
UNLV Theses, Dissertations, Professional Papers, and Capstones

12-2011

A study of a novel modular variable geometry frame arranged as a A study of a novel modular variable geometry frame arranged as a

robotic surface robotic surface

Christopher James Salisbury
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Controls and Control Theory Commons, Mechanical Engineering Commons, and the

Robotics Commons

Repository Citation Repository Citation
Salisbury, Christopher James, "A study of a novel modular variable geometry frame arranged as a robotic
surface" (2011). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1265.
https://digitalscholarship.unlv.edu/thesesdissertations/1265

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1265&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1265&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1265&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1265&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/1265?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1265&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

A STUDY OF A NOVEL MODULAR VARIABLE GEOMETRY FRAME

ARRANGED AS A ROBOTIC SURFACE

by

Christopher James Salisbury

Bachelor of Science

University of Nevada, Las Vegas

2009

A thesis submitted in partial fulfillment

of the requirements for the

Master of Science in Mechanical Engineering

Department of Mechanical Engineering

Howard R. Hughes College of Engineering

Graduate College

University of Nevada, Las Vegas

December 2011

Copyright by Christopher James Salisbury 2012

All Rights Reserved

ii

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Christopher Salisbury

entitled

A Study of A Novel Modular Variable Geometry Frame Arranged as a
Robotic Surface

be accepted in partial fulfillment of the requirements for the degree of

Master of Science
Department of Mechanical Engineering

Woosoon Yim, Committee Chair

Mohamed Trabia, Committee Member

Brendan O’Toole, Committee Member

Sahjendra Singh, Graduate College Representative

Ronald Smith, Ph. D., Vice President for Research and Graduate Studies
and Dean of the Graduate College

December 2011

iii

ABSTRACT

A Study of a Novel Modular Variable Geometry Frame

Arranged as a Robotic Surface

by

Christopher James Salisbury

Dr. Woosoon Yim, Examination Committee Chair

Professor of Mechanical Engineering

University of Nevada, Las Vegas

 The novel concept of a "variable geometry frame" is introduced and explored

through a three-dimensional robotic surface which is devised and implemented

using triangular modules. The link design is optimized using surplus motor

dimensions as firm constraints, and round numbers for further arbitrary

constraints. Each module is connected by a passive six-bar mechanism that mimics

the constraints of a spherical joint at each triangle intersection. A three dimensional

inkjet printer is used to create a six-module prototype designed around surplus

stepper motors powered by an old computer power supply as a proof-of-concept

example.

 The finite element method is applied to the static and dynamic loading of this

device using linear three dimensional (6 degrees of freedom per node) beam

iv

elements to calculate the cartesian displacement and force and the angular

displacement and torque at each joint. In this way, the traditional methods of finding

joint forces and torques are completely bypassed. An efficient algorithm is

developed to linearly combine local stiffness matrices into a full structural stiffness

matrix for the easy application of loads. This is then decomposed back into the local

matrices to easily obtain joint variables used in the design and open-loop control of

the surface.

 Arbitrary equation driven surfaces are approximated ensuring that they are

within the joints limits. Moving shapes are then calculated by considering the initial

position of the surface, the desired position of the surface, and intermediate shapes

at discrete times along the desired path.

 There are no sensors on the prototype, but feedback models and state

estimators are developed for future use. These models include shape sampling

methods derived from existing meshing algorithms, trajectory planning using

sinusoidal acceleration profiles, spline-based path approximation to allow lower

curvature paths able to be traversed more quickly and/or able to be travelled with a

constant velocity and optimized by iteratively calculating actuator saturation with

no discontinuities, and the optimal tracking of a desired path (modeled with a time-

varying ricatti equation).

v

ACKNOWLEDGMENTS

 I would like to thank the Nevada Space Grant Consortium as well as the

Department of Mechanical Engineering at the University of Nevada, Las Vegas

(UNLV) for their generous financial support. I would also like to thank the

Intelligent Structure Controls Laboratory (ISCL) of UNLV for the ongoing use and

improvement of their facilities.

 I have been fortunate to have very good instruction and recommendations

for textbooks in my coursework. Dr. Woosoon Yim instructed an excellent robotics

class, which introduced me to serial robotics. He also gave very good

recommendations on textbooks that I might read – even loaning me some. Dr.

Sahjendra Singh taught one class in digital controls and another outstanding course

in optimal controls as well as recommending four excellent textbooks. Dr. Brendan

O'Toole was the professor for a very influential course in energy methods, where I

learned intricacies of the finite element method.

 The support of the Mechanical Engineering department in general has been

outstanding, and has been instrumental in my educational progress. I am very

grateful to have been even a very small part of such a wonderful department.

vi

PREFACE

 This project has been incredibly stimulating, and has provided an excellent

platform for learning. Because it is an extremely broad project, there are many

aspects that are discussed, but none are explored fully. I have tried to balance the

information presented, but in certain cases, one may find too much detail about a

simple matter, or not enough detail about a complex matter. In the former case, the

reader is encouraged to skim through trivialities if they are deemed to be very well

understood. In the latter case, references have been included for the interested

reader to begin a more in-depth analysis.

vii

TABLE OF CONTENTS

ABSTRACT ... ii

ACKNOWLEDGMENTS ... v

PREFACE ... vi

LIST OF TABLES .. ix

LIST OF FIGURES .. x

CHAPTER 1 ... 1

Goals and Initial Ideas ... 1

Literature Review – Variable Geometry Trusses ... 8

Shape Morphing Hinged Truss Structures [3] .. 8

Trussarm — A Variable-Geometry-Truss Manipulator [5] ... 10

Tetrobot: A Modular Approach to Reconfigurable Parallel Robotics [4] 11

Applications .. 15

CHAPTER 2 .. 17

Static Structural Analysis (Static Joint Forces) .. 17

Mechanism Design ... 28

Geometric Design Considerations .. 30

Static Structural Design Considerations .. 33

Dynamic Structural Design Considerations ... 33

Power Transmission ... 34

"Final" Link Design .. 35

Manufacturability Design Considerations ... 37

Kinematics ... 40

Forward Kinematics ... 40

Constraint Equations in Forward Kinematics ... 41

Inverse Kinematics in Forward Kinematics ... 41

Modular Definitions in Forward Kinematics ... 42

Inverse Kinematics .. 43

CHAPTER 3 .. 45

CHAPTER 4 .. 60

viii

Dynamic Structural Analysis (Dynamic Joint Forces) .. 60

Optimal Control ... 62

Shape Control – Deciding on Control Point Location .. 77

Trajectory Planning – Deciding on a Desired Path .. 81

Optimal Trajectory Tracking – Following the Desired Path .. 93

Microcontroller ... 97

Stepper Motors/Drivers .. 97

CHAPTER 5 .. 99

Better Representation of the Mass ... 99

Improved Actuators and Smaller Module Design .. 99

Sensitivity .. 100

Feedback Control .. 100

Online Control .. 100

Communication Using C++/FTDI .. 101

Uncontrolled Points ... 101

EXHIBITS .. 102

Appendix A: Numerical Model and Simulation .. 106

Appendix B: XC Control .. 138

Manual Actuator Control ... 138

Preprogrammed Offline Control .. 144

Appendix C: Matlab Control ... 153

Appendix D: Online Communication .. 172

Simplex Communication ... 172

Simplex C++ .. 172

Simplex XC .. 177

Duplex Communication ... 182

Duplex C++ .. 183

Duplex XC .. 189

REFERENCES .. 200

VITA .. 203

ix

LIST OF TABLES

Table 1: A comparison between Canadarm and two trussarms [5]. 10

Table 2: Nodal forces for the position in Figure 14. .. 103

Table 3: Local nodal forces for the position shown in Figure 15. 104

x

LIST OF FIGURES

Figure 1: Left: A single rhombic module. Right: Nine modules ... 2

Figure 2: Example positions of a nine-module rhombic surface. .. 3

Figure 3: Left: One triangular module. Right: Assembly of many modules 4

Figure 4: One module of a robotic surface .. 5

Figure 5: CMS joint with link offset. [1] .. 6

Figure 6: Spherical hexa-pivotal joint [3]. ... 8

Figure 7: The apex of each adjacent pyramid .. 9

Figure 8: Multiple example positions for a hinged truss structure [3]. 9

Figure 9: Basic concept of a concentric multilink spherical (CMS) joint. 11

Figure 10: Tetrobot module examples. ... 12

Figure 11: An overview of a Tetrobot VGT system. ... 13

Figure 12: The node numbers of an example VGF in a planar position 24

Figure 13: The element numbers of the same example VGF as in Figure 12 24

Figure 14: Very stiff convex semi-spherical position .. 26

Figure 15: Zero "in-plane" position .. 27

Figure 16: The CMS joint is modified ... 29

Figure 17: The overall range of the modified CMS joint .. 30

Figure 18: Joint space after considering the constraints ... 31

Figure 19: Three views of the linkspace ... 32

Figure 20: Three views of the linkspace after allowing for the passive joints. 32

Figure 21: Initial power transmission using M0.25 spur gears .. 35

Figure 22: Linear actuator mount section of the overall link .. 36

xi

Figure 23: Linear extension section of the overall link. ... 36

Figure 24: Rotary actuator mount section of the overall link. .. 36

Figure 25: Rotary extension portion of the overall link. .. 37

Figure 26: Extra holes and sections removed .. 38

Figure 27: Single triangular module and multiple views of a single modular link. ... 38

Figure 28: Example arrangements of VGF surfaces ... 39

Figure 29: Example position of a four module VGF ... 39

Figure 30: Coordinate definitions for a rhombic module. ... 40

Figure 31: Linear actuator mount section ... 46

Figure 32: Linear extension section ... 46

Figure 33: Rotary actuator mount section ... 46

Figure 34: Break-away reverse-tapered press fit joints .. 47

Figure 35: Half-joint ... 47

Figure 36: One full link of the prototyped mechanism ... 47

Figure 37: Geared rotary transmission ... 48

Figure 38: Geared linear transmission .. 49

Figure 39: ANSI#8-32 aluminum threaded rod .. 50

Figure 40: Nest of wires and drivers. ... 51

Figure 41: Power wires .. 51

Figure 42: Stepper driver and wires .. 52

Figure 43: Control board header and control wires .. 52

Figure 44: Left – 3D inkjet printer. Right – pressure washer glovebox. 53

Figure 45: A batch of parts with support material. .. 54

xii

Figure 46: A spur gear .. 55

Figure 47: Flat printed section .. 55

Figure 48: A side view of the same object as in Figure 47. ... 56

Figure 49: A clip being pressed into place with a small vise. ... 57

Figure 50: Tools used to remove support material ... 58

Figure 51: Stationary planar position of six module prototype. .. 58

Figure 52: Moving partial sphere position of six module prototype. 59

Figure 53: Qualitative graph showing the displacement ... 64

Figure 54: Velocity in meters per second without active damping. 64

Figure 55: Spectral analysis of the vibration without active damping 65

Figure 56: Sinusoidal initial position of the surface .. 65

Figure 57: Qualitative graph showing displacement with active damping 66

Figure 58: Velocity with active damping. ... 66

Figure 59: Active force in Newtons applied by rotary actuators. 67

Figure 60: Spectral analysis of the vibration with active damping 67

Figure 61: Block diagram from simulink model .. 69

Figure 62: Vertical axis - length, horizontal axis - time .. 70

Figure 63: Vertical axis - velocity, horizontal axis - time ... 70

Figure 64: Vertical axis - Force, horizontal axis - time ... 71

Figure 65: Block diagram of plant with state estimator .. 73

Figure 66: State estimator response with no disturbance .. 74

Figure 67: State estimator response with no disturbance .. 74

Figure 68: State estimator response with no disturbance .. 75

xiii

Figure 69: State estimator response with white noise disturbance 75

Figure 70: State estimator response with white noise disturbance 76

Figure 71: Close-up of the first 1.5 seconds of Figure 70. ... 76

Figure 72: State estimator response with white noise disturbance 77

Figure 73: Graphical representation of the empty circle test .. 80

Figure 74: Example of how points are rearranged to round corners. 84

Figure 75: Example path of a quadratic b-spline .. 85

Figure 76: Cubic polynomial interpolating spline .. 86

Figure 77: Velocity, acceleration, and jerk profiles .. 87

Figure 78: Overall motion profiles for the example path in Figure 76. 87

Figure 79: Example path of a cubic polynomial interpolating spline 88

Figure 80: Velocity, acceleration, and jerk profiles .. 89

Figure 81: Overall motion profiles for the example path in Figure 79. 89

Figure 82: Same dataset as in Figure 79, but with the spline scaled 90

Figure 83: Velocity, acceleration, and jerk profiles .. 91

Figure 84: Overall motion profiles for the example path in Figure 82. 91

Figure 85: Comparison of position over time ... 92

Figure 86: One full link with all parts colored .. 102

Figure 87: Exploded view of one link ... 102

1

CHAPTER 1

INTRODUCTION

Goals and Initial Ideas

 A mechanical surface able to approximate arbitrary shapes was desired, and

toward this end, many ideas were considered. Throughout this process, many

possible applications were discovered and ultimately the most versatile and easily

implemented design was chosen. The most interesting of these designs are

discussed below.

 One of the first ideas was to use rods moving up and down in a vertical

fashion with the ends of the rods forming the desired surface. This would require

the control of many rods in order to achieve a reasonable resolution, but is very

easily scaled to large sizes as the rods are operated independently of each other.

This type of device can be used as a display or a mold for casting prototypes, but

cannot be used for robotic manipulation. It can also only produce shapes as a

function of height. This limits the shapes to have no overhang/undercut as there can

only be one height value for each rod at a given time. Using rods also allows for (and

necessitates) discontinuous surfaces.

 Another early idea was silicone impregnated with a ferrous metal which is

then moved by changing magnetic fields. This allows for a different class of shapes

to be formed, but the shape resolution is dependent on the number and location of

magnetic field generators and control therefore becomes very difficult. It also

requires a tremendous amount of energy.

2

 Also among the early contenders was the idea of a variable geometry frame

(VGF). The first such idea was a four-bar mechanism composed of four equal links

connected by parallel revolute joints formed into rhombic modules with each

module connected by revolute and prismatic joints. This is the first concept

considered that had the potential for robotic manipulation and self-transportation.

It is also not limited to functions of height as with the rod idea and also does not

have resistive spring forces increasing the energy requirements proportionally to

the distance from the neutral position as with the silicone idea. As such, a prototype

model was drawn up for a more detailed analysis. Nine actuators are required for

each module, and the motion is severely limited as the number of modules

increases. This extremely high complexity for the mediocre results was deemed

impractical, but it did show the potential of VGFs.

Figure 1: Left: A single rhombic module. Right: Nine modules connected with
revolute and prismatic joints.

3

Figure 2: Example positions of a nine-module rhombic surface.

 In order to reduce the complexity of the modules, triangular modules were

considered. To remove the limitation of additional modules connected in parallel,

variable link lengths became apparently necessary. Thus, triangular modules with

variable link lengths were considered. Each module could now be connected to

adjacent modules with only a revolute joint. These modules only require six

actuators per module, and adding modules does not limit the motion of the existing

modules in the way that the rhomboidal modules did. Initially sliding revolute joints

were considered (Figure 3), but eventually these were eschewed in favor of six-bar

revolute joints which reduced friction and weight. By using triangular modules of

this type, we can take advantage of the wide variety of computer graphics and finite

element algorithms currently available.

4

Figure 3: Left: Initial shape of one triangular module with sliding revolute joints
(with the edges of adjacent modules attached to show out of plane motion). Right:
Assembly of many modules. Actuators are not shown.

 A robotic surface composed of triangular modules is able to perform most of

the functions of a traditional robotic arm, as well as the functions of many surfaces

and structures. A triangular modular approach allows us take advantage of the large

number of computer graphics and finite element algorithms available to accurately

approximate any arbitrary surface within the joint range as well as calculate the

kinematics, dynamics, and related forces. Since the actual shape is that of beam

elements arranged into triangles, there is little need to approximate the robot's

shape with other discrete elements. This greatly eases the control of the surface, and

allows the approximate duplication of any C0 continuous surface. This includes

surfaces other than Euclidean functions - that is to say that for a single input, there

can be multiple outputs (e.g., a sphere can be approximated).

5

Figure 4: One module of a robotic surface – composed of three actuated prismatic
joints (number 1 in the figure), three actuated rotary joints (number 2 in the figure),
and three passive rotary joints (number 3 in the figure).

 One module consists of three actuated revolute joints, three passive six-bar

joints, and three actuated prismatic joints (shown in Figure 4). The six-bar joint is a

modification of Hamlin and Sanderson's concentric multilink spherical joint [1]. It

has been modified by placing the six-bar mechanism out of plane with the other

rotary joints (numbered "2" in Figure 4) so that the axes of rotation intersect,

avoiding the need for any offset in the individual six-bar links (Figure 5). Because

the joints are in parallel rather than in series (as with a traditional robot arm), the

kinematics and dynamics cannot be easily computed using traditional methods.

Further, in order to produce a desired surface, the position and motion of each

vertex must be controlled, rather than just an end-effector [2].

1

3

2

6

Figure 5: CMS joint with link offset. [1]

 Several mechanisms similar to this have been considered in the past [2], and

are usually categorized in a class known as a variable geometry truss (VGT) [3][4]. A

truss is characterized by passive revolute joints causing only one-dimensional axial

forces in each link (tension or compression). Assuming a three-dimensional truss

(or "space truss" using spherical joints) this means that singular positions include

any position in which all of the links attached to one node are co-planar. Specifically,

7

if in such a position there are any out-of-plane forces at the common node, the

resulting forces in each of the links attached at that point will be infinite.

 In order to increase the potential of such a device, a rotary actuator

controlling the angle about an axis parallel to each link is included in addition to the

standard linear actuator. This means that the structure is no longer able to be

classified as a truss, but must instead be called a frame (or "space frame") with

forces in all three local dimensions of each link. Singular and uncontrollable

positions now only occur when all links attached to one node are co-linear.

 Modular robotics have become very popular largely because of their

versatility. Most current efforts are furthering the capabilities of modules to be

connected one-dimensionally in series. The presented robotic surface implements a

novel module type for the expansion to modules to be connected two-dimensionally

in parallel. This opens many new possibilities and can be expanded to three

dimensions without much difficulty (think of two or more parallel surfaces attached

to each other). The joints of a robot directly affect one another. This can be seen

positively in that they support each other and allow less powerful actuators to be

used, and it can be seen negatively in that they interfere with each other and make

the robot more difficult to control. In one-dimensional modules, actuators have no

more than two actuators connected adjacently to them. Because distance is finite,

this limits the extent to which they can aid each other. By allowing modules to

interact in multiple dimensions, greater numbers of actuators can be connected

adjacently. This allows greater loads to be supported at each joint for the same

motion. More importantly, it allows for a different type of motion – such as surface

8

motion. Each joint is of course also more restricted by the joints around it, but for a

surface this is also desirable as it guarantees surface continuity.

Literature Review – Variable Geometry Trusses

 This summary includes a brief overview of some different types and abilities

of several VGTs. Cyclic two-dimensional planar trusses and planar three-

dimensional VGTs as well as non-cyclic three-dimensional non-planar VGTs are all

considered.

Shape Morphing Hinged Truss Structures [3]

 A planar triangular truss connected by novel spherical "hexa-pivotal" joints

(Figure 6) has a rigid bi-pyramidal structure placed on each triangle (with the

triangle between the two pyramids).

Figure 6: Spherical hexa-pivotal joint [3].

 These bi-pyramidal hexahedrons provide a moment arm to be actuated with

shape memory alloy wire connecting the apex of adjacent pyramids as shown in

Figure 7.

9

Figure 7: The apex of each adjacent pyramid is connected with Nitinol to control the
angle between pyramids. A hexagonal pattern was chosen because of the increased
mobility.

The shape on the right in Figure 7 was chosen because it has more degrees of

freedom than if the central region were filled with the triangular shapes. An

experimental model was built, and binary actuator combinations were tested

resulting in simple motion. The angles were calculated with simple trigonometry,

and the degrees of freedom were calculated in a traditional manner using Maxwell's

stability criterion.

Figure 8: Multiple example positions for a hinged truss structure [3].

10

Trussarm — A Variable-Geometry-Truss Manipulator [5]

 Two stacked octahedral truss arms are compared with a precursor to the

international space station's current "Canadarm," with the results shown in Table 1.

Table 1: A comparison between Canadarm and two trussarms [5].

 The octahedral modules used for the arms are simplified 3 degree of freedom

Stewart platforms. These modules were chosen from four options using a modal

vibrational analysis in NASTRAN. The reasons that the chosen modules are "better"

11

were not well explained, but it is implied that the main criterion was the strength to

mass ratio. A basic introduction to dynamics is given, but it is plain that NASTRAN

was relied upon to obtain correct equations and to perform all of the calculations. A

two-module experimental model was produced, but no experimental results are

reported.

 As a preliminary work on adaptive variable octahedral trusses, this paper

provides a starting point for further work — work that has since been completed. It

clearly shows that the Canadarm can be improved upon by using a VGT, and that

parallel robotics have superior strength to weight ratios.

Tetrobot: A Modular Approach to Reconfigurable Parallel Robotics [4]

 A novel concentric multilink spherical (CMS) joint utilizing a planar offset

hinge (realized in a six-bar mechanism) is analyzed for range of motion and force

propagation using classical mechanics and traditional machine dynamics methods.

Figure 9: Basic concept of a concentric multilink spherical (CMS) joint.

12

 The joint is used in modular parallel robotics with highly redundant degrees

of freedom. Two modules are evaluated: tetrahedral and octahedral.

Figure 10: Tetrobot module examples.

 Each link has a linear actuator and prismatic joint installed, and the modules

are strictly arranged to avoid forming mechanical cycles between modules. Only the

individual modules need to be solved in a parallel manner, and the propagation of

motion between the modules can be treated as a traditional serial mechanism. A

strong emphasis is placed on the modular nature of the robot, and many useful

configurations are implemented.

13

Figure 11: An overview of a Tetrobot VGT system.

 The control of a robot formed from these modules is accomplished by first

separating each joint into one of three categories: fixed, constrained, or

unconstrained. Though three categories are used, the "fixed" and "constrained"

categories can be combined with no loss of generality. Because the length of each

link is variable, the position of each joint can be controlled independently. To

determine the desired location of the unconstrained joints, a weighting method is

used that the authors refer to as a "virtual force" method. A virtual spring and the

associated spring force is attached to each link with the neutral spring position

being set at the prismatic joint's zero position (this can be an arbitrary position, but

a useful position is the point midway between the two joint extremes). A virtual

force balance is calculated for each joint, and the resulting position is the desired

14

position of the unconstrained joints. In order to allow for a distributed control

system, an iterative link by link sweeping method is used, but an analytical solution

is also possible. This can equivalently be seen as a cost optimization method where

the cost is the distance from the neutral link length position.

 The work done by the authors of these articles shows the validity of VGTs,

and builds a strong foundation for further work. The same principles that make

static trusses more practical than solid filled volumes makes dynamic trusses more

appropriate than serial robotic arms. The strength to weight ratio is much higher

and as such, less material is required for the same strength — resulting in a much

reduced cost. Dynamic trusses also have the added benefit of requiring much

smaller actuators, also reducing the cost dramatically. Not only do they have better

strength to weight ratios, but they are also highly redundant, resulting in greater

dexterity and improved fault tolerance (better reliability).

 The main drawback has been the ability to control a large number of

actuators within extremely specific constraints (and calculating those constraints)

in an efficient and logical fashion. Beginning in the late 1980s, modern computers

began making this more feasible. Octahedrons have been the most complicated

shapes used successfully so far, but general methods for any cyclic shape are surely

not far off.

 Newer actuators with higher strength to weight ratios, and ever smaller

electronics make miniaturization a very exciting prospect for these types of robotic

systems. Using tiny powerful actuators, physical three-dimensional displays and

morphing prototypes become immediately possible. VGTs and VGFs may very well

15

be a precursor to the science fiction ideal of self-assembling nanobots for morphing

materials. There is still an enormous amount of work before this point may be

seriously considered but within a generation, crude physical three-dimensional

displays and morphing prototype modelers are quite plausible.

Applications

 By locking the joints, a variable geometry type system can be used as a rigid

support when not being used for its robotic purposes and can form the frame of

anything from a pencil holder to a vehicle chassis. When a robot is required, the

surface can be powered on to perform the necessary tasks. Due to the large number

of joints, there are many control points - each of which can be modified by attaching

an end-effector or even a traditional robot arm, allowing for extremely versatile use.

 By placing optical elements (reflectors, lenses, etc.) at each joint, this type of

discrete robotic surface can replace parabolic reflectors or lenses for anything from

solar concentration to maser power transmission to radio antennae – or even light

collection for telescopic purposes. Because of its morphing ability, the range in

which the focal area is located can be extremely broad, or it can even have multiple

focal areas.

 Another area of interest may be manufacturing. A surface of this nature can

be used to quickly create arbitrary solid shapes for various casting, molding, and

forming manufacturing methods leading to further methods for the rapid

production of prototypes before investing in costly equipment for mass production.

16

 With improved actuators a much smaller module size can be used, which

allows for practical applications in personal three-dimensional displays. Stronger

actuators make much higher loads possible, extending possible applications to

morphing wings and fairings for improved aerodynamic performance. Using

structures of this nature in the microgravity of outer space, an entire vehicle or even

an entire space station would be easily reconfigured into a wide variety of desired

shapes.

 Active damping of vibrations has been a popular topic for a very long time.

Usually, this is limited to placing a vibrating actuator on a structure in the direction

of the highest vibrational amplitude or predicting the vibrational mode and

changing the actuator's direction accordingly. In a variable geometry frame, the

motion can be damped in any direction quickly and effectively using the actuators

already built into the structure.

 A surface made as a VGF can roll up to form snake-like structures to be used

to clean pipes, climb trees, etc., or even as truss-arms (or "frame-arms"). It can form

any number of closed shapes to be used as wheels, balloons, combustion chambers,

etc. Because of its morphing ability, the applications of this type of mechanism are

limited only by the creativity of the user.

17

CHAPTER 2

STATIC DESIGN

Static Structural Analysis (Static Joint Forces)

 The finite element method (FEM) is applied to a new class of robots that can

be called VGF robots. All triangle edges have actuated prismatic joints, and all

internal (non-boundary) edges are rotationally actuated to control the angle

between faces and avoid singularity at the in-plane positions described above. It is

desired to determine the joint forces arising from static loading. Typical methods

use the Jacobian matrix or Lagrangian equations of motion to find the joint forces

[6][7]. Because of the highly redundant nature of this robot, these methods are not

feasible. Indeed, the most complicated parallel joint configuration with a well-

known closed-form solution has only six mechanical cycles comprised of six

spherical joints and six prismatic joints [2][4]. In the proposed robot however, each

modular increase in the length and width of the robot increases the number and size

of cycles exponentially. FEA is not limited by parallel joints, and can be used very

conveniently to find all of the required joint forces. It should be noted that the FEM

is an approximating method that assumes link deformation causes the link to lie

along a mathematical "shape" function. It also approximates the element's stiffness

by only considering the stiffness of discrete lengths between nodes [8]. In the case of

this study, the shape function used was a cubic polynomial. This means that the

results will not be exact, but merely an approximation. As the purpose is to make

sure that the actuators' maximum limits are not exceeded, this approximation

should be satisfactory.

18

 A stiffness matrix is calculated as the linear combination of the following

well-known stiffness matrices: pure axial loading along the x-axis of the element's

local coordinate system (x in the direction of the link), pure torsion about the local

x-axis, pure bending about the local y-axis, and pure bending about the local z-axis.

Each of these stiffness matrices was calculated using the cubic shape functions of an

Euler-Bernoulli beam element [8].

 If

𝑣𝑣� = [∆1,∆2]𝑇𝑇

is a displacement vector in all six degrees of freedom (translation along the x-, y-,

and z-axes as well as rotation about the same) for each node of a beam element,

where

∆1= �𝛿𝛿𝑥𝑥1, 𝛿𝛿𝑦𝑦1,𝛿𝛿𝑧𝑧1,𝜑𝜑𝑥𝑥1,𝜑𝜑𝑦𝑦1,𝜑𝜑𝑧𝑧1�
𝑇𝑇

and

∆2= �𝛿𝛿𝑥𝑥2,𝛿𝛿𝑦𝑦2, 𝛿𝛿𝑧𝑧2,𝜑𝜑𝑥𝑥2,𝜑𝜑𝑦𝑦2,𝜑𝜑𝑧𝑧2�
𝑇𝑇 ,

with 𝛿𝛿 representing the translational displacement and 𝜑𝜑 representing the

rotational displacement, where the superscripts signify the node, and the subscripts

give the direction, the following result is obtained:

Local stiffness matrix 𝑘𝑘 =

19

 𝐸𝐸 is the modulus of elasticity, 𝐴𝐴 is the cross-sectional area of the link, 𝐿𝐿 is the

length of the link, and 𝐼𝐼 is the second moment of area about the axis noted in the

subscript.

 A transformation matrix is then computed using basic trigonometry to rotate

the local coordinate system to match with the global coordinate system. There are

many ways to write this type of matrix, but one popular method is the directional

cosine matrix (DCM). Using the definition of the cosine function, the desired

rotations can be written as shown:

Transformation matrix 𝑇𝑇 =

20

Where "c" stands for cosine and the next two letters indicate the argument. The first

letter is the local axis and the second letter is the global axis (e.g., "cyz" indicates the

cosine of the angle from the local y-axis to the global z-axis). Then

𝑣𝑣 = 𝑇𝑇𝑣𝑣�

and

 𝑣𝑣� = 𝑇𝑇−1𝑣𝑣, (1)

where 𝑣𝑣 is a vector containing the six displacements of each node in global

coordinates. The tilda denotes the same vector in local coordinates. If the forces are

represented by

𝑝𝑝 = [𝑝𝑝1,𝑝𝑝2]𝑇𝑇

where

𝑝𝑝1 = �𝑝𝑝𝑥𝑥1,𝑝𝑝𝑦𝑦1, 𝑝𝑝𝑧𝑧1, 𝜏𝜏𝑥𝑥1, 𝜏𝜏𝑦𝑦1, 𝜏𝜏𝑧𝑧1�
𝑇𝑇

and

𝑝𝑝2 = �𝑝𝑝𝑥𝑥2, 𝑝𝑝𝑦𝑦2,𝑝𝑝𝑧𝑧2, 𝜏𝜏𝑥𝑥2, 𝜏𝜏𝑦𝑦2, 𝜏𝜏𝑧𝑧2�
𝑇𝑇 ,

21

and the spring constants are found in

𝑘𝑘 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑘𝑘1, 𝑘𝑘2]

where

𝑘𝑘1 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �𝑘𝑘𝑥𝑥1, 𝑘𝑘𝑦𝑦1,𝑘𝑘𝑧𝑧1, 𝑘𝑘𝜑𝜑𝑥𝑥
1 ,𝑘𝑘𝜑𝜑𝑦𝑦

1 ,𝑘𝑘𝜑𝜑𝑧𝑧
1 �

and

𝑘𝑘2 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �𝑘𝑘𝑥𝑥2, 𝑘𝑘𝑦𝑦2,𝑘𝑘𝑧𝑧2, 𝑘𝑘𝜑𝜑𝑥𝑥
2 ,𝑘𝑘𝜑𝜑𝑦𝑦

2 ,𝑘𝑘𝜑𝜑𝑧𝑧
2 �,

then Hooke's law in local coordinates can be written as

 𝑝𝑝� = 𝑘𝑘�𝑣𝑣�. (2)

In the same way as (1),

𝑝𝑝 = 𝑇𝑇𝑝𝑝�

and

 𝑝𝑝� = 𝑇𝑇−1𝑝𝑝. (3)

Substituting (1) into (2), gives

 𝑝𝑝� = 𝑘𝑘�𝑇𝑇−1𝑣𝑣, (4)

and then substituting (3) into (4) results in

 𝑇𝑇−1𝑝𝑝 = 𝑘𝑘�𝑇𝑇−1𝑣𝑣. (5)

Because T is seen to be orthogonal,

𝑇𝑇T = 𝑇𝑇−1

and (5) can be simplified to

𝑝𝑝 = 𝑇𝑇𝑘𝑘�𝑇𝑇T𝑣𝑣.

This equation can be rewritten as Hooke's law in global coordinates,

𝑝𝑝 = 𝑘𝑘𝑣𝑣,

22

where

𝑘𝑘 = 𝑇𝑇𝑘𝑘�𝑇𝑇T

is the global stiffness matrix for a single element.

 Next, the element stiffness matrices must be assembled into a stiffness

matrix for the entire structure. A simple and general way to do this is by indexing

each node and associating those indices with their adjacent elements. Then to

assemble the stiffness submatrix of a node, just add each submatrix associated with

that particular node. Repeat this for each node, and the full structural matrix is

complete. The twelve node VGF shown in Figure 2 is used as an example in two

different positions. As this gives a 72x72 matrix (12 nodes x 6 degrees of freedom)

the full position dependent stiffness matrix of the entire structure is not shown,

although the relevant link forces are given in the results section. Once the model has

been set up in this fashion, any position is simple to compute.

 The unknown global displacements 𝑈𝑈𝑢𝑢𝑢𝑢𝑘𝑘𝑢𝑢𝑢𝑢𝑢𝑢 are calculated from the known

(applied) global forces 𝑃𝑃𝑘𝑘𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 using the corresponding sections 𝐾𝐾𝑃𝑃𝑘𝑘𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
−1 of the full

global stiffness matrix 𝐾𝐾 by

𝑈𝑈𝑢𝑢𝑢𝑢𝑘𝑘𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝐾𝐾𝑃𝑃𝑘𝑘𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
−1 𝑃𝑃𝑘𝑘𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 .

Once the unknown displacements have been computed, they are linearly combined

with the known displacements (obtained from the boundary conditions) to give a

complete vector of all displacements. If desired, this can then be used to find

unknown reaction forces by

𝑃𝑃 = 𝐾𝐾𝑈𝑈,

23

where 𝑃𝑃 is a vector containing all global forces, 𝐾𝐾 is the global stiffness matrix for

the entire structure, and 𝑈𝑈 is a vector containing the global displacements of all

nodes.

 But we are currently interested only in the joint forces. To calculate the joint

forces, we first transform the displacements that are associated with the first

element to the local coordinates of that element and then simply pre-multiply the

local displacements by the local stiffness matrix. Taking these steps together to form

a single equation,

𝑝𝑝� = 𝑘𝑘�𝑇𝑇T𝑣𝑣,

where 𝑝𝑝� is again the vector of local joint forces represented in the local joint space

(in this system, the local coordinate systems are defined as being coincident with

the joint coordinate systems). The local coordinate systems are defined in Figures

12 and 13.

24

Figure 12: The node numbers of an example VGF in a planar position. The local y-
axis is formed by a vector perpendicular to both the local x-axis and the global z-axis
calculated by the cross product of the z unit vector and the x unit vector 𝒛𝒛� × 𝒙𝒙� to
give a unique direction. The local z-axis is then naturally the cross product of the x
and y unit vectors 𝒙𝒙� × 𝒚𝒚�.

Figure 13: The element numbers of the same example VGF as in Figure 12. The local
x-axis of each line starts at the node closest to the dot, and ends at the node nearest
the circle.

25

 Inverse kinematics are used to calculate the required joint positions to obtain

desired control point locations. If each triangle vertex is a control point, the

calculation of inverse kinematics is simple trigonometry and can be seen in the code

in Appendix A. The trajectory of each control point is calculated by sampling a

moving surface and ensuring that the distance between the time-varying sample

points is within the acceleration and velocity limits of the actuators. This discrete

motion is then uploaded to a microcontroller to control the actuated joints offline.

 Two positions are shown to illustrate a range of motion and the related

forces required to achieve it. The loading is the same on both shapes with the weight

of the elements due to gravitational acceleration applied to each node. Node 1 is

fixed in all 6 degrees of freedom as the reference node, and nodes 9 and 10 are both

fixed in the z-direction, but allowed to slide in the x- and y- directions and freely

rotate in all directions. In Figures 14 and 15, the blue lines represent the original

shape, while the dotted red line is an exaggeration of the deformation after the load

is applied. The displacements are all multiplied by 100 for all plots.

 The first shape is a dome-like shape reminiscent of the geodesic domes

created by Buckminster Fuller in the 1970s. Because this is a stiff position when

considering only the load due to gravity, we expect relatively high axial forces and

low moments.

26

Figure 14: Very stiff convex semi-spherical position. The blue lines represent the
undeformed shape, while the red dotted lines are an exaggeration of the
deformation after the load is applied. Top - side view (parallel to the x-z-plane with
the y-axis going into the page). Bottom - isotropic view.

 The local nodal forces corresponding with vertical loading due exclusively to

gravity, assuming a mass 20 grams concentrated at the ends of the links (10 grams

per end) are calculated. The physical properties used for the axial stiffness are those

of an aluminum ANSI #8-32 threaded rod corresponding to a potential linear

actuator. The rest of the physical properties are those of a proprietary plastic that

was used for the construction of the rest of the link (including the gearbox of the

rotary actuator). The maximum axial force (which corresponds to the force that the

27

linear actuator needs to apply) for this position is 1.382 Newtons in link (element)

11 while the maximum moment about the x-axis (the rotationally actuated

direction) is only 0.26 N∙cm.

 The second shape considered is a planar position that would be singular

without the rotary actuators, and would yield infinite forces if modeled with non-

bending truss elements. Because of the included actuators, this shape should have

no axial force in the beams, but instead should have a shear force and a moment.

Figure 15: Zero "in-plane" position that, if not for the rotational actuators, would be
singular and require infinite force in the local x-directions in order to maintain this
position. With the rotational actuators, there is just a reasonable shear force and
moment. The blue lines represent the undeformed shape, while the red dotted lines
are an exaggeration of the deformation after the load is applied. Top - side view
(parallel to the x-z-plane with the y-axis going into the page). Bottom - isotropic
view.

28

 As expected, all of the axial forces in this position are zero. The maximum

moment about the x-axis (the actuated direction) in this position is 1.29 N∙cm in link

2.

 The other forces (in non-actuated directions) are important for the link

design (and can be seen in the Exhibits), but our focus in this paper has been on

finding joint forces without the aid of traditional kinematic or dynamic methods.

Mechanism Design

 With the physical motion of the mechanism characterized and the critical

joint forces estimated, all that was missing was a good joint for the design of this

mechanism to proceed.

 After a careful consideration of many spherical joints [2], a modification of

the CMS joint was chosen. It was obvious that the offset links could be made straight

if they were given an axis that intersected with the perpendicular “hinge” joint. This

simplifies the joint, reduces weight, and increases strength and rigidity.

 In a single layer surface application, all positions involving collinear adjacent

links are singular to some extent. Rotary actuation is added to avoid these

singularities and to allow for a strong focus on surface applications. The joint is

modified to accommodate this actuation through a thorough analysis of the

available linkspace, taking as much into account as seemed feasible at the time.

29

Figure 16: The CMS joint is modified to reduce complexity, increase strength and
rigidity, and reduce weight.

30

Geometric Design Considerations

 Joint range and actuator size are the main geometric constraints. When an

actuator is mounted on a link, it is reasonable to consider it as part of the link.

Therefore, larger an actuator is, the wider the link it is attached to becomes. The

wider the links are, the less the joints can move before the links collide with one

another. In the mechanism pictured in Figure 27, all of the most stringent

constraints of this nature occur when the prismatic joints are at their shortest. Links

must not intersect at any point throughout the joint range. This limits the links to be

within a confined linkspace. The shape of this space can be defined by the joint

ranges while the actuator size and placement requirements determine its scale (the

actual size of the space which will have a shape that is mathematically similar to the

shape determined by the joint ranges). Some of the joint ranges used for this

mechanism are in turn dependent on the link size, so the two must either be solved

simultaneously, or iteratively solved independently with reasonable values and then

compared to find which is the more demanding constraint.

Figure 17: The overall range of the modified CMS joint is shown above using the
arbitrary prismatic joint range of L to 1.5L (L+/-20%) – which corresponds with a
passive joint range of ~39° to ~97° – and an arbitrary out-of-plane rotation of +/-
60°.

31

 For the iterative approach, reasonable initial joint ranges are chosen.

Beginning with the prismatic joints, a joint range of 𝐿𝐿 to 1.5𝐿𝐿 is chosen, where 𝐿𝐿 is

the smallest total length of the link. This corresponds with a joint range of

~39° ≤ 𝜃𝜃𝑝𝑝𝑑𝑑𝑝𝑝𝑝𝑝𝑑𝑑𝑣𝑣𝑝𝑝 ≤ ~97° for the passive revolute joints between the prismatic joints

of a triangular module (calculated by comparing the extreme angles at the extreme

prismatic joint positions). With no other considerations, this would result in a

linkspace shape as shown below.

Figure 18: Joint space after considering the constraints imposed by a desired
arbitrary prismatic joint range.

 Next we consider the revolute joint between each module. If this joint were

restricted to −60° ≤ 𝜃𝜃 ≤ 60°, the jointspace shape appears as in Figure 18.

32

Figure 19: Three views of the linkspace after considering joint ranges in three
dimensions.

 Further geometric constraints require that the links be able to easily connect

with one another. This will require the "trading" of linkspace with adjacent links in

such a way as to maintain the similarity between links so that the modularity of the

mechanism is not impinged. The locations of loading and grounding constraints

must be carefully considered so as to reduce forces in unwanted directions and to

maximize the rigidity as discussed in the Static Structural Design Considerations.

Figure 20: Three views of the linkspace after allowing for the passive joints.

33

 Finally, the actuators must be taken into account. The location and

capabilities of the actuators and the types of fasteners used are the most limiting

constraints as they determine the feasibility of all of the other constraints. The

motion of the actuator and any associated linkages must not be obstructed, yet must

remain within the linkspace (though the space may be modified by trading with

adjacent links as seen previously).

Static Structural Design Considerations

 Structural constraints are mostly limited to rigidity and overall strength,

though stress concentrations are considered as well. In order to obtain the optimal

strength to weight ratio, the largest convex hull possible within the constraint space

is desirable (or a combination of the largest – or fewest – convex hulls possible if a

single convex hull violates space constraints). This convex hull is formed with the

consideration of the loading and grounding sites as potential hull vertices. Because

these sites are few, the different possible hulls can be quickly considered by

inspection, but if they were more numerous, all of the hulls would need to have a

thorough numerical inspection to find the optimal solution.

 Though the strength to weight ratio is important, we must also make sure

that the overall structure is strong enough not to fail under load, as well as ensuring

that the structure does not deflect so much as to interfere with its operation. In the

case of the mechanism being considered, the control of the mechanism is greatly

simplified if the links can be treated as rigid objects. All of the most stringent

constraints of this nature occur when the prismatic joints are at their longest.

Dynamic Structural Design Considerations

34

 A desire to reduce inertia constrains the mechanism in mass and shape. As

the constraints for the length of each link and the strength to weight ratio have

already been added, the remaining improvements lay in reducing the thickness. This

will reduce the rotational inertia about the prismatic joints' line of action, but will

also reduce the flexural rigidity. The minimum thickness will be determined either

by the constrained maximum deflection or by the constrained minimum strength

requirements.

 In case extremely high speeds are required (e.g. for a morphing flywheel),

additional considerations would be required to evaluate dynamic balancing,

resonant vibrational frequencies, etc. High speed applications are outside of the

scope of this design, and have as a result not been evaluated.

Power Transmission

 All mechanisms must transmit power from one location to another. As such,

the methods of power transmission available to humanity are incredibly vast. There

has been no attempt in this project to optimize the transmission. Though later

changed (as discussed in Chapter 3) module 0.25 metric spur gears were initially

used for all rotary power transmission (shown in Figure 20), and an ANSI #8-32

screw is fashioned into a linear screwdrive actuator for all linear power

transmission. In order to transfer the rotary forces through the prismatic joints, a

mechanical spline is chosen.

 Although not optimized, the thickness of each gear is chosen according to the

maximum amount of force each tooth will bear using a factor of safety of 5 and

rounding up. This force is based on the maximum torque that the selected motors

35

are able to apply (~5 N·cm). Likewise, the thickness of the pins supporting each gear

is chosen so that the maximum deflection of the pin will not allow the teeth of any

mating gears to slip.

Figure 21: Initial power transmission using M0.25 spur gears. On the left is a 6:7
transmission from a motor to an ANSI #8-32 screw drive. The right is a gear
reduction of ~621:1.

"Final" Link Design

 Once the linkspace is finalized, the "link" as we have designed it must be

separated into two links joined by a prismatic joint with enough space for a linear

actuator. Because a convex hull is desirable, the center of the linkspace is chosen for

the actuator. The two links are separated by maximizing the hull thickness of each

link while ensuring that the desired range of motion can be covered as well as

maintaining the desired rigidity. The results are shown in Figures 22-25.

36

Figure 22: Linear actuator mount section of the overall link.

Figure 23: Linear extension section of the overall link.

Figure 24: Rotary actuator mount section of the overall link.

37

Figure 25: Rotary extension portion of the overall link.

Manufacturability Design Considerations

 Because the mechanism will be printed on a 3D inkjet printer, the design for

manufacturability (DFM) constraints are significantly less stringent than they might

otherwise be with more traditional manufacturing methods. Nevertheless, certain

constraints are necessary. The main constraint is that the support material must

have an exit path to allow easy removal from the locations that require its use. This

means that there will need to be holes in places that would otherwise be solid.

Because the assembly will be done by hand, other constraints will require that

interior parts be easily accessed by fingers or tools.

38

Figure 26: Extra holes and sections removed to ease manufacture and assembly are
shown in blue.

 The design process is circular in nature, in that it has no end and seems to

repeat steps. Further manufacturing changes were made due to the limitations of

the rapid prototyper. These further changes are discussed in the next chapter which

explains the construction process.

Figure 27: Single triangular module and multiple views of a single modular link.

39

Figure 28: Example arrangements of VGF surfaces composed of triangular modules.

Figure 29: Example position of a four module VGF.

40

Kinematics

Forward Kinematics

 The kinematics of parallel mechanisms are very interesting. The same

actuarial principles used in serial mechanisms can be employed, but because of the

closed mechanical cycles, addition considerations are required.

 In a serial mechanism, the location of the first link in the chain is found with

respect to the ground coordinate system. The second link in the chain is found in

terms of the first joint variable and defined relative to the first link, the third link is

found in terms of the second joint variable and defined relative to the second link,

and so on. In this way, each link can be described by a variable vector, and the

vector sum of all the links in the chain gives the location of the end point of the

chain.

Figure 30: Coordinate definitions used in forward kinematics for a rhombic module.

41

 Initially, this same approach can be used with parallel mechanisms. The

difficulty in this step is defining the "first" link and the subsequent order of links.

Any serial chains within the parallel cycles have an obvious order, but what will the

order be at the branch points? This is where the extra considerations come into

play. After defining each serial chain in the mechanism, each closed cycle constrains

each serial chain contained within it. This "constraint" is simply that each serial

chain must begin or end at the same branch points at which the other serial chains

in the loop begin or end.

Constraint Equations in Forward Kinematics

 This constraint can be described mathematically by equating the two vector

paths (i.e. the end locations are the same). These constraint equations are often

highly nonlinear, and can be very difficult to solve – usually having no known

analytical solution and therefore requiring the use of numerical methods. Because of

their nonlinear nature, there will also usually be multiple solutions. For three

dimensional parallel mechanisms, there will likely be an infinite number of

solutions.

Inverse Kinematics in Forward Kinematics

 Another way to think of this is by defining one serial forward kinematic path

in the usual way, and then computing the inverse kinematics for the rest of the serial

paths connected at the same branch point with the target end point defined by the

initially calculated path.

 In highly redundant parallel mechanisms, the serial "chains" may be only one

or two links long before reaching a branch point, and the branch points may have

42

large numbers of serial chains attached to each one. A convenient way to handle this

is by defining an arbitrary serial path through the entire mechanism and calculating

the positions of any links not in this initial path based on the path position (inverse

kinematics).

 With triangular modules arranged in a mechanism as described above, there

are many possible serial paths. A convenient example might be a spiral path. This

would make the inverse kinematics of all links not included in the path very simple,

and would let us find a single unique solution. Each link is connected either by a

prismatic and spherical joint if the links are in different modules, or a prismatic and

revolute joint if they are in the same module. The spherical joints could be modeled

with many different combinations of joints, but a "ZYZ" type joint is most common.

All remaining links not in the initial serial path can be thought of as single links with

two spherical joints with a prismatic joint in between – easily calculated from the

initial path position.

Modular Definitions in Forward Kinematics

 Another perhaps more appropriate method could be a modular approach. A

single triangular module can be defined in terms of its joint positions, and then the

interfacing joints between modules finish defining the overall shape. In the end, we

want to put everything in terms of the actuated joints. This method makes this task

slightly simpler than the inverse method as all of the joints used in the model are

real joints in the mechanism – we simply have to calculate the passive joints in

terms of the actuated joints which, for a triangle, is quite simple.

43

 The forward kinematics were initially calculated for the rhombic surface (see

Appendix B), but they were not useful enough to consider for the triangular surface.

Inverse Kinematics

 The inverse kinematics of parallel mechanisms are perhaps less interesting

in practice. This is because the method used for to calculate the inverse kinematics

depends greatly on the desired application. Most methods consider the position of

each link to be known or controlled in some way. This makes the inverse kinematics

almost trivial in calculation, but produces some very interesting control schemes.

The reason for this is that if only one ground position and one "end-effector"

position is known, an analytical solution is not only very difficult to obtain – in fact it

has been proven that there is no general solution for five or more joints connected

in a loop – but also gives multiple solutions. In serial mechanisms, these multiple

solutions can be a problem, but in parallel mechanisms these problems are

compounded exponentially. For most parallel mechanisms, there are literally an

infinite number of solutions. Rather than try to deal with these "singular spaces," it

is much more sensible to control as many links as possible and use a placement rule

or control law to determine the location of the uncontrolled links.

 For this mechanism, a method of dynamic shape control is used, so that the

motion of each link is fully defined by the controller. As such, the forward

kinematics are not required. The inverse kinematics are calculated with basic

trigonometry; requiring only the calculation of the distances between the endpoints

of each link for the prismatic joints, and the angles between each module for the

44

actuated revolute joints. This fully defines the position of the mechanism and as

such, all other joints are passive.

45

CHAPTER 3

PROTOTYPE FABRICATION

 A three-dimensional inkjet-style printer that uses proprietary ultraviolet

light curing plastic was used to print each part other than the stepper motors,

fastening screws (steel), and the threaded rod (made from aluminum). The main

links have four primary components bearing all combinations of two characteristics;

either a mount for the stepper motor or an extension from the mount, and either

connected to the rotary motor or to the linear motor (see Figures 31-34). Other than

the main links, there are the fasteners for the motors, the passive joint links, the

power transmission, and of course the actuators themselves.

An interesting feature shown in Figure 35 is the half joint formed between

the linear mount and the rotary extension portions of the link using an annular

space in the driven gear of the rotary drive train. This joint not only increases the

range of the prismatic joint by allowing the rotary extension to extend past this gear

when the prismatic joint is fully retracted, but also provides much needed support

when the prismatic joint is fully extended.

 The surfaces of prototypes printed with the selected printer sometimes have

lower resolution than advertised (this phenomenon is described more fully later

on). This led to the module size of the gears doubling from 0.25 to 0.5, causing there

to no longer be enough space for the gear train that had been planned. Instead, an

epicyclic gear train was required. This new transmission (shown in Figures 37-38)

is more stable, more efficient, and more compact than the original transmission, so

it was just as well that the change was forced.

46

Figure 31: Linear actuator mount section shown with 0.5 M epicyclic gear housing
and three-pronged snap-together clips.

Figure 32: Linear extension section with three-pronged snap-together clips and
extra holes for support material removal.

Figure 33: Rotary actuator mount section shown with 0.5 M epicyclic gear housing
and three-pronged snap-together clips.

47

Figure 34: Rotary extension section shown with break-away reverse-tapered press
fit joints.

Figure 35: The prismatic extension of the rotating link component also forms a half-
joint with the actuator mount side of the linear link component.

Figure 36: One full link of the prototyped mechanism with a rotary and prismatic
actuator. Because all links are the same, one link might be considered to be a more
fundamental module than the triangular module adopted for this project.

48

Figure 37: Geared rotary transmission using four epicyclic stages giving a total gear
ratio of 𝟗𝟗𝟗𝟗𝟗𝟗.𝟒𝟒𝟒𝟒����:𝟏𝟏.

 In this transmission, there are four epicyclic (planetary) gear stages for each

rotary actuator with each stage comprising four spur gears (each with its own pin)

and one arm – with a spur gear on the arm (and all stages share a common arm) for

a gear ratio of 977. 45����: 1. Each linear actuator has two epicyclic gear stages that are

identical to the rotary actuator's gear stages. In addition, each linear and rotary

actuator both have two idler gears, the driving gear, and the driven gear for a gear

ratio of 4:1 connected to the ANSI #8-32 screwdrive. With a full module having

49

three linear actuators and three rotary actuators, this is a total of two-hundred-

twenty-two gears and one-hundred-seventy-four pins per module. Even though

there are six modules in the prototype, because the outside borders of the

mechanism do not need rotary actuators, this gives a grand total of only six-

hundred-sixty-six gears and five-hundred-twenty-two pins in the device.

Figure 38: Geared linear transmission using one epicyclic stage for an overall gear
ratio of 4:1.

 Each module has six long and six short joint links making up the six-bar

joints for a total of seventy-two passive joint links. There are eighteen stepper

motors and twelve ~6 inch ANSI #8-32 threaded aluminum rods. There are two

50

types of actuator fasteners used on the mechanism; one type for the linear mounts,

and one for the rotary mounts. Each linear mount fastener uses one ANSI #4-

40X1/4" screw, while each rotary mount uses one of these as well as one ANSI #4-

40X3/8" screw.

Figure 39: ANSI#8-32 aluminum threaded rod used in the linear actuator, fasteners
for the stepper motors, and screws used to attach the fasteners.

 Each stepper motor has four 36 inch color-coded power wires attached to

both the actuator and to a connector to the stepper drivers. The drivers each have

two power wires connecting them to the power supply, four power wires

connecting them to the actuator connector, and two control wires connecting them

to the microcontroller. All of the wires connected to the drivers are 6 inches in

length. This is a grand total of two-hundred-sixteen wires with a total length of 96

51

yards (87.8 meters) of stranded aluminum wire and 17 yards (15.5 meters) of heat

shrink.

Figure 40: Nest of wires and drivers.

Figure 41: Power wires. Red is 5VDC and black is the corresponding ground, Brown
is 12VDC and grey is the corresponding ground. All others are control wires. The
white control wires are directly connected to the 5VDC wires to draw the
microstepping pins high at all times.

52

Figure 42: Stepper driver and wires. The screw on the left of the board is a
potentiometer to control the current. It is left all the way open which corresponds
with ~0.95A when driving with 12VDC and using long power wires.

Figure 43: Control board header and control wires. For the program that I have
written (which can be seen in Appendix B), the top row controls the step count,
while the bottom row controls the direction.

53

 As is typical with plastic inkjet printers, every part that was printed needed

to be hand finished. The support material (a semi-water-soluble gel-like material

that the printer uses to create undercut/overhang in parts) needed to be cleaned

from the part (a task that was extremely arduous – especially in small enclosed

spaces – and involved a wire coat hanger, chopsticks, and numerous clay sculpting

tools in addition to a proprietary pressure washer), and flashing/burrs needed to be

removed and smoothed.

Figure 44: Left – 3D inkjet printer. Right – pressure washer glovebox.

54

Figure 45: A batch of epicyclic gear arms and gear mounts with support material.

 As previously mentioned, the printer that was used has a reasonably high

resolution and fairly good fidelity, but creates a burr whenever there is a glossy

surface joined to a matte surface. The glossy surface is a surface finish option that

has significantly less friction and is significantly stronger and more rigid than the

matte surface. Unfortunately, the glossy surface is only available in locations on the

part that do not come into contact with support material. Because the lower friction

and higher rigidity of the glossy surface was desired, all printed parts needed to

have burrs removed from the glossy surface-matte surface junction. Each of the six-

hundred-sixty-six gears needed to be de-burred in order to be able to spin freely;

55

each pin and pin-hole needed to be de-burred in order to mate properly; all

fasteners and internal gears needed to be reshaped in some way; and all sliding

surfaces needed to be de-burred to allow the joints to move freely.

Figure 46: This spur gear should be symmetric through a roughly horizontal line,
but the burr on the bottom makes this obviously not so.

Figure 47: Notice the flat section in the upper right corner. This should be a perfect
circle.

56

Figure 48: A side view of the same object as in Figure 47.

 The last thing that had to be done in preparation of assembly was to tap each

of the forty-eight threaded holes. In each of these steps, if a mistake was made, the

part had to be remanufactured and processed anew. When pressure washing and

otherwise removing support material, it is very easy to apply too much force and

break a part. In de-burring, it is very easy to carve off a little too much and have a

gear that will slip teeth. In tapping threaded holes, it is very easy to tap slightly off-

axis and have a hole that applies large off-axis torques to the screw. Each of these

tasks was like learning a craft. If the reader perhaps has any experience building a

model, the preparation and assembly of this mechanism was very much like that.

57

 Once the preparations were completed, the assembly began. Numerous clips

pins and joining methods were attempted unsuccessfully before the current method

was perfected. A reverse tapered press-fit is used for some of the passive joint links

while a three-pronged snap connector is used for others. This is because the

orientation that certain links had to be printed at did not allow for a strong enough

prong to use the three-pronged snap connector, yet the joints that did allow for it

are significantly stronger than the reverse tapered press-fit joints. The press-fit

joints used a small vice to achieve the necessary force. Many prongs, pins, and clips

were broken during this process, necessitating the remanufacture, re-cleaning, re-

de-burring, and re-tapping of many parts.

Figure 49: A clip being pressed into place with a small vise.

58

Figure 50: Tools used to remove support material include a custom made plunger
(middle), a chopstick, and a wire coat hanger.

Figure 51: Stationary planar position of six module prototype.

59

Figure 52: Moving partial sphere position of six module prototype.

60

CHAPTER 4

DYNAMICS AND CONTROLS

Dynamic Structural Analysis (Dynamic Joint Forces)

 We now wish to find a suitable mass matrix to calculate dynamic forces.

There are many methods to derive a mass matrix with various benefits and

drawbacks. For our purposes, a "consistent" [8] mass matrix is chosen. Using the

same methods as for the stiffness matrix, with the same definitions and shape

functions, a mass matrix that has a shape consistent with the shape determined by

the element's flexibility is obtained:

Local linear mass matrix 𝑚𝑚�𝑙𝑙 = 𝜌𝜌
420

×

where 𝜌𝜌 is the density per unit length of each element.

61

Because the shape functions used do not account for the rotational inertia due to the

thickness of the element, an additional rotational mass matrix is calculated in polar

coordinates, with the same techniques used above, to give:

Local rotary mass matrix 𝑚𝑚�𝑟𝑟 = 𝜌𝜌𝑅𝑅2

120𝐿𝐿
×

 R is the radius of the element, assuming a circular cross section.

Then the complete local consistent mass matrix that takes into account both linear

and rotary inertia is given by

𝑚𝑚� = 𝑚𝑚�𝑙𝑙 + 𝑚𝑚�𝑟𝑟

Using the exact same process as with the static FEA, but with an inertial force

instead of the spring force 𝑝𝑝, and an acceleration of displacement 𝑑𝑑
2𝑣𝑣

𝑑𝑑𝑡𝑡2 rather than 𝑣𝑣,

the global mass matrix for a single element is derived as

𝑚𝑚 = 𝑇𝑇𝑚𝑚�𝑇𝑇T.

62

This is then assembled into a full structural mass matrix in the exact same way that

the full stiffness matrix was assembled.

Optimal Control

To analyze the dynamic response of the structure, a standard system of

equations is used:

�̇�𝑋 = 𝐴𝐴𝑋𝑋 + 𝐵𝐵𝑈𝑈

and

𝑧𝑧 = 𝐷𝐷𝑋𝑋.

The states 𝑋𝑋 = �𝑋𝑋1
𝑋𝑋2� are chosen as the global position (𝑋𝑋1), and global velocity (𝑋𝑋2)

of each node.

Including a viscous friction matrix

𝐶𝐶 ∝ ‖𝐾𝐾‖

gives

𝐴𝐴 = � 0 𝐼𝐼
−𝑀𝑀−1𝐾𝐾 −𝑀𝑀−1𝐶𝐶�,

𝐵𝐵 = � 0
𝑀𝑀−1�,

and

𝐷𝐷 = �𝐼𝐼 0
0 𝐼𝐼�,

where each block is a 72x72 matrix.

 Another interesting feature of an actuated structure is the ability to actively

damp vibrations. Using a simple optimal control algorithm [9], an input force U can

63

be used to stabilize the system more quickly than without using the actuators and is

calculated by

𝑈𝑈 = −𝐹𝐹𝑋𝑋

where 𝐹𝐹 is the feedback gain given by

𝐹𝐹 = 𝑅𝑅2
−1𝐵𝐵𝑇𝑇𝑃𝑃�,

𝑃𝑃� is the unique nonnegative-definite symmetric solution of the algebraic Riccati

equation

0 = 𝐷𝐷𝑇𝑇𝑅𝑅3𝐷𝐷 − 𝑃𝑃𝐵𝐵𝑅𝑅2
−1𝐵𝐵𝑇𝑇𝑃𝑃 + 𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝐴𝐴,

and 𝑅𝑅2 and 𝑅𝑅3 are weighting matrices dictating the relative costs of the inputs and

outputs respectively [10].

 This gives the force at each node in global coordinates which can then be

transformed to jointspace (local element coordinates) using the same

transformation matrices used earlier.

 There are, of course, an infinite number of loading possibilities. In order to

keep the loading from becoming too complicated, yet still show an interesting

response that can validate the model, a sinusoidal displacement is used. The

undeformed position is a planar position that would be singular without the rotary

actuators, and would yield infinite forces if modeled with non-bending truss

elements. Because of the included actuators, this shape should have no axial force in

the beams, but instead should have a shear force and a moment. The loading is

achieved by displacing each node in the global z-direction such that the deformed

position is that of a sinusoidal surface. The maximum deformation is 1.9mm. The

nodes are released and the ensuing motion is analyzed. The center of mass is used

64

as the reference point to show free vibration. A fast Fourier transform (FFT) is

performed on the output position from this analysis to determine the vibrational

frequencies.

Figure 53: Qualitative graph showing the displacement in meters of each node over
time in seconds without active damping.

Figure 54: Velocity in meters per second without active damping.

65

Figure 55: Spectral analysis of the vibration without active damping showing
amplitude (|Y(f)|) over frequency where y(t) is the displacement of each node.

Figure 56: Sinusoidal initial position of the surface; the final position is flat on the xy
plane (the vertices are only moving in the z-direction). The faces and edges are
numbered, and the thickness of each link is indicated by smaller triangles. Surface
normals are drawn as well to help visualize the direction that the modules are
facing. The scale shown is in hundredths of inches (~0.25 mm).

66

Figure 57: Qualitative graph showing the displacement in meters of each node over
time with active damping. Note the drastic reduction in the time scale (shown in
seconds).

Figure 58: Velocity in meters per second of each node over time with active
damping.

67

Figure 59: Active force in Newtons applied by rotary actuators.

Figure 60: Spectral analysis of the vibration with active damping showing amplitude
(|Y(f)|) over frequency where y(t) is the displacement of each node. The vibrations
are virtually eliminated.

68

 An interesting method of calculating an optimal force is considered for

stabilization purposes. All of the states in the system used are directly a function of

parameters being controlled. A continuous time algebraic Ricatti equation is solved

numerically to find the forces that will minimize the time for the surface to go

between two positions. In this model, each link is assumed to be rigid and friction is

ignored. A standard system of equations is used:

�̇�𝑋 = 𝐴𝐴𝑋𝑋 + 𝐵𝐵𝑈𝑈

and

𝑧𝑧 = 𝐷𝐷𝑋𝑋.

The states

𝑋𝑋 = �𝑋𝑋1
𝑋𝑋2�

are chosen as the lengths of each link (𝑋𝑋1), and the velocity of one end of a link

relative to the other end (𝑋𝑋2). Thirteen modules are used, giving a total of 24 links.

To keep the size of the matrices low, and to reduce the tedium of printing and

scrolling through these matrices, only nodal motion in the z-direction has been

included. Motion in the x- and y- directions can be calculated in the exact same way.

 Using the states and system of equations shown above and a lumped mass

matrix gives

𝐴𝐴 = �0 𝐼𝐼
0 0�,

𝐵𝐵 = �
0

1
𝑚𝑚
𝐼𝐼�,

69

and

𝐷𝐷 = �𝐼𝐼 0
0 𝐼𝐼�,

 where each block is a 24x24 matrix and m is the mass of a link (a somewhat

arbitrary value of 20 grams is used). The input force U is calculated as −𝐹𝐹𝑋𝑋 where 𝐹𝐹

is the feedback gain given by 𝐹𝐹 = 𝑅𝑅2
−1𝐵𝐵𝑇𝑇𝑃𝑃�, where 𝑃𝑃� is the unique nonnegative-

definite symmetric solution of the algebraic Riccati equation (0 = 𝐷𝐷𝑇𝑇𝑅𝑅3𝐷𝐷 −

𝑃𝑃𝐵𝐵𝑅𝑅2
−1𝐵𝐵𝑇𝑇𝑃𝑃 + 𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝐴𝐴).

Figure 61: Block diagram from simulink model.

70

Figure 62: Vertical axis - length of links in inches, horizontal axis - time in seconds.

Figure 63: Vertical axis - velocity in inches per second, horizontal axis - time in
seconds.

71

Figure 64: Vertical axis - Force in Newtons divided by 0.0254, horizontal axis - time
in seconds.

 The weighting matrices, 𝑅𝑅2 and 𝑅𝑅3 in the equations above, were decided

arbitrarily as 1000 ∙ 𝐼𝐼 and 𝐼𝐼, respectively – where 𝐼𝐼 is the identity matrix. The high

cost for 𝑅𝑅2 corresponding to the force input was chosen for two main reasons. The

first is that the actuators being used are quite small and since the acceleration is not

directly controlled and the jerk and snap are not controlled at all the cost of higher

forces is quite high. The more important second reason is that it is much easier to

distinguish the different link variables on the graphs using smaller forces as it

makes the relative difference between the links higher.

72

 A state estimator was also designed by using output feedback. In this system,

the output is the same as the states, but this same estimator can be used in any

standard system. A stochastic disturbance is introduced and stabilized as well. The

new system of equations is

�̇�𝑋 = 𝐴𝐴𝑋𝑋 + 𝐵𝐵𝑈𝑈 + 𝑢𝑢1

 and

𝑧𝑧 = 𝐷𝐷𝑋𝑋 + 𝑢𝑢2,

where 𝑢𝑢1 and 𝑢𝑢2 are white noise characterized by an intensity of 𝑉𝑉1 and 𝑉𝑉2

respectively. This gives the system of estimated states

𝑋𝑋�̇ = 𝐴𝐴𝑋𝑋� + 𝐵𝐵𝑈𝑈 + 𝐾𝐾�𝑧𝑧 − 𝐷𝐷𝑋𝑋��

 where the observer gain matrix

𝐾𝐾 = 𝑄𝑄�𝐷𝐷𝑉𝑉2
−1

and 𝑄𝑄� is the solution to an additional continuous time algebraic Riccati equation

0 = 𝑉𝑉1 − 𝑄𝑄𝐷𝐷𝑇𝑇𝑉𝑉2
−1𝐷𝐷𝑃𝑃 + 𝐴𝐴𝑄𝑄 + 𝑄𝑄𝐴𝐴𝑇𝑇 .

As before, the same control law is used for the input 𝑈𝑈.

73

Figure 65: Block diagram of plant (top) with state estimator (bottom) and stochastic
disturbance from Simulink®.

74

Figure 66: State estimator response with no disturbance. Vertical axis - length of
links in inches, horizontal axis - time in seconds.

Figure 67: State estimator response with no disturbance. Vertical axis - velocity of
links in in/s, horizontal axis - time in seconds.

75

Figure 68: State estimator response with no disturbance. Vertical axis - force of links
in N/0.0254, horizontal axis - time in seconds.

Figure 69: State estimator response with white noise disturbance acting on input
and feedback sensors. Vertical axis - length of links in inches, horizontal axis - time
in seconds.

76

Figure 70: State estimator response with white noise disturbance acting on input
and feedback sensors. Vertical axis - change of link lengths in inches per second,
horizontal axis - time in seconds.

Figure 71: Close-up of the first 1.5 seconds of Figure 70.

77

Figure 72: State estimator response with white noise disturbance acting on input
and feedback sensors. Vertical axis - force of links in Newtons divided by 0.0254,
horizontal axis - time in seconds.

Shape Control – Deciding on Control Point Location

 Having to control each vertex is much more complicated then controlling a

single end effector. Each vertex has to have a path, and that path must stay close

enough to (and far enough from) adjacent vertices so that the joint range is not

exceeded.

 Fortunately, a tremendous amount of work [11][12] has already been done

for computer graphics [13] and finite element analysis [14] that can translate almost

directly to control the vertices of a robotic surface. Once a reference surface has

been chosen, sampling and tessellating [15] the surface into triangles gives the

78

desired vertex control points for the robot, taking care to sample the surface so that

the desired number of edges meets at each vertex [16]. Depending on the number of

modules being used, the number of required sample points changes (the number of

sample points must equal the number of vertices on the robot) and the length of

each edge must be scaled to fit the surface to the robot. Using this control scheme, it

is a simple matter to calculate the lengths of the edges, the angles between edges,

and the angles between faces, which correspond directly with the joint variables of

the robot.

 Maximum forward and inverse dynamics parameters are chosen based on

physical constraints, and multiple successive surfaces are chosen at specific times

such that the robot does not experience motion that exceeds its actuators'

capabilities, the ranges of the joints, or the yield strengths of the links. There are an

infinite number of possibilities for the joint paths between two shapes, so a system

of linear gain scheduling [17][18] is used (i.e., the shapes are chosen sufficiently

close to each other that each vertex can follow an arbitrary desired path between

the two positions in global space and each joint can move in a linear fashion in joint

space without violating any of the constraints). This provides a linear system to be

solved for each intermediate shape and eliminates the need to formulate and solve

the highly implicit nonlinear differential equations that would otherwise be

required to control such a system. Gain scheduling by nonlinear approximations

may yield better results as there are fewer required intermediate shapes, and is a

topic for future research.

79

 The explicit control of each vertex is accomplished with equation driven

motion, but in order to mimic shapes and motion with unknown equations, various

methods of sampling the surface of a desired shape are explored.

 Many "meshing" algorithms have been developed to represent arbitrary

three-dimensional objects as triangles for computer graphics. These have been

repurposed for many other applications including FEA software. The most

appropriate of these to our purposes have been selected for further study.

 A modified Voronoi-Delaunay shape sampling method can be used with this

mechanism to approximate any arbitrary shape within joint limits. A Voronoi-

Delaunay meshing scheme is named as such because it uses Delaunay Triangulation

[19] on top of a Voronoi Diagram.

To make a Voronoi Diagram (sometimes referred to as Dirichlet Tessellation

– Dirichlet actually came up with the idea first, though he didn’t pursue the idea far

enough to actually draw a diagram [20]), a defined element size first forms a 3-D

grid (with spaces between points equal to the defined element size). Any point that

makes up the object’s point cloud is assigned to the closest point on the grid (by

proximity that is). Any grid point with two or more such assignments is kept in the

diagram – the rest are discarded.

In Delaunay Triangulation, triangles are formed by making edges from any

two points that pass an “empty circle” test. This test calls for all circles that intersect

two given test points to be drawn until one is found with no other points inside of it

(the circle is “empty”). The circles typically start with a diameter equal to the

distance between the two Voronoi points and vary as required in sweeping to the

80

left and right in search of meeting the empty circle conditions described above.

Forming these triangles from the Voronoi Diagram comprises the Voronoi-Delaunay

mesh.

Figure 73: Graphical representation of the empty circle test. [21]

 Another potential method is geodesic calculation. Given specified distances

or distance ranges and the outline of the desired shape (continuously as an

equation, or discretely as a point cloud), a geodesic algorithm can fill in the shape

with straight-line chords with lengths equaling the specified distances or distance

ranges, using any type of polygon. Restricting such an algorithm to triangles, and

then even further restricting it to six chords from a single point gives appropriate

control point locations for our mechanism. A combination of three start points,

and/or three initial guesses can "slide" the sample surface around on the actual

surface, allowing a shape to be easily mobile by using the robotic surface like tank-

treads flowing around the sampled shape.

 Each of the two methods mentioned so far needs to be modified to fit the

number and configuration of modules in an actual robotic surface. This is not always

trivial. Another more limited method is surface function mapping. A surface is

"mapped" by choosing an orientation and finding the height value at specified length

81

and width values. Then the length is found at specific intervals of height and width,

and width likewise is found and specific intervals of height and length. These point

sets are compared and combined to obtain the most accurate map. If the number of

points and the specified distances correspond with the robotic surface, no further

calculations are required. It is simple to implement, but for complicated shapes, this

is usually the least accurate of the three methods considered here.

Trajectory Planning – Deciding on a Desired Path

 In the pursuit of a trajectory planner, I have implemented several control

schemes. For enhanced clarity, these are all explained for a single control vertex of

the mechanism travelling along a specified two-dimensional path. Though this

vertex can be changed to any point on the mechanism, or any number of points on

the mechanism, it may still be thought of as an end effector. The initial methods

followed the reference path almost exactly, having an error tolerance of less than

the lowest error tolerance of the mechanism. The first method utilized a constant

acceleration profile. This of course resulted in infinite jerk and discontinuous

acceleration.

 Jerk is defined as the third time derivative of position. Because force equals

mass times acceleration (F=ma), jerk (as the change in acceleration) is linearly

proportional to the change in force. In real practical purposes, an instantaneously

infinite change in force is not possible, so a very high jerk results instead. This

requires a very fast change in applied force - commonly called an impulse force, as

in a collision. All actuators have a limit in how quickly they can change force, but

82

because the proportionality constant relating the jerk and change in force is the

mass being moved, the maximum allowable jerk should vary accordingly.

To avoid infinite jerk, continuous acceleration (as opposed to constant acceleration)

is implemented. There are several methods for this implementation, but the one that

was chosen for this project was a sinusoidal function [21]. The acceleration must go

from zero to some maximum, and back to zero again with no discontinuities.

𝑑𝑑 =
𝐴𝐴
2
�1 − cos �

2𝜋𝜋
𝑇𝑇
𝑡𝑡��

 Integrating once with respect to time, the velocity is given by

𝑣𝑣 =
𝐴𝐴
2 �

T
2π�

�
2π
𝑇𝑇
𝑡𝑡 − sin �

2𝜋𝜋
𝑇𝑇
𝑡𝑡�� + 𝑣𝑣0

and integrating a second time, the displacement is then given by

𝑑𝑑 =
𝐴𝐴
2 �

T
2π�

2

�
1
2 �

2π
𝑇𝑇
𝑡𝑡�

2

− �1 − cos �
2𝜋𝜋
𝑇𝑇
𝑡𝑡��� + 𝑣𝑣0𝑡𝑡 + 𝑑𝑑0.

In these equations t is time, T is the period over which acceleration occurs, and A is

the maximum acceleration of which the joint is capable. Rearranging these

equations for convenience gives

 𝐷𝐷 =
(𝑣𝑣 − 𝑣𝑣0)2

𝐴𝐴
,

and

 𝑇𝑇 =
2|𝑣𝑣 − 𝑣𝑣0|

𝐴𝐴
,

where D is the total distance over which acceleration occurs. Now with a starting

velocity and position, along with a desired velocity and position, the position of the

vertex can be accurately calculated for any point in time. All that remains is to

83

coordinate the x, y and z directions so that they work together to give the desired

three dimensional motion.

 To allow the end effector to follow a straight line, the ratios between each

parameter (position, velocity, acceleration) of each of the directions must remain

geometrically similar. The linear directions 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 are used as an example;

rotation is analogous but not as easy to visualize. The specific ratios can be

calculated from the Pythagorean Theorem (𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 𝑑𝑑2) and knowing that all

of the parameters are geometrically similar. A known position (𝑥𝑥1, 𝑦𝑦1, 𝑧𝑧1) and a

desired position (𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2) are given, and the displacement of each direction is

given by (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = (𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2) -(𝑥𝑥1, 𝑦𝑦1, 𝑧𝑧1). d is solved for, and the ratios (that must

remain mathematically similar) are given by 𝑥𝑥
𝑑𝑑

, 𝑦𝑦
𝑑𝑑

 and 𝑧𝑧
𝑑𝑑

, for each joint respectively.

The ratio 𝑥𝑥
𝑑𝑑

 is equal to the ratio 𝑉𝑉𝑥𝑥
𝑉𝑉

 and 𝐴𝐴𝑥𝑥
𝐴𝐴

. The other two example directions have

similar equivalencies. Now to keep these ratios constant between moves, 𝑥𝑥1
𝑑𝑑1

 must be

similar to 𝑉𝑉𝑥𝑥2
𝑉𝑉2

, but 𝑉𝑉𝑥𝑥2
𝑉𝑉2

 still has to be similar to 𝑥𝑥2
𝑑𝑑2

. The only solution for this equation

is 𝑉𝑉𝑥𝑥2 = 0. This means that if a sharp corner is desired, the velocity at that corner

must be zero in all directions (even if no joints change direction).

 The considered control schemes first specify a new path with no sharp

corners – allowing the control vertex to avoid stopping and to have a constant

velocity if so desired. Quadratic b-splines take advantage of the convex hull property

and minimize the number of control points required. The term "b-spline" is derived

from "basis spline" or sometimes "basic spline" and is a form of spline produced by

using "basis functions." These splines are useful in that every spline function of a

84

given degree, smoothness, and domain partition, can be represented as a linear

combination of b-splines of that same degree and smoothness, and over that same

partition [22]. Also, changing one knot only changes the spline over one partition,

allowing for very accurate control of the spline path.

Figure 74: Example of how points are rearranged to round corners.

 With a simple application of the law of cosines, a point along the acute

bisector of two adjacent line segments was calculated at a predetermined distance

from the intersection of these segments. Control points were then added where the

bisector's perpendicular passing through this point intersected the line segments.

This was accomplished numerically in MATLAB® by replacing each point other

than the end points in the position vector with two points at the intersections of the

bisector's perpendicular passing through the point at the desired distance from the

original point and the two adjacent line segments. In this way, the corners were

rounded with parabolas deviating from the original path by no more than the

predetermined distance. This distance was left as a parameter to be changed by the

85

user, but was not allowed to be large enough to cause the bisector's perpendicular

(referred to above) to intersect the original line segments past their midpoints from

the direction of the point being replaced.

Figure 75: Example path of a quadratic b-spline in blue with the control points in
red using a maximum path deviation of 5 units on the scale shown.

 I next compare with interpolating cubic polynomial splines. I used two

methods of adding control points since this was the simplest way to reduce path

deviation. The first was very similar to the method used for cutting corners. The

difference was that I multiplied the distance of the added points from the original

point by three or placed them at a distance of 42% of the shortest line segment

length from the original point along the respective adjacent line segments,

86

whichever was shorter. I also added an additional point at the intersection of the

bisector and its perpendicular (since the spline now interpolates through the

points). 42% was chosen because it leaves a minimum of (2 × (50% − 42%) = 16%

of the line length for the curvature of the parabola — preventing an entire line

segment from being "blended away." The second method was simply to add control

points at the midpoint of each line segment; causing the path to interpolate through

the original reference path at the point of average maximum deviation. Ideally this

would be based either on an error checking function or on the angles of the previous

and next line segments. Maximum error calculation was considered, but was

deemed to be too computationally expensive.

Figure 76: Cubic polynomial interpolating spline with no additional control points.

87

Figure 77: Velocity, acceleration, and jerk profiles for x and y directions of the
example path shown in Figure 76.

Figure 78: Overall motion profiles for the example path in Figure 76.

88

Figure 79: Example path of a cubic polynomial interpolating spline with control
points added using a maximum position error of 5 near the corners and extra points
added at the midpoints of each line segment two times in a row. The entire spline
was then scaled to constrain the maximum velocity and maximum acceleration.

 Initially a uniform parametric spline was used, but soon after a non-uniform

spline was calculated using the distances between points as the weighting factor of

the parameter. The entire spline was then scaled by dividing the parameter function

by the smaller of the quotient of the maximum desired velocity divided by the actual

maximum velocity and the square root of the quotient of the maximum desired

acceleration divided by the actual acceleration. The purpose of this scaling was to

cause the actuators to stay within the constraints of a maximum velocity and

acceleration.

89

Figure 80: Velocity, acceleration, and jerk profiles for x and y directions of the
example path shown in Figure 79.

Figure 81: Overall motion profiles for the example path in Figure 79.

90

 Finally, each line segment within the spline was rescaled by the same method

as above to ensure that either the maximum velocity or the maximum acceleration

was reached during each segment. This caused discontinuities, so the process was

iterated until the values converged [22]. Except for a few special cases, the more line

segments there are, the more benefit there will be from this method. The overall

time taken to follow the path is reduced significantly for large datasets, and a

straighter path is followed.

Figure 82: Same dataset as in Figure 79, but with the spline scaled at each partition.

91

Figure 83: Velocity, acceleration, and jerk profiles for x and y directions of the
example path shown in Figure 82.

Figure 84: Overall motion profiles for the example path in Figure 82.

92

Figure 85: Comparison of position over time between the scaling of the entire spline
versus scaling each partition.

 Further benefit can be achieved by causing the velocity or acceleration to

remain at the maximum for as long as possible. The minimum possible required

time to pass through any set of points is of course with constant maximum

acceleration or deceleration at all times. Because this is not technically possible, a

maximum jerk can be accounted for; giving a mathematically continuous

acceleration profile. This is also not possible, as it causes infinite snap, but for most

lightweight machines, the snap should stay within the machine's capabilities

without additional control. Unfortunately, these measures cannot be accomplished

with a simple scaling law as they require more complicated parameter functions.

93

 Adding many extra control points and recalculating by iteration add

significantly to the computational expense. Though the cost of computing is

decreasing exponentially, it is still a reasonable factor to take into consideration.

Additionally, if straight lines are desired, all of the spline methods described

previously are often inappropriate. Even if the path stays within a desired error

amount, a straight line will not be produced. A more perfect compromise would use

straight line segments as well as splines or even arcs for maximum path fidelity

deviating only at corners. This would take a small amount of extra time, but would

match the given reference path much more accurately and would be substantially

less computationally intense so it may be implemented in the future.

Optimal Trajectory Tracking – Following the Desired Path

 A time-varying version of the model used in the active damping section

above is used for the optimal tracking of a planned trajectory.

�̇�𝑋 = 𝐴𝐴𝑋𝑋 + 𝐵𝐵𝑈𝑈

and

𝑧𝑧 = 𝐷𝐷𝑋𝑋

The states

𝑋𝑋 = �𝑋𝑋1
𝑋𝑋2�

 are chosen as the global position (𝑋𝑋1), and global velocity (𝑋𝑋2) of each node.

Repeated for convenience,

𝐴𝐴 = � 0 𝐼𝐼
−𝑀𝑀−1𝐾𝐾 −𝑀𝑀−1𝐶𝐶�,

94

𝐵𝐵 = � 0
𝑀𝑀−1�,

and

𝐷𝐷 = �𝐼𝐼 0
0 𝐼𝐼�,

where each block is a 72x72 matrix. The stiffness matrix 𝐾𝐾, the friction matrix 𝐶𝐶, and

the mass matrix 𝑀𝑀 are no longer constant, but are functions of time so that

𝐴𝐴 = 𝐴𝐴(𝑡𝑡) and 𝐵𝐵 = 𝐵𝐵(𝑡𝑡).

 Using the system of equations described above, an optimally tracking control

can be planned to follow the trajectory between an initial state and a final state. The

error between the desired position and the actual position is minimized by

minimizing a quadratic cost function in which the costs of the error and the input

over time as well as the cost of the final error are weighted.

𝐽𝐽 =
1
2 �
� [𝑝𝑝(𝑡𝑡)𝑅𝑅1(𝑡𝑡)𝑝𝑝(𝑡𝑡) + 𝑢𝑢(𝑡𝑡)𝑅𝑅2(𝑡𝑡)𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑡𝑡
𝑇𝑇

𝑡𝑡0

+ 𝑝𝑝(𝑇𝑇)𝑅𝑅3𝑝𝑝(𝑇𝑇)�

𝑅𝑅1, 𝑅𝑅2, and 𝑅𝑅3 are weighting matrices representing the relative cost of each term in

the cost function. The "1/2" can be omitted, but its inclusion makes the results

available in a more convenient form [9].

 The Hamiltonian is given by

𝐻𝐻 =
1
2

[𝑧𝑧 − 𝐷𝐷𝑥𝑥]𝑅𝑅1[𝑧𝑧 − 𝐷𝐷𝑥𝑥] +
1
2
𝑢𝑢𝑅𝑅2𝑢𝑢 + 𝐴𝐴𝑥𝑥𝑝𝑝 + 𝐵𝐵𝑢𝑢𝑝𝑝

where 𝑝𝑝 is the co-state from the Hamiltonian equations of motion:

�̇�𝑝 = −
𝜕𝜕𝐻𝐻
𝜕𝜕𝑥𝑥

and

95

�̇�𝑥 =
𝜕𝜕𝐻𝐻
𝜕𝜕𝑝𝑝

Along the optimal tracking trajectory,

𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢(𝑡𝑡)

= 0

so

𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢(𝑡𝑡)

= 𝑅𝑅2𝑢𝑢 + 𝐵𝐵𝑇𝑇𝑝𝑝 = 0

which means that

 𝑢𝑢 = −𝑅𝑅2
−1𝐵𝐵𝑇𝑇𝑝𝑝. (1)

We now have a system of equations that can be solved:

�̇�𝑝 = −
𝜕𝜕𝐻𝐻
𝜕𝜕𝑥𝑥

= −𝐷𝐷𝑇𝑇𝑅𝑅1𝐷𝐷𝑥𝑥 − 𝐴𝐴𝑇𝑇𝑝𝑝 + 𝐷𝐷𝑇𝑇𝑅𝑅1𝑧𝑧

�̇�𝑥 = 𝐴𝐴𝑥𝑥 − 𝐵𝐵𝑅𝑅2
−1𝐵𝐵𝑇𝑇𝑝𝑝

or in standard reduced canonical form

��̇�𝑥�̇�𝑝� = � 𝐴𝐴 −𝐵𝐵𝑅𝑅2
−1𝐵𝐵𝑇𝑇

−𝐷𝐷𝑇𝑇𝑅𝑅1𝐷𝐷 −𝐴𝐴𝑇𝑇
� �
𝑥𝑥
𝑝𝑝� + � 0

𝐷𝐷𝑇𝑇𝑅𝑅1𝑧𝑧
�.

Using the final time 𝑇𝑇 to obtain boundary conditions, we find that the co-state 𝑝𝑝 is

linearly proportional to the state vector 𝑥𝑥.

𝑝𝑝(𝑇𝑇) = 𝐷𝐷𝑇𝑇(𝑇𝑇)𝑅𝑅3𝐷𝐷(𝑇𝑇)𝑥𝑥(𝑇𝑇) − 𝐷𝐷𝑇𝑇(𝑇𝑇)𝑅𝑅3𝑧𝑧(𝑇𝑇)

By defining

 G(𝑇𝑇) = 𝐷𝐷𝑇𝑇(𝑇𝑇)𝑅𝑅3𝐷𝐷(𝑇𝑇) (2)

and

 𝑑𝑑(𝑇𝑇) = 𝐷𝐷𝑇𝑇(𝑇𝑇)𝑅𝑅3𝑧𝑧(𝑇𝑇) (3)

we can substitute into (1) for our control law

96

𝑢𝑢 = −𝑅𝑅2
−1𝐵𝐵𝑇𝑇(𝐺𝐺𝑥𝑥 − 𝑑𝑑)

and recognizing the structure of the equations, we can solve for 𝐺𝐺 using the Riccati

equation form

�̇�𝐺 = −𝐺𝐺𝐴𝐴 − 𝐴𝐴𝑇𝑇𝐺𝐺 + 𝐺𝐺𝐵𝐵𝑅𝑅2
−1𝐵𝐵𝑇𝑇𝐺𝐺 − 𝐷𝐷𝑇𝑇𝑅𝑅1𝐷𝐷

with the boundary condition given by (2).

𝑑𝑑 can then be solved with

�̇�𝑑 = �𝐵𝐵𝑅𝑅2
−1𝐵𝐵𝑇𝑇𝐺𝐺 − 𝐴𝐴�𝑇𝑇𝑑𝑑 − 𝐷𝐷𝑇𝑇𝑅𝑅1𝑧𝑧

using (3) as the boundary condition. Finally, the optimal tracking trajectory for the

state variables is obtained from

�̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑢𝑢

or

�̇�𝑥 = �𝐴𝐴 − 𝐵𝐵𝑅𝑅2
−1𝐵𝐵𝑇𝑇𝐺𝐺�𝑥𝑥 + 𝐵𝐵𝑅𝑅2

−1𝐵𝐵𝑇𝑇𝑑𝑑

 Because this is a time varying system that is dependent on a time varying

final value problem, the solution is computationally expensive when compared to

the other options that have been discussed. Tracking achieved by stabilizing an

initial position to a final position using the stabilization algorithm discussed at the

beginning of this chapter using rigid links is only very slightly sub-optimal if very

small increments are chosen, as the system will change very little. Because the

actuators are discrete, the increments chosen can be made as small as the actuator

steps to give exactly optimal results within the system's constraints using many

fewer calculations and not requiring the storage of the solution to a final value

problem.

97

Microcontroller

 Microcontrollers have been advancing at the same rate as other electronics,

and as such are now extremely powerful. For the implementation of a six module

surface requiring eighteen actuators, a single XMOS microcontroller is used. The

controller that was chosen has a multi-threaded quad-core processor, allowing the

entire control program to be written without a single interrupt. Each core has eight

threads, meaning that thirty-two separate functions can be run simultaneously. The

processor communicates with the forty-eight input/output pins via a system of

buffered ports. This means that up to twelve pins can be conveniently controlled

with a single thread. As each actuator requires two pins, this means that six

actuators can be easily controlled with one thread without using any interrupts or

worrying about cycling between actuators within a single function. The program

that was written to use this microcontroller was written in the XC language, and can

be found in Appendix B.

Stepper Motors/Drivers

 In an attempt to keep the prototype as simple as possible, there are no

sensors or feedback of any kind. As a strictly open loop mechanism, stepper motors

were chosen to simplify the model and to allow for minor disturbances. To

maximize the performance of the motors, driver chips were used. The Allegro

A4983 was selected for its high performance/cost ratio. The motors are current

driven with the current held very near one amp. To allow for higher efficiency and

improved torque at higher speeds, the motors are driven with two poles and micro-

98

stepping is used at sixteen increments per step [24]. To avoid slipping or loss of

power and efficiency, all changes in velocity occur only at actual step locations (not

at the incremental interstices).

99

CHAPTER 5

FUTURE WORK

Better Representation of the Mass

 The mass (and the inertia in general) of this system is estimated and

approximated using standard density and volume approaches. This is compared

favorably with the weight as measured on a scale, but the exact location of the mass

and its effect on the rotational inertia is not perfect. The mass and flexibility of the

six-bar joint mechanism is built into the mass and flexibility of the links, with less

than ideal results. A possible addition to future research can be an improvement on

the representation of the mass and geometry of the mechanism.

Improved Actuators and Smaller Module Design

 As is the case with all parallel mechanisms, using improved actuators with a

better power to weight ratio can allow larger numbers of modules to be used in

parallel and therefore show even more interesting uses for this type of device. Using

piezoelectric or otherwise ultrasonic actuators can easily allow for significantly

smaller module designs, which will open up many new applications and can be an

interesting area for further research. The power transmission in this device was not

carefully optimized and as such, significant improvements can almost certainly be

made. Power transmission is a very interesting topic that will be essential in the

future of this type of mechanism.

100

Sensitivity

 Another aspect that has not yet been considered is the sensitivity of this

system to variations in the tolerances of the joints. If there is a large force in a non-

actuated direction, it is assumed in this model that the force does not at all affect the

joint force. In reality, however, this may not be entirely true. If there is significant

play in a joint, there will be a component of this other force that will add to (or

subtract from) the joint force. Depending on the magnitude of the force and on the

tolerance of the joint, this could significantly and adversely affect the usability of

this system. Future research consequently includes a sensitivity and robustness

analysis.

Feedback Control

 Though several optimal control schemes have been modeled, without

sensors on the prototype, these models cannot be physically tested. Future work can

include sensors on a physical prototype to implement and rigorously test the

optimal models that have been developed, as well as to develop new more

sophisticated models.

Online Control

 Because of time and software constraints, the current prototype has only

been controlled offline with pre-calculated trajectories. Because the storage space

available on the microcontroller is limited, the number of frames that can be shown

in a single demonstration is restricted. By using the vastly larger storage capacity of

101

a computer or by performing on the fly calculations to determine future positions

would remove this restriction, and allow for familiar "remote control" type abilities

where a user can interact with the device using the computer’s keyboard, mouse, or

joystick.

Communication Using C++/FTDI

 An interface to communicate online with the prototype was developed using

a Future Technology Devices International (FTDI) chip and drivers to convert the

universal serial bus (USB) protocol signal from the computer to the universal

asynchronous receive/transmit (UART) protocol that is used by the XMOS

processor. This code can be seen in Appendix D. Further development of this

software to integrate it into the rest of the control software is essential in realizing

the online controls described above.

Uncontrolled Points

 In all of the methods evaluated thus far all control points are controlled all

the time. Though it is probably always preferable to control each vertex of the

mechanism, there are many situations in which the motion of only a few vertices

matter and the motion of the rest of the vertices must simply support the motion of

the few truly desired motions. In these cases, it may be useful to have a method of

placing these points automatically. Three possibilities are listed here for further

research: maximum stiffness, maximum compliance, and maximum mobility.

102

EXHIBITS

Figure 86: One full link with all parts colored according to mass with blue being the
most massive and red the least massive.

Figure 87: Exploded view of one link. For improved visualization, pins are shown for
only the linear epicyclic stage, no screws are shown, and the first epicyclic stage of
the rotary actuator is shown without planet gears.

103

Table 2: Nodal forces for the position in Figure 14.

Link 1 Link 2 Link 3 Link 4 Link 5 Link 6

Node 1

Force X 0.2125 0.2278 -1.0837 -0.5561 0.0897 0.0841
Force Y -0.0419 -0.3884 0.1166 -0.0399 -0.1907 0.1613
Force Z 0.0645 -0.1996 0.0681 -0.0448 0.0104 0.0171
Moment About X -0.0013 0.0026 -0.001 0 0.0002 -0.0013
Moment About Y -0.0043 0.0254 -0.0068 0.006 -0.0011 -0.0044
Moment About Z 0.0132 0.0341 -0.0161 0.0049 0.0251 -0.0119

Node 2

Force X -0.2125 -0.2278 1.0837 0.5561 -0.0897 -0.0841
Force Y 0.0419 0.3884 -0.1166 0.0399 0.1907 -0.1613
Force Z -0.0645 0.1996 -0.0681 0.0448 -0.0104 -0.0171
Moment About X 0.0013 -0.0026 0.001 0 -0.0002 0.0013
Moment About Y -0.0098 0.0182 -0.0131 0.0032 -0.0019 0.0006
Moment About Z -0.004 0.0507 -0.018 0.0032 0.0306 -0.0234

Link 7 Link 8 Link 9 Link 10 Link 11 Link 12

Node 1

Force X 0.509 0.1672 0.2403 0.1403 -1.382 0.2321
Force Y 0.0228 0.2834 0.3116 0.1608 0.0786 -0.1854
Force Z 0.0114 0.2074 0.2111 -0.0001 -0.0375 -0.016
Moment About X 0.0007 0.0008 -0.0021 -0.0006 -0.0002 -0.0001
Moment About Y -0.0062 -0.023 -0.0238 -0.0024 0.0093 0.0026
Moment About Z -0.0043 -0.0289 -0.0315 -0.0121 -0.009 0.0247

Node 2

Force X -0.509 -0.1672 -0.2403 -0.1403 1.382 -0.2321
Force Y -0.0228 -0.2834 -0.3116 -0.1608 -0.0786 0.1854
Force Z -0.0114 -0.2074 -0.2111 0.0001 0.0375 0.016
Moment About X -0.0007 -0.0008 0.0021 0.0006 0.0002 0.0001
Moment About Y 0.0037 -0.0192 -0.0191 0.0025 0.0017 0.0022
Moment About Z -0.0007 -0.0287 -0.0318 -0.0267 -0.014 0.0318

Link 13 Link 14 Link 15 Link 16 Link 17 Link 18

Node 1

Force X 0.3303 0.0995 -0.3356 0.4185 0.3413 0.2435
Force Y -0.0035 -0.1512 -0.0035 0.0455 0.3288 -0.0834
Force Z -0.0105 0.0086 0.0462 -0.0076 0.1708 0.1116
Moment About X 0.001 -0.0002 0.0003 0.0009 -0.0016 -0.0015
Moment About Y -0.0032 -0.0025 -0.0033 -0.0026 -0.0176 -0.0102
Moment About Z -0.0022 0.0273 0.0006 -0.007 -0.0366 0.01

Node 2

Force X -0.3303 -0.0995 0.3356 -0.4185 -0.3413 -0.2435
Force Y 0.0035 0.1512 0.0035 -0.0455 -0.3288 0.0834
Force Z 0.0105 -0.0086 -0.0462 0.0076 -0.1708 -0.1116
Moment About X -0.001 0.0002 -0.0003 -0.0009 0.0016 0.0015
Moment About Y 0.0054 0 -0.0062 0.0044 -0.0171 -0.0178
Moment About Z 0.0029 0.0169 0.0001 -0.004 -0.0302 0.0109

104

Link 19 Link 20 Link 21 Link 22 Link 23 Link 24

Node 1

Force X -0.0788 -0.0119 0.0249 -0.1051 -0.1881 -1.0415
Force Y -0.2513 -0.3048 -0.0547 -0.03 0.1682 0.0509
Force Z -0.263 -0.1904 0.111 -0.0238 0.0666 0.1378
Moment About X 0.0005 0.0011 -0.0017 0.0001 -0.0015 -0.0004
Moment About Y 0.0314 0.0268 -0.0105 0.0045 -0.0095 -0.0218
Moment About Z 0.0225 0.0239 0.0079 0.002 -0.0121 -0.0059

Node 2

Force X 0.0788 0.0119 -0.0249 0.1051 0.1881 1.0415
Force Y 0.2513 0.3048 0.0547 0.03 -0.1682 -0.0509
Force Z 0.263 0.1904 -0.111 0.0238 -0.0666 -0.1378
Moment About X -0.0005 -0.0011 0.0017 -0.0001 0.0015 0.0004
Moment About Y 0.0345 0.0209 -0.0173 0.0003 -0.0046 -0.0202
Moment About Z 0.0405 0.0525 0.0058 0.0041 -0.0237 -0.0096

Table 3: Local nodal forces for the position shown in Figure 15.

Link 1 Link 2 Link 3 Link 4 Link 5 Link 6

Node 1

Force X 0 0 0 0 0 0
Force Y 0 0 0 0 0 0
Force Z -0.0292 -0.532 0.2012 -0.1524 -0.1419 0.0494
Moment About X 0.0091 0.0129 0.0003 0.0042 0.0058 -0.0073
Moment About Y 0.0421 0.0681 0.0162 0.0428 0.006 0.0177
Moment About Z 0 0 0 0 0 0

Node 2

Force X 0 0 0 0 0 0
Force Y 0 0 0 0 0 0
Force Z 0.0292 0.532 -0.2012 0.1524 0.1419 -0.0494
Moment About X -0.0091 -0.0129 -0.0003 -0.0042 -0.0058 0.0073
Moment About Y -0.0361 0.04 -0.0571 -0.0118 0.0228 -0.0278
Moment About Z 0 0 0 0 0 0

Link 7 Link 8 Link 9 Link 10 Link 11 Link 12

Node 1

Force X 0 0 0 0 0 0
Force Y 0 0 0 0 0 0
Force Z 0.074 0.3694 0.4101 0.0211 -0.1965 -0.0377
Moment About X 0.0012 0.0041 -0.013 -0.0094 -0.0006 0
Moment About Y -0.0115 -0.0504 -0.0381 0.0225 0.0574 -0.0096
Moment About Z 0 0 0 0 0 0

Node 2

Force X 0 0 0 0 0 0
Force Y 0 0 0 0 0 0
Force Z -0.074 -0.3694 -0.4101 -0.0211 0.1965 0.0377
Moment About X -0.0012 -0.0041 0.013 0.0094 0.0006 0
Moment About Y -0.0036 -0.0246 -0.0452 -0.0267 -0.0175 0.0172
Moment About Z 0 0 0 0 0 0

105

Link 13 Link 14 Link 15 Link 16 Link 17 Link 18

Node 1

Force X 0 0 0 0 0 0
Force Y 0 0 0 0 0 0
Force Z 0.1668 0.145 -0.2164 0.1315 0.3893 -0.0469
Moment About X -0.0027 0.0047 0.0016 -0.0017 -0.0127 0.0054
Moment About Y -0.0206 -0.0245 0.0464 -0.0179 -0.0394 0.0373
Moment About Z 0 0 0 0 0 0

Node 2

Force X 0 0 0 0 0 0
Force Y 0 0 0 0 0 0
Force Z -0.1668 -0.145 0.2164 -0.1315 -0.3893 0.0469
Moment About X 0.0027 -0.0047 -0.0016 0.0017 0.0127 -0.0054
Moment About Y -0.0133 -0.005 -0.0025 -0.0088 -0.0397 -0.0278
Moment About Z 0 0 0 0 0 0

Link 19 Link 20 Link 21 Link 22 Link 23 Link 24

Node 1

Force X 0 0 0 0 0 0
Force Y 0 0 0 0 0 0
Force Z -0.568 -0.4724 0.0374 -0.0558 -0.0546 0.6869
Moment About X -0.0044 0.0123 0.0084 0.0038 -0.0081 0.0022
Moment About Y 0.0423 0.0578 0.0174 0.0256 0.0167 -0.0921
Moment About Z 0 0 0 0 0 0

Node 2

Force X 0 0 0 0 0 0
Force Y 0 0 0 0 0 0
Force Z 0.568 0.4724 -0.0374 0.0558 0.0546 -0.6869
Moment About X 0.0044 -0.0123 -0.0084 -0.0038 0.0081 -0.0022
Moment About Y 0.0731 0.0382 -0.025 -0.0143 -0.0055 -0.0475
Moment About Z 0 0 0 0 0 0

106

Appendix A: Numerical Model and Simulation

 Many different shapes were tested, and many minor changes were made to

produce the various plots included in this paper – only the last version is included in

this appendix. There are many lines for alternate results or diagnostic purposes

included as comments that are not executed. I have not received any programming

training, so the format and comments of these programs are likely far from

standard. This code is included only as a reference.

%Triangular Surface

clear all

close all

clc

 L=8*0.0254 ; % shortest link length

Dia=0.75*0.0254; % link thickness limited by actuator diameter

X=[(L:L:2*L)',zeros(2,1),zeros(2,1);

 (L/2:L:5/2*L)',sind(60)*L*ones(3,1),zeros(3,1);

 (0:L:3*L)',sind(60)*2*L*ones(4,1),zeros(4,1);

 (L/2:L:5/2*L)',sind(60)*3*L*ones(3,1),zeros(3,1)];

 Tri = DelaunayTri(X(:,1:2));

Face=Tri.Triangulation;

Vertex=Tri.X;

%% Temporary Shape to Find Unique Edges

% find edge indices

% assuming x and y distribution is not inversely quadratic, this gives

107

% linearly independent edge lengths - other functions can easily be chosen

Vertex(:,3)=(1:length(Vertex)).^0.5;

for i=1:length(Face)

 for j=1:3

 P(j,:)=Vertex(Face(i,j),:);

 end

 tempVertex(:,:)=[P(1,:);P(2,:);P(3,:);P(1,:)];

 x=diff(tempVertex(:,1));% link lengths in x direction

 y=diff(tempVertex(:,2));% link lengths in y direction

 z=diff(tempVertex(:,3));% link lengths in z direction

 d(i,:)=hypot(hypot(x,y),z);% overall link lengths

end

[Unused M ~]=unique(d,'first');% M is an index vector for unique edges

[Unused1 M1 ~]=unique(d);%M1 is for the same edges attached to adjacent faces

%% Calculate Edge Indices

for i=1:length(M)

 if M(i)>(2*length(d))

 N(i,1)=M(i)-2*length(d);

 else

 N(i,1)=M(i)+length(d);

 end

end

Edge=[Face(M) Face(N)];% index for endpoints of unique edges

108

%% Animate Surface Shape and Plot

% 2D offset sinusoid

%Vertex(:,3)=2*sin(Vertex(:,1)/0.0254)+2*cos(Vertex(:,2)/0.0254);

%

% circle with center (H,K)

H=(min(Vertex(:,1))+max(Vertex(:,1)))/2;

K=(min(Vertex(:,2))+max(Vertex(:,2)))/2;

R=0.28;% radius in meters

Vertex(:,3)=(R^2-(Vertex(:,1)-H).^2-(Vertex(:,2)-K).^2).^0.5; % sphere

clear H K R

%}

 %Vertex(:,3)=0;

 % set nodes 1,9, and 3 as the low points

Vertex([1 9 10],3)=min(Vertex(:,3))*ones(3,1);

% Change all points not on function to zero

for i=1:length(Vertex)

 if imag(Vertex(i,3))~=0

 Vertex(i,3)=0;

 end

end

% set lowest point(s) to 0

Vertex(:,3)=Vertex(:,3)-min(Vertex(:,3));

% make sure links do not exceed max length - x and y are fixed

109

while max(Vertex(:,3))>(((1.5*L)^2-L^2)^0.5)

 Vertex(:,3)=Vertex(:,3)*0.999;

end

[Normal newVertex newFace d]=NormAndOffset(Face,Vertex,Dia);

Angle=CalculateAngle(M,M1,d,Normal);

GeometryData={Face,Edge,Vertex,newVertex,newFace,Normal,Angle};

GraphObjectData=plotvariables(GeometryData,cell(1,4),'b','-');

% Full Static Loading (including angular displacement and moment)

E=2e11; % Pa - Steel

A=pi*(127/8e4)^2; % m^2 - #8-32 threaded rod

G=7.72e10; % Pa - Steel

% modeled as a solid rectangular prism; needs work

% *

b=127/4e4; % base of cross-sectional area of rectangular prism

h=127/4e4; % height of cross-sectional area of rectangular prism

I=1/12*[b*h^3 b^3*h b*h*(b^2+h^2)]; % moment of inertia for rectangle

% *

% assemble the full global stiffness matrix

K=zeros(72,72); % initialize matrix

for i=1:24

 [k Tloc kloc]=GlobalBeamElementGeneralStiffness(Vertex(Edge(i,:),:),E,A,G,I);

 kLocal(:,:,i)=kloc;

 T(:,:,i)=Tloc;

110

 kaa=k(1:6,1:6); % sub-matrix associated with node a only

 kab=k(1:6,7:12); % sub-matrix associated with node a and b

 kba=k(7:12,1:6); % kab'

 kbb=k(7:12,7:12);% sub-matrix associated with node b only

 a=Edge(i,1); % global index of node a

 b=Edge(i,2); % global index of node b

 K(6*a-5:6*a,6*a-5:6*a)=K(6*a-5:6*a,6*a-5:6*a)+kaa;

 K(6*a-5:6*a,6*b-5:6*b)=K(6*a-5:6*a,6*b-5:6*b)+kab;

 K(6*b-5:6*b,6*a-5:6*a)=K(6*b-5:6*b,6*a-5:6*a)+kba;

 K(6*b-5:6*b,6*b-5:6*b)=K(6*b-5:6*b,6*b-5:6*b)+kbb;

end

% mass of half of a link (assumed to be concentrated at one node)

Mass=0.01;

Pg=-9.81*Mass*[0;0;1;0;0;0]; % weight of half of a link

%{

%P(1)=[0;0;unknown]; % forces at node 1

P(2)=3*Pg; % forces at node 2

P(3)=4*Pg; % forces at node 3

P(4)=6*Pg; % forces at node 4

P(5)=4*Pg; % forces at node 5

P(6)=3*Pg; % forces at node 6

P(7)=6*Pg; % forces at node 7

P(8)=6*Pg; % forces at node 8

111

%P(9)=[0;0;unknown]; % forces at node 9

%P(10)=[0;0;unknown]; % forces at node 10

P(11)=4*Pg; % forces at node 11

P(12)=3*Pg; % forces at node 12

%}

% point 1 fixed; points 9 and 10 z-coordinate fixed:

P=[3*Pg;4*Pg;6*Pg;4*Pg;3*Pg;6*Pg;6*Pg;0;0; 0;0;0;0;0; 0;0;0;4*Pg;3*Pg];

U=K([7:50 52:56 58:72],[7:50 52:56 58:72])\P;

U=[zeros(6,1);U(1:44);0;U(45:49);0;U(50:64)];

P=K*U;

Displacement=zeros(12,3);

ExaggerationFactor=100;

for i=1:12

 Displacement(i,1:3)=ExaggerationFactor*U(6*i-5:6*i-3)';

end

% exaggerated by ExaggerationFactor

DisplacedVertex=Vertex+Displacement;

[Normal newVertex newFace d]=NormAndOffset(Face,DisplacedVertex,Dia);

Angle=CalculateAngle(M,M1,d,Normal);

GeometryData={Face,Edge,DisplacedVertex,newVertex,newFace,Normal,Angle};

DisplacedObjectData=plotvariables(GeometryData,cell(1,4),'r',':');

% solve for forces in each rod

for i=1:24

112

 LinkForce(:,i)=kLocal(:,:,i)*T(:,:,i)'*...

 [U(6*Edge(i,1)-5:6*Edge(i,1));

 U(6*Edge(i,2)-5:6*Edge(i,2))];

end

LinkForce % N forces in each link in local coordinates

% Other Loading Conditions Tested

%{

% points 1,2,6,9,10,12 fixed:

P=[4*Pg;6*Pg;4*Pg; 6*Pg;6*Pg; 4*Pg];

% 1:2 3:5 6 7:8 9:10 11 12 <--Node Indices

U=K([13:30 37:48 61:66],[13:30 37:48 61:66])\P;

U=[zeros(12,1);U(1:18);zeros(6,1);U(19:30);zeros(12,1);U(31:36);zeros(6,1)];

P=K*U;

%+[3*Pg;3*Pg;zeros(18,1);3*Pg;zeros(12,1);3*Pg;3*Pg;zeros(6,1);3*Pg]

%-[3*Pg;3*Pg;zeros(18,1);3*Pg;zeros(12,1);3*Pg;3*Pg;zeros(6,1);3*Pg]

%}

%{

% points 1,9,10 fixed:

P=[3*Pg;4*Pg;6*Pg;4*Pg;3*Pg;6*Pg;6*Pg; 4*Pg;3*Pg];

% 1 2:8 9:10 11:12 <--Node Indices

U=K([7:48 61:72],[7:48 61:72])\P;

U=[zeros(6,1);U(1:42);zeros(12,1);U(43:54)];

P=K*U;

113

%}

%{

% point 1 x,y, and z fixed; points 9 and 10 z-coordinate fixed:

P=[0;0;0;3*Pg;4*Pg;6*Pg;4*Pg;3*Pg;6*Pg;6*Pg;0;0; 0;0;0;0;0; 0;0;0;4*Pg;3*Pg];

U=K([4:50 52:56 58:72],[4:50 52:56 58:72])\P;

U=[zeros(3,1);U(1:47);0;U(48:52);0;U(53:67)];

P=K*U;

%}

function [Normal newVertex newFace d]=NormAndOffset(Face,Vertex,Dia)

% Show Link Thickness by Offsetting Vertices

% redefine faces to accommodate extra vertices

newFace=zeros(length(Face),3);

for i=1:length(Face)

 for j=1:3

 x(j,:)=Vertex(Face(i,j),:);

 newFace(i,j)=3*i+j-3;

 end

 tempVertex(:,:,i)=[x(1,:);x(2,:);x(3,:);x(1,:)];

end

% offset vertices to show link thickness and calculate face normals

for k=1:length(Face)

 x=diff(tempVertex(:,1,k));% link lengths in x direction

 y=diff(tempVertex(:,2,k));% link lengths in y direction

114

 z=diff(tempVertex(:,3,k));% link lengths in z direction

 d(:,k)=(x.^2+y.^2+z.^2).^0.5;% overall link lengths

 A(1,1)=acosd((-d(2,k)^2+d(1,k)^2+d(3,k)^2)/(2*d(1,k)*d(3,k)));%angle from L1

to L3

 A(2,1)=acosd((-d(3,k)^2+d(2,k)^2+d(1,k)^2)/(2*d(2,k)*d(1,k)));%angle from L1

to L2

 A(3,1)=acosd((-d(1,k)^2+d(2,k)^2+d(3,k)^2)/(2*d(2,k)*d(3,k)));%angle from L2

to L3

 d1=Dia./2./sind(A);% offset distance in direction of links

 sx=x./d(:,k);% scale factors in x direction

 sy=y./d(:,k);% scale factors in y direction

 sz=z./d(:,k);% scale factors in z direction

 dx=(sx-[sx(3);sx(1);sx(2)]).*d1;% offset distance of vertices in x

 dy=(sy-[sy(3);sy(1);sy(2)]).*d1;% offset distance of vertices in y

 dz=(sz-[sz(3);sz(1);sz(2)]).*d1;% offset distance of vertices in z

 newVertex(3*k-2:3*k,:)=tempVertex(1:3,:,k)+[dx dy dz];% new vertices

 temp=cross([x(1),y(1),z(1)],[x(2),y(2),z(2)]);% compute vectors normal to faces

 Normal(k,:)=temp/(hypot(hypot(temp(1),temp(2)),temp(3)));% use unit normal

vectors

end

d=d';

end

function [Angle]=CalculateAngle(M,M1,d,Normal)

115

% calculate angles between faces

 Angle=zeros(length(M),1);

 for i=1:length(M)

 if M(i)~=M1(i)

 temp=M(i);

 temp1=M1(i);

 while temp>length(d)

 temp=temp-length(d);

 end

 while temp1>length(d)

 temp1=temp1-length(d);

 end

 Angle(i)=acosd(dot(Normal(temp,:),Normal(temp1,:)));

 end

 end

end

function [GraphObjectData]=plotvariables(GeometryData,GraphObjectData,

Color,Linestyle)

% plot edges, face numbers, face normals, and edge angles or edge numbers

 Face=GeometryData{1};

 Edge=GeometryData{2};

 Vertex=GeometryData{3};

 newVertex=GeometryData{4};

116

 newFace=GeometryData{5};

 Normal=GeometryData{6};

 link=GraphObjectData{1};

 linknum=GraphObjectData{2};

 NormalLine=GraphObjectData{3};

 facenum=GraphObjectData{4};

 linewidth=1.1;

 h=findobj('Type','figure','Name','Triangular Surface');

 if isempty(h)

 h=figure('Name','Triangular

Surface','NumberTitle','Off','BackingStore','Off','Color','w');

 hold on;

 set(gca,'DrawMode','Fast');

 set(gca,'color','w','xcolor','k','ycolor','k','zcolor','k');

 axis equal vis3d;

 axis([-0.1 max(Vertex(:,1))+0.1 -0.1 max(Vertex(:,2))+0.1 -0.15 10*0.0254]);

 grid on;

 xlabel('x');ylabel('y');zlabel('z');

 camorbit(10,-30);

 rotate3d on;

 end

 %% Initialize Plot Variables

 if isempty(GraphObjectData{1})

117

 %Edges

 for i=1:length(Edge)

 P=Vertex(Edge(i,:),:);

link(i)=line(P(:,1),P(:,2),P(:,3),'Color',Color,'LineStyle',Linestyle,'LineWidth',linewidt

h);

 %link(2*i)=plot3(sum([P(1,1) sum(P(:,1))/2])/2,sum([P(1,2)

sum(P(:,2))/2])/2,sum([P(1,3)

sum(P(:,3))/2])/2,'Color',Color,'LineStyle','.','LineWidth',linewidth);

 %link(3*i)=plot3(sum([P(2,1) sum(P(:,1))/2])/2,sum([P(2,2)

sum(P(:,2))/2])/2,sum([P(2,3)

sum(P(:,3))/2])/2,'Color',Color,'LineStyle','o','LineWidth',linewidth);

%linknum(i)=text(sum(P(:,1))/2,sum(P(:,2))/2,sum(P(:,3))/2,num2str(i),'Horizont

alAlignment','center','VerticalAlignment','bottom','Color',Color,'LineStyle','-

','LineWidth',linewidth);% Edge numbers and angles

 %linknum(i)=text(P(1,1),P(1,2),P(1,3),[' '

num2str(Edge(i,1))],'HorizontalAlignment','left','VerticalAlignment','bottom','Color',

Color,'LineStyle','-','LineWidth',linewidth);

 end

 end

 %% Set Graph Object Data

 %Edges

 for i=1:length(Edge)

 P=Vertex(Edge(i,:),:);

118

 set(link(i),'Xdata',P(:,1),'Ydata',P(:,2),'Zdata',P(:,3));

 %

set(linknum(i),'Position',[sum(P(:,1))/2,sum(P(:,2))/2,sum(P(:,3))/2],'String',num2

str(i));% Edge numbers

 end

 figure(h);

 drawnow

 GraphObjectData={link,linknum,NormalLine,facenum};

end

function [kGlobal,T,k]=GlobalBeamElementGeneralStiffness(X,E,A,G,I)

% Calculates an element stiffness matrix in global coordinates for any

% general truss element given the location of the two endpoints, the

% modulus of elasticity, and the cross-sectional area.

Ix=I(1);

Iy=I(2);

Iz=I(3);

%X1=X(1:3);% x, y, and z coordinates of node 1

%X2=X(4:6);% x, y, and z coordinates of node 2

% choose a local z-axis on a plane formed by the local x- and global z-axes

X=(X(1,:)-X(2,:))';

Y=cross([0;0;1],X);

Y=Y/((sum(Y.^2))^0.5);

119

Z=cross(X,Y);

Z=Z/((sum(Z.^2))^0.5);

L=(sum(X.^2))^0.5; % total length of link

cxx=X(1)/L;% cosine of angle between link x- and global x-axes

cxy=X(2)/L;% cosine of angle between link x- and global y-axes

cxz=X(3)/L;% cosine of angle between link x- and global z-axes

cyx=Y(1);% cosine of angle between link y- and global x-axes

cyy=Y(2);% cosine of angle between link y- and global y-axes

cyz=Y(3);% cosine of angle between link y- and global z-axes

czx=Z(1);% cosine of angle between link z- and global x-axes

czy=Z(2);% cosine of angle between link z- and global y-axes

czz=Z(3);% cosine of angle between link z- and global z-axes

k=[E*A/L 0 0 0 0 0 -E*A/L 0 0 0 0 0 ;

 0 12*E*Iz/L^3 0 0 0 -6*E*Iz/L^2 0 -12*E*Iz/L^3 0 0 0 -6*E*Iz/L^2;

 0 0 12*E*Iy/L^3 0 -6*E*Iy/L^2 0 0 0 -12*E*Iy/L^3 0 -6*E*Iy/L^2 0 ;

 0 0 0 G*Ix/L 0 0 0 0 0 -G*Ix/L 0 0 ;

 0 0 -6*E*Iy/L^2 0 4*E*Iy/L 0 0 0 6*E*Iy/L^2 0 2*E*Iy/L 0 ;

 0 -6*E*Iz/L^2 0 0 0 4*E*Iz/L 0 6*E*Iz/L^2 0 0 0 2*E*Iz/L ;

 -E*A/L 0 0 0 0 0 E*A/L 0 0 0 0 0 ;

 0 -12*E*Iz/L^3 0 0 0 6*E*Iz/L^2 0 12*E*Iz/L^3 0 0 0 6*E*Iz/L^2;

 0 0 -12*E*Iy/L^3 0 6*E*Iy/L^2 0 0 0 12*E*Iy/L^3 0 6*E*Iy/L^2 0 ;

 0 0 0 -G*Ix/L 0 0 0 0 0 G*Ix/L 0 0 ;

 0 0 -6*E*Iy/L^2 0 2*E*Iy/L 0 0 0 6*E*Iy/L^2 0 4*E*Iy/L 0 ;

120

 0 -6*E*Iz/L^2 0 0 0 2*E*Iz/L 0 6*E*Iz/L^2 0 0 0 4*E*Iz/L];

% u1 v1 w1 k1 e1 z1 u2 v2 w2 k2 e2 z2

T=[cxx cyx czx 0 0 0 0 0 0 0 0 0 ; % u1

 cxy cyy czy 0 0 0 0 0 0 0 0 0 ; % v1

 cxz cyz czz 0 0 0 0 0 0 0 0 0 ; % w1

 0 0 0 cxx cyx czx 0 0 0 0 0 0 ; % k1

 0 0 0 cxy cyy czy 0 0 0 0 0 0 ; % e1

 0 0 0 cxz cyz czz 0 0 0 0 0 0 ; % z1

 0 0 0 0 0 0 cxx cyx czx 0 0 0 ; % u2

 0 0 0 0 0 0 cxy cyy czy 0 0 0 ; % v2

 0 0 0 0 0 0 cxz cyz czz 0 0 0 ; % w2

 0 0 0 0 0 0 0 0 0 cxx cyx czx ; % k2

 0 0 0 0 0 0 0 0 0 cxy cyy czy ; % e2

 0 0 0 0 0 0 0 0 0 cxz cyz czz];% z2

kGlobal=T*k*T';

end

Motion Simulator for the rhombic surface:

function nestedRSS

% Robotic Rhombic Surface

%

clear all;close all;clc;

%}

%% RSS

121

 Dia=1.75*2.54; H=(0.75+0.68)*2.54;

% alpha(i-1) , A(i-1), D , theta(degrees)

 DH=[0 , 3*Dia , H , 90 ; % link 1

 0 , 3*Dia , -H , 90 ; % link 2

 0 , 3*Dia , H , 90 ; % link 3

 90 , Dia ,-1.5*Dia, 0 ; % link 4

 0 , 0 , 0 , 0 ; % link 5

 90 , Dia ,-1.5*Dia, 0 ; % link 6

 0 , 0 , 0 , 0 ; % link 7

 -90 , Dia , -H/2 , 0 ; % link 8 (between modules right)

 -90 , Dia , -H/2 , -90]; % link 9 (between modules top)

% joint range

 % range1=30;range2=150; %theta1

 % range3=-45;range4=45; %theta4 and theta6

 % range5=-10;range6=10; %D5 and D7

 border=0; % joints on the borders aren't attached

% desired joint variables

 % theta1 theta4 theta6 D5 D7

 Q =[90 , 0 , 0 , 0 , 0 ; % module 1

 90 , 0 , 0 , 0 , 0 ; % module 2

 90 ,border, 0 ,border, 0 ; % module 3

 90 , 0 , 0 , 0 , 0 ; % module 4

 90 , 0 , 0 , 0 , 0 ; % module 5

122

 90 ,border, 0 ,border, 0 ; % module 6

 90 , 0 ,border, 0 ,border; % module 7

 90 , 0 ,border, 0 ,border; % module 8

 90 ,border,border,border,border]; % module 9

 [mT12 mT14 p1]=position(DH,Q,1);

 [mT23 mT25 p2]=position(DH,Q,2);

 [mT3border mT36 p3]=position(DH,Q,3);

 [mT45 mT47 p4]=position(DH,Q,4);

 [mT56 mT58 p5]=position(DH,Q,5);

 [mT6border mT69 p6]=position(DH,Q,6);

 [mT78 mT7border p7]=position(DH,Q,7);

 [mT89 mT7border p8]=position(DH,Q,8);

 [mT9border mT9border p9]=position(DH,Q,9);

 p2=mT12*p2;

 p3=mT12*mT23*p3;

 p4=mT14*p4;

 p5=mT14*mT45*p5;

 p6=mT14*mT45*mT56*p6;

 p7=mT14*mT47*p7;

 p8=mT14*mT47*mT78*p8;

 p9=mT14*mT47*mT78*mT89*p9;

% plots initial position and sets variables for animation

 azimuth=-45;

123

 link1=plotRSS(p1,0,azimuth,1);

 link2=plotRSS(p2,0,azimuth,1);

 link3=plotRSS(p3,0,azimuth,1);

 link4=plotRSS(p4,0,azimuth,1);

 link5=plotRSS(p5,0,azimuth,1);

 link6=plotRSS(p6,0,azimuth,1);

 link7=plotRSS(p7,0,azimuth,1);

 link8=plotRSS(p8,0,azimuth,1);

 link9=plotRSS(p9,0,azimuth,1);

%}

%

% animation

for theta=-45:45

 ACS=cosd(theta);

 theta4=atand(sind(theta));%theta4 and 6 for corner modules...

 theta1=asind(cosd(theta)/cosd(atand(sind(theta))));%for corners

 D5=-(cosd(theta4)*(DH(6,2) + DH(7,2)*cosd(theta4) + DH(9,2)*cosd(theta4) -

cosd(theta4)*(DH(2,2)/2 + DH(4,3)) - DH(9,3)*sind(theta4) + DH(4,2)*(1 -

ACS^2/cosd(theta4)^2)^(1/2) - sind(theta4)*(DH(5,2)/2 + DH(8,2)/2 + DH(1,3) -

DH(3,3)/2 + (3^(1/2)*DH(8,3))/2) + DH(5,2)*cosd(theta4)*(1 -

ACS^2/cosd(theta4)^2)^(1/2) + DH(8,2)*cosd(theta4)*(1 -

ACS^2/cosd(theta4)^2)^(1/2) - DH(8,3)*sind(theta4)*(1 -

ACS^2/cosd(theta4)^2)^(1/2) - (ACS*(DH(2,2) + DH(6,2) - DH(9,3)/2 +

124

(3^(1/2)*DH(7,2))/2 + (3^(1/2)*DH(9,2))/2))/cosd(theta4) + cosd(theta4)*(1 -

ACS^2/cosd(theta4)^2)^(1/2)*(DH(1,2) - DH(3,2)/2 + DH(6,3)) - sind(theta4)*(1 -

ACS^2/cosd(theta4)^2)^(1/2)*(DH(7,2)/2 + DH(9,2)/2 + DH(1,3) + DH(2,3)/2 +

(3^(1/2)*DH(9,3))/2) + (3*ACS*DH(2,2))/(2*cosd(theta4)) +

(ACS*DH(4,3))/cosd(theta4)))/ACS;

 D7=-D5;

 % theta1 theta4 theta6 D5 D7

 Q =[theta1,theta4,theta4, D5 , D7 ; % module 1

 90 ,theta4,theta , -D5 , 0 ; % module 2

 180-theta1,border,theta4,border, -D7 ; % module 3

 90 ,theta ,theta4, 0 , -D7 ; % module 4

 90 ,theta ,theta , 0 , 0 ; % module 5

 90 ,border,theta4,border, D7 ; % module 6

 180-theta1,theta4,border, -D5 ,border; % module 7

 90 ,theta4,border, D5 ,border; % module 8

 theta1,border,border,border,border]; % module 9

 [mT12 mT14 p1]=position(DH,Q,1);

 [mT23 mT25 p2]=position(DH,Q,2);

 [mT3border mT36 p3]=position(DH,Q,3);

 [mT45 mT47 p4]=position(DH,Q,4);

 [mT56 mT58 p5]=position(DH,Q,5);

 [mT6border mT69 p6]=position(DH,Q,6);

 [mT78 mT7border p7]=position(DH,Q,7);

125

 [mT89 mT7border p8]=position(DH,Q,8);

 [mT9border mT9border p9]=position(DH,Q,9);

 p2=mT12*p2;

 p3=mT12*mT23*p3;

 p4=mT14*p4;

 p5=mT14*mT45*p5;

 p6=mT14*mT45*mT56*p6;

 p7=mT14*mT47*p7;

 p8=mT14*mT47*mT78*p8;

 p9=mT14*mT47*mT78*mT89*p9;

 azimuth=theta;

 link1=plotRSS(p1,link1,azimuth,0);

 link2=plotRSS(p2,link2,azimuth,0);

 link3=plotRSS(p3,link3,azimuth,0);

 link4=plotRSS(p4,link4,azimuth,0);

 link5=plotRSS(p5,link5,azimuth,0);

 link6=plotRSS(p6,link6,azimuth,0);

 link7=plotRSS(p7,link7,azimuth,0);

 link8=plotRSS(p8,link8,azimuth,0);

 link9=plotRSS(p9,link9,azimuth,0);

end

%}

function [mT0right mT0top p]=position(DH,Q,R)

126

% forward kinematics using transformation matrices for RSS

 T01=[cosd(Q(R,1)) , -sind(Q(R,1)) , 0 , DH(1,2) ;

 sind(Q(R,1))*cosd(DH(1,1)), cosd(Q(R,1))*cosd(DH(1,1)), -sind(DH(1,1)), -

sind(DH(1,1))*DH(1,3) ;

 sind(Q(R,1))*sind(DH(1,1)), cosd(Q(R,1))*sind(DH(1,1)), cosd(DH(1,1)),

cosd(DH(1,1))*DH(1,3) ;

 0 , 0 , 0 , 1];

 T12=[-cosd((Q(R,1))) , -sind((Q(R,1))) , 0 , DH(2,2) ;

 sind((Q(R,1)))*cosd(DH(2,1)), -cosd((Q(R,1)))*cosd(DH(2,1)), -

sind(DH(2,1)), -sind(DH(2,1))*DH(2,3) ;

 sind((Q(R,1)))*sind(DH(2,1)), -cosd((Q(R,1)))*sind(DH(2,1)),

cosd(DH(2,1)), cosd(DH(2,1))*DH(2,3) ;

 0 , 0 , 0 , 1];

 T23=[cosd(Q(R,1)) , -sind(Q(R,1)) , 0 , DH(3,2) ;

 sind(Q(R,1))*cosd(DH(3,1)), cosd(Q(R,1))*cosd(DH(3,1)), -sind(DH(3,1)), -

sind(DH(3,1))*DH(3,3) ;

 sind(Q(R,1))*sind(DH(3,1)), cosd(Q(R,1))*sind(DH(3,1)), cosd(DH(3,1)),

cosd(DH(3,1))*DH(3,3) ;

 0 , 0 , 0 , 1];

 T14=[0 1 0 0 ;

 -1 0 0 0 ;

 0 0 1 -DH(3,3)/2;

 0 0 0 1]*...

127

 [cosd(Q(R,2)) , -sind(Q(R,2)) , 0 , DH(4,2) ;

 sind(Q(R,2))*cosd(DH(4,1)), cosd(Q(R,2))*cosd(DH(4,1)), -sind(DH(4,1)), -

sind(DH(4,1))*DH(4,3) ;

 sind(Q(R,2))*sind(DH(4,1)), cosd(Q(R,2))*sind(DH(4,1)), cosd(DH(4,1)),

cosd(DH(4,1))*DH(4,3) ;

 0 , 0 , 0 , 1];

 T45=[cosd(DH(5,4)) , -sind(DH(5,4)) , 0 , DH(5,2) ;

 sind(DH(5,4))*cosd(DH(5,1)), cosd(DH(5,4))*cosd(DH(5,1)), -sind(DH(5,1)),

-sind(DH(5,1))*Q(R,4) ;

 sind(DH(5,4))*sind(DH(5,1)), cosd(DH(5,4))*sind(DH(5,1)), cosd(DH(5,1)),

cosd(DH(5,1))*Q(R,4) ;

 0 , 0 , 0 , 1];

 T26=[0 1 0 0;

 -1 0 0 0;

 0 0 1 -DH(2,3)/2;

 0 0 0 1]*...

 [cosd(Q(R,3)) , -sind(Q(R,3)) , 0 , DH(6,2) ;

 sind(Q(R,3))*cosd(DH(6,1)), cosd(Q(R,3))*cosd(DH(6,1)), -sind(DH(6,1)), -

sind(DH(6,1))*DH(6,3) ;

 sind(Q(R,3))*sind(DH(6,1)), cosd(Q(R,3))*sind(DH(6,1)), cosd(DH(6,1)),

cosd(DH(6,1))*DH(6,3) ;

 0 , 0 , 0 , 1];

 T67=[cosd(DH(7,4)) , -sind(DH(7,4)) , 0 , DH(7,2) ;

128

 sind(DH(7,4))*cosd(DH(7,1)), cosd(DH(7,4))*cosd(DH(7,1)), -sind(DH(7,1)),

-sind(DH(7,1))*Q(R,5) ;

 sind(DH(7,4))*sind(DH(7,1)), cosd(DH(7,4))*sind(DH(7,1)), cosd(DH(7,1)),

cosd(DH(7,1))*Q(R,5) ;

 0 , 0 , 0 , 1];

 if (R==3)||(R==6)||(R==9)

 r=0;

 else

 r=1;

 end

 T53=[sind(Q(R+r,1)) , -cosd(Q(R+r,1)) , 0 , DH(8,2) ;

 cosd(Q(R+r,1))*cosd(DH(8,1)), sind(Q(R+r,1))*cosd(DH(8,1)), -

sind(DH(8,1)), -sind(DH(8,1))*DH(8,3) ;

 cosd(Q(R+r,1))*sind(DH(8,1)), sind(Q(R+r,1))*sind(DH(8,1)),

cosd(DH(8,1)), cosd(DH(8,1))*DH(8,3)+DH(2,2)/2 ;

 0 , 0 , 0 , 1];

 T70=[cosd(DH(9,4)) , -sind(DH(9,4)) , 0 , DH(9,2) ;

 sind(DH(9,4))*cosd(DH(9,1)), cosd(DH(9,4))*cosd(DH(9,1)), -sind(DH(9,1)),

-sind(DH(9,1))*DH(9,3) ;

 sind(DH(9,4))*sind(DH(9,1)), cosd(DH(9,4))*sind(DH(9,1)), cosd(DH(9,1)),

cosd(DH(9,1))*DH(9,3)-DH(3,2)/2 ;

 0 , 0 , 0 , 1];

 % Link0

129

 p=[0;0;0;1];

 p(:,3)=T01(:,4); % O1

 p(:,2)=p(:,3)+[0 0 -DH(1,3) 0]';

 % Link1

 p(:,5)=T01*T12(:,4); % O2

 p(:,4)=T01*(T12(:,4)+[0 0 -DH(2,3) 0]');

 p(:,10)=T01*T14(:,4); % O4

 % Link2

 p(:,7)=T01*T12*T23(:,4); % O3

 p(:,6)=p(:,7)+[0 0 -DH(3,3) 0]';

 p(:,13)=p(:,5)+[-DH(2,2)/2 0 0 0]';

 p(:,14)=T01*T12*T26(:,4); % O6

 % Link3

 p(:,8)=p(:,1)+[0 0 DH(1,3) 0]';

 p(:,9)=T01*(T12(:,4)+[-DH(3,2)/2 0 -DH(2,3) 0]');

 % Link4

 p(:,11)=T01*T14*T45(:,4); % O5

 % Link5

 p(:,12)=T01*T14*T45*[DH(4,2) DH(3,3)/2 0 1]';

 % Link6

 p(:,15)=T01*T12*T26*T67(:,4); % O7

 % Link7

 p(:,16)=T01*T12*T26*T67*[DH(6,2) DH(2,3)/2 0 1]';

130

 mT0right=T01*T14*T45*T53;

 mT0top=T01*T12*T26*T67*T70;

end

function link=plotRSS(p,link,azimuth,v)

% plotting/animation for RSS

 h=findobj('Type','figure','Name','RSS');

 if v>0;

 x0=-37;y0=-20;z0=-62.5;range=125;linewidth=2;pointwidth=0.1;

 %x0=-10;y0=-22;z0=-50;range=100;linewidth=2;

 if isempty(h)&&v==1

 figure('Name','RSS','NumberTitle','Off','BackingStore','Off','Color','k');

 end

 hold on;

 set(gca,'DrawMode','Fast');

 set(gca,'color','k','xcolor','b','ycolor','g','zcolor','r');

 axis('square'); axis([x0 x0+range y0 y0+range z0 z0+range]);

 grid on; xlabel('x');ylabel('y');zlabel('z');

 view(azimuth,azimuth);

 link(1)=line(p(1,[1 2]),p(2,[1 2]),p(3,[1 2]),'Color','c','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor');

 link(2)=line(p(1,[2 3]),p(2,[2 3]),p(3,[2 3]),'Color','c','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor');

131

 link(3)=line(p(1,[3 4]),p(2,[3 4]),p(3,[3 4]),'Color','b','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor');

 link(4)=line(p(1,[4 5]),p(2,[4 5]),p(3,[4 5]),'Color','b','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor');

 link(10)=line(p(1,[9 10]),p(2,[9 10]),p(3,[9 10]),'Color','b','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor');

 link(5)=line(p(1,[5 6]),p(2,[5 6]),p(3,[5 6]),'Color','m','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor');

 link(6)=line(p(1,[6 7]),p(2,[6 7]),p(3,[6 7]),'Color','m','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor');

 link(7)=line(p(1,[13 14]),p(2,[13 14]),p(3,[13 14]),'Color','m','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor');

 link(8)=line(p(1,[7 8]),p(2,[7 8]),p(3,[7 8]),'Color','r','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor');

 link(9)=line(p(1,[8 1]),p(2,[8 1]),p(3,[8 1]),'Color','r','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor');

 link(11)=line(p(1,[10 11]),p(2,[10 11]),p(3,[10 11]),'Color','g','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor');

 link(12)=line(p(1,[11 12]),p(2,[11 12]),p(3,[11 12]),'Color','r','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor');

 link(13)=line(p(1,[14 15]),p(2,[14 15]),p(3,[14 15]),'Color','y','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor');

132

 link(14)=line(p(1,[15 16]),p(2,[15 16]),p(3,[15 16]),'Color','c','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor');

 return;

 end;

 view(azimuth,azimuth);

 set(link(1),'Xdata',p(1,[1 2]),'Ydata',p(2,[1 2]),'Zdata',p(3,[1 2]));

 set(link(2),'Xdata',p(1,[2 3]),'Ydata',p(2,[2 3]),'Zdata',p(3,[2 3]));

 set(link(3),'Xdata',p(1,[3 4]),'Ydata',p(2,[3 4]),'Zdata',p(3,[3 4]));

 set(link(4),'Xdata',p(1,[4 5]),'Ydata',p(2,[4 5]),'Zdata',p(3,[4 5]));

 set(link(5),'Xdata',p(1,[5 6]),'Ydata',p(2,[5 6]),'Zdata',p(3,[5 6]));

 set(link(6),'Xdata',p(1,[6 7]),'Ydata',p(2,[6 7]),'Zdata',p(3,[6 7]));

 set(link(7),'Xdata',p(1,[13 14]),'Ydata',p(2,[13 14]),'Zdata',p(3,[13 14]));

 set(link(8),'Xdata',p(1,[7 8]),'Ydata',p(2,[7 8]),'Zdata',p(3,[7 8]));

 set(link(9),'Xdata',p(1,[8 1]),'Ydata',p(2,[8 1]),'Zdata',p(3,[8 1]));

 set(link(10),'Xdata',p(1,[9 10]),'Ydata',p(2,[9 10]),'Zdata',p(3,[9 10]));

 set(link(11),'Xdata',p(1,[10 11]),'Ydata',p(2,[10 11]),'Zdata',p(3,[10 11]));

 set(link(12),'Xdata',p(1,[11 12]),'Ydata',p(2,[11 12]),'Zdata',p(3,[11 12]));

 set(link(13),'Xdata',p(1,[14 15]),'Ydata',p(2,[14 15]),'Zdata',p(3,[14 15]));

 set(link(14),'Xdata',p(1,[15 16]),'Ydata',p(2,[15 16]),'Zdata',p(3,[15 16]));

 figure(h);

 drawnow;

end

end

133

Forward kinematics solver for the rhombic surface:

% Robotic Rhombic Surface

 clear all;close all;clc;

%% RSS

 Dia=1.75*2.54; H=(0.75+0.68)*2.54;

% alpha(i-1) , A(i-1), D , theta(degrees)

 DH=[0 , 3*Dia , H , pi/2 ; % link 1

 0 , 3*Dia , -H , pi/2 ; % link 2

 0 , 3*Dia , H , pi/2 ; % link 3

 pi/2 , Dia ,-1.5*Dia, 0 ; % link 4

 0 , 0 , 0 , 0 ; % link 5

 pi/2 , Dia ,-1.5*Dia, 0 ; % link 6

 0 , 0 , 0 , 0 ; % link 7

 -pi/2 , Dia , -H/2 , 0 ; % link 8 (between modules right)

 -pi/2 , Dia , -H/2 , -pi/2]; % link 9 (between modules top)

% joint range

 % range1=30;range2=150; %theta1

 % range3=-45;range4=45; %theta4 and theta6

 % range5=-10;range6=10; %D5 and D7

syms th11 th12 th13 th14 th15 th16 th17 th18 th19

syms th41 th42 th43 th44 th45 th46 th47 th48 th49

syms th61 th62 th63 th64 th65 th66 th67 th68 th69

syms D51 D52 D53 D54 D55 D56 D57 D58 D59

134

syms D71 D72 D73 D74 D75 D76 D77 D78 D79

syms DH21 DH22 DH23 DH24 DH25 DH26 DH27 DH28 DH29

syms DH31 DH32 DH33 DH34 DH35 DH36 DH37 DH38 DH39

% alpha(i-1) ,A(i-1), D , theta(degrees)

 DHsym=[0 , DH21 , DH31 , pi/2 ; % link 1

 0 , DH22 , DH32 , pi/2 ; % link 2

 0 , DH23 , DH33 , pi/2 ; % link 3

 pi/2 ,DH24 , DH34 , 0 ; % link 4

 0 , DH25 , DH35 , 0 ; % link 5

 pi/2 ,DH26 , DH36 , 0 ; % link 6

 0 , DH27 , DH37 , 0 ; % link 7

 -pi/2 ,DH28 , DH38 , 0 ; % link 8 (between modules right)

 -pi/2 ,DH29 , DH39 ,-pi/2]; % link 9 (between modules top)

 border=0;

 % theta1 theta4 theta6 D5 D7

 Qsym =[th11,th41,th61, D51 , D71 ; % module 1

 th12,th42,th62, D52 , D72 ; % module 2

 th13,border ,th63,border, D73 ; % module 3

 th14,th44,th64, D54 , D74 ; % module 4

 th15,th45,th65, D55 , D75 ; % module 5

 th16,border ,th66,border, D76 ; % module 6

 th17,th47,border , D57 ,border; % module 7

 th18,th48,border , D58 ,border; % module 8

135

 th19,border ,border ,border,border]; % module 9

 [mT12 mT14 p1]=positionsym(DHsym,Qsym,1);

 [mT23 mT25 p2]=positionsym(DHsym,Qsym,2);

 [mT3border mT36 p3]=positionsym(DHsym,Qsym,3);

 [mT45 mT47 p4]=positionsym(DHsym,Qsym,4);

 [mT56 mT58 p5]=positionsym(DHsym,Qsym,5);

 [mT6border mT69 p6]=positionsym(DHsym,Qsym,6);

 [mT78 mT7border p7]=positionsym(DHsym,Qsym,7);

 [mT89 mT7border p8]=positionsym(DHsym,Qsym,8);

 [mT9border mT9border p9]=positionsym(DHsym,Qsym,9);

 p2=mT12*p2;

 p3=mT12*mT23*p3;

 p4=mT14*p4;

 p5=mT14*mT45*p5;

 p6=mT14*mT45*mT56*p6;

 p7=mT14*mT47*p7;

 p8=mT14*mT47*mT78*p8;

 p9=mT14*mT47*mT78*mT89*p9;

 M15a=mT12*mT25;

 M15b=mT14*mT45;

 M15=(M15a(1:3,:)-M15b(1:3,:));

 M26a=mT23*mT36;

 M26b=mT25*mT56;

136

 M26=(M26a(1:3,:)-M26b(1:3,:));

 M48a=mT45*mT58;

 M48b=mT47*mT78;

 M48=(M48a(1:3,:)-M48b(1:3,:));

 M59a=mT56*mT69;

 M59b=mT58*mT89;

 M59=(M59a(1:3,:)-M59b(1:3,:));

%

% controlled joint variables for 4 leg mode (non-walking)

 % theta1 theta4 theta6 D5 D7

 Qleg =[th11, th41 , th61 , D51 , D71 ; % module 1

 pi/2, th42 , pi/6 , D52 , 0 ; % module 2

 th13,border, th63 ,border, D73 ; % module 3

 pi/2, pi/6 , th64 , 0 , D74 ; % module 4

 pi/2, pi/6 , pi/6 , 0 , 0 ; % module 5

 pi/2,border, th66 ,border, D76 ; % module 6

 th17, th47 ,border, D57 ,border; % module 7

 pi/2, th48 ,border, D58 ,border; % module 8

 th19,border,border,border,border]; % module 9

%}

 % theta1 theta4 theta6 D5 D7

 Q =[pi/2 , 0 , 0 , 0 , 0 ; % module 1

 pi/2 , 0 , 0 , 0 , 0 ; % module 2

137

 pi/2 ,border, 0 ,border, 0 ; % module 3

 pi/2 , 0 , 0 , 0 , 0 ; % module 4

 pi/2 , 0 , 0 , 0 , 0 ; % module 5

 pi/2 ,border, 0 ,border, 0 ; % module 6

 pi/2 , 0 ,border, 0 ,border; % module 7

 pi/2 , 0 ,border, 0 ,border; % module 8

 pi/2 ,border,border,border,border]; % module 9

 %digits 10

 %M15

 %One=simple((M15))

 syms c12 c14 c15 c16 c18 c44 c45 c62 c65 COS41 COS61

 syms s12 s14 s15 s16 s18 s44 s45 s62 s65 SIN41 SIN61

 COS=[cos(th12) cos(th14) cos(th15) cos(th16) cos(th18) cos(th44) cos(th45)

cos(th62) cos(th65)];

 SIN=[sin(th12) sin(th14) sin(th15) sin(th16) sin(th18) sin(th44) sin(th45)

sin(th62) sin(th65)];

 c=[c12 c14 c15 c16 c18 c44 c45 c62 c65];

 s=[s12 s14 s15 s16 s18 s44 s45 s62 s65];

 a=(subs(simple(M15),[COS SIN],[c s]));

138

Appendix B: XC Control

Manual Actuator Control

 The following code is written in the XC language for the XMOS controller. It is

used to manually actuate each joint of the mechanism using the buttons on the

microcontroller device. Because there are no feedback sensors, this is necessary to

correct any mismatch caused by losing steps when the device is used. The code is

included only for reference.

// System headers

#include <xs1.h>

#include <platform.h>

#include <print.h>

#define SEC 100000000

#define steptime SEC*3/16/ 1000 //rpm

/* Port declarations */

// Buttons and Button-leds

out port p_kled = PORT_BUTTONLED;//4 bits for 4 green leds near buttons

in port p_key = PORT_BUTTON; //4 bits for 4 buttons

// Motor Out

on stdcore[0] : out port Core0Port4F = XS1_PORT_4F; //2 rotary motors

on stdcore[1] : out port Core1Port8A = XS1_PORT_8A; //4 rotary motors

on stdcore[2] : out port Core2Port8A = XS1_PORT_8A; //4 linear motors

on stdcore[3] : out port Core3Port16A = XS1_PORT_16A;//8 linear motors

void motorSlave(chanend motor, out port m); //prototype

139

void motorSlave(chanend motor, out port m)

{

 int x;

 while(1)

 {

 motor:>x;

 m<:x;

 }

}

//main function that runs on core0

void masterThread(chanend rmotor1, chanend rmotor2, chanend lmotor1, chanend

lmotor2)

{

 //variables

 char buttonValue;

 int b=0xF,time,shift=0;

 timer t;

 p_kled <: b; //turn on green lights near buttons

 while(1){ //loop forever

 //TurnAllLEDsOff(cLED); //turn off all LEDS

 p_key :> buttonValue; //read buttons

 //motor <: 0;//no steps 0b0000 0

 if (buttonValue == 0b1110) //button 'A' (upside-down left)

140

 {

 b^=1; //alternate button led so you know if button push was

registered

 p_kled <: b;

 if(shift<8)

 {

 lmotor1 <: (1<<(2*shift));//0x5555;//direction right

0b0101010101010101 21845 0x5555

 lmotor1 <: (3<<(2*shift));//0xFFFF;//step right

0b0000000011111111 65535 0xFFFF

 }

 if((shift>7)&(shift<12))

 {

 lmotor2 <: (1<<(2*(shift-8)));//0x55;//direction right

0b0101010101010101 21845 0x5555

 lmotor2 <: (3<<(2*(shift-8)));//0xFF;//step right

0b0000000011111111 65535 0xFFFF

 }

 if((shift>11)&(shift<16))

 {

 rmotor1 <: (1<<(2*(shift-12)));//0x55;//direction right

0b0101010101010101 21845 0x5555

141

 rmotor1 <: (3<<(2*(shift-12)));//0xFF;//step right

0b0000000011111111 65535 0xFFFF

 }

 if((shift>15)&(shift<18))

 {

 rmotor2 <: (1<<(2*(shift-16)));//0x5;//direction right

0b0101010101010101 21845 0x5555

 rmotor2 <: (3<<(2*(shift-16)));//0xF;//step right

0b0000000011111111 65535 0xFFFF

 }

 t :> time;

 t when timerafter(time + steptime) :> void;

 }

 else if (buttonValue == 0b1101) //button 'B'

 {

 b^=1<<1;//alternate button led so you know if button push

was registered

 p_kled <: b;

 if(shift<8)

 {

 lmotor1 <: (0<<(2*shift));

 lmotor1 <: (2<<(2*shift));

 }

142

 if((shift>7)&(shift<12))

 {

 lmotor2 <: (0<<(2*(shift-8)));

 lmotor2 <: (2<<(2*(shift-8)));

 }

 if((shift>11)&(shift<16))

 {

 rmotor1 <: (0<<(2*(shift-12)));

 rmotor1 <: (2<<(2*(shift-12)));

 }

 if((shift>15)&(shift<18))

 {

 rmotor2 <: (0<<(2*(shift-16)));

 rmotor2 <: (2<<(2*(shift-16)));

 }

 t :> time;

 t when timerafter(time + steptime) :> void;

 }

 else if (buttonValue == 0b1011)//button 'C'

 {

 b^=1<<2;//alternate button led so you know if button push

was registered

 p_kled <: b;

143

 shift+=1;

 if (shift>17)

 {

 shift=0;

 }

 t :> time;

 t when timerafter(time + SEC/2) :> void;

 }

 else if (buttonValue == 0b0111) //button 'D' (upside-down right)

 {

 b^=1<<3;//alternate button led so you know if button push

was registered

 p_kled <: b;

 shift-=1;

 if (shift<0)

 {

 shift=17;

 }

 t :> time;

 t when timerafter(time + SEC/2) :> void;

 }

 }

}

144

//program entry point for all cores

int main()

{

 chan rmotor1, rmotor2, lmotor1, lmotor2; //communication channels

 par

 {

 on stdcore[0]: masterThread(rmotor1,rmotor2,lmotor1,lmotor2);

 on stdcore[0]: motorSlave(rmotor2, Core0Port4F); //2 rotary

motors

 on stdcore[1]: motorSlave(rmotor1, Core1Port8A); //4 rotary

motors

 on stdcore[2]: motorSlave(lmotor2, Core2Port8A); //4 linear

motors

 on stdcore[3]: motorSlave(lmotor1, Core3Port16A);//8 linear

motors

 }

 return 0;

}

Preprogrammed Offline Control

 The code in this section is an example motion with each point along the path

of each vertex embedded on the microcontroller. This limits the quality of the

motion to whatever will fit on the memory of the microcontroller. In this particular

145

example, the device forms a pyramid and then returns to the neutral planar position.

All positions in this code were precalculated with the Matlab control code given in

Appendix C. This code is included only as a reference.

// System headers

#include <xs1.h>

#include <platform.h>

#include <print.h>

#define SEC 100000000

#define steptime SEC*3/16/ 1000 //rpm

/* Port declarations */

// Buttons and Button-leds

out port p_kled = PORT_BUTTONLED;//4 bits for 4 green leds near buttons

in port p_key = PORT_BUTTON; //4 bits for 4 buttons

// Motor Out

on stdcore[0] : out port Core0Port4F = XS1_PORT_4F; //2 rotary motors

on stdcore[1] : out port Core1Port8A = XS1_PORT_8A; //4 rotary motors

on stdcore[2] : out port Core2Port8A = XS1_PORT_8A; //4 linear motors

on stdcore[3] : out port Core3Port16A = XS1_PORT_16A;//8 linear motors

void motorSlave(chanend motor, out port m); //prototype

//catches all out port writes

void motorSlave(chanend motor, out port m)

{

 int x;

146

 while(1)

 {

 motor:>x;

 m<:x;

 }

}

//main function that runs on core0

void masterThread(chanend rmotor1, chanend rmotor2, chanend lmotor1, chanend

lmotor2)

{

 int a, i, j, k, time, linearmotor1, linearmotor2, rotarymotor1, rotarymotor2;

 short

 lsteps1[8][782]=

 {

 {**782 element vector calculated by code in Appendix C**},

 {**782 element vector calculated by code in Appendix C**},

 {**782 element vector calculated by code in Appendix C**},

 {**782 element vector calculated by code in Appendix C**},

 {**782 element vector calculated by code in Appendix C**},

 {**782 element vector calculated by code in Appendix C**},

 {**782 element vector calculated by code in Appendix C**},

 {**782 element vector calculated by code in Appendix C**}

 },

147

 lsteps2[4][782]=

 {

 {**782 element vector calculated by code in Appendix C**},

 {**782 element vector calculated by code in Appendix C**},

 {**782 element vector calculated by code in Appendix C**},

 {**782 element vector calculated by code in Appendix C**}

 },

 rsteps1[4][782]=

 {

 {**782 element vector calculated by code in Appendix C**},

 {**782 element vector calculated by code in Appendix C**},

 {**782 element vector calculated by code in Appendix C**},

 {**782 element vector calculated by code in Appendix C**}

 },

 rsteps2[2][782]=

 {

 {**782 element vector calculated by code in Appendix C**},

 {**782 element vector calculated by code in Appendix C**}

 };

 timer t;

 for(i=0;i<782;i++)

 {

 for(j=0;j<266;j++)

148

 {

 //initialize motors for each new step

 linearmotor1=0;linearmotor2=0;

 rotarymotor1=0;rotarymotor2=0;

 for(k=0;k<8;k++)

 {

 a=((lsteps1[k][i])<0)?(0-lsteps1[k][i]):(lsteps1[k][i]);

 if(a>j)

 {

 if (lsteps1[k][i]<0)

 {

 linearmotor1+=(2<<(2*k));//shorter

 }

 if (lsteps1[k][i]>0)

 {

 linearmotor1+=(3<<(2*k));//longer

 }

 }

 }

 lmotor1<:linearmotor1&0x5555;//send just direction first

 lmotor1<:linearmotor1;//then direction + step to ensure

direction is registered

 for(k=0;k<4;k++)

149

 {

 a=((lsteps2[k][i])<0)?(0-lsteps2[k][i]):(lsteps2[k][i]);

 if(a>j)

 {

 if(lsteps2[k][i]<0)

 {

 linearmotor2+=(2<<(2*k));//shorter

 }

 if(lsteps2[k][i]>0)

 {

 linearmotor2+=(3<<(2*k));//longer

 }

 }

 }

 lmotor2<:linearmotor2&0x55;//send just direction first

 lmotor2<:linearmotor2;//then direction + step to ensure

direction is registered

 for(k=0;k<4;k++)

 {

 a=((rsteps1[k][i])<0)?(0-rsteps1[k][i]):(rsteps1[k][i]);

 if(a>j)

 {

 if(rsteps1[k][i]<0)

150

 {

 rotarymotor1+=(2<<(2*k));//concave

down

 }

 if(rsteps1[k][i]>0)

 {

 rotarymotor1+=(3<<(2*k));//concave up

 }

 }

 }

 rmotor1<:rotarymotor1&0x55;//send just direction first

 rmotor1<:rotarymotor1;//then direction + step to ensure

direction is registered

 for(k=0;k<2;k++)

 {

 a=((rsteps2[k][i])<0)?(0-rsteps2[k][i]):(rsteps2[k][i]);

 if(a>j)

 {

 if(rsteps2[k][i]<0)

 {

 rotarymotor2+=(2<<(2*k));//concave

down

 }

151

 if(rsteps2[k][i]>0)

 {

 rotarymotor2+=(3<<(2*k));//concave up

 }

 }

 }

 rmotor2<:(rotarymotor2&0x5);//send just direction first

 rmotor2<:rotarymotor2;//then direction + step to ensure

direction is registered

 t :> time;//store the timer in variable time

 t when timerafter(time + steptime) :> void;//wait until

time+=steptime before moving on

 }

 }

}

//program entry point for all cores

int main()

{

 chan rmotor1, rmotor2, lmotor1, lmotor2; //communication channels

 par

 {

 on stdcore[0]: masterThread(rmotor1,rmotor2,lmotor1,lmotor2);

152

 on stdcore[0]: motorSlave(rmotor2, Core0Port4F); //2 rotary

motors

 on stdcore[1]: motorSlave(rmotor1, Core1Port8A); //4 rotary

motors

 on stdcore[2]: motorSlave(lmotor2, Core2Port8A); //4 linear

motors

 on stdcore[3]: motorSlave(lmotor1, Core3Port16A);//8 linear

motors

 }

 return 0;

}

153

Appendix C: Matlab Control

 This code sets up the object mesh used by the device to sample shapes,

calculates and plans the desired equation driven (rather than dynamic shape

driven) path based on a maximum actuator speed, calculates all joint motions, and

then generates the actual steps that each actuator will have to take in order to

perform the desired motion. There are also extra sections of code to calculate

different implementations of the mechanism included as programming comments.

This code is included as a reference only.

clear all

close all

clc

L=15 ; % shortest link length

Dia=2; % link thickness limited by actuator diameter

% Large...

%{

X=[(L:L:2*L)',zeros(2,1),zeros(2,1);

 (L/2:L:5/2*L)',sind(60)*L*ones(3,1),zeros(3,1);

 (0:L:3*L)',sind(60)*2*L*ones(4,1),zeros(4,1);

 (L/2:L:5/2*L)',sind(60)*3*L*ones(3,1),zeros(3,1)];

%}

X=[(L/2:L:3/2*L)',zeros(2,1),zeros(2,1);

 (0:L:2*L)',sind(60)*L*ones(3,1),zeros(3,1);

 (L/2:L:3/2*L)',sind(60)*2*L*ones(2,1),zeros(2,1)];

154

% switched x and y

%{

X=[zeros(2,1),(L/2:L:3/2*L)',zeros(2,1);

 sind(60)*L*ones(3,1),(0:L:2*L)',zeros(3,1);

 sind(60)*2*L*ones(2,1),(L/2:L:3/2*L)',zeros(2,1)];

%}

 Tri = DelaunayTri(X(:,1:2));

Face=Tri.Triangulation;

Vertex=Tri.X;

%% Temporary Shape to Find Unique Edges

% find edge indices

% assuming x and y distribution is not inversely quadratic, this gives

% linearly independent edge lengths - other functions can easily be chosen

Vertex(:,3)=(1:length(Vertex)).^0.5;

for i=1:length(Face)

 for j=1:3

 P(j,:)=Vertex(Face(i,j),:);

 end

 tempVertex(:,:)=[P(1,:);P(2,:);P(3,:);P(1,:)];

 x=diff(tempVertex(:,1));% link lengths in x direction

 y=diff(tempVertex(:,2));% link lengths in y direction

 z=diff(tempVertex(:,3));% link lengths in z direction

 d(i,:)=hypot(hypot(x,y),z);% overall link lengths

155

end

[Unused M ~]=unique(d,'first');% M is an index vector for unique edges

[Unused1 M1 ~]=unique(d);% M1 is for the same edges, but attached to adjacent

faces

 %% Calculate Edge Indices

for i=1:length(M)

 if M(i)>(2*length(d))

 N(i,1)=M(i)-2*length(d);

 else

 N(i,1)=M(i)+length(d);

 end

end

Edge=[Face(M) Face(N)];% index for endpoints of unique edges

 clear x y z d i j Unused Unused1 P tempVertex

 %% Initialize Graph Objects

Vertex(:,3)=0;direction=zeros(3,18);Sign=ones(18);

[Normal newVertex newFace d]=NormAndOffset(Face,Vertex,Dia);

[FaceAngle direction Sign]=CalculateAngle(M,M1,d,Normal,direction,Sign);

% Cell arrays used to shorten some lines for improved readability

%{

GeometryData={Face,Edge,Vertex,newVertex,newFace,Normal,FaceAngle};

GraphObjectData=plotvariables(GeometryData,cell(1,5));

%}

156

%% Plot

% center (H,K)

H=(min(Vertex(:,1))+max(Vertex(:,1)))/2;

K=(min(Vertex(:,2))+max(Vertex(:,2)))/2;

R=4;% radius

tempd=L; tempA=0;% initialize temp joint variables

S=0; TempChangeofLinkLength=0;

last=0; last1=0; pStep=0;

linearstep=7.9375/128000; % cm (6.20117187 × 10-5)

rotarystep=360/(312785+5/11); % deg (1.15094866 × 10-3)

 MaxVrpm=1e3; % rpm

MaxV=MaxVrpm*16/3; % steps/second

%dT=1/MaxV % length of time slot in seconds

 %

Amplitude=3; % one-d sinusoid

dT=0.05 % length of time slot in seconds

fIncrement=1e-1; % increment of function argument

%}

%{

Amplitude=2; % two-d sinusoid

dT=5e-1 % length of time slot in seconds

fIncrement=1e-1; % increment of function argument

%}

157

tic

count=0;

for H=0:fIncrement:R

 %Vertex(:,3)=(R^2-(Vertex(:,1)-H).^2-(Vertex(:,2)-K).^2).^0.5; % sphere

 %Vertex(:,3)=(R^2-(Vertex(:,1)-H).^2).^0.5; % 2-D cylinder

 %Vertex(:,3)=(R^2-(Vertex(:,1)-H).^2+(Vertex(:,2)-K).^2).^0.5; % spheroid

cylinder

 %Vertex(:,3)=((Vertex(:,1)-H).*(Vertex(:,2)-K))/R; % hyperbola

 %Vertex(:,3)=R-abs(Vertex(:,1)-H); % 1D absolute value

 %Vertex(:,3)=R-abs(Vertex(:,1)-H)-abs(Vertex(:,2)-K); % 2D absolute value

 Vertex(4,3)=H;

 %{

 Vertex(:,3)=((abs(sin(Vertex(:,1)-H))<fIncrement)|last).*sin(Vertex(:,1)-H); % 1D

sinusoid

 last=last|(abs(sin(Vertex(:,1)-H))<fIncrement);

 %}

 %{

 Vertex(:,3)=((sin(Vertex(:,1)-H)<fIncrement)|last)*R/2.*sin(Vertex(:,1)-H)+...

 ((sin(Vertex(:,2)-H)<fIncrement)|last1)*R/2.*sin(Vertex(:,2)-H); % 2D

sinusoid

 last=last|(abs(sin(Vertex(:,1)-H))<fIncrement);

 last1=last1|(abs(sin(Vertex(:,2)-H))<fIncrement);

 %}

158

 %{

 Vertex(:,3)=((sin(Vertex(:,1)-H)<fIncrement)|last)*R/2.*sin(Vertex(:,1)-H)+...

 ((cos(Vertex(:,2)-H)<fIncrement)|last1)*R/2.*cos(Vertex(:,2)-H); % 2D offset

sinusoid

 last=last|(abs(sin(Vertex(:,1)-H))<fIncrement);

 last1=last1|(abs(cos(Vertex(:,2)-H))<fIncrement);

 %}

 % Change all points not on function to zero

 Vertex(:,3)=(imag(Vertex(:,3))==0).*Vertex(:,3);

 % set low point to 0

 Vertex(:,3)=Vertex(:,3)-min(Vertex(:,3));

 %Vertex(:,3)=Vertex(:,3)+2.5;

 % make sure links do not exceed max length - x and y are fixed

 Vertex(:,3)=Amplitude*Vertex(:,3);

 while max(Vertex(:,3))>((((1+1/3)*L)^2-L^2)^0.5)

 Vertex(:,3)=Vertex(:,3)*0.999

 end

 %TODO:GlobalVertex=GlobalCoordinates(Edge,Vertex);

 %F=CalculateLinkForces(Edge,Vertex);

 %TODO: Check F to make sure max actuator force is not exceeded

 [Normal newVertex newFace d LinkAngle]=NormAndOffset(Face,Vertex,Dia);

 [FaceAngle direction Sign]=CalculateAngle(M,M1,d,Normal,direction,Sign);

159

 count=count+1;

 maxcheckangle(count)=max((FaceAngle));

 mincheckangle(count)=min((FaceAngle));

 %{

 GeometryData={Face,Edge,Vertex,newVertex,newFace,Normal,FaceAngle};

 GraphObjectData=plotvariables(GeometryData,GraphObjectData);

 %}

 ChangeofLinkLength=d(M)-tempd;% for output to microcontroller

 ChangeofAngle=FaceAngle-tempA;% for output to microcontroller

 ChangeofAngle=ChangeofAngle(:,[2,3,6:8,12])';

 max(ChangeofAngle);

 tempd=d(M); tempA=FaceAngle;

 numSteps=[ChangeofLinkLength/linearstep;ChangeofAngle/rotarystep];

 %{

 if ~min(min(sign(ChangeofLinkLength)~=sign(TempChangeofLinkLength)))

 count=count+1

 end

 TempChangeofLinkLength=ChangeofLinkLength;

 %}

 %{

 max(max(abs(FaceAngle)))

 max(max(abs(d)))

 pause

160

 %}

 if max(abs(numSteps))~=0

 MaxNumSteps=max(max(abs(numSteps)));

 V=MaxV*numSteps/MaxNumSteps;

 Slots=ceil(MaxNumSteps./max(abs(V))/dT);

 d0=fix(V*dT);

 for n=1:Slots

 pStep=pStep+V*dT-d0;

 if(abs(pStep)>=1)

 StepArray(:,n)=d0+sign(d0);

 pStep=pStep-sign(pStep);

 else

 StepArray(:,n)=d0;

 end

 end

 if (round(abs(pStep))==1) %account for round-off error

 StepArray(:,n)=StepArray(:,n)+sign(pStep);

 end

 StepOut(:,S+1:S+size(StepArray,2))=StepArray;

 S=size(StepOut,2);

 end

end

161

last=0;last1=0;

for H=R:-fIncrement:0

 %Vertex(:,3)=(R^2-(Vertex(:,1)-H).^2-(Vertex(:,2)-K).^2).^0.5; % sphere

 %Vertex(:,3)=(R^2-(Vertex(:,1)-H).^2).^0.5; % 2-D cylinder

 %Vertex(:,3)=(R^2-(Vertex(:,1)-H).^2+(Vertex(:,2)-K).^2).^0.5; % spheroid

cylinder

 %Vertex(:,3)=((Vertex(:,1)-H).*(Vertex(:,2)-K))/R; % hyperbola

 %Vertex(:,3)=R-abs(Vertex(:,1)-H); % 1D absolute value

 %Vertex(:,3)=R-abs(Vertex(:,1)-H)-abs(Vertex(:,2)-K); % 2D absolute value

 Vertex(4,3)=H;

 %{

 Vertex(:,3)=(~((abs(sin(Vertex(:,1)-H))<fIncrement)|last)).*sin(Vertex(:,1)-H); %

1D sinusoid

 last=(last|(abs(sin(Vertex(:,1)-H))<fIncrement));

 %}

 %{

 Vertex(:,3)=(~((sin(Vertex(:,1)-H)<fIncrement)|last))*R/2.*sin(Vertex(:,1)-H)+...

 (~((sin(Vertex(:,2)-H)<fIncrement)|last1))*R/2.*sin(Vertex(:,2)-H); % 2D

sinusoid

 last=last|(abs(sin(Vertex(:,1)-H))<fIncrement);

 last1=last1|(abs(sin(Vertex(:,2)-H))<fIncrement);

 %}

 %{

162

 Vertex(:,3)=((sin(Vertex(:,1)-H)<fIncrement)|last)*R/2.*sin(Vertex(:,1)-H)+...

 ((cos(Vertex(:,2)-H)<fIncrement)|last1)*R/2.*cos(Vertex(:,2)-H); % 2D offset

sinusoid

 last=last|(abs(sin(Vertex(:,1)-H))<fIncrement);

 last1=last1|(abs(cos(Vertex(:,2)-H))<fIncrement);

 %}

 % Change all points not on function to zero

 Vertex(:,3)=(imag(Vertex(:,3))==0).*Vertex(:,3);

 % set low point to 0

 Vertex(:,3)=Vertex(:,3)-min(Vertex(:,3));

 %Vertex(:,3)=Vertex(:,3)+2.5;

 % make sure links do not exceed max length - x and y are fixed

 Vertex(:,3)=Amplitude*Vertex(:,3);

 while max(Vertex(:,3))>((((1+1/3)*L)^2-L^2)^0.5)

 Vertex(:,3)=Vertex(:,3)*0.999

 end

 %TODO:GlobalVertex=GlobalCoordinates(Edge,Vertex);

 %F=CalculateLinkForces(Edge,Vertex);

 %TODO: Check F to make sure max actuator force is not exceeded

 [Normal newVertex newFace d LinkAngle]=NormAndOffset(Face,Vertex,Dia);

 [FaceAngle direction Sign]=CalculateAngle(M,M1,d,Normal,direction,Sign);

 count=count+1;

 maxcheckangle(count)=max((FaceAngle));

163

 mincheckangle(count)=min((FaceAngle));

 %{

 GeometryData={Face,Edge,Vertex,newVertex,newFace,Normal,FaceAngle};

 GraphObjectData=plotvariables(GeometryData,GraphObjectData);

 %}

 ChangeofLinkLength=d(M)-tempd;% for output to microcontroller

 ChangeofAngle=FaceAngle-tempA;% for output to microcontroller

 ChangeofAngle=ChangeofAngle(:,[2,3,6:8,12])';

 tempd=d(M); tempA=FaceAngle;

 numSteps=[ChangeofLinkLength/linearstep;ChangeofAngle/rotarystep];

 %{

 if ~min(min(sign(ChangeofLinkLength)~=sign(TempChangeofLinkLength)))

 count=count+1

 end

 TempChangeofLinkLength=ChangeofLinkLength;

 %}

 %{

 max(max(abs(FaceAngle)))

 max(max(abs(d)))

 pause

 %}

 if max(abs(numSteps))~=0

 MaxNumSteps=max(max(abs(numSteps)));

164

 V=MaxV*numSteps/MaxNumSteps;

 Slots=ceil(MaxNumSteps./max(abs(V))/dT);

 d0=fix(V*dT);

 for n=1:Slots

 pStep=pStep+V*dT-d0;

 if(abs(pStep)>=1)

 StepArray(:,n)=d0+sign(d0);

 pStep=pStep-sign(pStep);

 else

 StepArray(:,n)=d0;

 end

 end

 if (round(abs(pStep))==1) %account for round-off error

 StepArray(:,n)=StepArray(:,n)+sign(pStep);

 end

 StepOut(:,S+1:S+size(StepArray,2))=StepArray;

 S=size(StepOut,2);

 end

end

max(max(maxcheckangle));

min(min(mincheckangle));

StepOut;

size(StepOut)

165

toc

%% Check

%{

xyzdistance=(Vertex(Face(N),:)-Vertex(Face(M),:));

distances=hypot(hypot(xyzdistance(:,1),xyzdistance(:,2)),xyzdistance(:,3));

%make sure distances calculated from endpoints is the same

check=distances-d(M);% should equal zero

%}

%}

function [Normal newVertex newFace d

LinkAngle]=NormAndOffset(Face,Vertex,Dia)

% Show Link Thickness by Offsetting Vertices

% redefine faces to accommodate extra vertices

newFace=zeros(length(Face),3);

for i=1:length(Face)

 for j=1:3

 x(j,:)=Vertex(Face(i,j),:);

 newFace(i,j)=3*i+j-3;

 end

 tempVertex(:,:,i)=[x(1,:);x(2,:);x(3,:);x(1,:)];

end

% offset vertices to show link thickness and calculate face normals

for k=1:length(Face)

166

 x=diff(tempVertex(:,1,k));% link lengths in x direction

 y=diff(tempVertex(:,2,k));% link lengths in y direction

 z=diff(tempVertex(:,3,k));% link lengths in z direction

 d(:,k)=(x.^2+y.^2+z.^2).^0.5;% overall link lengths

 A(1,1)=acosd((-d(2,k)^2+d(1,k)^2+d(3,k)^2)/(2*d(1,k)*d(3,k)));%angle from L1

to L3

 A(2,1)=acosd((-d(3,k)^2+d(2,k)^2+d(1,k)^2)/(2*d(2,k)*d(1,k)));%angle from L1

to L2

 A(3,1)=acosd((-d(1,k)^2+d(2,k)^2+d(3,k)^2)/(2*d(2,k)*d(3,k)));%angle from L2

to L3

 d1=Dia./2./sind(A);% offset distance in direction of links

 sx=x./d(:,k);% scale factors in x direction

 sy=y./d(:,k);% scale factors in y direction

 sz=z./d(:,k);% scale factors in z direction

 dx=(sx-[sx(3);sx(1);sx(2)]).*d1;% offset distance of vertices in x

 dy=(sy-[sy(3);sy(1);sy(2)]).*d1;% offset distance of vertices in y

 dz=(sz-[sz(3);sz(1);sz(2)]).*d1;% offset distance of vertices in z

 newVertex(3*k-2:3*k,:)=tempVertex(1:3,:,k)+[dx dy dz];% new vertices

 LinkAngle(1:3,k)=A;

 temp=cross([x(1),y(1),z(1)],[x(2),y(2),z(2)]);% compute vectors normal to faces

 Normal(k,:)=temp/(hypot(hypot(temp(1),temp(2)),temp(3)));% use unit normal

vectors

end

167

d=d';

end

function [FaceAngle,direction,Sign]=CalculateAngle(M,M1,d,Normal,direction,Sign)

% calculate angles between faces

 Angle=zeros(length(M),1);

 for i=1:length(M)

 if M(i)~=M1(i)

 temp=M(i);

 temp1=M1(i);

 while temp>length(d)

 temp=temp-length(d);

 end

 while temp1>length(d)

 temp1=temp1-length(d);

 end

 newdirection=cross(Normal(temp,:),Normal(temp1,:));

acosd(dot(direction(:,i),newdirection)/(sum(direction(:,i).^2).^0.5)/(sum(newdirec

tion.^2).^0.5));

if((acosd(dot(direction(:,i),newdirection)/(sum(direction(:,i).^2).^0.5)/(sum(newdi

rection.^2).^0.5)))>90)

 Sign(i)=-Sign(i);

 end

 direction(:,i)=newdirection;

168

 FaceAngle(i)=Sign(i)*acosd(dot(Normal(temp,:),Normal(temp1,:)));

 end

 end

end

function [GraphObjectData]=plotvariables(GeometryData,GraphObjectData)

% plot edges, face numbers, face normals, and edge angles or edge numbers

Face=GeometryData{1};

Edge=GeometryData{2};

Vertex=GeometryData{3};

newVertex=GeometryData{4};

newFace=GeometryData{5};

Normal=GeometryData{6};

link=GraphObjectData{1};

linknum=GraphObjectData{2};

NormalLine=GraphObjectData{3};

facenum=GraphObjectData{4};

TM=GraphObjectData{5};

linewidth=1;

h=findobj('Type','figure','Name','Triangular Surface');

if isempty(h)

 h=figure('Name','Triangular

Surface','NumberTitle','Off','BackingStore','Off','Color','k');

 hold on;

169

 set(gca,'DrawMode','Fast');

 set(gca,'color','k','xcolor','b','ycolor','g','zcolor','r');

 %% Initialize Plot Variables

 %Edges

 for i=1:length(Edge)

 P=Vertex(Edge(i,:),:);

 link(i)=line(P(:,1),P(:,2),P(:,3),'Color',[i-1 0 length(Edge)-i]/(length(Edge)-

1),'LineStyle','-','LineWidth',linewidth);

linknum(i)=text(sum(P(:,1))/2,sum(P(:,2))/2,sum(P(:,3))/2,num2str(i),'Horizontal

Alignment','center','Color',[i-1 0 length(Edge)-i]/(length(Edge)-1),'LineStyle','-

','LineWidth',linewidth);% Edge numbers and angles

 end

 %Faces

 for j=1:length(Face)

 P=Vertex(Face(j,:),:);

 NormalLine(j)=line(sum(P(:,1))/3+[0 2*Normal(j,1)],sum(P(:,2))/3+[0

2*Normal(j,2)],sum(P(:,3))/3+[0 2*Normal(j,3)],'Color',[j-1 length(Face)-j

0]/(length(Face)-1),'LineStyle','-','LineWidth',linewidth);

 facenum(j)=text(sum(P(:,1))/3,sum(P(:,2))/3,sum(P(:,3))/3,{''

num2str(j)},'HorizontalAlignment','center','Color',[j-1 length(Face)-j

0]/(length(Face)-1),'LineStyle','-','LineWidth',linewidth);

 end

170

TM=trimesh(newFace,newVertex(:,1),newVertex(:,2),newVertex(:,3),'FaceAlpha',0);

 axis equal vis3d;

 axis([0 max(Vertex(:,1)) 0 max(Vertex(:,2)) 0 20]);

 grid on;

 xlabel('x');ylabel('y');zlabel('z');

 camorbit(10,-30);

 rotate3d on;

end

%Edges

for i=1:length(Edge)

 P=Vertex(Edge(i,:),:);

 set(link(i),'Xdata',P(:,1),'Ydata',P(:,2),'Zdata',P(:,3));

set(linknum(i),'Position',[sum(P(:,1))/2,sum(P(:,2))/2,sum(P(:,3))/2],'String',num2

str(i));% Edge numbers and angles

end

%Faces

for j=1:length(Face)

 P=Vertex(Face(j,:),:);

 set(NormalLine(j),'Xdata',sum(P(:,1))/3+[0

2*Normal(j,1)],'Ydata',sum(P(:,2))/3+[0 2*Normal(j,2)],'Zdata',sum(P(:,3))/3+[0

2*Normal(j,3)]);

171

 set(facenum(j),'Position',[sum(P(:,1))/3,sum(P(:,2))/3,sum(P(:,3))/3],'string',{''

num2str(j)});

end

% small offset triangles

set(TM,'Vertices',newVertex);

figure(h);

drawnow

GraphObjectData={link,linknum,NormalLine,facenum,TM};

end

172

Appendix D: Online Communication

Simplex Communication

 The following code was written to test one-way online communication from

a computer to the XMOS microcontroller. This code sends musical signals to the

speaker on the microcontroller. For the purposes of this project, the speaker port

simply needs to be changed to the mechanism port, and the musical signal needs to

be changed to the mechanism control signal. This is a very simple change, and was

only not implemented due to time and licensing constraints. The code is included

only as a reference for future work.

Simplex C++

#include "stdafx.h"

#include <windows.h>

#include "ftd2xx.h"

#include <iostream>

#include <cstdio>

#include <ctime>

#define TXBUFFERSIZE 256

#define RXBUFFERSIZE 1024

using namespace std;// for cout

//forward declaration of helper functions

FT_STATUS InitXMOSComm(FT_HANDLE &myHandle);

//main program

173

int _tmain(int argc, _TCHAR* argv[])

{

 //variables

 FT_HANDLE fthandle; //special datatype to reference device to open,

passed by reference then overwritten

 FT_STATUS ftStatus; //another special datatype which indicates status of

device

 DWORD BytesWritten,BytesReceived,EventDWord; //return variables from

FT_Write or FT_Read

 DWORD RxBytes,TxBytes; //how many bytes are available in the buffer, used

in an FT_GetStatus call

 char TxBuffer[3],RxBuffer[1];

 int Notes[26]={7,5,3,5,7,7,7,5,5,5,7,10,10,7,5,3,5,7,7,7,7,5,5,7,5,3};

 int beat[26]={1,1,1,1,1,1,2,1,1,2,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,4};

 double Note=220;

 int note,loop=1;

 //open the device

 ftStatus=InitXMOSComm(fthandle);

 while(1)

 {

 //wait for bytes

 FT_GetStatus(fthandle,&RxBytes,&TxBytes,&EventDWord);

174

 if (RxBytes > 0)

 {

 FT_Read(fthandle,RxBuffer,RxBytes,&BytesReceived);//dump

start bit

 for(int i=0;i<26;i++)

 {

 //*

 for(int j=0;j<Notes[i];j++)

 {

 Note*=1.059463094; //2^(1/12)=scaling factor

for piano scale

 }

 note=Note;

 Note=220;

 //cout<<note<<"\n";

 //*/

 TxBuffer[0]=(note>>8)&0xFF; //MSByte

 TxBuffer[1]=note&0xFF; //LSByte

 TxBuffer[2]=beat[i]&0xFF; //beat

 //cout<<Notes[i]<<"\n";

175

 cout<<(TxBuffer[0]&0xFF)<<":"<<(TxBuffer[1]&0xFF)<<":"<<(TxBuffer[2]&

0xFF)<<"\n";

 FT_Write(fthandle, TxBuffer, 3, &BytesWritten);

 FT_Read(fthandle,RxBuffer,RxBytes,&BytesReceived);

 cout<<(RxBuffer[0]&0xFF)<<":"<<((TxBuffer[0]+TxBuffer[1]+TxBuffer[2])&

0xFF)<<"\n\n";

 if

((RxBuffer[0]&0xFF)!=((TxBuffer[0]+TxBuffer[1]+TxBuffer[2])&0xFF))

 {

 cout<<"Tx error. Trying again"<<"\n";

 i--;

 }

 }

 }

 }

 return 0;

}

//helper functions

FT_STATUS InitXMOSComm(FT_HANDLE &fthandle)

{

 //variables

 FT_STATUS ftStatus;

176

 double timeDiff;

 int i;

 //open the FTDI Device based on Description -> change if using different

device

 ftStatus = FT_OpenEx("XC-1A 1V0 B",FT_OPEN_BY_DESCRIPTION,&fthandle);

 if (ftStatus == FT_OK)

 { // success

 printf("Opened XMOS UART\n");

 }

 else

 { // failure

 printf("Cannot open device.\n");

 }

 // Set read timeout of 5000ms, no write timeout

 ftStatus = FT_SetTimeouts(fthandle,5000,0);

 // Set RX and TX Buffer size, 64 to 64k, multiples of 64, bigger is better

transfer rate

 ftStatus = FT_SetUSBParameters(fthandle, RXBUFFERSIZE, TXBUFFERSIZE);

 // Set RX and TX Buffer size, 64 to 64k, multiples of 64, bigger is better

transfer rate

 //ftStatus = FT_SetUSBParameters(fthandle, 64, 64);

 ftStatus = FT_SetFlowControl(fthandle, FT_FLOW_NONE, 0x11, 0x13);

177

 // Set Baud Rate to 115,200 and 8n1

 ftStatus = FT_SetBaudRate(fthandle, 115200);

 ftStatus =

FT_SetDataCharacteristics(fthandle,FT_BITS_8,FT_STOP_BITS_1,FT_PARITY_NONE);

 // Purge both Rx and Tx buffers

 ftStatus = FT_Purge(fthandle, FT_PURGE_RX | FT_PURGE_TX);

 return ftStatus;

}

Simplex XC

// System headers

#include <xs1.h>

#include <platform.h>

#include <print.h>

#define BIT_TIME XS1_TIMER_HZ / 115200

#define MM 120 //tempo in beats per second ("Maelzel's Metronome")

buffered out port:1 p_spk = XS1_PORT_1K;

out port UART_TX_PORT = PORT_UART_TX; // 1bit port Tx

in port UART_RX_PORT = PORT_UART_RX; // 1bit port Rx

// Functions

unsigned char getch(void);

void putch(unsigned char buffer);

void uart_configure(int baud_rate);

178

void play(int note, int beats, int octave);

// Global state

static unsigned bit_time = 0;

/** Initialize UART... bit_time

 * Its fixed to, Data : 8bits, Parity : None, Stop : 1bit, Flow control : none.

 */

void uart_configure(int baud_rate)

{

 bit_time = XS1_TIMER_MHZ * 1000000 / (unsigned) baud_rate;

 UART_TX_PORT <: 1;

}

/** UART receive a character **/

unsigned char getch(void)

{

 unsigned data = 0, time;

 int i;

 unsigned char c;

 // Wait for stop bit

 UART_RX_PORT when pinseq (1) :> int _;

 // wait for start bit

 UART_RX_PORT when pinseq (0) :> int _ @ time;

179

 time += BIT_TIME + (BIT_TIME >> 1);

 // sample each bit in the middle.

 for (i = 0; i < 8; i += 1)

 {

 UART_RX_PORT @ time :> >> data;

 time += BIT_TIME;

 }

 // reshuffle the data.

 c = (unsigned char) (data >> 24);

 return c;

}

/** UART transmit a character. This is blocking call for now. */

void putch(unsigned char buffer)

{

 unsigned time, data;

 data = buffer;

 // get current time from port with force out.

 UART_TX_PORT <: 1 @ time;

 // Start bit.

 UART_TX_PORT <: 0;

 // Data bits.

180

 for (int i = 0; i < 8; i += 1)

 {

 time += bit_time;

 UART_TX_PORT @ time <: >> data;

 }

 // Stop bit

 time += bit_time;

 UART_TX_PORT @ time <: 1;

 time += bit_time;

 UART_TX_PORT @ time <: 1;

}

void play(int note, int beats, int octave)

{

 int note_delay=100000000/(2*note);

 int time, spkVal = 0, x = 2, lowoctave=1;

 timer t;

 if (octave>0)

 {

 for (int k=0;k<(octave-1);k++)

 {

 x*=2;

 }

 octave=x;

181

 }

 if (octave<0)

 {

 for (int k=(octave+1);k<0;k++)

 {

 x*=2;

 }

 lowoctave=x;

 octave=1;

 }

 if (octave==0)octave=1;

 for (int i=0;i<beats;i++)

 {

 for (int j=0;j<(100000000/note_delay*60/MM*octave/lowoctave);j++)

 {

 p_spk <: spkVal;

 t :> time;

 t when timerafter(time + note_delay/octave*lowoctave) :> void;

 spkVal = !spkVal;

 }

 }

 t :> time;

 t when timerafter(time + 100000) :> void;//pause for a millisecond between notes

182

}

int main(void)

{

 int octave=0; // 0 is middle octave; -1 is one octave lower, and 1 is one octave

higher

 int note2,note1,note,beat;

 uart_configure(115200);

 putch(1);

 while(1)

 {

 note1=getch();

 note2=getch();

 beat=getch();

 note=(note1<<8)+note2;

 play(note,beat,octave);

 putch((note1+note2+beat)&0xFF);

 }

}

Duplex Communication

 The next step is to test duplex (bidirectional) communication between the

computer and the microcontroller. The example used is a simple binary calculator

that utilizes the buttons on the microcontroller for input. This manual feedback can

183

easily be obtained from sensors rather than the buttons if and when sensors are

introduced to the mechanism. This code is also given solely for future research

efforts.

Duplex C++

#include "stdafx.h"

#include <windows.h>

#include "ftd2xx.h"

#include <iostream>

#include <cstdio>

#include <ctime>

#define TXBUFFERSIZE 256

#define RXBUFFERSIZE 1024

using namespace std;// for cout

//forward declaration of helper functions

FT_STATUS InitXMOSComm(FT_HANDLE &myHandle);

//main program

int _tmain(int argc, _TCHAR* argv[])

{

184

 //variables

 FT_HANDLE fthandle; //special datatype to reference device to open,

passed by reference then overwritten

 FT_STATUS ftStatus; //another special datatype which indicates status of

device

 DWORD BytesWritten,BytesReceived,EventDWord; //return variables from

FT_Write or FT_Read

 DWORD RxBytes,TxBytes; //how many bytes are available in the buffer, used

in an FT_GetStatus call

 char TxBuffer[3],RxBuffer[3];

 int Total=0,loop=1;

 //open the device

 ftStatus=InitXMOSComm(fthandle);

 while(1)

 {

 //wait for bytes

 FT_GetStatus(fthandle,&RxBytes,&TxBytes,&EventDWord);

 if (RxBytes > 2)

185

 {

 while(loop)

 {

 FT_Read(fthandle,RxBuffer,RxBytes,&BytesReceived);

 cout<<"Rx:

"<<(RxBuffer[1]&0xFF)<<":"<<(RxBuffer[0]&0xFF)<<(RxBuffer[2]&0xFF)<<"\n";

 if(RxBuffer[2]==(RxBuffer[0]+RxBuffer[1]))

 {

 Total+=(RxBuffer[0]&0xFF)+((RxBuffer[1]&0xFF)<<8);

 TxBuffer[0]=Total&0xFF; //LSByte

 TxBuffer[1]=((Total&0xFFFF)>>8)&0xFF;

//MSByte

 TxBuffer[2]=TxBuffer[0]+TxBuffer[1];

//checksum

 FT_Write(fthandle, TxBuffer, 3, &BytesWritten);

 cout << "Sum:

"<<(TxBuffer[1]&0xFF)<<":"<<(TxBuffer[0]&0xFF)<<"\n";

 loop=0;

186

 }

 else

if(((RxBuffer[0]+RxBuffer[1])==0)&&(RxBuffer[2]==1))

 {

 Total=0;

 TxBuffer[0]=0&0xFF; //LSByte

 TxBuffer[1]=0&0xFF; //MSByte

 TxBuffer[2]=TxBuffer[0]+TxBuffer[1];

//checksum

 FT_Write(fthandle, TxBuffer, 3, &BytesWritten);

 cout<<"Total Cleared\n";

 loop=0;

 }

 else

 {

 loop=1;

 }

 }

187

 loop=1;

 }

 }

 return 0;

}

//helper functions

FT_STATUS InitXMOSComm(FT_HANDLE &fthandle)

{

 //variables

 FT_STATUS ftStatus;

 double timeDiff;

 int i;

 //open the FTDI Device based on Description -> change if using

different device

 ftStatus = FT_OpenEx("XC-1A 1V0 B",FT_OPEN_BY_DESCRIPTION,&fthandle);

 if (ftStatus == FT_OK)

 { // success

188

 printf("Opened XMOS UART\n");

 }

 else

 { // failure

 printf("Cannot open device.\n");

 }

 // Set read timeout of 5000ms, no write timeout

 ftStatus = FT_SetTimeouts(fthandle,5000,0);

 // Set RX and TX Buffer size, 64 to 64k, multiples of 64, bigger is better

transfer rate

 ftStatus = FT_SetUSBParameters(fthandle, RXBUFFERSIZE, TXBUFFERSIZE);

 // Set RX and TX Buffer size, 64 to 64k, multiples of 64, bigger is better

transfer rate

 //ftStatus = FT_SetUSBParameters(fthandle, 64, 64);

 ftStatus = FT_SetFlowControl(fthandle, FT_FLOW_NONE, 0x11, 0x13);

 // Set Baud Rate to 115,200 and 8n1

 ftStatus = FT_SetBaudRate(fthandle, 115200);

189

 ftStatus =

FT_SetDataCharacteristics(fthandle,FT_BITS_8,FT_STOP_BITS_1,FT_PARITY_NONE);

 // Purge both Rx and Tx buffers

 ftStatus = FT_Purge(fthandle, FT_PURGE_RX | FT_PURGE_TX);

 return ftStatus;

}

Duplex XC

// System headers

#include <xs1.h>

#include <platform.h>

#include <print.h>

#define SEC 100000000

#define BIT_TIME XS1_TIMER_HZ / 115200

/* Port declarations */

// Keys/Key-leds

out port p_kled = PORT_BUTTONLED; //4 bits for 4 green leds near buttons

in port p_key = PORT_BUTTON; //4 bits for 4 buttons

// 'Clock' leds

out port p_cled_g = PORT_CLOCKLED_SELG;

out port p_cled_r = PORT_CLOCKLED_SELR;

190

out port p_cled_0 = PORT_CLOCKLED_0; //8 bit port bits 4,5,6 from right ->

0b01110000 turns all on

out port p_cled_1 = PORT_CLOCKLED_1; //note this is on a different core

out port p_cled_2 = PORT_CLOCKLED_2; //note this is on a different core

out port p_cled_3 = PORT_CLOCKLED_3; //note this is on a different core

buffered out port:32 p_spk = PORT_SPEAKER;

out port UART_TX_PORT = PORT_UART_TX; // 1bit port Tx

in port UART_RX_PORT = PORT_UART_RX; // 1bit port Rx

// Functions

unsigned char uart_getch(void);

void uart_putch(unsigned char buffer);

void uart_configure(int baud_rate);

void ledSlaves(chanend cLED, out port p);

void setLEDtoRed();

void setLEDtoGreen();

void TurnAllLEDsOff(chanend cLED[3]);

void LightUp(chanend cLED[3], int a);

// Global state

static unsigned bit_time = 0;

void wait(timer tmr, unsigned delay)

{

 unsigned t;

 tmr :> t;

191

 tmr when timerafter(t + delay) :> t;

}

/** Initialize UART... bit_time

 * Its fixed to, Data : 8bits, Parity : None, Stop : 1bit, Flow control : none.

 */

void uart_configure(int baud_rate)

{

 bit_time = XS1_TIMER_MHZ * 1000000 / (unsigned) baud_rate;

 UART_TX_PORT <: 1;

}

/** UART receive a character **/

unsigned char uart_getch(void)

{

 unsigned data = 0, time;

 int i;

 unsigned char c;

 // Wait for stop bit

 UART_RX_PORT when pinseq (1) :> int _;

 // wait for start bit

 UART_RX_PORT when pinseq (0) :> int _ @ time;

 time += BIT_TIME + (BIT_TIME >> 1);

 // sample each bit in the middle.

 for (i = 0; i < 8; i += 1)

192

 {

 UART_RX_PORT @ time :> >> data;

 time += BIT_TIME;

 }

 // reshuffle the data.

 c = (unsigned char) (data >> 24);

 return c;

}

/** UART transmit a character. This is blocking call for now. */

void uart_putch(unsigned char buffer)

{

 unsigned time, data;

 data = buffer;

 // get current time from port with force out.

 UART_TX_PORT <: 1 @ time;

 // Start bit.

 UART_TX_PORT <: 0;

 // Data bits.

 for (int i = 0; i < 8; i += 1)

 {

 time += bit_time;

 UART_TX_PORT @ time <: >> data;

 }

193

 // Stop bit

 time += bit_time;

 UART_TX_PORT @ time <: 1;

 time += bit_time;

 UART_TX_PORT @ time <: 1;

}

void LightUp(chanend cLED[3], int a)

{

 a&=0xFFF; //12-bit max, cut off extra

 p_cled_0 <: (a&7)<<4; //7 is binary 111

 cLED[0] <: ((a>>3)&7)<<4;

 cLED[1] <: ((a>>6)&7)<<4;

 cLED[2] <: ((a>>9)&7)<<4;

}

//slaves that are run on

void ledSlaves(chanend cLED, out port p)

{

 int x;

 while (1)

 {

 cLED :> x;

 p <: x;

 }

194

}

//helper functions

void setLEDtoRed()

{

 p_cled_g <: 0;

 p_cled_r <: 1;

}

void setLEDtoGreen()

{

 p_cled_g <: 1;

 p_cled_r <: 0;

}

//help function, run from core0 only

void TurnAllLEDsOff(chanend cLED[3])

{

 p_cled_0 <: 0; //core0

 cLED[0] <: 0; //core 1

 cLED[1] <: 0; //core 2

 cLED[2] <: 0; //core 3

}

//main function that runs on core0

void masterThread(chanend cLED[3])

195

{

 //variables

 char buttonValue;

 int a,i=0,j=0,b=0xF,Total=0,loop=1;

 uart_configure(115200);

 setLEDtoGreen();

 p_kled <: b; //turn on green lights near buttons

 while(1){ //loop forever

 //TurnAllLEDsOff(cLED); //turn off all LEDS

 p_key :> buttonValue; //read buttons

 if (buttonValue == 0b0111) //button 1 (1)

 {

 b^=1<<3; //alternate button led so you know if button push

was registered

 p_kled <: b;

 i*=2;//shifts left by one to add a zero to the right side of the

number

 i+=1;//adds one to change the above mentioned zero to a one

 LightUp(cLED,i); //displays number as you type to make sure

you are typing what you think you are

 for (a=0;a<(SEC/20);a++);//debouncing

 }

196

 else if (buttonValue == 0b1011) //button 2 (0)

 {

 b^=1<<2;//alternate button led so you know if button push

was registered

 p_kled <: b;

 i*=2;//shifts left by one to add a zero to the right side of the

number

 LightUp(cLED,i);//displays number as you type to make sure

you are typing what you think you are

 for (a=0;a<(SEC/20);a++);//debouncing

 }

 else if (buttonValue == 0b1101)//button 3 (+)

 {

 while(loop)

 {

 b^=1<<1;//alternate button led so you know if button

push was registered

 p_kled <: b;

 uart_putch(i&0xFF);//send two bytes because up to 11-

bit numbers can be added

 uart_putch((i>>8)&0xFF);

 uart_putch((i&0xFF)+((i>>8)&0xFF));//checksum

 i=uart_getch()&0xFF;

197

 j=uart_getch()&0xFF;

 if(((i+j)&0xFF)==(uart_getch()&0xFF))

 {

 Total=i+(j<<8);

 LightUp(cLED,Total);//displays current total

 i=0;

 loop=0;

 }

 else

 {

 loop=1;

 }

 for (a=0;a<(SEC/20);a++);//debouncing

 }

 loop=1;

 }

 else if (buttonValue == 0b1110) //button 4 (clear)

 {

 while(loop)

 {

 b^=1;//alternate button led so you know if button push

was registered

 p_kled <: b;

198

 uart_putch(0&0xFF);//send two bytes because up to

11-bit numbers can be added

 uart_putch(0&0xFF);

 uart_putch((0&0xFF)+(1&0xFF));//checksum

 i=uart_getch()&0xFF;

 j=uart_getch()&0xFF;

 if((i+j)==uart_getch())

 {

 Total=i+(j<<8);

 LightUp(cLED,Total);//displays current total

(zero)

 i=0;

 loop=0;

 }

 else

 {

 loop=1;

 }

 for (a=0;a<(SEC/20);a++);//debouncing

 }

 loop=1;

 }

 }

199

}

//program entry point for all cores

int main(){

 chan cLED[3]; //communication channels

// uart_configure(UART_115200); //set up the uart

 par {

 on stdcore[0]: masterThread(cLED);

 on stdcore[1]: ledSlaves(cLED[0], p_cled_1);

 on stdcore[2]: ledSlaves(cLED[1], p_cled_2);

 on stdcore[3]: ledSlaves(cLED[2], p_cled_3);

 }

 return 0;

}

200

REFERENCES
[1] Hamlin, G.J.; Sanderson, A.C., "A novel concentric multilink spherical joint with
parallel robotics applications," Robotics and Automation, 1994. Proceedings., 1994
IEEE International Conference on , vol., no., pp.1267-1272 vol.2, 8-13 May 1994
[2] Merlet, Jean-Pierre (2000). Parallel Robots. Norwell, Massachusetts: Kluwer
Academic Publishers Group.
[3] A Y N Sofla; D M Elzey; H N G Wadley, "Shape morphing hinged truss structures,
"Smart Materials and Structures, vol.18, no. 6, 8 pp., Jun 2009
[4] Hamlin, G.J.; Sanderson, A.C. (1998). Tetrobot: A Modular Approach to
Reconfigurable Parallel Robotics. Norwell, Massachusetts: Kluwer Academic
Publishers Group.
[5] P.C. Hughes; W.G. Sincarsin; K.A. Carroll, "Trussarm—A Variable-Geometry-
Truss Manipulator, "Journal of Intelligent Material Systems and Structures, vol. 2,
no. 2, pp. 148-160, April 1991
[6] Kei Senda; Hidefumi Kawano; Akihiro Ando; Yoshisada Murotsu, "Efficient
formulation of inverse dynamics and control application to a planar variable
geometry truss," Smart Materials and Structures, vol.8, no.6, pp.839-846, Dec 1999
[7] Wang, J., & Hy, Q. (1999). A Lagrangian Network for Kinematic Control of
Redundant Robot Manipulators. IEEE Transactions on Neural Networks, 10(5),
1123.
[8] Wunderlich, Walter; Pilkey, Walter D. (2003). Mechanics of Structures Variational
and Computational Methods Second Edition. Bora Raton, Florida: CRC Press LLC
[9] Athans, Michael; Falb, Peter L. (1966). Optimal Control. New York / St. Louis /
San Francisco / Toronto / London / Sydney: McGRAW-HILL BOOK COMPANY.
[10] Kwakernaak, Huibert; Sivan, Raphael (1972). Linear Optimal Control Systems.
New York / London / Sydney / Toronto: WILEY-INTERSCIENCE, a Division of John
Wiley & Sons, Inc.
[11] Boltcheva, D., Yvinec, M., & Boissonnat, J. (2009). Feature preserving Delaunay
mesh generation from 3D multi-material images. Computer Graphics Forum, 28(5),
1455-1464.
[12] Decayeux, C., & Semé, D. (2005). 3D Hexagonal Network: Modeling, Topological
Properties, Addressing Scheme, and Optimal Routing Algorithm. IEEE Transactions
on Parallel & Distributed Systems, 16(9), 875-884.
[13] Dyken, C., Reimers, M., & Seland, J. (2009). Semi-Uniform Adaptive Patch
Tessellation. Computer Graphics Forum, 28(8), 2255-2263.
[14] Jilani, H., Bahreininejad, A., & Ahmadi, M. (2009). Adaptive finite element mesh
triangulation using self-organizing neural networks. Advances in Engineering
Software, 40(11), 1097-1103.

201

[15] Dereudre, D., & Lavancier, F. (2011). Practical simulation and estimation for
Gibbs Delaunay–Voronoi tessellations with geometric hardcore interaction.
Computational Statistics & Data Analysis, 55(1), 498-519.
[16] Peyré, G., & Cohen, L. (2006). Geodesic Remeshing Using Front Propagation.
International Journal of Computer Vision, 69(1), 145-156.
[17] Tlili, S., & Mibar, H. (2009). Dynamic Output Feedback For Nonlinear Systems
Using Linear Technique. AIP Conference Proceedings, 1107(1), 216-221.
[18] Anh, H. (2010). Online tuning gain scheduling MIMO neural PID control of the
2-axes pneumatic artificial muscle (PAM) robot arm. Expert Systems with
Applications, 37(9), 6547-6560.
[19] Long, C., & Jin-chao, X. (2004). OPTIMAL DELAUNAY TRIANGULATIONS.
Journal of Computational Mathematics, 22(2), 299-308.
[20] Jürgen Elstrodt, "The Life and Work of Gustav Lejeune Dirichlet (1805–1859), "
Clay Mathematics Proceedings, vol. 7, 2007
[21] Kristof Van Laerhoven. (~1995). Voronoi Diagrams & Delaunay Triangulation.
In Lancaster University Computer Science. Retrieved October 14, 2009, from
http://www.comp.lancs.ac.uk/~kristof/research/notes/voronoi/index.html.

[22] H. Z. Li, Z. M. Gong, W. Lim, and T. Lippa , "Motion profile planning for reduced
jerk and vibration residuals", SIMTech Technical Reports, Volume 8 Number 1, Jan-
Mar 2007.

[23] Carl de Boor (1978). A Practical Guide to Splines. Springer-Verlag. pp. 113–114.
[24] Beauchemin, G., & Budimir, M. (2003). Microstepping myths. Machine Design,
75(19), 86.
[25] Hamlin, G.J.; Sanderson, A.C., "Tetrobot: a modular system for hyper-redundant
parallel robotics ," Robotics and Automation, 1995. Proceedings., 1995 IEEE
International Conference on , vol.1, no., pp.154-159 vol.1, 21-27 May 1995
[26] Hamlin, G.J.; Sanderson, A.C., "TETROBOT: a modular approach to parallel
robotics," Robotics & Automation Magazine, IEEE , vol.4, no.1, pp.42-50, Mar 1997
[27] Hamlin, G.J.; Sanderson, A.C., "TETROBOT modular robotics: prototype and
experiments," Intelligent Robots and Systems '96, IROS 96, Proceedings of the 1996
IEEE/RSJ International Conference on , vol.2, no., pp.390-395 vol.2, 4-8 Nov 1996
[28] Sangveraphunsiri, V., & Chooprasird, K. (2011). Dynamics and control of a 5-
DOF manipulator based on an H-4 parallel mechanism. International Journal of
Advanced Manufacturing Technology, 52(1-4), 343-364.
[29] Abdellatif, H., & Heimann, B. (2009). Computational efficient inverse dynamics
of 6-DOF fully parallel manipulators by using the Lagrangian formalism. Mechanism
& Machine Theory, 44(1), 192-207.

202

[30] Yasuda, G. (2003). Distributed autonomous control of modular robot systems
using parallel programming. Journal of Materials Processing Technology, 141(3),
357.
[31] Bamberger, H., & Shoham, M. (2007). A Novel Six Degrees-of-Freedom Parallel
Robot for MEMS Fabrication. IEEE Transactions on Robotics, 23(2), 189-195.
[32] W. L., X., Pap, J. S., & Bronlund, J. J. (2008). Design of a Biologically Inspired
Parallel Robot for Foods Chewing. IEEE Transactions on Industrial Electronics,
55(2), 832-841.
[33] Guilbert, M. M., Joly, L. L., & Wieber, P. B. (2008). Optimization of Complex
Robot Applications under Real Physical Limitations. International Journal of
Robotics Research, 27(5), 629-644.
[34] Choi, J., Mori, O., Tsukiai, T., & Omata, T. (2004). Self-reconfigurable planar
parallel robot in the horizontal plane. Advanced Robotics, 18(1), 45-60.

203

VITA

Graduate College

University of Nevada, Las Vegas

Christopher James Salisbury

Degrees:

Bachelor of Science, Mechanical Engineering, 2009

University of Nevada, Las Vegas

Publications:

Chris Salisbury. (2011). Dynamic Finite Element Analysis of a Highly Parallel

Robotic Surface. Proceedings from SMASIS2011: The ASME 2011 Conference on

Smart Materials, Adaptive Structures and Intelligent Systems, Paper 4974.

Scottsdale, AZ.

Chris Salisbury, Woosoon Yim. (2011). Finite Element Analysis of a Highly Parallel

Robotic Surface. Proceedings from IMECE2011: The ASME 2011 International

Mechanical Engineering Congress & Exposition, Paper 63960. Denver, CO.

