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ABSTRACT 

Cryptotephra, in the form of individual glass shards, have been discovered in 

paleoarchaeological site PP5-6 North at Pinnacle Point, Western Cape, South Africa. This marks the first 

documentation of cryptotephra in a South African paleoarchaeological site. PP5-6 North is a rock shelter 

in the cliffs along the coast of the Western Cape and is one of a series of caves and rock shelters at 

Pinnacle Point that were inhabited by early modern humans. The presence of cryptotephra at PP5-6 is 

an important discovery in terms of tephra preservation in cave deposits as well as the possibility of 

tephra being present in other nearby locations. The cryptotephra at PP5-6 presented numerous 

challenges in terms of extraction and analysis. Shards were less than 60 micrometers in size and were 

extremely low in abundance. Electron probe analyses show that the shards are rhyolitic in composition 

and optically stimulated luminescence dating of the host sediment indicates the shards are 73.7 ka. This 

leads to the conclusion that the cryptotephra in PP5-6 may represent an ultra-distal deposit, more than 

5000 km from the source eruption, of the 74 ka Toba super-eruption in Sumatra, Indonesia. The Toba 

caldera is 8964 km away from Pinnacle Point, making Pinnacle Point the most distal deposit of this 

eruption. 
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CHAPTER 1: INTRODUCTION 

Tephra in the form of ash, on geological timescales, is deposited instantaneously after a volcanic 

eruption (Lowe, 2011; Branch et al., 2014) over a wide geographical area (Lane et al., 2014). This creates 

tephra layers of precise ages that are extremely useful for stratigraphic chronologies and for creating 

regional age frameworks that can link geological, paleoecological, paleoclimatic, and archaeological 

deposits (Lowe, 2011; Lowe et al., 2012; Lane et al., 2014). Tephra form visible stratigraphic markers 

that are thick within tens of kilometers of the source volcano (Lane et al., 2014) and thin out with 

increasing distance (Fisher and Schmincke, 1984). Thousands of kilometers from the source volcano, 

tephra may be deposited in layers too thin or too diffuse to be visible to the naked eye (Branch et al., 

2014). These deposits are referred to as cryptotephra (crypto- meaning invisible), with individual shards 

typically less than 125 micrometers in length (Lowe, 2011; Lane et al., 2014). The greater extent of these 

cryptotephra deposits compared to visible deposits (Turney et al., 2004) greatly extends the application 

of tephra studies. Cryptotephra are interspersed within sediment and require the use of separation 

techniques to extract. Typical cryptotephra layers can range from tens to thousands of shards per gram 

in concentration (Lane et al., 2014).  

In the past few years, processing and analytical techniques have improved to the point where 

extremely low abundance (ELA) cryptotephra, which are characterized by abundances of less than 10 

shards/gram, have successfully been used to identify a source volcano and constrain the age of an 

archaeological deposit. One pioneering study of ELA cryptotephra was conducted by Housley et al. 

(2014) who used very small quantities of cryptotephra in windblown sand units at archaeological site 

Mirkowice 33 in northwest Poland to correlate them with the Glen Garry tephra from Iceland and 

determine the age of the deposits. Although the best environmental settings for preserving 

cryptotephra are lakes (Wulf et al., 2004; Pyne-O’Donnell, 2007), peat bogs (Pilcher et al., 1995; 

Wastegård et al., 2003), and marine sites (Housley et al., 2012), they can be found in a wide range of 
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environments, including aeolian and archaeological deposits (e.g., Balascio et al., 2011), which were 

previously not recognized as being conducive to cryptotephra preservation (Housley et al., 2014). 

However, archaeological sites have the added variable of high biological activity, which can facilitate 

migration, mainly downward, of material, including cryptotephra, causing incorrect placement of 

isochrons and creating false associations between the age of the tephra at the perceived isochron and 

an archaeological horizon (Housley et al., 2014). 

Purpose and Goals  

This thesis reports on the only tephrochronology study thus far conducted in a South African 

paleoarchaeological site in an attempt to determine if South Africa has cryptotephra usable for dating 

and correlating archaeological deposits. It investigates ELA cryptotephra found within Pinnacle Point 

rock shelter 5-6 North (PP5-6) in Western Cape Province, South Africa, with the purpose of identifying 

the source eruption of the cryptotephra using geochemical fingerprinting. The goals of this study were 

twofold: 1) to create a tephra laboratory at UNLV capable of efficiently extracting the ELA cryptotephra, 

and 2) to analyze the Pinnacle Point cryptotephra for major elements in order to successfully match it to 

a source eruption. The hypothesis is that the cryptotephra at PP5-6 represents a primary ultra-distal 

deposit of the 74 ka Youngest Toba Tuff (YTT) from the Toba caldera complex in Sumatra, Indonesia. 
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CHAPTER 2: BACKGROUND ON TEPHRA STUDIES 

Tephra Studies in Africa 

In Africa, tephra studies have been mainly conducted on visible late Miocene to early 

Pleistocene tephra horizons in eastern Africa in areas such as the Afar region, the Gulf of Aden, Lake 

Malawi, and the Turkana Basin (Figure 1; Brown et al., 1992; Haileab 1995; Feakins et al., 2007; Fontijn, 

2010; Chorn, 2012). There are fewer studies focused on the Late Pleistocene (Blegen et al., 2015), which 

is the time period of interest in this thesis. One of these studies (Blegen et al., 2015) reports data on Late 

Pleistocene tephra in Lake Victoria and the surrounding area (Figure 1), creating the first regional record 

of tephra from the Late Pleistocene associated with archaeological deposits and fossils. The deposits 

documented by Blegen (2015) were visible layers. Studies focused on Late Pleistocene cryptotephra are 

even rarer (e.g., Lane et al., 2013, Barton et al., 2015). 

An important cryptotephra study in eastern Africa (Chorn, 2012; Lane et al., 2013) resulted in 

the discovery of cryptotephra from the 74 ka YTT eruption in core from Lake Malawi (also called Lake 

Nyasa). Cores were taken from the lake sediment and both visible tephra and cryptotephra layers were 

discovered (Chorn, 2012). Tephra in some of the layers corresponded to eruptions from nearby 

volcanoes such as Rungwe (Figure 1), but one cryptotephra layer contained high-silica rhyolite shards 

that matched the major element chemistry of the YTT (Chorn, 2012; Lane et al., 2013). Earlier dating, 

based on both optically stimulated luminescence (OSL) and paleomagnetic studies for the core, reported 

the 74 ka age horizon nine meters below the layer containing the suspected YTT shards (Lane et al., 

2013). The identification of YTT at Lake Malawi extended the known range of Toba tephra to over 7000 

km from the source and reported the first documented discovery of the YTT in Africa (Chorn, 2012; Lane 

et al., 2013). 
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 The volcanic activity in eastern Africa provides a great opportunity for creating a regional tephra 

framework, an opportunity that may also exist in northern and southern Africa, especially when 

cryptotephra studies are included. These areas would benefit greatly from additional tephrochronology 

studies because both northern and southern Africa have ample archaeological deposits containing 

evidence of early human habitation (Barton et al., 2015). However, archaeological sites in northern and 

southern Africa have only recently become the focus of tephra studies (e.g., Barton et al., 2015; this 

study), partially because of their relative lack of visible volcanic deposits compared to those in eastern 

Africa. Northern Africa, however, has recently been shown to have cryptotephra deposits from sources 

across the Mediterranean Sea (Barton et al., 2015). These cryptotephra deposits have been found in 

caves and rock shelters with some deposits containing thousands of shards per gram of sediment while 

others contain ELA cryptotephra (Barton et al., 2015) similar in abundance and size to the shards 

discovered at Pinnacle Point as part of this study. 

Study and Dating of Cryptotephra in Archaeological Sites 

 Archaeological sites present a challenge to cryptotephra studies because they have been 

affected by human habitation (trampling, bioturbation, etc.) and are often located in caves and rock 

shelters where tephra accumulation is restricted. Open-air archaeological sites would have less 

restricted tephra accumulation but are more prone to disturbance (Lane et al., 2014). In the cave 

environment, deposition is usually indirect, meaning tephra is carried in by wind or water transport. It 

requires exceptional circumstances (e.g., large entrance or skylight, etc.) for cryptotephra to fall into the 

cave directly (Barton et al., 2015). However, caves and rock shelters may present some of the best 

opportunities for documenting cryptotephra sourced from widely dispersed eruptions if erosion and 

bioturbation effects are minimal (Barton et al., 2015). 
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 Another challenge of completing a cryptotephra study is dating the tephra deposits. Both 

isotopic and relative dating techniques can be utilized to determine the age of tephra. Isotopic dating 

can be used on pyroclastic deposits using techniques such as 40Ar/39Ar (or K/Ar) on phenocrysts such as 

sanidine and biotite (Baadsgaard and Dodson, 1964; Lee et al., 2013), or on glass or groundmass if 

sufficient potassium is present. However, not all tephra deposits, especially those that are distal or ultra-

distal, will have material of sufficient size or quantity for dating. Therefore, the applicability of the 

40Ar/39Ar technique is limited for cryptotephra studies (Blockley et al., 2008; Lee et al., 2013). For 

cryptotephra deposits, indirect dating techniques such as OSL or radiocarbon dating that utilize material 

other than the tephra within the layer are more appropriate. 
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Figures 

Figure 1: Map of relevant areas in Africa including sites of mentioned tephra studies, volcanic provinces, and Pinnacle Point. 
(Fontijn, 2010; Chorn, 2012; Lane et al., 2013; Barton et al., 2015; Blegen et al., 2015). 
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CHAPTER 3: BACKGROUND AND GEOLOGIC SETTING OF PINNACLE POINT 

Background on Pinnacle Point 

Pinnacle Point (Figure 2) is an area of coastal cliffs and shoreline 10 km west of Mossel Bay 

(Mosselbaai) in Western Cape Province, South Africa, that is replete with caves and rock shelters 

(Marean et al., 2010). The Pinnacle Point area sits on the convergence of the cold Benguela and warm 

Agulhas ocean currents (Bar-Matthews et al., 2010). It has year-round rainfall and is part of the Cape 

Floral Region, which boasts a diverse range of fauna and flora (Bar-Matthews et al., 2010; Marean et al., 

2010). The generally temperate climate of the region may have made the area favorable to early 

modern humans (Henshilwood, 2008). Coastal South Africa contains the richest archaeological record 

for early modern human behavior (Bar-Matthews et al., 2010) and Pinnacle Point is one of the few areas 

in coastal Africa that has an archaeological record extending past 120 ka (Marean, 2010).  

Above the cliffs where PP5-6 is located is a beach and golf resort that opened in 2006. In 

preparation for the construction of this resort, an environmental survey of the surrounding area was 

conducted in 1997 that resulted in the discovery of 28 archaeological sites, half of which were caves or 

rock shelters (Marean and Nilssen, 2002; Marean et al., 2004). Archaeological excavations at Pinnacle 

Point by Marean began in 2000 (Marean and Nilssen, 2002), with excavation at site PP5-6 beginning in 

2006, as part of the South African Coastal Paleoclimate, Paleoenvironment, Paleoecology, 

Paleoanthropology (SACP4) project. The main goal of SACP4 is to link paleoclimate, paleoenvironmental, 

and paleoanthropological data from the South African southern coast (Brown et al., 2009; Oestmo and 

Marean, 2014). The goals of SACP4 are achieved by integrating studies from a wide range of disciplines 

including paleoclimatology, geology, archaeology, geochronology, and botany.  

For this thesis, sampling for cryptotephra took place in PP5-6 North, a “slit-cut” rock shelter 

(Figure 2; Figure 4; Karkanas et al., 2015). PP5-6 South is another rock shelter connected to PP5-6, but to 
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date, no significant finds have been discovered in PP5-6 South, so PP5-6 North will be hereafter referred 

to as PP5-6. PP5-6 has late Middle Stone Age (MSA) archaeological deposits ranging in age from 90 to 50 

ka as dated by the OSL technique (Smith et al., in prep). These deposits are important because they fill a 

gap in the archaeological record for the area. Most of the other Pinnacle Point sites lack sediments 

younger than 90 ka because sand dunes blocked the entrances of many of the caves at Pinnacle Point at 

this time, preventing human habitation and further accumulation of a sedimentary section (Marean et 

al., 2007; Bar-Matthews et al., 2010). PP5-6 contains hearths, stone tools (lithics), marine shells, ostrich 

egg shells, and animal bones (Brown et al., 2009). 

Geologic Setting of Pinnacle Point 

The cliffs at Pinnacle Point are composed of Ordovician Skurweberg Quartzite (Marean and 

Nilssen, 2002), which is part of the Table Mountain Group (TMG), a member of the Cape Supergroup 

(Figure 3; Keyser, 1997). The quartzite was folded and faulted during the Permo-Triassic orogenic event 

that formed the Cape Fold Belt (Bar-Matthews et al., 2010). Fault breccias were formed along shear 

zones and faults during this event (Bar-Matthews et al., 2010). The caves and rock shelters at Pinnacle 

Point formed by erosion of these fault breccias (Marean et al., 2004; Bar-Matthews et al., 2010; Marean 

et al., 2010), primarily during sea level high stands (Karkanas and Goldberg, 2010; Karkanas et al., 2015). 

The quartzite at PP5-6 is coarse-grained and light gray in color and is capped by calcrete and 

dunes (Marean and Nilssen, 2002; d’Errico and Henshilwood, 2007; Bar-Matthews et al., 2010). 

Numerous quartz veins and nodules run through the quartzite. The calcrete capping the quartzite is 

variable in thickness from over a meter to just a thin veneer (Marean and Nilssen, 2002). This calcrete at 

Pinnacle Point is important to the archaeology of the area because it buffers the pH of water that enters 

the caves and rock shelters (Bar-Matthews et al., 2010) making conditions favorable for bone 

preservation (Marean and Nilssen, 2002).   
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Field Description of PP5-6 

 PP5-6 contains several archaeological deposits. These are the South Remnant, Northwest 

Remnant, and the Long Section (Figure 4; Karkanas et al., 2015). The Long Section holds the majority of 

excavated archaeological material and has been the focus of archaeological work as well as the location 

where the cryptotephra samples were collected. Because of these factors, the Long Section is the only 

deposit described in detail here. 

 The Long Section is a nearly continuous sedimentary section that is 30 meters long, 14 meters of 

which have been excavated (Karkanas et al., 2015). The Long Section is divided into eight units called 

Stratigraphic Aggregates (Figure 4). The Stratigraphic Aggregates in the Long Section include, from 

youngest to oldest: Reddish Brown Sand and Roofspall (RBSR), Black Compact Sand and Roofspall 

(BCSR), Dark Brown Compact Sand (DBCS), Orange Brown Sand 2 (OBS 2), Shelly Gray Sand (SGS), (OBS 

1), Shelly Ashy Dark Brown Sand (SADBS), Ashy Light Brown Sand (ALBS), Light Brown Sand and Roofspall 

(LBSR), Yellowish Brown Sand and Roofspall (YBSR), and Yellowish Brown Sand (YBS) (Figure 4; Karkanas 

et al., 2015,  Brown et al., 2012). These Stratigraphic Aggregates are subdivided into subunits known as 

sub-aggregates. 

Panagiotis Karkanas, micromorphologist at the American School for Classical Studies, initially 

discovered shards in an impregnated thin section of the SADBS stratigraphic aggregate. As a result of his 

findings, sampling of SADBS and the ALBS stratigraphic aggregates was the focus of this thesis. Sampling 

of the OBS1, above the SADBS, and LBSR, below the ALBS, was conducted in subsequent years and are 

the focus of future work. 

 The SADBS was the uppermost stratigraphic aggregate sampled for this thesis. It is about 70 cm 

thick (Brown et al., 2012) and has a weighted mean OSL age of 71 ± 3 ka (Karkanas et al., 2015). The sub-

aggregates sampled for this study were, from top to bottom: Kim, Enrico, Gert, Sydney, Thandesiswe, 
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Erich, and Jocelyn (Figure 7). The SADBS consists of dark brown aeolian sand, roofspall (quartzite from 

the walls of the rock shelter), and ash from the burning of wood and other plant material (Karkanas et 

al., 2015; Brown et al., 2012). Large portions of the SADBS are concreted and were difficult to excavate 

and sample. Hammers were often used to facilitate the removal of the concreted areas. The SADBS is 

rich in marine shell material, and contains fire-modified rock, ochre, lithic fragments, ostrich egg shell 

fragments, and animal teeth and bones (Brown et al., 2009). A major discovery made during excavation 

is the presence of an advanced lithic technology that is dominated by microliths (small bladelets) 

created from silcrete (a cemented crust formed by silica accumulation (Nash et al., 2013) first described 

by Lamplugh (1902)) that was processed using heat (Brown et al., 2012).  The use of heat treaded 

silcrete represents a major advance in human technology because earlier lithic fragments were primarily 

quartzite with minor amounts of unprocessed silcrete, chert, and chalcedony (Brown et al., 2009).  

 The ALBS is 76 cm thick and lies directly beneath the SADBS (Figure 4; Brown et al., 2012). The 

contact between SADBS and ALBS is planar and fairly distinct (Brown et al., 2012). The ALBS has a 

weighted OSL mean age of 72 ± 3 ka (Karkanas et al., 2015). The sub-aggregates of the ALBS sampled for 

this study were Conrad Sand and Conrad Cobble and Sand (Figure 7). The ALBS is mainly composed of 

yellow aeolian sand as well as fine gray ashy material (Brown et al., 2009). The ALBS is poorly 

consolidated sand that tends to slump during sampling and is relatively barren of archaeological artifacts 

compared to the overlying SADBS (Marean, personal communication 2014). Finds include marine shells, 

animal bones and teeth, lithics, and ostrich eggshell fragments (Brown et al., 2009). 

Field sampling 

The methods used in this study for sampling are similar to those commonly used in 

tephrochronology for extracting cryptotephra (e.g., Lane et al., 2014). Typically, samples are collected 

every centimeter or every few centimeters from bottom to top, creating a small groove in the vertical 
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transect of the sample area. However, for this thesis, samples were collected from top to bottom to 

minimize active slumping and contamination. 

Dr. Eugene Smith and Deborah Keenan collected the materials used for this study in the SADBS 

and ALBS stratigraphic aggregates during the southern hemisphere winter 2012 field season (Figure 5). 

They collected 130 samples in two transects approximately one meter apart. Transect 1 contained 

samples PP-612-1 through PP-612-88 and transect 2, samples PP-612-89 through PP-612-130. Sample 

locations in conjunction with subaggregate information can be found in Appendix B. The two sample 

profiles covered approximately the same portions of the stratigraphic sections. Subsequent sampling 

was conducted in 2013 by Dr. Curtis Marean in the OBS1, the unit directly above the SADBS (Figure 4), 

and in 2014 by Amber Ciravolo in the LBSR and ALBS below and approximately one meter west of the 

initial samples collected by Smith and Keenan.   

All areas used for sampling were first brushed or scraped of any foreign material. This was 

necessary because the area was the site of a previous excavation and had subsequently been covered 

with sand bags. After cleaning the profile during the 2012 field season, Smith and Keenan collected 

several grams of sample every centimeter from the top of the section to the bottom. Nalgene bottles 

were used in 2012 to store the samples. After a sample was collected, the coordinates were recorded 

using a total station laser controlled GPS unit that provides millimeter accuracy (Dibble et al., 2007; 

Brown et al., 2012). This location data was uploaded into an ArcGIS 10.3 geodatabase that includes data 

for archaeological artifacts, OSL dating sampling sites, and stratigraphic position within the Stratigraphic 

Aggregate (Brown et al., 2012). At the end of the field season, photo chits were placed around the 

collection area and a GPS-rectified photo was taken of the sample location. Details of the archaeological 

excavation methods employed at Pinnacle Point are described elsewhere (Marean et al., 2004; Dibble et 

al., 2007; Marean et al., 2010; Bernatchez and Marean, 2011) as are micromorphology methods 

(Karkanas and Goldberg, 2010; Karkanas et al., 2015).
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Figures 

 
Figure 2: A. Location of Pinnacle Point on the coast of Western Cape, South Africa. B. Aerial view of several caves and rock 

shelters at Pinnacle Point. C. View of Pinnacle Point caves and rock shelters. D. Pinnacle Point 5-6 North and South (modified 
from Karkanas et al., 2015). 
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Figure 3: Generalized geologic map of South Africa. The dark blue represents the Cape Supergroup and Natal Group which 
includes the Table Mountain quartzite found at PP5-6. Map modified from Keyser (1997). 
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Figure 4: Stratigraphy of archaeological deposits in PP5-6. The dark blue rectangles show the Stratigraphic Aggregates sampled 

for cryptotephra in this study. (Figure modified from Karkanas et al., 2015). 
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Figure 5: Photograph of a sample groove cut while collecting sediment samples in 2012. 
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CHAPTER 4: LAB SETUP AND METHODS 

 The first goal of this study was to create a lab at UNLV that specialized in the processing of ELA 

cryptotephra, which included modifying existing cryptotephra extraction techniques for ELA 

cryptotephra. Cryptotephra processing, in general, is a meticulous and laborious process that typically 

includes acid digestion, and density and/or magnetic separation procedures to extract the cryptotephra 

from its host sediment (Gehrels et al., 2008). The size and abundance of the shards at PP5-6 were 

unknown at the start of this study, and the expertise to process cryptotephra was not at that time 

present at UNLV. The Electron Microscopy Lab at the University of Utah was contacted and Drs. Frank 

Brown and Scott Hynek, the laboratory director and research associate, respectively, agreed to process a 

test sample. Processing took over six months and analysis at Utah was not successful at locating shards 

due to the presence of numerous very large quartz and feldspar grains. This attempt illustrated the 

problems of using standard tephra processing techniques when dealing with cryptotephra, particularly 

ELA cryptotephra.  

While waiting for results from Utah, unprocessed grain mounts of sample PP-612-97 were made 

on petrographic slides that were polished and scanned for shards using the Scanning Electron 

Microscope (SEM) at UNLV. This method was extremely time intensive, but one 60 micrometer rhyolite 

shard was discovered (97-shard-A). Unfortunately, the shard was lost during polishing after a 

preliminary Electron Probe Microanalyzer (EPMA) analysis. When the Utah lab returned the test sample, 

scanning the slide using SEM Energy Dispersive Spectroscopy (EDS) yielded another 40 micrometer 

rhyolite shard (GS335). This initial work indicated that the shards were likely small overall and not very 

abundant.  

 Because of the small size and scarcity of shards, the new UNLV lab adopted a modified version 

of the cryptotephra flotation extraction procedure of Blockley et al. (2005). Flotation extraction for 

cryptotephra was first introduced in the 1990s (Turney et al., 2004). The Blockley et al. (2005) technique 
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was chosen because it avoids processes that could potentially cause chemical alteration of the shards. 

Other techniques such as ashing, the combustion of organic material, and heavy chemical digestion, 

which are used to extract cryptotephra from organic-rich sediments (Dugmore, 1989; Pilcher and Hall 

1992), have not been widely successful in extracting cryptotephra from aeolian and other deposits rich 

in quartz and other inorganic silicic material (Turney et al., 2004). These techniques also have the 

potential to alter the chemistry of the shards (Dugmore et al., 1992; Gehrels et al., 2008). Heavy liquid 

separation techniques, such as those employed by Blockley et al. (2005), are more time consuming and 

are only particularly useful when extracting silica-rich cryptotephra (Gehrels et al., 2008). In July-August 

2013, Ciravolo traveled to Oxford University to study the setup of the cryptotephra lab at the Research 

Laboratory for Archaeology and the History of Art (RLAHA) and learn, under the guidance of Dr. Christine 

Lane, the extraction procedure outlined in Blockley et al. (2005). During this time, 20 samples from 

Pinnacle Point were processed. Using the techniques learned in the Oxford lab, a similar tephra lab was 

established at UNLV during the fall semester of 2013. All materials and equipment used to set up and 

maintain the UNLV lab are documented in Appendix A (Table A2). Figure 6 shows a schematic flow chart 

of the basic procedure. Essential materials include sieves, a centrifuge capable of running at 2500 rpm, 

and a heavy liquid such as Sodium Polytungstate (SPT; standard density of 2.82 g/cm3) or Lithium 

Metatungstate (LMT; standard density of 2.95 g/cm3). 

There are several differences between the Oxford and UNLV labs in both equipment and 

procedure (Table 1). The main differences relate to modifications in procedure made at the UNLV lab to 

specifically deal with ELA cryptotephra. The minimum sieve mesh was lowered because a smaller grain 

size was expected due to the distal nature of the site, which is approximately 3000 km from the nearest 

Pleistocene volcano. Epoxy was used (Epothin) as the mounting agent for the reference slides instead of 

Canada Balsam. This increased drying time for the slides and introduced the possibility that slides might 

become unusable due to improper curing; however, any shards found on these reference slides could be 
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polished for EPMA analysis. The double use of the reference slides for both shard counting and 

geochemical analysis eliminated the need for using a micromanipulator to extract shards. Because using 

the micromanipulator is both labor- and time-intensive, eliminating the need for the manipulator 

decreased sample processing time significantly. Another difference was using LMT rather than SPT, but 

LMT and SPT heavy liquids are interchangeable so this difference did not affect the procedure. Both 

heavy liquids are nontoxic but cannot be used at densities as high as those attained by methylene iodide 

(MI), which has a density of 3.33 g/cm3. MI is used to separate heavy minerals such as zircon and 

requires a fume hood. By using one of the nontoxic heavy liquids, separations can be done without the 

use of a fume hood. 

Processing and Identification of Cryptotephra  

 Samples were weighed to approximately one gram and placed in 50 mL centrifuge tubes. A 10% 

solution of hydrochloric acid was used to dissolve the carbonates. The samples were subsequently 

sieved at 80 and 20 µm, keeping the 20-80 µm portion. The 20-80 µm sieve portion was further 

processed using LMT at densities of 1.95 g/cm3 and 2.55 g/cm3 to separate the glass shards and other 

low-density grains. Samples were centrifuged twice at each density for 15 minutes at 2500 rpm. After 

cleaning, the separate containing shards (1.95 – 2.55 g/cm3) was mounted on petrographic slides using 

Epothin epoxy. The slides were scanned to count the shards using a petrographic microscope fitted with 

a mechanical stage. This count is reported as shards per gram of dried sediment (s/g) and plotted 

against vertical position in the sediment column to construct a shard frequency diagram (Figure 7). 

Slides with identified shards were ground and polished for geochemical analysis.  A complete description 

of techniques is provided in the lab manual in Appendix A. 

Cryptotephra Analytical Methods 

The Pinnacle Point shards were very sparse and small and, hence, difficult to analyze. All shards 

were less than 60 µm in diameter. Polished analytical surfaces were usually much smaller and grinding 
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and polishing the slides for single grains was labor- and time-intensive. Because of these difficulties, 

good analyses with wt. % totals above 93 wt. % have only been obtained for three shards, in samples 48, 

49, and 125. 

The shards were analyzed for major and minor elements using a JEOL JXA-8900 SuperProbe 

EPMA with four wavelength dispersive spectrometers (WDS). EPMA WDS was chosen because the 

instrumental parameters such as counting time can be strictly controlled and monitored for each 

element (Branch et al., 2014). Because of low abundance, techniques such as X-ray fluorescence 

spectrometry (XRF) would not be viable for ELA cryptotephra (e.g., Chorn, 2012). Optimal analytical 

conditions for EPMA were 10 nA current at 15 kV accelerating voltage using a 10 μm spot size (Lane et 

al., 2014), but experiments were conducted by varying beam current and beam diameter (Appendix C). 

Peak and background counting times were 30 sec and 10 sec, respectively. Peak and background 

counting times for Na were 10 sec and 5 sec. Alkali elements Na and K were counted on the first WDS 

cycle to minimize potential element migration from beam damage. The rhyolite glass standard ATHO-G, 

a part of the MPI-DING international standard set 1, was used as an internal standard for analyses (Table 

2, Jochum et al., 2006). This standard was chosen for correlation with work done by Christine Lane at 

Lake Malawi (Chorn, 2012; Lane et al., 2013). Earlier analyses used NMNH 2231 synthetic tektite glass 

and VG-568 rhyolite glass standards from the Smithsonian and Harvard collections (Table 2, Jarosewich 

et al., 1980a; Jarosewich et al., 1980b).  
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Tables 

Table 1: Differences between the Oxford and UNLV labs. 
 UNLV Lab Oxford Lab 

Heavy Liquid Lithium Metatungstate Sodium Polytungstate 
Method Increased cleaning phases Final sieve phase after cleaning 

Centrifuge type Ample Scientific Champion S50 D centrifuge Jouan C 412 centrifuge 
Centrifuge Capacity 8 spaces in centrifuge for 15 mL tubes 20+ spaces in centrifuge for 15 mL tubes 

Slides Mounted in epoxy Mounted in Canada Balsam 
Sieve Mesh 20 micrometer sieve mesh 25 micrometer sieve mesh 

Analysis Polished reference slides Hand-picked shards using micromanipulator 
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Table 2: ATHO-G Standard analysis average and one standard deviation 

 ATHO-G 
ATHO-G 
Average 
(n=67) 

ATHO-G 
Standard 
Deviation 

VG568 
VG568 

Average 
(n=47) 

VG568 
Standard 
Deviation 

NMNH 
2231 

NMNH 
2231 

Average 
(n=50) 

NMNH 
2231 

Standard 
Deviation 

SiO2 75.90 75.49 0.52 76.71 76.30 0.49 75.75 75.11 0.39 
TiO2 0.24 0.24 0.04 0.12 0.07 0.02 0.50 0.49 0.02 

Al2O3 12.00 12.27 0.25 12.06 11.98 0.16 11.34 11.01 0.12 
Cr2O3  0.02 0.05  0 0.01  0.01 0.01 

FeO 3.13 3.22 0.11 1.28 1.1 0.05 4.96 4.86 0.07 
MnO 0.10 0.10 0.03 0.03 0.03 0.01 0.11 0.11 0.02 
MgO 0.17 0.09 0.02 0.10 0.03 0.02 1.51 1.41 0.05 
CaO 1.67 1.63 0.09 0.50 0.43 0.02 2.66 2.62 0.06 

Na2O 4.31 4.26 0.19 3.75 3.74 0.25 1.06 0.97 0.1 
K2O 2.65 2.69 0.2 4.89 4.97 0.12 1.88 1.85 0.07 

P2O5 0.03 0.02 0.03 0.01 0.01 0.02  0.02 0.02 
F  0.08 0.12  0.18 0.19  0.07 0.11 
Cl  0.04 0.03  0.11 0.01  0.01 0.02 

Total 100.20 100.16  99.45 98.87  99.77 98.52  
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Figures 

 
Figure 6:  Schematic flow diagram for the processing of cryptotephra in the UNLV lab. 
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CHAPTER 5: RESULTS 

Shard Profile at PP5-6 

 Figure 7 shows the distribution of the shards in the SADBS and ALBS stratigraphic aggregates. 

Reported are values for two vertical transects. Each bar represents a sample collected and scanned for 

shards. A list of sample numbers with corresponding sub-aggregates is included in Appendix B (Figure 

B1). The first appearance of shards occurs near the base of the Conrad Sand in the ALBS (Figure 7). 

Maximum shard abundance is three shards per gram of sediment. Gaps in shard abundance occur in the 

Conrad Sand/Jocelyn, Thandesizwe, and Enrico (Figure 7). Peaks of maximum shard abundance occur in 

Conrad Sand, Jocelyn, Erich, and Gert sub-aggregates (Figure 7). EPMA analyses were obtained from two 

shards in the Erich sub-aggregate, one in the Conrad Sand sub-aggregate, and one in the Sydney sub-

aggregate (Figure 7).  

Shard Morphology 

 Glass shards can come in a variety of different morphologies from vesicular to platy or bubble-

wall. Color can vary from brown to colorless depending on the composition. The Pinnacle Point shards 

generally have blocky or bubble wall shapes, are clear in color, and generally lack vesicles. All shards are 

phenocryst-free and are less than 60 micrometers in size. Figure 8 shows the morphology of the shards 

found to date.  

 In Figure 8A, two possible shards are shown from a large format thin section composed of 

sediment from the SADBS. The shard to the left contains multiple vesicles. Both appear to be bubble-

wall shards with cuspate margins and irregular shapes, similar to shard GS335 in Figure 8B. The shards 

shown in Figure 8A were discovered by Panagiotis Karkanas (personal communication, 2012). GS335, 

shown in Figure 8B is from sample PP-612-48 in the ALBS. It is 40 micrometers in length, has bubble-wall 

morphology with several cuspate margins separated by a thin septum, and has one vesicle in the upper 
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portion. Shard 97-Shard-A (Figure 8C.), from sample PP-612-97 in the Sydney sub-aggregate of the 

SADBS, has cuspate margins and lacks vesicles. Shard 125 (Figure 8D.), located in the sub-aggregate 

Conrad Sands in the ALBS, is platy and lacks vesicles. Similarly, shard 49 (Figure 8E), located in the sub-

aggregate Erich in the upper ALBS, is platy with no vesicles.  

Pinnacle Point Shard Discussion 

The small size of the PP5-6 shards indicates that PP5-6 contains a distal or ultra-distal deposit 

(over 5000 km from the source). In general, larger particles fall out closer to the source; the more distal 

the deposit, the thinner the deposit, and the smaller the average shard diameter (Pyle, 1989; Fisher and 

Schmincke, 1984). The size and abundance of phenocrysts also decreases with distance from the source 

volcano. The quantity of shards (<10 shards/gram) indicates that, as well as being a distal or ultra-distal 

site, the depositional environment was not ideal for tephra deposition. For example: shards are thought 

to enter caves and rock shelters with their host sediment and are rarely deposited directly into the 

cave/rock shelter except in especially favorable conditions (Barton et al., 2015). 

Shard Chemistry 

Four shards have been analyzed to date by EPMA, shown in images B-E in Figure 8. Stars in 

Figure 7 denote their locations. The first two shards found at UNLV, 97-Shard-A and GS335, were first 

analyzed using SEM EDS. After identification by SEM EDS, the shards were analyzed by EPMA. All 

subsequent shards were found using a petrographic microscope and then analyzed by EPMA. Raw data 

are reported in Table 3. The data are plotted in Figures 9 and 10. Only analyses with totals above 94 wt. 

% were included in the results. However, 97-shard-A was included in Table 3 as a comparison for 

normalized data in subsequent figures. All other analyses are reported in Appendix C. Multiple major 

element analyses were obtained for shards 125 and 49 but only one for 97-Shard-A. GS335 had multiple 

analyses, but only two had a total greater than 94 wt. %. The Pinnacle Point shard analyses plot in the 



25 
 

rhyolite field on a total alkalis versus SiO2 diagram (Figure 9; LeBas et al., 1986) when analyses are 

normalized to 100 wt. %.  

Shards 125 and 49 have between 75 and 78 wt. % SiO2 and 12-13 wt. % Al2O3 (Figure 10A). Shard 

GS335 has SiO2 contents ranging from 71 to 72 wt. %, which is lower than the other shards, while its 

Al2O3 content is 15 to 16 wt. %, two to three wt. % higher than the other Pinnacle Point shards (Figure 

10A).  All of the shards have CaO between 0.7 and 0.9 wt. % (Figure 10B). Na2O for GS335 is between 4 

and 5 wt. %, slightly higher than the other shards (Figure 10C). Two analyses for shard 49 have Na2O 

concentrations between 1-3 wt. % while the other analyses of shard 49 and shard 125 have between 3 

and 4 wt. % Na2O. GS335 shows a range of K2O while all other shards have K2O between 5 and 6.5 wt. % 

(Figure 10D). FeO for shard 125 is less than 1 wt. %, while FeO for GS335 is between 1 and 2 wt. % 

(Figure 10E). For MgO, GS335 is between 1 and 2 wt. % (Figure 10F). All other Pinnacle Point shards have 

MgO values under 1 wt. %. MnO content varies between 0.3 and 0.11 wt. % (Figure 10G) but shard 125 

has higher MnO than the other shards. TiO2 in GS335 is between 0.2 and 0.3 wt. %; the highest of the 

Pinnacle Point shards (Figure 10H). Shards 49 and 125 have between 0 and 0.2 wt. % TiO2 (Figure 10H). 
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Tables 

Table 3: Major element EPMA analyses in wt. % for the Pinnacle Point shards. 
Sample SiO2 Al2O3 FeO MgO MnO CaO Na2O K2O TiO2 Total 

125 72.89 12.66 0.76 0.02 0 0.7 3.14 4.97 0 95.14 

125 72.6 12.73 0.78 0.02 0.07 0.74 3.48 5.14 0 95.56 

125 71.72 11.92 0.8 0.04 0.1 0.74 3.23 5.18 0.11 93.84 

GS335 69.00 15.22 1.23 0.15 0.05 0.65 4.01 5.94 0.29 96.53 

GS335 69.33 14.85 1.3 0.15 0.06 0.73 4.14 5.16 0.22 95.94 

49 73.41 11.5 1.33 0.06 0.03 0.69 2.97 5.78 0.17 95.94 

49 73.35 11.39 1.46 0.06 0.03 0.67 1.82 5.40 0.15 94.33 

49 73.41 11.82 1.55 0.04 0.05 0.73 2.81 5.38 0.17 95.96 

97 40.65 6.81 0.15 0.03 0.04 0.44 1.21 2.52 0.02 51.87 
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Figures 

 
Figure 7: Shard distribution profile reported in shards/gram of loose material (Smith et al., in prep). Blue stars indicate sub-

aggregates where EPMA analyses were conducted. 
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Figure 8: A. Image from petrographic microscope showing two possible shards from the initial discovery made by Panagiotis 
Karkanas. B. Backscatter electron (BSE) image of GS335. C. BSE image of 97-shard-A using the SEM. D. Photomicrograph of 

shard 125 in reflected light. E. Photomicrograph of shard 49 in reflected light. 
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Figure 9: Total alkalis versus SiO2 diagram of LeBas et al. (1986) showing the variation in the Pinnacle Point shard chemistry.  
One sigma error bars for Na2O + K2O and SiO2 are denoted based on ATHO-G standard analyses (Table 2).  Data are normalized 

to 100 wt. %. 
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Figure 10: Harker diagrams showing the distribution of major elements for the Pinnacle Point shards (Table 3). One sigma error 
bars are based on ATHO-G standard analyses (Table 2). 
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CHAPTER 6: INTERPRETATIONS 

 The shards in the long section at PP5-6 are spread throughout the SADBS and ALBS stratigraphic 

aggregates, but peaks and gaps in the distribution may not be significant because of the overall low 

abundance of shards. The difference between the maximum and minimum abundance of shards is only 

three shards. Therefore, the most important observation obtained from the distribution profile (Figure 

7) is that the first occurrence of shards is in the Conrad Sands sub-aggregate of the ALBS. The position of 

the first occurrence is nearly the same in both sampling transects and defines an isochron with an OSL 

age of 73.7±1.9 ka (Smith et al., in prep.).  

Possible Sources for Pinnacle Point Shards 

It is necessary to look at both nearby and distant sources when matching cryptotephra to a 

source because tephra can travel long distances and the closest nearby match may not be the correct 

one (Jensen et al., 2014). Criteria used to search for the source of the Pinnacle Point shards were 

location, age, and composition.  

All possible sources considered for this study are located in the southern hemisphere or 

equatorial belt. Volcanoes closest to the site would be in central and eastern Africa as well as Antarctica, 

but tephra from eruptions in Indonesia (Lane et al., 2013) and South America (e.g., the 2011 Puyehue-

Cordon Caulle eruption (Klϋser et al., 2013)) have reached the African continent.  

Although the age of the first occurrence of cryptotephra at PP5-6 is 73.7 ± 1.9 ka, an extended 

time window of 50-90 ka was used in the search for a source eruption to account for variables such as 

reworking, dating uncertainty, and the broad distribution of shards in the sediment section. This time 

window covers the age range of the Long Section in PP5-6. To take into account the reworking of tephra 

from African volcanoes into younger deposits, volcanic events as old as 700 ka in Africa that produced 

tephra were also considered as possible sources. The search focused on silicic explosive eruptions that 
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had the potential for distributing tephra over large areas. However, silicic effusive activity was also 

included because lava flows and volcanic domes may either be preceded or accompanied by explosive 

eruptions. 

Compositional data for the possible source eruptions as well as volcano names and locations 

were obtained using the Volcanic Global Risk and Analysis Project (VOGRIPA), and Smithsonian 

databases of known volcanic eruptions, as well as data from Elmira Wan at the U.S. Geological Survey 

tephrochronology laboratory and information from the US Geological Survey for Volcanoes of the World 

database (Mastin et al., 2009). Unfortunately, many databases primarily list Holocene eruptions and 

rarely extend into Pleistocene eruptions. Therefore, information was also gathered from the published 

literature. 

Africa 

The African volcanoes in the Southern Hemisphere and equatorial belt that have had explosive 

felsic eruptions are located in central and eastern Africa and are part of the East Africa Rift System 

(EARS; Fontijn et al., 2010; Fontijn et al., 2013). Tephra from the rift volcanoes have been documented in 

marine deposits up to 2700 km from the source volcanoes (Sarna-Wojcicki et al., 1985, Brown et al., 

1992, deMenocal and Brown, 1999 and Peate et al., 2003; Feakins et al., 2007). Therefore, the explosive 

eruptions that occur in the rift system have the potential of depositing tephra far from the source. The 

areas in the rift system used for comparison to the Pinnacle Point shards are the Rungwe Volcanic 

Province (RVP) and the Turkana Basin (Figure 11). 

Most of the volcanoes in the EARS are alkaline; the silicic compositions being trachytes and 

phonolites as well as some rhyolite (McDougall, 1985). The RVP in Tanzania is situated at the 

intersection of the Malawi Rift, Rukwa/Tanganyika Rift, and Usangu Basin (Fontijn et al., 2010). Ngozi 

and Rungwe are the two large volcanoes in the RVP that have had documented explosive eruptions 
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(Fontijn et al., 2010). A third volcano in the RVP, Kyejo, is not considered a possible source because its 

products are mainly effusive and lack significant tephra (Harkin, 1960; Fontijn et al., 2010; Fontijn et al., 

2013). Eruptions from the RVP volcanoes range from basalt and phonolite, to trachyte (Fontijn et al., 

2010, Fontijn et al., 2013) and therefore do not match the composition of the PP shards (Figure 12). 

Although these eruptions are mid-Pleistocene to Holocene in age (0.6 Ma to present), there were no 

explosive events within the 50 to 90 ka time window.  

 The Turkana Basin in Kenya and Ethiopia is the only area of the African rift with documented 

dacite and rhyolite eruptions younger than several million years (McDougall, 1985; McDougall and 

Brown, 2009). However, these deposits are higher in iron and lower in calcium than the Pinnacle Point 

shards (Figure 12). The tephra deposits in the Turkana Basin are older than the mid-Pleistocene 

eruptions in the RVP and range in age from 4.1 to 0.7 Ma (McDougall, 1985).  

In summary, the compositions of tephra at the sites in Africa within the time period of interest 

are mainly alkaline phonolites and trachytes with minor rhyolite. This chemistry does not match the 

chemistry of the Pinnacle Point shards. 

Antarctica 

Another possible source of the Pinnacle Point shards is Antarctica. All of the data presented here 

were obtained from Antarctic ice core records (Siple A, Vostok, Dome C, Dome Fuji, Byrd Station, and 

Dome C) (Figure 13; Kyle et al., 1981; Narcisi et al., 2005; Basile et al., 2001; Dunbar and Kurbatov, 

2011). These ice cores contain a record of Antarctic volcanism as well as distant eruptions from South 

America and the islands surrounding Antarctica. 

There was no high silica rhyolitic volcanism in Antarctica between 50-90 ka recorded in the Siple 

A, Byrd Station, Dome C, Dome Fuji, or Vostok ice cores (Kyle et al., 1981; Basile et al., 2001; Narcisi et 

al., 2005; Dunbar and Kurbatov, 2011). Most eruptions represented in the ice cores from Siple A, Dome 
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C, and Byrd Station are trachytes or trachydacites (Kyle et al., 1981; Dunbar and Kurbatov, 2011). 

However, other compositions such as trachybasalt, trachyandesite, dacite, and phonolite are 

documented (Dunbar and Kurbatov, 2011). Dunbar and Kurbatov (2011) also reported a rhyolite with 

74.03 wt. % SiO2; however this rhyolite is less than 40,000 years old. Also, there is tephra in the Siple A 

core with an age of 70.84 ka. Although similar in age to PP5-6 cryptotephra, this tephra has 62.9 wt. % 

SiO2 and is too high in FeO and Na2O to match the Pinnacle Point shards (Dunbar and Kurbatov, 2011). 

Other eruptions are too high in Na2O and FeO and lower in SiO2 (Figure 14) to match the Pinnacle Point 

shards. Overall, the composition of tephra from recorded Antarctic eruptions does not match the 

Pinnacle Point shards. 

South America 

 The Andes are more than 7500 km from Pinnacle Point and are farther from Pinnacle Point than 

any possible sources in central and east Africa and Antarctica. Most Andean eruptions are intermediate 

in composition, but there have been rhyolitic eruptions from volcanoes such as Mt. Burney, Reclus, and 

Aguilera in the Austral Volcano Zone, (AVZ; Stern, 2007). Eruptions from volcanoes in the Southern 

Volcanic Zone (SVZ) are primarily basaltic to andesitic (Lara et al., 2006). The SVZ has over 60 Quaternary 

volcanoes as well as three silicic caldera systems (Stern, 2004; Lara et al., 2006). One volcanic system of 

interest in the southern Andes is the Puyehue-Cordon Caulle Volcanic Complex (PCCVC). The PCCVC has 

erupted basaltic and silicic lavas, domes, and has produced abundant tephra (Lara et al., 2006). Although 

many major elements are similar to the PP shards, the Andean rhyolites are lower in K2O (Figure 15). 

After detailed comparisons between South American eruptions and PP5-6 shards, it is concluded that 

volcanism in the Andes did not produce tephra that is a match for the Pinnacle Point shards (Figure 11; 

Figure 15). However, because we know so little about late Pleistocene volcanism in South America, a 

source in the Andes cannot be completely ruled out. 
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Indonesia 

 The Indonesian Archipelago is thousands of kilometers away from Pinnacle Point in South Africa. 

However, at least one eruption from Indonesia resulted in tephra deposited on the African continent 

(Chorn, 2012; Lane et al., 2013). Most rhyolitic eruptions originating in the Indonesian Archipelago occur 

on the island of Sumatra and the Sunda Strait (Ninkovich, 1979). On Sumatra there are two eruptions 

that occurred within the time period of interest: the YTT eruption at 74 ka and the 53 ka eruption at 

Maninjau caldera. There were likely many more eruptions (e.g., Salisbury et al., 2012), but most 

volcanological research in Sumatra focuses on the largest, the YTT eruption (Alloway et al., 2004). 

Although Maninjau tephra is nearly identical in major element chemistry to YTT, its eruption was smaller 

than YYT and produced only 220-250 km3 of tephra (Purbo-Hadiwidjoyo et al., 1979; Alloway et al., 

2004), compared to 2800 km3 for Toba (Chesner, 2012). The eruption of Maninjau was mainly effusive 

and lacked a Plinian column (Alloway et al., 2004). Therefore, the only documented Indonesian source 

for the PP shards is the YTT eruption from the Toba caldera. More background information on the YTT 

eruption is reported in Appendix D. 

Proximal deposits of YTT (such as inside the caldera) show a range of compositions from 

rhyodacite to high silica rhyolite (Chesner 2012). Distal deposits, however, record only the more silicic 

end member (Smith et al., 2011; Lane et al., 2013). Most distal Toba analyses have 77-78 wt. % SiO2 and 

12 and 14 wt. % Al2O3 (Figure 16A). There is some variability in the chemistry of YTT with one sample 

having greater than 14 wt. % Al2O3. The Pinnacle Point shards, except for GS335, fall within the Toba 

field for all elements except for FeO and SiO2. The Pinnacle Point shards are slightly lower in SiO2 and 

shard 49 is slightly higher in FeO than the YTT (Figure 16C). There are several possible reasons for the 

variation between the Pinnacle Point shard chemistry and distal Toba. One of the factors that must be 

considered is a difference in analytical procedures between different samples. To exclude this 

possibility, distal Toba tephra from Bukit Sap, Malaysia, provided by Dr. Michael Storey at Roskilde 
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University in Denmark, was analyzed at UNLV under the same conditions as the Pinnacle Point shards 

(Table C5). YTT from Malaysia analyzed at UNLV plots in the YTT field for all major and minor elements 

(Figure 16, black dots). This analytical test indicates that the difference between the chemistry of the 

Pinnacle Point shards and YTT is due to compositional differences and is not a laboratory issue.  

The eruption of YTT not only falls within the 50-90 ka time window, it has chemistry nearly 

identical to two of the Pinnacle Point shards (Figure 16). Furthermore, the 74 ka age of the eruption 

agrees with the 73.7 ka OSL age determined for the first appearance of the glass shards in the ALBS. The 

conclusion is that it is highly plausible that the 74 ka Toba eruption is the source of two of the Pinnacle 

Point shards.  

Shards 97-Shard-A and GS335 

 There are two shards for which the YTT is not the best match. These are 97-shard-A and GS335. 

97-shard-A is considered an outlier because its chemistry cannot be accurately determined from a 52 

wt. % total. With normalization, it appears to match the YTT for all major elements except for Na2O and 

FeO, and it is probable that if a better analysis were obtained, that 97-shard-A would definitively match 

the chemistry of the YTT. The 52 wt. % total of 97-shard-A was due to a lack of surface polish on the 

slide. Unfortunately, this shard was lost during subsequent polishing so no subsequent analyses could be 

obtained. It is included in Table 3 and the figures as a comparison only. Hence why it is not discussed in 

the results section. 

One possible way to explain the chemistry of GS335 is that the shard suffered beam damage 

during initial SEM-EDS analysis. The other possibility is that it represents heterogeneity in the 

cryptotephra deposit and is from a different source. Shard GS335 was analyzed more than 10 times by 

both SEM and EPMA. The two larger portions of the shard where there is enough material for the beam 

to hit are separated by a very thin septum. Beam size must be small enough so that epoxy is not 
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analyzed but large enough to minimize element migration. Due to the small size of the shard, multiple 

hits occurred in almost the same locations. Re-polishing was conducted twice to expose a new surface 

to minimize the possibility of altered chemistry due to beam damage. Beam damage from multiple 

analyses before re-polishing could account for differences in Na2O and K2O as well as SiO2 and Al2O3 but 

should not affect all of the elements (Pearce et al., 2014). Due to the range of SiO2, Al2O3, Na2O, and K2O 

(Table C3, Table C4), beam damage or element migration certainly had an effect during analysis. This 

leads to the conclusion that beam damage and element migration can become a significant issue when 

analyzing a shard multiple times. However, even the first analyses of GS335 had lower SiO2 values than 

the other Pinnacle Point shards which leads to the possibility that GS335 is from a different source that 

is, at the moment, unknown. A table showing the full set of analyses for GS335 is included in Appendix 

C. 

A Discussion of Pitfalls of Shard Identification and Source Correlation 

 When first searching for volcanic grains, the objective was to identify classic shard shapes with 

cuspate margins and vesicles. Shards that matched this description were 97-shard-A and GS335 (Figure 

7B and 7C). Shards 125 and 49 typically had nondescript shapes (Figure 8D and 8E). SEM scans to locate 

the shards first discovered by Karkanas (Figure 7A) were inconclusive. Therefore, there are no chemical 

analyses for these shards, and it is possible that these shards are opaline material (Appendix C). The 

presence of abundant opaline material with similar morphology to tephra was a surprising, and 

pervasive, find. More information on the opaline material can be found in Appendices C and D.  

Additionally, Visser (2012) in a Master of Science thesis from the University of Utrecht in the 

Netherlands discusses the visual similarities between tephra and biogenic (opaline) silica.  

 Many of the grains initially classified as shards with cuspate margins and irregular shapes after 

electron probe analysis were identified as opaline material (Table C7). The first shard profile was 
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presented at the Paleoanthropology meeting in 2014 (Smith et al., 2014), but had to be modified when 

it was discovered that many of the grains identified in the reference slides as shards were actually 

opaline material (Smith et al., in prep). Once this observation was made, attention was directed at all 

isotropic grains, regardless of shape. This method proved to be very time-intensive, but the last two 

analyzed shards were identified using this method.  

One of the main challenges of this study was trying to obtain enough shards and data to do 

robust statistical analyses for geochemically fingerprinting the cryptotephra. Another potential 

challenge was matching our data and analytical procedure with those used in labs that specialize in 

analyzing tephra. An example is the Lake Malawi study done by Chorn (2012). In his study, initial 

analyses were completed by EPMA at the University of Minnesota (UM). Subsequent analyses of the 

same samples were completed at Oxford University and did not agree with those from UM. Chorn 

(2012) decided to use the data from the more well-known Oxford lab and discarded the UM analyses. In 

some studies (e.g., Chorn, 2012), the differences between probe lab analyses are significant and one set 

of data is discarded for not matching the data coming from the more respected tephra lab. This 

potential challenge was mitigated for this study by analyzing known YTT tephra from Malaysia and 

comparing it to published YTT analyses (Figure 16). 

 Geochemical fingerprinting is a crucial tool in tephrochronology. However, there are several 

limitations to accurately matching a distal tephra deposit to its source. An important point about 

matching cryptotephra to a source is that there must be adequate data for the source eruption. Many 

past eruptions, especially in remote areas, have not been documented or do not have glass 

geochemistry analyses. This, and if the eruption has not been well dated, leads to a bias in tephra 

fingerprinting because the databases for matching tephra will have mostly well-known eruptions. This 

leads to some tephra layers remaining ‘unknown’ and, until recently, unpublished or matched to the 

‘best-fit’ eruption. Another limitation is alteration/hydration of the glass shards. This limitation is 
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discussed in Gatti et al., 2014. Many eruptions have similar chemistry for major elements (e.g., Alloway 

et al., 2004) and distinguishing between them can sometimes be difficult when only using major 

elements (but most cryptotephra studies still do fingerprinting based on major elements). As tephra 

frameworks grow, this bias will slowly diminish. In this study, only major elements were used because 

the size and abundance of shards at Pinnacle Point made finding shards for trace element analysis very 

difficult.
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Figures 

 
Figure 11:  CaO vs. SiO2 plot comparing the chemistry of Pinnacle Point ELA cryptotephra chemistry to the chemistry of tephra 
from eastern Africa (Turkana Basin and Rungwe Volcanic Province), Antarctica, South America, and distal Youngest Toba Tuff. 
NOTE: Some chemistry such as in the Rungwe Volcanic Province in Africa (Fontijn et al., 2010) is whole rock data and not glass 
chemistry. One sigma error bars were calculated based on ATHO-G standard analyses (Table 2). Error for CaO was smaller than 

the size of the symbols. 
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Figure 12: XY plots demonstrating the differences in chemical composition of African volcanism and the PP shards. One sigma 

error bars were calculated based on ATHO-G standard analyses (Table 2). Error for FeO was smaller than the size of the 
symbols. 
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Figure 13: Satellite image of Antarctica. Locations of the Antarctic ice cores used for comparison in this study are represented 

by green circles, while volcanoes are represented by red triangles. 
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Figure 14: XY plots showing the differences in major elements between Antarctic tephra found in ice cores and the PP shards. 

Error bars were calculated based on ATHO-G standard analyses for one standard deviation (Table 2). 
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Figure 15: XY plot showing the difference in K2O between Andean volcanism and the PP shards. Error bars were calculated 

based on ATHO-G standard analyses for one standard deviation (Table 2). 
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Figure 16: Harker diagrams comparing the multitude of published distal YTT analyses with the chemistry of the Pinnacle Point 
shards. NOTE: The Malaysia data contains published data (only two analyses) and analyses conducted at UNLV from Bukit Sap. 
Published YTT data are from Ninkovich et al. (1978); Rose and Chesner (1987); Dehn et al. (1991); Shane et al. (1995); Pattan et 

al. (1999); Song et al. (2000); Buhring et al. (2000); Gasparotto et al. (2000); Liang et al. (2001); Schulz et al. (2002); Lui et al. 
(2006); Smith et al. (2011); Gatti et al. (2013); and Lane et al. (2013). Error bars were calculated based on ATHO-G standard 

analyses for one standard deviation (Table 2). 
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CHAPTER 7: CONCLUSIONS 

This study is part of a larger ELA cryptotephra project at PP5-6 that includes the surrounding 

Stratigraphic Aggregates within PP5-6 and other sites in South Africa. This project aims to find more 

cryptotephra in South African archaeological sites to create a regional framework for ELA cryptotephra 

and create a well-constrained age tie point for artifacts found in the area. The major conclusions of this 

study are: 

1. Shards of volcanic origin have been identified in rock shelter PP5-6 near Mossel Bay, South 

Africa. 

2. Based on comparisons to available geochemical data in international volcano databases, the 

best fit for the source of the shards is the 74 ka eruption of the YTT from the Toba caldera in 

Indonesia. 

3. The shards are found at the same stratigraphic position in several sampling profiles. The OSL 

date of the stratigraphic horizon is 73.7 ka. There is excellent correlation of the OSL date and the 

age of the horizon determined by the age of the YTT. 

4. The first occurrence of the YTT defines an isochron that helps to tie the PP5-6 sediment section 

to other sections in India and Southeast Asia that contain YTT. 

An important lesson learned from this study is that while extracting ELA cryptotephra can be done, it 

is time and labor intensive. It is still early in the evolution of ELA cryptotephra research and many 

techniques used to categorize tephra deposits and cryptotephra layers (such as statistical calculations: 

similarity coefficients, and principle component analysis) cannot be used when dealing with ELA 

cryptotephra. Separation techniques for ELA cryptotephra have to be more specialized than those used 

for cryptotephra layers with hundreds or thousands of shards and have a higher chance of lab 

contamination. 
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 In conclusion, more work is needed to create tephra frameworks in Africa for the late 

Pleistocene and in areas away from the rift zone, especially in archaeological deposits. This is necessary 

in order to determine the extent of African tephra deposits as well as document the presence of tephra 

from other regions (i.e., Aegean tephra in North Africa; Barton et al., 2015).  
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APPENDIX A: EXTENDED METHODS 

Lab Manual and Methods Experiments 

The lab separation procedures used at UNLV includes 3 phases of separations: acid digestion, sieving 

(size separation), and heavy liquid separation. While processing samples, experiments/modifications 

were performed to determine what practices were most time efficient and practical. 

• Label 50 mL conical tubes with sample numbers.  

 Experiment 1 (Pre-sieving): Some samples contained artifacts and other large 

material. For these samples, sieving before weighing removed these particles. 

However, this should be done carefully to not introduce contaminants into the 

sample. This step reduced the amount of large particles present in Phase 2. 

• Place approximately 1 gram of sample into the tubes. Record the exact weight. 

Phase 1: Acid Digestion 

• Place the tubes in a rack and put it in a fume hood.  

• Use 10% HCl to dissolve carbonates.  

o Unless the sample is full of carbonate material, 15 ml should be enough. 

•  Stir/shake the tube to make sure the acid reaches all of the sediment.  

• When the acid stops fizzing (or mostly stops), put the caps back on the tubes.  

o Make sure you do not tighten the caps all the way, leave them loosened.  

• Leave the tubes in the fume hood with loosened caps overnight.  

o This is to give time for the acid to continue dissolving carbonates even if it looks like it 

finishes quickly.  

o Leave a note on the fume hood warning people that the caps on the tubes are loose and 

should not be touched. 
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Phase 2: Wet Sieving 

• Set up wet sieving station. This includes two plastic sieve frames with removable mesh. One 

sieve will have nylon 80-micrometer mesh while the other will use nylon or polyester 20-

micrometer mesh.  

 Experiment 2 (Nylon vs. Polyester Mesh): Nylon mesh is better for abrasion 

while polyester is more resistant to acids. For the Normesh sieves, nylon is ideal. 

This is because the Normesh sieves provide a very tight fit. When separating the 

sieve frame, the mesh may gain small tears. This was most prevalent in the 

polyester mesh. However, the nylon mesh absorbs a small amount of water, 

which makes it much harder to separate the sieve frame. These frames are 

already very difficult to separate. 

 Experiment 3 (Normesh vs. Bel-Art Sieves): This experiment is currently being 

conducted. The Normesh sieves provide twice the sieve area while the Bel-Art 

sieves come in a pack of 4 and have a smaller diameter. The Bel-Art sieves are 

also half as expensive as the Normesh sieves which have to be shipped from the 

UK. So far, the Bel-Art sieves are easier to separate and use than the Normesh 

sieves. Plastic sieve frames were also obtained from Global Gilson. These frames 

were 8 inches in diameter and were much shallower than both the Normesh 

and Bel-Art sieves. The sediment tends to jump while using the spatula so 

greater depth is ideal. 

• Take the 50 mL tubes used for acid digestion out of the fume hood after tightening the caps. 

• Pour the material from the first tube into the sieve with the 80-micrometer mesh. Use a squirt 

bottle with DI water to make sure all of the material from the tube comes out.  
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o Also rinse off the cap (material sometimes gets stuck there if you shake the tube during 

acid digestion). 

o RO water can be used for this stage but DI water is necessary for Phase 3. 

• Use a “goo spreader” (mini spatula) to move the material around in the sieve.  

o This action plus using the water squirt bottle will push the finer material through the 

mesh and into the beaker below. Continue to do this until the water coming out of the 

funnel is clear. 

o For organic-rich samples, this process will take longer. Spending more time in Phase 2 

for these samples will save time in Phase 3. 

• Then tilt the sieve up on one side and push all of the material to one end.  

• Use the spatula and squirt bottle the same as before and check if the water coming out of the 

funnel is clear. If it is still clear, move to the next sieve. 

• Depending on how much water used during the first part of sieving, the beaker may become full 

before finishing. In this case, pour some of the water from the first beaker into the second sieve 

holding the 20-micrometer mesh.  

o This sieve will take longer for water to pass through so it is okay to periodically dump 

water from the first beaker into the second sieve several times before finishing with the 

first sieving. 

• Once finished with the 80-micrometer sieve, pour water from that beaker into the second sieve.  

o Use the squirt bottle to make sure all of the material from the beaker goes into the 

sieve. 

• Take the material left in the first sieve and pour it back into the 50 mL tube it was in before.   

o Do this using a small funnel.  

o This will now be the tube containing “too coarse” material for this sample.  
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o Keep this material. If large shards are found, go through this material to see if there are 

any shards larger than 80 micrometers. 

 Experiment 4 (Large Opal): Many of the Pinnacle Point samples contained 

opaline material. This material was also present in the larger size fraction. No 

shards have been found in the larger size fraction. 

• Then separate the sieve frame without messing up the mesh. There will still be a little material 

left on it. Use the squirt bottle to rinse this excess material into the tube.  

o Be careful not to overfill the tube!!!! This will be very important when using the smaller 

15 mL tubes.  

o Also rinse the outer rim of the sieve, especially where the sieve frame meets the mesh. 

This area sometimes catches sediment. 

• Repeat all of the previous sieve steps.  

• Put the material left on the 20-micrometer mesh into a 15 mL-rounded bottom tube.  

o This is the material that will go through heavy liquid separation.  

• Discard the <20-micrometer material in the beaker. 

o Material from this beaker can be dumped.  

o Note: Check if the sinks have a sediment catch.  

Phase 3: LMT Separation 

The next part of the extraction process involves heavy liquid separation using LMT (Lithium 

Metatungstate), which has to be mixed with water to achieve the right density for separation. The 

two densities used for the separation technique are 1.95 g/cm3 and 2.55 g/cm3.  

Pre-Cleaning Phase 

• Top off all of the new 15 mL tubes of sediment with DI water. 

o This is to keep the centrifuge balanced.  
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• Load into centrifuge and centrifuge for 5 minutes at 2500 rpm. 

• Repeat the previous 2 steps twice. 

Main Phase 

• Use a pipetter to put 4 ml of LMT (1.95 g/cm3) into each of the 15 ml tubes. 

• Centrifuge for 15 minutes at 2500 rpm. 

• Pour the float into a 15 ml conical tube labeled <1.95.  

• Repeat the 3 previous steps once.  

o These repetitions are to catch any lingering material that may have been missed in the 

first round. This is very important is samples that are rich in organic material. 

• Use a pipetter to put 2.55 g/cm3 LMT into the original 15 mL tubes and repeat all of the previous 

steps of the main phase. 

o The float of this round is poured into new 15 mL conical tubes labeled 1.95-2.55. 

o This float is the density fraction used to find the glass shards. 

 Experiment 5 (Different Densities): Current experiments are being conducted 

changing the densities of the LMT. These changes are to separate the shards 

from the opaline material that is so prevalent in the samples. This was not done 

earlier in the project because others have noted little difference (Visser, 2012). 

However, this is being revisited due to the extent of the opaline material 

problem. The new/added density is around 2.2 or 2.3 g/cm3. 

Final Cleaning Phase 

The tubes must now be cleaned and the LMT recycled. This is a two-step process. The tubes to be 

cleaned are the original 15 mL round tubes and both sets of conical tubes. The nature of these tubes and 

careful pouring will keep any sediment from being lost during this process. 

• First top off all tubes with DI water.  
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• Then centrifuge all tubes for 5 minutes at 2500 rpm and pour liquid out into a 1000 mL beaker 

for LMT recycling. Repeat this process twice. 

• The material left in the 1.95-2.55 tube is what will be used to make reference slides and for 

shard picking. The rest will be kept in storage. 

 Experiment 6 (final sieving vs. increased cleaning reps): The Oxford lab uses a 

final sieving round before mounting the sediment on slides. This is to get rid of 

any remnant LMT after cleaning. Increased cleaning rounds should also get rid 

of this LMT. However, both of these made little difference in this study.  

 Experiment 7 (15mL vs. 50 mL cleaning tubes): This is a current experiment. The 

50 mL tubes will be used in the final repetition of cleaning. This is to try to 

extract the last bit of remnant LMT from the samples. This LMT is too minute to 

be recycled/reclaimed but it crystallizes on the slides and may cause pealing 

during grinding. 

Making Slides 

Microscope slides are made as a reference for shard counting. These slides are used to determine 

(identify) how many shards are present in the samples and to make a shard frequency diagram. 

• To make the reference slides, find Canada balsam (or equivalent epoxy for mounting), a hot 

plate, microscope slides, a bamboo skewer, and disposable pipettes. (for epoxy mounting you 

only need the hot plate, slides, and pipettes) 

• Label the microscope slides before proceeding. I draw boxes on the underside with sharpie. 

• Place the slides onto the hot plate.  

• Turn the hot plate on but make sure the temperature is below boiling.  

o You do not want the water to bubble. Bubbling water may cause sediment to jump off 

the slide. 
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• Use the pipette to mix up the sediment in the tubes by sucking the water into the pipette and 

pushing it back out.  

• Use the pipettes to carefully drop water with the sediment (from the tubes) onto the middle of 

the slides.  

o Do not put more than three drops on the slides at any given time.  

o The water will run and has to be watched carefully. The heat from the hot plate will 

evaporate the water and leave just the sediment behind on the slide. 

• For Epoxy Setting: Take the slides off the hot plate and use a beaker to cover them until cool.  

• Mix the epoxy one batch at a one for at least 3 minutes (slowly). Use the pipettes to drop epoxy 

onto the slides. 

• Leave slides to cure overnight. 

 Experiment 8 (Epothin vs. Epothin 2 vs. Specifix): Three types of epoxy were 

used at different points in this study. Specifix was used in Oxford to create the 

shard picking rounds. It is clear and uses heat to cure within a few hours. It can 

be mixed quickly and when cured, is relatively bubble-free. Epothin epoxy was 

used for the majority of this study. It was an older bottle so these observations 

may not be useful for new Epothin epoxy. It cures without using heat within 24 

hours and has a yellow tinge. If mixed slowly, it is relatively bubble-free. It turns 

slightly more yellow on the hotplate. Epothin 2 is the most recent epoxy used in 

this study. It is less viscous/easier to spread than the Epothin epoxy and is 

clearer in color. It also has a perfume type scent that permeates the area. NOTE: 

Both Epothin and Epothin 2 have a peak temperature of 86 degrees Fahrenheit. 

 Experiment 9 (epoxy vs. Canada Balsam): Epoxy is used in this study. Epoxy is a 

more permanent setting than Canada Balsam. With epoxy, the slides can be 
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scanned for shards and then polished for analysis. Canada Balsam slides use a 

cover slip and cannot be put in the microprobe. The downside of epoxy is that if 

it cures improperly, the slide is ruined. This happened several times with the 

Epothin epoxy. Epoxied slides that have been ground for analysis also cannot be 

revisited for subsequent shard counting/checking. 

 Experiment 10 (plain slide vs. epoxy covered): This experiment was conducted 

to try to lessen pealing of the epoxy when ground very thin. The sediment sits 

right on the slide and does not rise through the epoxy. Hence, they must be 

ground very close to the slide if there are shards for analysis. Covering the slides 

with a layer of epoxy made it somewhat easier to grind the slides for analysis. 

However, it did not seem to help with pealing of the top layer of epoxy. The 

pealing is now thought to be because of a minor amount of remnant LMT that 

crystallized on the slides. Epoxy covered slides were used for the majority of this 

study. 

• For Canada Balsam setting: Once all of the sediment is out of the tubes, take a cover slip and put 

Canada Balsam on it with a bamboo skewer.  

• Then carefully place the cover slip over the area on the slide that contains the sediment.  

• Move the slide to the edge of the hot plate so it can cool and then put the slide onto a tray to 

set. 

• Once the slides are done setting, take them to the microscope and count the number of shards 

in each and document with a few pictures.  

• Note the shape of the shards and characteristics.  

• Be careful not to confuse shards with phytoliths and opaline material. 
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o Phytoliths and other opaline material are very prevalent in these samples and 

sometimes look very similar to the shards (Appendix E; Visser, 2012). 

Polishing 

• Locate the shard, record coordinates and take a picture. Use reflected light to bring the surface 

into focus and then see how long it takes for the shard to focus. 

• If it is far from the surface, use 240 grit for a while. Then go to 800 to polish it for viewing. 

• Once the shard is only a few “turns” away from the surface, switch to 600 or 800 grit. 

• Periodically use 1200 to give some polish for viewing. 

• Once you can see the “shadow” of grains at the surface, start being careful about scratches and 

grinding too far. 

• Once you can use just fine tuning to focus the surface and the shard, use only 1200 grit or move 

to polishing pads. 

Making LMT 

Making LMT is easier than making SPT. LMT from (lmtliquid.com) comes as a liquid in liter bottles. SPT is 

sold in powder form and must be hydrated before use. This makes LMT preparation quicker but SPT has 

one advantage. When bringing the heavy liquid to the densities for use, the crystallized SPT can be used 

to increase the density if the solution becomes too dilute. With LMT, this is also possible if leftover 

original LMT is available. Otherwise, the solution must be heated to evaporate some of the water and 

increase the density. 

 Experiment 11 (LMT vs. SPT): This experiment is currently underway. Ideally, 

LMT and SPT should be interchangeable so there should be no difference 

between using LMT or SPT. This experiment is to assess which heavy liquid is 

more cost effective and less time consuming to make. 
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Dilution  

The densities used for this thesis were 1.95 and 2.55 g/cm3. Dilution was conducted so that a large 

amount of LMT of the right densities is made at once instead of diluting before every set of separations. 

The amount made is based off of the amount of LMT available for dilution and hydrometer length. 

Batches of 500 mL and 250 mL were primarily used. 

• Make 2.55 g/cm3 LMT first. 

• Pour high density LMT into graduated cylinder (or testing cylinder). Fill more than halfway. 

• Pour in DI water. The ratio of LMT and DI water depends on the starting density of the LMT. 

o It is important to use DI water here. We were using RO water. This caused a calcium 

precipitate to form at the bottom of the cylinders. 

o The LMT and DI water will not immediately mix. It must be shaken. 

• Place parafilm tightly over the top of the cylinder. 

o This is to provide a seal for those of us with small hands. 

• Put hand over the top of the cylinder and slowly tip it upside down and right side up again.  

o Do this multiple times. This is to mix the LMT and DI water. 

• Set cylinder down onto tray and take off the parafilm. 

• Use a hydrometer to test the density of the solution. 

o It is better to have hydrometers with the optimal densities towards the bottom instead 

of the top. This way, less LMT needs to be made in order for the hydrometer to be used. 

• If the density is too high, add more DI water and previous 4 steps. If the density is too low, add 

more high density LMT. If none is available, pour LMT solution into a beaker and heat in an oven 

or on a hotplate. 

o It is easier to fix a density that is too high rather than one that is too low. 
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• Once the density is around 2.55 g/cm3, put parafilm over the cylinder. 

o If not using the cylinder to store the LMT solution, pour into another container. 

• For making the 1.95 g/cm3 LMT, either excess 2.55 g/cm3 LMT can be used or the high density 

LMT. 

• Repeat steps used for making the 2.55 g/cm3 LMT. 

o Use less LMT and more water for this one than the 2.55 g/cm3 LMT. 

• Test density with a hydrometer. 

o A too low density is easier to deal with here. Just use a little bit of the newly made 2.55 

g/cm3 LMT. 

• Once the density is around 1.95 g/cm3, put parafilm over the cylinder for storage. 

Recycling LMT 

Recycling or reclaiming LMT is very similar to reclaiming SPT. A general schematic and process for it can 

be found on the manufacturer’s website: lmtliquids.com. To reclaim the used LMT, filter paper of three 

pore sizes were used: about 25 micrometer, 5-8 micrometer, and about 1 micrometer. This process 

requires filter paper, beakers, ring stands with o-clamps, funnels, and an oven or hotplate. The filtering 

occurs in 3 steps. 

• Place a funnel on a ring stand with o-clamps directly over an empty beaker. 

• Fold 25-micrometer filter paper to fit in funnel. 

o Quality grade is best for this type of work (see Whatman’s filter paper guide). Ashless, 

hardened, and quantitative types are not needed because the sediment on the filters 

will not be analyzed. 

o The filter paper should have a good wet strength and medium to high flow rate. 
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 Experiment 12 (flat vs. fluted filter paper): Flat filter paper is typically okay for 

most applications and is cheaper and easier to find than fluted/pleated versions. 

However, if not folded carefully or used too much, minute tears can let 

sediment through the filter where it was folded. Fluted filter paper is already 

pleated and looks like a generic coffee filter. Because of the pleats, it has 

increased surface area for the LMT to filter through and sticks less to the sides 

of the funnel than the flat filter paper. 

• Place filter paper into funnel and make sure the funnel is aligned on top of the beaker.  

o Do not have the funnel too high above the beaker. Otherwise, the LMT will splash and 

potential make a mess. 

• Slowly pour the used LMT over the filter paper.  

o If the LMT solution is very dilute, more can be poured in. However, too much (this is 

more true for the higher density LMT solutions than very dilute ones) at once can cause 

the filter paper to tear. 

 Experiment 13 (Single filtering vs. stacked filtering): Filtering can be done faster 

if there are multiple tiers of funnels and filter paper on the same ring stand. This 

is much faster than single filtering, but the filter papers all have different flow 

rates. If the finer filter paper has a flow rate much slower than the coarse filter 

paper, too much of the LMT solution may filter through the coarse paper and 

overflow the much slower filtering fine paper. This can be avoided by pouring 

very small amounts of LMT solution at a time or finding filter paper with similar 

flow rates. Stacked filtering was used for a majority of this study. Single filtering 

is more time consuming than stacked filtering but does not come with problems 

of overflowing the filter paper. 
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• Once initial filtering of the beaker is complete, place a quartz crystal into the beaker. 

o This is to monitor the density of the LMT solution. 

• Place the beaker into the oven or onto a hot plate. 

o If using a hot plate, use a combination hot plate and magnetic stirrer. Place a stirring rod 

into the beaker. 

• Evaporating the water from the LMT solution will take multiple hours. 

o Do not let the LMT solution boil and bubble. 

o It is done when the quartz crystal floats. 

• After the LMT is at higher density (2.65 g/cm3), filter using 1 micrometer filter paper. 

o Pour very slowly, this filter has a slow flow rate.  

o Pouring too much too fast will result in minute tears and part of the LMT crystallizing on 

the filter. 

• After filtering using 1-micrometer filter paper, pour the reclaimed LMT into a bottle for storage. 

  



61 
 

Equipment and Supply List 

Table A1: Equipment at the UNLV Cryptotephra Extraction Lab. 
Equipment Quantity Source 
Centrifuge 1 www.amazon.com 

Oven 2 UNLV 
Manual Micromanipulator 1 www.harvardapparatus.com 
Hot Plate/Magnetic Stirrer 2 UNLV 

Petrographic Microscope w/ camera 1 UNLV 
Weighing Balance 3 UNLV 
Ultrasonic Cleaner 3 UNLV 
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Table A2: General list of supplies used at the UNLV Cryptotephra Extraction Lab. 
Supply Source 

LMT Lmtliquid.com 
Graduated Cylinders UNLV 
Density test cylinder www.fishersci.com 

Sieve Frames 
www.globalgilson.com (8 inch) 
www.normesh.co.uk (6 inch) 
www.fishersci.com (3 inch) 

Sieve mesh www.elkofilter.com 
Hydrometers www.fishersci.com 

Pipetter www.fishersci.com 
1000 mL Glass Beakers www.fishersci.com 

1000 mL Plastic Beakers www.amazon.com 
Pipette Tips www.fishersci.com 

15 mL tubes (Celltreat) www.fishersci.com 
50 mL tubes www.amazon.com 

15 mL round bottom tubes www.amazon.com 
Disposable Pippette www.fishersci.com 

Funnels www.amazon.com 
Bottles us.vwr.com/store 

Petrographic slides us.vwr.com/store 
Small beakers www.fishersci.com 

HCl www.fishersci.com 
Nitric Acid us.vwr.com/store 

Filter Paper www.fishersci.com 
Ring Stand and clamps www.fishersci.com 
Small “goo spreaders” www.amazon.com 

Magnetic stirrer www.amazon.com 
10 microliter glass syringe www.fishersci.com 

100 mm silica syringe needle www.fishersci.com 
Nitrile disposable gloves us.vwr.com/store 
Petrographic slide box us.vwr.com/store 

Lab jack www.amazon.com 
Test tube racks www.fishersci.com  
Quartz crystals www.amazon.com 

Single cavity microscope slides www.amazon.com 
Kim wipes us.vwr.com/store 

Epothin UNLV 
Grinding Paper UNLV 

Aluminium Polishing Paste UNLV 
Epoxy molds UNLV 

Bamboo skewers www.amazon.com 
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APPENDIX B: EXTENDED FIELD DATA 

Table B1: Sample Numbers and Stratigraphic Position 
Sample Number Barcode Stratigraphic Aggregate Height from Sub-Agg Base 
PP-612-1 357200 Kim 0.129949 
PP-612-2 357201 Kim 0.119624 
PP-612-3 357202 Kim 0.108541 
PP-612-4 357203 Kim 0.088674 
PP-612-5 357204 Enrico 0.074978 
PP-612-6 357205 Enrico 0.062448 
PP-612-7 357206 Enrico 0.047641 
PP-612-8 357207 Enrico 0.022176 
PP-612-9 357208 Enrico 0.005641 
PP-612-10 357209 Gert 0.134587 
PP-612-11 357210 Gert 0.125398 
PP-612-12 357211 Gert 0.110581 
PP-612-13 357212 Gert 0.098862 
PP-612-14 357213 Gert 0.089206 
PP-612-15 357214 Gert 0.079684 
PP-612-16 357215 Gert 0.070991 
PP-612-17 357216 Gert 0.062333 
PP-612-18 357217 Gert 0.049635 
PP-612-19 357218 Gert  0.040214 
PP-612-20 357219 Gert 0.031638 
PP-612-21 357220 Gert 0.022127 
PP-612-22 357221 Gert 0.014087 
PP-612-23 357222 Gert 0.002254 
PP-612-24 357223 Holly 0.002254 
PP-612-25 357224 Holly 0.029813 
PP-612-26 357225 Holly 0.00981 
PP-612-27 357226 Sydney 0.0841 
PP-612-28 357227 Sydney 0.067598 
PP-612-29 357228 Sydney 0.049971 
PP-612-30 357229 Sydney 0.03851 
PP-612-31 357230 Sydney 0.030888 
PP-612-32 357231 Sydney 0.016167 
PP-612-33 357232 Sydney 0.004649 
PP-612-34 357233 Sydney 0.049986 
PP-612-35 357234 Sydney 0.036505 
PP-612-36 357235 Thandesizwe 0.145093 
PP-612-37 357236 Thandesizwe 0.136414 
PP-612-38 357237 Thandesizwe 0.129655 
PP-612-39 357238 Thandesizwe 0.116878 
PP-612-40 357239 Thandesizwe 0.106867 
PP-612-41 357240 Thandesizwe 0.090779 
PP-612-42 357241 Thandesizwe 0.074755 
PP-612-43 357242 Thandesizwe 0.060786 
PP-612-44 357243 Thandesizwe 0.045319 
PP-612-45 357244 Thandesizwe 0.030014 
PP-612-46 357245 Thandesizwe 0.01344 
PP-612-47 357246 Erich 0.055463 
PP-612-48 357247 Erich 0.043513 
PP-612-49 357248 Erich 0.035027 
PP-612-50 357249 Erich 0.017951 
PP-612-51 357250 Erich 0.008843 
PP-612-52 357251 Jocelyn 0.175899 
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PP-612-53 357252 Jocelyn 0.162964 
PP-612-54 357253 Jocelyn 0.153143 
PP-612-55 357254 Jocelyn 0.14406 
PP-612-56 357255 Jocelyn 0.13876 
PP-612-57 357256 Jocelyn 0.113165 
PP-612-58 357257 Jocelyn 0.10662 
PP-612-59 357258 Jocelyn 0.098574 
PP-612-60 357259 Jocelyn 0.081832 
PP-612-61 357260 Jocelyn 0.067813 
PP-612-62 357261 Jocelyn 0.042078 
PP-612-63 357262 Conrad Sands 0.206097 
PP-612-64 357263 Conrad Sands 0.185726 
PP-612-65 357264 Conrad Sands 0.16831 
PP-612-66 357265 Conrad Sands 0.157239 
PP-612-67 357266 Conrad Sands 0.150694 
PP-612-68 357267 Conrad Sands 0.140758 
PP-612-69 357268 Conrad Sands 0.132444 
PP-612-70 357269 Conrad Sands 0.124221 
PP-612-71 357270 Conrad Sands 0.113073 
PP-612-72 357271 Conrad Sands 0.102108 
PP-612-73 357272 Conrad Sands 0.092559 
PP-612-74 357273 Conrad Sands 0.08532 
PP-612-75 357274 Conrad Sands 0.070281 
PP-612-76 357275 Conrad Sands 0.057553 
PP-612-77 357276 Conrad Sands 0.045573 
PP-612-78 357277 Conrad Sands 0.033563 
PP-612-79 357278 Conrad Sands 0.01949 
PP-612-80 357279 Conrad Sands -0.000163 
PP-612-81 357280 Conrad Cobble and Sand 0.294707 
PP-612-82 357281 Conrad Cobble and Sand 0.285002 
PP-612-83 357282 Conrad Cobble and Sand 0.274445 
PP-612-84 357283 Conrad Cobble and Sand 0.259143 
PP-612-85 357284 Conrad Cobble and Sand 0.240269 
PP-612-86 357285 Conrad Cobble and Sand 0.225381 
PP-612-87 357286 Conrad Cobble and Sand 0.215319 
PP-612-88 357287 Gert 0.042707 
PP-612-89 357288 Gert 0.032665 
PP-612-90 357289 Gert  0.023395 
PP-612-91 357290 Gert 0.009773 
PP-612-92 357291 Gert 0.000159 
PP-612-93 357292 Holly 0.039142 
PP-612-94 357293 Holly 0.02602 
PP-612-95 357294 Holly 0.014424 
PP-612-96 357295 Sydney 0.138305 
PP-612-97 357296 Sydney 0.126102 
PP-612-98 357297 Sydney 0.110662 
PP-612-99 357298 Sydney 0.097456 
PP-612-100 357299 Sydney 0.080408 
PP-612-101 357300 Sydney 0.05804 
PP-612-102 357301 Sydney 0.038023 
PP-612-103 357302 Sydney 0.023082 
PP-612-104 357303 Thandesizwe 0.143027 
PP-612-105 357304 Thandesizwe 0.12558 
PP-612-106 357305 Thandesizwe 0.10848 
PP-612-107 357306 Thandesizwe 0.087492 
PP-612-108 357307 Thandesizwe 0.076481 
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PP-612-109 357308 Thandesizwe 0.046952 
PP-612-110 357309 Erich 0.05927 
PP-612-111 357310 Erich 0.009982 
PP-612-112 357311 Erich -0.000221 
PP-612-113 357312 Jocelyn 0.148765 
PP-612-114 357313 Jocelyn 0.129933 
PP-612-115 357314 Jocelyn 0.122135 
PP-612-116 357315 Jocelyn 0.104289 
PP-612-117 357316 Jocelyn 0.091862 
PP-612-118 357317 Jocelyn 0.077526 
PP-612-119 357318 Jocelyn 0.05887 
PP-612-120 357319 Jocelyn 0.022458 
PP-612-121 357320 Jocelyn 0.000333 
PP-612-122 357321 Conrad Sands 0.10272 
PP-612-123 357322 Conrad Sands 0.080681 
PP-612-124 357323 Conrad Sands 0.069952 
PP-612-125 357324 Conrad Sands 0.058337 
PP-612-126 357325 Conrad Sands 0.046755 
PP-612-127 357326 Conrad Sands 0.037102 
PP-612-128 357327 Conrad Sands 0.022686 
PP-612-129 357328 Conrad Sands 0.012215 
PP-612-130 357329 Conrad Sands 0.003609 
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Figure B1: Stratigraphic position of the samples collected in 2012 by Smith and Keenan. Figure modified from Smith et al. 

(2014). 
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APPENDIX C: EXTENDED RESULTS 

Shard Data 

Table C1: Analyses for 97-Shard-A, both EPMA and SEM as well as standard analyses. An analysis on the glass slide was conducted to ensure that 97-shard-A was not a fragment 
of the glass slide. 

Sample SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 F Cl Total 
97-shard-A 40.65 0.02 6.81 0.15 0.04 0.03 0.44 1.21 2.52 0.04 0.48 0.28 52.39 
97-shard-A 

SEM 79.07 0.31 11.66 0.83 0 -0.08 1.16 0.94 6.11     

Glass Slide 74.29 0.03 1.32 0.03 0.02 4.39 6.74 12.14 0.96 0.03 0 0.01 99.95 
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Table C2: Analyses for the possible shard in PP-612-101 later determined to be a mix of grains. 
Sample SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O 

101-2rd1r 78.69 0.24 8.95 4.98 0.07 2.05 2.43 0.06 2.94 
101-2rd1r2 72.27 0.41 11.45 6.42 0.05 2.99 3.2 0.11 2.42 

101-2rd1r SEM 74.95  10.3 7.71  3.37 1.44 0 2.22 
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Table C3: EPMA analyses of GS335 from sample PP-612-48. Conditions: 20 Kv, 5 nA, 3-micrometer beam. Points 7 and 8 use a 10 nA beam. 
Sample SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O P2O5 F Cl Total 

GS335 SEM 74.59  14.33    0.15  4.21 6.72     
GS335-1 67.31 0.24 14.39 0 1.23 0.12 0.17 0.72 2.47 4.79 0 0.18 0.15 91.78 
GS335-2 68.65 0.26 12.97 0.01 1.22 0.09 0.15 0.65 1.93 3.28 0.02 0 0.2 89.46 
GS335-4 68.48 0.3 14.66 0 1.31 0.13 0.15 0.68 2.2 4.54 0.07 0.57 0.15 92.96 
GS335-5 68.70 0.26 14.38 0.02 1.18 0.1 0.12 0.67 1.9 4.59 0 0 0.14 92.02 

GS335-6 qz 98.75 0.03 0 0.04 0.05 0.01 0 0.04 0 0.01 0 0.06 0 99.01 
GS335-6 ab 66.22 0 19.86 0 0.03 0 0 0.63 10.93 0.03 0.01 0.17 0.01 97.8 
GS335-7 ab 67.67 0 20.29 0 0.03 0 0 0.35 10.72 0.26 0 0 0 99.32 

GS335-8 at pt 
3 68.79 0.31 14.63 0.01 1.28 0.11 0.12 0.74 0.82 3.93 0.03 0.16 0.15 91.03 
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Table C4: EPMA analyses for GS335 on 7-3-2013. Conditions: 15kv, 5nA, 3um beam, Na 20 sec peak time.  
Sample SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 F Cl Total 
GS335-1 69 0.29 15.22 1.23 0.05 0.15 0.65 4.01 5.94 0.05  0.17 96.65 
GS335-2 68.63 0.28 15.89 1.22 0.05 0.15 1.19 4.59 3.93 0.04 0.04 0.14 96.11 
GS335-3 

ab 68.12  21.63    0.55 11.93 0.08    102.35 
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Malaysia YTT Analyses 

In addition to processing samples from Pinnacle Point, shards from a YTT deposit in Bukit Sap, 

Malaysia were analyzed. This was done to have a comparison of analyses from the UNLV lab and to also 

be able to compare how YTT analyses reported in this study match the published data. These shards 

have bubble-wall morphology and are typically larger than the Pinnacle Point shards.  Many of the 

shards have irregular shapes, and are mostly lacking in vesicles. The deposit this sample comes from is a 

visible layer only a few hundred kilometers from the Toba caldera. Results are reported in Table C5. 
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Table C5: Analyses of the Malaysian YTT tephra. 
Sample SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O P2O5 F Cl Total 

BS1MT1-1 73.41 0.07 12.28 0 0.83 0.07 0.08 0.79 2.85 4.98 0.04 0 0.12 95.5 
BS1MT1-2 73.24 0.03 12.15 0 0.81 0.07 0.07 0.76 2.77 4.67 0 0 0.13 94.68 
BS1MT1-3 71.59 0.05 11.98 0 0.78 0.07 0.07 0.77 2.7 5.03 0 0 0.12 93.13 
BS1MT1-4 73.85 0.04 11.76 0.02 0.88 0.05 0.05 0.77 2.67 4.81 0.02 0.04 0.16 95.05 
BS1MT1-5 74.06 0.04 12.31 0.01 0.88 0.08 0.07 0.75 2.76 4.87 0.05 0.57 0.13 96.32 

BS1MT1-12 74.11 0.09 11.85 0.03 0.78 0.05 0.03 0.59 2.82 4.89 0.07 0.39 0.14 95.65 
BS1MT1-13 74.12 0.05 11.95 0.02 0.81 0.11 0.05 0.7 2.82 4.81 0.04 0 0.15 95.58 
BS1MT1-14 74.08 0.06 11.93 0.01 0.85 0.11 0.08 0.79 2.79 4.95 0 0.16 0.16 95.87 
BS1MT1-15 73.46 0.05 11.82 0 0.82 0.07 0.04 0.66 2.89 4.71 0.12 0 0.15 94.76 
BS1MT1-16 74.04 0 11.97 0 0.76 0.06 0.02 0.55 2.81 4.75 0 0.16 0.18 95.19 
BS1MT1-17 74.35 0.02 11.88 0.01 0.81 0.07 0.07 0.8 2.8 4.58 0.02 0.49 0.14 95.8 
BS1MT1-18 74.04 0.06 12.27 0 0.85 0.07 0.08 0.78 2.77 5.04 0.05 0 0.13 96.1 
BS1MT1-19 74.74 0.01 12.19 0.02 0.81 0.04 0.03 0.69 2.85 4.74 0 0.06 0.17 96.29 
BS1MT1-20 73.55 0 11.57 0.02 0.78 0.06 0.04 0.73 2.64 4.97 0.04 0.42 0.15 94.75 
BS1MT1-21 73.77 0.07 11.93 0 0.81 0.09 0.06 0.7 2.73 4.74 0 0 0.15 94.99 
BS1MT1-22 74.06 0.02 12.14 0 0.78 0.05 0.02 0.72 2.7 4.83 0 0.39 0.14 95.65 
BS1MT1-23 74.1 0.01 11.84 0.01 0.73 0.08 0.05 0.76 2.4 4.51 0 0.06 0.16 94.65 
BS1MT1-24 74.07 0.06 12.33 0 0.9 0.05 0.06 0.86 2.84 4.88 0 0 0.15 96.16 
BS1MT1-26 74.07 0.07 11.68 0 0.8 0.07 0.04 0.66 3.01 4.22 0.04 0.3 0.15 94.94 
BS1MT1-27 74.38 0.01 12.08 0 0.89 0.05 0.05 0.8 2.88 4.77 0 0 0.13 96 
BS1MT1-28 74.23 0.06 12.17 0.01 0.88 0.05 0.09 0.78 2.73 4.61 0 0.12 0.15 95.81 
BS1MT1-29 73.43 0.06 11.97 0 0.91 0.04 0.03 0.84 2.84 4.57 0.06 0.18 0.14 94.97 
BS1MT1-30 74.89 0.04 12.08 0.01 0.77 0.07 0.03 0.64 2.96 4.97 0.03 0.1 0.17 96.68 
BS1MT1-31 74.05 0.04 12.06 0 0.87 0.06 0.03 0.79 2.87 4.64 0.02 0.22 0.12 95.65 
BS1MT1-32 73.95 0.05 12.22 0.02 0.89 0.07 0.08 0.79 2.86 4.98 0.05 0 0.13 96.05 
BS1MT1-34 74.06 0.06 11.83 0.04 0.76 0.05 0.04 0.7 2.66 5 0 0 0.13 95.3 
BS1MT1-35 73.92 0.04 12.01 0 0.83 0.06 0.05 0.73 2.69 5.05 0.06 0.18 0.12 95.64 
BS1MT1-36 74.47 0.04 12.08 0 0.87 0.05 0.05 0.76 2.84 4.94 0.02 0.28 0.14 96.39 
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Biogenic Silica 

Other optically isotropic material was found in the reference slides that have a similar density as 

the Pinnacle Point shards. These grains were identified as opaline material, phytoliths (Figure C1), and 

sponge spicules (Figure C2). All are forms of amorphous silica, which means they are isotropic in cross 

polarized light.  

Phytoliths 

Phytoliths are grains of SiO2 formed in plant roots that survive in the sediment after the plant 

decays.  Phytoliths shape is characteristic of a particular plant species (Piperno, 2006).  In PP5-6 samples 

the phytoliths typically have an “etched” appearance. Phytoliths are easy to identify under the 

microscope because they very high relief, pitted surfaces and distinctive shapes (Piperno, 2006).  High 

SiO2 and minor amounts of Na2O and K2O characterize their major element chemistry.  Analytical totals 

range from 88.27 to 91.36 wt. % (Table C6). 
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Table C6: EPMA analyses of phytoliths. 
Sample SiO2 Al2O3 TiO2 FeO MgO MnO CaO Na2O K2O P2O5 Cl F Total 
115-1 89.3 0 0 0 0.08 0.02 0.04 0.71 0.42 0.05 0.14 0.6 91.36 
115-2 89.18 0 0 0 0 0.01 0.02 0.75 0.52 0.04 0.17 0 90.69 
115-3 86.42 0 0 0 0.01 0.02 0.06 0.64 0.36 0 0.68 0.08 88.27 
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Figure C1: Image of a phytolith under plane polarized light. 
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Figure C2: Image of a sponge spicule under plane polarized light. 
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Opaline Material 

For this study, opaline material refers to material with opal-like chemistry that are not phytoliths 

or sponge spicules. The opaline material is isotropic under cross-polarized light and is either clear or 

light brown in plane-polarized light. It exhibits conchoidal fracture and has cuspate margins that are 

usually typical of glass shards. Some of the grains also appear to have vesicles and there are instances of 

slight birefringence around the rims of some of the grains. 

Totals for the opaline material ranged from 83.7 to 89.14 wt. %. The grains contain mostly SiO2 

with Al2O3 and Na2O being the two other major elements with concentrations above one weight percent 

(Table C7). The opaline material is much more abundant in the samples than the cryptotephra. 

The opaline material has also been found in larger sieve size fractions as well as in the 

stratigraphic aggregate below the ALBS; the LBSR (Figure 4). Additionally, it was identified in samples 

from sand dunes outside of the rock shelter, beach deposits just to the east of PP5-6 and in the sand bag 

material used to cover the excavation sites. When polished for analysis, the material provides a smooth 

surface, unlike phytoliths, which have a tendency to crumble.  
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Table C7: EPMA analyses of opaline material. 
Sample SiO2 TiO2 Al2O3 FeO MgO MnO CaO Na2O K2O P2O5 Cl F Total 

25-1 78.7 0.05 2.48 0.06 0 0 0.04 4.19 0.05 0 0.11 0.24 85.92 
25-2 79.36 0.01 0.36 0.02 0.03 0 0.03 4.02 0.03 0.12 0 0.12 84.1 
49-1 85.85 0.15 0.01 0 0.03 0.01 0.07 0.73 0.43 0.02 0.06 0.02 87.38 
83-1 79.61 0.02 2.37 0.09 0 0 0.05 3.85 0.05 0 0.06 0 86.1 
84-1 80.69 0.01 3.27 0.05 0.03 0.03 0.06 3.55 0.05 0.17 0.07 0 87.98 
84-2 80.41 0.03 2.3 0.03 0.03 0.03 0 2.02 0.02 0.14 0.09 0 85.1 
85-1 80.45 0 2.37 0 0.03 0.02 0.04 3.42 0.03 0 0.09 0 86.45 
85-2 79.67 0 2.5 0.08 0.04 0 0.02 3.96 0.04 0.07 0 0 86.38 
85-3 79.4 0.06 2.41 0.04 0 0.04 0 3.87 0.04 0.7 0 0 86.56 

100-1 85.69 0.09 1.22 0.63 0.08 0.02 0.41 0.46 0.2 0 0.17 0.03 89 
100-2 85.36 0.11 1.42 0.61 0.1 0.02 0.5 0.3 0.26 0.09 0.19 0.18 89.14 
100-3 81.52 0.09 1.13 1.01 0.34 0.15 1.31 0.4 0.28 0 1.22 0.13 87.58 
105-1 82.19 0 1.14 1.13 0.46 0.013 1.21 2.23 0.72 0.14 2.7 0 91.933 
115-1 79.87 0.03 2.27 0.07 0.01 0.04 0.08 3.67 0.08 0.04 0.1 0.4 86.66 
115-2 82.84 0.07 1.7 0.32 0.25 0.01 0.71 0.22 0.51 0.01 0.05 0 86.69 
115-3 81.94 0.03 0.03 0.14 0.18 0.06 0.52 0.35 0.24 0 0.12 0 83.61 
128-1 77.8 0.02 2.36 0.02 0 0 0.05 4.05 0.06 0 0.113 0.03 84.503 
128-2 78.88 0 2.34 0 0.02 0 0.04 2.13 0.05 0 0.108 0.15 83.718 
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Table C8: Normalized values of opaline material versus borosilicate glass without the boron content. 
Sample SiO2 TiO2 Al2O3 FeO MgO MnO CaO Na2O K2O P2O5 Cl F Total 

25-1 91.60 0.06 2.89 0.07 0 0 0.05 4.88 0.06 0 0.13 0.28 100 
25-2 94.36 0.01 0.43 0.02 0.04 0 0.04 4.78 0.04 0.14 0 0.14 100 
49-1 98.25 0.17 0.01 0 0.03 0.01 0.08 0.84 0.49 0.02 0.07 0.02 100 
83-1 92.46 0.02 2.75 0.10 0 0 0.06 4.47 0.06 0 0.07 0 100 
84-1 91.71 0.01 3.72 0.06 0.03 0.03 0.07 4.04 0.06 0.19 0.08 0 100 
84-2 94.49 0.04 2.70 0.04 0.04 0.04 0 2.37 0.02 0.16 0.11 0 100 
85-1 93.06 0 2.74 0 0.03 0.02 0.05 3.96 0.03 0 0.1 0 100 
85-2 92.23 0 2.89 0.09 0.05 0 0.02 4.58 0.05 0.08 0 0 100 
85-3 91.73 0.07 2.78 0.05 0 0.05 0 4.47 0.05 0.81 0 0 100 
100-1 96.28 0.10 1.37 0.71 0.09 0.02 0.46 0.52 0.22 0 0.19 0.03 100 
100-2 95.76 0.12 1.59 0.68 0.11 0.02 0.56 0.34 0.29 0.10 0.21 0.2 100 
100-3 93.08 0.10 1.29 1.15 0.39 0.17 1.50 0.46 0.32 0 1.39 0.15 100 
105-1 89.40 0 1.24 1.23 0.50 0.01 1.32 2.43 0.78 0.15 2.94 0 100 
115-1 92.16 0.03 2.62 0.08 0.01 0.05 0.09 4.23 0.09 0.05 0.12 0.46 100 
115-2 95.56 0.08 1.96 0.37 0.29 0.01 0.82 0.25 0.59 0.01 0.06 0 100 
115-3 98.00 0.04 0.04 0.17 0.22 0.07 0.62 0.42 0.29 0 0.14 0 100 
128-1 92.07 0.02 2.79 0.02 0 0 0.06 4.79 0.07 0 0.13 0.04 100 
128-2 94.22 0 2.80 0 0.02 0 0.05 2.54 0.06 0 0.13 0.18 100 
BoroGls-1 92.52 0.05 2.66 0.07 0.02 0.01 0.01 4.58 0 0 0 0.08 100 
BoroGls-2 92.67 0 2.68 0 0.02 0.01 0 4.37 0.03 0 0.16 0.07 100 
BoroGls-3 93.22 0.04 2.64 0 0 0 0.03 3.99 0.02 0 0 0.06 100 
BoroGls-4 92.58 0.09 2.65 0.03 0.02 0 0.02 4.48 0 0 0 0.06 100 
BoroGls-5 92.3 0 2.68 0.05 0 0.01 0.03 4.69 0.03 0.01 0.12 0.07 100 
BoroGls-6 91.68 0 2.76 0.08 0.01 0.03 0.06 4.86 0.02 0 0.39 0.06 100 
BoroGls-7 91.71 0 2.84 0.05 0 0 0.02 5.2 0 0 0.13 0.06 100 
BoroGls-8 92.44 0 2.65 0 0.03 0 0.04 4.6 0.01 0 0.09 0.15 100 
BoroGls-9 92.09 0.03 2.74 0 0 0.02 0.04 4.92 0.04 0 0.03 0.09 100 
BoroGls-10 92.28 0 2.67 0.05 0.02 0 0.06 4.72 0.02 0 0.12 0.07 100 
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APPENDIX D: EXTENDED INTERPRETATIONS 

Toba Background  

The Toba caldera in Sumatra, Indonesia is 8965 km from Pinnacle Point. Its latest largest 

eruption was the VEI, Volcano Explosivity Index, 8.8 eruption of the YTT, 73.88 +/- 0.32 ka (Storey et al., 

2012). Eruptions with a VEI of 8 or above are considered super-eruptions. Cryptotephra has been shown 

to travel 7000 km even from small eruptions (Pyne-O’Donnell et al., 2012). The Toba caldera (Lake 

Toba), 100 x 30 km, in Sumatra, Indonesia is considered to be the largest caldera formed during the 

Pleistocene (Lane et al., 2011; Chesner, 2012; Williams, 2012). Lengthwise, it is parallel to both the 

Sumatra Fault zone and Java subduction zone (Williams, 2012). It lies in one of the most seismically 

active areas in the world and near the site of the 2004 earthquake and Indian Ocean tsunami (Williams, 

2012).  

Deposits of the YTT (Figure D1) cover India, part of the Indian Ocean, the South China Sea, Bay of 

Bengal, and East Africa (Williams, 2012). The closest known deposit of the YTT to Pinnacle Point is in 

Lake Malawi, eastern Africa.  This is the most distal documented YTT to date. 

Deposits from the 73.88 +/- 0.32 ka Toba super-eruption are called YTT because there are 

several other, older Toba pyroclastic eruptions: Middle Toba Tuff (MTT) at 501 ka, and Oldest Toba Tuff 

(OTT) 840 ka (Diehl et al., 1987; Chesner et al., 1991; Chesner, 2012). The MTT was a relatively small 

eruption compared to the YTT and OTT with a DRE of about 60 km3. The OTT by comparison was much 

larger, with a DRE of about 2300 km3 (Pattan et al., 2010). 

Finding biotite is one of the distinguishing characteristics of the YTT (to separate it from the OTT 

in distal deposits in India and Malaysia) (Smith et al., 2011). In the India ash samples, biotite crystals may 

be only 5 to 10 micrometers in length (Smith et al., 2011). They would have to be even smaller to make 

it to South Africa because biotite has a high density, which means that any ash particles that contain 
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biotite microlites would be deposited closer to the source than those without any mineral phases. 

Biotite was not found in the Lake Malawi cryptotephra (Chorn, 2012, Lane et al., 2013). Hence, it would 

not be expected in the Pinnacle Point deposits (assuming the shards are from the YTT). 

The YTT eruption was dacitic to rhyolitic in composition with silica ranging from 68 to 77 wt. % 

(Chesner 2012) but only the most silicic components form distal deposits and the geochemistry should 

remain uniform (Lane et al., 2013). The dacitic end-member is only found within the Toba caldera 

(Chesner, 2012). To reach the western coast of Africa, YTT ash would have to traverse the Indian Ocean 

by either aeolian or sea transport (as rafted pumice). The discovery of the YTT in eastern Africa (Chorn, 

2012; Lane et al., 2013) shows that transport of ash from Sumatra to eastern central Africa is possible. 

However, it would be harder for ash to travel to South Africa. 

Opaline Material 

The opaline material found in the samples was originally thought to be volcanic shards but 

microprobe analyses proved otherwise. This material typically shows cuspate margins and appears to 

have vesicles. A study illustrating the similarities between the appearance of tephra and biogenic silica is 

Visser (2011). Because of the look and isotropic natural of these opaline grains, they were counted as 

shards in the early portion of the work for this thesis. This resulted in a frequency profile with shard 

peaks in the tens of grains and a pattern of two peaks (Smith et al., 2014). After the initial discovery of 

the opaline material, EPMA analyses were the only way to accurately distinguish the shards from the 

opaline material (Table C7). Differentiations can now be mostly made using the petrographic microscope 

but it requires a more meticulous scanning of the reference slides than typical. 

The chemistry of the opaline material is distinct from both the Pinnacle Point shards and 

phytoliths. Phytoliths are mostly silica with a very minor percentage of other elements. The opaline 

material typically has 2 wt. % Al2O3 or more and Na2O of about 4 wt. % (Table C7). There are several 
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exceptions to this, however. The percentages of these elements are too much for the opaline material 

to be considered phytoliths unless they have undergone chemical alteration. The totals are too high to 

be accounted for simply by an unpolished surface, especially when other grains in the same mount have 

acceptable totals. Several possible origins were researched for the opaline material: altered tephra, 

micro-tektites, sinter/geyserite, borosilicate glass contamination, and silcrete. 

 The low totals of the opal-like analyses infer at least 10 percent LOI (Loss On Ignition), which 

may be either water or a light element like Boron.  The high LOI was used to classify the material as opal. 

However, Opal-CT has less aluminum and other metals and is not isotropic. The presence of the “extra 

elements” and the correspondence of one of our collaborators led us to believe the material may be 

altered glass shards. This would explain why the opaline grains are visually very similar to each other. 

However, if the opaline material is altered tephra, what caused the alteration? The Pinnacle Point shards 

themselves do not appear to have any physical signs of alteration or weathering.  

Opal A (amorphous opal) occurs in Zone 1 of tephra alteration (Iijima 1988). The opaline 

material found at Pinnacle Point is found throughout the units in the rock shelter as well as sand bag fill 

from a nearby quarry and active sand dune and beach material outside the rock shelter. Because of the 

widespread nature of the opaline material, it is unlikely that is altered tephra. The opaline material 

appears to be a part of the host sediment of the dunes that make up the majority of the deposits at PP5-

6. In this case, the opaline material is a pervasive ‘contaminant’ that is completely unrelated to the 

Pinnacle Point shards.  

 It is possible that the opaline material could be micro-tektites. However, this origin has the same 

issue as the altered tephra hypothesis due to the amount found in the rock shelter. Micro-tektites are 

also usually aerodynamically shaped (Koeberl, 1986) while many of the opaline grains have an irregular 

morphology. 
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 Sinter or geyserite is another possible source of the opaline material. However, this hypothesis 

is hard to verify because geysers present at 75 ka are likely gone now and the deposits covered. Many of 

the hot springs near Pinnacle Point have travertine deposits, not sinter (Smith, personal communication 

2014). 

 The opaline material strongly resembles the composition of borosilicate glass (without the 

boron content). The microprobe at UNLV cannot accurately analyze for boron. Attempts were made to 

detect the presence of boron in both the opaline material and borosilicate glass using EPMA without 

obtaining a wt. percentage but the results were inconclusive. Table C8 illustrates the similarities 

between normalized opaline data and normalized borosilicate glass as it would appear by EPMA 

analyses. Boron accounts for about 13 wt. % of borosilicate glass. Although chemically a possibility, the 

morphology of the opaline material does not match that of borosilicate glass shards. Man-made glass 

fractures with cuspate margins but should not have apparent vesicles. 

 The opaline material appears to be more prevalent in layers with abundant phytoliths and 

presumed human activity. In the ALBS and even more so in the SADBS, early humans were utilizing 

silcrete for tools (Brown et al., 2012). It is possible that the opaline grains are micro-flakes of silcrete 

that were removed during shaping of the stone tools. They are many outcrops of silcrete present in 

South Africa (Figure D3) and nearby samples appear geochemically homogeneous throughout an 

outcrop (Nash et al., 2013). The flaking of stone tools would account for the presence of the material 

within archaeological deposits but would not explain its presence in the sand dune material or sand 

quarry. 

 Based on the available data, no origin or source for the opaline material can be determined at 

this time. More work is needed to answer questions about the significance of the opaline component 
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found at Pinnacle Point.  Its presence in PP5-6 sediment as well as sandbags and beach sand suggest 

that this component is ubiquitous in the environment, but its origin is still a mystery. 
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Figure D1: YTT distal deposit location map including the distance between Pinnacle Point and the Toba Caldera. 
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Figure D2: Map of southern Africa impact structures. Impact location data is from Earth Impact Database. 
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Figure D3: Generalized map of silcrete outcrops in South Africa. Figure modified from Nash et al. (2013)
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