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ABSTRACT 

 

Modeling of a Novel Solar Down Beam Test Facility Utilizing Newtonian Optics 

 

by 

Ryan Hoffmann 

 

Dr. Yitung Chen, Examination Committee Chair 

Professor of Department of Mechanical Engineering 

University of Nevada, Las Vegas 

 

 As advances in concentrated solar energy progress there will inevitably be an 

increase in the demand of resources for testing new conceptions.  Currently, there are 

limited facilities available for taking concentrated solar energy concepts from the 

laboratory bench scale to the engineering test scale.  A proposed solution is a scientific 

and developmental facility that provides highly concentrated solar energy at ground level.  

The design presented is a solar down beam test facility utilizing a Newtonian optics 

approach with a flat rectangular down beam mirror to reflect and concentrate the sun’s 

rays at ground level.   

Literature review suggests a hyperbolic reflector implementation for down beam 

reflector systems.  An alternative Newtonian design uses a planar mirror to direct 

converging light from the heliostat field to a convenient focus at ground level.  A flat 

mirror has the advantage of relatively cheap construction, and the intrinsic capability to 

host multiple experiments.  Additionally, in comparison to a convex down beam mirror, 

there is significantly less optical distortion of the solar energy collected on a solar 

receiver at the top of a tower.  The Newtonian design inherently preserves the focus of 

the heliostat field, mimicking the behavior of tower top geometry.  The planar mirror 
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geometry simply reflects the rays to ground level, and thus has little effect on the 

achievable concentration ratio other than the additional reflective losses.       

 The presented work focuses on the optical analysis and modeling of such a novel 

test facility.  System examination was accomplished utilizing the commercially available 

ray tracing software Advanced Systems Analysis Program (ASAP
®
).  ASAP

®
 is able to 

simulate the interaction of the sun’s rays with the designed optical system by utilizing 

Monte Carlo ray tracing techniques.  This allowed for all optical losses to be simulated 

within the model; including cosine, blocking, shadowing, attenuation, and reflective 

losses.      

In order to achieve a high level of concentration with a planar down beam 

reflector, converging heliostats were utilized.  Parallel rays were implemented to identify 

the focusing conditions of the heliostats.  A realistic sun source was developed within 

ASAP
®
 to simulate the maximum 0.5° angular divergence characteristics of the sun’s 

rays.  This allowed for practical concentration ratios to be simulated within the model.  

Algorithms were developed and implemented in MATLAB
®

 to properly simulate the 

sun’s position as well as the heliostat field layout and orientation for any given hour of 

the year.  A Sun Position Orientation (SPO) algorithm was constructed to determine the 

relative location of the sun source for any given hour within the ASAP
®
 model.  A 

Heliostat Reflection Orientation Position Vector (HROPV) algorithm was developed to 

properly orientate each heliostat to reflect to the proper aim point (AP) of the heliostat 

filed.  Additionally, a North-South Cornfield Heliostat Field Layout (NSCHFL) 

algorithm was established to tightly pack heliostats within the utilizable range of the 

down beam reflector.
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Utilizing a tightly packed North-South (N-S) cornfield heliostat field layout the 

optical performance of the facility was demonstrated for a day in each of the four 

seasons, providing a general performance trend over the course of the year.  Extensive 

ray tracing establishes the achievability of the targeted 1MW, 1,000 suns concentration at 

ground level for several hours of the day over the course of the year.  Furthermore, the 

simulation results demonstrate nearly 2 MW and 4,000 suns concentration is achievable 

for optimal orientation hours in which the tower, sun, and center of the heliostat field are 

all co-linear. 

Future system analysis should examine modifications of optical geometry 

parameters such as heliostat dimensions, heliostat field layouts, and down beam reflector 

heights as well as orientations.  Additionally, the effect of varying focal points needs to 

be investigated.  The implications of heliostat pointing inaccuracies should also be 

accounted for. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Motivation 

Modern society relies on energy as a fundamental component to everyday 

functionality.  Since the industrial revolution, energy has been essential in the 

development of economic and social fortune throughout the world.  Coupled with the 

tendency towards growth in world population and general standards of living, it is 

conceivable that the demand for energy will only increase.  The International Energy 

Agency (IEA) predicts that by the year 2030 there will be a 50% increase in the world’s 

energy consumption in comparison to current trends [1].      

The development of energy technologies has allowed world civilizations to 

flourish to an unprecedented extent. The consumption of world fossil fuels, however, has 

come at a price.  Greenhouse gas levels in the atmosphere have risen, and noticeable 

climate changes have been documented.  In the past one hundred years global 

temperatures have been driven up by over 0.7°C and sea levels have risen more than 20 

cm [1].  There is little doubt that emissions due to non-clean energy sources have 

contributed to such effects.  Furthermore, finite fossil fuels are being consumed at a much 

quicker pace than they are produced.  The current challenge, as well as the challenge that 

lies ahead, is renovating our energy sources and how we utilize them.  One must consider 

renewable energy technologies in order to meet these challenges.   

The sun, as a source of energy, is nearly inexhaustible and offers a pollutant free 

alternative to fossil fuels.  The rate that energy from the sun is received on the earth’s 
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atmosphere is 5.4 x 10
24 

J/year.  This equates to 170 trillion kW, an estimated 27,000 

times the amount of energy produced by all of the man-made systems across the world 

[2].  Although not all of this energy is utilizable on the earth’s surface, the sun is a 

precious source of energy, particularly in locations such as southern Nevada.  Large scale 

power generation from solar energy has been demonstrated in various forms of 

concentrated solar power (CSP) facilities.  Improving the utilization and efficiency of 

such facilities will play a key role in the solar and renewable energy future. 

 

1.2 Concentrated Solar Power 

1.2.1 Technology Overview 

CSP facilities utilize high temperature heat in order to generate electrical power.  

Concentrating solar collectors, in the form of various sun tracking mirror configurations, 

concentrate sunlight onto a receiver that collects the solar energy and converts it to heat.  

In the second part of the system, the heat drives a turbine or heat engine which powers a 

conventional generator producing electricity.  CSP systems can be utilized to generate 

power in a conventional power cycle by either entirely replacing, or by supplementing the 

burning of fossil fuels.  The utilization of thermal storage has long been an area of focus 

in CSP systems, with aspirations for CSP facilities to produce electricity during clouding 

periods or hours of the night.     

The optics of most concentrated systems can only make use of direct beam 

radiation, rendering diffuse solar radiation produced by scattering in the atmosphere non-

utilizable.  Consequently, CSP technologies are particularly appealing in the southwest 

United States as well as other sunbelt regions across the globe where direct normal 
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irradiance (DNI) values are high [3].  Figure 1.1 presents a map depicting the amount of 

direct normal solar radiation as a function of location in the southwest United States.  The 

map also portrays the available transmission lines, which is crucial in the location of CSP 

plants because it demonstrates the ease of accessibility for tying power produced from 

solar concentrating facilities into the electrical grid of the United States. 

 

 
Figure 1.1 Concentrating solar power prospects for southwest United States [4] 

 

The map portrays southern Nevada as an ideal location for CSP technologies, due 

to the high levels of DNI over the course of the year.  In order to achieve high levels of 

concentration, CSP systems require tracking of the sun throughout the course of the day.  

The concentration is attained by redirecting the sunlight onto a heat exchanger, in the 

form of a receiver/absorber, where the heat is utilized to increase the temperature of a 

heat transfer fluid (HTF).  Depending on the design of the system, the HTF can either be 
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used directly in the power cycle, such as directly boiling water to produce steam, or by 

circulating the HTF through an intermediate cycle, such as in thermal oil or molten salt 

systems [1].  Utilizing an intermediate secondary cycle requires an additional heat 

transfer interaction process in the production of electrical power. 

The higher the temperature the more efficiently heat engine power cycles are 

capable of converting thermal to mechanical energy, which is justified according to the 

principles of thermodynamics.  Conversely, at higher temperatures there are greater heat 

rejection losses at the receiver, resulting in collector efficiency deficits as temperatures 

increase at the absorber.  The result is that for any given concentration factor an ideal 

operating temperature exists for which the highest efficiency of converting solar energy 

to mechanical work is achieved [1].  Figure 1.2 demonstrates the theoretical total 

efficiency of high temperature solar concentrating systems in the generation of 

mechanical work as a function of receiver temperatures for varying concentration ratios.  

It is essential to recognize that the figure depicts an ideal solar concentrator combined 

with a perfect, Carnot, power cycle efficiency.  Since an ideal absorber does not exist and 

perfect Carnot cycle efficiency is unachievable, optimum operation temperatures will be 

slightly lower than those presented in the theoretical figure.  The plot demonstrates that at 

higher concentration levels, higher total efficiencies are achievable. 
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Figure 1.2 Theoretical efficiency of CSP systems for generating mechanical work [1] 

 

The United States Department of Energy (DOE) has shown a renowned vigor in 

ongoing CSP research, development, and deployment efforts.  The goal of the DOE is to 

increase the use of CSP technologies in the United States, in an effort to make CSP 

competitive in the intermediate power market by 2015.  Additionally, the DOE is 

dedicating efforts to developing advanced technologies that will reduce systems and 

storage costs, enabling CSP to be competitive in the baseload power market by the year 

2020 [5].  The DOE views CSP as a significant player in the renewable energy future, 

and has declared CSP one of the four subprograms within the Solar Energy Technologies 

Program (SETP).  SETP is targeted towards developing the advancement of solar energy 

technologies to make solar electricity a more cost effective solution as compared to 

conventional forms of electricity generation [6].      

CSP systems can be distinguished and categorized according to their technologies 

or optical arrangement of concentrating reflectors.  Line focusing systems require only 

single-axis tracking of the sun in order to focus concentrated sunlight onto an absorber 
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tube.  Point focusing systems, on the other hand, require dual-axis tracking in order to 

focus the sun’s radiation onto a thermal receiver.  Currently, CSP technologies can be 

categorized into three primary types of systems: linear concentrators, dish/engine 

systems, and power towers.  Table 1.1 compares performance data for varying forms of 

CSP systems.  Most significantly for the scope of the research presented, is the capacity 

and concentration ratio of each type of technology.   Additional insight as to how each 

form of CSP system is designed and operates is presented below. 

         

Table 1.1 Performance data of various CSP technologies [1] 

 
 

1.2.2 Linear Concentrator Systems 

Linear concentrating systems consist of both parabolic trough as well as linear 

Fresnel reflector systems.  Trough systems utilize parabolic shaped mirrors that focus the 

sun’s radiation to a tube carrying a fluid down the focal point of the trough’s parabola.  

The tube runs the length of the reflective trough and a HTF, usually oil, is used to 

generate electricity in a conventional steam generator.  Parallel rows of troughs, typically 

aligned on a north-south axis, comprise a collector field.  Aligned on a north-south axis, 

the troughs are then able to track the motion of the sun on an east-west axis throughout 



  

7 
 

the course of the day.  Parabolic trough designs can also incorporate thermal storage by 

setting aside a portion of the HTF during its hot phase.  This allows for the energy of the 

fluid to be harnessed in electricity production during interruptions of solar irradiance.  

Figure 1.3 depicts the operating structure of a single-axis sun tracking parabolic trough 

system, while Figure 1.4 presents a schematic of a parabolic trough power plant that 

incorporates thermal energy storage.    

 
Figure 1.3 Parabolic trough single-axis tracking operation schematic [7] 
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Figure 1.4 Parabolic trough power plant schematic incorporating thermal storage [8] 

 

With parabolic trough systems the heat collection element (HCE) located at the 

focal point of the parabola moves with the concentrating collectors as the sun is tracked 

on a single- axis throughout the course of the day.  Linear Fresnel systems are similar to 

parabolic trough systems, except they utilize flat or slightly curved mirrors mounted on 

ground level trackers to reflect sunlight onto a fixed receiver located above the mirrors.  

Unlike parabolic troughs, linear Fresnel systems utilize a stationary absorber which 

eliminates the need for flexible fluid joints required by trough systems [1].  Additionally, 

low-cost flat glass can be used and curved elastically due to the larger radius of curvature 

of the glass facets.  Furthermore, linear Fresnel systems allow for varying aiming 

strategies in which the mirrors can be aimed at different absorbers throughout the course 

of the day.  On the down side, the flat mirror arrangements of the reflectors lead to 

intrinsic optical aberrations, cosine losses, which can reduce the output by 20-30% in 

comparison to parabolic trough systems [1].  Linear Fresnel systems become 
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economically feasible at the point in which reduced optical performance is offset by the 

lower investment costs required for the production of such systems.  Figure 1.5 depicts a 

linear Fresnel reflector power plant schematic.  

 
Figure 1.5 Linear Fresnel reflector power plant schematic [9] 

 

1.2.3  Dish/Engine Systems 

Solar dish/engine systems consist of two primary components, the solar 

concentrator and the power conversion unit.  The concentrator is a parabolic dish of 

mirrors that concentrate the radiation from the sun onto a thermal receiver located at the 

dish’s focal point.  The power conversion unit consists of the thermal receiver and the 

engine/generator.  The thermal receiver absorbs the concentrated solar energy, converts it 

to heat, and then transfers the heat to the engine/generator.  The engine/generator 

subsystem is responsible for converting the heat into electricity.  Dish/engine systems are 

limited in size to about 100-400 m
2
, a practical limitation attributed to the constraints of 

high wind loads.  As a result of their size limitation, dish systems generally produce 

anywhere from 9 to 25 kWe.  Dish systems have relatively high efficiencies among CSP 
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technologies, which can be accredited to their high concentration ratios typically ranging 

from 1,000-3,000 suns [1].  Such a trend is expected and predicted in Figure 1.2.   

Various forms of thermal receivers exist for dish systems.  One form is a bank of 

tubes utilizing a cooling fluid, generally hydrogen or helium, which operates as a 

working fluid for the engine as well as a heat transfer medium.  Another form is a heat 

pipe, in which the boiling and condensing of an intermediate fluid is utilized to transfer 

heat to the engine.  The most common type of engine utilized to convert the heat to power 

is the Stirling cycle engine.  A heated fluid is utilized to propel pistons and create 

mechanical work. The mechanical work, or rotation of the engine crankshaft, in return 

drives a generator producing electrical power [10].  Figure 1.6 depicts a Dish/Engine 

power system. 

 
Figure 1.6 Dish/engine power system [10] 

 

1.2.4 Solar Power Towers 

The final form of CSP technology commonly utilized, and the form most 

pertinent to the scope of research presented in this thesis, is solar power towers or central 

receiver systems.  Central receiver systems utilize large dual-axis sun tracking mirrors 
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known as heliostats to focus the sun’s radiation onto a central receiver at the apex of a 

tower.  The concentrated sunlight heats a HTF flowing through the receiver which is used 

to generate steam.  The steam is then utilized in a conventional turbine-generator to 

produce electricity.  

The concept of central receiver systems was first introduced by scientists from the 

USSR in the 1950s.  In 1965, near Genova, Italy Professor Giovanni Francia produced 

the first full scale size experiment in which 120 ‘tea-table’ size round mirrors were 

focused on a steam generator located at the top of a steel frame.  As a resulting product, 

Francia was able to generate superheated steam at 500°C, 10 MPa [11].  Presented in 

Figure 1.7 is a plant schematic representation of a solar power tower central receiver 

system. 

 
Figure 1.7 Central receiver power tower system [12] 

 

Different HTFs are incorporated into various solar power tower plant designs.  

Common HTFs include water/steam, as well as molten salt.  Due to its heat transfer and 

thermal storage capabilities molten salt is often considered a good thermal energy storage 
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medium, providing the additional benefit of being able to produce power at times of no 

sunlight, such as cloudy weather or night.   

Two primary types of receivers are utilized in solar power tower systems, external 

receivers and cavity receivers.  External receivers generally consist of vertical tubes 

welded side by side to produce a cylindrical shape tube bundle heat exchanger.  The 

cylindrical shape of the receiver allows for a 360° acceptance angle, enabling heliostats to 

be placed completely around the tower.  At the top and bottom of the tubes are headers 

that supply and collect the HTF.  The total area of external receivers is typically kept at a 

minimum in order to reduce the effect of heat losses.  The minimum size limit of an 

external receiver is specified by the maximum temperature of the tubes, and consequently 

the heat removal capability of the HTF.  Common height to width ratios for external tube 

receivers are in the range of 1:1 to 2:1 [13].  Figure 1.8 demonstrates the external receiver 

originally utilized at the Solar One central receiver facility located in Barstow, CA.     

 

 
Figure 1.8 External receiver utilized at Solar One facility in Barstow, CA [13] 
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Cavity receivers are utilized in place of external receivers in an effort to reduce 

the total heat losses from the receiver.  In such a system, the solar flux absorbing surface 

is located within an insulated cavity, effectively reducing the convective heat losses from 

the absorber material.  An absorbing material forms the walls of the cavity so that solar 

flux reflected from the heliostat field is reflected through an aperture and onto an 

absorbing surface.  Consequently, cavity receivers are limited to the acceptance angle of 

the aperture, typically in the range of 60° to 120° [13].  Since the acceptance angle is 

limited, the location of the heliostat field becomes limited as well.  Often times multiple 

cavities are located on one receiver to broaden the acceptance angle, and subsequently the 

location in which heliostats can effectively be placed.  It is common for cavity receivers 

to have an aperture area on the order of one-third to one-half the internal absorbing 

surface area [13].  Figure 1.9 illustrates a cavity receiver with four apertures to increase 

the acceptance angle of concentrated rays.   

 

 
Figure 1.9 Cavity central receiver with four apertures [13] 
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Due to the high temperatures that central receiver systems are able to obtain, solar 

power towers accomplish more efficient thermodynamic steam cycles in comparison to 

trough technologies [1].  In central receiver systems the energy conversion takes place at 

a single fixed focal point located at the top of a tower, which requires dual-axis tracking.  

This is a distinguishing difference from linear concentrating systems that focus to a line 

instead of a point, thus requiring only single-axis tracking.  Central receiver systems 

consolidate the energy transport network, allowing the design emphasis to be placed on 

improving the energy conversion process, thus creating a more cost effective solution 

[11].  Such factors make solar power towers an ideal candidate for mid-term cost 

reduction of electricity among CSP technologies.   

Amongst CSP technologies, central receiver systems are often predicted to be the 

most economically feasible solution for producing solar-generated electricity or hydrogen 

on a grand scale.  Furthermore, approximately half of the cost of central receiver systems 

is in the collector arrangement, implying the heliostat field [14].  Such a condition 

indicates two things.  First, it is justifiable to utilize an efficient engine that can convert 

the largest possible amount of energy received by the collector array to utilizable 

electricity.  Second, by reducing the cost and improving the performance of heliostats the 

economic viability of solar towers becomes consistently more realizable.  

  

1.3 Tower Reflector Systems 

1.3.1 Concept Overview 

The concept of a solar down beam tower was first proposed by Rabl [15] in 1976.  

A tower reflector (TR) system utilizes a reflective mirror at the top of a tower, replacing 
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the receiver of traditional tower power systems, to redirect the radiation from the sun 

onto a focal point at ground level.  The motivation for the TR configuration originated 

from the problems associated with the heat transfer process from the thermal receiver at 

the top of a tower to the power block at ground level.  Traditional solar towers require the 

pumping of a HTF to the top of a tower.  With towers reaching hundreds of meters in 

height depending on configurations, pumping a HTF to the top of a tower is not a 

mundane task.   Rabl [15] proposed it was desirable to transport energy in the form of 

solar radiation all the way to the power block at ground level.  Rabl [15] also suggested 

the concept of a secondary receiver concentrator (RC) located at ground level, in the form 

of a compound parabolic concentrator (CPC), to further focus and concentrate the down 

beam rays.  If the optical losses can be limited the concept of a TR system becomes 

feasible. 

Yogev [16] illustrates the benefits of a ground level plant configuration.  

Primarily, all major hardware (Receiver, CPC, Power Block, etc.) is located at or near 

ground level.  A down beam optical configuration eliminates the need for long and 

extensive piping, as well as a gigantic and expensive tower.  Furthermore, the 

requirement and frequency for facility personnel to access the top of the tower is 

drastically reduced.   Yogev [16] presents the results of a technical feasibility study for a 

TR system.  It was found that supporting a reflector at the top of a tower is technically 

viable from a practicality perspective.  Additionally, the results demonstrated that the cost 

of a tower to support down beam optics is significantly less than the cost required to 

construct a conventional solar tower.  The conclusion appears reasonable, since the tower 
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is supporting only a reflector component allowing it to be lightweight and relatively 

cheap.  

1.3.2 Optics of Down Beam Towers 

Various optical configurations for down beam systems have been investigated.  

Segal [17] performed an in-depth optical comparison of hyperboloid and ellipsoid shaped 

down beam mirrors.  From an optical perspective, a hyperbolic down beam mirror allows 

for the aim point (AP) of the heliostat field to be located above the TR.  Conversely, an 

elliptical down beam mirror requires an AP below the height of the TR.  Presented in 

Figure 1.10 is an optical comparison of a hyperbolic and elliptic down beam mirror. 

 
Figure 1.10 Solar tower reflector optical overview: (a) hyperbolic mirror; (b) elliptical 

mirror [17] 
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In Figure 1.10, LF portrays the lower focus height, or height of the secondary RC.  

F1 is the distance from the TR to the AP, while f2 is the distance from the TR to the 

secondary concentrator.  Consequently, fh can be described as the fractional position of 

the vertex of the hyperboloid from the height of the AP, and fe as the fractional position 

of the ellipsoidal upper vertex to the AP [17].  It was demonstrated that the maximum 

concentration at the entrance to the secondary receiver for a hyperbolic mirror is in the 

range of fh = 0.7 to fh = 0.75.  Similarly, maximum concentration on an equal scale for 

an elliptical down beam mirror was demonstrated at fe = 1.5 to 1.75.  The conclusion that 

can be drawn is that for an equivalent concentration, the location of an elliptical mirror is 

much higher than the required location of a hyperbolic mirror [17]. 

 It was determined that moving up the elliptical mirror away from, or down the 

hyperbolic mirror towards, the focal point resulted in a smaller image size.  Such a 

transition also results in two adverse side effects.  First, the required size of the down 

beam mirror is increased.  Second, if a secondary concentrator is utilized, the acceptance 

angle into the RC is increased.  Figure 1.11 demonstrates the effects of such phenomena.  

Since the ability for a RC to further concentrate solar radiation is directly proportional to 

the acceptance angle for which the rays enter the RC, the rate of convergence from the 

down mirror to the RC is a significant design parameter [17].  
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Figure 1.11 Effects of translating TR height for hyperbolic (a)-(b) and elliptical (c)-(d) 

down beam mirror [17] 

 

For down beam systems located in the Northern Hemisphere, including southern 

Nevada, heliostat fields are commonly designed asymmetrically around the tower with 

the majority of the heliostats being located on the north side of the tower [17].  Such a 

heliostat field configuration requires the down beam mirror axis to be tilted so that rays 

still reach the RC from a vertical direction.  In the case of a hyperbolic mirror, the tilt is 

accomplished by moving the lower focus north relative to the targeted AP.  Conversely, 

for an elliptical down beam mirror the lower focus is moved south relative to the targeted 

AP [17].  Figure 1.12 demonstrates the required mirror adjustments for a hyperbolic and 

elliptical down beam mirror favoring a northern asymmetric heliostat field.  
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Figure 1.12  (a) Shifting of hyperbolic mirror to favor northern heliostat field; (b) shifting 

of elliptical mirror to favor northern heliostat field [17] 

 

The conclusions that can be drawn from the work of Segal [17] are influential in 

the design and development of down beam optical systems.  Most significantly, a 

hyperbolical surface is more promising for a solar down beam mirror in comparison to an 

ellipsoidal mirror.  An ellipsoidal mirror is non-favorable because the AP of the heliostat 

field is always below the down beam mirror, requiring a higher tower.  A hyperbolic 

mirror not only has the advantage of allowing for a shorter tower, but also requires less 

reflector surface area for the same level of concentration [17].      

1.3.3 Weizmann Institute 

The realization of down beam optics has been demonstrated at the Weizmann 

Institute of Science in Rehovot, Israel.  In 1995 the Solar Research Facility added down 
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beam optics to its previously existing solar tower developed in 1988 for concentrating 

solar energy research.  The tower measures 54 m tall and is surrounded by 64 multi-

faceted heliostats with dimensions of 7 x 8 m.  The tower contains 5 separate 

experimental levels, which allows for different experiments to be implemented by 

focusing the heliostats on various levels.  The down beam mirror of the tower was 

installed at the 45 m height of the tower.  The facility has recently been in the process of 

improving the optical performance of the heliostat field by replacing the mirrors, an 

approximated one million dollar renovation [18].  Figure 1.13 displays the configuration 

of the solar tower facility at the Weizmann Institute of Science, while Figure 1.14 is a 

depiction of the upper portion of the tower containing the various levels for testing along 

with the down beam reflector. 

 

 
Figure 1.13 Solar down beam facility at Weizmann Institute of Science [19] 
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Figure 1.14 Top of tower at Weizmann Institute of Science [19] 

 

The down beam mirror at the Weizmann Institute of Science measures 72 m
2
 and 

is in the form of a hyperbolic design.  The reflector is a large monolithic mirror 

constructed of 858 separate facets.  The TR is comprised of 22 rows each containing 39 

facets.  The facets are consistent in height at 0.3 m, but range in width from 0.17 m to 0.4 

m.  The facets were first installed at ground level; the entire mirror was then lifted and 

placed on the tower [19].  Figure 1.15 identifies the dimensions of the down beam mirror 

utilized at the Weizmann Institute of Science.   
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Figure 1.15 Description of hyperbolic multi-faceted down beam mirror at Weizmann 

Institute of Science [19] 

 

 The Weizmann Institute of Science has developed the down beam system to 

explore the concepts of power production, alternative fuels, solar driven thermal and 

chemical processes, and long term storage and transportation options [20].  The 

production of electricity is certainly a key area of focus for the institute, but they have 

found many other areas of interest in which the facility has shown useful as well.   For 

example, the production of hydrogen has been an extensive topic of interest at the 

Weizmann Institute of Science solar facility.  Hydrocarbon reforming, methane 

decomposition, and thermal-electrochemical dissociation of water at high temperatures 

have all been investigated using solar energy.  Processes have been analyzed for 

developing means to use solar energy to convert biomass to fuel in a procedure called 
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biomass gasification.  The facility has been used as a resource for developing high 

temperature stable catalysts for steam reforming of methane and for the solar reduction of 

metal oxides.  The production of zinc from zinc oxide in an effort to fuel a fuel cell and 

produce hydrogen is a specific area of interest at the Weizmann Institute of Science solar 

facility [18].   

1.3.4 Masdar Tower 

The Masdar Institute of Science and Technology, along with Cosmo Oil Company 

from Japan and the Tokyo Institute of Technology have recently developed a solar down 

beam facility in Masdar, Abu Dhabi.  The current facility in Masdar is a 100 kWe demo 

site and is operated by students at the Masdar Institute of Science and Technology.  The 

relatively small scale facility utilizes a 20 m high tower, with a multi-ring TR comprised 

of 48 mirrors capable of achieving 98% reflectivity [21].  The Masdar facility is 

predominantly centered towards research in the production of electricity, with little 

emphasis on solar chemistry expressed.  Figure 1.16 is a picture of the demo down beam 

facility established in Masdar, Abu Dhabi.      

 
Figure 1.16 Down beam demo facility in Masdar, Abu Dhabi [22] 
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 The Masdar demo facility is a small scale implementation similar in scope to the 

design presented by Tamaura [23].  Tamaura proposed a multi-ring TR of space truss 

design supported in three sections by cubic truss columns forming an equilateral triangle.  

Significant mechanical advantages in comparison to the more traditional hyperbolic 

shaped reflector are presented.  In terms of mechanical integrity, the multi-ring central 

reflector offers a feasible solution to wind force issues, and has a wider range of focus 

[23].  Furthermore, when compared to the hyperbolic shape reflector, the total cost of the 

multi-ring system, including reflector, supporting truss columns, and foundation is 

approximately half [23]. 

 Tamaura describes a feasibility study for a beam down system pilot plant to be 

constructed in Almeria, Spain.  The goal was to assess the viability of a commercial plant 

utilizing beam down optics.  Preliminary results demonstrated that a beam down system 

commercial plant would fall short of Solar Tres in terms of profitability.  There were, 

however, indicators of design improvements that could significantly improve overall 

plant efficiency as well as profitability.  Increasing heliostat efficiencies and reducing 

heliostat costs were among the most promising methods of plant improvements.  

Furthermore, significant potential was expressed for the advantages presented by utilizing 

a multi-tower system in which a mixing of heliostat fields allows heliostats to shift focal 

towers in an effort to improve optical efficiency [23].    

 

1.4 Thesis Incentive and Scope 

As CSP technologies progress and solar chemistry experiments are further 

established, there will inevitably be a need for diversified testing facilities in which such 
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technologies and research objectives can be evaluated.  In the present state, there are 

limited resources available for testing advanced CSP technologies, particularly solar 

tower technologies.  This thesis investigates using down beam optics as a solution for 

bridging the gap between the laboratory bench scale and the engineering test scale in the 

development of such technologies.  Down beam optics are ideal for such a facility 

because testing can be conducted at ground level, instead of at the top of a 100 m tower.  

A solar beam down test facility offers a tool for improving the process of developing CSP 

technologies.  In order for CSP to become a revolutionary player in the renewable energy 

future, research and development of CSP technologies will require a rapid turnaround of 

ideas and solutions.   The facility proposed looks to alleviate some of the problems 

traditional tower facilities demonstrate in terms of testing, in an effort to produce a more 

seamless process for the development of CSP technologies.  

Southern Nevada shows promise as a location for constructing a solar down beam 

test facility, due to the high levels of DNI throughout the course of the year as displayed 

in Figure 1.1.  Coupled with relatively cheap land prices, and the establishment of several 

large scale solar projects within close vicinity, southern Nevada shows great potential for 

the realization of a down beam solar test facility.  Construction of a solar test facility in 

southern Nevada would provide a multitude of benefits to Nevada as well as the nation.  

It would support collaborative studies amongst experimenters, the facility, the University 

of Nevada Las Vegas (UNLV), and local entities.  It would allow local contractors and 

students to gain further expertise in the development and operation of solar facilities.  

Furthermore, the facility could demonstrate additional visibility for Nevada as a solar 
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energy hot zone.  Contractors, collaborators, and all involved parties would exhibit 

ongoing learning efforts and expertise in various solar energy endeavors.           

The scope of the work presented is twofold.  A preliminary feasibility design is 

presented for a solar down beam test facility to be implemented in southern Nevada.  A 

model is then developed to demonstrate the optical performance of the facility.  Utilizing 

ray tracing techniques, an estimated output can be made, i.e. power and concentration, for 

a down beam facility located in southern Nevada.  The development of, results of, and 

conclusions drawn from the comprehensive model capable of simulating the facility on 

an hourly basis is the heart of the research performed.       

In Chapter 2 the methodology behind the conceptual design of the proposed 

facility is presented.  This includes the minimalistic utilization of permanent onsite 

infrastructure and a planar Newtonian optic system in an effort to keep the facility 

simplistic in design.  Chapter 3 pertains to the development of the model utilized to 

simulate the optical performance of the facility.  More specifically, Chapter 3 provides 

the algorithms established to calculate the orientation and layout of the heliostat field 

along with the construction of the ray tracing simulation.  Chapter 4 presents the results 

of the simulated models.  Outputs are portrayed in the form of time dependent power and 

concentration curves.  Furthermore, irradiance plots and statistical simulation data is 

obtained.  In Chapter 5 final conclusions are presented along with proposed future 

improvements of the designed model. 
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CHAPTER 2 

 

FACILITY DESCRIPTION AND DESIGN 

2.1 Conceptual Design 

The solar test facility, referred to as the Nevada Concentrated Solar Energy Test 

Facility (NCSETF), is conceptually envisioned to be simplistic in design.  Optically, a 

Newtonian system utilizes a flat planar down beam mirror, simplifying the geometry of 

the down beam reflector.  As a means to minimizing investment costs, it is intended that 

the majority of the infrastructure is to be rented.  Therefore, power, water, cooling, and 

sanitation are all to be leased.  Furthermore, since the heliostat field comprises a large 

portion of the initial investment cost in such a facility, it may also be leased depending on 

the contractor.  

Many experimental user facilities are low cost to utilize, but require significant 

upkeep to maintain operating conditions.  The NCSETF is intended to be developed with 

minimum experimental infrastructure, with users capable of bringing in stand-alone 

experiments they can test under the output conditions of the facility.  The concept 

originated from UNLV research staff Dr. Johnson’s discussions with research scientists 

from General Atomics Corp., for the possibility of evaluating thermochemical energy 

technologies using concentrated solar radiation.   

There are several benefits to an approach of leasing and minimizing 

infrastructure.   Investment costs and turnaround times required to get the facility up and 

operational are minimal in comparison to a permanent facility.  Permitting for a long-

lasting facility is likely a much more strenuous process.  Furthermore, such a design 
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strategy allows for flexibility in terms of long term management of the facility.  If the 

facility is being effectively utilized then the temporary assets could be converted to 

permanent ones.  Conversely, if it is found that the facility is not required, or the 

relocation of the facility is desired, then orderly removal of the assets and recovery of the 

site is achievable.  Another advantage to a temporary facility is that it can be 

decommissioned for long periods of time, such as off-seasons, and then started back up 

again with relative ease.  Figure 2.1 is a general layout of what is envisioned for the 

facility.  

 

 
Figure 2.117 NCSETF site layout utilizing temporary infrastructure 

 

The NCSETF accommodates users as they arrive with pre-configured test 

experiments.  Experimenters subject their tests to the conditions of the facility, by pulling 

up and mounting their previously constructed test environment as displayed in Figure 2.1.  

It is envisioned that experiments are brought in via institutionally developed test trailers.  
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Upon completion, users are then able to conveniently pack up their experiment, leaving 

space for a new experiment to be brought in.  The goal of such a configuration is to 

provide ease of access and accommodation of different experimental programs.  By 

allowing experimenters to come to the facility with their own experimental hardware, the 

bugs and testing configuration issues can be worked out before arriving on site.  For users 

who can’t support an extensive testing trailer, it is envisioned that a general user trailer 

will be permanently available on site for preliminary studies.  Academic, governmental, 

and commercial agencies ranging from domestic to international customers can all 

benefit from the facility.  Again, one of the most significant advantages to the facility’s 

design is that commercial users will be able to develop proprietary applications with full 

control over intellectual property.   

       

2.2 Targeted Output 

It is targeted that the NCSETF will be able to provide 1 MWth of solar thermal 

energy at 1,000 suns concentration at ground level for utilization in the development of 

advanced solar energy technologies.  The optical geometry of the system is designed 

around achieving such an output during peak performance of the facility.  Table 1.1 

demonstrates that 1,000 suns concentration is enough to provide practical operating 

concentrations for common CSP technologies as discussed in Chapter 1.  1 MWth of solar 

thermal energy is similar in power output to that provided by the down beam system 

implemented at the Weizmann Institute of Science.  Furthermore, 1 MWth of thermal 

energy allows for absorbers, receivers, and other advanced concentrated solar energy 

technologies, as well as thermochemical experiments, to be evaluated under relatively 
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high power conditions.  It is intended that the experiments can either take the light 

directly, which is a good model of tower-top optical behavior, or the light can be 

extracted for further processing.    

If the facility were to prove successful, and utilized by experimenters on a 

consistent basis, a larger system may become feasible for solar thermal testing under 

conditions of higher power output and concentration.  Since the optical geometry is 

intended to produce the targeted output during peak performance, testing conditions 

requiring lower power outputs or concentration levels can be achieved by implementing 

tests during morning or afternoon hours when DNI values are less.  Another option for 

lower output testing would be to utilize only a portion of the heliostat field, reducing both 

testing power output and concentration conditions.   

It is significant to distinguish how the profile of the output for a testing facility 

will vary in comparison to a facility designed for the production of electrical power.  

With the production of power, a consistent output is of the utmost concern.  Thermal 

storage has long been the focus of extensive research for plants utilizing solar energy to 

produce electrical power.  The goal of utilizing thermal storage is to allow for a constant 

output during cloudy periods and hours of night.  A test facility, however, does not have 

the same stringent requirements.  A facility optimized for research has a different output 

profile than that for producing power.  In point of fact, a constant output for a testing 

facility limits the scope of testing conditions and capabilities.  For a solar testing facility 

it is crucial that the output can be estimated for a given time frame.  Experimenters need 

to have known and established testing conditions for which they are subjecting their 

experiments to before implementing onsite testing at the facility.  A method for modeling 
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the facility on an hourly basis is the focus for establishing the performance of the 

NCSETF.        

 

2.3 Site Details 

2.3.1  Reflector Design 

The primary reflector makes the design of the NCSETF unique from other down 

beam optical systems.  The concept is adopted from the optics of a Newtonian telescope.  

Instead of utilizing a hyperbolic mirror like that at the Weizmann Institute of Science, or 

Cassegrain optics like the multi-ring reflector in Masdar, the NCSETF is designed using a 

flat planar down beam mirror.  A planar down beam mirror offers several benefits in 

terms of developing a testing facility. 

A primary advantage to using a planar down beam mirror is its intrinsic capability 

to host multiple experiments.  A hyperbolic or elliptical reflector is constructed for a 

single focal point.  A flat planar mirror can allow for the focal point to be adjusted by 

simply varying the AP.  It is intended that the AP for the heliostat field be one that yields 

concentrated solar radiation at ground level directly below the center of the down beam 

mirror.  While this is the approach used to develop the model for the targeted output of 

the facility, a separate AP could yield an additional output of concentrated rays at ground 

level.  Therefore, a separate heliostat field, or a portion of the original field could be used 

to accommodate multiple experiments simultaneously.  A planar down beam mirror 

easily supports smaller scale testing for experiments not requiring the full capability of 

the facility by allowing for varying focal points of lesser power and concentration.    
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A planar down beam mirror is relatively simple to design and fabricate in 

comparison to a large hyperbolic mirror.  Hyperbolic reflectors utilized in down beam 

systems require extensive designing of both the down beam reflector as well as the 

secondary RC.  A planar mirror sets a standard of more predictable behavior.  A planar 

mirror, based on its dimensions and orientation, will have an easily foreseeable 

convergence angle of rays towards ground level.  A planar TR bends the optical image to 

ground level, which allows for a good model of on-tower optical behavior to be explored 

at ground level.  More significantly, deformation of a planar mirror is much easier to 

address from an optical perspective.    

Thermal expansion can render detrimental effects to a TR depending on the 

operating conditions for which the reflector is being subjected to.  Deformation of a 

hyperbolic mirror due to thermal expansion results in distortion of the optical system.  

Enough deformation could render the facility useless or even hazardous.  A planar mirror 

can be developed to expand uniformly without distorting the optics of the facility.  Such 

an advantage is very significant in terms of reliability of the system.  Furthermore, 

concerns of active cooling become less relevant for a planar mirror if optical deformation 

of the system can be avoided. 

2.3.2 Tower Design 

When designing a tower for supporting a down beam system, high optical access 

from the heliostat field to the beam down reflector is essential.  For a south facing 

heliostat field, the north side of the tower must be highly visible so that rays reflecting 

from the heliostat field to the down beam mirror are not obstructed by the tower.  

Consequently, the north side of the tower must be minimalistic in terms of structure.  
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Conceptually, the tower was originally envisioned as a steel lattice truss assembly as 

presented below in Figure 2.2. 

 
Figure 2.218 Steel lattice truss tower design for NCSETF 

 

While investigating potential sites for the facility in southern Nevada it was found 

that building height restrictions in areas of Nye County are limited to approximately 100 

ft (30.48 m).  For this reason, the tower was designed to be roughly 60 ft
2
 (5.57 m

2
) by 

100 ft (30.48 m) tall.  The tower needs to be capable of supporting the approximated 10-

20 ton weight of the down beam mirror.  The tower will also need to be inherently stiff to 

avoid optical distortion.  Furthermore, the tower must be constructed in a manner such 

that it is intrinsically fire proof.  Under operating conditions it is intended that the tower 

be unoccupied to avoid risks to user safety. 
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Another considered design for the construction of the tower utilizes three steel 

beam columns instead of a lattice truss structure.  Similar to the tower implemented in 

Masdar, a beam and column tower configuration offers possible optical benefits.  With a 

three beam column tower, there is less to interfere with rays traveling from the heliostat 

field to the down beam reflector.  For the primary heliostat field, located directly north of 

the tower, the optical benefits are likely minimal.  If an additional heliostat field were to 

be introduced for smaller scale testing, as previously suggested, then the optical 

advantages of a three column tower may become much more realizable.  A secondary 

experiment with a different AP may result in rays entering from the east or west side of 

the tower.  A steel lattice tower would obstruct the line of site from the new heliostat field 

to the top of the tower.  A three column tower, however, makes the additional heliostat 

field achievable from an optical perspective since it does not fully obstruct the visibility 

of the down beam mirror when viewing the tower from the side.  Figure 2.3 demonstrates 

what is envisioned for the NCSETF implemented using a three column design. 



  

35 
 

 
Figure 2.319NCSETF schematic with 3 column tower 

 

Ultimately, final tower construction will need to be extensively investigated from 

a barrage of perspectives.  The focus of the research presented is on evaluating the optics 

of the NCSETF.  More qualified personnel, such as an engineering firm with expertise in 

tower construction, will need to determine the most appropriate assembly of the tower for 

the given weight and line of sight requirements specified.  Estimates for the tower are 

currently being solicited.   

 

2.3.3 Heliostat Field 

The solar field efficiency can be described as the reflected power arriving at 

ground level divided by the product of the incident solar power on the total area of the 

heliostat field [24].  Many contributing factors determine the optical efficiency of a 
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heliostat field.  The four primary contributors to optical efficiency losses include 

blocking, shading, cosine losses, and reflective losses.  Blocking occurs when the rays 

reflected from a heliostat are obstructed by a neighboring heliostat.  Shadowing, on the 

other hand, occurs when a heliostat’s shadow is cast on another heliostat surrounding it.  

To minimize shadowing and blocking effects of the heliostat field the sun angle, tower 

height, and heliostat spacing all must be considered in the design layout of the field.     

A cosine loss is an expression derived from the solar radiation lost by heliostats 

not being normal to the sun’s rays.  In a down beam system, the heliostats are orientated 

such that the rays from the sun reflect to the top of a tower.  The difference between the 

vector required to be normal to the sun’s rays and the vector required to reflect to the top 

of a tower initiates the cosine effect.  The energy lost on the heliostat due to the incident 

angle of the sun is a function of the cosine of the angle away from being perpendicular to 

the sun’s rays [25].  Figure 2.4 depicts the effects of cosine losses.   

 
Figure 2.420Cosine losses as applied to extraterrestrial horizontal irradiance 

[26] 
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In Figure 2.4 solar energy is falling on surface A at the same rate as the 

hypothetical surface B.  The figure demonstrates that the projected surface area of the 

hypothetical surface B is less than the actual surface area of surface A.  Therefore, the 

solar irradiance, or rate at which energy per unit area, falls on surface A is less than that 

falling on surface B [26].  Ideally, heliostats are arranged to yield maximum cosine 

efficiency.  Such efficiency is dependent on the sun’s position and the heliostat’s position 

relative to the tower’s receiver.  The tracker positions the heliostat so that its normal 

angle of incidence bisects the beam component of irradiation from the sun and the line of 

reflectance from the heliostat to the tower’s receiver.  In an effort to reduce cosine losses, 

heliostat fields constructed in the Northern Hemisphere are typically orientated to face 

south, and tall towers are generally constructed. 

Blocking, shading, and cosine losses all result in a reduction of the effective 

heliostat field area.  Reflectivity losses, however, are an intrinsic property of the heliostat 

mirrors.  The reflectivity of the heliostat mirrors plays a large role in the heliostat field 

efficiency.  Low absorption mirrors are capable of reflecting the suns beam irradiation at 

a high efficiency.  Of course, over a period of time, this efficiency is reduced by factors 

such as dust accumulation and age.  Therefore, heliostat maintenance becomes pertinent 

in regards to keeping the mirrors clean and sustainable, allowing them to operate at 

maximum reflective capability.  A further investigation into the reflectivity parameters 

utilized for modeling the NCSETF is described within the modeling of the facility, 

section 3.4.2.  Blocking, shading, cosine losses, and reflective losses all need to be 

addressed to effectively simulate the optical performance of a TR system. 
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Initial design estimates targeted a heliostat field totaling 2,000 m
2
 of reflective 

surface area.  This estimation is based on an attainable DNI gauging parameter of 1,000 

W/m
2
, which is achievable many hours of the year in southern Nevada.  At 50% total 

optical efficiency, accounting for the optical losses discussed, a 2,000 m
2
 heliostat field 

would yield 1 MW of concentrated power at ground level.  If focused down to a 1 m
2
 

spot size, 1,000 suns concentration would be achieved.  Further details are presented for 

the heliostat field when analysis of modeling the facility is presented in Chapter 3, 

including heliostat relevant dimensions as well as heliostat field layouts.   

2.3.4 Ground Collector Element  

A ground collection element is a unit to be located at the focal point of the 

concentrated solar energy.  For the primary heliostat field, this collection element will be 

located directly below the center of the planar down beam reflector at ground level.  The 

targeted collector is envisioned as a large kiln type structure with fixtures for mounting 

pre-configured solar energy acceptors and experiments.  The collection element is 

intended to be an actively water cooled firebrick assembly.   

Coinciding with the ground collection element may be the need for a secondary 

RC.  A secondary RC allows for further processing and focusing of the solar energy 

before being subjected to the experiment.  The secondary RC primarily offers the benefit 

of further concentration.  A secondary RC would need to be developed explicitly to 

match the operating conditions of the facility.  More specifically, it would have to 

consider the rate of convergence from the down beam mirror to ground level in its design.  

A secondary RC would require further investigation should it be deemed a necessary 
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asset of the facility.  In this thesis, however, the design and analysis of a secondary RC is 

not considered. 

2.3.5 Utilities 

Onsite water is necessary for the purpose of cooling experiments.  It is envisioned 

that leased portable water tankers along with pumps and chillers will be utilized.  An 

estimated 30,000 gallons of water is targeted to be available on location.  With the 

facility operating at the targeted 1 MW, 4 hours of operation results in a temperature rise 

of approximately 40°C in the tank.  The water temperature in the tanks can then be 

brought back down during the night.  Longer operating conditions or higher power 

outputs from the facility may result in the need for additional cooling system components 

to be brought in. 

Onsite electrical power is a necessity for a down beam research facility.  Power is 

proposed to be provided via portable leased generators.  If leased, it is not required to 

bring the facility up to the same electrical code that purchased generators would require.  

Estimated is the necessity for two 100 kW generators to be available on location.  Similar 

to water tankers, should specific experiments require additional power, supplementary 

portable generators could easily be provided. 

Leased office space and user facilities are also anticipated to be supplied on site.  

The office space is envisioned as a modular facility with a control room on one end and a 

small conference room on the other.  A modular office of approximate dimensions 60 ft 

(18.288 m) by 28 ft (8.534 m) is intended for the first phase of implementation of the 

facility.  Temporary user facilities are readily available, and can be added or removed 

depending on the traffic of the site. 
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A research facility of such scale as the proposed NCSETF would require both 

access parking as well as fencing.  The fencing serves to provide both security and safety.  

Access to the site will need to be controlled and restricted.  Furthermore, the fence can 

serve as a barrier from concentrated stray light unintentionally leaving the facility. 

As discussed, a modular experimental facility operated by the sponsoring 

institution is to be supplied onsite.  The general user experimental trailer will supply a 

means for the testing of smaller scale projects, allowing for minimal investment in 

research assets.  Additionally, the onsite modular trailer will monitor operating conditions 

as well as facility performance.  Operating conditions are primarily in the form of 

weather data, i.e. levels of DNI, temperatures, wind speeds, etc.  Facility performance 

data is anticipated to be in the form of flux maps, power outputs, and concentration ratios 

received at ground level.    

2.3.6 Land Specifications 

The compact optics of a planar down beam mirror configuration allows for the 

facility to be located on relatively minimal land space.  Initial investigations led to an 

approximated 5 acres required to contain the primary heliostat field and experimental 

facilities.  Figure 2.5 portrays the intended site plan and facility dimensions.  A site twice 

the size at 10 acres would be much more optimal, and allow for the expansion of the 

heliostat field or for a separate field to be constructed.  
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Figure 2.521Site plan for proposed NCSETF 

 

Various site locations have been investigated for implementation of the NCSETF 

in southern Nevada.  Amongst them include UNLV distinguished professor Dr. Boehm’s 

allocated solar research parcel near Boulder City, adjacent to Nevada Solar One, as well 

as the recently declared solar testing zone at the Nevada Test Site (NTS).  The selection 

of site location is primarily dependent on the search for funding.  Ideal locations will be 

within close proximity of the sponsoring institution and be both easily accessible as well 

as highly visible.  As described, the height restrictions of Nye County have been taken 

into consideration in the design of the facility.     
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CHAPTER 3 

Equation Chapter 3 Section 1 

MODELING THE NCSETF 

3.1 Modeling Approach 

The objective in developing a model for the NCSETF was to establish the optical 

performance of the facility.  More specifically, the model was implemented to determine 

the power output and concentration received at ground level.  Consequently, only the 

optical geometry was simulated within the model, i.e. the heliostat field, down beam 

mirror, and ground level receiver.  The model was approached with the goal of being able 

to simulate the output of the facility on an hourly basis.  In order to do so ray tracing 

techniques were utilized. 

The model was constructed in a format such that it is versatile, easy to use, and 

allows for the varying of input parameters so their effects can be realized.  The user of the 

model is prompted with changeable simulation conditions, including the simulation hour 

as well as inputs to construct the optical geometry for the facility.  The simulation 

presented is specific to the design conditions of the NCSETF; however, the model 

developed is capable of easily modifying the optical geometry.  For example, heliostat 

dimensions, heliostat field layout, and down beam reflector orientation as well as 

dimensions can all be easily altered.  This is a very significant attribute of the model, 

especially for continuing investigations of the optical geometry in an effort to improve 

the performance of the facility.       

Modeling offers a feasible way to add validity to the design of the system without 

having to construct and test the facility.  Furthermore, it verifies to stakeholders and 

possible investors that from an optical perspective the facility is capable of producing the 
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targeted output.  It is significant to recognize that modeling is only an estimation tool, 

and the model can only be as accurate as the resources utilized and assumptions made to 

develop it.  Assumptions incorporated into the model are presented as they are applied.  

Various data sets, software tools, and programming environments were utilized to 

develop the comprehensive model.  The role of each and how they were incorporated into 

developing the model is presented. 

 

3.2 Software and Modeling Tools  

3.2.1 MATLAB
®

 

A MATLAB
®

 programming environment was utilized to construct a large portion 

of the model.  An algorithm was developed to determine the sun’s relative position in a 

3D spherical coordinate system for any given hour of the year in Las Vegas, Nevada.  

Heliostat field layout algorithms were implemented to examine the effects of various 

heliostat locating strategies.  Furthermore, the relative orientation as well as the focal 

distance to achieve the correct optical geometry for each heliostat of NCESETF was all 

implemented in MATLAB
®
. 

3.2.2 ASAP
®
 

Advanced Systems Analysis Program (ASAP
®

) is an optical systems simulation 

and modeling tool developed by Breault Research Organization (BRO) and has been 

commercially available for over 20 years.  ASAP
®
 is able to simulate, by utilizing Monte 

Carlo ray tracing techniques, the interaction of light with optical and mechanical 

structures.  Rays can automatically be split into reflected, refracted, diffracted, polarized, 

and scattered components as they propagate through the optical system.  The rays 
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proceed independently, following physically realizable paths, encountering objects in the 

appropriate order as they proceed through the system.  This is referred to as 

“unconstrained” or “non-sequential” ray tracing [27].   

In its native form ASAP
®
 is a scripting environment, therefore, some fundamental 

programming competency is required to effectively utilize the software.  Essentially, the 

syntax categorizes ASAP
®
 as its own distinctive programming language.  In an attempt to 

alleviate some of the frustrations of working with the native scripting syntax, BRO has 

incorporated a spreadsheet builder to assists users in accurately developing script .inr 

files.  The limitation of the builder is that not all of the ASAP
®
 functionality can be 

implemented through the builder, such as macros or other types of customizable 

functionalities, which were all utilized in developing the model for the NCSETF. 

In terms of modeling the NCSETF, ASAP
®
 offers a magnitude of functionality.  It 

provides the ability to track and visualize the sun’s rays as they travel along their optical 

path from the sun to the heliostat field, to the down beam mirror, and then to the 

collector.  This allows for the optical geometry of the system to be verified, and the 

optical losses simulated.  The effects of cosine, reflective, blocking, and shadowing 

losses are all intrinsically represented in the ray trace.  Furthermore, ASAP
®
 is capable of 

accounting for atmospheric attenuation and the scattering of rays by specifying the 

medium, in this case air, through which the rays are propagating.  Additionally, ASAP
®
 

is capable of producing power distribution and intensity calculations, as well as 2D and 

3D depictions of those calculations, at any location in the optical system.  Such 

calculations prove most useful for measurements on the collector at ground level.     
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A significant factor in the approach to modeling was based on the fact that 

ASAP
®
 simulations of the NCSETF are not transient.  Therefore, the optical geometry of 

the system for any given hour of the year was passed into ASAP
®
 as a collection of 

variables, and the optical results simulated.  MATLAB
®
 was utilized to calculate the 

parameters needed to establish the optical geometry of the facility in ASAP
®
 for any hour 

of the year. 

 

3.2.3 TMY Weather Data 

Typical Meteorological Year (TMY) weather data is utilized to determine the 

weather conditions for a facility located in southern Nevada, more specifically, the 

amount of utilizable beam radiation available from the sun for any given hour of the year. 

TMY data portrays a set of hourly values of solar radiation and meteorological 

elements for a one year period.  TMY data allows for performance comparisons of 

system types and configurations for one or multiple locations.  TMY data sets are 

intended for the use in computer simulations of solar energy conversion and building 

systems, allowing for performance comparisons of different system configurations to be 

evaluated at various locations in the United States and its territories [28].   

The original TMY data represents data for the Typical Meteorological Year as 

derived from the 1952-1975 SOLMET/ERSATZ data base.  The initial TMY data sets 

covered a total of 234 sites and were created by means of measured solar radiation and 

temperatures from 26 locations.  The additional 208 locations where developed using a 

correlated model and provided by the United States National Oceanic and Atmospheric 

Administration (USNOAA).  They are based on other meteorological phenomena [28]. 
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The next generation of TMY data, TMY2, was generated from the 1961-1990 

National Solar Radiation Data Base (NSRDB).  The data covers a total of 239 sites.  56 

of these sites where considered primary locations, as they measured solar radiation for at 

least a part of the 30 year period.  The other 186 locations were considered secondary 

sites, as no solar radiation measurements were taken from those locations.  The secondary 

sites were derived from meteorological data and portray modeled solar radiation data.   

TMY2 data was produced and is supplied by NREL [28]. 

The most recent TMY data sets, TMY3 data sets, represents 1,020 sites in the 

United States and its territories and were developed by NREL’s 1991-2005 Electrical 

System Center under the Solar Resource Characterization Project [28].  The TMY3 data 

set for Las Vegas McCarren International Airport is utilized in modeling of the NCSETF.  

The McCarren location is a Class I dataset, implying that it has the lowest amount of 

uncertainty data and is therefore amongst the most accurate class of TMY3 data sets.  In 

TMY3 data sets DNI is measured as the amount of solar radiation received in a 

collimated beam on a surface normal to the sun during a sixty minute period ending at the 

timestamp presented in the data [28]. 

It is crucial to recognize that TMY data represents typical weather conditions 

rather than extreme conditions, and therefore should not be used in the modeling of worst 

or best case circumstances.  For the purpose of modeling the NCSETF, in which typical 

performance of the facility is desired, TMY3 is a very suitable dataset.      

 

 

 



  

47 
 

3.3 Simulating the Sun 

3.3.1 Sun’s Position 

In order for the NCSETF to be modeled on an hourly basis, the sun’s location 

relative to a facility implemented in southern Nevada needed to be determined for every 

hour of the year.  First, the exact location of the facility was specified by utilizing the 

latitude, , and longitude, , of Las Vegas McCarren International Airport as reported in 

the TMY3 dataset.  The latitude and longitude of the McCarren International Airport are 

36.083° and -115.15°, respectively.   

The relative direction from which the sun’s rays are emitting can be established in 

a 3D spherical coordinate system with knowledge of the solar zenith angle, z , and the 

solar azimuth angle, s .  The solar zenith angle is representative of the angle between a 

vertical line and a line directly to the sun.  If beam radiation from the sun is projected on 

a horizontal surface, the solar azimuth angle is the angular displacement from south of 

that projection.  West of south is considered positive and east of south is considered 

negative [29].  A graphical depiction of the solar zenith angle, z , and the solar azimuth 

angle,
 s , is presented in Figure 3.1.  Figure 3.1 is followed by the formulation used to 

derive the solar zenith and solar azimuth angle of the sun on an hourly basis, allowing for 

the sun’s relative position to be simulated within the model. 
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Figure 3.122Solar zenith angle, z ,  and solar azimuth angle, s  

[29] 

  

The declination of the sun, δ, was initially established on a daily basis.   A 

declination angle arises from the tilt of the earth on its axis of rotation as it rotates around 

the sun.  The declination angle ranges from 23.45° on the summer solstice, June 21, to -

23.45° on the winter solstice, December 22.  For the fall equinox, September 23, and the 

spring equinox, March 22, the declination angle is 0°.  A precise approximation for the 

declination of the sun, accurate to 0.035°, is described by equation (3.1) [29]:  

 

    

(180 / )(0.006918 0.399912cos( ) 0.070257sin( )

0.006758cos(2 ) 0.000907sin(2 )

0.002697cos(3 ) 0.00148sin(3 ))
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                (3.1) 

Where (3.2), 
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In equation (3.2), n, is representative of the day of the year.  Upon implementation 

of the MATLAB
®
 code a prompt specifies for the input of a month, day, and hour for the 

simulation.  Based on the user input month parameter an index is established for the day 

of the year.  Therefore, the following formulation is used to establish n, an array 

containing the day of the year for every hour of the month selected for simulation (3.3):  

 

 
24

hour
n index ceil

 
   

 
                                               (3.3) 

 

In equation (3.3), hour, is a vector array containing the number of hours in the 

month selected for simulation.  Additionally, index, is a base parameter establishing the 

number of days in the year up to the time of the specified month.  Furthermore, ceil, is a 

rounding operator to round up to the nearest day integer.  The angular displacement of the 

sun east or west of the local meridian due to the rotation of the earth on its axis is referred 

to as the hourly angle, ω [29].  The hourly angle varies 15° per hour, ranging from -180° 

at midnight to 180° at noon.  A vector containing the hourly angle for every hour of the 

selected simulated month is represented by (3.4): 

 

 180 15( 24( ( 1)))hour n index                                     (3.4) 

 

With numerical representations for the latitude, declination, and hourly angle, the 

sun’s zenith angle can be determined for any hour of the year according to the following 

equation (3.5) [29]: 
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  1cos cos( )cos( )cos( ) sin( )sin( )z                               (3.5) 

 

  Similarly, once the zenith angle has been calculated the azimuth angle can be 

determined for any hour of the year according to equation (3.6): 
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                      (3.6) 

 

3.3.2 Modeling the Sun’s Rays 

With a method established for determining the solar azimuth and zenith angles, a 

Sun Position Orientation (SPO) algorithm was developed in MATLAB
® that exports a 

data file to the root directory of ASAP
®

 for utilization in modeling the optical geometry 

of the NCSETF.  The data file produced by the SPO algorithm contains a vector of three 

hourly varying parameters needed to define the sun for a given modeled hour.  They 

include the solar azimuth angle, solar zenith angle, and DNI for the specified simulation 

hour.  TMY3 data for McCarren International Airport comes in a Microsoft Excel 

spreadsheet format, with hourly DNI data contained in one of the columns.  The SPO 

algorithm reads in the appropriate DNI value based on an hourly index for the month 

selected, and then exports the three required parameters to be utilized in ASAP
®
 for 

modeling the sun for the specified sample hour.       
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Initially, the sun’s rays were simulated in the ASAP
®
 model of the NCSETF as a 

grid of parallel rays emitting from the appropriate direction of the sun.  Once the solar 

azimuth angle, solar zenith angle, and DNI values for the modeled hour have been 

allocated in ASAP
®
, an arbitrary distance to place the source of the sun’s rays is 

specified.  This arbitrary distance, R, was set to 400 m for modeling the NCSETF.  

Direction cosines for emitting rays back towards the heliostat field can then be specified 

in spherical coordinates according to the following equations (3.7): 

 

 

cos( )sin( )

sin( )sin( )
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s z

s z

z
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B R

C R
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 
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                                              (3.7) 

 

In ASAP
®
, objects are positioned by specifying their x, y, and z location, as well 

as the object’s respective rotation around an arbitrarily defined axis in a 3D Cartesian 

coordinate system.  The axes in the ASAP
®
 model of the NCSETF are orientated such 

that the positive x-axis points north, the positive z-axis points east, and the positive y-axis 

is normal to the earth’s surface.  It is assumed that the facility is located on a flat 

horizontal surface.  The sun object is initially defined as a grid of parallel rays on the 

plane of the x-axis at the origin.  The sun grid is then shifted A in the x direction, –C in 

the y direction (i.e. gravitation direction), and B in the z direction to match the 

coordinates of the ASAP
®
 model.  

With the sun’s location defined, the required rotation of the sun’s object to emit 

rays back towards the origin is addressed.  First, the sun source is rotated  90 z   

about a z-axis, displaced A in the x direction and –C in the y direction.  The source is then 
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rotated s  
about a y-axis, displaced A in the x direction and B in the z direction.  

Parallel rays are then emitted from the sun source towards the origin. 

The sun source object in ASAP
®
 is depicted as an elliptical grid of parallel rays 

sized large enough to cover the entire heliostat field.  In ASAP
®
, flux is defined as energy 

per unit time (J/s = W).  Therefore, a scaling parameter had to be introduced to maintain 

proper DNI (W/m
2
) as the size of the elliptical sun source was modified to cover the 

entire heliostat field.  The following expression is utilized to scale the flux in ASAP
®
 and 

preserve proper DNI for the model (3.8): 

 

 
2( ) ( )rScaled Flux S DNI                                             (3.8) 

where, 

rS  = Radius of the elliptical grid sun source (m) 

DNI = Direct Normal Irradiance for simulation hour (W/m2) 

 
The total wattage of the elliptical sun source, as determined by equation (3.8), is 

then able to be emitted towards the heliostat field within the model.  The wattage is 

evenly distributed amongst the rays implemented in the ray trace.  At this stage, it is 

important to identify that up to this point the model has been assuming rays from the sun 

are parallel, as if emitting from a point source.  In actuality, not all of the sun’s rays are 

parallel, but instead demonstrate divergence behavior as they propagate through the 

system.  The development of a realistic solar disk within the model is the focus of section 

3.3.3.     
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3.3.3 Realistic Solar Disk 

Considering the sun’s rays as parallel implies they are emitting from a point 

source.  Such an assumption is slightly inaccurate; however, often assumed appropriate 

since the sun is so far away.  A true image of the sun produces a spot size that has an 

obvious width.  This spot size is a product of not all of the sun’s rays being parallel.  The 

angular diameter of the sun in the sky, ADS , can be approximated with knowledge of the 

sun’s diameter, 1,392,000 km, and distance from the earth, 149,600,000 km, according to 

the following relation (3.9): 

 

 
360 1,392,000

0.5
2 149,600,000

AD

km
S

km
                                     (3.9) 

 

Therefore, the total angular aperture of the sun in the sky is approximately 0.5°.  

Figure 3.2 presents a graphical depiction of the divergence characteristics of the sun’s 

rays. 

 
Figure 3.223Divergence characteristics of solar rays 
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In order to simulate divergence behavior of the sun’s rays, as they reflect off the 

heliostats within the ASAP
®
 model of the NCSETF, a scattering surface was utilized.  To 

develop the scattering surface a user defined bi-directional scattering distribution function 

(BSDF) was required.  For the specific case of modeling the NCSETF, in which all the 

solar radiation is desired to be transmitted and not reflected through the scattering 

surface, such a function can be considered a bi-directional transmittance distribution 

function (BTDF).  The user defined BSDF utilized in simulating the angular diameter of 

the sun in the sky is described by equation (3.10): 

 

 
1

* *HAR HAR

USERBSDF
S S

                                          (3.10) 

where,   

HARS  portrays the half angle of the sun in radians and is represented by equation 

(3.11): 

 

 *
360

HAR ADS S


                                                  (3.11) 

 

Such a BSDF allows for an isotropic scattering surface to be created within 

ASAP
®
.  The scattering surface is placed directly in the path of the previously developed 

grid of parallel rays, emitting from a coordinate in the celestial sphere as defined by the 

sun position vector for any given simulation hour.  The scattering surface is equal in size 

to the grid of parallel rays.  As solar rays transmit through the scattering surface they are 

given a finite scatter angle ranging from 0° to a maximum of 0.5°.  This allows for the 
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rays to be scattered into a circular cone centered in the specular direction and directed 

towards the heliostat field.  The methodology behind constructing the scattering surface 

was based on a previously established script .inr file developed by the ASAP
® 

development team for simulating the behavior of the sun’s rays within a ray trace.  Figure 

3.3 is a graphical depiction of the scattering surface implemented within the ASAP
®
 

simulation of the NCSETF.  Figure 3.3 is taken during the middle of a ray trace.  The 

black speckles on the disk portray rays interacting with the scattering surface.     

 

 
Figure 3.324ASAP

®
 scattering surface for diverging solar rays 

 

The implementation of a realistic solar disk within the model is intended to 

simulate the achievability of practical concentration ratios for the NCSETF.  Divergence 

characteristics are expected to have little to no effect on the power output, but a 

significant effect on attainable concentration ratios.  Since the rays of the sun are not all 
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parallel, an idealized point source overestimates practical concentration ratios by 

allowing for focusing conditions to a point instead of an area.   

The NCSETF was designed with a heliostat field close to the tower.  This was to 

limit the concentration losses that increase as the focal length for each heliostat grows 

due to the angular diameter of the sun.  The use of parallel rays does not account for this 

effect within the simulated model.  Implementation of a realistic sun source allows for 

real world limitations on the achievable concentration of the facility to be realized.  

Simulation results are presented in Chapter 4 for both parallel and diverging rays, 

allowing for the effects on power and obtainable concentration to be both recognized and 

compared. 

 

3.4 Optical Geometry 

3.4.1 Down Beam Reflector 

The dimension of the planar down beam reflector utilized for initial modeling of 

the NCSETF was 18 m long by 14 m wide.  The dimensions were based on a realistic 

combination of optical and physical considerations.  On one hand, the mirror needed to 

be large enough to focus the rays of a heliostat field capable in size of reaching the 

targeted output of the facility.  On the other hand, the down beam mirror couldn’t be so 

large that it became infeasible to construct.  The dimensions specified were deemed 

appropriate for initial investigations of the facility.   

The center of the mirror is located 25.6 m above the center height of the heliostat 

field and rotated 32.1° to favor a south facing heliostat field.  The relatively short height 

of the down beam reflector is based on two factors.  A shorter tower height minimizes 
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construction costs of the tower.  Additionally, it allows for consideration of the NCSETF 

to be implemented in Nye County by abiding to the height restrictions.  Several 

considerations also went into the rotation of the down beam reflector.  Partially, the 

rotation was based on optimal orientation at solar noon, with the TR, sun, and a line 

down the center of the heliostat field all being co-liner.  Furthermore, since the physical 

footprint of the facility was targeted to be containable within 5 acres, a compact heliostat 

field close to the tower was a necessity.  The 32.1° rotation allows for a heliostat field 

relatively close to the tower, but far enough away to accommodate a reasonably sized 

heliostat field capable of achieving the target output and the focal point centered below 

the down beam mirror.  Figure 3.4 is a drawing depicting the optical characteristics for 

the geometry and orientation of the down beam reflector used in modeling the NCSETF. 
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Figure 3.425 Optical geometry for NSCETF down beam reflector [unit: m] 

 

The size and orientation of the down beam reflector yields an AP for the heliostat 

field located 23.05 m behind and 11.14 m above the center of the down beam mirror, as 

described in Figure 3.4.  Furthermore, the drawing also demonstrates that the first row of 

heliostats capable of reflecting rays to the focal point is located 12.56 m in front of the 

center of the down beam mirror, while the last ray is located 152.83 m in front of the 

center of the down beam reflector. 

Advancements in mirror glass and reflective films have allowed for the 

development of highly reflective mirrors.  It is assumed that the down beam mirror is 

capable of achieving and maintaining 96% specular reflectivity.  This assumption is 

based off of manufacturer 3M’s Solar Mirror Film 1100, capable of exceeding 94% total 
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hemispherical reflectance, and specular reflectance above 95%.  The reflective film, a 

silver metalized and weatherable acrylic, is designed specifically for the utilization in 

concentrating solar collectors [30]. 

3.4.2 Heliostats 

Initial investigations of the heliostat field led to a determination of 8 x 8 m 

heliostats to be utilized in simulating the facility.  The reflectivity established for the 

heliostat is the same as that specified for the down beam reflector, 96% specular.  The 

heliostat dimensions were based on collaborations with Nabtesco Motion Control, a 

manufacturer of high precision gearboxes utilized in solar tracking devices.  Drive units 

account for approximately 50% of the manufacturing costs of heliostats.  Therefore, 

motion controls play a significant role in the selection process of heliostats.  With a 

working relationship established with Nabtesco, it was concluded that initial modeling of 

the heliostats should incorporate a design that could be implemented with Nabtesco 

tracking units.  It was specified by Nabtesco that their drive units could accurately 

accommodate 60-75 m
2
 in heliostat reflective surface area.  Subsequently, square 

heliostats of reflective surface area 64 m
2
 were selected for modeling of the facility.  

However, the model developed was constructed in such a manner that allows for the 

dimensions of the heliostats to be modified according to user input parameters.  The 

thought process was that future optimization of the facility would undoubtedly include 

the investigations of varying heliostat dimensions.  Therefore, a model implementation 

capable of easily adjusting the size of heliostats and subsequently realizing the effects 

was deemed necessary. 
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Utilizing a Newtonian optical system, there is a limited land area for which 

heliostats can be placed and still effectively utilized.  Separately stated, the rays reflected 

from any given heliostat towards the AP must be able to be intercepted by the down beam 

reflector in order to redirect the sun’s rays to the focal point at ground level.  This 

physical footprint was determined by drawing a line from the AP to the four corners of 

the down beam mirror, and then extending each of those lines to the height of the 

heliostat field at ground level.  The result is a trapezoid at ground level for which 

heliostats can be placed and effectively utilized within the system.  Figure 3.5 

demonstrates the trapezoid generated from such a technique.    

 

 
Figure 3.526Trapezoid demonstrating utilizable placement of heliostats 

 

The diagram in Figure 3.5 depicts approximately 7,960 m
2
 of utilizable land area 

for placing heliostats capable of reflecting to the focal point for the given optical 
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geometry of the NCSETF.  Methodologies for how heliostats were positioned within that 

land area is presented under heliostat field layouts, section 3.7.  

3.5 Heliostat Reflection Equations 

A Heliostat Reflection Orientation Position Vector (HROPV) algorithm was 

developed to appropriately orientate each heliostat to reflect to the AP of the heliostat 

field for every hour of the year.  Using the coordinates for the center of each heliostat in a 

3D coordinate system, the algorithm orientates each heliostat to properly reflect to the 

AP.  The orientation of the heliostat is time dependent based on the sun’s position.  The 

mathematical equations utilized to accurately orientate each heliostat are described. 

A plane of reflection for each heliostat is defined by the center point of the 

heliostat, sun, and targeted AP, as depicted in Figure 3.6.  The center of the heliostat and 

targeted AP are at fixed locations for any given simulation hour.  The center of the sun, 

however, at the apex of the reflection plane, varies as the earth rotates.  In order for the 

heliostat to properly reflect to the AP, the normal position vector to the heliostat must lie 

halfway between the sun and the AP in the plane of reflection [31].  

 
Figure 3.627 Plane of reflection for heliostats [31] 
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Figure 3.6 demonstrates that the plane of reflection rotates around the target 

vector, and is orientated based on the sun’s position in the sky.  The target vector is a 

function of each heliostat’s location.  As described by Leonard [31], the law of sines and 

the law of cosines are required to determine the heliostat positioning vector. This can be 

accomplished by a process known as triangulation, utilizing the known sun and target 

positioning vectors for any given time stamp.  In a spherical coordinate system, the 

heliostat, sun, and target position vectors are defined by each of their zenith and azimuth 

angles respectively.  Figure 3.7 represents the geometry in a spherical coordinate system. 

 
Figure 3.728Vector position geometry for target, heliostat, and sun 

 

The law of sines states that the sides of a triangle are in the same ratio to one 

another as the sines of their opposite angles.  The law of cosines is a method for 

calculating a specific side of a triangle when the other two sides and opposite angle are 

known, or computing the angles of a triangle when all three sides are known.  Figure 3.7 

represents a non-Euclidean geometry, therefore, in a spherical coordinate system, the law 
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of sines and the law of cosines theorems are adapted to relate the sides and angles of 

spherical triangles.  Consider the following spherical triangle:   

   
Figure 3.829Triangle in spherical coordinates [31] 

 

The law of sines in spherical coordinates states (3.12) [32]: 

 

sin sin sin

sin sin sina b c

  
                                              (3.12) 

Similarly, the law of cosines in spherical coordinates states that the angles of a 

spherical triangle are represented by (3.13) [32]: 

 

cos cos cos sin sin cos

cos cos cos sin sin cos

cos cos cos sin sin cos
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c

    

    

    

  

  

  
                            (3.13) 

The law of cosines in spherical coordinates also states the angular length of the 

sides of the triangle (3.14) [32]: 
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cos cos cos sin sin cos

cos cos cos sin sin cos

cos cos cos sin sin cos

a b c b c

b c a c a

c a b a b







 

 

 
                                (3.14) 

The geometry of the heliostat, sun, and target position vectors create two spherical 

triangles in 3D space.  Figure 3.9 defines those spherical triangles:  

 

 
Figure 3.930 Spherical triangles created by heliostat, sun, and target position vectors 

 

The solar azimuth angle, s , and solar zenith angle, z , are known on an hourly 

basis based on the calculated position of the sun as described by the SPO algorithm in 

section 3.3.1.  The target azimuth angle, aT , and the target zenith angle, zT , are also 

known and calculated by the HROPV algorithm based on the x, y, and z location of each 

heliostat in a 3D Cartesian coordinate system.  Therefore, the law of sines and law of 

cosines can be applied to the spherical triangles to solve for the heliostat azimuth angle, 
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aH , and the heliostat zenith angle, zH .  As described by Leonard [31], the angles are 

calculated in a two-step process.  The first step involves calculating the angle between the 

target and the sun, .zI , so the halfway point for which the heliostat position vector must 

point can be determined.  The law of cosines is applied to calculate zI  according to the 

following equation (3.15) [31]:   

  1cos cos( )cos( ) sin( )sin( )cos( )z z z z z s aI T T T                    (3.15) 

The law of sines gives the relationship (3.16) [31]: 
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sin( ) sin( )
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
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Solving for the common intermediate angle, aI , yields (3.17) [31]: 
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                                     (3.17) 

With the intermediate values determined, the desired heliostat azimuth angle, aH , 

and the heliostat zenith angle, zH  can be calculated.  Again, using the law of cosines zH  

can be solved for via (3.18) [31]: 
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               (3.18) 

The law of sines gives the relationship (3.19) [31]: 
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Finally, the heliostat azimuth angle, aH , is represented by the equation (3.20) 

[31]:  
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Based on the known coordinates for each heliostat, an arbitrary reference set of x, 

y, and z axes is defined, with the origin located at the center of each heliostat.  Each 

heliostat is then respectively rotated about its arbitrarily defined reference axis the 

appropriate amount to achieve the correct positioning vector, defined by zH  and aH .  

The MATLAB
®
 code implements a data file in the root directory of ASAP

®
 containing 

the x, y, and z location of each heliostat, as determined by one of the heliostat field layout 

algorithms to be discussed in section 3.7.   This data file also contains the respective 

rotation of each heliostat required to achieve the appropriate heliostat position vector, as 

determined by the HROPV algorithm.  The resulting data file contains six initial 

parameters for each heliostat: x, y, and z locations, as well as the rotation around each 

respective arbitrary axis. 

A user defined macro in ASAP
®
 then reads in the heliostats data file, and assigns 

each of the parameters to a unique variable, similar to how the sun source was 

implemented.  The location and orientation of each heliostat is then realized in ASAP
®
, 

and the optical properties applied.  This allows for the facility to be optically simulated 

for any given hour of the year. 
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3.6 Converging Heliostats 

In order for the optical system, which utilizes a planar down beam reflector, to 

achieve the targeted concentration and power output within a reasonable spot size at 

ground level, converging heliostats were implemented.  With an idealized point source 

emitting parallel rays the achievability of 1,000 suns concentration would require the 

overlapping of more than 1,000 planar heliostat images.  With a desired spot size as close 

to 1 m
2
 as possible, heliostats would have to be 1 m

2
 or smaller in area.  Instead, the 

model was developed using focusing heliostats, capable of covering the sun’s rays to 

obtain additional concentration.    

From a feasibility of manufacturing perspective, a non-imaging heliostat that 

focuses the sun’s rays would likely be implemented using the method described by Chen 

[33].  Such a heliostat is composed of a flat master frame covered with faceted mirror 

tiles.  The master frame is orientated such that it achieves the heliostat position vector, 

and the individual mirror facets are orientated to achieve focus.  The advantage to such a 

design is that heliostats can be mass produced, since each heliostat is able to achieve 

varying focal points by adjusting the individually faceted mirror tiles.  Figure 3.10 

depicts the heliostat as described by Chen [33].    
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Figure 3.1031 Non-imaging focusing heliostat schematic [33] 

 

A limitation of ASAP
®

 was encountered in the effort to implement focusing 

heliostats as described by Chen [33].  ASAP
®
 contains 1,768 internal register values [27].  

The implication is that only 1,768 variables can be assigned within ASAP
®
 for any given 

optical simulation.  In order to model a heliostat as defined by Chen [33], each mirror tile 

would essentially have to be simulated as an individual small planar heliostat.  With 1 m
2
 

tiles, the minimal targeted size heliostat field of 2,000 m
2
 would require the assignment 

of more than 12,000 variables, exceeding the upper limit of the internal register values 

available in ASAP
®
.  Subsequently, alternate approaches had to be investigated for 

simulating focusing heliostats within the ASAP
®
 model of the NCSETF.  

A feasible approach, adhering to the restrictions of ASAP
®
, was developed for 

modeling converging heliostats.  ASAP
®
 is capable of taking a planar object and making 

it of parabolic shape by applying a vertex radius of curvature.  The vertex radius of 

curvature is defined by the focal length of each heliostat.  For any given heliostat, the 

focal length is equivalent to the length of the target positioning vector, a value previously 
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calculated within the HROPV algorithm for defining the heliostat reflection equations.  

Utilizing the known focal length, along with the number of facets along the length and 

width of the object, a rectangular aperture can be used to simulate a converging heliostat 

in ASAP
®
.  Figure 3.11 demonstrates a converging heliostat as defined in the ASAP

®
 

model of the NCSETF. 

 

 
Figure 3.1132Faceted converging heliostat ASAP

®
 schematic  

 

In order to fabricate an object representative of a heliostat like that presented in 

Figure 3.11 ASAP
®

 requires the input of a conic constant.  Since the conic constant is the 

same for all heliostats, it can be specified in ASAP
®
 and does not have to be imported.  A 

conic constant of zero, representative of a sphere, was chosen in creating the heliostat 

objects for the model.     

The method developed requires one additional variable per heliostat, the radius of 

curvature, to be imported from MATLAB
®
 into ASAP

®
 in order to simulate heliostat 

convergence characteristics.  It also requires the number of facets along the length and 
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width of the heliostats, which is imported as two parameters for the entire heliostat field.  

The model created prompts the user to input the number of facets for any given 

simulation.  Again, this was done in an effort to make the model versatile, allowing for 

the effects of various facet sizes to be easily realized.  It should be noted that the facets 

are only utilized for viewing purposes.  Less facets make the rendering of 3D simulations 

easier to manipulate and quicker to construct.  It was originally envisioned that the facet 

sizes could be adjusted to render different size mirror tiles of converging heliostats.  In 

ASAP
®
, however, the number of facets used to render the object has no impact on the 

object’s physical definition within the database.  The numbers of facets affects only the 

graphics, and therefore have no influence on how rays interact with the object.  In terms 

of modeling the NCSETF, facets were specified to produce 1 m
2
 mirror tiles.  

Dimensions were based on attempting to match visible characteristics with feasibility of 

implementation.   

The approach utilized for developing converging heliostats in ASAP
®
 present two 

primary drawbacks.  Predominantly, additional optical aberrations are introduced as a 

result of off-focus orientations required for tracking of the sun.  Essentially, the 

converging heliostats are constructed as dishes with the correct focal distance, rather than 

true non-imaging heliostats as Chen [33] describes.  Additionally, from a manufacturing 

perspective, each heliostat would have to be custom fabricated based on its exact radius 

of curvature.  This would have to be done for the entire heliostat field, and once a 

heliostat is placed it can’t be moved without distorting the optical geometry.  Figure 3.12 

is a ray trace implemented in ASAP
®
 to demonstrate the convergence characteristics of a 

heliostat developed by the method described.   
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 Figure 3.1233 Ray trace demonstrating converging heliostats in ASAP
®
 

 

3.7 Heliostat Field Layouts 

3.7.1 Methodology 

Two separate methodologies were utilized for heliostat placement.  The first 

algorithm, deemed the Radially Staggered Heliostat Field Layout (RSHFL) algorithm, 

implements a radially staggered configuration in an effort to minimize optical losses of 

the NCSETF.  Minimizing optical losses results in a more efficient system.  From an 

economic perspective, fewer heliostats are required to produce the targeted output, 

implying less capital expenditure in construction of the heliostat field.   

The second approach was to utilize a tightly packed North-South (N-S) cornfield 

configuration in an effort to pack as many heliostats as possible into the utilizable region 

of the TR for the primary AP of the heliostat filed.  The utilizable region is depicted by 

the trapezoid presented in Figure 3.5.  The N-S Cornfield Heliostat Field Layout 

(NSCHFL) algorithm ensures that a heliostat will not block a parallel vertical heliostat on 

a subsequent row if the heliostats, TR, and sun source are all co-linear.  The NSCHFL 
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algorithm was developed with the realization that the optical efficiency of the system 

would greatly decrease due to the effects of blocking and shading.  Further details as to 

how each algorithm was developed are presented. 

3.7.2 Radially Staggered Heliostat Field Layout (RSHFL) Algorithm 

A radially staggered no blocking algorithm similar to that utilized in the MUEEN 

code presented by Siala [34] was implemented.  The configuration can be described by 

rings of heliostats surrounding the tower, with no heliostat lying directly in front of 

another heliostat on an adjacent ring.  Such a configuration allows for rays to pass in 

between heliostats located on neighboring rings.  The RSHFL algorithm does not 

consider the effects of shading.  However, as described by Siala [34], blocking has a 

more pronounced effect on the layout of heliostat fields than shading.  Figure 3.13 

demonstrates a radially staggered heliostat configuration where each heliostat can be 

defined in 2D space by radial and azimuth spacing. 

 
Figure 3.1334Radially staggered configuration [35] 

A mathematical description of the algorithm implemented in the MUEEN code is 

presented by Siala et al. [34].  The RSHFL algorithm executed in modeling the radially 
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staggered field of the NCSETF is very similar, but does contain some modifications.  

Primarily, the algorithm utilized to develop the MUEEN was designed to be implemented 

in a C++ programming environment [34].  Due to indexing discrepancies between C++ 

and MATLAB
®
, the MUEEN code algorithm had to be re-written for suitable 

implementation in MATLAB
®
.  Furthermore, the MUEEN code algorithm is designed for 

a tower receiver system, not a TR system like that of the NCSETF.  Different radii are 

suggested for the first ring of heliostats in a TR system.  Falcone [36] suggests the first 

ring be located at a distance three quarters the height of the AP.  The MUEEN code 

algorithm suggests the first ring of heliostats be located at a radius the height of the AP 

[34].  In order to accommodate the compact optical geometry desired for the NCSETF, 

the first ring of heliostats was allocated to be one third the height of the AP in the RSHFL 

algorithm.  

The RSHFL algorithm implemented in MATLAB
®
 requires user input parameters 

for the maximum angular direction of the heliostat field, the maximum ring radius, the 

length and width of each heliostat, and the number of facets along the length and width.  

As an output, the RSHFL algorithm produces the x, y, and z location for the center of 

each heliostat in a 3D Cartesian coordinate system.  For purposes of modeling the 

NCSETF, the maximum angular direction was set to 30° and the maximum heliostat ring 

radius was specified at 150 m.  The parameters were quantified in order to lay down a 

radially staggered no blocking heliostat field large enough to cover the entire utilizable 

area of the down beam reflector.  As specified, the heliostat length and widths were set to 

8 m, with 8 facets along each to achieve the 1 m
2
 mirror tiles.  Figure 3.14 displays the 
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input prompt for the RSHFL algorithm, and the subsequent field layout as well as down 

beam reflector for modeling the NCSETF.  

 

 
Figure 3.1435RSHFL algorithm prompt and heliostat field layout 

 

3.7.3 N-S Cornfield Heliostat Field Layout (NSCHFL) Algorithm  

The NSCHFL algorithm ensures that a heliostat will not block a parallel vertical 

heliostat on a subsequent row if the heliostats, TR, and sun source are all co-linear.  For 

any given row, heliostats are compacted side by side, as close as physically possible 

without obstructing the range of motion of an adjacent heliostat.  The NSCHFL algorithm 

takes in as user defined input parameters the minimum first row distance, the maximum 

last row distance, the length and width of each heliostat, and the number of facets along 

the length and width. 

In order to allocate the row spacing for the field, the lowest position of the sun in 

the sky at solar noon for Las Vegas over the course of the year is required.  The elevation, 

or solar altitude angle, s , is defined by the angle between the horizontal and a line to the 
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sun.  The elevation angle is a complement of the solar zenith angle, and therefore can be 

calculated according to the equation (3.21): 

 90s z                                                         (3.21) 

At solar noon, in the Northern Hemisphere the elevation angle can be represented 

by the simplified equation (3.22): 

 90s                                                       (3.22) 

As previously described, the declination angle ranges from 23.45° on the summer 

solstice, June 21, to -23.45° on the winter solstice, December 22.  Applying equation 

(3.22) for Las Vegas on the winter solstice when the sun is at its lowest elevation yields 

the following minimum elevation angle, sm , at solar noon (3.23): 

 90 36.083 23.45 30.467sm                                         (3.23) 

  With the minimum elevation angle at solar noon specified, the row spacing, 

spaceR , is defined based on the length of the heliostat mirror, mL , according to the 

following equation (3.24): 

 
tan( )

m
space

sm

L
R


                                                  (3.24) 

  Applying equation (3.24) for the conditions of modeling the NCSETF with 8 x 8 

m heliostats and the minimum elevation angle as specified by equation (3.23) yields the 

following row spacing implemented for the N-S algorithm (3.25): 

 
8

13.599
tan(30.467)

spaceR m 

                                  

(3.25) 

With the row spacing allocated, the NSCHFL algorithm starts at the location of 

the first row and places subsequent rows, as defined by 
spaceR , up to the distance of the 
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maximum row.  The width of each row is initially defined by laying down a square grid 

of heliostats, as determined by the minimum and maximum row.  In investigations of the 

NCSETF the first row of heliostats was specified at 16 m from the focal point and the 

furthest possible row at 150 m.  Again, this was to cover the entire utilizable range of the 

down beam reflector.  The resulting field, for 8 x 8 m heliostats with 1 m
2
 mirror tiles is 

depicted in Figure 3.15, along with the input prompt to the NSCHFL algorithm. 

 

 
Figure 3.1536NSCHFL algorithm prompt and heliostat field layout  

 

A square grid of heliostats, as presented in Figure 3.15, contains several heliostats 

outside of the utilizable range of the down beam reflector.  In order to further refine the 

N-S heliostat field, non-contributing heliostats are eliminated.  ASAP
®

 allows for any 

object within the optical geometry to be neglected from a ray trace.  Three methods were 

implemented to determine contributing heliostats.  First, heliostats visibly noticeable 

outside of the working trapezoid of the TR for the primary AP of the heliostat field were 

manually ignored.  The field was further refined using the statistical data and the 

visualization of the ray trace.  The ASAP
®

 model of the NCSETF produces statistical 
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data of how many rays hit any given heliostat and don’t reflect to the down beam mirror.  

Utilizing this statistical data, along with visualization of the ray trace, non-contributing 

heliostats were further eliminated based on their contributing factor.  For the conditions 

of modeling the NCSETF, the refined grid and subsequent ray trace of the NSCHFL 

algorithm are presented in Figure 3.16. 

 

 
Figure 3.1637Refined N-S cornfield (a) heliostat field layout; (b) ray trace 

 

3.8 Algorithm Integration 

For any given simulation the user is prompted to specify three parameters to 

allocate the time of simulation within the model; the month, day, and simulation hour, 
h

S .  

Utilizing the NSCHFL algorithm the user is also prompted to specify the minimum row 

distance for placing heliostats from the TR center, 
min

R , the maximum row distance for 
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placing heliostats from the TR center, 
max

R , the width of the heliostat mirror, 
m

W , the 

length of the heliostat mirror, 
m

L , along with the number of facets along the length and 

width of each heliostats.  Based on the specified time parameters, the SPO algorithm 

selects the appropriate DNI from the TMY weather data file and exports a data file to the 

root directory of ASAP
®

 containing the solar zenith angle, solar azimuth angle, and DNI 

required to simulate the sun source for the chosen hour within the ray trace.  Furthermore, 

the SPO algorithm exports to the HROPV algorithm the hourly solar zenith and azimuth 

angles so that the orientation of each heliostat can be determined based on the relative 

position of the sun source within the model.   

The user established heliostat field input parameters are utilized by the NSCHFL 

algorithm to determine the number of heliostats within the utilizable range of the TR for 

the primary AP of the field, 
helios

N , along with the global coordinates of each heliostats.  

Those parameters are then exported to both ASAP
®
 so that each heliostat can be 

appropriately realized within the ray trace, as well as to the HROPV algorithm so that 

proper orientation of each heliostat can be determined.  The HROPV algorithm exports to 

ASAP
®
 the relative rotation about an arbitrarily defined set of axes located at the center 

of each heliostat the rotation for each heliostat to achieve the heliostat surface azimuth 

angle for the specified SH, 
ha

R , the heliostat surface zenith angle for the specified SH, 

hz
R , and the vertex radius of curvature, 

radC
V , required to achieve appropriate 

convergence behavior for each heliostat.  ASAP
®
 is then able to simulate the optical 

geometry of the system and produce an output at the detector both in terms of power and 

power distribution.  Figure 3.17 is a flow chart depiction of how the algorithms are 
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coupled together along with ASAP
®
 to simulate the optical performance of the facility for 

any given SH.   

 

Figure 3.173839Algorithm flow chart for simulating NCSETF 
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CHAPTER 4 

Equation Chapter 4 Section 1 

SIMULATION RESULTS & DISCUSSION 

4.1 DNI Model Validation 

In order to confirm proper DNI is received at ground level within the ASAP
®
 

simulation of the NCSETF, a simulation utilizing gauging surfaces was first 

implemented.  Five flat surfaces were placed at ground level and orientated normal to the 

sun’s rays within the model.  The objective was to establish relatively equal and accurate 

distribution of flux amongst the heliostat field within the ray trace.  Each of the five 

gauging surfaces measures 16 m
2
, one quarter the total surface area of an actual heliostat 

implemented within the NCSETF model.  The motivation behind utilizing smaller 

gauging surfaces was to ensure an appropriate amount of rays were simulated within the 

model.   

For each gauging object, statistical data containing the number of rays landing on 

each surface, as well as the total flux (J/s) was produced.  Additionally, irradiance 

(W/m
2
) maps for each gauging surface were developed.  Initial gauging was implemented 

using TMY3 data for January 21, 2001 at 12:00 p.m., in which DNI equates to 839 W/m
2
.  

Table 4.1 demonstrates the statistical data produced by the gauging simulation for the 

five surfaces:  
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Table 4.12Statistical data of DNI gauging simulation 

 

 

The statistical data demonstrates that approximately 400 rays are equally incident 

on each gauging surface.  Furthermore, taking the flux received on each gauging surface, 

roughly 13,420 J/s, and dividing by the surface area of each object, 16 m
2
, yields DNI at 

approximately 839 W/m
2
.  With appropriate DNI established, 2D and 3D flux maps were 

also implemented to demonstrate distribution.  Figure 4.1 depicts a 2D contour and 3D 

irradiance plot for the gauging surfaces of the model: 
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Figure 4.140(a) 2D DNI gauging contour plot; (b) 3D DNI gauging irradiance plot 



  

83 
 

The DNI gauging simulation exhibits appropriate allocation of DNI emitting from 

the sun source within the ASAP
®
 model of the NCSETF.  With the sun source validated, 

attention was turned towards simulation of the NCSETF and the previously described 

heliostat field layout methodologies.  

 

4.2 Simulation DNI Data 

It was originally intended that simulations would be performed for the two 

solstices of the year, as well as the two equinoxes of the year, in order to produce a 

simulated performance of the facility for each of the four seasons.  TMY3 data, however, 

for the summer solstice June 21, 1988 is abnormally low for summer conditions in Las 

Vegas.  For example, at solar noon TMY3 DNI yields 316 W/m
2
.  Typical summer DNI 

values commonly exceed 900 W/m
2
 in Las Vegas.  The low TMY3 DNI for the summer 

solstice is likely due to overcast conditions for that specific day.  As a result, an alternate 

date more representative of summer conditions in which high DNI values are attained 

was chosen.  The replacement date was selected to be July 12, TMY 1991 in which DNI 

reaches 930 W/m
2
 at solar noon.  The winter solstice, as well as the spring and fall 

equinoxes, were still chosen for initial investigations of the NCSETF.  Hours of 

simulation were from 5:00 a.m. through 7:00 p.m., ensuring modeled results for every 

hour of sunlight for each of the evaluated days.  Table 4.2 demonstrates DNI vs. hour for 

each day simulated.   
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Table 4.23  TMY3 hourly DNI (W/m
2
) for simulation days of NCSETF 

 
 

The DNI data was also plotted as a function of time for each simulation day in 

order to provide a visual representation of the trends in the data.  The resulting plot is 

presented in Figure 4.2:  
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Figure 4.241TMY3 DNI for NCSETF simulation hours 

 

Comparing the output of the NCSETF against the DNI values depicted in Figure 

4.2 allows for trends in the performance of the facility to be realized.  Both the effects of 

optical losses as well as varying DNI intensities can be observed in the output of the 

facility.  The performance of the facility is presented for the same hours as depicted in 

Table 4.2 and Figure 4.2. 

 

4.3 Radially Staggered Simulations with Parallel Rays 

The radially staggered algorithm was first implemented for solar noon on July 12, 

1991.  The results of that simulation are presented.  Figure 4.3 is representative of the ray 

trace for the radially staggered heliostat configuration of the NCSETF. 
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 Figure 4.342NCSETF ray trace utilizing radially staggered heliostat field layout  

 

The ray trace demonstrates utilizable heliostats.  Heliostats that are not within the 

acceptance realm of the down beam reflector display a ray incident on the heliostat, but 

that ray does not continue along its reflected path towards the AP.  Figure 4.4 depicts 2D 

and 3D irradiance plots for the detector at ground level.  An averaging of pixels is 

utilized within the model in order to smooth the image of the data.  



  

87 
 

 
Figure 4.443(a) 2D collector irradiance plot; (b) 3D collector irradiance plot 
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Figure 4.4 depicts a concentrated spot size totaling an approximated area of 2 m
2
.  

At the origin of the detector, located at the center of the crosshairs in Figure 4.4 (a), the 

irradiance totals 1.7 x 10
6
 W/m

2
.  Dividing by DNI for the hour, 930 W/m

2
, yields a total 

concentration of approximately 1,828 suns.  As can be observed, local hotspots exist 

within the concentrated image, and may not always be centered directly below the down 

beam reflector.  A contour plot and 3D isometric distribution of flux plot were also 

produced for the detector at ground level.  Figure 4.5 presents those plots: 

 

 
Figure 4.544(a) Detector contour plot; (b) Isometric distribution of flux plot 

 

The contour plot displays concentric rings ranging from 1.993 x 10
5
 W/m

2
 to a 

peak of 1.993 x 10
6
 W/m

2
.  This produces a variance in concentration amongst the image 

from 214 suns to 2,143 suns.  Along with the plots, the statistical data of the ray trace 

produces a simulated 1,000,014 W received on a 4 m
2
 detector at ground level. 

The resulting conclusions that can be drawn from the model are significant.  

Primarily, the RSHFL algorithm is not ideal for heliostat placement of the NCSETF.  The 

reason being, the targeted 2,000 m
2
 of reflective heliostat surface area does not fit within 
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the utilizable range of the down beam reflector.  As a result, the targeted output of 1 MW 

is barely achieved for even an hour of high DNI during the summer.  Under such a 

configuration the simulation demonstrates that the NCSETF would only meet the desired 

output for a few select hours of the year.  As a result, the idea of using the radially 

staggered field layout was abandoned, and instead focus was turned to the much more 

compact N-S cornfield configuration.    

 

4.4 N-S Cornfield Simulations with Parallel Rays 

4.4.1 Presentation Overview 

For each day simulated the outputs of the model for the NCSETF are presented in 

detail for the hours of 9:00 a.m., 12:00 p.m., and 4:00 p.m. with a solar disk emitting 

parallel rays.  General trends are then demonstrated for the output of the facility over the 

course of the four days modeled.  Power output and concentration trends are established 

along with the optical efficiency of the facility for the days simulated.  

4.4.2 TMY3 July 12, 1991 Simulation 

The N-S cornfield heliostat field layout was first simulated for the same hour as 

the radially staggered configuration, July 12, 1991 at solar noon.  The 3D visualization of 

that ray trace is realized in Figure 4.6. 
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Figure 4.645 NCSETF ray trace utilizing N-S cornfield with parallel rays 

 

The detector spot pattern and contour plot at solar noon for the N-S cornfield 

configuration are presented in Figure 4.7.  Figure 4.7 is followed by similar plots for the 

hours of 9:00 a.m. and 4:00 p.m. in Figures 4.8 and 4.9, respectively.  Figure 4.7 

demonstrates a spot size centered just south of the origin, ranging in concentration from 

521 suns to a maximum of 5,210 suns.  Furthermore, a total of 1,890,651 W are 

accumulated on the detector at ground level.  Figure 4.8 presents a concentration ranging 

from 159 suns to 1,588 suns for the hour ending at the timestamp of 9:00 a.m.  The rays 

are congregated to the west side of the detector.  A total of 1,356,987 W are collected on 

the receiver.  For the hour of 4:00 p.m. concentration ranges from 90 suns to 904 suns as 

presented in Figure 4.9.  A total of 1,064,075 W are simulated to be received on the 

detector. 
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Figure 4.746 NCSETF July 12, 12:00 p.m.  (a) Detector insolation plot; (b) Detector 

contour plot 
 

 

 

 

 
Figure 4.847 NCSETF July 12, 9:00 a.m.  (a) Detector insolation plot; (b) Detector contour 

plot 
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Figure 4.948 NCSETF July 12, 4:00 p.m.  (a) Detector insolation plot; (b) Detector contour 

plot 

 

The behavior of the spot patterns depicted in Figures 4.7, 4.8, and 4.9 lead to 

several observations.  The local hot spots and shape of the concentrated rays vary over 

the course of the day.  At 9:00 a.m., the majority of the rays tend to be concentrated 

toward the west side of the detector.  Conversely, at 4:00 p.m. rays tend to be bundled on 

the east side of the detector.  At local noon, the rays are relatively focused from east to 

west, but weighed slightly heavier towards the south side of the collector.   

The effects of the behavior are similar to as expected.  Because the heliostats are 

essentially defined as a smooth parabolic dish, the more off-focus they are from the AP 

the larger the optical aberrations become.  Since heliostats are orientated to split the 

angular difference between the sun position vector and the target position vector in the 

plane of reflection, optical aberrations and cosine losses grow as the angular direction 

from the sun to the target increases.  
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4.4.3 TMY3 September 23, 1987 Simulation 

The simulated outputs for the fall equinox, September 23, 1987 are presented for 

the hours 9:00 a.m., 12:00 p.m., and 4:00 p.m.  Figure 4.10 demonstrates a spot size 

centered north of the origin at 9:00 a.m., ranging in concentration from 469 suns to a 

maximum of 4,693 suns.  Additionally, a total of 110,428 W are accumulated on the 

detector at ground level for the hour of 9:00 a.m.  Figure 4.11 presents a concentration 

ranging from 1,069 suns to 10,685 suns for the hour ending at the timestamp of 12:00 

p.m.  The rays are centered just south of the origin on the detector.  A total of 561,490 W 

are collected on the receiver.  For the hour of 4:00 p.m. concentration ranges from 200 

suns to 2,000 suns as presented in Figure 4.12.  A total of 271,973 W are simulated to be 

received on the detector. 

   

 
Figure 4.1049 NCSETF Sept 23, 9:00 a.m.  (a) Detector insolation plot; (b) Detector 

contour plot 
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Figure 4.1150 NCSETF Sept 23, 12:00 p.m.  (a) Detector insolation plot; (b) Detector 

contour plot 

 

 
Figure 4.1251 NCSETF Sept 23, 4:00 p.m.  (a) Detector insolation plot; (b) Detector 

contour plot 

 

When comparing the simulations for September 23, 1987 to those of July 12, 

1991 the results appear plausible.  Tighter concentration ratios and spot sizes are 

achieved.  Again, because the sun is lower in the sky for the September simulation, the 

angular difference in the plane of reflection is less.  The result is less optical aberrations 

due to off-focus conditions of the dish shaped heliostats.  The same trend is observed for 
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off-noon hours, the farther from solar noon the larger the spot size and less concentration 

levels are achieved.   

4.4.4 TMY3 December 22, 1979 

The simulation results for December 22, 1979 during the hours of 9:00 a.m., 

12:00 p.m., and 4:00 p.m. are presented respectively.  Figure 4.13 demonstrates a tight 

spot size centered north of the origin at 9:00 a.m., ranging in concentration from 971 suns 

to a maximum of 9,713 suns.  A total of 257,375 W are gathered on the detector at 

ground level within the simulation.  Figure 4.14 presents a concentration ranging from 

14,086 suns to 140,864 suns for the hour ending at the timestamp of 12:00 p.m.  The rays 

are highly concentrated to a tight spot centered directly at the origin of the detector.  A 

total of 954,297 W are collected on the receiver.  For the hour of 4:00 p.m. concentration 

ranges from 34 suns to 337 suns as presented in Figure 4.15.  A total of 27,262 W are 

simulated to be received on the detector. 

 

 
Figure 4.1352 NCSETF Dec 22, 9:00 a.m.  (a) Detector insolation plot; (b) Detector contour 

plot 
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Figure 4.1453 NCSETF Dec 22, 12:00 p.m.  (a) Detector insolation plot; (b) Detector 

contour plot 
 

 
Figure 4.1554 NCSETF Dec 22, 4:00 p.m.  (a) Detector insolation plot; (b) Detector contour 

plot 

 

The results for the December 22, 1979 simulation are insightful.  In December the 

sun is relatively low in the sky. On solar noon, the elevation of the sun for the winter 

solstice in Las Vegas is just 30.467°.  Resultantly, the angular difference between the sun 

position vector and the target position vector in the plane of reflection is small for each 

heliostat.  Therefore, the object utilized to simulate a converging heliostat is nearly 

entirely in focus.  The result is a very compact bundle of rays at the origin attaining 
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extremely high concentration.  In actuality, the achievable concentration is limited by the 

angular size of the sun in the sky, which is realized in section 4.5.  The high 

concentration simulated is a product of utilizing parallel rays within the model to 

represent the sun.  A higher level of concentration is simulated by the model due to the 

parallel ray representation of the sun.  

4.4.5 TMY3 March 22, 1982 

The simulation results for March 22, 1982 during the hours of 9:00 a.m., 12:00 

p.m., and 4:00 p.m. are displayed.  Figure 4.16 demonstrates a spot size centered north of 

the origin at 9:00 a.m., ranging in concentration from 470 suns to a maximum of 4,696 

suns.  Furthermore, a total of 1,445,371 W are accumulated on the detector at ground 

level.  Figure 4.17 presents a concentration ranging from 1,067 suns to 10,665 suns for 

the hour ending at the timestamp of 12:00 p.m.  The rays are centered just south of the 

origin on the detector.  A total of 1,815,480 W are collected on the receiver.  For the hour 

of 4:00 p.m. concentration ranges from 198 suns to 1,979 suns as presented in Figure 

4.18.  A total of 1,116,780 W are simulated to be received on the detector. 
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Figure 4.1655 NCSETF March 22, 9:00 a.m.  (a) Detector insolation plot; (b) Detector 

contour plot 
 

 

 

 

 

 
Figure 4.1756 NCSETF March 22, 12:00 p.m.  (a) Detector insolation plot; (b) Detector 

contour plot 
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Figure 4.1857 NCSETF March 22, 4:00 p.m.  (a) Detector insolation plot; (b) Detector 

contour plot 

 

The simulation results for the spring equinox are very similar to the results of the 

fall equinox.  This is appropriate, since the angular direction in the plane of reflection is 

similar for those days.  The result is nearly analogous concentration ratios over the course 

of the day for the fall and spring equinoxes.  The power outputs vary due to different 

levels of DNI records for March 22, 1982 and September 23, 1987 within the TMY3 

dataset. 

The off-axis focusing conditions resulting from the angular difference between 

the sun position vector and the target position vector in the plane of reflection produces 

optical coma.  Optical coma is defined as a defect of an objective mirror or lens in which 

rays of light, striking the objective away from the optical axis are not brought to focus in 

the same image plane [37].  Figure 4.19 demonstrates the effect of optical coma. 
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Figure 4.1958 Optical coma due to off-axis light source [37] 

 

As presented in Figure 4.19, optical coma arises from the angular difference 

between the light source and the optical axis.  In the case of the NCSETF, the optical axis 

is the target position vector and the light source is defined by the sun’s rays.  Coma tends 

to create comet-like tails on the image, spreading radially out from the optical axis.  This 

comet-like tail effect is demonstrated in several simulations of the NCSETF, including 

Figure 4.18.  The effects of optical coma are directly proportional to the angular 

difference between the light source and the optical axis.  As the angular difference in the 

plane of reflection increases, the effects of optical coma become more pronounced. Such 

an effect is also demonstrated in the simulations of the NCSETF, and is the explanation 

behind the excellent focusing conditions when the sun is directly behind the AP of the 

heliostat field.  It also explains the poor focusing conditions in the morning and afternoon 

simulations when the angular difference is large. 
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4.4.6 Time Dependent Results 

Time dependent tables and plots were constructed in order to evaluate the 

performance of the facility over the course of the days simulated.  The model of the 

NCSETF considers all optical losses including cosine, blocking, shading, attenuation, and 

reflective losses.  Table 4.3 portrays the total power collected on the receiver at ground 

level for each hour simulated with the parallel ray sun source. 

 

Table 4.3 Simulated power output (W) for N-S cornfield algorithm 

 
 

 

The table demonstrates several hours of the four simulated days in which the 

targeted power output of 1 MW is achieved. Furthermore, the data portrays that as early 

as 8:00 a.m. and as late as 4:00 p.m. the facility is capable of producing the target 1 MW 

at the detector.  A graphical representation of the data presented in Table 4.3 is depicted 
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by Figure 4.20.  The power output plot is followed by a plot simulating the optical 

efficiency of the NCSETF for each of the hours modeled, Figure 4.21.  The optical 

efficiency plot is based strictly on the power received on the detector at ground level.  

Concentration is not considered in the optical efficiency.     

 
Figure 4.2059 Simulated power output: N-S cornfield with parallel rays 
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Figure 4.2160 Simulated optical efficiency: N-S cornfield with parallel rays 

 

The power output and optical efficiency plots provide useful insight as to the 

simulated performance of the NCSETF over time.  The power curves demonstrate 

utilizable hours for operation testing of the facility, ranging from 7:00 a.m. until 5:00 

p.m.  Furthermore, days with relatively high levels of DNI are capable of achieving 

almost twice the targeted output, while days with significantly lower levels of utilizable 

DNI are still capable of producing at or near the target output of 1 MW. 

The efficiency curves establish significant effects in terms of the optical behavior 

of the facility.  First, they demonstrate that the facility is optically more efficient during 

days of higher sun elevation.  This makes sense, since the effects of blocking and shading 

are less the higher the sun is in the sky.  The efficiency curves also allow for the 

significant effects of cosine losses in the afternoon and morning hours to be visualized.  It 



  

104 
 

is also observed that the optical efficiency is nearly identical for the facility on the spring 

and fall equinoxes. 

 

4.5 N-S Cornfield Simulations with Realistic Solar Disk 

4.5.1 Sun Source Verification 

In order to verify proper behavior of the sun’s rays within the ray trace, a 

simulation was first executed utilizing a single heliostat with a known focal length.  The 

heliostat chosen was centered 100 m directly north of the tower, producing a focal length 

of 125.6 m.  The simulation was implemented for December 22, 1979 at solar noon when 

the sun source is aligned directly south of the tower.  Therefore, the sun, tower and 

heliostat are all co-linear.  The simulation hour was chosen because optical aberrations 

due to the dish shaped heliostat are minimal, allowing for nearly point focusing with 

parallel rays as presented in Figure 4.14.  By minimizing optical aberrations due to the 

shape of the heliostat, a single heliostat produces an image of the sun on the detector.  

The diameter of that image can be calculated with the known distance of the heliostat 

from the down beam reflector.  The calculated diameter is presented in equation (4.1), 

and the NCSETF simulated sun spot produced by the single heliostat is presented in 

Figure 4.22. 

 

 tan(0.5 )*125.6 1.1DiameterSUN m m                                     (4.1) 
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Figure 4.2261 Single heliostat sun spot: Focal length = 125.6 m 

 

Comparing the calculated diameter, equation (4.1), with the simulated diameter, 

Figure 4.22, it can be observed that the diameters are nearly equivalent.  Conclusively, 

the simulated scatter surface is producing proper divergence characteristics of the sun’s 

rays within the ASAP
® 

model of the NCSETF.     

4.5.2 Presentation Overview 

For each day simulated the outputs of the NCSETF model are presented in detail 

for the hours of 9:00 a.m., 12:00 p.m., and 4:00 p.m. with a realistic solar disk.  General 

trends are then established for the output of the facility over the course of the four days 

modeled utilizing a realistic sun source that demonstrates appropriate divergence 

characteristics as described in section 3.3.3.  Similar to the simulations implemented with 

parallel rays, power output and concentration trends are also established along with the 

optical efficiency of the facility for the days modeled.  All concentration comparisons 
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made between the realistic sun source and an idealized point source are based on the 

highest concentric ring concentration of the contour plots.  

4.5.3 TMY3 July 12, 1991 Simulation 

The N-S cornfield layout was simulated with diverging rays for the same hours as 

the parallel ray simulations, starting with July 12, 1991 at solar noon.  The 3D 

visualization of that ray trace is realized in Figure 4.23. 

 

 
Figure 4.2362NCSETF ray trace utilizing NSCHFL algorithm with diverging rays 

 

The detector spot pattern and contour plot at solar noon for the N-S cornfield 

configuration are presented in Figure 4.24.  Figure 4.24 is followed by similar plots for 

the hours of 9:00 a.m. and 4:00 p.m. in Figures 4.25 and 4.26, respectively.  Figure 4.24 

demonstrates a spot size centered just south of the origin, ranging in concentration from 

383 suns to a maximum of 3,826 suns.  At the middle of the detector, centered directly 

below the down beam mirror, a concentration of 3,656 is achieved.  Furthermore, a total 

of 1,871,802 W are accumulated on the detector at ground level.  Figure 4.25 presents a 
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concentration ranging from 137 suns to 1,332 suns for the hour ending at the timestamp 

of 9:00 a.m.  The rays are congregated to the west side of the detector.  At the center of 

the detector is a concentration of 1,118 suns.  A total of 1,268,711 W are collected on the 

receiver.  For the hour of 4:00 p.m. concentration ranges from 84 suns to 779 suns, as 

presented in Figure 4.26, with a 501 suns concentration at the detector center.  A total of 

994,113 W are simulated to be received on the detector. 

 

 
Figure 4.2463 NCSETF July 12, 12:00 p.m.  (a) Detector insolation plot; (b) Detector 

contour plot 
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Figure 4.2564 NCSETF July 12, 9:00 a.m.  (a) Detector insolation plot; (b) Detector contour 

plot 

 

 
Figure 4.2665 NCSETF July 12, 4:00 p.m.  (a) Detector insolation plot; (b) Detector 

contour plot 

 

The behavior of the spot patterns depicted in Figures 4.24, 4.25, and 4.26 lead to 

several observations.  The local hot spots and shape of the concentrated rays vary over 

the course of the day.  At 9:00 a.m., the bulk of rays tend to be concentrated toward the 

west side of the detector.  Conversely, at 4:00 p.m., rays tend to be bundled on the east 

side of the detector.  At local noon, the rays are relatively focused from east to west, but 



  

109 
 

weighed slightly heavier towards the south side of the collector.  The observations are 

similar to the outputs provided by the parallel ray simulations as presented in Figures 4.7, 

4.8, and 4.9.   

The differences between the parallel rays and diverging rays simulations for July 

12, 1991 pertain to the concentration and shape of the spot received on the detector.  For 

the simulation hour of 12:00 p.m. the realistic solar disk simulation produces a slightly 

larger and more circular shaped spot on the detector.  Furthermore, the maximum 

concentric ring concentration drops approximately 27% with the realistic sun source.  For 

the 9:00 a.m. diverging rays simulation the maximum concentric concentration is reduced 

by approximately 16% on the detector.  Similarly, for the 4:00 p.m. simulation the 

concentration decreases by about 14% for the realistic sun source implementation.  

4.5.4 TMY3 September 23, 1987 Simulation 

The simulated outputs for the fall equinox, September 23, 1987 are presented for 

the hours 9:00 a.m., 12:00 p.m., and 4:00 p.m. utilizing the realistic sun source.  Figure 

4.27 demonstrates a spot size centered north of the origin at 9:00 a.m., ranging in 

concentration from 251 suns to a maximum of 2,514 suns.  The obtained concentration at 

the detector center is 2,344 suns.  Additionally, a total of 107,821 W are accumulated on 

the detector at ground level for the hour of 9:00 a.m.  Figure 4.28 presents a 

concentration ranging from 396 suns to 3,936 suns for the hour ending at the timestamp 

of 12:00 p.m.  The rays are centered just south of the origin of the detector.  The 

concentration at the middle of the detector is 3,806 suns.  A total of 561,328 W are 

collected on the receiver.  For the hour of 4:00 p.m. concentration ranges from 123 suns 
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to 1,207 suns as presented in Figure 4.29.  The center of the receiver yields 895 suns 

concentration.  A total of 256,004 W are simulated to be received on the detector. 

   

 
Figure 4.2766 NCSETF Sept 23, 9:00 a.m.  (a) Detector insolation plot; (b) Detector 

contour plot 
 

 
Figure 4.2867 NCSETF Sept 23, 12:00 p.m.  (a) Detector insolation plot; (b) Detector 

contour plot 
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Figure 4.2968 NCSETF Sept 23, 4:00 p.m.  (a) Detector insolation plot; (b) Detector 

contour plot 

 

Analyzing the results of the realistic sun source simulations leads to several 

observations for the September 23, 1987 modeled hours.  Like the July 12, 1991 

simulations, the diverging rays produce a larger spot size and less concentration on the 

detector at ground level.  For the simulation hours of 9:00 a.m., 12:00 p.m., and 4:00 

p.m., there is a decrease in maximum concentric ring concentration of 47%, 63%, and 

40% respectively on the detector.  In comparison to the July 12, 1991 simulations, the 

realistic sun source has a greater effect on the achievable concentration ratios for the 

September 23, 1987 simulations.  Again, because the sun is lower in the sky for the 

month of September than the month of July, the angular difference in the plane of 

reflection is less.  The result is less optical aberrations due to off-focus conditions of the 

dish shaped heliostats.  Consequently, the focusing conditions with parallel rays are better 

for September than July as previously established in section 4.4.3.  With a realistic sun 

source, however, the focusing conditions are limited by the divergence of the sun’s rays, 

justifying the larger decrease in maximum concentric concentration.        
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4.5.5 TMY3 December 22, 1979 

The simulation results for December 22, 1979 during the hours of 9:00 a.m., 

12:00 p.m., and 4:00 p.m. are presented respectively for the realistic sun source.  Figure 

4.30 demonstrates a sun spot centered north of the origin at 9:00 a.m., ranging in 

concentration from 110 suns to a maximum of 1,101 suns.  At the midpoint of the 

detector is a concentration of 1,036 suns.  A total of 249,976 W are gathered on the 

detector at ground level within the simulation.  Figure 4.31 presents a concentration 

ranging from 223 suns to 2,233 suns for the hour ending at the timestamp of 12:00 p.m.  

The rays are concentrated to a sun spot centered directly at the origin of the detector 

reaching 2,160 suns.  A total of 954,155 W are collected on the receiver.  For the hour of 

4:00 p.m. concentration ranges from 15 suns to 146 suns, with a centered concentration 

of 109 suns as presented in Figure 4.32.  A total of 24,830 W are simulated to be received 

on the detector. 

 

 
Figure 4.3069 NCSETF Dec 22, 9:00 a.m.  (a) Detector insolation plot; (b) Detector contour 

plot 
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Figure 4.3170 NCSETF Dec 22, 12:00 p.m.  (a) Detector insolation plot; (b) Detector 

contour plot 

 

 
Figure 4.3271 NCSETF Dec 22, 4:00 p.m.  (a) Detector insolation plot; (b) Detector contour 

plot 

 

The results for the December 22, 1979 simulation with a realistic sun source are 

very insightful.  As previously established, the elevation of the sun for the winter solstice 

at solar noon in Las Vegas is only 30.467°.  Resultantly, the angular difference between 

the sun position vector and the target position vector in the plane of reflection is small for 

each heliostat.  Therefore, the objects utilized to simulate converging heliostats are nearly 
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entirely in focus.  For the parallel rays simulations, the result is a very compact bundle of 

rays at the origin, attaining extremely high levels of concentration as presented in section 

4.4.4.  In actuality, the achievable concentration is limited by the angular size of the sun 

in the sky, as demonstrated in Figures 4.30, 4.31, and 4.32.  For the simulation hours of 

9:00 a.m., 12:00 p.m., and 4:00 p.m., there is a respective 89%, 98%, and 57% decrease 

in maximum concentric ring concentration. 

4.5.6 TMY3 March 22, 1982 

The simulation results for March 22, 1982 during the hours of 9:00 a.m., 12:00 

p.m., and 4:00 p.m. are respectively displayed for the implementation utilizing diverging 

solar rays.  Figure 4.33 demonstrates a spot size centered north of the origin at 9:00 a.m., 

ranging in concentration from 253 suns to a maximum of 2,526 suns.  At the center of the 

receiver a concentration of 2,387 suns is attained.  Furthermore, a total of 1,410,887 W 

are accumulated on the detector at ground level.  Figure 4.34 presents a concentration 

ranging from 395 suns to 3,952 suns for the hour ending at the timestamp of 12:00 p.m.  

The rays are centered just south of the origin on the detector.  At the detector center is a 

concentration of 3,858 suns.  A total of 1,815,041 W are collected on the receiver.  For 

the hour of 4:00 p.m. concentration ranges from 122 suns to 1,222 suns as presented in 

Figure 4.35.  The center of the detector reaches a concentration of 883 suns.  A total of 

1,051,409 W are simulated to be received on the detector. 
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Figure 4.3372 NCSETF March 22, 9:00 a.m.  (a) Detector insolation plot; (b) Detector 

contour plot 
 

 

 

 
 

 

 
Figure 4.3473 NCSETF March 22, 12:00 p.m.  (a) Detector insolation plot; (b) Detector 

contour plot 
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Figure 4.3574 NCSETF March 22, 4:00 p.m.  (a) Detector insolation plot; (b) Detector 

contour plot 

 

Similar to the parallel ray simulations, the simulation results for the spring 

equinox are nearly analogous to the results for the fall equinox when a realistic solar disk 

is implemented within the model.  Like the idealized point source simulations this is 

again suitable, since the angular direction in the plane of reflection is comparable for 

those days.  For the simulation hours of 9:00 a.m., 12:00 p.m., and 4:00 p.m., there is a 

decrease in maximum concentric ring concentration of 46%, 63%, and 38% respectively 

on the detector.  As expected, the decrease in maximum concentric ring concentration 

due to a realistic solar disk is nearly identical for equivalent hours on the spring and fall 

equinoxes.    

4.5.7 Time Dependent Results 

Time dependent tables and plots were constructed in order to evaluate the 

performance of the facility over the course of the days simulated with a realistic sun 

source.  Again, the model of the NCSETF considers all optical losses including cosine, 

blocking, shading, attenuation, and reflective losses.  Table 4.4 portrays the total power 
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collected on the receiver at ground level for each hour simulated with a realistic sun 

source that incorporates diverging rays. 

 

Table 4.45  Simulated power output (W): N-S cornfield with diverging rays 

 
 

Similar to the idealized point source simulations, the table demonstrates several 

hours of the simulated days in which the targeted power output of 1 MW is attainable.  

Furthermore, the data again portrays that as early as 9:00 a.m. and as late as 4:00 p.m. the 

facility is capable of achieving the targeted 1 MW at the detector.  A graphical 

representation of the data presented in Table 4.4 is illustrated in Figure 4.36.  Figure 4.36 

is followed by optical efficiency curves for the simulated days with a realistic solar disk 



  

118 
 

in Figure 4.37.  Again, the optical efficiency plot is based strictly on the power received 

on the detector at ground level, neglecting concentration. 

 

 
Figure 4.3675Simulated power output: N-S cornfield configuration with diverging rays 
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Figure 4.3776Simulated optical efficiency: N-S cornfield configuration with diverging rays 
 

The power output and optical efficiency plots provide an understanding of the 

simulated performance of the NCSETF in terms of available power.  The plots also allow 

for the trends demonstrated with a realistic solar disk to be compared to those of an ideal 

point source.  Most significantly, the power output and optical efficiency are nearly 

identical for the diverging ray simulations as the parallel ray simulations. The power 

curves again demonstrate a broad window of hours in which significant levels of power 

are received at the detector, ranging from 7:00 a.m. until 5:00 p.m.  Furthermore, days 

with relatively high levels of DNI are capable of achieving almost twice the targeted 

output, while days with significantly lower levels of utilizable DNI are still capable of 

producing at or near the target output of 1 MW. 
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Time dependent concentration tables and curves were also produced for the 

simulations incorporating the divergence characteristics of the sun’s rays.  Table 4.5 

demonstrates the concentration range amongst the spot received at the detector based on 

the concentric rings of the contour plots.  Table 4.6 depicts the concentration received at 

the center of the detector for each of the simulated hours of the NCSETF. 

 

Table 4.5 6Simulated concentration range (W/m
2
): Diverging rays 
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Table 4.6 7Simulated detector center concentration (W/m
2
): Diverging rays 

 
 

The tables demonstrate that the NCSETF is capable of producing the targeted 

1,000 suns concentration during several hours of the simulated days.  Furthermore, the 

data portrays that nearly 4,000 suns concentration is achievable for the ideal hour of 

alignment at solar noon on multiple days.  A graphical representation of the data 

presented in Table 4.5 is depicted by Figures 4.38 and 4.39.  Figure 4.40 portrays the 

obtained concentration at the middle of detector, centered directly below the down beam 

reflector, for each of the simulated hours. 
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Figure 4.3877 Simulated minimum concentration: N-S cornfield with diverging rays 

 

 
Figure 4.3978 Simulated maximum concentration: N-S cornfield with diverging rays 
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Figure 4.4079 Simulated detector center concentration: N-S cornfield with diverging rays 

 

Several trends are established by these concentration curves.  The targeted 1,000 

suns concentration is achievable as early as 9:00 a.m. and is maintained until 3:00 p.m. 

for each of the days simulated.  Comparing Figures 4.39 and 4.40, the conclusion can be 

drawn that the concentration at the center of the detector is nearly the maximum 

obtainable concentration.  The differences in concentration become more pronounced for 

off-noon hours, when the concentrated spot slightly shifts around the detector center due 

to the simulated shape of the heliostats.  At solar noon, however, the detector center 

concentration is nearly identical to the maximum concentration.  This is logical, since the 

tower, sun source, and center of the heliostat field are co-linear, the dish shaped heliostats 

are nearly entirely in focus for that hour.  
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In terms of concentration, one of the most profound observations is that higher 

levels are achieved for the spring and fall equinoxes than the winter and summer 

simulation days.  A reasonable justification pertains to the focusing conditions of the dish 

shaped heliostats.  For the December 22, 1979 simulations the angular difference between 

the sun position vector and the target position vector in the plane of reflection is small for 

each heliostat, rendering them almost entirely in focus.  The optical losses, however, are 

largest for the December 22, 1979, as displayed in Figure 4.37, which greatly effects the 

achievable concentration.  For the July 12, 1991 simulation the angular difference 

between the sun position vector and the target position vector in the plane of reflection is 

large for each heliostat because the sun is high in the sky.  Therefore, focusing conditions 

are the worst for the July 12, 1991 implementations in comparison to the other modeled 

days due to the simulated shape of the heliostats.  The spring and fall equinoxes present a 

balance between optical efficiency of the heliostat field and the focusing conditions of the 

simulated heliostats.  Resultantly, higher levels of concentration are obtained for the 

spring and fall equinoxes in comparison to the winter and summer simulations.  A true 

non-imaging heliostat as presented by Chen [33] would likely have different focusing 

conditions, and consequently may not demonstrate the same patterns in terms of 

achievable concentration over the course of the year.    

 

4.6 Observations of Simulations 

When comparing the trends over the course of the simulated days several 

observations can be made in regards to the output of the facility.  Higher concentration 

levels are achieved for days with lower elevation angles, up to the point in which optical 
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losses outweigh the focusing conditions of the dish shaped heliostats.  Days where the 

sun demonstrates similar height characteristics have similar outputs in terms of 

concentration and spot formations on the detector.  The utilization of parallel rays as a 

sun source allows for levels of concentration to be obtained that are infeasible.  This is 

due to the divergence characteristics of the sun’s rays, resulting from the angular 

diameter of the sun in the sky.  The error propagation due to parallel rays is more 

pronounced for hours in which the angular difference in the plane of reflection between 

the sun position vector and the target position vector for each heliostat is minimized.  

This id due to the fact that optical coma is minimized, allowing for unrealistic levels of 

concentration to be achieved.  Optical aberrations due to the simulated shape of the 

heliostats are much greater for off-noon hours, causing the focal point of the concentrated 

rays to shift around the origin of the detector. 

In terms of attainable power and concentration for the NCSETF, the simulated 

results demonstrate the achievability of the targeted 1 MW power and 1,000 suns 

concentration for several hours over the course of the days modeled.  Simulating the 

divergence characteristics of the sun’s rays has a pronounced effect on the spot shape and 

concentration, but little effect on the accumulated power and optical efficiency of the 

facility. 

The discrepancy between the simulated concentration of the NCSETF and that 

demonstrated in traditional power tower systems, as presented in Table 1.1, can 

justifiably be attributed to a variety of factors.  The smooth parabolic heliostats simulated 

in the model of the NCSETF are capable of producing tighter convergence characteristics 

than the faceted heliostats as described by Chen [33].  Faceted heliostats are limited to a 
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spot size no smaller than the individual mirror tiles.  During optimal focusing conditions, 

when off-axis coma of the simulated heliostats is minimized as presented in Figure 4.14, 

smooth parabolic heliostats are capable of achieving nearly point focusing and thus 

obtain high levels of concentration.  The segmented approximation of mirror tile facets to 

the parabolic shape of the converging heliostats results in concentration losses [38].  

Furthermore, other geometric imperfections may also attribute to the difference in 

concentration between that simulated for the NCSETF and that demonstrated in 

conventional tower systems.  For example, facet misalignments as well as structural 

bending and deformation of the heliostats all lead to concentration losses of practical 

tower systems, but are not accounted for in the simulated model of the NCSETF.  

In addition to geometric imperfections, tracking and pointing inaccuracies can 

have a drastic effect on achievable concentration [38].  The simulation of the NCSETF 

does not account for such pointing and tracking inaccuracies, and therefore the spot size 

is limited only by the divergence characteristics of the sun and optical coma.  In real 

world implementations aiming and tracking deficiencies often arise that can be difficult 

to simulate.  For example, wind loading on the heliostats can cause aiming imperfections 

that significantly reduce focusing conditions of the heliostat field and consequently 

concentration.  A combination of all of these factors present a conceivable explanation 

for the difference in simulated maximum concentration of the NCSETF at 3,955 suns and 

that demonstrated in tower top systems capable of achieving 1,000 suns concentration.      
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CHAPTER 5 

 

CONCLUSION & CONTINUING WORK 

5.1 Conclusion 

In conclusion, the motivation behind the design and development of a novel solar 

down beam test facility utilizing Newtonian optics was presented.  The NCSETF was 

designed with a flat planar down beam mirror, offering several benefits in terms of a 

testing facility.  The optical design allows for the entire power output of the facility to be 

utilized by a single experiment, or distributed over several experiments operating 

simultaneously.  A planar down beam mirror also allows for the focusing conditions of 

the facility to be relatively similar to those of traditional solar power towers.  

Furthermore, a planar down beam mirror is relatively simple to design and construct.  

This fits in nicely with the overall motif of the facility, which is to utilize leased, non-

permanent infrastructure to minimize capital costs.  Additionally, thermal expansion 

issues are easier to address with a planar down beam reflector because the mirror can be 

constructed to deform uniformly without distorting the optics of the system.     

A facility to be implemented in southern Nevada was then optically evaluated 

utilizing ray tracing techniques.  As a result, the optical geometry and performance of the 

system presented apply specifically to conditions of a facility located in southern Nevada.  

The NCSETF design includes a relatively short down beam reflector height and a 

compact heliostat field constructed close to the tower.  Simulations were implemented for 

both an idealized point source as well as a realistic sun source.  The parallel rays 

demonstrate the focusing conditions of the simulated heliostats, and the diverging solar 
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rays simulate a more realistic real world performance of the facility in terms of power 

outputs and concentrations.   

The results of the simulated models establish the achievability of the targeted 1 

MW power to be collected at ground level for several hours of the day over the course of 

the year.  Additionally, the simulations demonstrate that with a realistic sun source, 

incorporating the divergence behavior of the sun’s rays, the targeted 1,000 suns 

concentration is also achievable.  Concentration distribution and contour plots are 

presented allowing for the effects of time of day, as well as time of year, on the 

concentration and power output of the facility to be realized.  Furthermore, power output 

and efficiency plots have been established for the NCSETF taking into consideration the 

optical losses of the system; including cosine, blocking, shadowing, attenuation, and 

reflective losses.     

 

5.2 Model Improvements 

Due to the internal register limitations of ASAP
®
, the objects utilized to simulate 

non-imaging heliostats had to be adapted from true non-imaging heliostats. This was to 

accommodate the restriction on the number of input parameters that can be imported into 

ASAP
®
 and assigned to variables.  Focusing heliostats as described by Chen [33] require 

faceted mirror tiles, and therefore have different focusing characteristics than smooth 

parabolic shapes.  The achievable concentration of a true non-imaging heliostat as 

presented by Chen [33] is limited primarily by the individual mirror tile facet size along 

with the divergence characteristics of the sun’s rays.  For example, if 1 m
2
 mirror tiles 

were utilized the spot size on the detector could be no smaller than 1 m
2
.  The smooth 
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parabolic shape utilized to simulate heliostats in ASAP
®
 does not portray this 

concentration limitation, as depicted in Figure 4.14.  Breault Research Organization, the 

developers of ASAP
®
, are aware of the internal register limitations in modeling the 

NCSETF.  Future releases of the software may look to accommodate the input of 

additional variables, allowing more realistic non-imaging heliostats to be simulated 

within the model. 

Model improvements should be targeted towards simulating the focusing 

characteristics of true non-imaging heliostats as presented by Chen [33].   One way to 

accomplish this may be to export the optical geometry on an hourly basis to a Computer 

Aided Design (CAD) environment, and then import the geometry into ASAP
®
 via the 

ASAP
®
 Initial Graphics Exchange Specifications (IGES) translator smartIGES

TM
.  

Although a very tedious process, it may not require the assignment of all the variables as 

implemented in this thesis.  It would, however, require the additional step of creating a 

CAD drawing for each of the simulated hours.  Implementation of such an improvement 

would allow for an even more realistic performance of the NCSETF to be demonstrated. 

 

5.3 Future System Analysis 

Future system analysis should be focused around modifications of the optical 

geometry.  The most significant analysis should be targeted towards optimization of the 

heliostat field layout.  The NCSETF model was developed to accommodate a variety of 

conditions.  The programming approach to the development of the model was to make it 

both versatile and robust.  As a result, the optical geometry of the system can easily be 

modified and the effects realized.  Future work should examine modifications of optical 
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geometry parameters such as heliostat dimensions, heliostat field layouts, and down beam 

reflector heights as well as orientations.  Additionally, the effects of varying focal points 

should also be investigated. 

The simulations presented assume the pointing accuracies of the heliostats are 

100%.  In real world applications a pointing accuracy of 100% is not realistically 

achievable.  Wind gusts for example can cause the orientations of the heliostat to 

fluctuate.  Future system analysis should incorporate a margin of error for the achievable 

pointing accuracies, and the subsequent effects on concentration and spot shape should be 

analyzed.  Furthermore, the impact of the actual tower structure on the optical 

performance of the facility due to the effects of shading and blocking should also be 

explored.  When a final depiction of the tower is developed, this can be accomplished 

utilizing the ASAP
®
 smartIGES

TM
 translator to import a CAD representation of the tower 

into the ASAP
®
 simulations.    
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APPENDIX A 

 

NOMENCLATURE 

 

AP  aim point 

ceil   rounding operator to round up to the nearest day integer 

DNI  direct normal irradiance (W/m
2
) 

tx
D

  
distance from heliostat to target along x-axis (m) 

fe  fractional position of the ellipsoidal upper vertex to the aim point (m) 

fh  fractional position of the vertex of the hyperboloid from the height of the 

aim point (m) 

f1  distance from the tower reflector to the aim point (m) 

f2  distance from the tower reflector to the secondary concentrator (m) 

a
H   heliostat azimuth angle (˚) 

L
HF   

heliostat field length (m) 

W
HF   

heliostat field width (m) 

hour   array containing the number of hours in the month selected for simulation  

xc
H

  
heliostat center x-axis coordinate (m) 

yc
H

  
heliostat center y-axis coordinate (m)

 
 

z
H   heliostat zenith angle (˚) 

zc
H

  
heliostat center z-axis coordinate (m) 

a
I   common intermediate angle (˚) 

index   base parameter establishing the number of days in the year up to the time  

of the specified month 

z
I   angle between the target and the sun (˚) 

fac
L

  
heliostat facet length (m) 
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m
L   length of the heliostat mirror (m) 

month  selected simulation month  

n    array containing the day of the year for every hour of the month simulated 

helios
N

  
number of heliostats in field 

helios
NL

 
number of heliostat rows 

helios
NW

 
number of heliostat columns 

R  arbitrary simulation sun source distance (m) 

RC  receiver concentrator  

ha
R

  
angle of rotation to achieve heliostat azimuth angle in ASAP (˚) 

hz
R   

angle of tilt to achieve heliostat zenith angle in ASAP (˚) 

max
R

  
maximum last row distance of heliostats in field (m) 

min
R   

minimum first row distance of heliostats in field (m) 

space
R   heliostat row spacing (m) 

ADS   angular diameter of the sun (0.5˚) 

h
S

  
selected simulation hour 

HARS   half angle of the sun (radians) 

rS   radius of the elliptical grid sun source (m) 

DiameterSUN  diameter of image of the sun on the detector produced by a single heliostat  

 (m) 

a
T   target azimuth angle (˚) 

arot
T   angle of rotation to achieve target position vector (˚) 

TR  tower reflector  

tilt
T

  
angle of tilt to achieve target position vector  (˚)  

xc
T

  
target center x-axis coordinate (m) 

yc
T

  
target center y-axis coordinate (m) 
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z
T   target zenith angle (˚) 

zc
T

  
target center z-axis coordinate (m) 

radC
V

  
vertex radius of curvature (m) 

fac
W

  
heliostat facet width (m) 

m
W   

width of heliostat  mirror (m) 

   declination of the sun (˚) 

min
   

minimum declination of the sun (˚) 

   hour angle (˚) 

   latitude (˚) 

   longitude (˚) 

sm   minimum elevation angle at solar noon (˚) 

s  solar altitude angle (˚) 

s


 
solar azimuth angle (˚)

 

z


  
solar zenith angle (˚) 
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APPENDIX B 

 

SPO Algorithm 

 

Input:     ,   ,
h

S ,  month, DNI 

 
Step 1:  

if (month = January) 
data = csvread (‘January_DNI.csv’)  
 index = 0; 

 
     else if (month = February) 

data = csvread (‘February_DNI.csv’) 
index = 31; 

 
else if (month = March) 

data = csvread (‘March_DNI.csv’) 
  index = 59; 
 

else if (month = April) 
data = csvread (‘April_DNI.csv’) 

  index = 90; 
 

else if (month = May) 
data = csvread (‘May_DNI.csv’) 

  index = 120; 
 

else if (month = June) 
data = csvread (‘June_DNI.csv’) 

  index = 151; 
 

else if (month = July) 
data = csvread (‘July_DNI.csv’) 

  index = 181; 
 

else if (month = August) 
data = csvread (‘August_DNI.csv’) 

  index = 212; 
 

else if (month = September) 
data = csvread (‘September_DNI.csv’) 

  index = 243; 
 

else if (month = October) 
data = csvread (‘October_DNI.csv’) 
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  index = 273; 
 

else if (month = November) 
data = csvread (‘November_DNI.csv’) 

  index = 304; 
 

else if (month = December) 
data = csvread (‘December_DNI.csv’) 

  index = 334; 
 
 
Step 2:   
 hour = 1: length(data); 
 

 
 

   
 

hour
n index ceil

24
; 

 

 
 

   
 

360
B (n 1)

365
; 

   

180
(0.006918 0.399912cos(B) 0.070257sin(B) 0.006758cos(2B)

0.000907sin(2B) 0.002697cos(3B)0.00148sin(3B));




 
    
 

   

Step 3:   
      180 15(hour 24(n (index 1))); 

 

       1

z
cos cos( )cos( )cos( ) sin( )sin( ) ; 

 
 
Step 4:   
 for i = 1:length( ) 
               if  (i) < 0  

                                 
  


 


 

    
 

1 z
s

z

cos( )sin( ) sin( )
cos

sin( )cos( )
; 

                        else 

                                 
  


 


 

   
 

1 z
s

z

cos( )sin( ) sin( )
cos

sin( )cos( )
; 

                         end 
                 end 
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Output:  DNI, hour,  ,  z h
S  ,  s h

S  
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APPENDIX C 

 

HROPV Algorithm 

 

Input:    
z

 ,
s

,
h

S , 
helios

N , 
xc

H , 
yc

H , 
zc

H , 
xc

T , 
yc

T , zc
T  

 
Step 1:  

For i = 1:
helios

N  

 

 
tx

D (i) = 
xc

H (i) – 
xc

T  ; 

 
 
 Step 2: 

  if 
zc

H (i) = 0  

                        
t

T (i)  = 
yc1

xc xc

T
tan

H (i) T

 
 
  

; 

  

            
radC

V (i)  =  
2

2

yc xc xc
2 T H (i) T  ; 

  else 

          
s

L (i)  =   
2

2

zc xc xc
H (i) H (i) T  ; 

          
t

T (i)  = 
yc1

s

T
tan

L (i)

 
 
 
 

; 

            

             
radC

V (i) =  
2

2

yc S
2 T L (i) ; 

end 
 

 

 Step 3:  

z
T (i) = 90 – 

t
T (i); 

 

  
tilt

T (i) = –
t

T (i); 

 

 

 Step 4: 

  if 
zc

H (i) = 0   
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a

T (i) = 0; 

 

           
arot

T  (i) = 0;  

 

  else if 
zc

H (i) ˃ 0 

                                      
a

T (i)  = 1 zc

tx

H
tan

D (i)

 
  
 

; 

                                       
arot

T  (i) = 90 – 
a

T (i); 

  else   
 

           
a

T (i)  = 1 zc

tx

H
tan

D (i)

 
  
 

; 

                                         
arot

T  (i)= –[90 + 
a

T (i)]; 

  end 
 
   
 

Step 5: 
  for j = 1:length(hour)  
 
                                        

 1

z z z z z s a
I (j,i) cos cos( (j))cos(T (i)) sin( (j))sin(T (i))cos( (j) T (i))     ;  

                                        1 s a
a z

z

sin( (j) T (i))
I sin sin( (j))

sin(I (j,i))




 
   

 
;  

 

  Step 6:  
                                        

1 z z
z z z a

I (j,i) I (j,i)
H (j,i) cos cos(T (i))cos sin(T (i))sin cos(I (j,i))

2 2

    

      
    

; 

                                        1 az
a a

z

sin(I (j,i))I (j,i)
H (j,i) sin sin T (i)

2 sin(H (j,i))

  

    
  

; 

  end 
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Step 7: 

  
hz h z h

R (S ,i) 90 H (S ,i)   ; 

  
ha h a h

R (S ,i) H (S ,i)  ; 

 
 end 
 
 

Output:  
hz h

R (S ) , 
ha h

R (S ) , 
radC

V  
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APPENDIX D 

 

NSCHFL Algorithm 

 

Input:     , 
min

 , 
min

R , 
max

R , 
m

L , 
fac

L , 
m

W , 
fac

W  

 

Step 1:  

sm min
90     ; 

 m
space

sm

L
R

tan( )
 ; 

Step 2:  

L max min
HF R R  ; 

W L
HF HF ; 

 

Step 3: 

 L
helios

space

HF
N floor

R

 
  

 
 

; 

 W
helios

m

HF
NW floor

W

 
   

 

; 

 

Step 4: 

 W
zp

HF
H (1)

2

 
  

 
; 

 
xp min

H (1) R ; 

Step 5: 

 for i = 2:
helios

NW
 

                        
zp zp m

H (i) H (i 1) W ;    
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 end 

Step 6: 

 for j = 2:
helios

NL
 

                        
xp xp space

H (j) H (j 1) R   ; 

 end 

 

Step 7: 

 for i = 1:
helios

NW
 

                        for j = 1:
helios

NL
 

                                 
zc zp

H (i, j) H (i);  

                       end 

 end 

 

Step 8: 

 for j = 1:
helios

NL
 

                        for i = 1:
helios

NW
 

                                 
xc xp

H (i, j) H (j);  

                                 
yc

H (i, j) 0;      (Assuming heliostats placed at ground level to limit import 

parameters) 

                       end 

 end 

 

Step 9: 

 
xc

H = reshape [
xc

H , 1 row];  
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xc

H = reshape [
xc

H , 1 row];  

 
xc

H = reshape [
xc

H , 1 row];  

Output:  
m

L , 
fac

L , 
m

W , 
fac

W , 
xc

H , 
yc

H , 
zc

H  

 

  



  

143 
 

REFERENCES 

 

[1] King, Sir David.  Foreword.  Future Energy.  By Goodwin A.R.H., et al.  

Amsterdam, Netherlands:  Elsevier, 2008.  Print. 

[2] Hsieh, Jui Sheng.  Introduction.  Solar Energy Engineering.  Englewood Cliffs, NJ:  

Prentice-Hall, Inc., 1986.  Print. 

[3] “CSP – How it Works.”  Solar Power and Chemical Energy Systems.  Web.  4 Apr. 

2010. <http://www.solarpaces.org/CSP_Technology/csp_technology.htm>. 

[4] “Concentrating Solar Power Prospects of the Southwest United States.”  

Concentrating Solar Power Resource Maps.  National Renewable Energy 

Laboratory (NREL).  Web.  4 Apr. 2010.  < http://www.nrel.gov/csp/maps.html>. 

[5] “Concentrating Solar Power.”  Solar Energy Technologies Program.  U.S. 

Department of Energy.  Web.  4 Apr. 2010.  

<http://www1.eere.energy.gov/solar/csp_program.html>. 

[6] “Concentrating Solar Power.”  Solar Energy Technologies Program.  U.S. 

Department of Energy and National Renewable Energy Laboratory (NREL), 2010.  

Web.  4 Apr. 2010.  < http://www1.eere.energy.gov/solar/pdfs/47281.pdf>. 

[7] “Green Energy – Microtherm® Insulation in Concentrated Solar Power (CSP).”  

High Temperature Insulation.  Microtherm Thermal Insulation Solutions, 2011.  

Web.  9 Apr. 2010.   

< http://www.microtherm.uk.com/high/EXEN/site/concentrated-solar-power.aspx>. 

[8] “Linear Concentrator Solar Power Plant Illustration.”  Solar Multimedia.  U.S. 

Department of Energy and National Renewable Energy Laboratory, 1996.  Web.  

9 Apr. 2010.  <https://www.eeremultimedia.energy.gov/solar/graphics/linear_ 



  

144 
 

concentrator_solar_power_plant_illustration>. 

[9] “Linear Fresnel Diagram.”  Concentrating Solar Power Technologies 1:  

Introduction to Alternatives.  Bright Hub Inc.  Web.  9 Apr. 2010.  < http://www. 

brighthub.com/environment/renewable-energy/articles/65170/image/67188/>. 

[10] “Dish/Engine Systems for Concentrating Solar Power.”  Energy Basics, Renewable 

Energy.  U.S. Department of Energy. Web.  9 Apr. 2010.   

< http://www.eere.energy.gov/basics/renewable_energy/dish_engine.html>. 

[11] Pye, J.  “Concentrating Solar Power Systems.”  The Australian National University 

Solar Thermal Group (2010).  Web.  27 Apr. 2010.  < http://solar-

thermal.anu.edu.au/high-temperature/concentrating-solar-power-systems/>. 

[12] “Power Tower Systems for Concentrating Solar Power.”  Energy Basics, 

Renewable Energy.  U.S. Department of Energy.  Web.  8 May 2010.   

< http://www.eere.energy.gov/basics/renewable_energy/power_tower.html>. 

[13] Stine, William B., and Michael Geyer.  Central Receiver Systems.  Power from the 

Sun.  Power From The Sun.net, 2001. Web.   8 May 2010.   

< http://www.powerfromthesun.net/Book/chapter10/chapter10.html>. 

[14] Kolb, Gregory J., et al.  “Heliostat Cost Reduction Study.”  Sandia National 

Laboratories.  (2007): 1-158.  Print.  

[15] Rabl, Ari.  “Tower Reflector for Solar Power Plant.”  Solar Energy.  18 (1976): 

269-271. Print. 

[16] Yogev, A., et al.  “Solar ‘Tower Reflector’ Systems:  a New Approach for High-

Temperature Solar Plants.”  Int. J. Hydrogen Energy.  23.4 (1998): 239-245.  Print. 



  

145 
 

[17] Segal, Akiba, and Michael Epstein.  “The Optics of the Solar Tower Reflector.”  

Solar Energy.  69(Suppl.) (2000): 229-241.  Print.  

[18] Garty, Haim, and Michael Epstein.  “Solar Research Facilities Unit.”  Scientific 

Activities: Solar Research Facilities.  Weizmann Institute of Science, 2010.  Web.  

15 Jul. 2010.  <http://www.weizmann.ac.il/acadaff/Scientific_Activities/2010/Solar 

_Research_Facilities.html>. 

[19] Epstein, Michael.  “Beam-Down Tower System.”  Weizmann Institute of Science, 

Solar Research Facilities Unit. (2008).  Power Point Presentation. 

[20] Debesh, Terry.  “The Canadian Institute for the Energies and Applied Research.”  

Center for Energy Research.  Weizmann Institute of Science, 2011.  Web.  16 Mar. 

2011. < http://www.weizmann.ac.il/weizsites/solarenergy/>. 

[21] Chhabara, Rajesh.  “CSP Innovation:  Technologies that crash the cost barrier.”  

CSP Today, 1 April 2010.  Web.  19 Jun. 2010.  <http://social.csptoday.com/ 

industry-insight/csp-innovation-technologies-crash-cost-barrier>. 

[22] Prior, B.  “A Small Concentrating Solar 100kW Demo Site (beam-down 

technology).”  Masdar Visit:  Solar Projects in Abu Dhabi.  Greentech Media, Inc., 

2011.  Web.  16 Mar. 2011.   <http://www.greentechmedia.com/articles/read 

/update-on-the-masdar-initiative-from-abu-dhabi/>. 

[23] Tamaura, Yutaka, et al.  “A Novel Beam-Down System for Solar Power Generation 

with Multi-Ring Central Reflectors and Molten Salt Thermal Storage.”  Tokyo 

Institute of Technology, Research Center for Carbon Recycling and Energy.  1-8.  

Web.  5 Nov. 2010.   

 <ftp://ftp.crs4.it/pub/References/SolarPaces2006/A5/A5-S2-TAMAURA.pdf>. 



  

146 
 

[24] Garcia, Pierre, Alain Ferriere, and Jean-Jacques Bezian. “Codes for Solar Flux 

Calculation Dedicated to Central Receiver System Applications:  a Comparative 

Review.”  Solar Energy.  82 (2008):  189-197.  Print. 

[25] “Cosine loss.”  Cheap, Open Source Heliostats.  14 Nov. 2010.  Web.  14 Dec. 

2010.  <http://www.heliostats.org/2010/11/cosine-loss.html>. 

[26] Stine, William B., and Michael Geyer.  The Sun’s Energy.  Power from the Sun.  

Power From The Sun.net, 2001. Web.   8 May 2010.   

  < http://www.powerfromthesun.net/Book/chapter02/chapter02.html>. 

[27] Breault Research Organization, Inc.  The ASAP Primer.  Tucson, AZ:  Breault 

Research Organization, Inc., 2006.  Web.  15 Nov. 2010.   

<http://www.uotek.com.tw/usgs1/store/F3/Primer_English.pdf>. 

[28] Wilcox, S. and W. Marion.  Users Manual for TMY3 Data Sets.  National 

Renewable Energy Laboratory (NREL), 2008.  Web.  14 Dec. 2010. 

<http://www.nrel.gov/docs/fy08osti/43156.pdf>. 

[29] Duffie, John A., and William A. Beckman.  Solar Engineering of Thermal 

Processes.  3rd ed.  Hoboken, NJ:  John Wiley & Sons, Inc., 2006.  Print.   

[30] “Renewable Energy Resources.”  3M United States:  Products, Brands and 

Technologies.  3M, 2011.  Web.  16 Mar. 2011.  <http://solutions.3m.com/wps/  

portal/3M/en_US/Renewable/Energy/Resources/Press_Releases/?PC_7_RJH9U523

08NR50I0NISNKB32G3_assetId=1273668905876>. 

[31] Leonard, Timothy M.  Heliostat Reflection Equations.  New Mexico:  Enhancement 

Electronics, Inc., 2003.  Print.   



  

147 
 

[32] Weisstein, Eric W.  “Spherical Trigonometry.”  Wolfram MathWorld.  Wolfram 

Research, Inc., 2011.  Web.  19 Feb. 2011.   

< http://mathworld.wolfram.com/SphericalTrigonometry.html>. 

[33] Chen, Y.T., et al.  “Non-Imaging, Focusing Heliostat.”  Solar Energy.  71.3 (2001):  

155-164.  Print. 

[34] Siala, F.M.F. and M.E. Elayeb.  “Mathematical Formulation of a Graphical Method 

for a No-Blocking Heliostat Field Layout.”  Renewable Energy.  23 (2001):  77-92.  

Print. 

[35] Sanchez, Marcelino, and Manuel  Romero.  “Methodology for Generation of 

Heliostat Field Layout in Central Receiver Systems Based on Yearly Normalized 

Energy Surfaces.”  Solar Energy.  80 (2006):  861-874.  Print. 

[36] Falcone, P.K.  A Handbook for Solar Central Receiver Design.  Sandia National 

Laboratories, 1986. Print. 

[37] “Coma, Optical.”  The Encyclopedia of Science Optics & Optical Phenomena.  

Web.  8 Sept. 2011.   

< http://www.daviddarling.info/encyclopedia/C/coma_optical.html>. 

[38] Steinfeld, Aldo, and Robert Palumbo.  “Solar Thermochemical Process 

Technology.”  Encyclopedia of Physical Science & Technology.  15 (2001):  237-

256. Print. 

 

 

 

 



  

148 
 

VITA 

 

Graduate College 

University of Nevada, Las Vegas 

 

Ryan J. Hoffmann 

Degree: 

     Bachelor of Science, Computer Science and Mathematics, 2008 

     University of Montana 

 

Thesis Title:  Modeling of a Novel Solar Down Beam Test Facility Utilizing Newtonian 

Optics 

 

 

Thesis Examination Committee: 

     Chairperson, Dr. Yitung Chen, PH. D. 

     Committee Member, Dr. Robert Boehm, PH. D. 

     Committee Member, Dr. Suresh B. Sadineni, PH. D. 

     Graduate Faculty Representative, Dr. Allen Johnson, PH. D. 

 


