errors that occurred during 

preparation and analysis.  D4B-D4D were combined due to low sample volume collected prior to 

analysis. 
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Positive covariation is seen in DMNH 58.394, while carbon values exhibit more positive values 

than oxygen. 

 

 

 

 

DMNH 60.022 exhibits a positive covariation pattern throughout.  Carbon values fall within the 

range of a C4 specialist, while oxygen remains relatively constant. 
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Interpretation of Initial Snowmastodon Results 

δ13C values from the initial sampling average 0.93‰ even when outliers are removed, 

which is unusually high, even for extreme C4 specialists.  Positive δ13C values are not expected in 

a biogenically fractionated apatite system (Feranec and MacFadden, 2000, Crowley, 2014).  δ13C 

values as high as positive 8.93‰ VPDB are prime indicators of a non-primary isotopic signal.  

δ18O values seem reasonable with a site average of -7.49‰, but must be viewed skeptically in 

light of the highly positive carbon values.  The equation of Koch (1998) indicates that the 

percentage of C4 plants consumed is 95.21%, with several exclusively C4 graze specialist 

individuals. 

If the values were indeed correct, the teeth may have been subject to extreme 

diagenetic alteration, which accounts for the large shift and range in carbon values.  The oxygen 

isotopic system is much more vulnerable to diagenesis than carbon, implying that if carbon has 

been altered, oxygen must have been altered even further.  As discussed by Koch (1997), 

groundwater and meteoric precipitation tend to cause oxygen isotopic values to take on their 

values over time, typically in the positive direction.  A homogenization of δ18O is seen 

throughout the series, with a positive trend in both systems.  This positive covariation between 

systems implies that a similar process must have acted upon all samples collected from the 

Snowmastodon site. 

The other possibility for such a shift in isotopic values is human error and sample cross 

contamination.  The Snowmastodon teeth were the first ones I sampled in this study, and during 

initial sampling I failed to account for cementum and secondary calcite on the surface of some 

of the teeth.  The teeth recovered from the Snowmastodon site had a significant amount of 

secondary material on the surface, which I did not immediately recognize due to my 
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inexperience with the sampling method.  In most cases, the drilling depth was not sufficient to 

penetrate this layer, and enamel powder collected was typically light tan to brown in color.  

Further review of published literature (Crowley, 2012; Crowley and Wheatley, 2014) indicated 

that the surface of each tooth should be scoured using physical or chemical means prior to 

sampling for powder.  These potential sampling errors were noted and accounted for in all 

subsequent sample collection. 

I performed a second round of sampling at the Denver Museum of Nature and Science 

utilizing a refined collection method.  Enamel powders collected during this process were 

uniformly white in color, which is characteristic of successful samples from other sites in this 

study. 
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Appendix 2:  American Falls Formation Raw Isotopic Data 

 

IMNH # P # Distance 
(mm) 

δ13C δ18O 

17906 P1A 5 -10.6 -13.6 

  P1B 7.5 -7.5 7.0 

  P1C 12 -6.0 -3.8 

  P1F 27 -5.2 -7.5 

  P1G 31 -7.4 -10.1 

 

IMNH # P# Distance 
(mm) 

δ13C δ18O 

17909 P2D 13.5 -7.8 -4.1 

  P2E 17 -8.4 -10.2 

  P2F 20.5 -7.5 -5.8 

 

IMNH # P# Distance 
(mm) 

δ13C δ18O 

17922 P3B 40 -7.9 -5.7 

  P3C 45 -8.1 -12.4 

  P3D 47 -7.2 -10.3 

  P3E 50 -8.0 -14.4 

 

IMNH # P# Distance 
(mm) 

δ13C δ18O 

17931 P4A 11 -7.4 -9.4 

  P4E 33 -6.4 -12.5 

  P4F 38 -6.3 -14.7 

 

IMNH # P# Distance 
(mm) 

δ13C δ18O 

17930 P5C 19 -9.0 -6.0 

  P5E 29.5 -7.9 -8.1 

  P5F 35 -8.6 -9.8 

  P5G 41 -7.8 -13.1 

 

 

IMNH # P# Distance 
(mm) 

δ13C δ18O 

17917 P6A 5 -6.5 -9.9 

  P6B 9.5 -6.5 -12.0 

  P6C 14 -6.8 -9.9 

  P6D 18 -7.1 -11.9 

  P6E 23.5 -7.5 -12.7 

  P6F 28 -8.4 -6.8 

  P6G 32 -8.0 -8.2 

  P6H 37 -7.8 -5.1 

IMNH # P# Distance 
(mm) 

δ13C δ18O 

17915 P7A 9 -9.3 -11.1 

  P7B 14 -9.3 -10.6 

  P7C 18.5 -9.0 -11.9 

  P7D 24.5 -8.7 -9.4 

  P7E 29 -8.7 -8.7 

  P7F 35 -8.5 -11.4 

  P7G 41 -7.1 -11.6 

  P7H 47 -8.2 -9.4 
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Appendix 3: Diamond Valley Lake Formation Raw Isotopic Data (Bison latifrons) 

WSC # H # Distance 
(mm) 

δ13C δ18O 

16708 H1A 2 -21.8 -12.4 

  H1B 5 -8.3 -10.1 

  H1C 6 -9.2 -12.4 

  H1D 9 -8.8 -10.5 

  H1E 11 -9.2 -12.5 

  H1F 13 -10.5 -10.2 

  H1G 15 -10.7 -10.4 

  H1H 16.5 -11.5 -9.9 

  H1I 18 -10.7 -8.5 

  H1J 20 -11.3 -9.3 

  H1K 23 -10.9 -11.1 

  H1L 25 -10.9 -9.7 

  H1M 27 -10.7 -9.3 

  H1N 29.5 -10.6 -8.7 

 

WSC # H # Distance 
(mm) 

δ13C δ18O 

10492 H2A 3.5 -11.5 -8.7 

  H2B 7.5 -11.4 -7.5 

  H2C 12.5 -12.7 -9.5 

  H2D 17.5 -11.4 -9.4 

  H2E 24.5 -9.2 -8.9 

  H2F 32 -12.4 -7.4 

 

WSC # H # Distance 
(mm) 

δ13C δ18O 

22118 H7A 2.5 -8.8 -8.9 

  H7B 7 -8.5 -8.1 

  H7D 16.5 -8.4 -8.4 

 

 

 

 

 

WSC # H # Distance 
(mm) 

δ13C δ18O 

22135 H8A 2.5 -8.2 -8.5 

  H8B 8 -9.7 -10.6 

  H8C 12 -9.1 -10.0 

  H8D 17 -9.7 -9.5 

  H8E 22.5 -10.3 -7.1 

  H8H 29 -9.3 -7.4 

  H8J 36 -8.7 -7.6 
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Appendix 4: Diamond Valley Lake Formation Raw Isotopic Data (Bison antiquus) 

WSC # H # Distance 
(mm) 

δ13C δ18O 

775 H3A 4 -8.2 -9.2 

  H3B 7.5 -7.2 -7.9 

  H3C 10 -9.9 -10.8 

  H3D 16 -14.2 -8.8 

  H3E 21 -12.4 -10.0 

  H3F 26 -11.7 -10.4 

  H3G 31 -8.1 -9.2 

 

WSC # H # Distance 
(mm) 

δ13C δ18O 

4039A H4A 3.5 -11.0 -9.0 

  H4B 7.5 -10.3 -8.3 

  H4C 11.5 -5.7 -4.5 

  H4D 17 -9.4 -9.6 

  H4E 20 -10.5 -9.9 

          

4039B H5 7.5 -10.5 -7.9 

 

WSC # H # Distance 
(mm) 

δ13C δ18O 

21338C H6A 4 -6.2 -6.4 

  H6B 8 -9.0 -8.7 

  H6C 11 -6.7 -6.2 

  H6D 16 -7.6 -10.6 

  H6E 21 -6.4 -5.6 

  H6F 26 -6.9 -6.1 

  H6G 30.5 -7.2 -5.1 

  H6H 34.5 -6.8 -4.1 

  H6I 38.5 -1.1 -3.1 

  H6J 42.5 -10.3 -10.7 
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Appendix 5: Snowmastodon Round 2 Raw Isotopic Data  

  

  

  

 

 

 

 

 

 

DMNH # D # Distance 

(mm)
δ

13
C δ

18
O

60.703 D*1A 2.5 -6.30 -12.70

D*1B 5 -7.90 -13.30

D*1C 7 -7.80 -13.70

D*1D 9 -9.10 -14.60

D*1E 11 -8.70 -15.60

D*1F 13 -6.80 -14.00

D*1G 15.5 -7.10 -13.40

D*1H 18 -7.10 -13.60

D*1I 20 -8.7 -11.8

DMNH # D# Distance 

(mm)
δ

13
C δ

18
O

58.446 D*2A 5 -8.60 -12.20

D*2B 8 -7.30 -10.40

D*2C 9.5 -6.70 -9.50

D*2D 12 -7.6 -11.7

D*2E 14 -7 -11.7

D*2F 15 -6.7 -12.6

D*2G 16.5 -7.4 -13.4

D*2H 18 -6.9 -14.3

D*2I 20 -7 -16.2

DMNH # D # Distance 

(mm)
δ13C δ18O

59.005 D*3A 3 -7.50 -12.70

D*3B 6 -8.20 -14.40

D*3C 8 -7.7 -15.2

D*3D 10 -6.7 -15.8

D*3E 12 -7.4 -17.4

D*3F 14 -6.3 -15.8

DMNH # D # Distance 

(mm)
δ13C δ18O

p58.394 D*5A 3 -7.70 -15.20

n67.512 D*5B 5.5 -6.90 -15.20

D*5C 7.5 -7.8 -15

D*5F 16 -7.2 -12.7

D*5G 18.5 -7.7 -10

D*5H 21 -9.1 -9.1

D*5I 23 -9.1 -9.7

D*5J 25 -8.3 -10.2

DMNH # D # Distance 

(mm)
δ13C δ18O

p60.022 D*6A 0.5 -6.50 -16.00

n67517 D*6B 2 -5.8 -16.8

D*6C 4 -5.7 -17.4

D*6D 6.5 -5.5 -16.5

D*6E 8 -5.2 -16

D*6F 10 -5.8 -15

DMNH # D # Distance 

(mm)
δ13C δ18O

67505 D*7A 1 -8.60 -12.90

D*7B 3 -8 -12.3

D*7C 5 -7.8 -13.1

D*7D 8.5 -7.7 -13.1

D*7E 11 -7.7 -13

D*7F 12.5 -7.1 -13.1

DMNH # D # Distance 

(mm)
δ

13
C δ

18
O

67503 D*8A 0.5 -6.20 -12.20

D*8B 3 -6.1 -12.5

D*8C 5 -7.3 -12

D*8D 7 -6.8 -12.9

D*8E 9 -6.8 -11.8

D*8F 11 -7.4 -11.8

D*8G 12 -8.5 -11.6

D*8H 14.5 -7.8 -10.4

D*8I 17 -8.8 -10.7

D*8J 19 -8 -9.2

DMNH # D # Distance 

(mm)
δ

13
C δ

18
O

56.322 D*4B 3 -5.6 -15

D*4C 5.5 -6.7 -15

D*4D 9 -4.7 -12.8

D*4E 12.5 -6.6 -12.8

D*4F 15.5 -7.9 -12.1

D*4G 18 -7 -10.4

D*4H 22 -7.9 -10.7

D*4I 25 -8.4 -11.8

D*4J 27.5 -8.7 -11.7
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Appendix 6:  Individual Tooth Sample Weights 

Actual Sample # Sample ID # 

 
Weight 

(mg) 
Average Wgt Collected 

(mg) Avg. Wgt all Samples (mg) 

IDAHO     

IMNH 17906 P1A 9.144 2.822 1.598 

 P1B 0.185   

 P1C 0.815   

 P1D 0.51   

 P1E 2.107   

 P1F 3.328   

 P1G 3.662   

 P1H 0   

     

IMNH 17909 P2A 0.662 0.660  

 P2B 0.267   

 P2C 0.25   

 P2D 0.325   

 P2E 1.613   

 P2F 1.185   

 P2G 0.67   

 P2H 0.31   

     

IMNH 17922 P3A 0.385 0.828  

 P3B 0.807   

 P3C 1.292   

 P3D - Chunk 27.407   

 P3E - Chunk 35.15   

     

IMNH 17931 P4A 1.739 1.584  

 P4B 1.301   

 P4C 1.171   

 P4D 0.734   

 P4E 2.348   

 P4F 2.212   

     

IMNH 17930 P5A 0.58 1.249  

 P5B 0.379   

 P5C 1.682   

 P5D 0.743   

 P5E 1.79   

 P5F 2.365   
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 P5G 1.204   

     

IMNH 17917 P6A 1.41 2.447  

 P6B 2.942   

 P6C 1.162   

 P6D 1.442   

 P6E 2.602   

 P6F 1.99   

 P6G 3.114   

 P6H 4.915   

     

IMNH 17915 P7A 2.937 4.369  

 P7B 4.471   

 P7C 3.503   

 P7D 3.533   

 P7E 3.541   

 P7F 5.73   

 P7G 7.449   

 P7H 3.785   
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Actual Sample # 
Sample ID 

# Weight (mg) 
Average Wgt Collected 

(mg) 
Avg. Wgt all 

Samples 

CALIFORNIA     

L2726-16708 H1A 1.011 2.473 3.120 

 H1B 1.457   

 H1C 1.078   

 H1D 1.924   

 H1E 1.524   

 H1F 1.274   

 H1G 1.655   

 H1H 2.255   

 H1I 1.798   

 H1J 2.091   

 H1K 2.128   

 H1L 2.780   

 H1M 3.528   

 H1N 2.609   

     

L2726-10492 H2A 3.276 4.161  

 H2B 2.853   

 H2C 2.930   

 H2D 4.450   

 H2E 6.371   

 H2F 5.087   

     

L2726-775 H3A 1.880 2.181  

 H3B 2.227   

 H3C 1.957   

 H3D 2.959   

 H3E 1.794   

 H3F 2.455   

 H3G 1.995   

     

L2726-4039A H4A 2.120 1.977  

 H4B 2.463   

 H4C 1.790   

 H4D 1.902   

 H4E 1.611   

     

L2726-4039B H5 3.415 3.415  

     

L2726-21338C H6A 1.933 2.801  
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 H6B 1.644   

 H6C 2.644   

 H6D 1.889   

 H6E 2.805   

 H6F 2.758   

 H6G 2.365   

 H6H 3.169   

 H6I 4.941   

 H6J 3.858   

     

L2726-22118 H7A 3.705 4.348  

 H7B 4.639   

 H7C 3.584   

 H7D 5.463   

     

L2726-22135 H8A 3.789 3.601  

 H8B 2.911   

 H8C 2.661   

 H8D 3.353   

same individual H8E 4.813   

 H8F 3.576   

 H8G 3.421   

 H8H 4.993   

 H8I 2.760   

 H8J 3.142   

 H8K 4.190   
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Actual Sample 
# 

Sample ID 
# 

Weight 
(mg) 

Average Wgt Collected 
(mg) 

Avg. Wgt all Samples 
(mg) 

COLORADO     

DMNH 60.703 D1A 15.745 3.828 2.864 

 D1B 22.233   

 D1Aa 0.790   

 D1Ab 1.121   

 D1Ba 0.899   

 D1C 2.437   

 D1D 1.079   

 D1E 1.860   

 D1F 1.029   

 D1G 1.560   

 D1H 1.849   

 D1I 3.242   

 D1J 2.707   

 D1K 2.262   

 D1L 4.437   

 D1M 2.634   

 D1N 2.425   

 D1O 2.005   

 D1P 2.424   

     

DMNH 59.005 D2A 3.698 4.030  

 D2B 4.343   

 D2C 2.570   

 D2D 2.632   

 D2E 2.602   

 D2F 7.256   

 D2G 5.631   

 D2H 3.632   

 D2I 4.331   

 D2J 2.548   

 D2K 5.090   

     

DMNH 58.446 D3A 3.174 2.914  

 D3B 3.465   

 D3C 3.761   

 D3D 5.103   

 D3E 3.573   

 D3F 2.560   

 D3G 2.041   
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 D3HI 1.386   

 D3JK 1.163   

     

DMNH 56.322 D4A 0.877 2.222  

 D4B 1.516   

 D4CD 0.892   

 D4E 6.739   

 D4F 2.480   

 D4G 0.830   

     

DMNH 58.394 D5ABC 1.971 1.327  

 D5DEFG 1.236   

 D5HI 1.577   

 D5J LOST   

 D5K 0.911   

 D5LM 0.939   

     

DMNH 60.022 D6A 0.832 2.112  

 D6B 7.073   

 D6C 0.799   

 D6D 1.766   

 D6E 1.334   

 D6F 2.118   

 D6G 1.422   

 D6H 1.555   
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