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ABSTRACT 

Effects of Morphology of Hydraulic Connections on Inter- and Intra-Matrix Flow in Dual-

Permeability Media 

by 

Jeevan Jayakody  

Dr. Michael Nicholl, Examination Committee Chair 

Associate Professor of Geoscience 

University of Nevada, Las Vegas 

 

A geological medium that exhibits two distinct types of flow is known as dual-

permeability medium. Unconsolidated deposits composed of coarse (> 2 mm diameter) clasts 

(gravel, talus, rockslide debris), engineered systems (heap leach piles, capillary barriers, rock 

fill), and mine/construction waste fall into this category. The large inter-clast pores that are 

characteristic of this type of media will drain at near zero matric potentials constraining flow to 

the interiors of porous clasts and/or the clast surfaces. In either case, water must pass through 

hydraulic bridges (porous contacts and/or pendular water) that form physical connections 

between neighboring clasts. Therefore, properties of hydraulic connections place a primary 

control on flow structure. This dissertation presents three projects designed to study the influence 

of hydraulic connections on unsaturated flow in dual-permeability media. 

A numerical experiment performed to examine how the cross-sectional area and 

hydraulic conductivity of a bridge influence steady-state flow through a spherical clast is 

presented in the second chapter of the dissertation. The cross-sectional area of the bridges 

relative to that of the clast (Ar) was varied across six orders of magnitude between simulations. 

The ratio of hydraulic conductivity between bridges and clasts (Kb/Kc) was varied across 12 
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orders of magnitude to consider resistive, neutral, and conductive bridges. Results show a non-

linear dependency of volumetric flow through the clast on both Ar and Kb/Kc. The intra-clast 

flow distribution shifts outwards as Ar increases. Conductive bridges promote this process and 

resistive bridges impede it. 

The third chapter presents a series of bench-scale experiments performed to evaluate the 

geometry of a pendular bridge under different flow rates through it and at different inclinations. 

Results show that bridge size increases in a nonlinear fashion with flow rate and decreases with 

inclination from vertical. The vertical profile of the bridge closely resembled a parabola in all 

experiments, in contrast to the profile of a static bridge that resembles the arc of a circle. Bridge 

geometry was independent of flow history. Flow is active through the entire volume of the bridge 

and exhibits non-laminar characteristics.  

The fourth chapter describes a series of bench-scale experiments designed to explore the 

influence of matrix-to-matrix hydraulic connections on two-dimensional transient wetting of a 

porous matrix. Cross-sectional area of the connection (Ar) relative to that of the matrix block and 

location of the connection relative to edges of the block were varied between trials. Results show 

that the rate of imbibition into the porous block nonlinearly increases with Ar. Moving the 

connection towards an edge of the block significantly decreases the imbibition rate. Saturation 

increase of the matrix block before the wetting front reaches all edges remains consistent 

independent of the connection. The last chapter summarizes results of the research and discusses 

about future research on this topic. 
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CHAPTER ONE 

INTRODUCTION 

This dissertation presents numerical and physical experiments designed to investigate the 

influence of hydraulic connections on unsaturated flow in coarse porous media that is composed 

of clasts greater than 2 mm in diameter. Porous media in which two distinct flow domains exist; 

i.e., flow through micro-scale and macro-scale pores, are known as dual-permeability media. 

Coarse granular media such as gravel deposits, granular soil, and heap leach piles, as well as 

fractured rocks qualify as dual-permeability media. Water that exists in inter-clast pores in coarse 

granular media rapidly drains at near-zero matric potentials, restricting water to clast interiors, 

thin films on clast surfaces, as well as pendular water between narrow spaces and around solid 

contacts between clasts. Under this condition, pendular water and/or porous contacts that make 

physical connections between clasts, which are known as hydraulic bridges, facilitate continuity 

of flow in the medium (e.g., Carminati et al., 2007).  

1.1 Chapter 2 

The properties of a hydraulic bridge connecting two or more clasts may vary over a wide 

range.  Focusing on a single bridge between two clasts, bridge geometry and conductivity are the 

key factors that control flow. Previous studies have concluded that volumetric flow through a 

porous clast with infinitely permeable bridges above and below varies linearly with the cross-

sectional area of the bridges (e.g., Carminati et al., 2008; Youngs, 2008). The second chapter of 

this dissertation presents numerical simulations designed to explore how the cross-sectional area 

and hydraulic conductivity of bridges influence flow through a spherical clast.  
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Simulation results show non-linear relationships between volumetric flow rate through 

the clast (Q) and cross-sectional area of bridges with respect to that of the clast (Ar). 

Furthermore, data show that Q is very sensitive to the hydraulic conductivity of bridges (Kb) 

relative that that of the clast (Kc) when Kb < Kc, but is relatively insensitive for Kb > Kc, Spatial 

structure of the flow field within the clast and bridges were found to be dependent on both Ar and 

Kb/Kc. For a constant value of Kb/Kc, spatial distribution of flow in the clast gradually shifts 

outwards with increasing Ar. Bridges that are more conductive than the clast promote this 

process, while less conductive bridges impede outwards migration of the flow field. Cross-

sectional area is the dominant factor in controlling behavior for Kb > Kc, while bridge 

conductivity is most important for Kb < Kc. These results have implications for predictive 

modeling of flow and solute transport in dual-permeability granular media. 

1.2 Chapter 3 

Liquid flow on clast surfaces in coarse granular media is expected to occur in the form of 

films or rivulets. Much like flow through the clast interiors, surface flows must also pass through 

hydraulic bridges that connect adjoining clasts. Where the clasts are in point-to-point contact, the 

bridges will consist solely of capillary-held pendular water (i.e., pendular bridges). Since liquid 

flux, film thickness and fluid pressure in such media are interrelated (e.g., Tokunaga, 2009), we 

can expect that the surface flux and orientation with respect to gravity will influence the physical 

properties of a pendular bridge. The literature on pendular bridges mostly concerns isolated 

bridges, and is quite scarce regarding behavior under flow-through conditions. Because of high 

conductivity of pendular bridges compared to that of porous contact between clasts, small 

changes in bridge geometry may significantly alter the macroscopic flow structure in a medium. 
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Pendular bridges may also be important elements for liquid hold up in granular media. Liquid 

retention in packed beds of coarse particles increases with fluid flux (e.g., Xiao et al., 2000; 

Ilankoon and Neethling, 2012). The mechanism for increased retention is not well understood, 

but can attribute to a combination of pendular bridge volume, film thickness, and/or number of 

liquid rivulets on the particle surfaces. Therefore, understanding the response of pendular bridges 

to changing flow conditions is important to predict unsaturated flow and liquid retention in 

coarse granular media. 

The third chapter of this dissertation presents a series of bench-scale experiments that 

were performed to evaluate the geometry of a pendular bridge under flow-through conditions. 

Inclination of the bridge with respect to gravity was also considered. The geometry of a pendular 

bridge formed between two vertical disks in point contact was monitored at different flow rates 

(Q) and inclinations from the vertical (α). The bridges exhibited a complicated three-dimensional 

geometry with a smooth transition into the edge films. The size of the bridge increased with Q 

and decreased with increasing α. At each value of α, width of the bridge increased rapidly at 

smaller values of Q, and then at a lesser rate at larger values of Q. All observations and 

measurements were independent of flow history of the system. The meniscus of bridges formed 

under flowing conditions closely resembled a parabola while those formed under non-flowing 

conditions followed the arc of a circle. Minor temporal fluctuations in film thickness on the disc 

surfaces correlated strongly with measurable changes in bridge size. These results show that 

spatial and temporal variability in local fluid flux, as well as the distribution of orientation of 

inter-clast contacts should be considered when characterizing the macro-scale flow structure in 

coarse granular media. 
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1.3 Chapter 4 

The first two parts of this dissertation considered hydraulic bridges under steady-state 

conditions where flow is driven by gravity. Capillary forces are expected to play an important 

role in the transient wetting of porous clasts. For capillary-driven slow flow into initially dry 

clasts (imbibition), advancement of the wetting front will depend on the formation of hydraulic 

connections (bridges) where none previously existed. Mass flow across such connections is 

expected to depend highly on the cross-sectional area. The need to vary the area of a hydraulic 

connection between experiments to evaluate its effects on imbibition makes physical 

experiments of this scale infeasible, because micro-scale heterogeneities of the connection can 

significantly affect the system behavior. Furthermore, precisely monitoring the flow into a single 

clast (Carminati and Fluehler, 2009) is very challenging. Therefore, employing bench-scale 

experiments, where imbibition can be easily observed under various, well-defined hydraulic 

connections is more practicable. Since all other properties of the flow system remain consistent 

between experiments, this approach will helps to clearly understand the influence of hydraulic 

connections on imbibition. Furthermore, knowledge acquired from bench-scale flow system can 

be also applied for imbibition in fractured porous media. Similar to drainage of inter-clast pores 

in coarse granular media, relatively wide apertures in fractured rocks also drain at near-zero 

matric potentials (e.g., Wang and Narasimhan, 1985). Matrix to matrix contacts points and/or 

liquid bridges formed due to spatial heterogeneity within a fracture aperture create local 

hydraulic connections to facilitate inter-block flow (e.g., Peters and Klavetter, 1988; Glass et al., 

1995; Seol et al., 2003 ). 

The fourth chapter of the dissertation presents a series of bench-scale experiments that 

were conducted to explore the influence of inter-block hydraulic connections on capillary-driven, 
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two-dimensional flow between adjoining matrix blocks. The physical system consisted of one 

saturated sandstone block that was instantaneously placed in contact with a dry block of the same 

material. We considered the effects of: (i) the cross-sectional area (A) of the connection relative 

to that of the block, and (ii) the position of the connection relative to edges of the blocks on 

imbibition into the dry block. The rate of imbibition varied with both A and the location of the 

inter-block connection. At A = 100%, measured imbibition was comparable to 1D absorption-

based predictions, but deviated substantially as A decreased. At constant A, the imbibition rate 

decreased as the inter-block contact shifted closer to edges of the block. For all values of A, and 

positions of the connection, imbibition rate decreased significantly as the wetting front reached 

the edges of the block. Saturation (S) of the block at this stage (0.48±0.02) was insensitive to A 

or location of the connection. Results show that the hydraulic connections place a first-order 

control on the evolution of flow fields in both coarse granular media and fractured rocks. The 

observed relationships may be incorporated into continuum-based models to improve predictions 

of unsaturated flow and solute transport. 
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CHAPTER 2 

INFLUENCE OF HYDRAULIC BRIDGES ON FLOW WITHIN COARSE POROUS CLASTS 

2.1 Abstract 

Unsaturated flow in coarse granular media is controlled by inter-clast hydraulic bridges. 

Previous studies suggest that volumetric flow through a porous clast (Q) will be linearly 

dependent on the cross-sectional area of the hydraulic bridges, and understate the importance 

bridge conductivity. Numerical simulations were performed to explore steady-state flow through 

a spherical clast with identical bridges located at the top and bottom. The cross-sectional area of 

the bridges relative to that of the clast (Ar) was varied across six orders of magnitude. The ratio 

of hydraulic conductivity between bridges and clasts (Kb/Kc) was varied across 12 orders of 

magnitude to consider resistive, neutral, and conductive bridges. Results show a non-linear 

dependency of Q on both Ar and Kb/Kc. The intra-clast flow distribution shifts outwards as Ar 

increases. Conductive bridges promote this process and resistive bridges impede it. 

 

2.2 Introduction 

Conventional concepts of capillary dominated unsaturated flow (e.g., Richards, 1931; 

Philip, 1957a) do not transfer well to media composed of coarse (> 2 mm diameter) clasts, such 

as unconsolidated gravel deposits, granular soil, heap leach piles, engineered capillary barriers, 

and mine/construction waste. In contrast to the pore-filling behavior observed in fine-grained 

materials, inter-clast pores in coarse media drain at near zero matric potentials, thus constraining 

mobile water to clast interiors, surface films, and pendular water that connects adjoining clasts 

(e.g., El Boushi and Davis, 1969; Tokunaga et al., 2003). In the absence of airborne transport 
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mechanisms (i.e., dripping and vapor phase flow), unsaturated flow in such media must move 

either on the surface of clasts, or through the permeable interior of the clasts (intra-clast flow). 

For both surface and intra-clast flow, water must pass through hydraulic bridges (i.e., porous 

contacts and/or pendular water) that form physical connections (Figure 2.1) between adjoining 

clasts (Hu et al., 2004; Carminati, Kaestner, Ippisch et al., 2007). As a result, hydraulic bridges 

place an important control on flow, solute transport, and geochemical processes. In this study, we 

neglect surface flow to consider the influence of hydraulic bridges on intra-clast flow. 

The materials that comprise a hydraulic bridge will be some combination of porous 

media, impermeable solid, and/or pendular water that physically connects two adjacent clasts 

(Tokunaga et al., 2003; Carminati et al., 2007; Berli et al., 2008). The geometry and hydraulic 

conductivity (K) of those materials are expected to play important roles in determining behavior 

of the bridge. Although the three-dimensional geometry of a hydraulic bridge may be quite 

complicated, it is expected that the cross-sectional area perpendicular to flow will be no larger, 

and perhaps much smaller than that of the adjoining clasts (e.g., Figure 2.1). Therefore, the flow 

field within the clasts must narrow to pass through the bridge, increasing resistance by inducing 

longer flow paths and creating locally steep gradients near the constriction (Youngs, 2008). 

Thickness of the bridge is likely to vary in space (Carminati et al., 2007), with an effect that 

depends on the hydraulic conductivity of the bridge materials (Kb) relative to that of the clast 

materials (Kc). Pendular water (Figure 2.1) is expected to offer little resistance to flow and 

produce a “conductive bridge” (Kb > Kc) that funnels flow into thicker portions of the bridge. 

Conversely, a “resistive bridge” (Kb < Kc) might form where a porous contact contains either 

large pores that drain at the in situ fluid pressure (Carminati et al., 2008) or a significant amount 

of impermeable materials (e.g., mineral precipitates). Resistive bridges are likely to divert flow 
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away from localities where the bridge is thicker. A “neutral bridge” (Kb ≈ Kc) with hydraulic 

properties roughly equivalent to the clast (e.g., extensive matrix-matrix contact) will impact flow 

solely by imposing a physical constriction. 

Figure 2.1: A hydraulic bridge connecting two sandstone clasts. Both clasts are rigid and no 

confining pressure has been applied (negligible deformation at the contact). As a result, the 

bridge consists primarily of pendular water surrounding a point contact.  

 

 

Relatively few investigations have considered the influence of hydraulic bridges on intra-

clast flow. Carminati et al. (2007, 2008) used x-ray and neutron radiography to characterize 

time-variant unsaturated flow through vertically stacked soil clasts (aggregates). Hydraulic 

bridges in these experiments were composed of unstrained matrix-matrix contacts and pendular 

water. Results suggested that the cross-sectional area of the bridges places a first-order control 

on both volumetric flow and the distribution of moisture within the system. Use of bridge cross-

sectional area as a calibration parameter led to a close match between experimental results and 
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numerical simulations. In those simulations, the bridges were assumed to be of uniform thickness 

and conductivity. Youngs (2008) considered saturated flow through a spherical clast of radius Rc 

with infinitesimally thin polar end caps of radius Rb held as constant head boundaries, and no 

flow boundaries elsewhere on the surface. Analogy to electric flux through a disk of radius Rb 

located on the surface of an infinite half-space led to the following estimate for volumetric flow 

(Q) through the sphere: 

Q = 4KRbΔh  Eq. (2.1) 

where K represents the hydraulic conductivity of the half-space, and Δh is the head difference 

between the disk and boundaries of the half-space at infinity. Predictions based on Eq. (2.1) were 

reported to be in close agreement with numerical simulations and an analog electrical model for 

values of Rb/Rc between ~0.03 and 0.15. 

In this study, we build on the work of Youngs (2008) to better understand how hydraulic 

bridges control intra-clast flow at the scale of an individual clast. Given the difficulty of isolating 

the effects of bridges in physical experiments, we employ detailed numerical simulations to 

characterize volumetric flow and the spatial distribution of flow through a single spherical clast 

as a function of size and conductivity of the bridges. To maintain our focus on hydraulic bridges, 

we hold the size, shape, and hydraulic conductivity of the clasts constant. The cross-sectional 

area of the bridges relative to that of the clast (Ar) is varied across six orders of magnitude (10-6 

to 100). The hydraulic conductivity of the bridges is varied across 12 orders of magnitude to 

consider conditions ranging from highly resistive (Kb/Kc = 10-6) to highly conductive (Kb/Kc = 

106). Results show that hydraulic bridges place a first order control on both volumetric flux 

between clasts, and the distribution of flux within the clasts. For neutral and conductive bridges 
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(Kb/Kc ≥ 1), Ar is found to be the dominant factor in determining volumetric flow, while Kb/Kc is 

the primary control for resistive bridges (Kb/Kc < 1).   

2.3 Conceptualization and Numerical Approach 

The influence of hydraulic bridges on intra-clast flow is considered by defining a single 

undeformed spherical clast (e.g., Bartlett, 1997; Ghezzehei and Or, 2000; Youngs, 2008) of 

radius Rc (> 1 mm) that is connected to the surrounding flow field solely through hydraulic 

bridges located at the top and bottom (Figure 2.2a). Steady-state flow is assumed to occur only 

within the interior of the permeable clast and the bridges (i.e., no surface flow). Following 

Youngs (2008), hydraulic conductivity of the clast (Kc) is assumed to be spatially uniform and 

isotropic. The hydraulic bridges are treated as cylinders of radius Rb that connect smoothly with 

the spherical clast, and exhibit a uniform hydraulic conductivity (Kb). It is further assumed that 

Kc, Kb, and Rb are independent of fluid pressure in the clast. Presuming identical clasts above 

and below (not shown in Figure 2.2a), we take the horizontal plane through the center of each 

bridge to be an equipotential surface. The difference of total head (h) between the two bridges is 

taken to be the difference in elevation above datum (z = 0). Under the stated conditions, flow 

will be driven solely by the gravitational component of the gradient (dh/dz = 1), and is fully 

described by the three-dimensional Laplace equation (e.g., Bear, 1988). 
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Figure 2.2: (a) Vertical section through a spherical clast with hydraulic bridges (gray) at the top 

and bottom. Dotted arrows show hypothetical flow lines within the permeable matrix. (b) 

Numerical simulations were performed on a narrow wedge (shaded region) of dihedral angle α 

that passes through both the clast and bridge. (c) The wedge shown in Figure 2.2b is projected 

onto a two-dimensional finite-difference grid. Radius of the clast is Rc and the radius of the 

bridges is Rb. Individual grid blocks (Δx = Δz) are categorized as hydraulic bridge (gray), porous 

solid (dotted) or surrounding air (unshaded). 

 

Rather than solving the Laplace equation for steady flow through the entire three-

dimensional system described above, we focus on a narrow wedge (Figure 2.2b) that is defined 

by two vertical half-disks separated by a small dihedral angle (˚. From radial symmetry 

about the vertical axis, flux in the wedge will be representative of that in the system as a whole. 

For both clast and bridge, the component of flow in the direction of  will be small compared to 

that in the plane of the half-disks, and thus can be assumed as negligible. This simplification 

allows us to use the two-dimensional Laplace equation with space-variant transmissivity to 

approximate three-dimensional flow in the narrow wedge: 

Tx
∂2h

∂x2  + Tz  
∂2h

∂z2 = 0  Eq. (2.2) 
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where Tx and Tz represent transmissivity in the horizontal and vertical directions, respectively. 

Local transmissivity values are defined as the product of hydraulic conductivity (Kc or Kb) and 

thickness of the wedge (d), which is a function of  and horizontal distance from the vertical axis 

of the clast.  

The block-centered finite difference form of Eq. (2.2) is solved for h on a two-

dimensional rectangular grid (Figure 2.2c) through Gauss-Seidel iteration (e.g., Press et al., 

1986). The top and bottom edges of the grid are defined as constant head boundaries (unit 

downwards gradient), with no-flow boundaries along the left- and right-hand edges. Hydraulic 

conductivity of individual grid blocks is assigned based on whether the center of the block lies 

within the clast (Kc), bridge (Kb), or in the surrounding air (Ka). Effective transmissivity between 

neighboring grid blocks is taken to be the harmonic mean of the individual values (e.g., Bear, 

1988). High-resolution grids with > 2 x106 nodes (Rc = 1000 grid blocks) are used to minimize 

the effects of approximating the spherical clast with square blocks. A very small value was 

assigned to Ka to improve numerical stability of the solution at little cost to accuracy. The 

numerical code was validated against one-dimensional Darcy flow in a cylinder (Kb = Kc, Rb = 

Rc) and an analytical solution presented by Wheatcraft and Winterberg (1985) for two-

dimensional flow through a circular slab embedded in a second material (Kb ≠ Kc, Rb >> Rc, d = 

constant). The minimum thickness of the bridge was arbitrarily set to one grid block (Rc/1000) as 

shown in Figure 2.2c, and held constant for all simulations. 

2.4 Simulation Results 

Simulations were conducted to explore the influence of hydraulic bridges on: 1) 

volumetric flow (Q) at unit hydraulic gradient; and 2) the spatial distribution of flow within the 
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clast and bridges. Input parameters were non-dimensionalized by scaling to the hydraulic 

conductivity (i.e., Kb/Kc, Ka/Kc) or radius (i.e., Rb/Rc, x/Rc, z/Rc, h/Rc) of the clast. Hydraulic 

conductivity of the bridges relative to that of the clast (Kb/Kc) was varied over a broad range of 

arbitrary values to consider resistive (Kb/Kc = 10-6, 10-3), neutral (Kb/Kc = 100), and conductive 

(Kb/Kc = 103, 106) bridges. For all simulations, the relative conductivity of the air surrounding 

the clast (Ka/Kc) was held constant at 10-9. The cross-sectional area of the bridge relative to that 

of the clast was parameterized as Ar = Rb
2 Rc

2⁄  and varied incrementally from 10-6 to 100 at each 

value of Kb/Kc. Volumetric flow through the clast is reported in non-dimensional form as Q/Qd, 

where Qd represents unit-gradient flow at Kb/Kc = 1 and Ar = 1 (i.e., a cylinder of radius Rc and 

conductivity of Kc). 

Simulation results (Figure 2.3) for the neutral and conductive bridges (Kb/Kc ≥ 1 differed 

substantially from those for the resistive bridges (Kb/Kc < 1). Looking first at the 

neutral/conductive bridges (Kb/Kc = 100, 103, 106 in Figure 2.3), flow was controlled almost 

entirely by Ar, and was relatively insensitive to Kb/Kc for Ar < 6.4 x 10-1 (i.e., Rb/Rc = 0.8). For 

both types of bridges, flow varied by >3 orders of magnitude over six orders of magnitude 

change in Ar. The differences in Q/Qd associated with Kb/Kc are most pronounced for the end 

member case of Ar = 100. Results can be broken down into three regimes based on the shape of 

Q/Qd vs. Ar plot. At small Ar (< 10-4), the functional form of the data is concave downwards. 

Data for the two conductive bridges (Kb/Kc = 103, 106) are nearly coincident, and plot slightly 

above those for the neutral bridge (Kb/Kc = 100) with the maximum difference at the smallest 

value of Ar. At intermediate values of Ar (10-4 to 10-1), values of Q/Qd are nearly independent of 

Kb/Kc, and follow an approximately linear trend in log-log space with a slope of slightly less than 

Ar
0.5. At the largest values of Ar (> 10-1), all three data sets are concave upwards. Data for the 



 

14 

 

two conductive bridges remain coincident until Ar reaches ~6.4 x 10-1, where both start to 

increase sharply. As expected, Q/Qd for the neutral bridge gradually increases to reach 100 at Ar 

= 100 (i.e., a homogenous cylinder).  

Figure 2.3: Volumetric flow through the clast (Q) relative to unit gradient flow (Qd) through a 

cylinder of radius Rc and conductivity Kc is shown as a function of Ar for different values of 

Kb/Kc. Predictions based on Eq. (2.1) are shown for comparison. 

 

In contrast to the results for the neutral/conductive bridges, the sensitivity of flow to Ar 

for the resistive bridges (Kb/Kc = 10-3, 10-6 in Figure 2.3) showed a high degree of dependency 

on Kb/Kc. Values of Q/Qd for the resistive bridges converged at small Ar (< 10-5), then separated 

by more than two orders of magnitude as Ar increased. Over the six orders of magnitude change 

in Ar, Q/Qd varied by two orders of magnitude for Kb/Kc = 10-3 and negligibly for Kb/Kc = 10-6. 

The reduction in Q/Qd from the neutral bridge to the resistive bridges increased with Ar and 

covered a range of 1-4 orders of magnitude. Both sets of results for resistive bridges follow an S-

shaped curve that lacks the broad linear feature apparent in simulations for the 
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neutral/conductive bridges and curves in the opposite direction; i.e., concave upwards at small Ar 

(< 10-3) and downwards at larger Ar.  

Properties of the bridges (Kb/Kc, Ar) have a substantial effect on the spatial distribution of 

flow within the clast (Figure 2.4). The effects are most apparent close to the bridge, and become 

small near the equatorial plane of the clast, which is an equipotential line from symmetry (i.e., 

flow lines must cross at a right angle). At the smallest value of Ar that we considered (10-6), the 

spatial distribution of flow was nearly the same for all values of Kb/Kc (Figure 2.4a is presented 

as an illustrative example). Flow lines enter the clast through a narrow region, diverge in the 

upstream half of the clast to distribute flow, and then converge in the downstream half of the 

clast to exit again through a narrow region. As Ar increases, flow lines shift towards the outside 

of the clast/bridge (see illustrative examples in Figure 2.4b-d). For the resistive bridges, the 

separation between flow lines increases away from the center of the clast (Figure 2.4b), while the 

opposite happens for the neutral and conductive bridges (Figures 2.4c, d). As Kb/Kc increases, 

the flow lines shift further towards the outside of the bridge and become increasingly close 

together at the perimeter. Where Kb ≠ Kc, flow lines refract at the clast-bridge interface to 

increase the cross-sectional area in the less permeable material (Figure 2.4b, d). With the neutral 

bridge, there is no refraction of flow lines when they cross into the clast (Figure 2.4c). However, 

the flow lines bend a short distance into the clast to accommodate the change in cross-sectional 

area within the clast. 

 



 

16 

 

Figure 2.4: Illustrative examples showing the distribution of flow in the upper bridge and clast; 
the lower half of the system is a mirror image of the upper half. The vertical axis of rotation is 

treated as zero flow, and each successive flow line represents an additional 10% of the total flow 

(labeled 10-90%). The outer edge of the clast/bridge encloses 100% of the flow.  In three 

dimensions, each flow line would be rotated through 360˚ around the vertical axis to create a 

surface; thus a unit area near the outside of the cross section corresponds to a much larger 

fraction of the sphere volume than one near the axis of rotation. 

 

The spatial distribution of flow (Figure 2.4) suggests that small values of Ar and/or Kb/Kc 

will tend to focus head loss within, and in the vicinity of the bridges. To illustrate this effect, 

Figure 2.5 shows the average vertical distance (L/Rc) between the upper boundary of the 

upstream bridge (h = 2Rc) and the equipotential surface for h = 1.1Rc, which represents 90% of 
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the head loss in the upper half of the system (clast and bridge). For small bridges (Ar < 10-4), the 

spatial distribution of head loss is independent of Kb/Kc and occurs both within, and very close to 

the bridges. As Ar increases, depth to the 1.1Rc equipotential surface rapidly increases for the 

neutral and conductive bridges. For these bridges, variation in the depth of the 1.1Rc 

equipotential surface increases with Ar, and then decreases as Ar approaches 100. At Ar = 100, the 

neutral bridge forms a uniform cylinder with horizontal equipotential lines. In contrast, the depth 

to the 1.1Rc equipotential surface does not considerably change for the resistive bridges until Ar 

> 10-1, which shows the dominant effect of low hydraulic conductivity of resistive bridges on 

flow.  

Figure 2.5: Average depth (L/Rc) from the upper boundary of the upstream bridge to the 1.1Rc 
equipotential line (head loss of 0.9Rc) is shown as a function of Ar. Error bars show the range of 

depths. Note that L/Rc = 1.0 represents the equatorial plane of the clast. For clarity, only the 

neutral bridge and one resistive bridge are shown. Data for the conductive bridges (not shown) 

nearly coincides with that for the neutral bridge when Ar < 10-2, and plot slightly below (i.e., 

depth increases compared to that for the neutral bridge) when Ar > 10-2. 
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2.5 Discussion 

Simulation results show that flow in our idealized system (Figure 2.2) exhibits a 

nonlinear dependence on both the relative size (Ar) and conductivity (Kb/Kc) of the bridges 

(Figures 2.3 - 2.5). At the smallest value of Ar that we considered (10-6), the distribution of flow 

(Figure 2.4a) is independent of Kb/Kc, with most head loss occurring in the bridge or immediate 

vicinity (Figure 2.5). Flow fields at small Ar are consistent with predictions based on an 

analytical solution for heat flow between a point source and a point sink (Ar → 0, Kb/Kc → ∞) 

located at the opposite poles of a homogeneous solid sphere (Youngs and Kacimov, 2007). For 

this situation, the effective transmissivity of the clast is controlled by the structure of the internal 

flow field, which is independent of Kb/Kc. Thus, volumetric flow is controlled by the 

conductivity of the bridge, with Q/Qd displaying an apparent limiting behavior as Kb/Kc 

increases or decreases (Figure 2.3). The effective transmissivity of the system will be given by 

the weighted harmonic mean of transmissivities for the clast and bridges Bear, 1988. Thus, at 

small Ar, the limit on effective transmissivity will be primarily controlled by the lesser of the two 

transmissivities and the thickness of the bridges relative to that of the clast. 

As Ar increases, flow shifts towards the outside of the clast, causing the average path 

length within the clast to decrease. The degree to which the flow paths shift depends heavily on 

Kb/Kc (Figures 2.4b-d). Given the geometry of our conceptual model (Figure 2.2), both the 

thickness and cross-sectional area of the bridges increase with distance from the vertical axis of 

the clast. For conductive bridges, increased thickness and area both act to enhance flux, causing 

flow paths within the clast to migrate outwards. As Ar gets large (> 1x10-1), the minimum 
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distance between the upper and lower bridges decreases rapidly. For conductive bridges, this 

creates highly efficient flow paths towards the outside edges of the clast and leads to a rapid 

increase in Q/Qd as Ar approaches 100 (Figure 2.3). In contrast, increased thickness and cross-

sectional area have opposing effects for resistive bridges, as the former acts to inhibit flow. For 

the situations considered here (Kb << Kc), low conductivity overwhelms the increased cross-

sectional area with increasing Ar and restricts outwards migration of flow paths within the clast 

(Figure 2.4b). For the neutral bridge (Kb = Kc), increased bridge thickness is irrelevant, and flow 

paths move towards the outside of the clast solely due to the increased cross-sectional area of 

flow.  

The model suggested by Youngs (2008) and presented above as Eq. (2.1) gives values of 

Q/Qd that plot as a straight line in log-log space with a slope of Ar
0.5 (Figure 2.3). This model 

over-predicts our simulation results for the most conductive bridge (Kb/Kc = 106) by a factor of 

2-3 for Ar < 6.4x10-1 and does not display any of the curvature found in all of our results. 

Youngs’ model is based on an assumption that a spherical clast with a bridge of small Ar can be 

represented by a circular constant head boundary located on the surface of an infinite half-space. 

Our conceptual model (Figure 2.2) differs in that: 1) our constant head boundaries are not located 

directly on the surface of the clast, thus allowing head loss and lateral diversion within the 

bridge; and 2) flow within our clast is confined to a finite sphere rather than an infinite half-

space. Looking first at point (1), for Ar < 6.4 x 10-1 our simulation results (Figure 2.3) appear to 

rapidly converge with increasing Kb/Kc. This observation strongly suggests that our conductive 

bridges closely mimic a constant head boundary on the surface of the clast and are thus 

consistent with Youngs’ assumption. It is more likely that the observed discrepancy between 

Youngs’ model and our results can be attributed to point (2), which reflects a basic difference in 
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system geometry. Youngs (2008) assumed that as Ar → 0, curvature of the clast in the immediate 

vicinity of the bridge is small, and thus resembles a point source located on a flat surface (i.e., 

infinite half-space). This approach neglects the finite volume of the spherical clast, which 

reduces the cross-sectional area available for flow (with respect to infinite space) leading Eq. 

(2.1) to overestimate Q/Qd. 

We compared our simulation results to other models from the literature and some obvious 

approximations (Figure 2.6). We chose to make the comparison at Kb/Kc = 100 (neutral bridge) 

because an analytical solution exists at Ar = 100 (i.e., Q/Qd = 100). Carminati et al. (2008) 

suggested that an effective hydraulic conductivity for a clast-bridge system could be defined as: 

Keq = Kc Ar  Eq. (2.3) 

In effect, this approach treats the system as a cylinder with the conductivity of the clast 

and diameter of the bridge. At small Ar, this model under-predicts our simulation results by 

several orders of magnitude, but is in closer agreement at large Ar, where system geometry 

approaches that of a cylinder. This model would be most appropriate for clasts that are elongated 

perpendicular to flow and have a large Ar. Assuming vertical flow through a series of horizontal 

layers Carminati et al., 2007, an equivalent transmissivity for one-dimensional flow (Teq) can be 

calculated as: 

Teq =  (∑ 1 (∑ Ti,j
n
i=1 )⁄m

j=1 )
−1

   Eq. (2.4) 

where Ti,j is transmissivity of the ith grid block (column) in the jth row, m is the number of rows 

and n is the number of columns in the two-dimensional finite difference grid (Figure 2.2c). 

Predictions based on Eq. (2.4) over-estimate our simulations by a factor of 2-7 for Ar < 6 x 10-2, 

but provide better results for both smaller and larger bridges. Finally, we simulated flow on the 

finite difference grid by solving Eq. (2.2) with d held constant (i.e., a two-dimensional slab rather 
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than a wedge). This approach over-predicts flow by two orders of magnitude at small Ar, and 

more closely reflects predictions based on wedge geometry for Ar > 6 x 10-2. The over-prediction 

at small Ar is primarily due to overestimation of local transmissivity close to the vertical axis, 

which tends to focus flow along the center of the clast/bridge rather than distributing it laterally. 

This last result confirms the importance of accounting for three-dimensional geometry of the 

system. 

Figure 2.6: Volumetric flow through a spherical clast approximated using different numerical 

methods as a function of Ar. For all methods, Kb/Kc = 100. 

 

In media where the clasts are semi-spherical in shape, bridges composed primarily of 

pendular water are expected to be considerably smaller than the clasts (Ar < 1). In real systems, 

sub-spherical clasts are likely to connect to their neighbors through multiple bridges. As Ar 

increases, these adjoining bridges would likely merge to induce inter-clast flow. In addition, the 

stability of liquid bridges with respect to gravity will decrease rapidly for Rc > 2 mm (Saez and 

Carbonell, 1990) precluding large values of Ar. For these reasons, Ar < 2.5 x 10-1 (i.e., Rb/Rc < 

0.5) would appear to be a reasonable range to find in real systems. The actual size of purely 
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liquid bridges can be related to fluid pressure provided that clast size, geometry and surface 

chemistry are known (Reinson et al., 2005; Bear et al., 2011). The hydraulic conductivity of the 

liquid bridges could then be estimated from Poiseuille’s Law by treating the bridges as capillary 

tubes of radius Rb. Real liquid bridges would likely be of larger diameter than pores in the clast, 

resulting in Kb/Kc > 100. Since our results (Figure 2.3) show that the influence of Kb is small for 

neutral and conductive bridges, this parameter could be treated as a constant rather than 

calculated as a function of Ar.   

The geometry and hydraulic conductivity of porous bridges will be affected by local clast 

geometry, deformation, fluid pressure, and geochemical activity (e.g., precipitation, dissolution). 

In contrast to liquid bridges, the size of porous bridges formed through deformation or 

precipitation at the contact may approach Ar =100. The hydraulic properties of porous bridges 

formed through direct inter-clast contacts (Ghezzehei and Or, 2000; Hu et al., 2004) and/or 

meniscus-type precipitation of minerals in inter-clast pores (Badiozamani et al., 1977) will 

change by orders of magnitude with fluid pressure (Carminati et al., 2007) and compaction (Berli 

et al., 2008). As such, porous bridges may behave similar to the conductive, neutral, or resistive 

bridges described above. 

2.6 Conclusions 

Numerical simulations were employed to consider gravity-driven flow through a 

spherical clast bound by two hydraulic bridges. Results show that both relative cross-sectional 

area (Ar) and hydraulic conductivity (Kb/Kc) of the bridges influence volumetric flow (Q/Qd) 

through the clast, as well as the distribution of flow within the clast. In contrast to previous 

studies (Carminati et al., 2008; Youngs, 2008), Q/Qd was found to exhibit a non-linear 



 

23 

 

dependence on Ar at all values of Kb/Kc that were considered. For the neutral (Kb/Kc = 1), and 

conductive (Kb/Kc > 1) bridges, the value of Q/Qd is controlled by Ar, and is relatively 

insensitive to Kb/Kc. In contrast, Kb/Kc imposes the primary control on Q/Qd for resistive (Kb/Kc 

< 1) bridges, and Ar has a secondary, but still significant effect. For all cases, the intra-clast flow 

field expands outwards as Ar increases, displaying the largest change in the vicinity of bridges. 

However, outward expansion of the flow field is highly influenced by the value of Kb/Kc in that 

conductive bridges promote outward expansion of the flow field, while resistive bridges hinder 

expansion.  

Results of this study can be used to evaluate flow, geochemical interactions between 

clasts and water, as well as solute transport in granular soil and unconsolidated granular media 

when surface flow is negligible. Simulated flow data show that different combinations of 

hydraulic conductivity and cross sectional area of bridges can produce the same volumetric flow 

rate through a clast, but the spatial structure of intra-clast flow field will be different between 

those cases. Identifying such differences is important in evaluating flow, solute transport and 

geochemical processes in unsaturated granular media. 
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CHAPTER 3 

GEOMETRY OF PENDULAR BRIDGES: EFFECTS OF FLOW RATE AND GRAVITY 

3.1 Abstract 

Pendular bridges provide hydraulic connections between neighboring clasts, and operate 

as elements for liquid retention under unsaturated flow conditions in coarse granular media. 

Therefore, understanding how pendular bridges interact with film flow on the clast surfaces is an 

important prerequisite to understanding flow in this type of media. Experiments were designed to 

collect quantitative data from a single pendular bridge located at the contact between two vertical 

discs. Geometry of the bridge was measured as a function of volumetric flow through the bridge 

and inclination with respect to gravity. Results show that bridge size increases in a nonlinear 

fashion with flow rate and decreases with inclination from vertical. Increases in bridge area 

correlate strongly with increased radius of the air-water meniscus, suggesting that fluid pressure 

in the bridge becomes less negative with increasing flow. The vertical profile of the bridge 

closely resembled a parabola in all experiments. This contrasts with static (non-flowing) bridges 

in the same apparatus, where the bridge profile resembled the arc of a circle. Bridge geometry 

was observed to be independent of flow history (flow rate and inclination), and rapidly adjusts to 

changing flow conditions. Flow is active through the entire volume of the bridge and the internal 

flow field exhibits non-laminar characteristics.  

3.2 Introduction 

Pendular water that connects neighboring clasts plays an important role in controlling 

unsaturated flow through coarse (> 2 mm diameter) granular media such as: natural gravels, 
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construction debris, mine waste, heap leach pads, trickle-bed reactors, and engineered capillary 

barriers. The large inter-clast pores that are characteristic of such media will drain at near zero 

matric potentials, thus constraining flow to the interiors of porous clasts and/or the clast surfaces. 

In either case, all flow must pass from clast-to-clast through some form of hydraulic connection 

or bridge. Here, we ignore porous connections (e.g., Berli et al., 2008) to focus on bridges that 

occur where pendular water is trapped between adjoining clasts (e.g., Turner and Hewitt, 1959; 

Conca and Wright, 1992; Tokunaga, 2009). Unlike porous bridges, the hydraulic conductivity of 

pendular bridges will be independent of fluid pressure and quite high. Conversely, bridge size 

and hence transmissivity along the flow path will likely be sensitive to fluid pressure (e.g., 

Carminati et al., 2008). In addition, pendular bridges will facilitate mixing, and may be 

ephemeral features under transient conditions. For these reasons, the hydraulic behavior of 

pendular bridges is likely to be inconsistent with standard conceptual models for unsaturated 

flow and needs to be considered through experiment.  

Static pendular bridges (i.e., no internal flow) have been studied extensively in the 

context of inter-granular forces due to capillary pressure (e.g., Willett et al., 2000; Slobozhanin 

et al., 2006; Mielniczuk et al., 2014) and liquid holdup (retention) between spherical clasts (e.g., 

Kramer, 1998; Lu et al., 2008). In the case of static pendular water connecting two hydrophilic 

clasts (Figure 3.1), capillary forces along the contact lines place the bridge under tension. The 

pressure difference across the air-water interface (ΔP) is then given by the Young-Laplace 

equation: 

∆P =  γ (
1

R1
+

1

R2
)  Eq. (3.1) 

where γ is surface tension, and the term in parentheses represents the local mean curvature of the 

meniscus (e.g., Bear, 1988). As drawn in Figure 3.1, the two principal radii of the meniscus R1 
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and R2 have opposite signs, with a negative resultant (mean curvature) required for fluid pressure 

in the pendular bridge to be sub-atmospheric.  

 

Figure 3.1: Two-dimensional illustration of a static pendular bridge between two curved solid 

surfaces. R1 and R2 are the principal radii of curvature at an arbitrary point on the meniscus of 

the bridge; R1 is measured in the xz plane and R2 is orthogonal to the xz plane. Both R1 and R2 

can vary along the meniscus. This illustrative example shows the meniscus meeting the solid 

surfaces at a contact angle of 0˚, which may not be the case for all systems.  

 

For a small static bridge, assuming that internal fluid pressure is spatially constant allows 

calculation of bridge shape through a force balance approach. Results show that bridge geometry 

will depend on shape of the bounding solid surfaces, fluid volume, and the contact angle (e.g., 

Orr et al., 1975; Butt and Kappl, 2009). Increasing the internal fluid pressure towards zero (i.e., 

atmospheric pressure) would act to expand the bridge and increase the absolute values of both R1 

and R2 such that the mean curvature approaches zero. As bridge size and internal pressure 

increase, gravity may act to distort and possibly destabilize the bridge (e.g., Saez and Carbonell, 

1990; Kramer, 1998). 
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Unsaturated flow in coarse granular media occurs along networks of hydraulically 

connected clasts. Where present, pendular bridges facilitate hydraulic connection for flow both 

through the interior of porous clasts (e.g., Hu et al., 2004; Carminati et al., 2008; Youngs, 2008) 

and on the clast surfaces (e.g., Kohonen et al., 2004; Tokunaga, 2009). Given that pendular water 

will offer little resistance to flow, the geometry of a bridge (size, shape, location) is expected to 

place an important control on its hydraulic behavior. Therefore, small changes in bridge 

geometry may alter the macroscopic flow structure. Pendular bridges may also be important 

elements for liquid storage in granular media. Liquid holdup in packed beds of coarse particles 

has been observed to increase with fluid flux (e.g., Xiao et al., 2000; Ilankoon and Neethling, 

2012). The mechanism for increased storage remains an open question, but can likely be 

attributed to some combination of bridge volume, film thickness, and/or the number of liquid 

rivulets on the particle surfaces. Given their potential importance with respect to flow and 

storage, understanding bridge geometry under flowing conditions is an important prerequisite for 

prediction of unsaturated flow in coarse granular media.  

Here, we present experiments designed to elucidate the hydraulic behavior of pendular 

bridges under conditions where steady flow is restricted to thin films or rivulets on the clast 

surfaces. For this situation, flow is driven by gravity and continuity requires that total potential in 

each bridge must be intermediate to that in the surface films on either side (i.e., upstream > 

bridge > downstream). Local geometry of the bridge will be controlled by fluid pressure, with 

the constraint that total potential must smoothly decrease along the flow path. The local fluid 

pressure is expected to be a complex function of clast geometry, fluid thickness, and flow 

velocity. Unlike the case of static bridges, fluid pressure in a flowing bridge cannot be predicted 

solely from clast geometry and contact angle. Instead, we present a simplistic experimental 
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system designed to closely control flow into a pendular bridge so that we can study its behavior 

as a function of the flow rate and inclination of the bridge with respect to gravity.  

3.3 Experimental Design 

The basis of our experimental design was to stack two thin disks in the vertical plane, and 

then apply water to the upper disk, allowing it to flow along the disk edges under gravity (Figure 

3.2). We then measured the pendular bridge that formed on one side of the contact point between 

the disks as a function of supply rate (Q) and inclination (α) of the paired disks with respect to 

gravity. The use of disks forces water that flows into the bridge to follow a single, well-defined 

pathway, and thus isolates the bridge from the spatially and temporally variable flow that would 

be expected on the surfaces of uniform spheres (Takagi and Huppert, 2010). In addition, 

establishing a two-dimensional flow system facilitates optical measurement of bridge geometry. 

Both of the glass disks used for these experiments had a radius (Rd) of 13.6 mm, and 

thickness of 0.9 mm. The edges of the disks were ground square to the faces, producing a highly 

hydrophilic micro-rough surface. The sharp 90˚ angle at the disk edges pins the water film, and 

inhibits it from advancing onto the disk faces. The disks were placed in point contact and 

partially bonded to a ~25 x 60 x 1.6 mm sheet of rigid acrylic to assure uniform alignment 

between trials (Figure 3.2). The side of the contact point nearest to the acrylic sheet was sealed 

with silicone to constrain the pendular bridge to the opposite side of the contact. The acrylic 

sheet was then clamped onto a fixture that allowed controlled rotation of the assembly in the xz 

plane. 

Experiments were conducted with the longitudinal axis of the paired disks (z' axis in 

Figure 3.2) rotated from vertical (z axis) by angles of α = 0o, 10o, 20o, 30o and 40o. At each value 
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of α, independent trials were conducted at supply rates (Q) that varied between 9 and 93 

mm3/min. This range of α and Q was chosen to: (i) maintain a continuous water film that is 

restricted to the disk edges, and (ii) produce capillary held pendular bridges between the disks 

(i.e., stable with respect to gravity). Prior to each trial, the disk edges were wetted using a 

syringe, and the resulting small pendular bridge was evacuated using filter paper. A calibrated 

syringe pump was then used to apply deionized water that contained 0.5 ml/l blue food coloring 

to the edge of the upper disk from a 20-gauge needle that connected through a ~1 mm thick 

column of capillary-held water. Water exited the system by dripping freely from the bottom of 

the lower disk.  

Image data were collected at a rate of 30 frames per second using two close focus digital 

cameras located on opposite sides of the xz plane (Figure 3.2). One camera (Olympus E-PL5 

with a 60 mm, f/2.8 macro lens) focused on the pendular bridge (~7 x 4 mm area with 1920 x 

1080 pixels; ~3.5 μm/pixel) and the other (Canon Rebel T3 with a 18-55 mm lens) recorded the 

entire flow path from the fluid application point to the drip point (~130 x 70 mm area with 1280 

x 720 pixels; ~100 μm/pixel). Fiducial marks scribed onto the disk surfaces were used for image 

calibration. Boundaries between the disks, water, and the surrounding air were delineated on 

individual images using edge detection tools in the MATLAB® software package. Processed 

images were used to measure: (i) the cross-sectional area (A) of the pendular bridge in the xz 

plane; (ii) radius of curvature of the meniscus at the intersection with the x' axis (R1 in Figure 

3.2); and (iii) thickness of the water film on the disk edges (Tf) away from the bridge. 

Uncertainty in delineating the exact contact point between the two disks on the high-resolution 

images precluded accurate measurement bridge width (Wx' in Figure 3.2). 
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Figure 3.2: Schematic illustration of the experimental apparatus. A portion of each disk (Rd = 

13.6 mm) is bonded to a ~25 x 60 x 1.6 mm acrylic sheet that is held in the vertical (xz) plane for 

all experiments. Flow is restricted to pre-wetted edges of the disks (shaded in blue). The effects 

of gravity are considered by rotating the longitudinal axis of the disks (z') by an angle of α within 

the xz plane.  

 

3.4 Results 

Flow on the disk edges and through the pendular bridge was continuous from the 

application site to the drip point at each supply rate (Q) and inclination (α) that was considered. 

Away from the pendular bridge, water films on the disk edges displayed a convex surface (R2 in 

Figure 3.1) that was pinned to the outside corners of the disk edges (no spillover onto the faces). 

For these edge films, R1 (Figure 3.1) approximates the disk radius and is of the same sign as R2 

(both are positive). The film begins to thicken (i.e., Tf increases) as it approaches the bridge from 

either upstream or downstream. Continuing towards the center of the bridge, the meniscus 
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flattens in the xz plane such that curvature (1/R1) first goes to zero, and then reverses sign. The 

maximum negative curvature in the xz plane occurs where the bridge intersects the x' axis 

(Figure 3.2). The smooth transition from edge film to bridge makes it difficult to distinguish 

between these features. We arbitrarily chose to define the bridge as the region about the x' axis 

where fluid thickness in the xz plane continuously exceeded the mean film thickness measured 

away from the bridge plus one standard deviation (Tave + T). This definition of the bridge was 

visually consistent with the location where 1/R1 → 0.  

Figure 3.3: Mean cross-sectional area of the pendular bridge in the xz plane (A) is shown as a 

function of flow rate (Q) for five values of inclination from vertical (α). Each value represents an 

average taken from 60+ images obtained over a 5+ minute interval. The error bars represent one 

standard deviation from the mean. 

 

At each value of Q and α, bridge geometry was measured on at least 60 images spaced at 

5s intervals (i.e., over a span of 5+ minutes). The mean cross-sectional area of the bridge in the 

xz plane (A) was observed to vary with both Q and α (Figure 3.3). At each value of α, A 

increased rapidly at the smallest values of Q that were considered, and then at a lesser rate for 
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larger values of Q. Conversely, bridge area decreased with increasing α at all values of Q. The 

influence of α increased with Q, as the separation between mean values of A at α = 0o and α = 

40o more than tripled over the 10-fold increase in Q. Differences in A between the tested values 

of both Q and α were statistically significant (paired-difference test at a significance level of 

0.01). The standard deviation of A was small (<0.4A for all trials) and showed a positive 

relationship with Q, but little dependence on α. Estimated bridge width (Wx') remained between 

~2.4 and 3.4 mm (i.e., 0.17 < Wx/Rd < 0.25), which is well below the size where a static bridge 

would be expected to undergo gravitational drainage (e.g., Saez and Carbonell, 1987). Replicate 

experiments demonstrated that properties of the bridge were independent of system flow history 

(no observed hysteresis with respect to Q or α). For a small set of experiments, the flow system 

was perturbed with volumetric pulses. In each case, the bridge expanded slightly when contacted 

by the pulse and then shrank back to its original size following passage, thus confirming a lack of 

hysteresis. 

The maximum radius of curvature in the xz plane (R1) measured where the bridge 

intersects the x' axis was observed to increase monotonically with Q at each value of α (Figure 

3.4). At low values of Q, R1 for inclinations plotted within a narrow range. As Q increased, the 

data for R1 gradually separated and showed an inverse relationship with α at each value of Q. For 

all trials, a parabola fit to the central part of the meniscus in the xz plane yielded < 3% error in 

estimating A (Figure 3.5). Differences between the fitted parabola and observed meniscus were 

not identical about the x' axis. Residuals showed a slight asymmetry of the meniscus about the x' 

axis, which increased with bridge size. However, the asymmetry was not sufficiently strong to 

show a statistically significant difference between cross-sectional areas of upper and lower 

halves of the bridge for any of the trials. In separate experiments, we considered isolated bridges 



 

33 

 

(no edge films) of similar size to those reported in Figure 3.3. In each case, the meniscus closely 

followed the arc of a circle over its full length (R1 = constant). Although our experimental design 

did not allow direct measurement of R2, bridge surfaces in the xz plane were slightly convex 

outwards (positive R2) with an estimated radius on the order of 104 μm.  

Figure 3.4: Absolute value of the principal radius of curvature in the xz plane (R1) measured at 

the center of the meniscus is shown as a function of Q for five values of α. Each value of R1 is 

calculated as the focal distance of a parabola fitted to data of the meniscus. 

 

 

Edge films away from the bridge were not much larger than the pixel size of our imaging 

system (3.5 μm), thus making uncertainty in the data much higher than for A or R1.  Estimated 

thickness of the edge films (Tf) increased from 20-37 μm at Q = 9 mm3/min to 82-105 μm at Q = 

93 mm3/min; there was no clear relationship between Tf and α. Average flow velocity on the disk 

edge was estimated at the upstream side of the bridge using tracer pulses. Velocity was observed 

to increase from ~50 mm/s at the smallest supply rate considered, to 90 mm/s at the highest rate. 

Tracer pulses showed a sharp decrease in velocity across the bridge, and significant mixing. 
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Flow velocities in the bridge were sufficiently slow that the flow structure was obscured by 

diffusion. However, microscopic bubbles of entrained air (or dust) showed complicated motion 

within the bridge. A portion of the bubbles closely tracked the edge of the meniscus and moved 

relatively rapidly, while others entered the interior of the bridge, following an apparently random 

pattern before exiting. Finally, there was a strong temporal correlation between fluctuations in Tf 

and in A (coefficient of correlation > 0.98 for all trials). Ancillary experiments were used to 

exclude dripping at the downstream boundary as the source of temporal fluctuations, thus they 

likely result from either unsteady film flow (Liu et al., 1995; Dragila and Weisbrod, 2003; Lan et 

al., 2010) or micro-pulses in the supply from the syringe pump. 

Figure 3.5: Comparison of observed menisci (blue) with fitted parabolas (green) and circles 

(black) at the lowest and highest flow rates for α = 0o (a) and α = 40o (b). Red lines show the 

extrapolated outer boundary of water films on disks (Rd+Tave). The separation between the two 

red lines on upstream or downstream side of the bridge shows the change of film thickness 

between the two flow rates. The origin of the coordinate system is located at the contact point.  

 

 

(a) 

 

(b)  

 



 

35 

 

3.5 Discussion 

The measured increase in bridge area (A) with Q (Figure 3.3) is attributed to increases in 

both fluid pressure within the bridge, and film thickness on the disk edges (Tf). A lower bound 

on bridge width can be estimated from geometric considerations. Given that the disks in our 

experiment are in point-contact (Figure 3.2), a film flowing on the edge of either disk will 

intersect the x'’ axis at a distance of L from the contact point, where: 

L = √Tf
2 + 2TfRd  Eq. (3.2) 

Our experimental data show that the width of the pendular bridge (Wx' in Figure 3.2) was 

always larger than L. The simple model of Eq. (3.2) is flawed because surface tension prevents 

air-water systems from forming an acute angle where the films meet. However, the functional 

form of Eq. (3.2) is consistent with our measured data (Figure 3.2); i.e., L increases rapidly at 

small values of Tf and then at a decreasing rate as Tf increases. Confirming fluid pressure 

increase within the flow system, mean curvature of films on disk edges increased with Q. 

Ancillary experiments showed that 1/R2 of films increased from ~0.7 mm-1 to ~1.1 mm-1 

between the lowest and highest Q we considered, while R1 remained constant (defined by radius 

of the disks). Both R1 and R2 of the bridge should increase to accommodate increased fluid 

pressure within the bridge, leading to an increase of bridge size. The strong functional 

relationship between A and R1 suggests that the two parameters are closely linked (Figure 3.6). 

Since increases of both fluid pressure and Tf with Q favorably act to increase the bridge size, the 

final geometry of the bridge will be a combination of both factors. The highest Bond number for 

the bridge is ~1.7 and it implies very small effects of gravity on the bridge geometry (Saez and 

Carbonell, 1990; Kramer, 1998). However, the weak asymmetry of bridges about the x' axis at 
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high Q and small α indicates that the effects of gravity becomes noticeable on relatively large 

bridges. 

Figure 3.6: Bridge area is shown as a function of the absolute value of R1 at all inclinations that 

were considered in our experiments.  

 

The inverse relationship between bridge area (A) and inclination (α) shown in Figure 3.3 

is likely due to changes in the slope of the disk edges in the vicinity of the contact. If we 

hypothesize the bridge geometry to be symmetrical around the x' axis, then flow into the upper-

half of the bridge requires the same potential gradient as for flow exiting the lower half of the 

bridge. The slope of the disc edges is symmetrical around the x' axis at α = 0˚, but it becomes 

asymmetrical when α > 0˚, with a lesser slope on the upstream side and a greater slope on the 

downstream side. As a result of this asymmetry, the gravitational component of the total 

potential gradient is steeper on the downstream side of the bridge. Therefore, for a given flow 

rate, continuity of flow requires that fluid pressure at the middle of the meniscus becomes more 

negative as α increases in order to balance the difference in gravitational potential gradient 
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between the upstream and downstream sides of the bridge. As predicted by Eq. (3.1), reduction 

of fluid pressure in the bridge requires a decrease in R1, thus the meniscus shifts towards the 

contact and reduces A. This analysis suggests that bridge size should increase for α < 0˚ as 

increased fluid pressure would be needed to compensate for the decreased gravitational gradient 

on the downstream side of the bridge. In a single trial run at α = -10˚, water in the bridge started 

to spill onto the disk faces for Q > 9 mm3/min, which suggests increased fluid pressure in the 

bridge. In addition, attempts to conduct experiments at α > 40o reduced the gravitational gradient 

above the bridge sufficiently that a drip point formed and prevented flow from reaching the 

bridge. 

Our results help elucidate the processes that cause liquid holdup to increase with 

volumetric flow through reactor beds operating under unsaturated conditions (e.g., Schubert et 

al., 1986; Urrutia et al., 1996; Xiao et al., 2000). The design of our experiment did not allow 

accurate measurement of fluid thickness in the R2 plane; hence, we cannot calculate fluid 

volumes for the bridge or films. However, we did observe that the cross-sectional area of the 

bridge (A) increased by a factor of ~1.6 (at α = 40˚) to 1.8 (at α = 0˚) over a 10-fold increase in 

volumetric flow (Q). Measured values of Tf contained considerable uncertainties, but appeared to 

increase by a factor of 2-3 over the same range of Q. This observation is consistent with the 

factor of 2.15 that is predicted by models for laterally extensive films (e.g., Bemer and Kalis, 

1978; Dragila and Weisbrod, 2003) which assume that Tf ∝ Q1/3. These results suggest that, in 

our specific system, the change in liquid holdup in the pendular bridge was of similar magnitude 

to that for the edge films. Extrapolating to three-dimensions, pendular bridges connecting 

spheres are likely to form catenoidal surfaces that have a large volume relative to rivulets that 

flow on the clast surface. Thus, we expect that the potential for bridge storage will be enhanced 
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over our two-dimensional system. Our data also showed a lack of hysteresis in A with respect to 

changing flow conditions and in response to pulsed flow. This result is consistent with those 

from Ilankoon and Neethling (2012) that attributed strong hysteresis of liquid retention to 

changes in the number of rivulets on clast surfaces with varying flow rate.  

Results of our experiments provide insight into the role that pendular bridges play with 

respect to unsaturated flow in coarse granular media. Flow on the surface of low permeability 

clasts must either pass through pendular bridges or circumvent them through dripping. In porous 

clasts high matric potentials can lead to the formation of surface films (Tokunaga and Wan, 

2001), flow through pendular bridges are much higher than that through porous connections 

between clasts in coarse porous granular media (Carminati et al., 2008). Therefore, the hydraulic 

properties of individual pendular bridges place a primary control on the spatial distribution of 

unsaturated flow. We observed that the geometry of a pendular bridge remained unchanged when 

flow conditions were steady, therefore a relatively stable flow distribution can be expected under 

steady flow conditions (e.g., Tokunaga et al., 2005). However, any spontaneous change in flow 

that occurs locally can immediately alter the size of one or multiple bridges in the locality. 

Change of fluid pressure in those bridges can rapidly transmit along inter-connected flow paths 

altering properties of numerous bridges and surface films in the flow system producing 

temporally variable flow distributions in macro-scale flow systems as reported in Jayakody et al. 

(2011). 

Although our experimental set up did not allow direct measurement of R2 of the bridge, 

visual observations showed that the absolute value of curvature of the bridge in the xz plane (i.e., 

1/|R1|) much larger than that orthogonal to the xz plane (i.e., 1/|R2|). Setting R2 of the bridge 

equals to one-half of the disk thickness (i.e., R2 at when pressure is close to its maximum) is a 
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reasonable first-order approximation to evaluate fluid pressure in the bridge. We then used this 

value of R2 and measured values of R1 with Eq. (3.1) to calculate pressure in static bridges 

formed between two disks and between two spheres. Results of this analysis show that fluid 

pressure in a bridge formed between two disks is only slightly (~50 Pa) lower than that in a 

bridge of the same width (Wx') formed between two spheres. Therefore, our findings based on 

this specific flow system are applicable to evaluate the geometry of pendular bridges formed 

around a point contact between two clasts. Active internal flow observed throughout the bridge 

indicates the presence of a very complicated flow field within a pendular bridge that is 360o 

continuous around a point contact. A bridge like this is composed of a set of narrow segments 

similar to the bridge we tested. Since the effect of gravity on each segment will vary with its 

orientation, multi-directional flow within the bridge is possible. Furthermore, spatial unevenness 

of surface flow that enters and exits the bridge will further complicate the hydraulic behavior of 

the bridge. 

3.6 Conclusions 

We experimentally investigated the geometry of a pendular bridge under flow-through 

conditions for several different flow rates and inclinations with respect the gravity. The transition 

between the bridge and the rivulets above and below was gradual, requiring that we arbitrarily 

define upstream and downstream boundaries for the bridge. Data show that the size of the 

pendular bridge increases with the flow rate through it and decreases when the inclination of the 

bridge with respect to gravity increases. Under flow-through conditions, the cross-sectional 

profile of the bridge closely resembles a parabola in all cases. In the same system, the profile of 

static bridges (no internal flow) forms the arc of a circle. Bridge geometry was found to be 
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independent of flow history of the system, and rapidly adjusts to changing flow conditions. 

These results can be used to better understand liquid retention and spatial flow structure in 

unsaturated coarse granular media. Further research on this topic is required to characterize the 

geometry and internal flow of a three-dimensional pendular bridge. Effects of spatially uneven 

surface flow and potential gradient within the bridge on bridge geometry and the internal flow 

field should be thoroughly studied to improve our knowledge of hydraulic behavior of flow-

through pendular bridges. 
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CHAPTER FOUR 

IMBIBITION ACROSS A MATRIX-TO-MATRIX CONTACT IN A FRACTURE: A LABORATORY 

INVESTIGATION ON EFFECTS OF FRACTIONAL CROSS-SECTIONAL AREA AND POSITION 

OF THE CONTACT 

4.1 Abstract 

Under unsaturated conditions, air-filled fractures can act as barriers to water flow 

between adjoining matrix blocks. Matrix-to- matrix contact points and/or liquid bridges formed 

due to spatial heterogeneity within a fracture aperture create local hydraulic contacts to facilitate 

inter-block flow. Bench-scale experiments were conducted to explore the influence of a matrix-

to-matrix contact on capillary-driven, two-dimensional flow into an initially dry block (9.8 x 1.7 

x 6.2 cm) from a saturated block across the contact. We considered: (i) the cross-sectional area of 

the contact relative to that of the dry block (Ar), and (ii) the position of the contact relative to 

edges of the dry block. Upward imbibition was measured as a function of time for 240 hours 

under isothermal conditions. The fraction of the 9.8 x 1.7 cm face in hydraulic contact with the 

adjacent saturated block was varied between 0.20 and 1.00. The location of the contact was 

varied for each value of Ar.  

The rate of imbibition into the dry block varied with both Ar and the location of the 

contact. At Ar = 1.00, measured imbibition was comparable to one-dimensional absorption-based 

predictions, but deviated substantially as Ar decreased. The rate of imbibition was not linearly 

dependent on Ar, and at a constant Ar, imbibition rate decreased as the contact shifted closer to 

an edge of the block. For all values of Ar, and positions of the contact, imbibition rate decreased 

rapidly decreased when the wetting front reached the edges of the block. Saturation (S) of the 
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block at this stage (0.48 ± 0.02) was insensitive to Ar or location of the contact. At the end of 

240-hour duration of each trial, S increased to 0.65 ± 0.02 independent of Ar, or location of the 

contact. These results can be used to better understand matrix-to-matrix flow in unsaturated 

fractured rock, where air-filled fractures inhibit flow between adjacent blocks. 

4.2 Introduction 

Despite extensive study over the past several decades, fluid flow and solute transport in 

unsaturated fractured rock remains a difficult problem that is far from fully understood (e.g. 

Berkowitz, 2002; Neuman, 2005; Tsang et al., 2015). At the most basic level, a fractured rock 

contains two flow systems (i.e., fracture network and surrounding porous matrix) that span the 

same physical space, but have vastly different hydraulic properties. Therefore, not only is it 

critical to understand the processes that control unsaturated flow within each of these domains, 

but also the interactions between the two domains. Most research on interaction between these 

two domains has focused on buffering of fracture flow by the surrounding matrix; i.e., 

imbibition into an unsaturated matrix during transient fracture flow (e.g., Nitao and Buscheck, 

1991; Tidwell et al., 1995; Fairley, 2010). Conversely, much less attention has been paid to 

explore the effects of fractures on flow through the matrix domain (e.g., Seol et al., 2003).  

At sub-zero matric potentials, open (air-filled) fracture apertures act as capillary barriers 

that prevent flow across the fracture (e.g., Glass et al., 2002). As a result, inter-block flow 

requires the presence of hydraulic contacts that form local conduits across the fracture. As 

shown in Figure 4.1, hydraulic contacts may consist of asperity contacts, fracture infilling, or 

locally accumulated water within the fracture (e.g., Peters and Klavetter, 1988; Glass et al., 

1995; Tokunaga and Wan, 1997). For a given fracture, the geometry, location, and number of 
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inter-block contacts are unknown. Therefore, in continuum-based models it is a common 

practice to estimate the fractional area of the fracture planes that is occupied by hydraulic 

contacts (Ar, L
2/L2) and then use that estimate to modify the inter-block conductivity. In effect, 

this approach treats the assemblage of contacts as a single large conduit (e.g., Seol et al., 2003), 

and thus ignores tortuosity induced by spatially distributed contacts (Glass et al., 1995). 

Although Ar can be estimated for macro-scale systems through model calibration (e.g., 

Finsterle, 2000), direct incorporation of inter-block contacts into numerical and conceptual 

models requires that we better understand how they influence flow between adjoining matrix 

blocks.  

Figure 4.1: Conceptual diagram showing hydraulic contacts between fracture blocks at a low 

matric potential, where most fractures have drained. Air gaps between the fracture walls form 

local capillary barriers to inter-block flow (i.e., matrix-to-matrix flow). As a result, all inter-

block flow must pass through physical contacts that span the fracture, such as asperity contacts, 

fracture infilling, and/or water accumulated at aperture minima.   

rock matrix pendular water fracture infilling 

asperity contact open fractures (air gaps) 
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In this study, we present experiments designed to evaluate the degree to which hydraulic 

contacts control capillary-driven imbibition across a fracture. In a series of bench-scale 

experiments, we measured upward imbibition from a fully saturated block into an initially dry 

block as a function of time. Upward imbibition was chosen to promote a spatially uniform 

hydraulic contact across the artificial fracture and stabilize the wetting front with respect to 

gravity. Imbibition from a saturated block to a dry block was selected to maximize the influence 

of capillary forces, and reduce environmental effects on the experiment (evaporation, thermal 

change) by minimizing experimental duration. The fracture blocks were elongated in the 

vertical direction to force a two-dimensional flow field that allowed direct observation of 

wetting front advancement in some experiments. In this first set of experiments, we chose to 

work with a single hydraulic contact, varying both the size of the contact and its location. 

4.3 Experimental Design 

Upwards imbibition into a dry matrix block (9.8 x 1.7 x 6.2 cm) from an underlying 

saturated block (10.2 x 2.2 x 1.5 cm) was measured gravimetrically as a function of the hydraulic 

contact between the blocks (Figure 4.2). The lower block was coated with epoxy on four sides 

(vertical faces in Figure 4.2), and then cemented into a tank with one of the unsealed 10.2 x 2.2 

cm faces protruding by ~1 cm. Hydraulic head in the tank was controlled by an attached water 

reservoir in which the water level was set to coincide with the base of the upper block. The large 

surface area (20 x 20 cm) of the reservoir limited the drop in water level during an experiment to 

< 0.03 cm. The experiment and supply reservoir were each placed on separate electronic 

balances (0.01 g resolution) to track imbibition into the upper block as a function of time. The 
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experiment, reservoir, and balances were housed within an enclosure designed to maintain a 

constant temperature (23.5 ± 0.5 oC) and to minimize air currents. 

Figure 4.2: Schematic illustration of the experimental apparatus (not drawn to scale) configured 

for an end contact. The external framework holding the blocks in place is not shown. The water-

filled tank contains only a small volume of water and was designed to be sealed against tension. 

The flexible connection to the water reservoir prevents mass changes in one part of the system 

from affecting the other. Hydraulic head in the reservoir is set to be approximately level with the 

base of the upper block (near zero head under static conditions). A design goal for this apparatus 

was to minimize total mass so that water uptake by the upper block is clearly discernible. 

 

A single set of test blocks (upper and lower) were cut from a sample of Aztec Sandstone 

(Hewett, 1931), and thoroughly leached with deionized water prior to use. This silica-cemented 

sandstone was chosen for its relatively uniform hydraulic properties and capacity to imbibe 

easily measurable quantities of water over a period of hours to days (i.e., imbibition >> 

evaporative loss). This material is also mechanically stable, chemically inert, and has a light 

color that facilitates visual observation of wetting front advancement. The average pore diameter 

(~20 μm) estimated through optical petrography suggests that capillary rise under dry conditions 
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would be on the order of 1.47 m at 25 oC. The upper block holds 13.5 ± 0.1 g of water at full 

saturation (S = 1.00), which gives an effective porosity of n = 0.13. Saturated hydraulic 

conductivity (Ksat = 3x10-3 cm/hour at 25 ˚C) was obtained from a falling head test. Filter paper 

was used to control hydraulic communication between the blocks (thickness ~0.15 cm, Ksat = 70 

cm/hour, n depends on compression). The high conductivity and deformability of the filter paper 

assured that hydraulic properties of the contact have a negligible effect on observed behavior; 

i.e., cross-sectional area of the contact controls behavior. 

Prior to each trial, the upper block was dried for 24 hours at 105 oC, and then sealed on 

five sides with plastic heat-shrink wrap to minimize evaporative loss. A pinhole at the top 

allowed air to escape during imbibition. Next, the tank holding the lower block was vacuum 

saturated and connected to the water reservoir. Experiments were initiated by clamping the 

unsealed 9.8 x 1.7 cm face of the dry upper block on top of the lower block with a strip of filter 

paper sandwiched in between. The top of the lower block was intentionally cut to be larger than 

the matching face on the upper block so that imbibition would not be sensitive to alignment of 

the blocks. A rubber membrane surrounding the contact was employed to minimize evaporative 

loss. Data from the balances and environmental sensors (temperature, humidity, barometric 

pressure) were collected at 2-minute intervals throughout the course of each trial (> 240 hours). 

Independent measurements of mass change in the upper block before and after each trial 

validated the experimental data on water uptake to within 2%. 

The cross-sectional area of the contact between the two blocks was varied between trials 

by changing the length of the filter paper, while keeping the width constant at 2.0 cm. In the 

baseline experiment (Ar = 1.00), the interface was completely covered with filter paper. At Ar 

<1.00, a portion of the filter paper was replaced with impermeable plastic sheet to provide 
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mechanical support and prevent vapor-phase transfer into the upper block. Trials were conducted 

(Ar < 1.00) with the filter paper placed: (i) at the center of the block (center contact); and (ii) 

against one end of the block as shown in Figure 4.2 (end contact). To consider the influence of 

the lower block, one trial was run in which the upper block was placed in a ~1 mm deep layer of 

water, then removed and weighed at regular intervals over a 24 hour period (referred to as the 

free-water trial). In addition, a small number of short duration (< 48 hours) experiments were 

performed outside of the environmental enclosure so that we could visually observe wetting front 

advancement. 

4.4 Results 

Quantitative experiments performed inside the environmental enclosure showed that 

saturation (S) of the upper block increased monotonically in all trials (Figure 4.3). The rate of 

imbibition (dS/dt) was most rapid for the free-water trial (no lower block). For imbibition from 

the lower block (main experiments), dS/dt declined both with decreasing Ar and when the 

contact was moved from the center of the block to one end. Despite the clear differences in dS/dt 

between the trials (Figure 4.3), saturation of the upper block at t = 240 hrs was 0.65 ± 0.02 

independent of Ar, or location of the contact (note that Figure 4.3 ends at t = 72 hrs to better 

elucidate early-time behavior). The data shown in Figure 4.3 suggests that dS/dt passed through 

three distinct stages of behavior. The rate of imbibition is most rapid at the start of each trial (t = 

0) and then declines gradually to produce a mildly concave curve up to a saturation of about 0.50 

(Stage 1). After that, the imbibition rate declines rapidly over a range of saturation that extends 

from roughly 0.50 to 0.58 (Stage 2). Finally, in Stage 3, dS/dt shows little change through the 

end of the experiment, remaining at ~ 0.007±0.002/day for all trials. 
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Figure 4.3: Saturation (S) of the upper block is shown as a function of time (t), contact area (Ar), 

and location of the contact. Trials with a center contact are shown as solid lines, while the dash 

lines show trials with an end contact. The line with round markers represents data from the free-

water trial that ran for 24 hours. For trials running the full 240 hours, the imbibition rate (dS/dt) 

remained essentially constant for t ≥ 72 hours (not shown). Saturation at 240 hours was 

0.65±0.02 independent of Ar or location of the contact. 

 

One-dimensional imbibition under capillary dominated conditions (horizontal, zero head 

at inlet) has been shown to scale linearly with the square root of time (e.g., Philip, 1957a). In our 

experiments, the static (pre-imbibition) hydraulic head at the bottom of the upper block was near 

zero and gravitational effects were expected to be small with respect to capillarity; thus, we 

analyzed our early time data by plotting S as a function of t0.5 (Figure 4.4). We arbitrarily defined 

the end of Stage 1 to occur where the slope of S vs. t0.5 started to continuously decrease. Stage 1 

data for the free water experiment is clearly linear over most of the range; the initial shift to the 

left is believed to be an experimental artifact (Figure 4.4). 
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Figure 4.4: Saturation (S) of the upper block during Stage 1 imbibition is shown as a function of 

the square root of time (t0.5), contact area (Ar), and location of the contact. Trials with a center 

contact are shown as solid lines, while the dash lines show trials with an end contact. The single 

line with round markers represents data from the free-water trial. The end of Stage 1 was taken to 

be the time when the slope of S vs. t0.5 began to undergo continual decline; therefore, the final S 

at the end of Stage 1 differs between trials. 

 

In all other experiments, the data is concave upwards near t = 0, and then gradually 

transforms into a straight line throughout the remainder of Stage 1. For Ar = 1.00, the 

transformation occurred at t = 0.5 hr and S = 0.05. As Ar decreases, the linear portion of the data 

begins at later times, but at S ~ 0.15 - 0.18 for all contacts. In addition, the slope of the linear 

portion decreases with decreasing Ar. At constant values of Ar, experiments with a center contact 

showed an earlier transition to linear behavior than those with an end contact. The slope of the 

linear portion was also steeper for a center contact than for an end contact. In all trials, S at the 

end of Stage 1 was 0.48 ± 0.02 regardless of Ar or the position of the hydraulic contact. 

Conversely, the time at which Stage 1 ended was highly dependent on both Ar and the position of 

the contact (Figure 4.5). 
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Figure 4.5: Time (t) at which Stage 1 ended as a function of Ar and the position of the contact. At 

the end of Stage 1, saturation of the upper block reached to 0.48 ± 0.02 independent of Ar or the 

position of the contact. 

 

Experiments conducted outside of the environmental enclosure allowed direct 

observation of wetting front dynamics (Figure 4.6), but limited our ability to collect quantitative 

data. In all trials, the visually defined wetting front formed a smooth line that showed small 

bumps indicative of local heterogeneity, but no sharp breaks. Visual sharpness of the wetting 

front appeared to decrease with both time and Ar. We also noted that advancement of the wetting 

front slowed substantially as it approached the block boundaries. This slowing coincided with the 

end of Stage 1 behavior. The influence of the hydraulic contact can be seen clearly in Figure 4.6. 

At Ar = 1.00, the wetting front remained nearly horizontal throughout the experiment. For 

experiments with a center contact, the front was concave downwards and nearly symmetrical 

about the vertical axis. The front formed a steep slope where it met the bottom of the upper block 

(contact). The wetting front curvature increased as Ar decreased. In all trials with a center 

contact, the wetting front flattened out a bit after contacting the vertical sides of the slab and 
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concavity continued to decrease as it approached the top. For end contacts, the wetting front was 

approximately horizontal where it contacted the vertical edge above the contact and sloped away 

from that corner forming a concave downwards shape. At small values of Ar (0.20 and 0.40) with 

an end contact, the wetting front reached the top of the slab before the opposite vertical edge. 

 

Figure 4.6: Wetting front position on the 9.8 x 6.2 cm face of the upper block, inferred from 

visual observation of experiments conducted outside the environmental enclosure. Illustrative 

examples are shown for: (a) Ar = 1.00, (b) center contact with Ar = 0.50, and (c) end contact with 

Ar = 0.50. The rubber membrane that minimized evaporation from the contact area was not 

installed in these experiments to allow observation of the entire upper block. The resulting 

evaporative loss and the effects of temperature fluctuations (internal condensation, evaporation) 

impacted quantitative data from these experiments. However, the general patterns shown in 

Figure C remained, allowing us to interpret the mechanisms responsible for the three stages of 

imbibition.  

 

4.5 Discussion  

Measurements of capillary-dominated upward imbibition into an initially dry block of 

sandstone from a saturated block of the same rock show a strong dependence on the fractional 

cross-sectional area of the contact and the location of the contact. Non-linearity at the start of 

each experiment is attributed to restriction of flow entering the upper block. Material used to 

form hydraulic connections between the blocks exhibits conductivity that exceeds that of the 

lower block by > 4 orders of magnitude (Ksat of filter paper >> Ksat of blocks), thus we attribute 

flow restriction to energy loss in the saturated lower block  (e.g. Peters and Klavetter, 1988).  
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Compared to direct imbibition from a pool of water (fracture-filled water or surface 

films), supply through a wet block leads to loss of energy in water before reaching the dry block 

significantly reducing the imbibition rate. Considering the average rate of the first two hours of 

the flow in our experiment, hydraulic head loss for Ar = 1.00 is estimated to be ~ 27 cm, which 

makes the hydraulic head at the bottom of the upper block approximately -25.5 cm. This 

decrease, compared to zero pressure in free-water trial, reduces the calculated sorptivity of the 

upper block (Philip, 1957b) from 0.154 to 0.070 cm/hr½ when the saturated block is inserted 

between water pool and upper block.  

Flow data show that both fractional cross-sectional area (Ar) and location of the contact 

with respect to edges of the block place a primary control on imbibition into the block. As briefly 

presented in the previous section, flow into the upper slab can be separated into three stages 

(Stage 1, 2 and 3) based on the rate of saturation increase over time. Properties of the contact 

critically influence flow during Stage 1, which is characterized by very high dS/dt as a result of 

initially high potential gradient within the upper block. Changes in Ar affect flow by altering 

transmissivity of the contact and hydraulic head loss in the lower block. Effective transmissivity 

of the contact is a linear function of only Ar. Therefore, shrinking of the contact reduces its 

ability to facilitate a large volumetric flow under a given potential gradient. However, data 

presented in Figure 4.3 show that imbibition rate is not linearly dependent on Ar for any type of 

contact. Because of the geometry of the wetting front, initial potential gradient within the upper 

block is much higher for small Ar and it decreases at a slower rate compared to those for large 

Ar. Therefore, flux through the contact significantly increases with decreasing Ar (Figure 4.7) 

producing a non-linear relationship between imbibition rate and Ar. In addition to effect of 

transmissivity, a reduction in Ar lowers the effective flow area of the lower block increasing the 
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head loss in it. This can lead to a lower hydraulic head at the contact, but data (Figure 4.8) show 

that this effect is considerable only for Ar = 0.20 because of the geometry of our lower block 

(low height/length ratio).  

Figure 4.7: Change of flux across the hydraulic contact is shown as a function of time (t), contact 

area (Ar), and location of the contact. Trials with the center contact are shown with solid lines, 

while the dash lines show trials with the end contact. Flux is presented in dimensionless form as 

the saturation per unit cross-sectional area of the contact. 

 

The location of the contact relative to edges of the upper block dictates the development 

of flow field, thus significantly controls the imbibition rate. A center contact allows the flow 

field to develop laterally in either side of it, until the wetting front reaches two vertical edges of 

the block. Moving the contact towards an edge of the block causes the wetting front to contact 

the adjacent vertical edge within a short duration, preventing further expansion of the flow field 

in that direction. In the end-member scenario, where the contact is located against an edge of the 

block, flow field is forced to develop only in one lateral direction (Figure 4.6) significantly 

lowering the imbibition rate compared to that of a center contact of similar Ar (Figure 4.3). For 
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most part of Stage 1 flow at any value of Ar, duration to reach a given saturation (S) with the 

center contact (tS,Ar,center) and at end contact (tS,Ar,end) show the following relationship: 

tS,Ar,center = (0.80 ± 0.03) tS,Ar,end   Eq. (4.1) 

Figure 4.8: Approximated average hydraulic head at the contact during the first two hours of 

flow as a function of Ar and location of the contact. Hydraulic head was calculated assuming 

one-dimensional flow through the lower block and using the observed volumetric flow rates. 

Water in the external reservoir (Figure 4.2) applies a total hydraulic head of ~1.7 cm at the 

bottom of the lower block. 

 

Characteristics of S vs t0.5 plot (Figure 4.4) indicate mechanisms associated with Stage 1 

flow. For one-dimensional imbibition, this plot is expected to be linear. However, the plot for Ar 

= 1.00 becomes linear at t ~ 0.5 hr, which indicates approximate time scale required to develop a 

stable hydraulic communication between the lower and upper blocks through the contact. 

Delayed transition of S vs t0.5 plot from concave upward to linear form for smaller contacts (Ar < 

1.00) implies the presence of other processes that affect the flow. Gradually increasing slope of S 

vs t0.5 graph for these trials shows an increase in “apparent sorptivity” of the upper block (i.e., 

sorptivity affected by the flow boundary and wetting front) with the evolution of the flow field. 
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The total magnitude of capillary forces on water is proportional to the length of the wetting front. 

Because of the curved geometry (at Ar < 1.00), length of an advancing front gradually increases 

(Figure 4.6), raising the capillary force on water. This effect causes to gradually increase the 

slope of S vs t0.5 plot. For an end contact, the slope of the plot increases slower than that for the 

center contact of the same Ar, because of the shorter length of the wetting front compared to the 

front for the center contact. After the gradual increase, S vs t0.5 becomes linear when changes in 

the wetting front length does not affect flow between the blocks. At this time, sorptivity of the 

upper block is determined by the potential gradient and transmissivity of the contact. 

Stage 2 flow, which is characterized by rapidly decreasing dS/dt, starts when migration of 

the wetting front stops when it reaches all edges of the block. A saturation gradient exists behind 

an advancing wetting front (Zimmerman et al., 1990; Tidwell et al., 1995). After the leading 

edge of the front contact all edges of the block, relatively small pores that exist immediately 

behind it are filled at a rate comparable to that at the end of Stage 1. Since the volume of unfilled 

pores that has a low water entry pressures and easily accessible to water is relatively small, this 

process ends within a short duration. During stage 2, relatively low sorptivity of the upper block 

limits imbibition, and properties of the hydraulic contact have less effect on flow. However, at Ar 

= 0.2, change in dS/dt is significantly slower compared to that for larger contacts, which implies 

that low transmissivity of the contact can considerably restrict the flow. Because of slow pore-

filling mechanism during this stage, location of the contact does not noticeably affect flow at any 

value of Ar. Stage 3 flow, which is characterized by very slow and nearly steady saturation 

increase results from gradual filling of relatively large pores in the already wet block. This 

process is very slow because of trapped air in unfilled pores and relatively high water entry 
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pressure for large pores. Therefore, flow into the block is entirely controlled by its sorptivity 

independent of the connection.  

We attempted to develop an empirical relationship between S, Ar and t for all contacts. 

Instead of three stages of flow described above, we assumed two stages of flow; early stage and 

late stage to simplify our approach. The early stage continues until S = 0.53, which is a value 

selected based on the observed mid-point of Stage 2 for Ar = 1.00. We find that, for our specific 

flow system, duration of Stage 1 at Ar = 1.00 (tstage1,Ar=1.00) and duration to increase the saturation 

to a given value (S) within Stage 1 with an end contact of any value of Ar show the following 

relationship: 

(
tS,Ar,end

tstage 1,Ar=1.00
)

0.5

= −(1.38S + 0.37)Ar + 3.00S +  0.52   Eq. (4.2) 

The rate of saturation increase for the late stage is equal to that was observed during 

Stage 3 flow at Ar = 1.00. Therefore, using Eq. (4.1), (4.2), and experimentally measured 

parameters at Ar = 1.00 (i.e., tstage1,A=1.00 and dS/dt during Stage 3), we can estimate the time 

required to reach a specific saturation for any contact. When S > ~0.05 (i.e., after a steady 

hydraulic communication between the two blocks has established), the maximum difference 

between estimated and observed saturations for t < 72 hr is ± 0.05 for a given contact (Figure 

4.9). The y-intercept of estimated S vs t plot is always negative with the lowest value of -0.16 

(for Ar = 0.20), because or estimation is mainly based on the observed data where S vs t0.5 is 

linear. Though these empirical equations (Eq. 4.1 and 4.2) are valid only for our flow system, 

they show that effects of Ar and location of a hydraulic contact on imbibition can be incorporated 

into numerical models. 
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Figure 4.9: Observed and estimated saturations of the upper block are given as a function of time 

(t), contact area (Ar), and location of the contact. Observed values are shown in solid colors, 

while the dash lines show trials with the end contact. Results for the center and end contacts are 

presented in (a) and (b), respectively. 

 

4.6 Conclusions 

Data show that fractional cross-sectional area of a hydraulic contact and its position with 

respect to boundaries of the block significantly affect matrix-to-matrix imbibition. The rate of 

imbibition is not linearly dependent on the cross-sectional of the contact. Shifting the contact 

toward an edge of the block significantly reduces the imbibition rate. Effects of the above two 

properties of a contact are mostly for Stage 1 flow, where the wetting front continuously 

advances in the block. Flow characteristics during stage 2 and 3 are effects of boundaries of the 

block that impede flow beyond the block. Overall flow characteristics observed in our 

experiments are expected occur in porous blocks bound by air-filled fractures that inhibit matrix-

to-matrix flow (e.g., Glass et al., 2002; Wood et al., 2004) before hydraulic connections to 

neighboring blocks develop at high matrix saturation. Therefore, incorporating effects of both 

(b) (a) 
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cross-sectional area and spatial distribution of individual hydraulic contact within a considered 

flow domain in fractured media is important to accurately characterize the flow. This will be 

critical in predicting the development of macro-scale flow field with infiltration.   
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CHAPTER FIVE 

SUMMARY 

This dissertation presents three projects designed to explore the influence of hydraulic 

connections (also known as hydraulic bridges and hydraulic contacts) on unsaturated flow in 

dual-permeability media. Large inter-clast pores in coarse granular media drain at near zero 

matric potentials requiring that hydraulic bridges formed by porous contacts or pendular water 

facilitate liquid transfer between adjacent clasts. Unsaturated flow in fractured media also 

experiences this phenomenon, despite contrasting pore geometries in two types of media. 

Because of these reasons, understanding the behavior of hydraulic contacts is important to 

accurately predict unsaturated flow and solute transport in dual-permeability media. 

 Numerical simulations performed to examine how the cross-sectional area and hydraulic 

conductivity of a bridge influence steady-state flow through a spherical clast are presented in the 

second chapter of the dissertation. The third chapter presents a series of bench-scale experiments 

performed to evaluate the geometry of a pendular bridge under various flow-through conditions 

and at different inclination of the bridge with respect to gravity. The fourth chapter describes 

bench-scale experiments that were conducted to explore the influence of matrix-to-matrix 

hydraulic contacts on imbibition into a matrix blocks. We can summarize the major findings of 

these studies as follows. 

 At steady state, volumetric flow through a spherical clast (Q) shows a non-linear 

dependency on the cross-sectional area of hydraulic bridges with respect to that of the clast (Ar). 

Flow is more sensitive to changes in conductivity of the bridges when it is lower than that of the 

clast, but Ar places the primary control on flow for other bridges. Flow distribution within the 

clast expands as Ar increases. Bridges that are more conductive than the clast promote this 
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behavior, while less conductive bridges retard it. When flow-through condition is present, the 

size of a pendular bridge increases with the flow rate through it (Q) and decreases with 

increasing inclination of the bridge from vertical (α). Bridge geometry is independent of flow 

history of the system and immediately adjusts to changing flow conditions. The meniscus of a 

bridge formed under flow-through condition closely resembles a parabola while that formed 

under static conditions resembles the arc of a circle. When matrix-to-matrix imbibition in to a 

porous block is considered, cross-sectional area of a hydraulic contact relative to that of the 

block (Ar), and location of the contact relative edges of the block significantly control imbibition. 

The rate of imbibition non-linearly decreases as Ar decreases. At constant Ar, shifting the contact 

towards an end of the block reduces the imbibition rate. If the block is hydraulically isolated with 

the exception of the considered connection, saturation of the block when the wetting front 

contacts all boundaries of the block will be independent of the contact (0.48 in our experiments). 

 Unsaturated flow in dual-permeabilty media is influenced by many factors, but 

saturation-dependent hydraulic conductivities, interaction between two flow domains, varying 

control of gravity and capillary forces on flow, as well as spatially and temporally variable 

hydraulic bridges are the dominant factors. Our primary objective in this research was to 

understand how hydraulic bridges affect flow and liquid holdup. Because of very complex nature 

of flow in real systems, we used simplified systems to isolate the effects of considered factors in 

each study. Future studies should incorporate other factors that influence a flow system, thus the 

conceptual systems can better resemble real flow systems. Below we discuss about potential 

future research on each study presented in this dissertation. 
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5.1 Influence of Hydraulic Bridges on Flow in Coarse Porous Clasts 

 The major simplifications in the numerical model were solely gravity-driven flow, the 

absence of surface flow on the clast (both assuming satiated saturation of the clast), and spatially 

uniform hydraulic conductivity of the bridge. Below the satiated saturation, capillary forces will 

produce diffusive flow within the clast (Carminati et al., 2007). Furthermore, hydraulic 

conductivity of the clast will vary with matrix saturation. Therefore, flow mechanism will 

become more complicated than that considered in our simulations. When the saturation increases 

above the satiated level, liquid films starts to form on clast surfaces (Tokunaga and Wan, 2001). 

As a result, water can enter or exit the clast matrix through the entire surface creating a very 

complex intra-clast flow field. Hydraulic conductivity of a bridge that is a combination of a 

porous contact and pendular water varies between the two components of the bridge. Hydraulic 

properties of each component will affect volumetric flow through the entire system and spatial 

flow distribution in the system. These situations should be addressed in future work. 

Furthermore, advective and diffusive transport of solutes should be incorporated into the model 

to evaluate dissolution and transport of materials within the clast.   

5.2 Geometry of Flow-through Pendular Bridges 

 We monitored the geometry of a pendular bridge formed between two disks enabling us 

to maintain a relatively steady flow to the bridge and precisely measure the two-dimensional 

geometry of the bridge employing optical methods. In a flow system composed of two spherical 

clasts, fluid supply to the bridge may not be spatially uniform due to unsteady surface flow (Liu 

et al., 1995; Dragila and Weisbrod, 2003; Lan et al., 2010; Takagi and Huppert, 2010). 

Furthermore, fluid pressure distribution within a three-dimensional bridge will change in a 
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complex manner with the inclination of the bridge due to its geometry. Therefore, future research 

on this topic should explore the geometry and internal flow of a three-dimensional pendular 

bridge. Stability of a flow-through bridge with respect to gravitational drainage is another 

important topic that should be explored. Force-balance approach has been successfully used to 

numerically study the stability of static pendular bridges (e.g., Saez and Carbonell, 1990), but 

applying this method for flow-through bridges is extremely difficult due to gradual transition 

between surface films and the bridge, as well as flow within the bridge. Therefore, stability of a 

three-dimensional pendular bridge should be studies experimentally.   

5.3 Imbibition across Matrix-to-matrix Contacts  

 We studied two-dimensional imbibition into a porous block through well-characterized 

hydraulic contacts. This simplified flow system allowed us to focus on the influence of the 

fractional cross-sectional area and location of a contact on imbibition. Future research should 

investigate how an individual hydraulic contact affects three-dimensional imbibition and how to 

apply the findings of this research to large-scale flow systems. Numerical modeling of three-

dimensional transient flow involves numerous untested assumptions, and heavily relies on model 

calibration parameters. Validity of these assumptions should be tested in physical experiments 

and flow mechanisms should be thoroughly understood to improve process-based flow models. 

Applying findings of bench-scale or meso-scale experiments on real flow systems remains a 

challenge. Therefore, future work should consider up-scaling or down-scaling parameters and 

processes in controlled experiments to apply on other systems.  
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