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Abstract 
Residual stresses are generated from the non-linear thermal loading and unloading cycles 

that occur during a typical multi-pass ARC welding process. Large residual stresses and 

plastic strains will in turn cause reliability problems closely associated with cracking and 

distortion in welded structures, which will ultimately reduce the structure’s fatigue life. In 

this study, the particular structure of interest is an outlet manifold fabricated with large 

circumferential welds. SYSWELD is used to simulate the welding process of the Cone and 

Tee weld in the outlet manifold using four numbers of weld passes (1 weld pass, 4 weld 

passes, 10 weld passes and 20 weld passes) and two different material groups (Group 1: 

Incoloy 800 HT for base alloy and Inconel 617 for filler metal, Group 2: 316L for both 

base alloy and filler metal), three different boundary conditions and two different plasticity 

model (Isotropic hardening and kinematic hardening). By using Finite Element Analysis 

and comparison analysis with varying singular welding process parameter, the influence of 

different numbers of weld passes, materials, boundary conditions and plasticity models on 

the residual stress distribution can be found. It is shown that the number of welded passes 

has significant influence on the residual stress distribution. The simulation results also 

indicate that the Inconel alloy group and the 316L materials will give rise to similar plastic 

deformation zones, but different stress value in the same positions. Additionally, the 

boundary conditions lead to localized residual stress concentrations in area near rigid 

clamped conditions. Isotropic and kinematic plasticity models result in slightly differences 

on stress values of plastic deformation areas and are also discussed in detail in this study. 
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Chapter 1 Introduction 
Arc welding is one commonly used fusion welding process in industrial manufacturing 

projects. In the welding process, an intense heat source is used to melt and join components 

and welded filler metals in order to make a molten fusion bond [1]. The temperature of 

areas near the welding arc are on the order of one thousand degree Celsius. The large heat 

energy generated during welding is conducted into the bulk of metal as the welding process 

proceeds. In multi-pass welding, the welding arc will repetitively create nonlinear thermal 

loading and cooling cycles. Welding is a complicated process which will induce volumetric 

changes producing transient and residual stresses and deformation [2-4]. Thermal 

deformation companied by thermal strains mainly exists in the welded fillers and 

contiguous areas. Areas with sufficiently large Von Mises strains will deform plastically.  

 

Residual strains can cause problems for welded structures during utilization. Accumulating 

distortion and initiation of cracks will reduce the welded structure’s quality of fit and 

reliability. Residual stress resulting from nonlinear thermal cycles in welding produces 

internal forces that cause a variety of problems [5]. It is a main factor for crack initiation 

and crack growth in the welded structures during cooling [6]. There are two forces in the 

cooling process: stress resulting from non-uniform shrinkage due to thermal gradients and 

stress that arises from surrounding boundary condition constraints. Because the contraction 

is restricted, the strain will cause residual stress [7-8]. Because of large size of the structure, 

there is a large amount of constraint that causes highly localized residual stresses in the 

neighborhood of welds. 
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The outlet manifold focused in this study is a Cone & Tee Assembly as shown in Fig. 1. 

Pressure and corrosion of gas is known to accelerate cracking in the presence of high 

residual stresses. The presence of welding residual tensile stresses in the heat-affected zone 

(HAZ) may accelerate the corrosion attack and enhance cracking, particularly along 

sensitized grain boundaries [9-10]. Hence, welding stress analysis for the Cone & Tee 

Assembly model is necessary in order to reduce the likelihood of failure. 

 

Because of the large influence the residual stresses have on reliability of welded structures, 

there are numerous assessments methods for residual stress measurements and analysis 

methodology. Most common residual stress measurement methods can be divided by two 

types. (1) Mechanical invasive methods, such as hole drilling or cutting. (2) Non-

destructive methods, such as X-ray and neutron diffraction [11]. Alternatively, 

computational residual stress analysis techniques have become highly developed and are 

very useful for examining how specific welding parameters affect the final residual stress 

state.  

 

In this study, residual stress comparisons are generated based on finite element analysis for 

the Cone & Tee assembly geometry with different numbers of welded passes, alloys, 

boundary conditions and plastic hardening models. The total height of model is about 49.75 

inches and the external diameter is 16.00 inches (see Figure 1.1). Because the model is 

relatively large and many different welding conditions need to be examined, experimental 
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residual stress techniques are economically infeasible. The FEA simulations are 

particularly useful in depicting the time evolution of the welding process, permitting a 

detailed visualization of material deformation and stresses.  

 

Figure 1.1 Parts idagram of Cone & Tee Assembly Model 

Currently, several commercial CAE software packages can be used to simulate the 

transient temperature and stress distribution in welding processes. SYSWELD [12] is 

used for this study. SYSWELD is a non-linear finite element code specifically designed 

for solving welding problems. SYSWELD was created from the SYSTUS system for the 

nuclear industry in 1981 and has been under continuous development for over forty-five 

years. SYSWELD couples calculation for heat transfer, material properties and 

mechanical behavior of model, taking into account phase transformations have on 

temperature distribution [13]. These calculations are performed sequentially in the order: 

Thermal, Metallurgy, Mechanical. In the process of calculating mechanics, residual 

stresses for the unclamped condition can be got in SYSWELD by releasing boundary 

conditions at last second of simulation [14].  
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Visual Environment 10.5 as the graphical interface used with SYSWELD. Not only it is 

easy to use, but Visual Environment also encompasses many non-linear finite element 

analysis software tools designed for some specific problems such as Visual- Quoting, 

Visual- CFD. In this study, Visual- Mesh 10.5, Visual- Weld 10.5 and Visual- Viewer 10.5 

are used. These three packages cover all the functions needed for the welding simulation 

planner and designer. In this study, Visual- Mesh [15] is used to edit CAD models, create 

2D meshes, automatically clean up surfaces, check and correct mesh quality and assembly. 

Visual- Weld [16] is a welding & heat treatment simulation tool which is for welding 

process design. Furthermore, Visual- Viewer [17] is used to post process FE analysis data, 

create video animations and plot data. Figure 1.1 shows the work flow of the SYSWELD 

software used in this study. 

 

Figure 1.2 Work flow of FEA simulation for this study 

 

  



6 

 

Chapter 2 Weld Process Simulation Model 

2.1 Modeling 

Figure 2.1 is the 2-dimensional fully Cone & Tee Assembly Model with rotation symmetry 

axis studied in this research. The total height of the cone section is 0.679m (26.75 inches), 

and the height of the tee is about 0.584m (23 inches). In this study, we have focused on the 

welded sections which join the lower Cone structure (Blue part in Figure 2.1) to the upper 

Tee structure (Yellow part in Figure 2.1). The distance between the horizontal central line 

of the weld filler and the bottom of horizontal cylinder of the tee is 0.159m (6.25 inches). 

During welding, very little heat can transfer to upper part of the tee. Furthermore, besides 

convection to the air, there is also heat conduction with the lower part of the tee that can 

be ignored in simulation and its upper part. So the finite element model only includes the 

entire cone section and only the vertical pipe of the tee and cone. Two pipes shown as item 

3 in Figure 2.1 and upper horizontal pipe of the tee are omitted in the analysis.  

 

Figure 2.1 Fully Cone & Tee Assembly Model with rotation symmetry axis 
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In this problem, a 2D rotational axisymmetric model is used for the Finite Element 

Analysis, shown as Figure 2.2 which is the right part of fully Cone & Tee Assembly model 

of Figure 2.1. Main difference between a full 3D model and a 2D axisymmetric model is 

the thermal and mechanical results at the beginning and end time of the welding process. 

In a full 3D weld simulation the heat source center moves with a specific velocity. While 

in the axisymmetric model, the heat source doesn’t actually move, but instead uniformly 

increases and decreases at all points as a specific function of time. Hence it’s expected that 

the residual stresses will be the same except perhaps where the welding starts and stops in 

the fully 3D case. Because of the high computational efficiency, the 2D axisymmetric 

model was chosen for solving the circumferential welding problem. Figure 2.2 depicts the 

meshed axisymmetric 1 weld pass model, 4 weld passes model, 10 weld passes model and 

20 weld passes model of outlet manifold with their welding lines and reference lines. 2D 

axisymmetric model is built on x-y plane. In each figure, the tee component and cone are 

in different colors.  

 

Figure 2.2  2-D axisymmetric Cone & Tee Assembly Model 
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                          (a)                                                        (b) 

 

                                             (c)                                                           (d) 

Figure 2.3 Close-up view of 2D axisymmetric model with different number of weld pass: 

(a) 1 weld pass  (b) 4 weld passes (c) 10 weld passes (d) 20 weld passes 

2.2 Meshing 

After the rotational axisymmetric geometric models are built, they are meshed in Visual-

mesh 10.5 [15]. The main mesh element type is the quadratic 2-dimensional element shown 

in Figure.2.3 (a). And the mesh method is pave. For some welding filler parts in irregular 

form, it is difficult to generate Quads mesh. So both the quadratic element and triangular 

element type should be used, as shown in the weld beads for the 20 weld pass model in 

Figure 2.3 (b).  
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                            (a)                                                          (b) 

Figure 2.4 2D finite elements used :(a) Quadratic 2-dimensional element for components 

of model (b) Quadratic-triangular mixed mesh for welded filler 

For the heat transfer boundary condition between solid and air of the 2D model, 1-

dimension elements are used as shown by the red lines in Figure 2.4. 

 

Figure 2.5 1-dimension elements used for heat transfer boundary condition 
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2.3 Materials  

There are three kinds of metals used in this this study- 316L stainless steel, Incoloy 800HT 

and Inconel 617. One material group includes Incoloy 800HT for welding components 

shown as the red part in Figure 2.5 (a), and Inconel 617 as the welding filler material shown 

as Figure 2.5 (b). While 316L for both upper and lower welding components and welding 

filler material is used to compare residual stresses with simulation using Inconel alloy 

group above. 

 

(a)                                                         (b) 

Figure 2.6 Welding components and fillers of model:  

(a) Welding components (b) Welding fillers 

316L stainless steel is a typical austenitic chromium nickel stainless steel, which can 

minimize harmful carbide precipitate due to welding and provides optimum corrosion 

resistance [20]. Table 3.1 shows the chemical composition of 316L. 
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Table 2.1 Chemical composition of 316L 

C% 

Max 

Mn% 

Max 

P% 

Max 

S% 

Max 

Si% 

Max 

Cr% Ni% Mo% Ni% 

Max 

Iron 

0.03 2 0.045 0.03 0.75 16-18 10-14 2-3 0.1 Balance 

 

Incoloy 800HT or Inconel 800HT has a high creep and rupture strength. Because of its 

excellent mechanical properties combined with high resistance to high-temperature 

corrosion, it is widely used to make outlet manifolds where heated gas pass though. It has 

the same chemical element with the Incoloy 800 and 800H, but the carbon content is 

restricted to 0.06-0.10% and Al+ Ti content is restricted to 0.85-1.20%. Incoloy 800HT has 

good resistance to high temperature corrosion and good weldability [21]. Table 3.2 shows 

the chemical composition of Incoloy 800HT. 

Table 2.2 Chemical composition of Incoloy 800HT 

Ni% 

 

Cr% Iron% 

Min 

C% Al% Ti% Al%+Ti% ASTM 

Grain size 

30-35 19-23 39.5 0.06-0.10 0.25-0.60 0.25-0.60 0.85-1.20 5 or coarser 

 

Inconel 617 is a high-temperature strength and oxidation resistance nickel-chromium-

cobalt-molybdenum alloy. It has excellent mechanical properties in a large range of 
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temperature especially its resistance to corrosion in high temperature. Table 3.3 shows the 

chemical composition of Inconel 617. 

Table 2.3 Chemical composition of Inconel 617 

Ni% 

Min 

Cr%  Co% 

 

Mo% Al% C% Iron% 

Max 

Mg% 

Max 

Si% 

Max 

S% 

Max 

Ti% 

Max 

Cu% 

Max 

B% 

Max 

44.5 20-

24 

10-

15 

8-10 0.8-

1.5 

0.05-

0.15 

3.0 1.0 1.0 0.015 0.6 0.5 0.006 

 

Both Incoloy 800HT and Inconel 617 have excellent weldability. Because of high creep-

rupture strength, Incoloy 800HT should be joined upon the intended service temperature. 

And Inconel 617 is widely used as filler metal in many welding projects. Inconel 617 filler 

metal has a much higher yield stress and greater tensile strength when compared to Inconel 

alloy 182 and Inconel alloy 600.   

 

In SYSWELD, the 316L material database is contained in the Visual-weld public material 

database. But because there are no Incoloy 800HT and Inconel 617 material databases in 

SYSWELD, these two material property databases needed to be built using the Material 

Database Manager (MDM) [18] from the SYSWELD Welding Tool Box 2015 shown in 

Figure 2.6. The database of each kind of alloy has two subset databases: 1) Thermo-

Metallurgy database, and 2) Mechanics database. The main thermal and mechanical 

properties of Inconel Alloy needed for welding simulation are thermal conductivity, Young 
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Modulus, Poisson’s Ratio, Thermal Strain, Yield stress and Strain Hardening. In this study, 

the thermal and mechanical properties of Incoloy 800HT and Inconel Alloy 617 that were 

put into the SYSWELD database mentioned above were obtained from [21] and [22]. 

 

Figure 2.7 Material Database Manager of SYSWELD 

The mean Poisson’s Ratio in the database of Inconel alloys are set as the constant 

independent to the temperatures for SYSWELD. The Fig 2.7 and Fig 2.8 respectively 

shows the Thermal Conductivity, Young’s Modulus, Thermal Strains and Yield Strength 

of Incoloy 800 HT and Inconel 617 as a function of temperature. 

 

                         (a)                                                              (b) 
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                          (c)                                                               (d) 

Figure 2.8 Critical properties of Incoloy 800HT for welding simulation in different 

temperatures: (a) Thermal conductivity (𝑊/𝑚℃) (b) Young’s Modulus (𝑀𝑝𝑎) (c) 

Thermal Strains (d) Yield Strength (𝑀𝑝𝑎) 

  

   

                                       (a)                                                              (b) 
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                            (c)                                                              (d) 

Figure 2.9 Critical properties of Inconel 617 for welding simulation in different 

temperatures: (a) Thermal conductivity (𝑊/𝑚℃) (b) Young’s Modulus (𝑀𝑝𝑎) (c) 

Thermal Strains (d) Yield Strength (𝑀𝑝𝑎) 

2.4 Boundary Conditions 

There are 3 kinds of boundary conditions considered in this study. These 3 boundary 

conditions are defined through the Visual-Weld 10.5 interface. In Figure 2.9, for Boundary 

condition 1, Rigid clamped conditions in X, Y, Z directions are set for nodes on the top 

edge.  

 

Figure 2.10 Boundary condition 1 
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Boundary condition 2 is shown in Figure 2.10: Rigid clamped conditions in the Y direction 

is set for nodes on the top surface of the model, and Rigid clamped conditions in the X and 

Z directions are set for the 1st node on top edge. Rigid clamped conditions in Y and Z 

directions are set for the nodes on bottom edge, after the component has completely cooled, 

unclamped conditions are specified for nodes on bottom edge. 

 

                       (a)                                                                   (b) 

Figure 2.11 Boundary condition 2  

(a) Before the component has completely cooled (b) After the component has completely 

cooled 

Boundary Condition 3 (Figure 2.11): Rigid clamped conditions in Y direction is set for 

nodes on top surface of the model, and Rigid clamped conditions in X and Z directions are 

set for the 1st node on top edge. No boundary condition constrained are set for the nodes 

on the bottom edge during entire simulation. 
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Figure 2.12 Boundary condition 3 

In general, Boundary condition 1 and Boundary condition 3 have the same clamped 

conditions along the bottom edge. And Boundary condition 2 and Boundary condition 3 

have the same clamped conditions on the top surface and top edge.  

 

For heat transfer boundary conditions in this problem, heat transfer from the 2D 

axisymmetric Tee & Cone Assembly model with the environment is through Newtonian 

heat convection. Because of large radius of cone part and tee’s upper pipe, the air inside 

the cone and tee assembly model can be regarded as surrounding air. Hence, heat transfer 

conditions set for internal surface are the same with external surface shown as Figure 2.4.  
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Chapter 3 Settings for welding simulation 

After the model is built and the mesh is generated in Visual-Mesh 10.5, Visual-Weld 10.5 

is used to define the appropriate parameters for the welding simulations. 

3.1 Global Parameter 

 

In this study, the computation global parameter is set as 2D rotational, because all the weld 

passes are along the external surface of the cone and tee model, described as a time 

dependent axisymmetric model. 

 

Figure 3.1 Global Parameter for welding simulation 

3.2 Welding Process Settings 

There are some common settings for all the simulations. The process type is General ARC. 

Figure 3.2 shows the dimension of double ellipsoid ARC power source model in Visual 
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weld. The welding velocity used is 6.329 mm/sec. Efficiency is 1.000. Power ratio is 1.200. 

And length ratio is 0.500 [19]. 

 

Figure 3.2 Double ellipsoid model of ARC power resource 

          

                                 (a)                                               (b) 

Figure 3.3 Welding process settings: (a) weld pool (b) Energy 

For simulations with the same number of weld passes, the length, width, penetration and 

energy per unit length for identical weld passes in different simulations are same. For weld 

pass simulations with different numbers of welds, these geometry parameters are different 

in order to make entire weld cross-section heat above metal’s melting point. Figure 3.3 
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shows settings for weld fillers in weld advisor of Visual-weld 10.5. And Figure 3.4 shows 

the dimension parameters of weld pool.  

 

Figure 3.4 Geometry of weld pool 

3.3 Cooling Condition Setting 

Cooling medium used in this study is Free Air Cooling and the ambient temperature is 

20℃.  The cooling time shown in Figure 3.5 equals the entire simulation time. Because 

models with different numbers of weld passes, have different times for welding and 

cooling, the totally simulation time is different. The model should have enough time-steps 

to cool down to ambient temperature. For 1-weld–pass model, the simulation time was 

25001s. The simulation time for a 4-weld-pass model was set as 27501s. The simulation 

time for a 10-weld-pass model was 25001s. And the simulation time for the 20-weld-pass 

model was 35001s. 
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Figure 3.5 Cooling condition setting 

There are no additional loads, deformation settings and contact definition settings for the 

simulations in this study. 
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Chapter 4 Welding simulation results 

4.1 Heat Transfer Behavior 

Transient temperature contours from the welding simulation with 1-weld-pass, Inconel 

800HT+617, boundary condition 2 and Isotropic hardening model are shown in Figure 4.1. 

Isotropic model implies the yield strength in tension and compression stress state are the 

same for alternating tensile and compressive loading , which will be discussed in Chapter 

5 in details. Heat from deposited weld filler metal transfers to other parts of model during 

the cooling process. Because size of the welded filler is large, much more energy need to 

heat the entire weld filler than other models. Hence it also need for more time to be 

completely cooled. At 3.16s, weld bead has finished welding and released all heat resource 

to the model. At about 25000s, the entire model completely cools to surrounding 

temperature. Thus, the cooling time is about 24997s. But from 4-weld-pass simulation, the 

cooling time from last weld bead finish heating to completely cooling is about 23497s. The 

cooling time of 10-weld-pass simulation is about 11499s. And the cooling time of 20-weld-

pass simulation is about 5400s. 
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                                (a)                                                                     (b) 

 

                                (c)                                                                      (d) 

Figure 4.1 Temperature contours for each weld pass in 1 weld passes simulation: 

(1) t= 3.16s (2) t= 93.02s (3) t= 233.01s (4) t=1894.46s 

Transient temperature contours from the welding simulation with 4-weld-pass, Inconel 

800HT+617, boundary condition 2 and Isotropic hardening model are shown in Figure 4.2. 

In multi-pass welding simulation, the entire weld metal is part of the model during welding 

process even when the first weld bead is deposited. For example, in Figure 4.2 (a) first 

weld bead, the other weld pass fillers are still not activated. So heat flux is only conducted 

to base metal. In Figure 4.2 (b), only the first two weld beads are activated. The heat flux 

at this time period is conducted to base metal and the first weld bead. Until the heat source 

of last weld bead begins to work, the entire weld metal model is activated shown as Figure 

4.2 (d). 
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                              (a)                                                                  (b) 

 

                               (c)                                                                   (d) 

Figure 4.2 Temperature contours for each weld pass in 4-weld-pass simulation: 

(a) 1st weld pass (b) 2nd weld pass (c) 3rd weld pass (d) 4th weld pass 

Transient temperature contours from the welding simulation with 10-weld-pass, Inconel 

800HT+617, boundary condition 2 and Isotropic hardening model are shown in Figure 4.3. 

Different with 1 weld pass and 4 weld pass simulation, since the area of each weld pass is 

relatively small compared to the cross-sectional area of the entire Cone & Tee Assembly 

Model, the heating is quite localized on the nearby area called Heat Affect Zone (‘HAZ’). 
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Areas near the boundaries and far away from the HAZ, are not affected by heat from 

welding process in to any significant degree. This conclusion can be seen in Figure 4.4 

which the temperature of a node located in the HAZ (Node 150) with another node (Node 

1346) not in the HAZ changes as a function of time. The distance between the two picked 

nodes are 203.5434 mm. 

 

                           (a)                                                       (b) 

 

                                       (c)                                                       (d) 
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                                       (e)                                                        (f) 

 

                                      (g)                                                        (h) 

 

                           (i)                                                        (j) 

Figure 4.3 Temperature contours for each weld pass in 10-weld-pass simulation:  

(a) 1st weld pass (b) 2nd weld pass (c) 3rd weld pass (d) 4th weld pass  (e) 5th weld pass (f) 

6th  weld pass (g) 7th weld pass (h) 8th weld pass (i) 9th weld pass (j) 10th weld pass 
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(a)                                                             (b) 

Figure 4.4 Temperature changes with time in nodes of HAZ and non HAZ: 

(a) Position of Node 150 and Node 1346  (b) Transient temperature of Node 150 and 

Node 1346 in welding process 

Figure 4.5 is transient temperature contours from the welding simulation with 20-weld-

pass, Inconel 800HT+617, boundary condition 2 and Isotropic hardening model. Similar 

with 10-weld-pass simulation, because of limited size of each weld filler, area far away 

from the HAZ are not affected by heat from welding process in to any significant degree 

in 20-weld-weld pass simulation. 

 

 (a)                                                        (b) 

 

                                      (c)                                                        (d) 
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                                      (e)                                                        (f) 

 

                                     (g)                                                       (h)  

 

                                      (i)                                                       (j)  
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                                      (k)                                                       (l) 

 

                                     (m)                                                       (n) 

 

                                      (o)                                                        (p)   
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                                      (q)                                                        (r) 

 

                                      (s)                                                        (t) 

Figure 4.5 Temperature contours for each weld pass in 20 weld passes simulation: 

(a) 1st weld pass (b) 2nd weld pass (c) 3rd weld pass (d) 4th weld pass  (e) 5th weld pass (f) 

6th  weld pass (g) 7th weld pass (h) 8th weld pass (i) 9th weld pass (j) 10th weld pass (k) 

11th weld pass (l) 12th weld pass (m) 13th weld pass (n) 14th weld pass (o) 15th weld pass 

(p) 16th weld pass (q) 17th weld pass (r) 18th weld pass (s) 19th weld pass (t) 20th weld 

pass 

4.2 Residual stress analysis 

In this section, the residual stress distribution from simulations with different numbers of 

weld passes, material groups and boundary conditions are compared and analyzed in order 

to find the influence of these factors on the residual stress distribution. Furthermore, local 



31 

 

horizontal and vertical residual stress component distributions are plotted along continuous 

lines. 

4.21 Residual Stress comparison for simulations with different numbers of weld 

passes 

Figure 4.6 shows the Von-Mises stress distribution from simulations with 1 weld pass, 4 

weld passes, 10 weld passes and 20 weld passes. All the simulations in this section have 

the same material group (Incoloy 800HT+ Inconel 617), boundary conditions (Boundary 

condition 2) and plastic hardening model (Isotropic hardening). The temperature scale for 

all four of these pictures are the same. Thus, areas with the same color represent the same 

range of von Mises stress. A cut-off value of the color contours was used so that red areas 

in these contours represent where von-Mises Stress is larger than the uniaxial yield stress 

of Incoloy 800HT which is about 241.32 MPa at 21℃ . Additionally, pink areas in these 

pictures represent where the von-Mises Stress is greater than the uniaxial yield stress of 

Inconel 617 which is about 340 MPa at 21℃ . 

 

                         (a)                                                                  (b)                        
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                        (c)                                                                   (d) 

Figure 4.6 Overall von-Mises stress distribution comparison for different number of weld 

pass (a) 1 weld pass (b) 4 weld passes (c) 10 weld passes (d) 20 weld passes 

From results comparison of Figure 4.6, it can be seen that the plastic deformation area in a 

1 weld pass simulation in Figure 4.6 (a) is much larger than that obtained from the other 

three multi-pass simulations in Figure 4.6 (b) (c) (d). Because the total height of Cone & 

Tee assembly model is 1200.15mm (47.25 inches) and the height of the zone filled with 

weld metal studied is about 81.47mm, in reality, it is not possible to use just 1 weld pass 

to join such two large components. Hence, a 1 weld pass simulation for this problem can’t 

realistically describe the stress distribution in an actual Cone & Tee Assembly. However, 

the single weld pass model does serve as a baseline for comparison with the more realistic 

multi-pass simulation models. It’s interesting to note that von-Mises stress distributions 

shown in Figures 4.6 (b), (c) and (d) are remarkably similar, especially in the areas outside 

of the multi-weld fusion zone. 
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Von-Mises Stress distributions in the HAZ for different numbers of weld pass simulations 

are shown in Figure 4.7. Comparing Figure 4.4 (b) with (c) and (d), the plastic deformation 

area from a 4 weld pass simulation are larger than that seen in the 10 weld pass and 20 

weld pass simulations, especially in the area near the external surfaces of the Tee and cone. 

Von-Mises stress distributions of 10 weld passes and 20 weld passes in Figure 4.7 (c) and 

(d) are quite similar everywhere the model. The maximum von Mises stresses in the model 

with 10 weld passes and 20 weld passes are 469.510 MPa and 467.092 MPa. Values and 

positions of the max stress nodes are nearly the same in these two multi-pass weld 

simulations. 

 

                   (a)                                                                   (b) 
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                   (c)                                                                  (d) 

Figure 4.7 Von-Mises stress distribution in HAZ: 

(a) 1 weld pass (b) 4 weld passes (c) 10 weld passes (d) 20 weld passes 

Distributions of von-Mises stress and stress components on some surfaces chosen are 

compared below, in order to discuss the influence of different numbers of weld pass has on 

residual stress. 

 

Figure 4.8 (a) shows the position of surface from A to B which is a part of external surface 

of cone. Node A is the node in the corner between welded filler metals and the external 

surface of Cone part. Node B is the node on the intersection line of the cylindrical surface 

and circular conical surface of the cone. Figure 4.8 (b) shows a comparison of von-Mises 

Stress distribution of different weld pass numbers simulation on surface A-B. According 

to this figure, there are two stress concentration nodes, which is a node near node A and 

the node 100 mm away from node A designated as Node G in Figure 4.8 (a). Node G is the 

corner of the small beveling of the cone. The von-Mises Stress (stress concentration) near 

node A is about 300 MPa, and Von-Mises stress of the other stress concentration node is 

about 250 MPa. The black curve and green curve are similar especially in the area 100 mm 

away from node A to node B. In this area, the von-Mises stress of 1 weld pass simulation 

(blue curve) does not decrease. Whereas, stresses from the 4 weld passes simulation (red 

curve) decreases to some degree but not as large as that seen in the simulations using 10 

weld passes and 20 weld passes. In the area from node A to the node 100 mm away from 

node A, all the stress results decrease beginning at the node about 30 mm away from node 
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A and then increase. From 1 weld pass simulation to 20 weld passes simulation, the change 

degree of stress value becomes lower.  

 

(a) 

 

                                                                      (b) 
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Figure 4.8 Von- Mises stress comparison on surface A-B for different number of weld 

pass simulations: (a) Position of surface A-B (b) Stress distribution on surface A-B 

Figure 4.9 shows another section chosen for plotting a comparison of the von-Mises 

stresses. Node C is the node on internal surface of the model with the same height of node 

A. From Figure 4.9, it is easy to see that except for the 1 weld pass simulation (blue curve), 

the other multi-pass weld simulations seem to reasonably describe the overall stress trends 

in this section, i.e. the von-Mises stress declines by about 57.5% from A to C. This section 

is near the welded filler metal in the heat affect zone. In different numbers of weld passes 

simulations, different number of heating cycles and the energy mount released by related 

weld beads will affect the residual stress distribution of section A-C to significant degree. 

In 1 weld pass simulation, there is just one heating cycle to the entire model. And the total 

energy released by the only weld filler is very large. In 4 weld pass, the 2nd weld pass and 

the 4th weld pass are nearest to section A-C, thus there are two heating cycles affecting 

residual stress of section A-C significantly. And energy released by each weld bead is 

smaller than 1-weld-pass simulation. While in 10 weld pass, there are three heating cycles 

affecting residual stress of section A-C significantly because the 2nd, 5th and 8th weld passes 

are nearest to A-C. For 20 weld pass, the number of heating cycles affecting residual stress 

reaches 5. The size of each weld pass and energy released is smallest. This is the reason 

why the difference of curves in Figure 4.9 are so large that easy to be seen. 
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Figure 4.9 Von-Mises stress comparison on surface A-C for different number of weld 

pass simulations 

Von-Mises Stress distribution along the internal surface of Cone & Tee Assembly Model 

is shown in Figure 4.10 (b). All the simulations can show the stress concentration node 

designated as Node L which is about 225mm away from the 1st node of top surface (Node 

D). This area on the internal surface is located at the same vertical position as the weld on 

the external surface. From this plot, it can be seen that the stress curves from the 10 weld 

pass simulation (Green curve) and 20 weld pass simulation (Black curve) are similar. The 

1 weld pass simulation only roughly describes the stress distribution along the internal 

surface. And for Node M shown in Figure 4.10 (a) and (b), the low stress node which is 

about 200 mm away from node D, 1 weld pass simulation can’t calculate the exact value 
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just as the other three simulations. The stress value in this area is more than 300 MPa. But 

the value obtained from the other three multi-pass welding simulations is about 60 MPa. 

According to Figure 4.10 (b), there are one main plastically deformed areas on the internal 

surface, an area about 210mm to 240 mm away from Node D shown in Figure 4.10 (b). 

Zones far away from the deposited welds have low stresses and elastic deformations. 

 

                                                                    (a) 
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                                                                      (b) 

Figure 4.10 Von-Mises stress comparison on internal surface for different number of 

weld pass simulation: (a) Position of internal surface (b) Stress distribution on internal 

surface 

Figure 4.11 shows the position of surface E-F which is a part of tee’s external surface and 

von-Mises Stress distribution along surface E-F. From Figure 4.11, Node E is the node of 

joint between welded fillers and external surface of the tee. Node F is the intersection point 

between the upper pipe and vertical pipe of tee shown in Figure 4.11. Area near node E has 

stress concentration. Stress values of this area from 4 weld passes, 10 weld passes and 20 

weld passes are about 265 MPa. While the stress value from 1-weld-pass simulation is 

about 350 MPa which is not precise. Furthermore, there is a plastic deformation area 

beginning at 25 mm away from Node E. Its stress value is about 250 MPa. From 1-weld-
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pass to 20-weld-pass simulations, the length of the plastic deformation zone decreases. For 

example, the length of the plastic deformation area in the 4-weld-pass model is about 107 

mm. The length of plastic deformation in the 10 weld pass simulation area is about 55 mm. 

While the length of plastic deformation zone in the 20-weld-pass simulation is just 43mm. 

 

Figure 4.11 Von-Mises stress comparison on surface E-F for different number of weld 

pass simulation 

Figure 4.12 shows the 𝜎𝑦𝑦 stress (stress in vertical direction) distribution for different 

numbers of weld passes. Similarly with von-Mises stress distributions, the values and area 

of plastic deformation from the 1-weld-pass simulation is much larger than that obtained 

from the other three multi-pass models. Thus, the single weld pass model is the only useful 

for comparison purpose. The 10-weld-pass and 20-weld-pass simulations are very similar, 
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even the vertical stress distribution 𝜎𝑦𝑦 in the welded filler metals. For the 4-weld-pass 

simulation, 10-weld-pass simulation and 20-weld-pass simulation, the maximum vertical 

stress nodes are all near node E seen in Figure 4.12. But the values of maximum stress from 

simulations with different number of weld pass are not very similar. Tensile 𝜎𝑦𝑦 stress 

mainly exists on the external surface of the Cone & Tee assembly model except some 

regions in last two weld passes. Compressive 𝜎𝑦𝑦 stresses are seen mainly on the internal 

surface of model.    

 

                       (a)                                                                   (b) 

 

                              (c)                                                                    (d) 
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Figure 4.12 𝜎𝑦𝑦 stress distribution comparison for different number of weld pass (a) 1 

weld pass (b) 4 weld passes (c) 10 weld passes (d) 20 weld passes 

Distributions of 𝜎𝑦𝑦 Stress on some surfaces chosen are compared below. Figure 4.13 

shows the position of G-H section chosen for more detailed plotting. Node G the node of 

stress concentration 100mm away from Node A shown in Figure 4.8 (a). And Node H is 

the node on internal surface of the cone with the same height of node G. From Figure 4.13, 

it is easy to see that there is a high tensile 𝜎𝑦𝑦 stress component at point G. In Figure 4.13 

(b), the 𝜎𝑦𝑦 stress varies linearly from H to G. Similarly, if choosing other horizontal 

sections in the cone cross-section, the 𝜎𝑦𝑦 stress distribution along these chosen sections 

also have yield a linear relation with horizontal distance similar to that shown in Figure 

4.13 (b). Hence this welding problem has some similarities with beam bending through the 

axisymmetric wall thickness. 
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Figure 4.13 𝜎𝑦𝑦 stress comparison on section G-H for different number of weld pass 

simulations 

The 𝜎𝑦𝑦 stress (vertical stress) distribution on the top surface of model is shown in Figure 

4.14. Maximum compressive stress on top surface is at point D in Figure 4.14. From the 1-

weld-pass simulation to the 20-weld-pass simulation, the maximum compressive vertical 

stress value at Point D decreases in magnitude. The maximum compressive 𝜎𝑦𝑦 stress 

shown in the blue curve is -303.26 MPa, and the maximum compressive 𝜎𝑦𝑦 stress in the 

black curve is only -74.86 MPa. An area with compressive 𝜎𝑦𝑦 stress on top surface mainly 

exists within approximately 45 mm away from Node D. Then the tensile 𝜎𝑦𝑦 stress area 

begins at about 45 mm and ends at 150mm away from Node D. The maximum tensile stress 
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exists on the node 85 mm away from Node D. Besides the compressive stress area and 

tensile stress area, the 𝜎𝑦𝑦 stresses becomes are approximately zero. Because the clamped 

boundary conditions are set for the node on the corner of the top surface and top edge of 

the model, a 𝜎𝑦𝑦 stress concentration occurs at that node. 

 

Figure 4.14 𝜎𝑦𝑦 stress comparison on top surface for different number of weld pass 

simulations 

Figure 4.15 shows overall 𝜎𝑧𝑧 stress (stress in circumferential direction) distribution in 

Cone & Tee Assembly Model of simulations with different number of weld passes. All of 

the simulations show high 𝜎𝑧𝑧 stresses mainly exists in the filler metal. The magnitude of 

these stresses are different for the 4, 10 and 20 weld passes simulations. The area with high 

tensile 𝜎𝑧𝑧 stress from the 1 weld pass simulation is near the internal surface instead of 
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external surface. There are two high compressive 𝜎𝑧𝑧 stress areas in the HAZ on the internal 

surface. Except for these several highly stressed areas, the other areas in the model have 

relatively low 𝜎𝑧𝑧 stresses. 

 

                     (a)                                                                   (b) 

 

                            (c)                                                                   (d) 

Figure 4.15 𝜎𝑧𝑧 stress distribution comparison for different number of weld pass:  

(a) 1 weld pass (b) 4 weld passes (c) 10 weld passes (d) 20 weld passes 
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In this study, the 𝜎𝑧𝑧 stress distribution on the internal surface is shown in Figure 4.16. 

Examining Figure 4.16 (b), the green curve (10 weld passes simulation) and black curve 

(20 weld passes simulation) are similar to each other, and are different than results the other 

two low weld pass simulations. For 10 weld passes and 20 weld passes, nearly the entire 

internal surface is subjected to compressive circumferential stresses. For 1 weld pass and 

4 weld pass simulations, large compressive hoop stress 𝜎𝑧𝑧 exists on internal surface near 

top and bottom. And very high tensile 𝜎𝑧𝑧 exists on internal surface near the joint of Cone 

and Tee part. The maximum tensile 𝜎𝑧𝑧 stress of 1 weld pass simulation is 333.7 MPa and 

maximum tensile 𝜎𝑧𝑧 stress of 4 weld pass simulation is 251.52 MPa. According to results 

from the 1 weld pass and 4 weld pass simulations, the internal surface will have large 

distortions and even cracks in circumferential direction. 

 

Figure 4.16 𝜎𝑧𝑧 stress comparison on internal surface for different number of weld pass: 

(a) Position of internal surface (b) Stress distribution on internal surface 
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4.22 Residual Stress comparison for simulations with different materials 

Residual stress comparison in this section are for different material groups (Incoloy 800 

HT+ Inconel 617 group, 316L+ 316L group). All the simulations involved in this section 

have 10 weld passes, boundary condition 2 (seen from Figure 2.11 in Section 2.4) and the 

Isotropic hardening plasticity model. Figure 4.17 (a) and (b) respectively shows overall 

Von-Mises stress distribution in the Cone & Tee Assembly Model with 316L and Inconel 

alloy. The spectrum of Figure 4.14 (a) and (b) are different. The red zone in Figure 4.17 

(a) represents area whose stress is larger than yield stress of 316L, which is 172.3 MPa at 

21℃ . The red zone in Figure 4.17 (b) represents areas whose stress is larger than the yield 

stress of Incoloy 800 HT, which is 241.32 MPa at 21℃. Thus the red zones in these two 

plots respectively shows its plastic deformation area in the axisymmetric model with 

different materials. Though the plastic deformation zones in these two simulations are 

similar in shape, the stress values in the same locations are different. 

 

                        (a)                                                                 (b) 

Figure 4.17 Overall Von-Mises stress distribution comparison for different material:  
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(a)316L (b) Incoloy 800 HT + Inconel 617 

Figure 4.18 (a) (b) respectively shows total plastic strain distribution in simulations with 

316L and the Inconel alloy group. A large plastic deformation zone in both these two 

figures mainly exists in the welded fillers.  The bulk of the model otherwise has small 

plastic deformation or elastic deformation. 

 

                  (a)                                                                    (b) 

Figure 4.18 Plastic strain distribution comparison: (a) 316L (b) Incoloy 800 HT + 

Inconel 617 

Some surfaces are chosen to compare von-Mises Stress distribution for different materials 

in Figure 4.19. Figure 4.19 (a) compares the Von-Mises stress distributions from 

simulations based on the different material groups show two different stress concentration 

areas. One is the area near node A and the other one is the area 100 mm away from node 

A. Except for the magnitudes, the stress distributions along surface A-B of two simulations 

are identical. 
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(a) 

 

                                                             (b) 

Figure 4.19 Von-Mises stress comparison on selected surfaces for simulations with 

different material (a) Surface A-B (b) Section A-C 
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Von-Mises Stress distribution on section A-C is shown in Figure 4.19 (b). For nearly all 

the nodes, the von-Mises stress results from the Inconel alloy group are larger than that 

from the 316L group. One big difference is the stress in the area near Point C. The von-

Mises stress depicted by the blue curve (Inconel alloy group) increases to a local peak value 

of 125 MPa at about 39.25 mm away from Node A and then decreases. While the stress 

given by the red curve (316L) declines to a value of 58 MPa at about 36.85 mm away from 

Point A and before rising again.  

 

From Figure 4.19, it is easy to be seen that for nearly all the nodes, the von-Mises stress 

results from the Inconel alloy group are larger than that from the 316L group. Could this 

phenomenon explained by thermal elastic stress theory? According to the linear thermal 

stress equation, 

                                                          𝜎 ≈ 𝐸𝛼∆𝑇                                                            (4.1) 

Where E is the elastic modulus and 𝛼 is the coefficient of thermal expansion. The product 

of E and 𝛼 as a function of temperature is plotted in Figure 4.20 (a). The magnitude of 

product from green curve (316L) is high than that from both Blue curve (Incoloy 800 HT) 

and red curve (Inconel 617). For the same ∆𝑇, the von-Mises stress of 316L should have 

been larger than that of Incoloy 800HT and Inconel 617, which can not explain the results 

shown in Figure 4.19. Figure 4.20 (b) shows the yield stress of 316L are larger than yield 

stress of Incoloy 800 HT and Inconel 617. The yield stress of 316L is highest among the 

three alloys for all temperatures. Hence, the observation that the von-Mises stresses 
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determined for the Inconel alloy group larger than that of 316L can’t be explained by 

thermal elastic stress estimation. 

 

                       (a)                                                                   (b) 

Figure 4.20 Material property comparison for three different material: (a) Product of 

Young’s modulus and coefficient of thermal expansion (b) Yield stress 

Figure 4.21 shows the overall 𝜎𝑦𝑦 stress distribution comparisons for the simulations with 

the two different material groups. The 𝜎𝑦𝑦 stress of simulation with Inconel alloy group in 

the same region is higher than that of simulation with 316L. 
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                           (a)                                                               (b) 

Figure 4.21 𝜎𝑧𝑧 stress overall distribution comparison for simulations with different 

material: (a) 316L (b) Incoloy 800 HT + Inconel 617 

Figure 4.22 shows the 𝜎𝑦𝑦 stress distribution of section. Except the area 22.85 mm away 

from Node E to 40.64 mm away from Node E, value of vertical stress in other parts have 

small difference between these two simulations.    

 

Figure 4.22 𝜎𝑦𝑦 stress comparison on section E-I 

Figure 4.23 (a) (b) respectively shows 𝜎𝑦𝑦 stress distribution on internal surface and section 

G-F. For Figure 4.23 (a), large difference between magnitude of 𝜎𝑦𝑦 of two curves exists 
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in the region from 90mm to 350mm away from Node D. This zone on internal surface are 

probable to have cracks in vertical direction. In other zones beyond HAZ, there are not 

much difference between two simulations. Two curves of Figure 4.23 (b) are nearly the 

same except the stress concentration area near Node G. The difference of 𝜎𝑦𝑦 stress on 

Node G is 69.20 MPa. 

 

(a) 
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                                                                      (b) 

Figure 4.23 𝜎𝑦𝑦 stress on selected surfaces for simulations with different material group: 

(a) Internal surface (b) Section G-F 

Figure 4.21 (a) (b) respectively shows 𝜎𝑧𝑧stress distribution of 316L and Incoloy 800HT+ 

Inconel 617 simulations. Hoop stress in most part of the model is in the range from -16 

MPa to 112 MPa. And the areas and values of tensile and compressive hoop stress 

concentration zones in simulation with Inconel alloy group are larger than those from 

simulation with 316L group.  
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                         (a)                                                                (b) 

Figure 4.24 𝜎𝑧𝑧 stress distribution comparison for simulations with different material: (a) 

316L (b) Incoloy 800 HT + Inconel 617 

Two horizontal sections of lower component of model are chose to show hook stress 

distribution in Figure 4.25. For most nodes of both section A-C and J-K, 𝜎𝑧𝑧 stress value 

from simulation with Incoloy 800HT and Inconel 617 is larger than that with 316L. 
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                                                          (a)                                                                        

     

(b) 
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Figure 4.25 𝜎𝑧𝑧  stress comparison on section A-C and J-K:  

 (a) 𝜎𝑧𝑧 Stress distribution on section A-C (b) 𝜎𝑧𝑧 Stress distribution on section J-K 

Figure 4.26 shows 𝜎𝑧𝑧 stress distribution comparison on the internal surface. Similar to 

the 𝜎𝑦𝑦  stress distribution, except areas away from HAZ, stress value in simulation with 

Inconel alloy is larger than that in simulation with 316L. 

 

Figure 4.26 𝜎𝑧𝑧 stress distribution on internal surface 
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4.23 Residual Stress comparison for simulations with different Boundary Conditions 

In this section, residual stress comparisons are made for 3 different boundary conditions. 

There are three kinds of boundary conditions have been defined in details in chapter 2 

section 2.4. Boundary condition 1 is clamped conditions in x, y, z directions for 1st node 

of top edge. Boundary condition 2 includes clamped conditions in y direction on top surface 

and in x, z direction on 1st node of top edge and y, z conditions on bottom edge before 

completely cooled. After the component has completely cooled, unclamped conditions are 

set for bottom edge. Boundary condition 3 includes clamped conditions in y direction on 

top surface and in x, z direction on 1st node of top edge. And there is no boundary 

conditions on bottom edge. All the results presented in this section are based on 10 weld 

pass simulations for- Incoloy 800 HT and Inconel 617 using the isotropic plasticity model. 

Figure 4.27 shows a comparison of the von-Mises Stress distribution for simulations with 

different boundary conditions. As seen in Figure 4.27, the different boundary conditions 

do not have a significant influence on the von-Mises stress distribution in the filled weld 

zone. The maximum von-Mises stresses from boundary conditions 1, 2, 3 are respectively 

461.675 MPa, 469.510 MPa and 472.734 MPa. And all the points with maximum stress in 

these three simulations are the same points in welded fillers. Von-Mises stress distributions 

in Cone of Figure 4.27 (a) and (c) are nearly the same especially in the area near the bottom 

edge of the model. Furthermore, von-Mises stress distributions in Tee of Figure 4.27 (b) 

and (c) are similar, especially in the area near the top surface of the model. It can be seen 

that the boundary conditions used in this study only have a local influence on the residual 

stress distribution near the clamped surfaces. 
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                                    (a)                                                                  (b) 

 

    (c) 

Figure 4.27 Overall Von-Mises stress distribution comparison for different Boundary 

Conditions: 

(a) Boundary Condition 1 (b) Boundary Condition 2  (c) Boundary Condition 3 
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In order to demonstrate this conclusion, the external surface from Node B to the bottom 

edge of the axisymmetric model is selected for plotting the von-Mises stress distribution 

shown in Figure 4.28. Von-Mises stress distributions from simulations with Boundary 

condition 1 and 3 are both about zero. While red curve (Boundary Condition 2) has von-

Mises stress as large as about 250 MPa near clamped conditions on bottom. The reason is 

that the simulation with boundary condition 2 has a rigid clamped condition for nodes on 

bottom edge in Y direction, while there is no clamped condition in Boundary condition 1 

and 3. 

 

Figure 4.28 von- Mises stress comparison on external surface from Node B to bottom edge 

Figure 4.29 and Figure 4.30 respectively shows the 𝜎𝑦𝑦 stress and 𝜎𝑧𝑧 stress distribution 

from the simulations with different boundary conditions. In Figure 4.26, because of 
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clamped conditions in the Y direction on the top surface and bottom edge of the 2D 

axisymmetric model, zones near top surface and bottom edge in the simulation with 

Boundary condition 2 have large tensile and compressive 𝜎𝑦𝑦 stress. While there is no rigid 

clamped condition on top surface and bottom edge of the model in boundary condition 1, 

the 𝜎𝑦𝑦 stress in the same region obtained from simulation with Boundary condition 1 are 

very small in range of -10~ 50 MPa. 

 

                           (a)                                                             (b) 
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(c) 

Figure 4.29 𝜎𝑦𝑦  stress distribution comparison for different Boundary Conditions: 

(a) Boundary Condition 1 (b) Boundary Condition 2 (c) Boundary Condition 3 

As can be seen in Figure 4.30, the 𝜎𝑧𝑧 stress distributions obtained from simulations with 

different Boundary conditions, are essentially identical, except for the large local 𝜎𝑧𝑧 stress 

concentration near the bottom edge of cone shown in Figure 4.30 (b), because of clamped 

conditions in Z direction in Boundary condition 2. 

  

                              (a)                                                            (b) 



63 

 

 

                                                                           (c) 

Figure 4.30 𝜎𝑧𝑧  stress distribution comparison for different Boundary Conditions: 

(a) Boundary Condition 1 (b) Boundary Condition 2 (c) Boundary Condition 3 

Figure 4.31 (a) and (b) respectively shows 𝜎𝑦𝑦 stress and 𝜎𝑧𝑧  stress distribution on surface 

M-N. Similar to Figure 4.28 (a), the blue curve (Boundary Condition 1) and green curve 

(Boundary Condition 3) shows nearly the same 𝜎𝑦𝑦 stress value, which is about zero. In 

Figure 4.31 (b), 𝜎𝑧𝑧 stress value of these two curves are about 0 in area within 250mm 

away from Node M, while high hoop stress obtained from simulation with boundary 

condition 2 exists in this region. Both 𝜎𝑦𝑦 and 𝜎𝑧𝑧 stress values of Boundary condition 2 

simulation have fluctuations whose ranges are respectively from -30.8427 MPa to 

322.6676 MPa and -233.0276 MPa to 98.9422 MPa.  
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                               (a)                                                                        

 

(b) 

Figure 4.31 𝜎𝑦𝑦 stress and 𝜎𝑧𝑧 stress comparison on surface M-N 
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Chapter 5 Isotropic & Kinematic Hardening 

5.1 Isotropic and Kinematic hardening theory 

In most of plastic deformation cases, when the von-Mises stress or Maximum shear stress 

reaches a critical value in comparison to the uniaxial yield stress, it will begin to generate 

plastic deformation. If the stress continually increases and then elastic unload occurs, once 

yield occurs, the stress needs to be continually increased in order to drive the plastic 

deformation. This phenomenon is hardening [23]. There are two typical kinds of hardening, 

Isotropic hardening and Kinematic hardening. 

 

Either isotropic hardening and kinematic hardening can be described in uniaxial stress-

strain case and multiaxial stress case. Figure 5.1 (a) shows the uniaxial stress-strain curve 

for isotropic hardening. After the stress reaches 𝜎𝑦𝑙𝑑, the material begins to deform 

plastically. When the specimen is taken to the stress at point A, unloading is depicted along 

the dashed line. After that, compressing the specimen will continue deforming the uniaxial 

specimen elastically until the stress reaches point B, which is twice the tensile stress given 

at point A. Figure 5.1 (b) is the multiaxial stress-strain curve representing isotropic 

hardening [24]. In this situation, the center of yield surface is fixed and the yield surface 

remains the same shape but expands with increasing surface. 
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(a)                                                       (b) 

Figure 5.1 Stress-strain curve of isotropic hardening [24]: (a) Uniaxial (b) Multiaxial 

The yield function for isotropic material [25] is  

                                                 𝑓(𝜎, 𝐾) = 𝑓(𝜎) − 𝐾 = 0                                              (4.1) 

K=𝜎0 when the specimen just generates elastic deformation. 

K=𝜎𝑦 when the stress of specimen reaches 𝜎𝑦 which is larger than 𝜎0. 

 

Figure 5.2 (a) represents a uniaxial stress-strain curve based on kinematic hardening. The 

difference with uniaxial isotropic hardening is that after the material unloads along the 

dashed line and then is compressed, point B which the material begins to deform plastically 

is twice the 𝜎𝑦𝑙𝑑 less than point A [24]. This phenomenon is called Buschinger effect [25]. 

In Figure 5.2 (b), the center of the yield surface changes with increasing von-Mises stress 

but the size of the yield surface stays the same. When the stress reaches the yield surface 

B, it continues to deform plastically. 
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(a)                                                   (b) 

Figure 5.2 Stress-strain curve of kinematic hardening: (a) Uniaxial (b) Biaxial 

The yield function for kinematic material [25] is  

                                              𝑓(𝜎, 𝐾) = 𝑓(𝜎 − 𝑎) − 𝜎0 = 0                                         (4.2) 

Where 𝑎 is called shift stress which represents the center of yield surface. 

 

In welding problems, the components and welding filler metals will plastically deform 

because of the thermal stresses. Especially in the intense thermally affected zone, highly 

stressed areas with stress concentrations will exhibit extensive plastic deformation [26]. 

One of the goals of this study is to examine how the different plasticity models affect the 

results. In SYSWELD, the Material Database Manager (MDM) shown as Figure 5.3 is used 

to change the plastic hardening model type. Model 2 represents Kinematic hardening and 

Model 3 represents Isotropic hardening. 
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Figure 5.3  MDM labels of plastic hardening model 
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5.2 Simulation Results 

In this section, residual stress comparisons for 2 different plastic hardening models are 

given. All results in this section are obtained from the 10 weld pass, Incoloy 800 HT and 

Inconel 617 simulations with Boundary condition 2. Figure 5.4 (a) (b) respectively shows 

the distribution of the residual von-Mises stress from the simulations using the Isotropic 

hardening model and Kinematic hardening models. Zones which have elastic deformation 

in Figure 5.4 (a) and (b) are nearly same. Points with maximum Von-Mises Stress in the 

models are located in the welded filler zones, their values are different. The maximum 

Von-Mises Stress from the simulation with Isotropic hardening is 469.51 MPa, while the 

maximum von-Mises value in Kinematic hardening model simulation is 371.52 MPa.  

 

(a) 
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    (b) 

Figure 5.4 Overall Von-Mises stress distribution comparison for different plastic 

hardening model: (a) Isotropic hardening (b) Kinematic hardening 

Figure 5.5 shows Von-Mises Stress distribution in HAZ of Tee & Cone assembly model 

with different plastic hardening model. Spectrum of Figure 5.5 (a) and (b) are same. Red 

zone shown in Figure 5.5 (a) and (b) represents the areas which has stress higher than the 

yield stress of Incoloy 800HT, which is 241.32 MPa. The area of red zone in Figure 5.5 (a) 

is larger than that in Figure 5.5 (b), especially on external surface of Tee and along the 

circular margin of welded fillers.  



71 

 

 

(a) 

 

(b) 
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Figure 5.5 Von-Mises stress distribution comparison in the HAZ for different plastic 

hardening models: (a) Isotropic hardening (b) Kinematic hardening 

In Figure 5.6, surface E-F is selected for comparing the von-Mises Stress distribution for 

the two hardening models. The von-Mises Stress at each node on the surface of the 

simulation obtained from the Isotropic hardening model is greater than that obtained from 

the Kinematic hardening model. The length of the plastically deformed area from the 

Isotropic hardening simulation is about 58 mm from 10mm to 68mm away from Node E, 

whereas the length of plastic area in Kinematic hardening model simulation is about 35 

mm from 15mm to 50 mm away from Node E shown in Figure 5.6.  

 

Figure 5.6 Von-Mises stress comparison on surface E-F for different plastic hardening 

model 
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In Figure 5.7 (b), Von-Mises Stress distributions from the two different plastic hardening 

simulations from Node A to Node C are again shown to have similar distributions. For 

most of the area in this region, the Von-Mises Stress with Isotropic hardening is greater 

than that obtained from Kinematic hardening, expect in the area 28mm away from Node A 

to 33mm away from Node A. The stress value of nearly all the nodes on section A-C from 

the simulation with Kinematic hardening model is lower than the yield stress of Isotropic 

hardening model. Thus in the simulation with kinematic hardening, most of the area of 

section A-C only has elastic deformation, even including the stress concentration zone near 

node A. Because the Kinematic hardening model takes into account the Bauschinger effect 

into consideration. In the isotropic hardening simulation, the von-Mises stress near Node 

A is much higher than the uniaxial yield stress. 

 



74 

 

Figure 5.7 Von-Mises stress comparison on section A-C for different plastic hardening 

model 

 

Figure 5.8 Von-Mises stress comparison on internal surface for different plastic 

hardening model 

In Figure 5.8, von-Mises Stress at most nodes on the internal surface of the Cone & Tee 

assembly model from simulation with Isotropic Hardening model is greater than that with 

Kinematic Hardening model. Additionally, the area of plastic deformation on the internal 

surface obtained from the Isotropic Hardening simulation is larger than the plastic 

deformation area obtained from the Kinematic Hardening simulation seen from Figure 5.8 

.  
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In what follows, several nodes are chosen to show how the von-Mises Stress changes with 

time in the welding process for the two different plasticity models. In Figure 5.9 (b), for 

Node E, the red dash line represents von-Mises Stress of Node E changes with time in the 

simulation with Isotropic hardening model while the blue line represents how the von-

Mises Stress of Node E changes with time in the simulation with the Kinematic hardening 

model. In the heating process, the Von-Mises stress at nodes near welded filler metal will 

decrease because the welded filler metal at the high temperatures will melt. When the 

components cools down, the von-Mises Stress will increase. Thus, the figures of stress 

changing as the function with time can show the time of generating each weld pass, time 

interval between two pass and the cooling time after welding.  

  

In Figure 5.9, the value of the von-Mises Stresses obtained from the Isotropic hardening 

model are greater than that obtained from the Kinematic hardening model over most of the 

time period which is 2.5 × 104 s. In the last second of the simulation, the stress depicted 

by the red dashed line reaches about 251 MPa, which means that the area near Node E has 

yielded, while the stress given by the blue line increases to 210 MPa. The von-Mises stress 

in both simulations increases dramatically at 𝑡 ≈ 10000𝑠, when the seventh weld pass 

begins to cool down. Because seventh weld pass is closest to Node E, it will affect the area 

near Node E to significant degree. When this weld filler cools down, the residual thermal 

stresses in the neighboring area will enlarge in tensile state. 
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Figure 5.9 Von-Mises stress at Node E changes with time for different plastic hardening 

model 

Figure 5.10 shows the comparison of von-Mises Stress at Node P changing with time 

between the simulation with Isotropic hardening model and the Kinematic hardening 

model. Node P is on external surface of the tee which is about 30.33 mm away from Node 

E. Except for the period of heating and cooling during the second weld pass, the difference 

between the von-Mises Stress between the red line and blue line is quite small. From 𝑡 ≈

0.6 × 104s, at the time when the first weld pass cool down ends, the von-Mises stress 

reaches 242 MPa, which is approximately equal to the yield stress of Incoloy 800HT. 
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Beginning with heating time of the second weld pass, area near Node P has plastic 

deformation in the whole simulation.  

 

Figure 5.10 Von-Mises stress of Node P changes with time for different plastic 

hardening model 

Figure 5.11 shows the von-Mises stress at Node Q changes as a function of time in 

simulations with two different plasticity models. Because Node Q is near to the margin of 

the weld filler metal. During the heating process of every welding pass and the subsequent 

cooling down period, the von-Mises stress of the area close to the fillers metal will be 

affected to a large degree by intense thermal energy released and dissipated. The main 

difference between the plastic residual stresses in weld filler from simulations with the two 
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different plasticity models is shown clearly. In Figure 5.11 (b), from 𝑡 ≈ 0𝑠, the red line is 

clearly above the blue line, though these two line exhibit the same trend. At the time when 

the simulation ends, the value of von-Mises stress from the Isotropic model is 277.61 MPa, 

so that this area has plastically yielded. While the value of von-Mises stress from the 

Kinematic model is just 226.58 MPa, which is less than the yield stress of the Incoloy alloy. 

According to isotropic hardening model, some regions near welded filler metal have plastic 

deformation while due to kinematic hardening model, while nearly most regions in the 

neighbor of welded filler metal only have elastic deformation.   

 

Figure 5.11 Von-Mises stress of Node Q changes with time for different plastic 

hardening model  
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Chapter 6 Conclusion 
In general, the finite element program SYSWELD provides a convenient and efficient 

methodology for welding simulations need to investigate the influence of the number of 

weld passes, materials, boundary conditions and plastic hardening models on residual stress 

distributions. In this study, a specified axisymmetric welded geometry, Cone & Tee 

structure was examined in detail. 

  

A range of thermal and residual stress solutions were generated for four different number 

of weld passes. The plastic yielding associated with a simple 1 weld pass is much larger 

than that obtained from 4 weld passes, 10 weld passes and 20 weld passes. Thus, the 1 weld 

pass model appears to be too crude to accurate describe a realistic welding process for this 

particular geometry a large welded Cone & Tee structure. Models with 4 weld passes seems 

to be much more realistic and can be used to identify the position and area of plastic 

deformation seen in larger weld pass models. Simulations with 10 and 20 weld passes yield 

very similar residual stress distribution with almost identical plastic deformation zones and 

the stress values of stress at critical points. It should be noted that the more realistic multi-

pass (10-20) welding simulations yield lower residual stresses than those obtained from the 

1 weld pass and 4 weld pass simulations. The observed differences between 10 and 20 weld 

pass simulations is so little that in can be inferred that predictions for even larger numbers 

of weld passes, on the same geometry, should yield almost identical stress and strain 

distributions. This is a very important result, since large structures like the cone and tee 

structure can be fabricated with such a large number of weld passes is not only 

computationally inefficient, but unnecessary for accurate residual stress predictions. 
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For different material groups, two separate simulations with Incoloy 800HT+ Inconel 617 

(filler metal) and 316L were performed to compare the differences in the final residual 

stresses after welding. In these welding simulations, similar plastic deformation areas were 

observed, even though the magnitudes of the von-Mises stresses and individual stress 

component magnitude were different. The differences appear to be generally associated 

with the difference in the uniaxial yield stress for these materials. The stress values obtained 

from simulations using the Inconel alloy group is higher than that obtained from the 316L 

material group simulations.  

 

For different boundary conditions, compared with the other two boundary conditions, 

Boundary condition 2 (defined in Chapter 2 Figure 2.11 in details) causes much larger 

plastic deformation area especially near the top surface and bottom edge. But because of 

rigid clamped conditions on both top surface and bottom, these areas of assembly model 

with Boundary condition 2 has lowest displacement compared with Boundary condition 1 

and model 3 (defined respectively in Chapter 2 Figure 2.10 and Figure 2.13 in details). The 

most important conclusion about the boundary conditions in this study is that for such a 

large model, the rigid clamped boundary conditions do not have any significant influence 

on the von-Mises stress and stress components in the HAZ, but only cause locally enlarged 

von-Mises stresses in areas close to where the boundary conditions are applied. 

  

For different plasticity hardening models, the plastic deformation areas obtained from the 

simulations that used the Isotropic hardening model are larger than those obtained from 
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simulations based on the Kinematic plasticity model. On the same section, or surface, the 

Von-Mises stresses obtained from the Isotropic plasticity model are higher than those 

obtained from Kinematic hardening model. Because based on kinematic hardening model, 

Bauschinger effect is considered in calculating Von-Mises stress for each step in non-linear 

repeating thermal loading and unloading.  
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Appendix 
Data sheets of Thermal and Mechanical properties including thermal conductivity, Young’s 

Modulus, Coefficient of expansion, yield stress of Incoloy 800HT and Inconel 617 as the 

function of temperature are provided in Appendix. 

Table A.1 Thermal conductivity of Incology 800HT 

Temperature (℃) Thermal Conductivity (𝑊/𝑚℃) 

 20  11.5 

100 13.0 

200 14.7 

300 16.3 

400 17.9 

500 19.5 

600 21.1 

700 22.8 

800 24.7 

900 27.1 

1000 31.9 

 

Table A.2 Young’s Modulus of Incology 800HT 

Temperature (℃) Young’s Modulus (GPa) 

20 196.5 

100 191.3 

200 184.8 

300 178.3 

400 171.6 
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500 165.0 

600 157.7 

700 150.1 

800 141.3 

 

Table A.3 Coefficient of Expansion of Incology 800HT 

Temperature (℃)  Coefficient of Expansion (
𝜇𝑚

𝑚
/℃) 

100 14.4 

200 15.9 

300 16.2 

400 16.5 

500 16.8 

600 17.1 

700 17.5 

800 18.0 

 

Table A.4 Yield stress of Incology 800HT 

Temperature (℃) Yield stress (𝑀𝑃𝑎) 

21 241.32 

93 220.63 

204 189.60 

315 158.58 

426 137.89 

537 124.12 

648 124.13 

760 124.15 

871 117.21 
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982 68.94 

1093 27.60 

1193 13.00 

1260 8.00 

1300 7.00 

1370 5.00 
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Table A.5 Thermal Conductivity of Inconel 617 

Temperature (℃) Thermal Conductivity (𝑊/𝑚℃) 

20 13.4 

100 14.7 

200 16.3 

300 17.7 

400 19.3 

500 20.9 

600 22.5 

700 23.9 

800 25.5 

900 27.1 

1000 28.7 

 

Table A.6 Young’s Modulus of Inconel 617 

Temperature (℃) Young’s Modulus (𝐺𝑃𝑎) 

25 211 

100 206 

200 201 

300 194 

400 188 

500 181 

600 173 

700 166 

800 157 

900 149 
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1000 139 

1100 129 

 

Table A.7 Coefficient of expansion of Inconel 617 

Temperature (℃) Coefficient of expansion (
𝜇𝑚

𝑚
/℃) 

100 11.6 

200 12.6 

300 13.1 

400 13.6 

500 13.9 

600 14.0 

700 14.8 

800 15.4 

900 15.8 

1000 16.3 

 

Table A.8 Yield stress of Inconel 617 

Temperature (℃) Yield stress (𝑀𝑃𝑎) 

21 322.00 

93 310.26 

100 303.36 

204 248.31 

315 241.32 

426 237.87 

537 241.30 

648 255.11 
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760 255.00 

871 220.00 

982 145.00 

1100 58.94 

1204 21.37 

1316 6.89 

1343 5.00 

1370 5.00 
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