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ABSTRACT 

MIOCENE-PLIOCENE(?) FOLDS, NORMAL FAULTS AND THE LEFT-LATERAL 

BUCKHORN FAULT WITH REGIONAL IMPLICATIONS, PAHRANAGAT SHEAR 

ZONE, NEVADA 

By 

Thomas G. Price 

Dr. Wanda J. Taylor, Examination Committee Chair 

Professor of Geoscience  

University of Nevada, Las Vegas 

Strike-slip faults play an important role in the development and evolution of extensional 

regimes including in the intraplate extension in the Basin and Range province. The Basin and 

Range province is divided into the Northwestern, Northern, Central and Southern Basin and 

Range subprovinces. The boundary zone between the Northern and Central subprovinces is 

marked by several left-lateral fault zones, including the Pahranagat Shear Zone (PSZ), 

Caliente-Enterprise Zone and Rock Valley Fault Zone. The PSZ has a close spatial and 

kinematic relationship with the left-lateral Caliente-Enterprise Zone, which lies to the NE, and 

a slightly more distal relationship to the left-lateral Rock Valley Fault Zone off to the 

southwest. Understanding the internal deformation within these left-lateral zones is 

fundamental to understanding how these zones, in part or as a whole, accommodate 

deformation and interact with other structures. The PSZ consists of three ENE-striking left-

lateral strike-slip faults: the Arrowhead Mine Fault, Buckhorn Fault (BF), and Maynard Lake 
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Fault, from north to south, respectively, with intervening normal to oblique slip faults and 

folds. Understanding the internal deformation is critical to understanding the PSZ as a whole, 

and thus, development of the sub-province boundary.  

The BF, the largest structure internal to the PSZ, along with surrounding structures provides 

insight into the internal deformation history of the PSZ. Important surrounding structures 

include the Buckhorn Syncline and Anticline, which are located between the Arrowhead Mine 

Fault and the BF. Both of these structures formed from stresses internal to the PSZ. This study 

focuses on formation of strike-slip faults, timing of deformation, kinematic history, and 

geometry of structures using data from a new 1:12,000 scale map of the western BF and a 

new 40Ar/39Ar date.  

Exposed structures near the BF display three ages of deformation: (1) an episode of early-

Miocene normal faulting between 22.56 and 18.51 Ma, (2) mid-Miocene normal faulting 

between 18.51 Ma and 15.3 Ma, and (3) faulting and folding after deposition of the Kane 

Wash Tuff at15.3 Ma. The 15.3 Ma age was acquired from 40Ar/39Ar dating of sanidine 

crystals from the Kane Wash Tuff, subunit 3. The third deformation is the best preserved and 

exposed in the area. In addition, paleohills can be identified by a buttress unconformity 

between the Paleozoic strata and Tertiary ash-flow tuffs. Retrodeforming these paleohills by 

removing the three episodes of post 22.56 Ma deformations steepens the dip of bedding in the 

hills to >50° before deposition of the tuffs. The paleohill located just south of the BF is 

relatively internally undeformed and is here suggested to belong to the footwall of the Gass 

Peak Thrust, which is a part of the ~Cretaceous Sevier fold-and-thrust belt.   

 Overall, the boundary zone between the NBR and CBR is defined by a series of left-lateral 

zones including the PSZ. The folds and faults define a zone of3D (triaxial strain) within the 
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PSZ.  The PSZ acts as part of the modern, and developing, transfer zone between the Eastern 

California Shear Zone and/or Walker Lane Belt and the Wasatch Fault Zone/Intermountain 

Seismic Belt.  
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INTRODUCTION 

The Northern Basin and Range (NBR) and Central Basin and Range (CBR) sub-provinces of 

the Basin and Range province in the western United States have distinct differences in basin 

elevations, timing of the onset of extension, and pattern of volcanism. Average basin 

elevations between the NBR and CBR are separated by 600 m with the NBR basins having 

the higher average elevation of 1250 m. Extension began in the NBR around 35 Ma and 

extension continued into the Miocene (Sonder and Jones, 1999) followed by Quaternary 

extension. Whereas, the onset of extension in the CBR is around 16-18 Ma in the east and 

younger in the center, ~12-14 Ma (Umhoefer et al., 2010; Bidgoli et al., 2015; Lamb et al., 

2015).  The NBR experienced volcanism which began in the north and progressed south or 

southwest to the boundary between the NBR and CBR (Rau and Forsyth, 2011). The CBR 

underwent little to no volcanism, although magmatism may have occurred at depth (Sonder 

and Jones, 1999). The boundary zone is marked by two caldera complexes, strike-slip fault 

zones, and Bouguer gravity anomalies (Fig. 1 and 2).  This collection of features leads to the 

question, “How did the boundary between the sub-provinces develop throughout the 

Cenozoic?” 

The NE-striking Pahranagat shear zone (PSZ) and E-W orientated Caliente-Enterprise Zone 

are left-lateral slip systems along the NBR-CBR boundary that extend westward from the 

Wasatch Fault Zone and Intermountain Seismic Belt to the Sheep Range detachment system 

(Fig. 1) (Kreemer et al., 2010; dePolo and dePolo, 2012). Farther west, a gap in left-lateral 

systems exists, but they pick back up at the Rock Valley Fault which nearly connects into the 

Eastern California Shear Zone and Walker Lane (Fig. 2). The extent of the left-lateral system 

plays a role in establishing the boundary zone between the NBR and CBR. 



2 

 

The PSZ lies in the central part of the boundary between the NBR and CBR sub-provinces in 

southern Nevada (Figs. 1 and 3). Consequently, understanding the deformation style and 

history of the PSZ is critical to understanding the sub-province boundary, and thus, the Basin 

and Range province as a whole. The PSZ (a.k.a. Pahranagat fault zone, Pahranagat fault 

system) includes a set of three major left-lateral strike-slip faults that strike generally NE-SW. 

These faults, from north to south, are the Arrowhead Mine Fault, Buckhorn Fault (BF), and 

the Maynard Lake Fault. The PSZ deforms Paleozoic miogeoclinal strata that were previously 

deformed during the Sevier orogeny, Cretaceous to Oligocene non-marine sedimentary rocks, 

Oligocene to Miocene tuffs, and post Miocene to Quaternary alluvial and fan deposits 

(Tschanz and Pampeyan, 1970; Jayko, 1990). Jayko (1990) identified at least three ages of 

deformation within the vicinity of the PSZ, including: (1) Sevier related shortening, (2) pre-

middle Oligocene extension, and (3) post late Miocene extension including strike-slip transfer 

faults. Jayko (1990, 2007) also identified several folds, associated with extension, within the 

Oligocene to Miocene tuffs, including drag folds. The PSZ has been considered tectonically 

active due to the presence of Quaternary fault scarps, recorded seismicity, and GPS velocity 

vector data (Jayko, 1990, 2007; Kreemer et al., 2010, 2012).  

To enhance our understanding of the NBR-CBR boundary, including left-lateral deformation 

in the region but focusing on the PSZ, I undertook a detailed study including and in the 

vicinity of the western BF, west of U.S. highway 93 (Fig. 3). The well exposed structures in 

this area reveal the internal deformation, including structures and their timing, of the western 

PSZ. The goals of this research are: (1) to define the boundary zone between NBR-CBR, (2) 

understand the role paleorelief played within the PSZ, (3) map and develop a 3D geometric 

model of the BF and its related structures, (4) link the Paleozoic rocks within the PSZ to the 
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Sevier Orogenic Belt/Gass Peak thrust hangingwall or footwall rocks, and (5) consider the 

modern seismicity and transfer zone relationship. Fault sets and networks are used to define 

the specific relationships between and among faults within the PSZ, and give us insight into 

the transfer zone concept.  

In many cases, strike-slip faults like those in the PSZ are transfer faults or zones, which are 

common in extensional settings, but for which a variety of definitions exist (e.g., Morley et 

al., 1990; Gawthorpe and Hurst, 1993; Schlische and Withjack, 2009). Faulds and Varga 

(1998) defined transfer zones as discrete zones of strike-slip and oblique-slip faults that strike 

parallel to the extension direction and assist in transferring strain between two or more 

extended domains. Peacock (2002) defined a transfer zone as an area between two normal 

faults that overstep one another, which can be further divided into conjugate and synthetic 

types. Kreemer et al. (2010) and Peacock (2002) give us two vastly different scales of transfer 

zones that are related to the resolution of their studies. Kreemer et al. (2010) delineated a 

transfer zone across hundreds of kilometers, whereas Peacock (2002) referred to the 

individual interactions between faults. Kreemer et al. (2010) connected several systems of 

faults within which Peacock’s (2002) and Faulds and Varga’s (1998) types of transfer takes 

place.  

In addition to the sinistral faults, the PSZ contains numerous normal and oblique slip faults; to 

best describe the structural characteristics of the PSZ this paper will use two distinct terms, 

fault set and fault network. Fault sets are defined as groups of faults with similar strikes and 

age ranges. Fault networks are a system of multiple faults or fault sets that collectively have 

different strike directions but have the same age range (e.g., Peacock et al., 2016). Thus, these 

faults all formed and were active at the same time, despite their different strike directions, and 
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may accommodate triaxial (3D) strain. Figure 4 displays these sets and networks in the study 

area. Using only fault sets to characterize a structural region is possible when the area is 

undergoing no change in shape of a volume, as in classic pure or simple shear. However, fault 

networks should be used when describing areas undergoing triaxial strain, which has a change 

in three dimensions. 
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GEOLOGIC SETTING 

Understanding the PSZ and its relationship to the surrounding geology requires regional 

geologic information. This includes information on the Sevier orogenic belt, Paleogene 

unconformity, Basin and Range province, Caliente-Enterprise Zone, and the Rock Valley 

fault.  

The Sevier orogenic belt contains Proterozoic, Paleozoic and Mesozoic rocks that were 

deformed in a shortening event derived from the subduction of the Farallon Plate under the 

North American Plate. The Sevier orogenic belt is a segment of the larger Cordilleran retroarc 

fold-and-thrust belt, dating from the Late Jurassic to Eocene, which was responsible for about 

220 km of crustal shortening and 16 km of crustal thickening (Dickinson, 2004; DeCelles & 

Coogan, 2006). The Gass Peak thrust and its associated hanging wall anticline are parts of the 

Sevier fold-and-thrust belt that are cut by the PSZ (Taylor et al., 2000; DeCelles and Coogan, 

2006). The portion of the Gass Peak thrust in the Sheep Range, just south of the PSZ, places 

Neoproterozoic and younger rocks over units as young as Pennsylvanian (Fig. 2; Jayko, 

2007).  The Gass Peak thrust loses displacement northward and nearest the BF appears to 

place Cambrian rocks over Pennsylvanian rocks (Taylor et al., 2000; Jayko, 2007). 

The contact between the Paleozoic rocks, which were deformed in the Mesozoic, and the 

Cenozoic tuffs is known as the Paleogene unconformity. Different regions of the remnant 

Sevier hinterland that had high topographic relief prior to Paleogene deposition (Long, 2012). 

Some of the topographic highs are from Oligocene or Eocene normal faulting; however, 

uplifted interior parts of the Sevier thrust belt have been around and eroding since before the 

Oligocene (Long, 2012). Thus, ~Cretaceous topographic highs composed of Paleozoic rocks 
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were present prior to the deposition of the Oligocene-Miocene ash-flow tuffs and influenced 

how these quasi-fluvial tuffs were deposited.   

The PSZ lies within the Cenozoic Basin and Range province, which can be can be divided 

into four distinct sub-provinces including the Southern Basin and Range, CBR, NBR, and 

Northwestern Basin and Range (Fig. 1). Extension in the Southern Basin and Range sub-

province began ~25 Ma (Sonder & Jones, 1999). Extension in the NBR started ~55 to 45 Ma 

with the earliest extension starting in the north (Sonder & Jones, 1999). Miocene extension in 

the Great Basin began around 17.5 Ma (Dickinson, 2006). Shortly after (17 to 14 Ma) that, 

magmatism started in the backarc of the Pacific Northwest which coincided with further 

deformation in the entire Basin and Range, including the Great Basin (Dickinson, 2006). 

Thus, by the Oligocene to early Miocene both the NBR and Southern Basin and Range sub-

provinces were extending or had extended. This left the unextended CBR at a relatively high 

stress load. Eventually, the high stress load would lead to rock failure and, thus, the beginning 

of extension in the CBR at 18 to 14 Ma (Sonder & Jones, 1999; Bidgoli et al., 2015). Specific 

timings and magnitudes of CBR structures include the Saddle Island Detachment 

accommodating 20 km of westward migration of upper-plate rocks post 13.5 Ma 

(Duebendorfer et al., 1990), the Mormon Peak Detachment accommodating a maximum of 

10.9 to 19.5 km of extension post 14-12 Ma (Walker et al., 2007; Bidgoli et al., 2015), the 

Tule Springs Detachment potentially accommodating as much as 5-7 km of exhumation on 

the Tule Springs Hills post 14 Ma (Bidgoli et al., 2015), and the Castle Cliffs Detachment 

which initiated up to 5 m.y. before the Tule Springs or Mormon Peak Detachments with 7-8 

km of exhumation taking place on the Beaver Dam Mountains post 18 Ma (Bidgoli et al., 

2015). The differences in timing of the onset of extension between the NBR and CBR, and the 
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occurrence of multiple episodes of extension in the NBR allow the development of multiple 

generations of extension with the potential for superimposed structures (Taylor & Switzer, 

2001). The crust under the Northwestern Basin and Range sub-province, ~38 km thick in the 

Late Cretaceous, was not as thick as the crust under the NBR, which was at least 45 km thick 

and, thus, did not undergo as much post-Late Cretaceous extension (Colgan et al., 2006).  

The Caliente-Enterprise Zone is located northeast of the PSZ and is characterized by multiple 

episodes of extension beginning before 30 Ma (Fig. 2). The Caliente-Enterprise Zone can be 

divided into three parts: (1) the eastern part, which is associated with the Colorado Plateau 

margin; (2) the central part, which is within the Caliente Caldera Complex; and (3) the 

western part, which is associated with PSZ faults (Axen, 1998). The Caliente-Enterprise Zone 

is thought to have disrupted the extension from nearby detachment faults and instead was 

internally extended (Axen, 1998). This internal extension resulted in the formation of multiple 

strike-slip faults and fault blocks with counterclockwise vertical-axis rotation (Axen, 1998; 

Hudson et al., 1998). Paleomagnetic data document that the Caliente-Enterprise Zone is a 

broad sinistral transfer zone with vertical-axis rotation of blocks (Hudson et al., 1998). 

Importantly, the paleomagnetic data show that the some of the mildly counterclockwise 

rotated blocks of the Caliente-Enterprise Zone extend into the PSZ, thereby linking the 

Caliente-Enterprise Zone and PSZ directly into one another (Hudson et al., 1998).  

The Rock Valley Fault Zone is a left-lateral fault zone located to the west of the PSZ and 

between these two zones is an area of predominantly normal faulting (Fig. 2). The Rock 

Valley Fault Zone is a 20-40 km long, several kilometers wide, east- to northeast-striking left-

lateral fault zone (O’Leary, 2000). Within the Rock Valley Fault Zone are three >18 km long 

left-lateral faults that are roughly oriented N70° E, until becoming more southward in 
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orientation near the Specter Range. The zone of normal faulting between the Rock Valley 

Fault Zone and PSZ is 90-100 km wide.  
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METHODOLOGY 

An area of approximately 36 km2 around the western part of the BF was mapped at a 1:12,000 

scale to obtain spatial, geometric and kinematic data (Plate 1). Field data were collected using 

standard mapping methods on a U.S. Geological Survey topographic base map aided by 

satellite, 1997 orthophotos and 2010 NAIP imagery, and limited GPS location data. Bedding, 

compaction foliation in tuffs, fault surfaces, and other linear and planar features were 

measured with a Brunton compass. Samples of Kane Wash Tuff subunit 3 were collected and 

brought to laboratories to both make and analyze a thin section, and acquire an 40Ar/39Ar date. 

Laboratory analyses were conducted on selected samples to further support the field 

identification of tuffs used to constrain the timing of deformation. Point counting was done to 

the same sample that was dated to make sure it correlated to the correct unit. A thin section of 

Kane Wash Tuff subunit 3 was point counted using a petrographic microscope with a point 

counting stage that created a grid-like counting system (Appendix B). A total of 1,200 points 

were counted. This number of points was counted to acquire a reliability greater than 90% 

(Van der Plas and Tobi, 1965).  

40Ar/39Ar dating was conducted to better constrain the timing of deformation along the BF by 

dating the stratigraphically highest tuff, the Kane Wash Tuff subunit 3. Kane Wash Tuff 

subunit 3 samples were crushed in laboratories at UNLV and sorted by grain sizes via sieves. 

Sieve sizes used were 60 and 120. The largest sanidine crystals without matrix attached were 

then handpicked with the aid of a microscope and fine point brush. Crystal grains were then 

put into a sonic bath to remove any remaining matrix material clinging to the crystal. The 

crystals were then sent off for irradiation, done at the United States Geologic Survey TRIGRA 
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Reactor in Denver, Colorado, and then analyzed in the NIGL laboratory at UNLV. 40Ar/39Ar 

analysis was performed using a multi-crystal laser heating system after unreliable results were 

acquired by single-crystal analysis (Appendix 3). I ran 5 of the multi-crystal analyses with the 

direct help of experienced laboratory technician, Kathleen Zanetti. This process included 

fusing together the irradiated samples of sanidine with CaF2 and K- glass fragments using a 

20 W CO2 laser. A stage positioned the samples correctly under the laser and a video camera 

was used to display the stage to myself and the lab technician (Appendix 3).  

Data collected from the field and three-point problem calculations were used to construct and 

plot stereographs and cross sections of fold, fault and bedding data. Stereographs were plotted 

using Rick Allmendinger’s Stereonet 9 program (Allmendinger, 2015).  
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STRATIGRAPHY 

Stratigraphy around the western BF, within the mapped region (Fig. 5), includes Paleozoic 

carbonates and quartzites, Cretaceous or Tertiary (Paleogene) conglomerate, Oligocene-

Miocene tuffs, and Quaternary alluvium (Figs. 6 and 7). These units have been previously 

identified and mapped at a 1:100,000 scale by Jayko (2007). However, attached unit 

descriptions (Plate 1) refine these units to more localized descriptions with subdivision into 

individual regional formations of the tuffs following Best et al. (1993, 2013a, b). 

The Paleozoic rocks consist of carbonates, including both limestone and dolostone, and 

sandstones, which are silica-cemented sandstone (Fig. 7). From oldest to youngest, the 

exposed units are the Ordovician Eureka Quartzite and Ely Springs Dolomite, followed by the 

Silurian Laketown Dolomite and Devonian Sevy Dolomite (Reso, 1963; Tschanz and 

Pampeyan, 1970). These units were faulted into place during the Sevier orogeny (Burchfiel, 

1965; Ebanks, 1965; Guth, 1980; Taylor et al., 2000; DeCelles and Coogan, 2006). These 

rocks were exposed by erosion and/or Cenozoic normal faulting (Long, 2012). The Paleozoic 

rocks are overlain in buttress uncomformity by all of the younger units in the area. Paleozoic 

units both older and younger than the exposed section (Plate 1) are documented in the region 

(Fig. 2). 

A Cretaceous or Tertiary (Paleogene) conglomerate locally lies between the Paleozoic units 

and the Oligocene ash-flow tuffs (Fig. 7). All of the clasts in this unit are composed of 

carbonate or quartzite from various Paleozoic units. Near the BF the conglomerate is only 

about a meter thick in exposures, but the base is not exposed. 
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Tertiary units include ash-flow tuff, ash-fall tuff, reworked tuff, and vesicular basalt. Tertiary 

tuffs range from Monotony to Kane Wash tuffs (Plate 1, Fig. 6). These tuffs were erupted 

from three different source areas: (1) the Central Nevada Caldera Complex, (2) the Caliente 

Caldera Complex, and (3) the Kane Springs Wash Caldera (Fig. 2) (Best et al., 2013a, b). 

Ages below are from Best et al. (2013a, b). The Central Nevada Caldera Complex produced 

the 27.57 Ma Monotony Tuff, multiple cooling units of the 25.99-26.98 Ma Shingle Pass 

Formation and the 22.93 Ma Pahranagat Formation (Best et al., 2013a). The Caliente Caldera 

complex produced the 23.04-24.15 Ma Condor Canyon Formation, 24.03 Ma Leach Canyon 

Tuff, 22.56 Ma Harmony Hills Tuff, and 18.51 Ma Hiko Tuff (Best et al., 2013b). The Kane 

Springs Wash Caldera produced the Kane Wash tuffs. An 40Ar/39Ar age was obtained from 

analysis of the uppermost welded member of the Kane Wash Tuff (Tk3) and yielded a date of 

15.3 +/- 0.09 Ma. Basalts are located on top of the Tertiary tuffs (Jayko, 2007) and primarily 

occur as float exposed in a single hill in the northwest section of the map (Plate 1, Fig. 5).  

The Quaternary stratigraphy is divided into two major units: (1) Quaternary alluvium and (2) 

Quaternary older alluvium. Quaternary alluvium is the young detritus in active/recently active 

washes and fans. Quaternary older alluvium includes all detritus that was not active recently 

including, but not limited to, older, now abandoned, drainages and alluvial fan deposits that 

display ridge and ravine topography. Quaternary older alluvium has a degree of compaction 

and possibly slight calcite cementation that lithifies the material. 

 

 

 

 

 



13 

 

STRUCTURAL DATA 

The BF lies between the Arrowhead Mine Fault and Maynard Lake Fault, and thus, is flanked 

by structures that accommodate differences in motion between each of these left-lateral strike-

slip faults and the BF. Therefore, structures are divided into those northwest and southeast of 

the BF. Previous mapping and structural analyses (Tschanz and Pampeyan, 1970; Jayko, 

2007) lack the map resolution necessary to adequately analyze and interpret the structural 

complexity of the BF and associated structures. Therefore, my new 1:12,000 scale map is 

used here (Plate 1). The mapped area contains strike-slip and normal faults, and folds (Fig. 4). 

The Buckhorn Fault 

The BF is a left-lateral strike-slip fault with a 030-040º strike through much of the map area, 

but bends to strike 070-080° in the southwest (Plate 1, Fig. 4). The BF splays along strike 

forming many small bends with several fault blocks or lenses trapped between the strands. 

These fault blocks contain normal faults exposed in Tertiary tuffs. The BF is almost entirely 

buried under active Quaternary alluvium with a single exposure in the NE portion of the map 

(Plate 1). The exposed strand places Kane Wash Tuff against Hiko Tuff and has an attitude of 

035°, 76° SE. After 15.3 Ma, the BF had at least 6 kilometers of left-lateral strike-slip offset 

based on offset of the base of the Kane Wash Tuff and less than 250 meters of down to the 

north dip-slip offset based on elevation differences from the cross-sections between the 

contacts of Tk1 and Tk2, and Hiko and Harmony Hills tuffs directly north and south of the 

BF. The BF decreases in strike-slip offset to the west. A few meters west of a series of splay 

faults in the west, the offset is ~ 5-20 m (Plate 1) (Price et al., 2017). On the western end, the 

BF abuts into, or is cut by, a north-south striking normal fault (Plate 1, Fig. 4).  
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Northwest of the Buckhorn Fault 

The Buckhorn Syncline (BS), named here, is a few kilometers across and located just north of 

the BF. In exposures, units from the Monotony Tuff to the Kane Wash Tuff are folded (Plate 

1, Figs. 4, 5 and 8). The fold is best exposed in the Hiko Tuff (Plate 1, Fig. 5). The BS 

plunges and trends 27°, 032° and is subparallel to the BF (Figs. 4 and. 9). The BS limbs 

generally dip around 20-35º making a gentle to open fold. Overall the BS axial surface is 

upright, dipping 87°, with a gentle interlimb angle of 153º. The southeastern limb of the 

syncline is cut by the BF.  

The Buckhorn Anticline (BA), named here, lies east-southeast of the syncline axial surface, 

but the two folds are not parallel. The BA refolds the southeastern limb of the BS. The 

amplitude of the BA decreases towards the axial surface of the BS as is suggested by the BS’s 

axial surface not being deflected. The anticline is gentle with a steeply dipping, upright axial 

surface and has a plunge and trend of 15º, 010° (Figs. 4 and 9). This fold was only identified 

in the Hiko Tuff.  

The region northwest of the BF contains at least three sets or networks of normal or normal-

oblique slip faults including (1) an E-W striking fault set in the NW section of the map (Fault 

set NA); (2) NNE-SSW striking faults that occur near the west end of the BF  (Fault set NB), 

one of which cuts an E-W striking fault; and (3) faults with a variety of strikes that occur 

within the fold (fault set NC) (Fig. 4, Plate 1). These structures all were identified by offsets 

of Tertiary tuffs (Plate 1).  

The E-W striking faults with apparent normal offset dip to the south. This fault set (NA) 

includes four faults in the NW corner of the map which are exposed cutting the Monotony 
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through Hiko tuffs and are truncated by the Kane Wash Tuff, thus bracketing deformation 

time to between 18.41 and 15.3 Ma. This fault set varies from 20 m to >100 m of stratigraphic 

offset and has a slight apparent left-lateral slip.  

An E-W fault, fault N1, is exposed in Tertiary tuffs and has a small stratigraphic offset putting 

Bauers Member next to Pahranagat Formation (less than 30 m) and lies in a fault-bounded 

block near the west end of the BF (Fig. 4). This fault is characterized by a weak friable zone 

between these two stratigraphic units of steeply dipping (62-76º) tuffs. This fault is primarily 

normal and lacks any significant apparent lateral offset. This fault terminates into fault N2 

that directly connects to the BF.  

Fault network NC consists of two faults exposed near the fold core and two faults cutting the 

western limb which have a variety of strikes and cut tuffs from the Bauers Member to the 

Kane Wash Tuff (Fig. 4). The faults in the core are primarily normal and all cut the BS axial 

surface. The two faults along the northwest limb of the fold are near the fold axial surface but 

do not cut it and are exposed within the Bauers, Pahranagat, and Harmony Hills tuffs. These 

faults vary from E-W to N-S in strike and are grouped based on their relationship to the fold 

and their uncertain relationship to other structures.  

Southeast of the Buckhorn Fault 

The area southeast of the BF contains the Paleogene unconformity and normal to oblique 

faults exposed within Tertiary tuffs and Paleozoic carbonates. These faults are divided into a 

fault set and a network. Fault set SA consists of two large normal faults, which abut into the 

BF. Fault network SB comprises small faults that run between the larger normal faults of SA. 
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Two faults of SB strike ~E-W, others strike WNW and all cut the Paleozoic strata in 

exposures. Fault set SA and network SB form fault network FNS. 

The two large normal faults of set SA strike NNW-SSE to NNE-SSW and have a minimum 

map length of 3-5.5 km. These large faults are entirely buried under Quaternary deposits but 

are known to exist because of retro-deformations of cross sections using nearby exposed tuffs 

(Plate 2). This fault set contains the largest fault in the map area exclusive of the BF (Plate 1, 

Fig. 4). These faults have relatively large stratigraphic offsets, up to 1 km, and abut into the 

BF.  

Eight smaller faults compose fault sub-network SB and are kinematically associated with fault 

network SA. Faults of SB generally strike ENE-WSW, WNW-ESE and NW-SE. In 

exposures, the NW-striking faults cut units from Monotony to Harmony Hills tuffs (Figs. 4 

and 5; Plate 1). These faults are generally apparent normal with one having some apparent 

right-lateral offset. The ~E-W striking faults cut the Paleozoic units and put Silurian 

Laketown Dolomite next to Devonian Sevy Dolomite. The northern fault terminates into a 

strand of the BF to the west and terminates into the large N-S buried fault of SA to the east. 

Field identification of this fault can be subtle, but cross sections and orthoimagery support the 

presence and location of this structure. 

Fault S1 is cut by the BF and cuts units up to Harmony Hills but is buried under the Hiko and 

Kane Wash tuffs (Figs. 4 and 5; Plate 1). Thus, the fault is bracketed to a deformation time 

between 22.56 to 18.51 Ma. The fault is exposed for 70 m along strike. This is the only fault 

identified in the field area that has this timing.    
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Fault network SC (mapped by R. A. McIntyre, W. J. Taylor and myself) consists of several 

splay faults that generally strike NE-SW near the BF through N-S and curve to a more NW-

SE strike in the south (Fig. 4). These faults are normal faults with down-to-the-east offset. 

The individual faults within this network vary between the ⁓6.4 km long splay faults and the 

< 0.5 km smaller faults that run between these splays. The total offset of this network helps to 

form a basin between SC and the farthest west normal fault of SA, currently filled with 

Tertiary and Quaternary alluvium and fan deposits.  

Paleogene Unconformity  

The Paleogene unconformity is exposed in the field area as a block of Paleozoic rocks with 

Miocene-Oligocene tuffs and a Tertiary (Oligocene?)-Cretaceous conglomerate abutting into 

it (Plate 1 and 2; Fig. 10). The Paleogene unconformity has a minimum of 240 meters of relief 

directly north of the BF, from the fence diagram, but has a minimum of 600-700 meters south, 

along the exposed Paleozoic block (Plate 2; Fig. 10). The angle across the unconformity 

varies from 45-49°. The exposed Paleozoic hill has no tuffs deposited on top of it, unlike 

some of the Paleozoic mountains seen off to the East along highway 93 (location X on Fig. 3), 

which indicates that the ash-flow tuffs did not fill all the way to the top of the hills along the 

unconformity.  
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DISCUSSION 

PAHRANAGAT SHEAR ZONE GEOLOGY 

Northern to Central Basin and Range boundary zone 

The PSZ defines the central part of the boundary zone between the NBR and CBR 

subprovinces and the Caliente-Enterprise Zone defines the boundary to the east. This left-

lateral zone is extrapolated to the west, in this study, (Fig. 1) by using Bouguer gravity, 

magnetic, basin elevation data, and previous work on the Rock Valley Fault Zone (O’Leary, 

2000). Map data show that structures internal to the PSZ accommodate motion and 

differences in slip along the Arrowhead Mine and Maynard Lake Faults because faults and 

folds near the western BF continue to the northwest and southeast but do not cut the 

Arrowhead Mine or Maynard Lake Faults (c.f., Price et al., 2017). Thus, the faults and folds 

within the PSZ do not necessarily kinematically link to either the NBR or CBR structures 

(Fig. 2). The largest of these internal accommodation structures is the BF. This internal, to the 

PSZ, deformation delineates the boundary between the NBR and CBR as a zone rather than a 

single structure or finite line. Thus, the boundary zone uses the outer extents of these left-

lateral systems as the boundaries, leaving the internal deformation of these zones as part of 

the newly defined zone.  

The western limit of the PSZ is structurally bounded by large north-south striking normal 

faults and geographically marked by the Desert Hills (Figs. 3 and 4). A series of these north-

south striking normal faults extend throughout the region between the PSZ and the Rock 

Valley Fault Zone. Thus, the zone between the NBR and CBR subprovinces is weakly 
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constrained and loosely defined by gravity anomalies and basin elevations through that 

region.       

Cretaceous to Oligocene(?) Paleohill 

Directly southeast of each major PSZ fault, the Arrowhead Mine Fault, BF and Maynard Lake 

Fault, are exposed hills or mountains made of Paleozoic rocks (Fig. 3) (Jayko, 2007; Price et 

al., 2017). The buttress unconformity between Paleozoic rocks in these hills and the 

Oligocene to Miocene tuffs along with the deposition of the Tertiary to Cretaceous 

conglomerate suggests that these exposed hills of Paleozoic strata must have been relatively 

high before and during the deposition of the tuffs. Normal faulting contributed to exposing 

this relationship by relatively down dropping Tertiary tuffs along faults of SA on either side 

of a horst that exposes Paleozoic rocks (Fig. 11). South of the BF hundreds of meters of Leach 

Canyon is exposed to the west of the paleohill and only about 12 meters to the east (Plate 1). 

This result could be from the thinning of these tuffs, related to the quasi-fluvial flow patterns 

of ash-flow tuffs around the hill, the locations of the source calderas relative to the study area 

and Paleozoic hill locations. Similarly, north of the BF, differences occur in the ash-flow tuff 

stratigraphic section, with exposure of the Leach Canyon and Bauers Tuffs being prominent 

in the southwest, the lack of the Pahranagat Tuff in some areas, and unit thickness changes 

within the Harmony Hills Tuff. (Plates 1 and 2; Fig. 10).  An additional, buried, paleohill and 

faulting is a simple and the most supported solution for the differences in tuffs north of the BF 

(Fig. 10, Plate 2). This additional paleohill could account for the lack of Leach Canyon and 

Bauers tuffs, which were sourced from the northwest, being exposed on the east side of the 

map, north of the BF.  
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LOCAL GEOLOGY 

Buckhorn Fault 

The changes in amount of offset, bends, splays, and fault blocks of the BF indicate a non-

planar fault geometry that is likely controlled by fault-linkage and/or pre-existing structures 

(Plate 1; Fig. 4). The best evidence for this interpretation is the offset (>6 km) measured just 

east of the bend from a NE- to ENE-strike in the BF, compared to the <20 meters along the 

southwest part of the BF. These differences could be explained by two faults that had a 

smaller offset and a larger offset before they linked into one continuous strand. Another 

potential solution is the SW propagation of the BF accounting for the loss of slip westward 

along the BF, but not necessarily for the bend or magnitude of slip loss.  

West-end of the Buckhorn Fault 

The BF terminates within the map area, abutting into fault set NF1. Prior to abutting into fault 

set NF1, the BF propagated to the west, as suggested by the decrease in offset westward. 

Offset along the main strand of the BF decreases from 6- 6.5 km in the eastern part of the 

study area, when considering the offset of the contact between the Hiko and Kane Wash tuffs, 

to just a few meters (5-20), based on offset of the contact between the Tertiary Leach Canyon 

and Bauers tuffs, about 6-8 km to the SW (Location Z on Plate 1 and Fig. 5). Map data show 

that the offset decreases significantly just west of the splays near the center of the map, which 

are in fault network SC (Fig. 4). Fault network SC is a strong candidate for distributing strain 

away from the BF as it propagated SW. The BF is exposed up to a few meters away from a 

several kilometer-long normal fault, part of fault network NF1, but does not extend west of 

this network. This is likely the result of the BF being soft- or hard-linked to the NF1 fault in 
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the subsurface (Price et al., 2017) (Fig. 4). If so, this suggests that the BF transfers a small 

amount of strain onto fault network NF1. 

Buckhorn Folds 

Folds can form in association with strike-slip faults in extensional settings (Harding, 1976; 

Sylvester, 1988; Jayko, 1990; Becker, 1995; Grasemann et al., 2005). The parallelism 

between the BF and BS suggests that the two are related. The BF and BS geometries permit 

multiple interpretations of how the BS could have formed. These include, but are not 

necessarily limited to: (1) a drag or fault propagation fold formed from changes in slip along 

the BF, (2) a fold formed by a wedge between two faults that decreases in volume along 

strike, or (3) a separate deformation event older than the BF (Figs. 4 and 11). Option 2 can be 

ruled out because the BS is in an area of widening between the Arrowhead Mine Fault and BF 

(Price et al., 2017). Option 3 can be ruled out because the fold deforms the Kane Wash Tuff, 

the youngest ash-flow tuff, and thus, formed after 15.3 Ma when the BF was active. The 

orientation of the BS, with a trend of 032°, the scale and proximity of the BS to the BF (Fig. 

4), and changes in offset along strike of the BF along with the <10° angle between the axial 

surface and the nearest segment of the BF would suggest that the fold formed as a result of 

option 1, drag or fault propagation.  

The BA is superimposed on a limb of the BS and is isolated between the BF and the axial 

surface of the BS (Figs. 4 and 5). The axial surface of the BA is at a 20-30° angle to the BS’s 

axial surface, not parallel or subparallel. The superposition of the BA suggests that it formed 

after the BS and the difference in orientation suggests that it potentially formed from a 

different or changing localized stress field.  



22 

 

The nonparallel fold axes, along with the limited length of the BA, leads to the possibility of a 

multistep formation. Unfortunately, the data are not definitive enough to completely limit the 

conclusion down to a single outcome. Thus, multiple possibilities must be considered 

including four reasonable options all having the BS formed from drag along or propagation of 

the BF. (1) The BA was superimposed on the BS due to local stress field changes related to a 

bend in the BF. The bend in the BF from ~N30°E to ~N70° E would create a proximal area of 

shortening (Fig. 4). However, the orientation of the bend combined with left-slip on the BF 

would create a primary shortening direction of NE-SW with folds oriented NW-SE. This 

expected trend is opposite of the BA’s current axial surface trend. (2) The BA formed later as 

a result of a wedge forming between the BF and fault N2 (Fig. 4). In this case, the normal 

fault/fault block would have to act as a barrier, and thus, the shortening direction would be E-

W. The initial strike of the BA’s axial surface would then be nearly N-S. Continued motion 

along the BF would drag this fold into a NW-SE trend, opposite of its current position. (3) 

Multiple circumstances played a role in the formation of the BA. This scenario allows for 

multiple conditions to play a role in the formation of the BA and might explain why the 

angular relationship between the BA and BF cannot be explained from previous foundational 

studies like Sylvester (1988) and such as listed in options 1 and 2. These multiple conditions: 

(a) continued motion along the BF, (b) motion along fault N2, (c) transpression from the bend 

in the BF and (d) the influence of the pre-existing weaknesses in the rheology. (4) None of the 

drag, wedge or bend mechanisms are responsible for the formation of the BA (Fig. 4). This 

scenario is a possibility but is not as probable as option 3, because nearby structures namely 

the bend in the BF and fault N2, logically have some effect on the nearby local stresses. 
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Option 3 is the most likely scenario of the options listed above, as it accounts for the scale, 

exposure, trend, and temporal relationships previously discussed. 

East-West striking faults 

Fault set NA (colored in light blue on Fig. 4) strikes at an angle approximately perpendicular 

to the major normal faults within the mapped area and are post-18.51 to pre-15.3 in age (Figs. 

5, 10; Plate 1). Faults of set NA have apparent normal slip with a high potential for a notable 

amount of strike-slip motion because of the amount of pure dip-slip required to put the Hiko 

Tuff next to Shingle Pass Tuff (450-480 meters) in comparison to the exposed lengths of the 

faults (300-500 meters) (Plate 1). The strike-slip motion would dramatically decrease the 

amount of stratigraphic offset needed to account for map data (Plate 1) from >450 m to <100 

m of dip slip. In the case of pure strike-slip motion, one fault would have to be left-lateral and 

the other would need to be right-lateral, each with minimum of 2 km of slip. Oblique-slip 

would allow these faults to accommodate both or either of two different local stress fields 

presented in the local area. First, the angle of ~70-85° between this fault set and the BF fits 

with the expected angle of strike with antithetic R’ shears related to motion along the BF 

(Sylvester, 1988) (Fig. 4). Second, the local extensional stresses applied from the opening of 

the gap between the AMF and BF can be partially accommodated by the normal-slip (Fig. 3) 

(Price et al., 2017). This gap is a function of the 030-040° strike of the BF relative to the 

average 042° strike of the Arrowhead Mine Fault in the west side of the PSZ (Fig. 3).  

Associated normal faults 

The normal faults, within proximity of the BF, can be placed into three categories: (1) faults 

that strike at a high angle to the BF, (2) faults that transfer strain between two faults, and (3) 
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faults that distribute strain. The high-angle faults are fault sets NB and SA and suggest that 

the BF is a transfer fault. The faults within fault set SB and N1 transfer strain between two 

faults; SB transfers strain between two SA faults and N1 transfers strain from two NB fault 

strands.  Fault set SC consists of faults distributing strain at a paleotip away from the BF (Fig. 

4). These geometric relations between normal faults and strike-slip faults were recognized and 

characterized by Sylvester (1988) and Peacock et al. (2016).  

Fault network FNS consists of fault sets SA and SB. The normal faults of fault network FNS, 

have cross-cutting relationships in which faults within fault set SB have strikes between NW-

SE to E-W and abut into fault set SA and the BF. Faults within SA strike north to south and 

abut into the BF (Fig. 4). This relationship of faults abutting into, but not cutting through, 

each other suggests that motion along these faults are not temporally distinct from one 

another. This synchroneity lead to a volume growth or change in shape in the area south of the 

BF. Consequently, triaxial strain occurred. The rock volume would have thinned vertically 

due to the normal faults, lengthened horizontally in both a N-S and E-W directions and 

changed shape, especially along the BF and NW-striking faults near it (Fig. 4).  

Timing of deformation  

The western BF region, west of U.S. highway 93, exposes at least four different ages of 

deformation: (1) tilting of the Paleozoic rocks to a dip of 50-60° prior to emplacement of the 

27.57 Ma Monotony Tuff, (2) an episode of early-Miocene deformation between 22.56 and 

18.51 Ma, (3) mid-Miocene deformation between 18.51 Ma and 15.3 Ma, and (4) deformation 

after deposition of the Kane Wash Tuff (15.3 Ma). The tilting of the Paleozoic rocks most 

likely occurred during the Sevier orogeny because of the proximity to other Sevier belt 

structures and the angularity of the Paleogene unconformity. This deformation uplifted the 
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Paleozoic rocks which were subsequently eroded forming paleohills. The early-Miocene 

deformation is represented by a single NW-SE striking fault, fault S1, putting Harmony Hills 

Tuff next to Shingle Pass Formation and Bauers Member and is overlain by the Hiko Tuff 

(Plate 1, Figs. 4 and 5). This timing of this fault coincides with deformation in the NBR, but 

pre-dates major extension in the CBR. The mid-Miocene deformation is represented by four 

WNW-ESE-striking faults, fault set NA, which are all overlain by the 15.3 Ma Kane Wash 

Tuff. Lastly, the post 15.3 Ma deformation includes the BF, BS, BA, large normal faults and 

many other structures all of which can be organized in relation to each other via cross-cutting 

and abutting relationships. The BF formed as a result of two possible options: (1) a new fault 

or (2) an older reactivated fault that breaks through the Oligocene-Miocene tuffs. The older 

structure, prior to reactivation, does not need to be right-lateral (Jayko, 1990) if the Paleozoic 

section is a part of the footwall of the Gass Peak Thrust (discussed below). The BS formed in 

the fourth deformation either at the same time as or just before the BF. Several of the fault 

sets and networks with a variety of orientations formed at this time.  

REGIONAL GEOLOGY 

The Gass Peak Thrust 

The exposed Paleozoic strata, from Devonian to Ordovician in age, are part of either the 

footwall or hangingwall of the Gass Peak Thrust (Fig. 2; Plate 1). The Paleozoic strata within 

the field area are relatively undeformed internally and currently have a 20-40° W dip. 

However, before Oligocene-Miocene extension the strata dipped at a much steeper angle, 

perhaps greater than 60°. This higher dip comes from removing the current 10° to 35° 

eastward dips of the unconformably overlying Oligocene to Miocene tuffs. The internal 

deformation of nearby exposed footwall sections show moderately dipping to overturned beds 
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and folding (Page et al., 1990, Swadley et al., 1994; Jayko, 2007). Presently hanging wall 

sections seem relatively undeformed or are part of a range-scale anticline and generally dip 

east. Strata that are clearly in the footwall of the Gass Peak thrust just south of the Maynard 

Lake Fault and east of U.S. highway 93 in the Delamar Mountains, similar to the study area, 

are moderately W-dipping Paleozoic rocks that are unconformably overlain by gently E-

dipping Tertiary ash-flow tuffs (Fig. 3; c.f., Scott et al., 1990). These nearby examples of 

foot- and hanging-wall strata each share a bit in common with the exposed section of 

Paleozoic rocks within the field area. Thus, the shared W-dipping direction and less slip 

required to retrodeform the exposed Paleozoic strata in the field area to footwall outcrops 

better supports the conclusion that these Paleozoic rocks are part of the footwall of the Gass 

Peak Thrust. 

Transfer Zone  

The termination of normal faults in many cases is marked by an accommodation or transfer 

zone (Faulds and Varga, 1998). The PSZ has a series of normal faults to the north and an area 

of limited extension to the south in the vicinity of the Sheep Range (Figs. 2, 3; Jayko, 2007). 

The normal faults to the north strike northerly which fits with the least principal stress 

direction, WNW-ESE to E-W, documented after 10 Ma by Zoback et al. (1981), and abut into 

at least one left-lateral fault of the PSZ. The relatively large N-striking normal faults, such as 

the faults of NF1 cut across or are abutted by the BF, as shown here, and the AMF (Price et 

al., 2017; Evans, in progress). In contrast, many of these faults abut into the MLF 

(Muhammad, 2016; Fig. 2) (Figs. 2 and 4).  Faults of NF1 and other normal faults on the 

outer sides of the PSZ potentially transfer strain onto one or more faults of the PSZ or vice 

versa. GPS velocity data support that the PSZ is currently transferring strain between the 
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Eastern California Shear Zone and the Wasatch Fault Zone (Kreemer et al., 2010; dePolo and 

dePolo, 2012). Kreemer et al. (2010) defines the PSZ as part of the Southern Nevada Seismic 

Belt (Fig. 12). The Southern Nevada Seismic Belt is composed of seismic clusters, including 

seismicity within the PSZ (Fig. 12). Therefore, strain is transferred through areas both in the 

scale described by my work in the PSZ and in the regional scale described by Kreemer et al. 

(2010) and dePolo and dePolo (2012) (Figs. 4 and 12.). 
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CONCLUSIONS 

The sub-province boundary between the NBR and CBR is here defined as a broad zone that 

includes significant left-lateral deformation such as that along the PSZ. The PSZ is a 

prominent NE-striking, left-lateral fault system with a distinct internal deformation that lies in 

the central part of the boundary zone.  

Regional  

1. The major left-lateral strike-slip faults of the PSZ define the central part of the boundary 

zone between the NBR and CBR. A steep gradient in the Bouguer gravity anomaly, from 

higher in the north to lower in the south, and left-lateral shear systems were used to extend the 

NBR-CBR boundary zone across the Basin and Range province (Fig. 1). In addition, the 

timing of initial extension is different north and south of the PSZ, whereas, deformation 

within the PSZ is distinct. 

2. The west-end of the left-lateral strike-slip system that includes the Caliente-Enterprise Zone 

and PSZ ends east of the Desert Hills, which lie within the boundary zone. Offset along the 

BF decreases southwestward and the fault abuts into a normal fault within the study area. 

Local 

1. The Paleozoic strata, which dipped relatively steeply W prior to the Miocene, are part of 

the footwall of the Gass Peak thrust and are the base of the Paleogene Unconformity. The 

angle across the Paleogene Unconformity varies from 40-49° and it has a minimum relief of 

600-700 meters south of the BF and 240 meters to the north.  
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2. Based on cross-cutting relationships, at least three ages of extensional deformation 

occurred within the PSZ: (Deformation 1) 22.2 to 18.6 Ma, (Deformation 2) 18.6 to 15.3 Ma, 

and (Deformation 3) post 15.3 Ma. The first two are defined by normal faults and the 

youngest by sets and networks of normal-, strike- and oblique-slip faults. 

3. The BF accommodates strain between the Arrowhead Mine and Maynard Lake Faults that 

is recognizably different from deformation outside of the PSZ. Folding and up to 6-6.5 km of 

left-lateral slip occurred along the BF after 15.3 Ma.  

4. The BF ends westward. A set of splay faults at the west-end of the BF accommodates the 

majority of slip decrease along the BF as it dies out westward. The west end of the BF abuts 

into a large N-S striking normal fault (NF1) and may transfer the remaining small amount of 

slip onto it. 

5. Two episodes of localized shortening occurred post 15.3 Ma just north of the BF resulting 

in sequential formation of the BS and BA. The BS is a fault propagation or drag fold related 

to left-lateral slip along the BF based on subparallel orientations and timing. The BA likely 

results from interactions of multiple local structures including the BF, BS and N2 resulting in 

the axial surface trend of 010°. Interactions include fault linkage between N2 and the BF, 

potential linkage of individual isolated strands of the earlier less developed BF, and the 

formation of a bend within the BF. 

6. In contrast to north of the western BF, triaxial strain is significant just south of the western 

BF, between the BF and the Maynard Lake Fault. Triaxial strain is the result of motion along 

fault network FNS which consists of faults with three different strikes; N-S, NE-SW, E-W.  
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7. The youngest mapped faults cut Kane Wash Tuff subunit 3 and are buried by Quaternary 

units. This relation suggests that there are no active faults within the study area. 
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Figure 1. Regional gravity map also showing the boundary of the Basin and Range and the 

location of its subprovinces. NWBR – Northwestern Basin and Range, NBR – Northern Basin 

and Range, CBR – Central Basin and Range, and SBR – Southern Basin and Range. RVF – 

Rock Valley Fault, PSZ – Pahranagat shear zone, and CEZ – Caliente-Enterprise Zone. 

Background image is a Bouguer gravity map from Dutch (2014). 
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Figure 2. Regional geology map showing larger structures and simplified geologic units. PSZ 

– Pahranagat shear zone, KSWC – Kane Springs Wash Caldera, GPT – Gass Peak Thrust, 

CNTB – Central Nevada Thrust Belt. Caliente-Enterprise Zone location is based on Hudson et 

al. (1998). 
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Figure 3. A location map showing simplified geometries of the Arrowhead Mine Fault 

(AMF), Buckhorn Fault (BF) and Maynard Lake Fault (MLF). Study area is outlined in 

purple. Blue dotted line represents the Paleogene Unconformity. Yellow “X” marks the 

approximate location to the Paleogene Unconformity related to in thesis body text location. 

Tv is Tertiary volcanic rocks. The Buckhorn Syncline is in blue. Study area includes mapping 

done in the southwest of dotted line by Alex Peck and R. Alexis McIntyre with an additional 

help from Rebecca Ely, Michael Evans and Dr. Taylor. 
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Figure 4. Fault sets and networks represented in different colors based on their interpreted 

association(s), or lack thereof, with the Buckhorn Fault (BF). White – BF; Red(s) – faults 

transferring strain onto the BF and splay faults, includes fault sets N1, NB, and SA, and fault 

networks SB and SC; Blue – east-west striking faults with apparent oblique slip, fault set NA; 

Purple – a normal fault and its associated faults into which the BF terminates, fault NF1; 

Yellow – set of faults that could either be associated with the BF or the normal fault (purple 

set); Black – faults distinct from the BF or normal fault (purple) orientation and offset; Green 

– faults related to the Buckhorn Syncline, fault set NC. FNS – fault network south includes 

both fault network SB and fault set SA. Bold black outline marks the study area. Background 

is composed of a set of combined orthoimages from the USGS Earth Explorer database 

(1997). 



35 

 

 

Figure 5. Simplified geologic map of study area showing general relationships among faults, 

folds and stratigraphy: Q – Quaternary units, Tb – Tertiary basalts, Tk – Kane Wash Tuff, Th 

– Miocene Harmony Hills and Hiko tuffs, Tpm – Oligocene-Miocene tuffs older than 

Harmony Hills, Dse – Devonian Sevy Dolomite, Sl – Silurian Laketown Dolomite, O – 

Ordovician Ely Springs Limestone and Eureka Quartzite. Black triangle marks location of 

figure 8. 
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Figure 6. Stratigraphic column showing the thicknesses, calculated using thickness equations, 

and age relationships of the units north of the BF. For the tuffs, the right-side profile indicates 

degree of welding with more welded zones extending farther right. Cenozoic ages are from 

Best et al. (2013a, b.). 
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Figure 7. Stratigraphic column showing the thicknesses, calculated using thickness equations, 

and age relationships of the stratigraphy south of the BF. For the tuffs, the right-side profile 

indicates degree of welding with more welded zones extending farther right. Cenozoic ages 

are from Best et al. (2013a, b.). 
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Figure 8. Photograph looking NE approximately down the axial surface of the Buckhorn 

Syncline. Tkw2 and Tkw1 are two sub-units of the Kane Wash Tuff. The Buckhorn Fault 

(BF) is highlighted in white. Location of photographer is on figure 5. 
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Figure 9. Stereoplots of both the (A) Buckhorn Syncline (27°, 032°) and (B) Buckhorn 

Anticline (15°, 010°) respectively, showing the plunge and trend of the folds and poles of the 

measured strikes and dips. Stereographs were plotted using Rick Allmendinger’s Steronet 9 

(2015). 
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Figure 10. Fence diagram showing the geometric relationship between the BF, Buckhorn 

Syncline, Buckhorn Anticline, and the nearby normal faults. 
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Figure 11. Diagrammatic map and cross-sections showing time-step interpretations of the 

evolving dip angles of beds, Paleogene unconformity, development of the Buckhorn Syncline 

(BS) and Anticline (BA), and propagation of the BF. Stratigraphy: Paleozoic (blue), 

Cretaceous to Tertiary Sediment (yellow) and Tertiary tuffs (pink). (A) Time 1 – pre-Tertiary 

extension. The BF before it propagates through the Tertiary tuffs, the Paleogene unconformity 

and the relatively steep (60° W) Paleozoic stratigraphy. (B) Time 2. The BF propagates 

through the Tertiary tuffs forming a fault propagation fold, the BS, the development of some 

normal faults, a lens forms, and the 15° E tilting of tuffs and related dip decrease of Paleozoic 

rocks (45° W). (C) Time 3. Continued westward propagation of the BF, development of a 

normal fault north of the BF, creating a contractional wedge, and the continued tilting of tuffs 

to 30° E and back-tilting of Paleozoic rocks to 30° W. Also, the BA develops at this time, 

refolding the BS south limb. Purple line acts as a marker bed to show offset through time. 
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Figure 12. USGS earthquake data from 2014 to 2015 of the SW United States (USGS, 2017). 

ECSZ – Eastern California Shear Zone, SNSB – Southern Nevada Seismic Belt, WFZ – 

Wasatch Fault Zone. Yellow circles show locations of epicenters. Seismic zones from 

Kreemer et al. (2010), and dePolo and dePolo (2012). 

 

 

 

 

 

 

 

 

 

 

 



43 

 

APPENDICES 

APPENDIX A 

PLATES 

Plate 1. Geologic Map of the Western Buckhorn Fault, Lower Pahranagat Lake NW 7.5’ 

Quadrangle, Lincoln County, Nevada. (Please find the attachment entitled Geologic Map of 

the Western BF) 
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Plate 2. Geologic cross-sections of the Western Buckhorn Fault zone. (Please find Plate 2 in 

the attachment entitled Geologic Cross-sections of the Western BF) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 

 

APPENDIX B 

POINT COUNT and FOLD DATA 

 

Table 1. Table containing point count statistics for sample PSZ 1-15-JB of the TK3 Tuff.  

Quartz Sanidine Clinopyroxene Opaques other matrix total 

72 161 20 5 18 968 1244 

26% 58% 7% 1-2% 6-7% 22% Phenocrysts 
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APPENDIX B Cont. 

POINT COUNT AND FOLD DATA 

Table 2. Table containing Buckhorn Syncline and Anticline attitudes.  

Buckhorn Syncline Strike Dip Dip Quad 

1 011 31 E 

2 004 32 E 

3 330 34 E 

4 032 31 E 

5 340 24 E 

6 299 33 N 

7 220 18 W 

8 219 28 W 

9 305 31 N 

10 358 16 E 

11 302 30 N 

12 322 26 E 

13 340 22 E 

14 278 27 N 

15 346 22 E 

16 309 12 N 

17 104 09 S 

18 264 29 N 

19 250 17 N 

Buckhorn Anticline    

1 309 12 N 

2 284 09 N 

3 305 22 N 

4 340 23 E 

5 335 31 E 

6 340 23 E 

7 321 23 E 

8 290 17 N 

9 264 29 N 

10 250 17 N 

11 219 29 W 

12 220 18 W 
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APPENDIX C 

GEOCHRONOLOGY 

Table 3. Table showing data from NIGL on the Kane Wash 3 tuff. Temperature is 1600° C and time is one minute for all runs. 

Fusion 36Ar  37Ar 38Ar 39Ar 40Ar %40Ar* Ca/K 

40Ar*/39Ar
K 

Age 
(Ma)  1s.d. 

1 0.037 0.105 0.067 4.163 23.895 83.6 0.176527 4.3838 13.65 0.66 

2 0.032 0.075 0.086 5.686 31.238 92.5 0.0923148 4.7402 14.75 0.33 

3 0.025 0.070 0.041 2.725 15.609 98.2 0.1797877 4.8912 15.22 0.69 

4 0.038 0.093 0.172 11.973 63.046 92.7 0.0543616 4.7153 14.67 0.17 

5 0.037 0.113 0.166 10.264 52.864 92.1 0.0770507 4.5515 14.17 0.19 

6 0.021 0.131 0.151 11.610 61.150 98.6 0.0789686 5.0074 15.58 0.16 

7 0.035 0.107 0.095 5.878 32.832 89.9 0.1274019 4.7031 14.64 0.57 

8 0.028 0.083 0.126 9.608 53.165 97.5 0.0604586 5.1776 16.11 0.39 

9 0.045 0.136 0.217 14.893 81.059 91.5 0.0639102 4.8447 15.08 0.15 

10 0.036 0.119 0.115 7.950 44.098 88.3 0.1047607 4.7789 14.87 0.16 

11 0.033 0.013 0.179 12.930 71.070 93.6 0.0071988 5.0607 15.74 0.11 

12 0.030 0.072 0.109 7.707 42.353 92.2 0.0653823 4.9364 15.36 0.20 

13 0.035 0.092 0.062 4.381 27.030 82.7 0.1469734 4.9096 15.28 0.07 

14 0.044 0.106 0.166 10.410 60.692 87.3 0.0712639 4.9948 15.54 0.28 

note: isotope beams in mV rlsd = released,  
error in age includes J error, all errors 1 sigma Mean ± s.d. = 15.05 0.65 

(36Ar through 40Ar are measured beam intensities,  
corrected for decay in age calculations) Mean ± s.d. = 15.28 0.45 

       (9 fusions)   

        Wtd mean age = 15.30 0.09 

       (9 fusions)   

       No isochron   
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GEOCHRONOLOGY PROCEDURES 

Provided by NIGL lab and Dr. Terry Spell 

Nevada Isotope Geochronology Laboratory - Description and Procedures 

 

Samples analyzed by the 40Ar/39Ar method at the University of Nevada Las Vegas were 

wrapped in Al foil and stacked in 6 mm inside diameter sealed fused silica tubes.  Individual 

packets averaged 2 mm thick and neutron fluence monitors (FC-2, Fish Canyon Tuff 

sanidine) were placed every 5-10 mm along the tube.  Synthetic K-glass and optical grade 

CaF2 were included in the irradiation packages to monitor neutron induced argon 

interferences from K and Ca.  Loaded tubes were packed in an Al container for irradiation.  

Samples irradiated at the U. S. Geological Survey TRIGA Reactor, Denver, CO were in-core 

for 7 hours in the 1 MW TRIGA type reactor.  Correction factors for interfering neutron 

reactions on K and Ca were determined by repeated analysis of K-glass and CaF2 fragments.  

Measured (40Ar/39Ar)K values were 7.14 ( 4.18%) x 10-2.  Ca correction factors were 

(36Ar/37Ar)Ca = 2.59 (± 1.17%) x 10-4 and (39Ar/37Ar)Ca = 8.26 (± 0.53) x 10-4.  J factors were 

determined by fusion of 5-6 individual crystals of neutron fluence monitors which gave 

reproducibility’s of 0.09% to 0.12% at each standard position.  Variation in neutron fluence 

along the 100 mm length of the irradiation tubes was <4%.  Matlab curve fit was used to 

determine J and uncertainty in J at each standard position.  No significant neutron fluence 

gradients were present within individual packets of crystals as indicated by the excellent 

reproducibility of the single crystal fluence monitor fusions. 

Irradiated FC-2 sanidine standards together with CaF2 and K-glass fragments were placed in a 

Cu sample tray in a high vacuum extraction line and were fused using a 20 W CO2 laser.  

Sample viewing during laser fusion was by a video camera system and positioning was via a 
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motorized sample stage.  Samples analyzed by the furnace step heating method utilized a 

double vacuum resistance furnace similar to the Staudacher et al. (1978) design.  Reactive 

gases were removed by three GP-50 SAES getters prior to being admitted to a MAP 215-50 

mass spectrometer by expansion.  The relative volumes of the extraction line and mass 

spectrometer allow 80% of the gas to be admitted to the mass spectrometer for laser fusion 

analyses and 76% for furnace heating analyses.  Peak intensities were measured using a 

Balzers electron multiplier by peak hopping through 7 cycles; initial peak heights were 

determined by linear regression to the time of gas admission.  Mass spectrometer 

discrimination and sensitivity was monitored by repeated analysis of atmospheric argon 

aliquots from an on-line pipette system.  Measured 40Ar/36Ar ratios were 297.37  0.05% 

during this work, thus a discrimination correction of 0.9937 (4 AMU) was applied to 

measured isotope ratios.  The sensitivity of the mass spectrometer was ~6 x 10-17 mol mV-1 

with the multiplier operated at a gain of 36 over the Faraday.  Line blanks averaged 1.68 mV 

for mass 40 and 0.01 mV for mass 36 for laser fusion analyses and 18.34 mV for mass 40 and 

0.06 mV for mass 36 for furnace heating analyses.  Discrimination, sensitivity, and blanks 

were relatively constant over the period of data collection.  Computer automated operation of 

the sample stage, laser, extraction line and mass spectrometer as well as final data reduction 

and age calculations were done using LabSPEC software written by B. Idleman (Lehigh 

University).  An age of 28.02 Ma (Renne et al., 1998) was used for the Fish Canyon Tuff 

sanidine fluence monitor in calculating ages for samples. 

For 40Ar/39Ar analyses a plateau segment consists of 3 or more contiguous gas fractions 

having analytically indistinguishable ages (i.e. all plateau steps overlap in age at   2 

analytical error) and comprising a significant portion of the total gas released (typically 
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>50%).  Total gas (integrated) ages are calculated by weighting by the amount of 39Ar 

released, whereas plateau ages are weighted by the inverse of the variance.  For each sample 

inverse isochron diagrams are examined to check for the effects of excess argon.  Reliable 

isochrons are based on the MSWD criteria of Wendt and Carl (1991) and, as for plateaus, 

must comprise contiguous steps and a significant fraction of the total gas released.  All 

analytical data are reported at the confidence level of 1 (standard deviation). 
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