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ABSTRACT 

A Study of a Novel Modular Variable Geometry Frame 

Arranged as a Robotic Surface  

  

by  

  

Christopher James Salisbury 

  

Dr. Woosoon Yim, Examination Committee Chair  

Professor of Mechanical Engineering 

University of Nevada, Las Vegas 

 

 The novel concept of a "variable geometry frame" is introduced and explored 

through a three-dimensional robotic surface which is devised and implemented 

using triangular modules. The link design is optimized using surplus motor 

dimensions as firm constraints, and round numbers for further arbitrary 

constraints. Each module is connected by a passive six-bar mechanism that mimics 

the constraints of a spherical joint at each triangle intersection. A three dimensional 

inkjet printer is used to create a six-module prototype designed around surplus 

stepper motors powered by an old computer power supply as a proof-of-concept 

example. 

 The finite element method is applied to the static and dynamic loading of this 

device using linear three dimensional (6 degrees of freedom per node) beam 
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elements to calculate the cartesian displacement and force and the angular 

displacement and torque at each joint. In this way, the traditional methods of finding 

joint forces and torques are completely bypassed. An efficient algorithm is 

developed to linearly combine local stiffness matrices into a full structural stiffness 

matrix for the easy application of loads. This is then decomposed back into the local 

matrices to easily obtain joint variables used in the design and open-loop control of 

the surface. 

 Arbitrary equation driven surfaces are approximated ensuring that they are 

within the joints limits. Moving shapes are then calculated by considering the initial 

position of the surface, the desired position of the surface, and intermediate shapes 

at discrete times along the desired path.  

 There are no sensors on the prototype, but feedback models and state 

estimators are developed for future use. These models include shape sampling 

methods derived from existing meshing algorithms, trajectory planning using 

sinusoidal acceleration profiles, spline-based path approximation to allow lower 

curvature paths able to be traversed more quickly and/or able to be travelled with a 

constant velocity and optimized by iteratively calculating actuator saturation with 

no discontinuities, and the optimal tracking of a desired path (modeled with a time-

varying ricatti equation). 
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PREFACE  

 This project has been incredibly stimulating, and has provided an excellent 

platform for learning. Because it is an extremely broad project, there are many 

aspects that are discussed, but none are explored fully. I have tried to balance the 

information presented, but in certain cases, one may find too much detail about a 

simple matter, or not enough detail about a complex matter. In the former case, the 

reader is encouraged to skim through trivialities if they are deemed to be very well 

understood. In the latter case, references have been included for the interested 

reader to begin a more in-depth analysis. 
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CHAPTER 1 

INTRODUCTION 

Goals and Initial Ideas 

 A mechanical surface able to approximate arbitrary shapes was desired, and 

toward this end, many ideas were considered. Throughout this process, many 

possible applications were discovered and ultimately the most versatile and easily 

implemented design was chosen. The most interesting of these designs are 

discussed below.  

 One of the first ideas was to use rods moving up and down in a vertical 

fashion with the ends of the rods forming the desired surface. This would require 

the control of many rods in order to achieve a reasonable resolution, but is very 

easily scaled to large sizes as the rods are operated independently of each other. 

This type of device can be used as a display or a mold for casting prototypes, but 

cannot be used for robotic manipulation. It can also only produce shapes as a 

function of height. This limits the shapes to have no overhang/undercut as there can 

only be one height value for each rod at a given time. Using rods also allows for (and 

necessitates) discontinuous surfaces. 

 Another early idea was silicone impregnated with a ferrous metal which is 

then moved by changing magnetic fields. This allows for a different class of shapes 

to be formed, but the shape resolution is dependent on the number and location of 

magnetic field generators and control therefore becomes very difficult. It also 

requires a tremendous amount of energy. 
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 Also among the early contenders was the idea of a variable geometry frame 

(VGF). The first such idea was a four-bar mechanism composed of four equal links 

connected by parallel revolute joints formed into rhombic modules with each 

module connected by revolute and prismatic joints. This is the first concept 

considered that had the potential for robotic manipulation and self-transportation. 

It is also not limited to functions of height as with the rod idea and also does not 

have resistive spring forces increasing the energy requirements proportionally to 

the distance from the neutral position as with the silicone idea. As such, a prototype 

model was drawn up for a more detailed analysis. Nine actuators are required for 

each module, and the motion is severely limited as the number of modules 

increases. This extremely high complexity for the mediocre results was deemed 

impractical, but it did show the potential of VGFs. 

 

 
Figure 1: Left: A single rhombic module. Right: Nine modules connected with 
revolute and prismatic joints. 
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Figure 2: Example positions of a nine-module rhombic surface. 

 

 In order to reduce the complexity of the modules, triangular modules were 

considered. To remove the limitation of additional modules connected in parallel, 

variable link lengths became apparently necessary. Thus, triangular modules with 

variable link lengths were considered. Each module could now be connected to 

adjacent modules with only a revolute joint. These modules only require six 

actuators per module, and adding modules does not limit the motion of the existing 

modules in the way that the rhomboidal modules did. Initially sliding revolute joints 

were considered (Figure 3), but eventually these were eschewed in favor of six-bar 

revolute joints which reduced friction and weight. By using triangular modules of 

this type, we can take advantage of the wide variety of computer graphics and finite 

element algorithms currently available. 
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Figure 3: Left: Initial shape of one triangular module with sliding revolute joints 
(with the edges of adjacent modules attached to show out of plane motion). Right: 
Assembly of many modules. Actuators are not shown.  
 

 

 A robotic surface composed of triangular modules is able to perform most of 

the functions of a traditional robotic arm, as well as the functions of many surfaces 

and structures. A triangular modular approach allows us take advantage of the large 

number of computer graphics and finite element algorithms available to accurately 

approximate any arbitrary surface within the joint range as well as calculate the 

kinematics, dynamics, and related forces. Since the actual shape is that of beam 

elements arranged into triangles, there is little need to approximate the robot's 

shape with other discrete elements. This greatly eases the control of the surface, and 

allows the approximate duplication of any C0 continuous surface. This includes 

surfaces other than Euclidean functions - that is to say that for a single input, there 

can be multiple outputs (e.g., a sphere can be approximated). 
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Figure 4: One module of a robotic surface – composed of three actuated prismatic 
joints (number 1 in the figure), three actuated rotary joints (number 2 in the figure), 
and three passive rotary joints (number 3 in the figure). 
 
 

 One module consists of three actuated revolute joints, three passive six-bar 

joints, and three actuated prismatic joints (shown in Figure 4). The six-bar joint is a 

modification of Hamlin and Sanderson's concentric multilink spherical joint [1]. It 

has been modified by placing the six-bar mechanism out of plane with the other 

rotary joints (numbered "2" in Figure 4) so that the axes of rotation intersect, 

avoiding  the need for any offset in the individual six-bar links (Figure 5). Because 

the joints are in parallel rather than in series (as with a traditional robot arm), the 

kinematics and dynamics cannot be easily computed using traditional methods. 

Further, in order to produce a desired surface, the position and motion of each 

vertex must be controlled, rather than just an end-effector [2]. 

1 

3 

2 
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Figure 5: CMS joint with link offset. [1] 

 
 

 Several mechanisms similar to this have been considered in the past [2], and 

are usually categorized in a class known as a variable geometry truss (VGT) [3][4]. A 

truss is characterized by passive revolute joints causing only one-dimensional axial 

forces in each link (tension or compression). Assuming a three-dimensional truss 

(or "space truss" using spherical joints) this means that singular positions include 

any position in which all of the links attached to one node are co-planar. Specifically, 
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if in such a position there are any out-of-plane forces at the common node, the 

resulting forces in each of the links attached at that point will be infinite. 

 In order to increase the potential of such a device, a rotary actuator 

controlling the angle about an axis parallel to each link is included in addition to the 

standard linear actuator. This means that the structure is no longer able to be 

classified as a truss, but must instead be called a frame (or "space frame") with 

forces in all three local dimensions of each link. Singular and uncontrollable 

positions now only occur when all links attached to one node are co-linear. 

 Modular robotics have become very popular largely because of their 

versatility. Most current efforts are furthering the capabilities of modules to be 

connected one-dimensionally in series. The presented robotic surface implements a 

novel module type for the expansion to modules to be connected two-dimensionally 

in parallel. This opens many new possibilities and can be expanded to three 

dimensions without much difficulty (think of two or more parallel surfaces attached 

to each other). The joints of a robot directly affect one another. This can be seen 

positively in that they support each other and allow less powerful actuators to be 

used, and it can be seen negatively in that they interfere with each other and make 

the robot more difficult to control. In one-dimensional modules, actuators have no 

more than two actuators connected adjacently to them. Because distance is finite, 

this limits the extent to which they can aid each other. By allowing modules to 

interact in multiple dimensions, greater numbers of actuators can be connected 

adjacently. This allows greater loads to be supported at each joint for the same 

motion. More importantly, it allows for a different type of motion – such as surface 
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motion. Each joint is of course also more restricted by the joints around it, but for a 

surface this is also desirable as it guarantees surface continuity. 

 

Literature Review – Variable Geometry Trusses 

 This summary includes a brief overview of some different types and abilities 

of several VGTs. Cyclic two-dimensional planar trusses and planar three-

dimensional VGTs  as well as non-cyclic three-dimensional non-planar VGTs are all 

considered.  

Shape Morphing Hinged Truss Structures [3] 

 A planar triangular truss connected by novel spherical "hexa-pivotal" joints 

(Figure 6) has a rigid bi-pyramidal structure placed on each triangle (with the 

triangle between the two pyramids).  

 

 
Figure 6: Spherical hexa-pivotal joint [3]. 

 
 

  These bi-pyramidal hexahedrons provide a moment arm to be actuated with 

shape memory alloy wire connecting the apex of adjacent pyramids as shown in 

Figure 7. 
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Figure 7: The apex of each adjacent pyramid is connected with Nitinol to control the 
angle between pyramids. A hexagonal pattern was chosen because of the increased 
mobility. 
 
 

The shape on the right in Figure 7 was chosen because it has more degrees of 

freedom than if the central region were filled with the triangular shapes. An 

experimental model was built, and binary actuator combinations were tested 

resulting in simple motion. The angles were calculated with simple trigonometry, 

and the degrees of freedom were calculated in a traditional manner using Maxwell's 

stability criterion. 

 

 
Figure 8: Multiple example positions for a hinged truss structure [3]. 

 



 

10 
 

 

Trussarm — A Variable-Geometry-Truss Manipulator [5] 

 Two stacked octahedral truss arms are compared with a precursor to the 

international space station's current "Canadarm," with the results shown in Table 1. 

 

Table 1: A comparison between Canadarm and two trussarms [5]. 

 

 

 The octahedral modules used for the arms are simplified 3 degree of freedom 

Stewart platforms. These modules were chosen from four options using a modal 

vibrational analysis in NASTRAN. The reasons that the chosen modules are "better" 



 

11 
 

were not well explained, but it is implied that the main criterion was the strength to 

mass ratio. A basic introduction to dynamics is given, but it is plain that NASTRAN 

was relied upon to obtain correct equations and to perform all of the calculations. A 

two-module experimental model was produced, but no experimental results are 

reported.  

 As a preliminary work on adaptive variable octahedral trusses, this paper 

provides a starting point for further work — work that has since been completed. It 

clearly shows that the Canadarm can be improved upon by using a VGT, and that 

parallel robotics have superior strength to weight ratios. 

Tetrobot: A Modular Approach to Reconfigurable Parallel Robotics [4] 

 A novel concentric multilink spherical (CMS) joint utilizing a planar offset 

hinge (realized in a six-bar mechanism) is analyzed for range of motion and force 

propagation using classical mechanics and traditional machine dynamics methods. 

 

 
Figure 9: Basic concept of a concentric multilink spherical (CMS) joint. 
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 The joint is used in modular parallel robotics with highly redundant degrees 

of freedom. Two modules are evaluated: tetrahedral and octahedral. 

 

 
Figure 10: Tetrobot module examples. 

 

 Each link has a linear actuator and prismatic joint installed, and the modules 

are strictly arranged to avoid forming mechanical cycles between modules. Only the 

individual modules need to be solved in a parallel manner, and the propagation of 

motion between the modules can be treated as a traditional serial mechanism. A 

strong emphasis is placed on the modular nature of the robot, and many useful 

configurations are implemented.  
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Figure 11: An overview of a Tetrobot VGT system. 

 

 The control of a robot formed from these modules is accomplished by first 

separating each joint into one of three categories: fixed, constrained, or 

unconstrained. Though three categories are used, the "fixed" and "constrained" 

categories can be combined with no loss of generality. Because the length of each 

link is variable, the position of each joint can be controlled independently. To 

determine the desired location of the unconstrained joints, a weighting method is 

used that the authors refer to as a "virtual force" method. A virtual spring and the 

associated spring force is attached to each link with the neutral spring position 

being set at the prismatic joint's zero position (this can be an arbitrary position, but 

a useful position is the point midway between the two joint extremes). A virtual 

force balance is calculated for each joint, and the resulting position is the desired 
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position of the unconstrained joints. In order to allow for a distributed control 

system, an iterative link by link sweeping method is used, but an analytical solution 

is also possible. This can equivalently be seen as a cost optimization method where 

the cost is the distance from the neutral link length position. 

 The work done by the authors of these articles shows the validity of VGTs, 

and builds a strong foundation for further work. The same principles that make 

static trusses more practical than solid filled volumes makes dynamic trusses more 

appropriate than serial robotic arms. The strength to weight ratio is much higher 

and as such, less material is required for the same strength — resulting in a much 

reduced cost. Dynamic trusses also have the added benefit of requiring much 

smaller actuators, also reducing the cost dramatically. Not only do they have better 

strength to weight ratios, but they are also highly redundant, resulting in greater 

dexterity and improved fault tolerance (better reliability).  

 The main drawback has been the ability to control a large number of 

actuators within extremely specific constraints (and calculating those constraints) 

in an efficient and logical fashion. Beginning in the late 1980s, modern computers 

began making this more feasible. Octahedrons have been the most complicated 

shapes used successfully so far, but general methods for any cyclic shape are surely 

not far off.  

 Newer actuators with higher strength to weight ratios, and ever smaller 

electronics make miniaturization a very exciting prospect for these types of robotic 

systems. Using tiny powerful actuators, physical three-dimensional displays and 

morphing prototypes become immediately possible. VGTs and VGFs may very well 
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be a precursor to the science fiction ideal of self-assembling nanobots for morphing 

materials. There is still an enormous amount of work before this point may be 

seriously considered but within a generation, crude physical three-dimensional 

displays and morphing prototype modelers are quite plausible. 

 

Applications 

 By locking the joints, a variable geometry type system can be used as a rigid 

support when not being used for its robotic purposes and can form the frame of 

anything from a pencil holder to a vehicle chassis. When a robot is required, the 

surface can be powered on to perform the necessary tasks. Due to the large number 

of joints, there are many control points - each of which can be modified by attaching 

an end-effector or even a traditional robot arm, allowing for extremely versatile use.  

 By placing optical elements (reflectors, lenses, etc.) at each joint, this type of 

discrete robotic surface can replace parabolic reflectors or lenses for anything from 

solar concentration to maser power transmission to radio antennae – or even light 

collection for telescopic purposes. Because of its morphing ability, the range in 

which the focal area is located can be extremely broad, or it can even have multiple 

focal areas. 

 Another area of interest may be manufacturing. A surface of this nature can 

be used to quickly create arbitrary solid shapes for various casting, molding, and 

forming manufacturing methods leading to further methods for the rapid 

production of prototypes before investing in costly equipment for mass production. 
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 With improved actuators a much smaller module size can be used, which 

allows for practical applications in personal three-dimensional displays. Stronger 

actuators make much higher loads possible, extending possible applications to 

morphing wings and fairings for improved aerodynamic performance. Using 

structures of this nature in the microgravity of outer space, an entire vehicle or even 

an entire space station would be easily reconfigured into a wide variety of desired 

shapes. 

 Active damping of vibrations has been a popular topic for a very long time. 

Usually, this is limited to placing a vibrating actuator on a structure in the direction 

of the highest vibrational amplitude or predicting the vibrational mode and 

changing the actuator's direction accordingly. In a variable geometry frame, the 

motion can be damped in any direction quickly and effectively using the actuators 

already built into the structure. 

 A surface made as a VGF can roll up to form snake-like structures to be used 

to clean pipes, climb trees, etc., or even as truss-arms (or "frame-arms"). It can form 

any number of closed shapes to be used as wheels, balloons, combustion chambers, 

etc. Because of its morphing ability, the applications of this type of mechanism are 

limited only by the creativity of the user. 
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CHAPTER 2 

STATIC DESIGN 

Static Structural Analysis (Static Joint Forces) 

 The finite element method (FEM) is applied to a new class of robots that can 

be called VGF robots. All triangle edges have actuated prismatic joints, and all 

internal (non-boundary) edges are rotationally actuated to control the angle 

between faces and avoid singularity at the in-plane positions described above. It is 

desired to determine the joint forces arising from static loading. Typical methods 

use the Jacobian matrix or Lagrangian equations of motion to find the joint forces 

[6][7]. Because of the highly redundant nature of this robot, these methods are not 

feasible. Indeed, the most complicated parallel joint configuration with a well-

known closed-form solution has only six mechanical cycles comprised of six 

spherical joints and six prismatic joints [2][4]. In the proposed robot however, each 

modular increase in the length and width of the robot increases the number and size 

of cycles exponentially. FEA is not limited by parallel joints, and can be used very 

conveniently to find all of the required joint forces. It should be noted that the FEM 

is an approximating method that assumes link deformation causes the link to lie 

along a mathematical "shape" function. It also approximates the element's stiffness 

by only considering the stiffness of discrete lengths between nodes [8]. In the case of 

this study, the shape function used was a cubic polynomial. This means that the 

results will not be exact, but merely an approximation. As the purpose is to make 

sure that the actuators' maximum limits are not exceeded, this approximation 

should be satisfactory. 
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 A stiffness matrix is calculated as the linear combination of the following 

well-known stiffness matrices: pure axial loading along the x-axis of the element's 

local coordinate system (x in the direction of the link), pure torsion about the local 

x-axis, pure bending about the local y-axis, and pure bending about the local z-axis. 

Each of these stiffness matrices was calculated using the cubic shape functions of an 

Euler-Bernoulli beam element [8]. 

 If  

𝑣𝑣� = [∆1,∆2]𝑇𝑇  

is a displacement vector in all six degrees of freedom (translation along the x-, y-, 

and z-axes as well as rotation about the same) for each node of a beam element, 

where  

∆1= �𝛿𝛿𝑥𝑥1, 𝛿𝛿𝑦𝑦1,𝛿𝛿𝑧𝑧1,𝜑𝜑𝑥𝑥1,𝜑𝜑𝑦𝑦1,𝜑𝜑𝑧𝑧1�
𝑇𝑇  

and 

∆2= �𝛿𝛿𝑥𝑥2,𝛿𝛿𝑦𝑦2, 𝛿𝛿𝑧𝑧2,𝜑𝜑𝑥𝑥2,𝜑𝜑𝑦𝑦2,𝜑𝜑𝑧𝑧2�
𝑇𝑇 , 

with 𝛿𝛿 representing the translational displacement and 𝜑𝜑 representing the 

rotational displacement, where the superscripts signify the node, and the subscripts 

give the direction, the following result is obtained: 

 

Local stiffness matrix 𝑘𝑘 = 
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 𝐸𝐸 is the modulus of elasticity, 𝐴𝐴 is the cross-sectional area of the link, 𝐿𝐿 is the 

length of the link, and 𝐼𝐼 is the second moment of area about the axis noted in the 

subscript. 

 A transformation matrix is then computed using basic trigonometry to rotate 

the local coordinate system to match with the global coordinate system. There are 

many ways to write this type of matrix, but one popular method is the directional 

cosine matrix (DCM). Using the definition of the cosine function, the desired 

rotations can be written as shown: 

 

Transformation matrix 𝑇𝑇 = 
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Where "c" stands for cosine and the next two letters indicate the argument. The first 

letter is the local axis and the second letter is the global axis (e.g., "cyz"  indicates the 

cosine of the angle from the local y-axis to the global z-axis). Then 

𝑣𝑣 = 𝑇𝑇𝑣𝑣� 

and 

          𝑣𝑣� = 𝑇𝑇−1𝑣𝑣,            (1) 

where 𝑣𝑣 is a vector containing the six displacements of each node in global 

coordinates. The tilda denotes the same vector in local coordinates. If the forces are 

represented by 

𝑝𝑝 = [𝑝𝑝1,𝑝𝑝2]𝑇𝑇  

where 

𝑝𝑝1 = �𝑝𝑝𝑥𝑥1,𝑝𝑝𝑦𝑦1, 𝑝𝑝𝑧𝑧1, 𝜏𝜏𝑥𝑥1, 𝜏𝜏𝑦𝑦1, 𝜏𝜏𝑧𝑧1�
𝑇𝑇  

and 

𝑝𝑝2 = �𝑝𝑝𝑥𝑥2, 𝑝𝑝𝑦𝑦2,𝑝𝑝𝑧𝑧2, 𝜏𝜏𝑥𝑥2, 𝜏𝜏𝑦𝑦2, 𝜏𝜏𝑧𝑧2�
𝑇𝑇 , 
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and the spring constants are found in 

𝑘𝑘 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑘𝑘1, 𝑘𝑘2] 

where 

𝑘𝑘1 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �𝑘𝑘𝑥𝑥1, 𝑘𝑘𝑦𝑦1,𝑘𝑘𝑧𝑧1, 𝑘𝑘𝜑𝜑𝑥𝑥
1 ,𝑘𝑘𝜑𝜑𝑦𝑦

1 ,𝑘𝑘𝜑𝜑𝑧𝑧
1 � 

and 

𝑘𝑘2 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �𝑘𝑘𝑥𝑥2, 𝑘𝑘𝑦𝑦2,𝑘𝑘𝑧𝑧2, 𝑘𝑘𝜑𝜑𝑥𝑥
2 ,𝑘𝑘𝜑𝜑𝑦𝑦

2 ,𝑘𝑘𝜑𝜑𝑧𝑧
2 �, 

then Hooke's law in local coordinates can be written as 

            𝑝𝑝� = 𝑘𝑘�𝑣𝑣�.            (2) 

In the same way as (1), 

𝑝𝑝 = 𝑇𝑇𝑝𝑝� 

and 

           𝑝𝑝� = 𝑇𝑇−1𝑝𝑝.            (3) 

Substituting (1) into (2), gives  

          𝑝𝑝� = 𝑘𝑘�𝑇𝑇−1𝑣𝑣,            (4) 

and then substituting (3) into (4) results in  

     𝑇𝑇−1𝑝𝑝 = 𝑘𝑘�𝑇𝑇−1𝑣𝑣.           (5) 

Because T is seen to be orthogonal, 

𝑇𝑇T = 𝑇𝑇−1 

and (5) can be simplified to 

𝑝𝑝 = 𝑇𝑇𝑘𝑘�𝑇𝑇T𝑣𝑣. 

This equation can be rewritten as Hooke's law in global coordinates, 

𝑝𝑝 = 𝑘𝑘𝑣𝑣, 
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where 

𝑘𝑘 = 𝑇𝑇𝑘𝑘�𝑇𝑇T  

is the global stiffness matrix for a single element. 

 Next, the element stiffness matrices must be assembled into a stiffness 

matrix for the entire structure. A simple and general way to do this is by indexing 

each node and associating those indices with their adjacent elements. Then to 

assemble the stiffness submatrix of a node, just add each submatrix associated with 

that particular node. Repeat this for each node, and the full structural matrix is 

complete. The twelve node VGF shown in Figure 2 is used as an example in two 

different positions. As this gives a 72x72 matrix (12 nodes x 6 degrees of freedom) 

the full position dependent stiffness matrix of the entire structure is not shown, 

although the relevant link forces are given in the results section. Once the model has 

been set up in this fashion, any position is simple to compute. 

 The unknown global displacements 𝑈𝑈𝑢𝑢𝑢𝑢𝑘𝑘𝑢𝑢𝑢𝑢𝑢𝑢  are calculated from the known 

(applied) global forces 𝑃𝑃𝑘𝑘𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  using the corresponding sections 𝐾𝐾𝑃𝑃𝑘𝑘𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
−1  of the full 

global stiffness matrix 𝐾𝐾 by  

𝑈𝑈𝑢𝑢𝑢𝑢𝑘𝑘𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝐾𝐾𝑃𝑃𝑘𝑘𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
−1 𝑃𝑃𝑘𝑘𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 . 

Once the unknown displacements have been computed, they are linearly combined 

with the known displacements (obtained from the boundary conditions) to give a 

complete vector of all displacements. If desired, this can then be used to find 

unknown reaction forces by 

𝑃𝑃 = 𝐾𝐾𝑈𝑈, 
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where 𝑃𝑃 is a vector containing all global forces, 𝐾𝐾 is the global stiffness matrix for 

the entire structure, and 𝑈𝑈 is a vector containing the global displacements of all 

nodes. 

 But we are currently interested only in the joint forces. To calculate the joint 

forces, we first transform the displacements that are associated with the first 

element to the local coordinates of that element and then simply pre-multiply the 

local displacements by the local stiffness matrix. Taking these steps together to form 

a single equation,   

𝑝𝑝� = 𝑘𝑘�𝑇𝑇T𝑣𝑣, 

where 𝑝𝑝� is again the vector of local joint forces represented in the local joint space 

(in this system, the local coordinate systems are defined as being coincident with 

the joint coordinate systems). The local coordinate systems are defined in Figures 

12 and 13. 
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Figure 12: The node numbers of an example VGF in a planar position. The local y-
axis is formed by a vector perpendicular to both the local x-axis and the global z-axis 
calculated by the cross product of the z unit vector and the x unit vector 𝒛𝒛� × 𝒙𝒙� to 
give a unique direction. The local z-axis is then naturally the cross product of the x 
and y unit vectors 𝒙𝒙� × 𝒚𝒚�. 
 
 

 
Figure 13: The element numbers of the same example VGF as in Figure 12. The local 
x-axis of each line starts at the node closest to the dot, and ends at the node nearest 
the circle. 
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 Inverse kinematics are used to calculate the required joint positions to obtain 

desired control point locations. If each triangle vertex is a control point, the 

calculation of inverse kinematics is simple trigonometry and can be seen in the code 

in Appendix A. The trajectory of each control point is calculated by sampling a 

moving surface and ensuring that the distance between the time-varying sample 

points is within the acceleration and velocity limits of the actuators.  This discrete 

motion is then uploaded to a microcontroller to control the actuated joints offline. 

 Two positions are shown to illustrate a range of motion and the related 

forces required to achieve it. The loading is the same on both shapes with the weight 

of the elements due to gravitational acceleration applied to each node. Node 1 is 

fixed in all 6 degrees of freedom as the reference node, and nodes 9 and 10 are both 

fixed in the z-direction, but allowed to slide in the x- and y- directions and freely 

rotate in all directions. In Figures 14 and 15, the blue lines represent the original 

shape, while the dotted red line is an exaggeration of the deformation after the load 

is applied. The displacements are all multiplied by 100 for all plots. 

 The first shape is a dome-like shape reminiscent of the geodesic domes 

created by Buckminster Fuller in the 1970s. Because this is a stiff position when 

considering only the load due to gravity, we expect relatively high axial forces and 

low moments. 
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Figure 14: Very stiff convex semi-spherical position. The blue lines represent the 
undeformed shape, while the red dotted lines are an exaggeration of the 
deformation after the load is applied. Top - side view (parallel to the x-z-plane with 
the y-axis going into the page). Bottom - isotropic view. 
 
 

 The local nodal forces corresponding with vertical loading due exclusively to 

gravity, assuming a mass 20 grams concentrated at the ends of the links (10 grams 

per end) are calculated. The physical properties used for the axial stiffness are those 

of an aluminum ANSI #8-32 threaded rod corresponding to a potential linear 

actuator. The rest of the physical properties are those of a proprietary plastic that 

was used for the construction of the rest of the link (including the gearbox of the 

rotary actuator). The maximum axial force (which corresponds to the force that the 
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linear actuator needs to apply) for this position is 1.382 Newtons in link (element) 

11 while the maximum moment about the x-axis (the rotationally actuated 

direction) is only 0.26 N∙cm.  

 The second shape considered is a planar position that would be singular 

without the rotary actuators, and would yield infinite forces if modeled with non-

bending truss elements. Because of the included actuators, this shape should have 

no axial force in the beams, but instead should have a shear force and a moment. 

 

 
Figure 15: Zero "in-plane" position that, if not for the rotational actuators, would be 
singular and require infinite force in the local x-directions in order to maintain this 
position. With the rotational actuators, there is just a reasonable shear force and 
moment. The blue lines represent the undeformed shape, while the red dotted lines 
are an exaggeration of the deformation after the load is applied. Top - side view 
(parallel to the x-z-plane with the y-axis going into the page). Bottom - isotropic 
view. 
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 As expected, all of the axial forces in this position are zero. The maximum 

moment about the x-axis (the actuated direction) in this position is 1.29 N∙cm in link 

2.  

 The other forces (in non-actuated directions) are important for the link 

design (and can be seen in the Exhibits), but our focus in this paper has been on 

finding joint forces without the aid of traditional kinematic or dynamic methods. 

 

Mechanism Design 

 With the physical motion of the mechanism characterized and the critical 

joint forces estimated, all that was missing was a good joint for the design of this 

mechanism to proceed. 

 After a careful consideration of many spherical joints [2], a modification of 

the CMS joint was chosen. It was obvious that the offset links could be made straight 

if they were given an axis that intersected with the perpendicular “hinge” joint. This 

simplifies the joint, reduces weight, and increases strength and rigidity. 

  In a single layer surface application, all positions involving collinear adjacent 

links are singular to some extent. Rotary actuation is added to avoid these 

singularities and to allow for a strong focus on surface applications. The joint is 

modified to accommodate this actuation through a thorough analysis of the 

available linkspace, taking as much into account as seemed feasible at the time. 
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Figure 16: The CMS joint is modified to reduce complexity, increase strength and 
rigidity, and reduce weight. 
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Geometric Design Considerations 

 Joint range and actuator size are the main geometric constraints. When an 

actuator is mounted on a link, it is reasonable to consider it as part of the link. 

Therefore, larger an actuator is, the wider the link it is attached to becomes. The 

wider the links are, the less the joints can move before the links collide with one 

another. In the mechanism pictured in Figure 27, all of the most stringent 

constraints of this nature occur when the prismatic joints are at their shortest. Links 

must not intersect at any point throughout the joint range. This limits the links to be 

within a confined linkspace. The shape of this space can be defined by the joint 

ranges while the actuator size and placement requirements determine its scale (the 

actual size of the space which will have a shape that is mathematically similar to the 

shape determined by the joint ranges). Some of the joint ranges used for this 

mechanism are in turn dependent on the link size, so the two must either be solved 

simultaneously, or iteratively solved independently with reasonable values and then 

compared to find which is the more demanding constraint.  

 

 
Figure 17: The overall range of the modified CMS joint is shown above using the 
arbitrary prismatic joint range of L to 1.5L (L+/-20%) – which corresponds with a 
passive joint range of ~39° to ~97° – and an arbitrary out-of-plane rotation of  +/-
60°. 
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 For the iterative approach, reasonable initial joint ranges are chosen. 

Beginning with the prismatic joints, a joint range of 𝐿𝐿 to 1.5𝐿𝐿 is chosen, where 𝐿𝐿 is 

the smallest total length of the link. This corresponds with a joint range of 

~39° ≤ 𝜃𝜃𝑝𝑝𝑑𝑑𝑝𝑝𝑝𝑝𝑑𝑑𝑣𝑣𝑝𝑝 ≤ ~97° for the passive revolute joints between the prismatic joints 

of a triangular module (calculated by comparing the extreme angles at the extreme 

prismatic joint positions). With no other considerations, this would result in a 

linkspace shape as shown below. 

 

 
Figure 18: Joint space after considering the constraints imposed by a desired 
arbitrary prismatic joint range. 

 

 Next we consider the revolute joint between each module. If this joint were 

restricted to −60° ≤ 𝜃𝜃 ≤ 60°, the jointspace shape appears as in Figure 18. 
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Figure 19: Three views of the linkspace after considering joint ranges in three 
dimensions. 
 
 

 Further geometric constraints require that the links be able to easily connect 

with one another. This will require the "trading" of linkspace with adjacent links in 

such a way as to maintain the similarity between links so that the modularity of the 

mechanism is not impinged. The locations of loading and grounding constraints 

must be carefully considered so as to reduce forces in unwanted directions and to 

maximize the rigidity as discussed in the Static Structural Design Considerations. 

 

 
Figure 20: Three views of the linkspace after allowing for the passive joints. 
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 Finally, the actuators must be taken into account. The location and 

capabilities of the actuators and the types of fasteners used are the most limiting 

constraints as they determine the feasibility of all of the other constraints. The 

motion of the actuator and any associated linkages must not be obstructed, yet must 

remain within the linkspace (though the space may be modified by trading with 

adjacent links as seen previously). 

Static Structural Design Considerations 

 Structural constraints are mostly limited to rigidity and overall strength, 

though stress concentrations are considered as well. In order to obtain the optimal 

strength to weight ratio, the largest convex hull possible within the constraint space 

is desirable (or a combination of the largest – or fewest – convex hulls possible if a 

single convex hull violates space constraints). This convex hull is formed with the 

consideration of the loading and grounding sites as potential hull vertices. Because 

these sites are few, the different possible hulls can be quickly considered by 

inspection, but if they were more numerous, all of the hulls would need to have a 

thorough numerical inspection to find the optimal solution.  

 Though the strength to weight ratio is important, we must also make sure 

that the overall structure is strong enough not to fail under load, as well as ensuring 

that the structure does not deflect so much as to interfere with its operation. In the 

case of the mechanism being considered, the control of the mechanism is greatly 

simplified if the links can be treated as rigid objects.  All of the most stringent 

constraints of this nature occur when the prismatic joints are at their longest.  

Dynamic Structural Design Considerations 
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 A desire to reduce inertia constrains the mechanism in mass and shape. As 

the constraints for the length of each link and the strength to weight ratio have 

already been added, the remaining improvements lay in reducing the thickness. This 

will reduce the rotational inertia about the prismatic joints' line of action, but will 

also reduce the flexural rigidity. The minimum thickness will be determined either 

by the constrained maximum deflection or by the constrained minimum strength 

requirements. 

 In case extremely high speeds are required (e.g. for a morphing flywheel), 

additional considerations would be required to evaluate dynamic balancing, 

resonant vibrational frequencies, etc. High speed applications are outside of the 

scope of this design, and have as a result not been evaluated. 

Power Transmission 

 All mechanisms must transmit power from one location to another. As such, 

the methods of power transmission available to humanity are incredibly vast. There 

has been no attempt in this project to optimize the transmission. Though later 

changed (as discussed in Chapter 3) module 0.25 metric spur gears were initially 

used for all rotary power transmission (shown in Figure 20), and an ANSI #8-32 

screw is fashioned into a linear screwdrive actuator for all linear power 

transmission. In order to transfer the rotary forces through the prismatic joints, a 

mechanical spline is chosen. 

 Although not optimized, the thickness of each gear is chosen according to the 

maximum amount of force each tooth will bear using a factor of safety of 5 and 

rounding up. This force is based on the maximum torque that the selected motors 
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are able to apply (~5 N·cm). Likewise, the thickness of the pins supporting each gear 

is chosen so that the maximum deflection of the pin will not allow the teeth of any 

mating gears to slip.  

 

 
Figure 21: Initial power transmission using M0.25 spur gears. On the left is a 6:7 
transmission from a motor to an ANSI #8-32 screw drive. The right is a gear 
reduction of ~621:1. 
 

 

"Final" Link Design 

 Once the linkspace is finalized, the "link" as we have designed it must be 

separated into two links joined by a prismatic joint with enough space for a linear 

actuator. Because a convex hull is desirable, the center of the linkspace is chosen for 

the actuator. The two links are separated by maximizing the hull thickness of each 

link while ensuring that the desired range of motion can be covered as well as 

maintaining the desired rigidity. The results are shown in Figures 22-25. 
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Figure 22: Linear actuator mount section of the overall link. 

 
 

 
Figure 23: Linear extension section of the overall link. 

 
 

 
Figure 24: Rotary actuator mount section of the overall link. 
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Figure 25: Rotary extension portion of the overall link. 

 
 

Manufacturability Design Considerations 

 Because the mechanism will be printed on a 3D inkjet printer, the design for 

manufacturability (DFM) constraints are significantly less stringent than they might 

otherwise be with more traditional manufacturing methods. Nevertheless, certain 

constraints are necessary. The main constraint is that the support material must 

have an exit path to allow easy removal from the locations that require its use. This 

means that there will need to be holes in places that would otherwise be solid. 

Because the assembly will be done by hand, other constraints will require that 

interior parts be easily accessed by fingers or tools.  
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Figure 26: Extra holes and sections removed to ease manufacture and assembly are 
shown in blue. 

 

 The design process is circular in nature, in that it has no end and seems to 

repeat steps. Further manufacturing changes were made due to the limitations of 

the rapid prototyper. These further changes are discussed in the next chapter which 

explains the construction process. 

 

 
Figure 27: Single triangular module and multiple views of a single modular link. 
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Figure 28: Example arrangements of VGF surfaces composed of triangular modules. 

 

 

 
Figure 29: Example position of a four module VGF. 
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Kinematics 

Forward Kinematics 

 The kinematics of parallel mechanisms are very interesting. The same 

actuarial principles used in serial mechanisms can be employed, but because of the 

closed mechanical cycles, addition considerations are required.  

 In a serial mechanism, the location of the first link in the chain is found with 

respect to the ground coordinate system. The second link in the chain is found in 

terms of the first joint variable and defined relative to the first link, the third link is 

found in terms of the second joint variable and defined relative to the second link, 

and so on. In this way, each link can be described by a variable vector, and the 

vector sum of all the links in the chain gives the location of the end point of the 

chain.  

 

 
Figure 30: Coordinate definitions used in forward kinematics for a rhombic module. 
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 Initially, this same approach can be used with parallel mechanisms. The 

difficulty in this step is defining the "first" link and the subsequent order of links. 

Any serial chains within the parallel cycles have an obvious order, but what will the 

order be at the branch points? This is where the extra considerations come into 

play. After defining each serial chain in the mechanism, each closed cycle constrains 

each serial chain contained within it. This "constraint" is simply that each serial 

chain must begin or end at the same branch points at which the other serial chains 

in the loop begin or end.  

Constraint Equations in Forward Kinematics 

 This constraint can be described mathematically by equating the two vector 

paths (i.e. the end locations are the same). These constraint equations are often 

highly nonlinear, and can be very difficult to solve – usually having no known 

analytical solution and therefore requiring the use of numerical methods. Because of 

their nonlinear nature, there will also usually be multiple solutions. For three 

dimensional parallel mechanisms, there will likely be an infinite number of 

solutions.  

Inverse Kinematics in Forward Kinematics 

 Another way to think of this is by defining one serial forward kinematic path 

in the usual way, and then computing the inverse kinematics for the rest of the serial 

paths connected at the same branch point with the target end point defined by the 

initially calculated path. 

 In highly redundant parallel mechanisms, the serial "chains" may be only one 

or two links long before reaching a branch point, and the branch points may have 
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large numbers of serial chains attached to each one. A convenient way to handle this 

is by defining an arbitrary serial path through the entire mechanism and calculating 

the positions of any links not in this initial path based on the path position (inverse 

kinematics). 

 With triangular modules arranged in a mechanism as described above, there 

are many possible serial paths. A convenient example might be a spiral path. This 

would make the inverse kinematics of all links not included in the path very simple, 

and would let us find a single unique solution. Each link is connected either by a 

prismatic and spherical joint if the links are in different modules, or a prismatic and 

revolute joint if they are in the same module. The spherical joints could be modeled 

with many different combinations of joints, but a "ZYZ" type joint is most common. 

All remaining links not in the initial serial path can be thought of as single links with 

two spherical joints with a prismatic joint in between – easily calculated from the 

initial path position. 

Modular Definitions in Forward Kinematics 

 Another perhaps more appropriate method could be a modular approach. A 

single triangular module can be defined in terms of its joint positions, and then the 

interfacing joints between modules finish defining the overall shape. In the end, we 

want to put everything in terms of the actuated joints. This method makes this task 

slightly simpler than the inverse method as all of the joints used in the model are 

real joints in the mechanism – we simply have to calculate the passive joints in 

terms of the actuated joints which, for a triangle, is quite simple. 
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 The forward kinematics were initially calculated for the rhombic surface (see 

Appendix B), but they were not useful enough to consider for the triangular surface. 

 

Inverse Kinematics 

 The inverse kinematics of parallel mechanisms are perhaps less interesting 

in practice. This is because the method used for to calculate the inverse kinematics 

depends greatly on the desired application. Most methods consider the position of 

each link to be known or controlled in some way. This makes the inverse kinematics 

almost trivial in calculation, but produces some very interesting control schemes. 

The reason for this is that if only one ground position and one "end-effector" 

position is known, an analytical solution is not only very difficult to obtain – in fact it 

has been proven that there is no general solution for five or more joints connected 

in a loop – but also gives multiple solutions. In serial mechanisms, these multiple 

solutions can be a problem, but in parallel mechanisms these problems are 

compounded exponentially. For most parallel mechanisms, there are literally an 

infinite number of solutions. Rather than try to deal with these "singular spaces," it 

is much more sensible to control as many links as possible and use a placement rule 

or control law to determine the location of the uncontrolled links.  

 For this mechanism, a method of dynamic shape control is used, so that the 

motion of each link is fully defined by the controller. As such, the forward 

kinematics are not required. The inverse kinematics are calculated with basic 

trigonometry; requiring only the calculation of the distances between the endpoints 

of each link for the prismatic joints, and the angles between each module for the 
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actuated revolute joints. This fully defines the position of the mechanism and as 

such, all other joints are passive. 
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CHAPTER 3 

PROTOTYPE FABRICATION 

 A three-dimensional inkjet-style printer that uses proprietary ultraviolet 

light curing plastic was used to print each part other than the stepper motors, 

fastening screws (steel), and the threaded rod (made from aluminum). The main 

links have four primary components bearing all combinations of two characteristics; 

either a mount for the stepper motor or an extension from the mount, and either 

connected to the rotary motor or to the linear motor (see Figures 31-34). Other than 

the main links, there are the fasteners for the motors, the passive joint links, the 

power transmission, and of course the actuators themselves.  

An interesting feature shown in Figure 35 is the half joint formed between 

the linear mount and the rotary extension portions of the link using an annular 

space in the driven gear of the rotary drive train. This joint not only increases the 

range of the prismatic joint by allowing the rotary extension to extend past this gear 

when the prismatic joint is fully retracted, but also provides much needed support 

when the prismatic joint is fully extended. 

 The surfaces of prototypes printed with the selected printer sometimes have 

lower resolution than advertised (this phenomenon is described more fully later 

on). This led to the module size of the gears doubling from 0.25 to 0.5, causing there 

to no longer be enough space for the gear train that had been planned. Instead, an 

epicyclic gear train was required. This new transmission (shown in Figures 37-38) 

is more stable, more efficient, and more compact than the original transmission, so 

it was just as well that the change was forced.  
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Figure 31: Linear actuator mount section shown with 0.5 M epicyclic gear housing 
and three-pronged snap-together clips. 

 
Figure 32: Linear extension section with three-pronged snap-together clips and 
extra holes for support material removal. 
 
 

 
Figure 33: Rotary actuator mount section shown with 0.5 M epicyclic gear housing 
and three-pronged snap-together clips. 
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Figure 34: Rotary extension section shown with break-away reverse-tapered press 
fit joints. 

 
Figure 35: The prismatic extension of the rotating link component also forms a half-
joint with the actuator mount side of the linear link component. 
 
 

 
Figure 36: One full link of the prototyped mechanism with a rotary and prismatic 
actuator. Because all links are the same, one link might be considered to be a more 
fundamental module than the triangular module adopted for this project. 
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Figure 37: Geared rotary transmission using four epicyclic stages giving a total gear 
ratio of 𝟗𝟗𝟗𝟗𝟗𝟗.𝟒𝟒𝟒𝟒����:𝟏𝟏. 
 
 

 In this transmission, there are four epicyclic (planetary) gear stages for each 

rotary actuator with each stage comprising four spur gears (each with its own pin) 

and one arm – with a spur gear on the arm (and all stages share a common arm) for 

a gear ratio of 977. 45����: 1. Each linear actuator has two epicyclic gear stages that are 

identical to the rotary actuator's gear stages. In addition, each linear and rotary 

actuator both have two idler gears, the driving gear, and the driven gear for a gear 

ratio of 4:1 connected to the ANSI #8-32 screwdrive. With a full module having 
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three linear actuators and three rotary actuators, this is a total of two-hundred-

twenty-two gears and one-hundred-seventy-four pins per module. Even though 

there are six modules in the prototype, because the outside borders of the 

mechanism do not need rotary actuators, this gives a grand total of only six-

hundred-sixty-six gears and five-hundred-twenty-two pins in the device.  

 

 

Figure 38: Geared linear  transmission using one epicyclic stage for an overall gear 
ratio of 4:1. 

 

 Each module has six long and six short joint links making up the six-bar 

joints for a total of seventy-two passive joint links. There are eighteen stepper 

motors and twelve ~6 inch ANSI #8-32 threaded aluminum rods. There are two 
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types of actuator fasteners used on the mechanism; one type for the linear mounts, 

and one for the rotary mounts. Each linear mount fastener uses one ANSI #4-

40X1/4" screw, while each rotary mount uses one of these as well as one ANSI #4-

40X3/8" screw. 

 

 
Figure 39: ANSI#8-32 aluminum threaded rod used in the linear actuator, fasteners 
for the stepper motors, and screws used to attach the fasteners. 
 
 

 Each stepper motor has four 36 inch color-coded power wires attached to 

both the actuator and to a connector to the stepper drivers. The drivers each have 

two power wires connecting them to the power supply, four power wires 

connecting them to the actuator connector, and two control wires connecting them 

to the microcontroller. All of the wires connected to the drivers are 6 inches in 

length. This is a grand total of two-hundred-sixteen wires with a total length of 96 
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yards (87.8 meters) of stranded aluminum wire and 17 yards (15.5 meters) of heat 

shrink. 

 

 
Figure 40: Nest of wires and drivers. 

 
 

 
Figure 41: Power wires. Red is 5VDC and black is the corresponding ground, Brown 
is 12VDC and grey is the corresponding ground. All others are control wires. The 
white control wires are directly connected to the 5VDC wires to draw the 
microstepping pins high at all times. 
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Figure 42: Stepper driver and wires. The screw on the left of the board is a 
potentiometer to control the current. It is left all the way open which corresponds 
with ~0.95A when driving with 12VDC and using long power wires. 
 
 

 
Figure 43: Control board header and control wires. For the program that I have 
written (which can be seen in Appendix B), the top row controls the step count, 
while the bottom row controls the direction. 
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 As is typical with plastic inkjet printers, every part that was printed needed 

to be hand finished. The support material (a semi-water-soluble gel-like material 

that the printer uses to create undercut/overhang in parts) needed to be cleaned 

from the part (a task that was extremely arduous – especially in small enclosed 

spaces – and involved a wire coat hanger, chopsticks, and numerous clay sculpting 

tools in addition to a proprietary pressure washer), and flashing/burrs needed to be 

removed and smoothed. 

 

 
Figure 44: Left – 3D inkjet printer. Right – pressure washer glovebox. 
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Figure 45: A batch of epicyclic gear arms and gear mounts with support material. 

 
 

 As previously mentioned, the printer that was used has a reasonably high 

resolution and fairly good fidelity, but creates a burr whenever there is a glossy 

surface joined to a matte surface. The glossy surface is a surface finish option that 

has significantly less friction and is significantly stronger and more rigid than the 

matte surface. Unfortunately, the glossy surface is only available in locations on the 

part that do not come into contact with support material. Because the lower friction 

and higher rigidity of the glossy surface was desired, all printed parts needed to 

have burrs removed from the glossy surface-matte surface junction. Each of the six-

hundred-sixty-six gears needed to be de-burred in order to be able to spin freely; 
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each pin and pin-hole needed to be de-burred in order to mate properly; all 

fasteners and internal gears needed to be reshaped in some way; and all sliding 

surfaces needed to be de-burred to allow the joints to move freely. 

 

 
Figure 46: This spur gear should be symmetric through a roughly horizontal line, 
but the burr on the bottom makes this obviously not so. 
 

 

 
Figure 47: Notice the flat section in the upper right corner. This should be a perfect 
circle. 
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Figure 48: A side view of the same object as in Figure 47. 

 

 The last thing that had to be done in preparation of assembly was to tap each 

of the forty-eight threaded holes. In each of these steps, if a mistake was made, the 

part had to be remanufactured and processed anew. When pressure washing and 

otherwise removing support material, it is very easy to apply too much force and 

break a part. In de-burring, it is very easy to carve off a little too much and have a 

gear that will slip teeth. In tapping threaded holes, it is very easy to tap slightly off-

axis and have a hole that applies large off-axis torques to the screw. Each of these 

tasks was like learning a craft. If the reader perhaps has any experience building a 

model, the preparation and assembly of this mechanism was very much like that. 
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 Once the preparations were completed, the assembly began. Numerous clips 

pins and joining methods were attempted unsuccessfully before the current method 

was perfected. A reverse tapered press-fit is used for some of the passive joint links 

while a three-pronged snap connector is used for others. This is because the 

orientation that certain links had to be printed at did not allow for a strong enough 

prong to use the three-pronged snap connector, yet the joints that did allow for it 

are significantly stronger than the reverse tapered press-fit joints. The press-fit 

joints used a small vice to achieve the necessary force. Many prongs, pins, and clips 

were broken during this process, necessitating the remanufacture, re-cleaning, re-

de-burring, and re-tapping of many parts. 

 

 
Figure 49: A clip being pressed into place with a small vise. 
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Figure 50: Tools used to remove support material include a custom made plunger 
(middle), a chopstick, and a wire coat hanger. 
 
 

 
Figure 51: Stationary planar position of six module prototype. 
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Figure 52: Moving partial sphere position of six module prototype.  
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CHAPTER 4 

DYNAMICS AND CONTROLS 

Dynamic Structural Analysis (Dynamic Joint Forces) 

 We now wish to find a suitable mass matrix to calculate dynamic forces. 

There are many methods to derive a mass matrix with various benefits and 

drawbacks. For our purposes, a "consistent" [8] mass matrix is chosen. Using the 

same methods as for the stiffness matrix, with the same definitions and shape 

functions, a mass matrix that has a shape consistent with the shape determined by 

the element's flexibility is obtained: 

Local linear mass matrix 𝑚𝑚�𝑙𝑙 = 𝜌𝜌
420

× 

 

where 𝜌𝜌 is the density per unit length of each element. 
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Because the shape functions used do not account for the rotational inertia due to the 

thickness of the element, an additional rotational mass matrix is calculated in polar 

coordinates, with the same techniques used above, to give: 

Local rotary mass matrix 𝑚𝑚�𝑟𝑟 = 𝜌𝜌𝑅𝑅2

120𝐿𝐿
× 

 

 R is the radius of the element, assuming a circular cross section. 

Then the complete local consistent mass matrix that takes into account both linear 

and rotary inertia is given by 

𝑚𝑚� = 𝑚𝑚�𝑙𝑙 + 𝑚𝑚�𝑟𝑟  

Using the exact same process as with the static FEA, but with an inertial force 

instead of the spring force 𝑝𝑝, and an acceleration of displacement 𝑑𝑑
2𝑣𝑣

𝑑𝑑𝑡𝑡2  rather than 𝑣𝑣, 

the global mass matrix for a single element is derived as 

𝑚𝑚 = 𝑇𝑇𝑚𝑚�𝑇𝑇T. 
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This is then assembled into a full structural mass matrix in the exact same way that 

the full stiffness matrix was assembled. 

 

Optimal Control 

To analyze the dynamic response of the structure, a standard system of 

equations is used: 

�̇�𝑋 = 𝐴𝐴𝑋𝑋 + 𝐵𝐵𝑈𝑈 

and 

𝑧𝑧 = 𝐷𝐷𝑋𝑋. 

The states 𝑋𝑋 = �𝑋𝑋1
𝑋𝑋2� are chosen as the global position (𝑋𝑋1), and global velocity (𝑋𝑋2) 

of each node.  

Including a viscous friction matrix  

𝐶𝐶 ∝ ‖𝐾𝐾‖ 

gives 

𝐴𝐴 = � 0 𝐼𝐼
−𝑀𝑀−1𝐾𝐾 −𝑀𝑀−1𝐶𝐶�, 

𝐵𝐵 = � 0
𝑀𝑀−1�, 

and 

𝐷𝐷 = �𝐼𝐼 0
0 𝐼𝐼�, 

where each block is a 72x72 matrix. 

 Another interesting feature of an actuated structure is the ability to actively 

damp vibrations. Using a simple optimal control algorithm [9], an input force U can 
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be used to stabilize the system more quickly than without using the actuators and is 

calculated by  

𝑈𝑈 = −𝐹𝐹𝑋𝑋 

where 𝐹𝐹 is the feedback gain given by 

𝐹𝐹 = 𝑅𝑅2
−1𝐵𝐵𝑇𝑇𝑃𝑃�, 

𝑃𝑃� is the unique nonnegative-definite symmetric solution of the algebraic Riccati 

equation 

0 = 𝐷𝐷𝑇𝑇𝑅𝑅3𝐷𝐷 − 𝑃𝑃𝐵𝐵𝑅𝑅2
−1𝐵𝐵𝑇𝑇𝑃𝑃 + 𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝐴𝐴, 

and 𝑅𝑅2 and 𝑅𝑅3 are weighting matrices dictating the relative costs of the inputs and 

outputs respectively [10]. 

 This gives the force at each node in global coordinates which can then be 

transformed to jointspace (local element coordinates) using the same 

transformation matrices used earlier. 

 There are, of course, an infinite number of loading possibilities. In order to 

keep the loading from becoming too complicated, yet still show an interesting 

response that can validate the model, a sinusoidal displacement is used. The 

undeformed position is a planar position that would be singular without the rotary 

actuators, and would yield infinite forces if modeled with non-bending truss 

elements. Because of the included actuators, this shape should have no axial force in 

the beams, but instead should have a shear force and a moment. The loading is 

achieved by displacing each node in the global z-direction such that the deformed 

position is that of a sinusoidal surface. The maximum deformation is 1.9mm. The 

nodes are released and the ensuing motion is analyzed. The center of mass is used 
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as the reference point to show free vibration. A fast Fourier transform (FFT) is 

performed on the output position from this analysis to determine the vibrational 

frequencies. 

 

 
Figure 53: Qualitative graph showing the displacement in meters of each node over 
time in seconds without active damping. 
 

 

 

 
Figure 54: Velocity in meters per second without active damping. 
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Figure 55: Spectral analysis of the vibration without active damping showing 
amplitude (|Y(f)|) over frequency where y(t) is the displacement of each node. 

 
 

 
Figure 56: Sinusoidal initial position of the surface; the final position is flat on the xy 
plane (the vertices are only moving in the z-direction). The faces and edges are 
numbered, and the thickness of each link is indicated by smaller triangles. Surface 
normals are drawn as well to help visualize the direction that the modules are 
facing. The scale shown is in hundredths of inches (~0.25 mm). 
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Figure 57: Qualitative graph showing the displacement in meters of each node over 
time with active damping. Note the drastic reduction in the time scale (shown in 
seconds). 
 

 

 
Figure 58: Velocity in meters per second of each node over time with active 
damping.  
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Figure 59: Active force in Newtons applied by rotary actuators. 

 

 

 
Figure 60: Spectral analysis of the vibration with active damping showing amplitude 
(|Y(f)|) over frequency where y(t) is the displacement of each node. The vibrations 
are virtually eliminated. 
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 An interesting method of calculating an optimal force is considered for 

stabilization purposes. All of the states in the system used are directly a function of 

parameters being controlled. A continuous time algebraic Ricatti equation is solved 

numerically to find the forces that will minimize the time for the surface to go 

between two positions. In this model, each link is assumed to be rigid and friction is 

ignored. A standard system of equations is used:  

�̇�𝑋 = 𝐴𝐴𝑋𝑋 + 𝐵𝐵𝑈𝑈 

and 

𝑧𝑧 = 𝐷𝐷𝑋𝑋. 

The states  

𝑋𝑋 = �𝑋𝑋1
𝑋𝑋2� 

are chosen as the lengths of each link (𝑋𝑋1), and the velocity of one end of a link 

relative to the other end (𝑋𝑋2). Thirteen modules are used, giving a total of 24 links. 

To keep the size of the matrices low, and to reduce the tedium of printing and 

scrolling through these matrices, only nodal motion in the z-direction has been 

included. Motion in the x- and y- directions can be calculated in the exact same way. 

 Using the states and system of equations shown above and a lumped mass 

matrix gives  

𝐴𝐴 = �0 𝐼𝐼
0 0�, 

𝐵𝐵 = �
0

1
𝑚𝑚
𝐼𝐼�, 
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and 

𝐷𝐷 = �𝐼𝐼 0
0 𝐼𝐼�, 

 where each block is a 24x24 matrix and m is the mass of a link (a somewhat 

arbitrary value of 20 grams is used). The input force U is calculated as −𝐹𝐹𝑋𝑋 where 𝐹𝐹 

is the feedback gain given by 𝐹𝐹 = 𝑅𝑅2
−1𝐵𝐵𝑇𝑇𝑃𝑃�, where 𝑃𝑃� is the unique nonnegative-

definite symmetric solution of the algebraic Riccati equation (0 = 𝐷𝐷𝑇𝑇𝑅𝑅3𝐷𝐷 −

𝑃𝑃𝐵𝐵𝑅𝑅2
−1𝐵𝐵𝑇𝑇𝑃𝑃 + 𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝐴𝐴). 

 

 
Figure 61: Block diagram from simulink model. 
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Figure 62: Vertical axis - length of links in inches, horizontal axis - time in seconds. 
 

 

 
Figure 63: Vertical axis - velocity in inches per second, horizontal axis - time in 
seconds. 



 

71 
 

 

 

 
Figure 64: Vertical axis - Force in Newtons divided by 0.0254, horizontal axis - time 
in seconds. 
 
 

 The weighting matrices, 𝑅𝑅2 and 𝑅𝑅3 in the equations above, were decided 

arbitrarily as 1000 ∙ 𝐼𝐼 and 𝐼𝐼, respectively – where 𝐼𝐼 is the identity matrix. The high 

cost for 𝑅𝑅2 corresponding to the force input was chosen for two main reasons. The 

first is that the actuators being used are quite small and since the acceleration is not 

directly controlled and the jerk and snap are not controlled at all the cost of higher 

forces is quite high. The more important second reason is that it is much easier to 

distinguish the different link variables on the graphs using smaller forces as it 

makes the relative difference between the links higher. 
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 A state estimator was also designed by using output feedback. In this system, 

the output is the same as the states, but this same estimator can be used in any 

standard system. A stochastic disturbance is introduced and stabilized as well. The 

new system of equations is 

�̇�𝑋 = 𝐴𝐴𝑋𝑋 + 𝐵𝐵𝑈𝑈 + 𝑢𝑢1 

 and  

𝑧𝑧 = 𝐷𝐷𝑋𝑋 + 𝑢𝑢2, 

where 𝑢𝑢1  and 𝑢𝑢2  are white noise characterized by an intensity of 𝑉𝑉1  and 𝑉𝑉2 

respectively. This gives the system of estimated states  

𝑋𝑋�̇ = 𝐴𝐴𝑋𝑋� + 𝐵𝐵𝑈𝑈 + 𝐾𝐾�𝑧𝑧 − 𝐷𝐷𝑋𝑋�� 

 where the observer gain matrix  

𝐾𝐾 = 𝑄𝑄�𝐷𝐷𝑉𝑉2
−1 

and 𝑄𝑄�  is the solution to an additional continuous time algebraic Riccati equation  

0 = 𝑉𝑉1 − 𝑄𝑄𝐷𝐷𝑇𝑇𝑉𝑉2
−1𝐷𝐷𝑃𝑃 + 𝐴𝐴𝑄𝑄 + 𝑄𝑄𝐴𝐴𝑇𝑇 . 

As before, the same control law is used for the input 𝑈𝑈. 
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Figure 65: Block diagram of plant (top) with state estimator (bottom) and stochastic 
disturbance from Simulink®. 
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Figure 66: State estimator response with no disturbance. Vertical axis - length of 
links in inches, horizontal axis - time in seconds. 
 

 

 
Figure 67: State estimator response with no disturbance. Vertical axis - velocity of 
links in in/s, horizontal axis - time in seconds. 
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Figure 68: State estimator response with no disturbance. Vertical axis - force of links 
in N/0.0254, horizontal axis - time in seconds. 
 
 

 
Figure 69: State estimator response with white noise disturbance acting on input 
and feedback sensors. Vertical axis - length of links in inches, horizontal axis - time 
in seconds. 
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Figure 70: State estimator response with white noise disturbance acting on input 
and feedback sensors. Vertical axis - change of link lengths in inches per second, 
horizontal axis - time in seconds. 
 
 

 
Figure 71: Close-up of the first 1.5 seconds of Figure 70. 
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Figure 72: State estimator response with white noise disturbance acting on input 
and feedback sensors. Vertical axis - force of links in Newtons divided by 0.0254, 
horizontal axis - time in seconds. 
 

 
 

Shape Control – Deciding on Control Point Location 

 Having to control each vertex is much more complicated then controlling a 

single end effector. Each vertex has to have a path, and that path must stay close 

enough to (and far enough from) adjacent vertices so that the joint range is not 

exceeded. 

 Fortunately, a tremendous amount of work [11][12] has already been done 

for computer graphics [13] and finite element analysis [14] that can translate almost 

directly to control the vertices of a robotic surface. Once a reference surface has 

been chosen, sampling and tessellating [15] the surface into triangles gives the 
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desired vertex control points for the robot, taking care to sample the surface so that 

the desired number of edges meets at each vertex [16]. Depending on the number of 

modules being used, the number of required sample points changes (the number of 

sample points must equal the number of vertices on the robot) and the length of 

each edge must be scaled to fit the surface to the robot. Using this control scheme, it 

is a simple matter to calculate the lengths of the edges, the angles between edges, 

and the angles between faces, which correspond directly with the joint variables of 

the robot.  

 Maximum forward and inverse dynamics parameters are chosen based on 

physical constraints, and multiple successive surfaces are chosen at specific times 

such that the robot does not experience motion that exceeds its actuators' 

capabilities, the ranges of the joints, or the yield strengths of the links. There are an 

infinite number of possibilities for the joint paths between two shapes, so a system 

of linear gain scheduling [17][18] is used (i.e., the shapes are chosen sufficiently 

close to each other that each vertex can follow an arbitrary desired path between 

the two positions in global space and each joint can move in a linear fashion in joint 

space without violating any of the constraints). This provides a linear system to be 

solved for each intermediate shape and eliminates the need to formulate and solve 

the highly implicit nonlinear differential equations that would otherwise be 

required to control such a system. Gain scheduling by nonlinear approximations 

may yield better results as there are fewer required intermediate shapes, and is a 

topic for future research.  
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 The explicit control of each vertex is accomplished with equation driven 

motion, but in order to mimic shapes and motion with unknown equations, various 

methods of sampling the surface of a desired shape are explored. 

 Many "meshing" algorithms have been developed to represent arbitrary 

three-dimensional objects as triangles for computer graphics. These have been 

repurposed for many other applications including FEA software. The most 

appropriate of these to our purposes have been selected for further study.  

 A modified Voronoi-Delaunay shape sampling method can be used with this 

mechanism to approximate any arbitrary shape within joint limits. A Voronoi-

Delaunay meshing scheme is named as such because it uses Delaunay Triangulation 

[19] on top of a Voronoi Diagram. 

To make a Voronoi Diagram (sometimes referred to as Dirichlet Tessellation 

– Dirichlet actually came up with the idea first, though he didn’t pursue the idea far 

enough to actually draw a diagram [20]), a defined element size first forms a 3-D 

grid (with spaces between points equal to the defined element size). Any point that 

makes up the object’s point cloud is assigned to the closest point on the grid (by 

proximity that is). Any grid point with two or more such assignments is kept in the 

diagram – the rest are discarded. 

In Delaunay Triangulation, triangles are formed by making edges from any 

two points that pass an “empty circle” test. This test calls for all circles that intersect 

two given test points to be drawn until one is found with no other points inside of it 

(the circle is “empty”). The circles typically start with a diameter equal to the 

distance between the two Voronoi points and vary as required in sweeping to the 
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left and right in search of meeting the empty circle conditions described above. 

Forming these triangles from the Voronoi Diagram comprises the Voronoi-Delaunay 

mesh. 

 

        
Figure 73: Graphical representation of the empty circle test. [21] 

 

 Another potential method is geodesic calculation. Given specified distances 

or distance ranges and the outline of the desired shape (continuously as an 

equation, or discretely as a point cloud), a geodesic algorithm can fill in the shape 

with straight-line chords with lengths equaling the specified distances or distance 

ranges, using any type of polygon. Restricting such an algorithm to triangles, and 

then even further restricting it to six chords from a single point gives appropriate 

control point locations for our mechanism. A combination of three start points, 

and/or three initial guesses can "slide" the sample surface around on the actual 

surface, allowing a shape to be easily mobile by using the robotic surface like tank-

treads flowing around the sampled shape. 

 Each of the two methods mentioned so far needs to be modified to fit the 

number and configuration of modules in an actual robotic surface. This is not always 

trivial. Another more limited method is surface function mapping. A surface is 

"mapped" by choosing an orientation and finding the height value at specified length 
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and width values. Then the length is found at specific intervals of height and width, 

and width likewise is found and specific intervals of height and length. These point 

sets are compared and combined to obtain the most accurate map. If the number of 

points and the specified distances correspond with the robotic surface, no further 

calculations are required. It is simple to implement, but for complicated shapes, this 

is usually the least accurate of the three methods considered here. 

 

Trajectory Planning – Deciding on a Desired Path 

 In the pursuit of a trajectory planner, I have implemented several control 

schemes. For enhanced clarity, these are all explained for a single control vertex of 

the mechanism travelling along a specified two-dimensional path. Though this 

vertex can be changed to any point on the mechanism, or any number of points on 

the mechanism, it may still be thought of as an end effector. The initial methods 

followed the reference path almost exactly, having an error tolerance of less than 

the lowest error tolerance of the mechanism. The first method utilized a constant 

acceleration profile. This of course resulted in infinite jerk and discontinuous 

acceleration.  

 Jerk is defined as the third time derivative of position. Because force equals 

mass times acceleration (F=ma), jerk (as the change in acceleration) is linearly 

proportional to the change in force. In real practical purposes, an instantaneously 

infinite change in force is not possible, so a very high jerk results instead. This 

requires a very fast change in applied force - commonly called an impulse force, as 

in a collision. All actuators have a limit in how quickly they can change force, but 
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because the proportionality constant relating the jerk and change in force is the 

mass being moved, the maximum allowable jerk should vary accordingly. 

To avoid infinite jerk, continuous acceleration (as opposed to constant acceleration) 

is implemented. There are several methods for this implementation, but the one that 

was chosen for this project was a sinusoidal function [21]. The acceleration must go 

from zero to some maximum, and back to zero again with no discontinuities. 

𝑑𝑑 =
𝐴𝐴
2
�1 − cos �

2𝜋𝜋
𝑇𝑇
𝑡𝑡�� 

 Integrating once with respect to time, the velocity is given by  

𝑣𝑣 =
𝐴𝐴
2 �

T
2π�

�
2π
𝑇𝑇
𝑡𝑡 − sin �

2𝜋𝜋
𝑇𝑇
𝑡𝑡�� + 𝑣𝑣0 

and integrating a second time, the displacement is then given by  

𝑑𝑑 =
𝐴𝐴
2 �

T
2π�

2

�
1
2 �

2π
𝑇𝑇
𝑡𝑡�

2

− �1 − cos �
2𝜋𝜋
𝑇𝑇
𝑡𝑡��� + 𝑣𝑣0𝑡𝑡 + 𝑑𝑑0. 

In these equations t is time, T is the period over which acceleration occurs, and A is 

the maximum acceleration of which the joint is capable. Rearranging these 

equations for convenience gives 

 𝐷𝐷 =
(𝑣𝑣 − 𝑣𝑣0)2

𝐴𝐴
, 

and 

 𝑇𝑇 =
2|𝑣𝑣 − 𝑣𝑣0|

𝐴𝐴
, 

where D is the total distance over which acceleration occurs. Now with a starting 

velocity and position, along with a desired velocity and position, the position of the 

vertex can be accurately calculated for any point in time. All that remains is to 
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coordinate the x, y and z directions so that they work together to give the desired 

three dimensional motion. 

 To allow the end effector to follow a straight line, the ratios between each 

parameter (position, velocity, acceleration) of each of the directions must remain 

geometrically similar. The linear directions  𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 are used as an example; 

rotation is analogous but not as easy to visualize. The specific ratios can be 

calculated from the Pythagorean Theorem (𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 𝑑𝑑2) and knowing that all 

of the parameters are geometrically similar. A known position (𝑥𝑥1, 𝑦𝑦1, 𝑧𝑧1) and a 

desired position (𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2) are given, and the displacement of each direction is 

given by (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = (𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2) -(𝑥𝑥1, 𝑦𝑦1, 𝑧𝑧1). d is solved for, and the ratios (that must 

remain mathematically similar) are given by  𝑥𝑥
𝑑𝑑

, 𝑦𝑦
𝑑𝑑

 and  𝑧𝑧
𝑑𝑑

, for each joint respectively. 

The ratio  𝑥𝑥
𝑑𝑑

 is equal to the ratio  𝑉𝑉𝑥𝑥
𝑉𝑉

  and  𝐴𝐴𝑥𝑥
𝐴𝐴

. The other two example directions have 

similar equivalencies. Now to keep these ratios constant between moves,  𝑥𝑥1
𝑑𝑑1

 must be 

similar to  𝑉𝑉𝑥𝑥2
𝑉𝑉2

,  but  𝑉𝑉𝑥𝑥2
𝑉𝑉2

 still has to be similar to  𝑥𝑥2
𝑑𝑑2

. The only solution for this equation 

is 𝑉𝑉𝑥𝑥2 = 0. This means that if a sharp corner is desired, the velocity at that corner 

must be zero in all directions (even if no joints change direction).  

 The considered control schemes first specify a new path with no sharp 

corners – allowing the control vertex to avoid stopping and to have a constant 

velocity if so desired. Quadratic b-splines take advantage of the convex hull property 

and minimize the number of control points required. The term "b-spline" is derived 

from "basis spline" or sometimes "basic spline" and is a form of spline produced by 

using "basis functions." These splines are useful in that every spline function of a 
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given degree, smoothness, and domain partition, can be represented as a linear 

combination of b-splines of that same degree and smoothness, and over that same 

partition [22]. Also, changing one knot only changes the spline over one partition, 

allowing for very accurate control of the spline path. 

 

 
Figure 74: Example of how points are rearranged to round corners. 

 
 

 With a simple application of the law of cosines, a point along the acute 

bisector of two adjacent line segments was calculated at a predetermined distance 

from the intersection of these segments. Control points were then added where the 

bisector's perpendicular passing through this point intersected the line segments. 

This was accomplished numerically in MATLAB®  by replacing each point other 

than the end points in the position vector with two points at the intersections of the 

bisector's perpendicular passing through the point at the desired distance from the 

original point and the two adjacent line segments. In this way, the corners were 

rounded with parabolas deviating from the original path by no more than the 

predetermined distance. This distance was left as a parameter to be changed by the 
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user, but was not allowed to be large enough to cause the bisector's perpendicular 

(referred to above) to intersect the original line segments past their midpoints from 

the direction of the point being replaced.  

 

 
Figure 75: Example path of a quadratic b-spline in blue with the control points in 
red using a maximum path deviation of 5 units on the scale shown. 
 
 

 I next compare with interpolating cubic polynomial splines. I used two 

methods of adding control points since this was the simplest way to reduce path 

deviation. The first was very similar to the method used for cutting corners. The 

difference was that I multiplied the distance of the added points from the original 

point by three or placed them at a distance of 42% of the shortest line segment 

length from the original point along the respective adjacent line segments, 
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whichever was shorter. I also added an additional point at the intersection of the 

bisector and its perpendicular (since the spline now interpolates through the 

points). 42% was chosen because it leaves a minimum of (2 × (50% − 42%) = 16% 

of the line length for the curvature of the parabola — preventing an entire line 

segment from being "blended away." The second method was simply to add control 

points at the midpoint of each line segment; causing the path to interpolate through 

the original reference path at the point of average maximum deviation. Ideally this 

would be based either on an error checking function or on the angles of the previous 

and next line segments. Maximum error calculation was considered, but was 

deemed to be too computationally expensive. 

 

 
Figure 76: Cubic polynomial interpolating spline with no additional control points. 
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Figure 77: Velocity, acceleration, and jerk profiles for x and y directions of the 
example path shown in Figure 76. 
 
 

 
Figure 78: Overall motion profiles for the example path in Figure 76. 
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Figure 79: Example path of a cubic polynomial interpolating spline with control 
points added using a maximum position error of 5 near the corners and extra points 
added at the midpoints of each line segment two times in a row. The entire spline 
was then scaled to constrain the maximum velocity and maximum acceleration. 
 
 

 Initially a uniform parametric spline was used, but soon after a non-uniform 

spline was calculated using the distances between points as the weighting factor of 

the parameter. The entire spline was then scaled by dividing the parameter function 

by the smaller of the quotient of the maximum desired velocity divided by the actual 

maximum velocity and the square root of the quotient of the maximum desired 

acceleration divided by the actual acceleration. The purpose of this scaling was to 

cause the actuators to stay within the constraints of a maximum velocity and 

acceleration.  
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Figure 80: Velocity, acceleration, and jerk profiles for x and y directions of the 
example path shown in Figure 79. 
 
 

 
Figure 81: Overall motion profiles for the example path in Figure 79. 
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 Finally, each line segment within the spline was rescaled by the same method 

as above to ensure that either the maximum velocity or the maximum acceleration 

was reached during each segment. This caused discontinuities, so the process was 

iterated until the values converged [22]. Except for a few special cases, the more line 

segments there are, the more benefit there will be from this method. The overall 

time taken to follow the path is reduced significantly for large datasets, and a 

straighter path is followed. 

 

 
Figure 82: Same dataset as in Figure 79, but with the spline scaled at each partition. 
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Figure 83: Velocity, acceleration, and jerk profiles for x and y directions of the 
example path shown in Figure 82. 
 
 

 
Figure 84: Overall motion profiles for the example path in Figure 82. 
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Figure 85: Comparison of position over time between the scaling of the entire spline 
versus scaling each partition. 
 
 

 Further benefit can be achieved by causing the velocity or acceleration to 

remain at the maximum for as long as possible. The minimum possible required 

time to pass through any set of points is of course with constant maximum 

acceleration or deceleration at all times. Because this is not technically possible, a 

maximum jerk can be accounted for; giving a mathematically continuous 

acceleration profile. This is also not possible, as it causes infinite snap, but for most 

lightweight machines, the snap should stay within the machine's capabilities 

without additional control. Unfortunately, these measures cannot be accomplished 

with a simple scaling law as they require more complicated parameter functions.  



 

93 
 

 Adding many extra control points and recalculating by iteration add 

significantly to the computational expense. Though the cost of computing is 

decreasing exponentially, it is still a reasonable factor to take into consideration. 

Additionally, if straight lines are desired, all of the spline methods described 

previously are often inappropriate. Even if the path stays within a desired error 

amount, a straight line will not be produced. A more perfect compromise would use 

straight line segments as well as splines or even arcs for maximum path fidelity 

deviating only at corners. This would take a small amount of extra time, but would 

match the given reference path much more accurately and would be substantially 

less computationally intense so it may be implemented in the future. 

 

Optimal Trajectory Tracking – Following the Desired Path 

 A time-varying version of the model used in the active damping section 

above is used for the optimal tracking of a planned trajectory. 

�̇�𝑋 = 𝐴𝐴𝑋𝑋 + 𝐵𝐵𝑈𝑈 

and 

𝑧𝑧 = 𝐷𝐷𝑋𝑋 

The states  

𝑋𝑋 = �𝑋𝑋1
𝑋𝑋2� 

 are chosen as the global position (𝑋𝑋1), and global velocity (𝑋𝑋2) of each node.  

Repeated for convenience, 

𝐴𝐴 = � 0 𝐼𝐼
−𝑀𝑀−1𝐾𝐾 −𝑀𝑀−1𝐶𝐶�, 
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𝐵𝐵 = � 0
𝑀𝑀−1�, 

and 

𝐷𝐷 = �𝐼𝐼 0
0 𝐼𝐼�, 

where each block is a 72x72 matrix. The stiffness matrix 𝐾𝐾, the friction matrix 𝐶𝐶, and 

the mass matrix 𝑀𝑀 are no longer constant, but are functions of time so that  

𝐴𝐴 = 𝐴𝐴(𝑡𝑡) and 𝐵𝐵 = 𝐵𝐵(𝑡𝑡). 

 Using the system of equations described above, an optimally tracking control 

can be planned to follow the trajectory between an initial state and a final state. The 

error between the desired position and the actual position is minimized by 

minimizing a quadratic cost function in which the costs of the error and the input 

over time as well as the cost of the final error are weighted. 

𝐽𝐽 =
1
2 �
� [𝑝𝑝(𝑡𝑡)𝑅𝑅1(𝑡𝑡)𝑝𝑝(𝑡𝑡) + 𝑢𝑢(𝑡𝑡)𝑅𝑅2(𝑡𝑡)𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑡𝑡
𝑇𝑇

𝑡𝑡0

+ 𝑝𝑝(𝑇𝑇)𝑅𝑅3𝑝𝑝(𝑇𝑇)� 

𝑅𝑅1, 𝑅𝑅2,  and 𝑅𝑅3 are weighting matrices representing the relative cost of each term in 

the cost function. The "1/2" can be omitted, but its inclusion makes the results 

available in a more convenient form [9].  

 The Hamiltonian is given by 

𝐻𝐻 =
1
2

[𝑧𝑧 − 𝐷𝐷𝑥𝑥]𝑅𝑅1[𝑧𝑧 − 𝐷𝐷𝑥𝑥] +
1
2
𝑢𝑢𝑅𝑅2𝑢𝑢 + 𝐴𝐴𝑥𝑥𝑝𝑝 + 𝐵𝐵𝑢𝑢𝑝𝑝 

where 𝑝𝑝 is the co-state from the Hamiltonian equations of motion: 

�̇�𝑝 = −
𝜕𝜕𝐻𝐻
𝜕𝜕𝑥𝑥

 

and 
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�̇�𝑥 =
𝜕𝜕𝐻𝐻
𝜕𝜕𝑝𝑝

 

Along the optimal tracking trajectory,  

𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢(𝑡𝑡)

= 0 

so 

𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢(𝑡𝑡)

= 𝑅𝑅2𝑢𝑢 + 𝐵𝐵𝑇𝑇𝑝𝑝 = 0 

which means that 

              𝑢𝑢 = −𝑅𝑅2
−1𝐵𝐵𝑇𝑇𝑝𝑝.            (1) 

We now have a system of equations that can be solved: 

�̇�𝑝 = −
𝜕𝜕𝐻𝐻
𝜕𝜕𝑥𝑥

= −𝐷𝐷𝑇𝑇𝑅𝑅1𝐷𝐷𝑥𝑥 − 𝐴𝐴𝑇𝑇𝑝𝑝 + 𝐷𝐷𝑇𝑇𝑅𝑅1𝑧𝑧 

�̇�𝑥 = 𝐴𝐴𝑥𝑥 − 𝐵𝐵𝑅𝑅2
−1𝐵𝐵𝑇𝑇𝑝𝑝 

or in standard reduced canonical form 

��̇�𝑥�̇�𝑝� = � 𝐴𝐴 −𝐵𝐵𝑅𝑅2
−1𝐵𝐵𝑇𝑇

−𝐷𝐷𝑇𝑇𝑅𝑅1𝐷𝐷 −𝐴𝐴𝑇𝑇
� �
𝑥𝑥
𝑝𝑝� + � 0

𝐷𝐷𝑇𝑇𝑅𝑅1𝑧𝑧
�. 

Using the final time 𝑇𝑇 to obtain boundary conditions, we find that the co-state 𝑝𝑝 is 

linearly proportional to the state vector 𝑥𝑥. 

𝑝𝑝(𝑇𝑇) = 𝐷𝐷𝑇𝑇(𝑇𝑇)𝑅𝑅3𝐷𝐷(𝑇𝑇)𝑥𝑥(𝑇𝑇) − 𝐷𝐷𝑇𝑇(𝑇𝑇)𝑅𝑅3𝑧𝑧(𝑇𝑇) 

By defining  

          G(𝑇𝑇) = 𝐷𝐷𝑇𝑇(𝑇𝑇)𝑅𝑅3𝐷𝐷(𝑇𝑇)           (2) 

and 

          𝑑𝑑(𝑇𝑇) = 𝐷𝐷𝑇𝑇(𝑇𝑇)𝑅𝑅3𝑧𝑧(𝑇𝑇)           (3) 

we can substitute into (1) for our control law 
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𝑢𝑢 = −𝑅𝑅2
−1𝐵𝐵𝑇𝑇(𝐺𝐺𝑥𝑥 − 𝑑𝑑) 

and recognizing the structure of the equations, we can solve for 𝐺𝐺 using the Riccati 

equation form 

�̇�𝐺 = −𝐺𝐺𝐴𝐴 − 𝐴𝐴𝑇𝑇𝐺𝐺 + 𝐺𝐺𝐵𝐵𝑅𝑅2
−1𝐵𝐵𝑇𝑇𝐺𝐺 − 𝐷𝐷𝑇𝑇𝑅𝑅1𝐷𝐷 

with the boundary condition given by (2). 

𝑑𝑑 can then be solved with 

�̇�𝑑 = �𝐵𝐵𝑅𝑅2
−1𝐵𝐵𝑇𝑇𝐺𝐺 − 𝐴𝐴�𝑇𝑇𝑑𝑑 − 𝐷𝐷𝑇𝑇𝑅𝑅1𝑧𝑧 

using (3) as the boundary condition. Finally, the optimal tracking trajectory for the 

state variables is obtained from 

�̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑢𝑢 

or 

�̇�𝑥 = �𝐴𝐴 − 𝐵𝐵𝑅𝑅2
−1𝐵𝐵𝑇𝑇𝐺𝐺�𝑥𝑥 + 𝐵𝐵𝑅𝑅2

−1𝐵𝐵𝑇𝑇𝑑𝑑 

 Because this is a time varying system that is dependent on a time varying 

final value problem, the solution is computationally expensive when compared to 

the other options that have been discussed. Tracking achieved by stabilizing an 

initial position to a final position using the stabilization algorithm discussed at the 

beginning of this chapter using rigid links is only very slightly sub-optimal if very 

small increments are chosen, as the system will change very little. Because the 

actuators are discrete, the increments chosen can be made as small as the actuator 

steps to give exactly optimal results within the system's constraints using many 

fewer calculations and not requiring the storage of the solution to a final value 

problem. 
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Microcontroller 

 Microcontrollers have been advancing at the same rate as other electronics, 

and as such are now extremely powerful. For the implementation of a six module 

surface requiring eighteen actuators, a single XMOS microcontroller is used. The 

controller that was chosen has a multi-threaded quad-core processor, allowing the 

entire control program to be written without a single interrupt. Each core has eight 

threads, meaning that thirty-two separate functions can be run simultaneously. The 

processor communicates with the forty-eight input/output pins via a system of 

buffered ports. This means that up to twelve pins can be conveniently controlled 

with a single thread. As each actuator requires two pins, this means that six 

actuators can be easily controlled with one thread without using any interrupts or 

worrying about cycling between actuators within a single function. The program 

that was written to use this microcontroller was written in the XC language, and can 

be found in Appendix B. 

 

Stepper Motors/Drivers 

 In an attempt to keep the prototype as simple as possible, there are no 

sensors or feedback of any kind. As a strictly open loop mechanism, stepper motors 

were chosen to simplify the model and to allow for minor disturbances. To 

maximize the performance of the motors, driver chips were used. The Allegro 

A4983 was selected for its high performance/cost ratio. The motors are current 

driven with the current held very near one amp. To allow for higher efficiency and 

improved torque at higher speeds, the motors are driven with two poles and micro-
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stepping is used at sixteen increments per step [24]. To avoid slipping or loss of 

power and efficiency, all changes in velocity occur only at actual step locations (not 

at the incremental interstices). 
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CHAPTER 5 

FUTURE WORK 

Better Representation of the Mass 

 The mass (and the inertia in general) of this system is estimated and 

approximated using standard density and volume approaches. This is compared 

favorably with the weight as measured on a scale, but the exact location of the mass 

and its effect on the rotational inertia is not perfect. The mass and flexibility of the 

six-bar joint mechanism is built into the mass and flexibility of the links, with less 

than ideal results. A possible addition to future research can be an improvement on 

the representation of the mass and geometry of the mechanism. 

 

Improved Actuators and Smaller Module Design 

 As is the case with all parallel mechanisms, using improved actuators with a 

better power to weight ratio can allow larger numbers of modules to be used in 

parallel and therefore show even more interesting uses for this type of device. Using 

piezoelectric or otherwise ultrasonic actuators can easily allow for significantly 

smaller module designs, which will open up many new applications and can be an 

interesting area for further research. The power transmission in this device was not 

carefully optimized and as such, significant improvements can almost certainly be 

made. Power transmission is a very interesting topic that will be essential in the 

future of this type of mechanism. 
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Sensitivity 

 Another aspect that has not yet been considered is the sensitivity of this 

system to variations in the tolerances of the joints. If there is a large force in a non-

actuated direction, it is assumed in this model that the force does not at all affect the 

joint force. In reality, however, this may not be entirely true. If there is significant 

play in a joint, there will be a component of this other force that will add to (or 

subtract from) the joint force. Depending on the magnitude of the force and on the 

tolerance of the joint, this could significantly and adversely affect the usability of 

this system. Future research consequently includes a sensitivity and robustness 

analysis. 

 

Feedback Control 

 Though several optimal control schemes have been modeled, without 

sensors on the prototype, these models cannot be physically tested. Future work can 

include sensors on a physical prototype to implement and rigorously test the 

optimal models that have been developed, as well as to develop new more 

sophisticated models. 

 

Online Control 

 Because of time and software constraints, the current prototype has only 

been controlled offline with pre-calculated trajectories. Because the storage space 

available on the microcontroller is limited, the number of frames that can be shown 

in a single demonstration is restricted. By using the vastly larger storage capacity of 
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a computer or by performing on the fly calculations to determine future positions 

would remove this restriction, and allow for familiar "remote control" type abilities 

where a user can interact with the device using the computer’s keyboard, mouse, or 

joystick. 

 

Communication Using C++/FTDI 

 An interface to communicate online with the prototype was developed using 

a Future Technology Devices International (FTDI) chip and drivers to convert the 

universal serial bus (USB) protocol signal from the computer to the universal 

asynchronous receive/transmit (UART) protocol that is used by the XMOS 

processor. This code can be seen in Appendix D. Further development of this 

software to integrate it into the rest of the control software is essential in realizing 

the online controls described above. 

 

Uncontrolled Points 

 In all of the methods evaluated thus far all control points are controlled all 

the time. Though it is probably always preferable to control each vertex of the 

mechanism, there are many situations in which the motion of only a few vertices 

matter and the motion of the rest of the vertices must simply support the motion of 

the few truly desired motions. In these cases, it may be useful to have a method of 

placing these points automatically. Three possibilities are listed here for further 

research: maximum stiffness, maximum compliance, and maximum mobility.   



 

102 
 

EXHIBITS 

 

 
Figure 86: One full link with all parts colored according to mass with blue being the 
most massive and red the least massive. 
 
 

Figure 87: Exploded view of one link. For improved visualization, pins are shown for 
only the linear epicyclic stage, no screws are shown, and the first epicyclic stage of 
the rotary actuator is shown without planet gears. 
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Table 2: Nodal forces for the position in Figure 14. 

  
Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 

Node 1 

Force X 0.2125 0.2278 -1.0837 -0.5561 0.0897 0.0841 
Force Y -0.0419 -0.3884 0.1166 -0.0399 -0.1907 0.1613 
Force Z 0.0645 -0.1996 0.0681 -0.0448 0.0104 0.0171 
Moment About X -0.0013 0.0026 -0.001 0 0.0002 -0.0013 
Moment About Y -0.0043 0.0254 -0.0068 0.006 -0.0011 -0.0044 
Moment About Z 0.0132 0.0341 -0.0161 0.0049 0.0251 -0.0119 

Node 2 

Force X -0.2125 -0.2278 1.0837 0.5561 -0.0897 -0.0841 
Force Y 0.0419 0.3884 -0.1166 0.0399 0.1907 -0.1613 
Force Z -0.0645 0.1996 -0.0681 0.0448 -0.0104 -0.0171 
Moment About X 0.0013 -0.0026 0.001 0 -0.0002 0.0013 
Moment About Y -0.0098 0.0182 -0.0131 0.0032 -0.0019 0.0006 
Moment About Z -0.004 0.0507 -0.018 0.0032 0.0306 -0.0234 

        
  

Link 7 Link 8 Link 9 Link 10 Link 11 Link 12 

Node 1 

Force X 0.509 0.1672 0.2403 0.1403 -1.382 0.2321 
Force Y 0.0228 0.2834 0.3116 0.1608 0.0786 -0.1854 
Force Z 0.0114 0.2074 0.2111 -0.0001 -0.0375 -0.016 
Moment About X 0.0007 0.0008 -0.0021 -0.0006 -0.0002 -0.0001 
Moment About Y -0.0062 -0.023 -0.0238 -0.0024 0.0093 0.0026 
Moment About Z -0.0043 -0.0289 -0.0315 -0.0121 -0.009 0.0247 

Node 2 

Force X -0.509 -0.1672 -0.2403 -0.1403 1.382 -0.2321 
Force Y -0.0228 -0.2834 -0.3116 -0.1608 -0.0786 0.1854 
Force Z -0.0114 -0.2074 -0.2111 0.0001 0.0375 0.016 
Moment About X -0.0007 -0.0008 0.0021 0.0006 0.0002 0.0001 
Moment About Y 0.0037 -0.0192 -0.0191 0.0025 0.0017 0.0022 
Moment About Z -0.0007 -0.0287 -0.0318 -0.0267 -0.014 0.0318 

        
  

Link 13 Link 14 Link 15 Link 16 Link 17 Link 18 

Node 1 

Force X 0.3303 0.0995 -0.3356 0.4185 0.3413 0.2435 
Force Y -0.0035 -0.1512 -0.0035 0.0455 0.3288 -0.0834 
Force Z -0.0105 0.0086 0.0462 -0.0076 0.1708 0.1116 
Moment About X 0.001 -0.0002 0.0003 0.0009 -0.0016 -0.0015 
Moment About Y -0.0032 -0.0025 -0.0033 -0.0026 -0.0176 -0.0102 
Moment About Z -0.0022 0.0273 0.0006 -0.007 -0.0366 0.01 

Node 2 

Force X -0.3303 -0.0995 0.3356 -0.4185 -0.3413 -0.2435 
Force Y 0.0035 0.1512 0.0035 -0.0455 -0.3288 0.0834 
Force Z 0.0105 -0.0086 -0.0462 0.0076 -0.1708 -0.1116 
Moment About X -0.001 0.0002 -0.0003 -0.0009 0.0016 0.0015 
Moment About Y 0.0054 0 -0.0062 0.0044 -0.0171 -0.0178 
Moment About Z 0.0029 0.0169 0.0001 -0.004 -0.0302 0.0109 
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Link 19 Link 20 Link 21 Link 22 Link 23 Link 24 

Node 1 

Force X -0.0788 -0.0119 0.0249 -0.1051 -0.1881 -1.0415 
Force Y -0.2513 -0.3048 -0.0547 -0.03 0.1682 0.0509 
Force Z -0.263 -0.1904 0.111 -0.0238 0.0666 0.1378 
Moment About X 0.0005 0.0011 -0.0017 0.0001 -0.0015 -0.0004 
Moment About Y 0.0314 0.0268 -0.0105 0.0045 -0.0095 -0.0218 
Moment About Z 0.0225 0.0239 0.0079 0.002 -0.0121 -0.0059 

Node 2 

Force X 0.0788 0.0119 -0.0249 0.1051 0.1881 1.0415 
Force Y 0.2513 0.3048 0.0547 0.03 -0.1682 -0.0509 
Force Z 0.263 0.1904 -0.111 0.0238 -0.0666 -0.1378 
Moment About X -0.0005 -0.0011 0.0017 -0.0001 0.0015 0.0004 
Moment About Y 0.0345 0.0209 -0.0173 0.0003 -0.0046 -0.0202 
Moment About Z 0.0405 0.0525 0.0058 0.0041 -0.0237 -0.0096 

 

Table 3: Local nodal forces for the position shown in Figure 15. 

  
Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 

Node 1 

Force X 0 0 0 0 0 0 
Force Y 0 0 0 0 0 0 
Force Z -0.0292 -0.532 0.2012 -0.1524 -0.1419 0.0494 
Moment About X 0.0091 0.0129 0.0003 0.0042 0.0058 -0.0073 
Moment About Y 0.0421 0.0681 0.0162 0.0428 0.006 0.0177 
Moment About Z 0 0 0 0 0 0 

Node 2 

Force X 0 0 0 0 0 0 
Force Y 0 0 0 0 0 0 
Force Z 0.0292 0.532 -0.2012 0.1524 0.1419 -0.0494 
Moment About X -0.0091 -0.0129 -0.0003 -0.0042 -0.0058 0.0073 
Moment About Y -0.0361 0.04 -0.0571 -0.0118 0.0228 -0.0278 
Moment About Z 0 0 0 0 0 0 

        
  

Link 7 Link 8 Link 9 Link 10 Link 11 Link 12 

Node 1 

Force X 0 0 0 0 0 0 
Force Y 0 0 0 0 0 0 
Force Z 0.074 0.3694 0.4101 0.0211 -0.1965 -0.0377 
Moment About X 0.0012 0.0041 -0.013 -0.0094 -0.0006 0 
Moment About Y -0.0115 -0.0504 -0.0381 0.0225 0.0574 -0.0096 
Moment About Z 0 0 0 0 0 0 

Node 2 

Force X 0 0 0 0 0 0 
Force Y 0 0 0 0 0 0 
Force Z -0.074 -0.3694 -0.4101 -0.0211 0.1965 0.0377 
Moment About X -0.0012 -0.0041 0.013 0.0094 0.0006 0 
Moment About Y -0.0036 -0.0246 -0.0452 -0.0267 -0.0175 0.0172 
Moment About Z 0 0 0 0 0 0 
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Link 13 Link 14 Link 15 Link 16 Link 17 Link 18 

Node 1 

Force X 0 0 0 0 0 0 
Force Y 0 0 0 0 0 0 
Force Z 0.1668 0.145 -0.2164 0.1315 0.3893 -0.0469 
Moment About X -0.0027 0.0047 0.0016 -0.0017 -0.0127 0.0054 
Moment About Y -0.0206 -0.0245 0.0464 -0.0179 -0.0394 0.0373 
Moment About Z 0 0 0 0 0 0 

Node 2 

Force X 0 0 0 0 0 0 
Force Y 0 0 0 0 0 0 
Force Z -0.1668 -0.145 0.2164 -0.1315 -0.3893 0.0469 
Moment About X 0.0027 -0.0047 -0.0016 0.0017 0.0127 -0.0054 
Moment About Y -0.0133 -0.005 -0.0025 -0.0088 -0.0397 -0.0278 
Moment About Z 0 0 0 0 0 0 

        
  

Link 19 Link 20 Link 21 Link 22 Link 23 Link 24 

Node 1 

Force X 0 0 0 0 0 0 
Force Y 0 0 0 0 0 0 
Force Z -0.568 -0.4724 0.0374 -0.0558 -0.0546 0.6869 
Moment About X -0.0044 0.0123 0.0084 0.0038 -0.0081 0.0022 
Moment About Y 0.0423 0.0578 0.0174 0.0256 0.0167 -0.0921 
Moment About Z 0 0 0 0 0 0 

Node 2 

Force X 0 0 0 0 0 0 
Force Y 0 0 0 0 0 0 
Force Z 0.568 0.4724 -0.0374 0.0558 0.0546 -0.6869 
Moment About X 0.0044 -0.0123 -0.0084 -0.0038 0.0081 -0.0022 
Moment About Y 0.0731 0.0382 -0.025 -0.0143 -0.0055 -0.0475 
Moment About Z 0 0 0 0 0 0 

 
 

  



 

106 
 

Appendix A: Numerical Model and Simulation 

 Many different shapes were tested, and many minor changes were made to 

produce the various plots included in this paper – only the last version is included in 

this appendix. There are many lines for alternate results or diagnostic purposes 

included as comments that are not executed. I have not received any programming 

training, so the format and comments of these programs are likely far from 

standard. This code is included only as a reference. 

%Triangular Surface  

clear all 

close all 

clc 

 L=8*0.0254 ; % shortest link length 

Dia=0.75*0.0254; % link thickness limited by actuator diameter 

X=[(L:L:2*L)',zeros(2,1),zeros(2,1); 

   (L/2:L:5/2*L)',sind(60)*L*ones(3,1),zeros(3,1); 

   (0:L:3*L)',sind(60)*2*L*ones(4,1),zeros(4,1); 

   (L/2:L:5/2*L)',sind(60)*3*L*ones(3,1),zeros(3,1)]; 

 Tri = DelaunayTri(X(:,1:2)); 

Face=Tri.Triangulation; 

Vertex=Tri.X; 

%% Temporary Shape to Find Unique Edges 

% find edge indices 

% assuming x and y distribution is not inversely quadratic, this gives 
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% linearly independent edge lengths - other functions can easily be chosen 

Vertex(:,3)=(1:length(Vertex)).^0.5; 

for i=1:length(Face) 

    for j=1:3 

        P(j,:)=Vertex(Face(i,j),:); 

    end 

    tempVertex(:,:)=[P(1,:);P(2,:);P(3,:);P(1,:)]; 

    x=diff(tempVertex(:,1));% link lengths in x direction 

    y=diff(tempVertex(:,2));% link lengths in y direction 

    z=diff(tempVertex(:,3));% link lengths in z direction 

    d(i,:)=hypot(hypot(x,y),z);% overall link lengths 

end 

[Unused M ~]=unique(d,'first');% M is an index vector for unique edges 

[Unused1 M1 ~]=unique(d);%M1 is for the same edges attached to adjacent faces 

%% Calculate Edge Indices 

for i=1:length(M) 

    if M(i)>(2*length(d)) 

        N(i,1)=M(i)-2*length(d); 

    else  

        N(i,1)=M(i)+length(d); 

    end 

end 

Edge=[Face(M) Face(N)];% index for endpoints of unique edges 
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%% Animate Surface Shape and Plot 

% 2D offset sinusoid 

%Vertex(:,3)=2*sin(Vertex(:,1)/0.0254)+2*cos(Vertex(:,2)/0.0254);  

% 

% circle with center (H,K) 

H=(min(Vertex(:,1))+max(Vertex(:,1)))/2; 

K=(min(Vertex(:,2))+max(Vertex(:,2)))/2; 

R=0.28;% radius in meters 

Vertex(:,3)=(R^2-(Vertex(:,1)-H).^2-(Vertex(:,2)-K).^2).^0.5; % sphere 

clear H K R 

%} 

 %Vertex(:,3)=0; 

 % set nodes 1,9, and 3 as the low points 

Vertex([1 9 10],3)=min(Vertex(:,3))*ones(3,1); 

% Change all points not on function to zero 

for i=1:length(Vertex) 

    if imag(Vertex(i,3))~=0 

        Vertex(i,3)=0; 

    end 

end 

% set lowest point(s) to 0 

Vertex(:,3)=Vertex(:,3)-min(Vertex(:,3)); 

% make sure links do not exceed max length - x and y are fixed 
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while max(Vertex(:,3))>(((1.5*L)^2-L^2)^0.5) 

    Vertex(:,3)=Vertex(:,3)*0.999; 

end 

[Normal newVertex newFace d]=NormAndOffset(Face,Vertex,Dia); 

Angle=CalculateAngle(M,M1,d,Normal); 

GeometryData={Face,Edge,Vertex,newVertex,newFace,Normal,Angle}; 

GraphObjectData=plotvariables(GeometryData,cell(1,4),'b','-');  

% Full Static Loading (including angular displacement and moment) 

E=2e11; % Pa - Steel 

A=pi*(127/8e4)^2; % m^2 - #8-32 threaded rod  

G=7.72e10; % Pa - Steel 

% modeled as a solid rectangular prism; needs work 

% * 

b=127/4e4; % base of cross-sectional area of rectangular prism 

h=127/4e4; % height of cross-sectional area of rectangular prism 

I=1/12*[b*h^3 b^3*h b*h*(b^2+h^2)]; % moment of inertia for rectangle 

% * 

% assemble the full global stiffness matrix 

K=zeros(72,72); % initialize matrix 

for i=1:24 

    [k Tloc kloc]=GlobalBeamElementGeneralStiffness(Vertex(Edge(i,:),:),E,A,G,I); 

    kLocal(:,:,i)=kloc; 

    T(:,:,i)=Tloc; 
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    kaa=k(1:6,1:6);  % sub-matrix associated with node a only 

    kab=k(1:6,7:12); % sub-matrix associated with node a and b 

    kba=k(7:12,1:6); % kab' 

    kbb=k(7:12,7:12);% sub-matrix associated with node b only 

    a=Edge(i,1); % global index of node a 

    b=Edge(i,2); % global index of node b 

    K(6*a-5:6*a,6*a-5:6*a)=K(6*a-5:6*a,6*a-5:6*a)+kaa; 

    K(6*a-5:6*a,6*b-5:6*b)=K(6*a-5:6*a,6*b-5:6*b)+kab; 

    K(6*b-5:6*b,6*a-5:6*a)=K(6*b-5:6*b,6*a-5:6*a)+kba; 

    K(6*b-5:6*b,6*b-5:6*b)=K(6*b-5:6*b,6*b-5:6*b)+kbb; 

end 

% mass of half of a link (assumed to be concentrated at one node) 

Mass=0.01;  

Pg=-9.81*Mass*[0;0;1;0;0;0]; % weight of half of a link 

%{ 

%P(1)=[0;0;unknown]; % forces at node 1 

P(2)=3*Pg; % forces at node 2 

P(3)=4*Pg; % forces at node 3 

P(4)=6*Pg; % forces at node 4 

P(5)=4*Pg; % forces at node 5 

P(6)=3*Pg; % forces at node 6 

P(7)=6*Pg; % forces at node 7 

P(8)=6*Pg; % forces at node 8 
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%P(9)=[0;0;unknown]; % forces at node 9 

%P(10)=[0;0;unknown]; % forces at node 10 

P(11)=4*Pg; % forces at node 11 

P(12)=3*Pg; % forces at node 12 

%} 

% point 1 fixed; points 9 and 10 z-coordinate fixed: 

P=[    3*Pg;4*Pg;6*Pg;4*Pg;3*Pg;6*Pg;6*Pg;0;0; 0;0;0;0;0; 0;0;0;4*Pg;3*Pg]; 

U=K([7:50 52:56 58:72],[7:50 52:56 58:72])\P; 

U=[zeros(6,1);U(1:44);0;U(45:49);0;U(50:64)]; 

P=K*U; 

Displacement=zeros(12,3); 

ExaggerationFactor=100; 

for i=1:12 

    Displacement(i,1:3)=ExaggerationFactor*U(6*i-5:6*i-3)'; 

end 

% exaggerated by ExaggerationFactor 

DisplacedVertex=Vertex+Displacement; 

[Normal newVertex newFace d]=NormAndOffset(Face,DisplacedVertex,Dia); 

Angle=CalculateAngle(M,M1,d,Normal); 

GeometryData={Face,Edge,DisplacedVertex,newVertex,newFace,Normal,Angle}; 

DisplacedObjectData=plotvariables(GeometryData,cell(1,4),'r',':');  

% solve for forces in each rod 

for i=1:24 
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    LinkForce(:,i)=kLocal(:,:,i)*T(:,:,i)'*... 

                       [U(6*Edge(i,1)-5:6*Edge(i,1)); 

                        U(6*Edge(i,2)-5:6*Edge(i,2))]; 

end 

LinkForce % N forces in each link in local coordinates 

% Other Loading Conditions Tested 

%{ 

% points 1,2,6,9,10,12 fixed: 

P=[        4*Pg;6*Pg;4*Pg;  6*Pg;6*Pg;    4*Pg   ]; 

%    1:2 3:5  6 7:8  9:10  11   12 <--Node Indices 

U=K([   13:30  37:48      61:66   ],[13:30 37:48 61:66])\P; 

U=[zeros(12,1);U(1:18);zeros(6,1);U(19:30);zeros(12,1);U(31:36);zeros(6,1)]; 

P=K*U; 

%+[3*Pg;3*Pg;zeros(18,1);3*Pg;zeros(12,1);3*Pg;3*Pg;zeros(6,1);3*Pg] 

%-[3*Pg;3*Pg;zeros(18,1);3*Pg;zeros(12,1);3*Pg;3*Pg;zeros(6,1);3*Pg] 

%} 

%{ 

% points 1,9,10 fixed: 

P=[    3*Pg;4*Pg;6*Pg;4*Pg;3*Pg;6*Pg;6*Pg;    4*Pg;3*Pg]; 

%    1 2:8 9:10 11:12 <--Node Indices 

U=K([  7:48     61:72],[7:48 61:72])\P; 

U=[zeros(6,1);U(1:42);zeros(12,1);U(43:54)]; 

P=K*U; 
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%} 

%{ 

% point 1 x,y, and z fixed; points 9 and 10 z-coordinate fixed: 

P=[   0;0;0;3*Pg;4*Pg;6*Pg;4*Pg;3*Pg;6*Pg;6*Pg;0;0; 0;0;0;0;0; 0;0;0;4*Pg;3*Pg]; 

U=K([4:50 52:56 58:72],[4:50 52:56 58:72])\P; 

U=[zeros(3,1);U(1:47);0;U(48:52);0;U(53:67)]; 

P=K*U; 

%} 

function [Normal newVertex newFace d]=NormAndOffset(Face,Vertex,Dia) 

% Show Link Thickness by Offsetting Vertices 

% redefine faces to accommodate extra vertices 

newFace=zeros(length(Face),3); 

for i=1:length(Face) 

    for j=1:3 

        x(j,:)=Vertex(Face(i,j),:); 

        newFace(i,j)=3*i+j-3; 

    end 

    tempVertex(:,:,i)=[x(1,:);x(2,:);x(3,:);x(1,:)]; 

end 

% offset vertices to show link thickness and calculate face normals 

for k=1:length(Face) 

   x=diff(tempVertex(:,1,k));% link lengths in x direction 

   y=diff(tempVertex(:,2,k));% link lengths in y direction 
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   z=diff(tempVertex(:,3,k));% link lengths in z direction 

   d(:,k)=(x.^2+y.^2+z.^2).^0.5;% overall link lengths 

   A(1,1)=acosd((-d(2,k)^2+d(1,k)^2+d(3,k)^2)/(2*d(1,k)*d(3,k)));%angle from L1 

to L3 

   A(2,1)=acosd((-d(3,k)^2+d(2,k)^2+d(1,k)^2)/(2*d(2,k)*d(1,k)));%angle from L1 

to L2 

   A(3,1)=acosd((-d(1,k)^2+d(2,k)^2+d(3,k)^2)/(2*d(2,k)*d(3,k)));%angle from L2 

to L3 

   d1=Dia./2./sind(A);% offset distance in direction of links 

   sx=x./d(:,k);% scale factors in x direction 

   sy=y./d(:,k);% scale factors in y direction 

   sz=z./d(:,k);% scale factors in z direction 

   dx=(sx-[sx(3);sx(1);sx(2)]).*d1;% offset distance of vertices in x 

   dy=(sy-[sy(3);sy(1);sy(2)]).*d1;% offset distance of vertices in y 

   dz=(sz-[sz(3);sz(1);sz(2)]).*d1;% offset distance of vertices in z 

   newVertex(3*k-2:3*k,:)=tempVertex(1:3,:,k)+[dx dy dz];% new vertices 

   temp=cross([x(1),y(1),z(1)],[x(2),y(2),z(2)]);% compute vectors normal to faces 

   Normal(k,:)=temp/(hypot(hypot(temp(1),temp(2)),temp(3)));% use unit normal 

vectors 

end 

d=d'; 

end 

function [Angle]=CalculateAngle(M,M1,d,Normal) 
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% calculate angles between faces 

    Angle=zeros(length(M),1); 

    for i=1:length(M) 

        if M(i)~=M1(i) 

            temp=M(i); 

            temp1=M1(i); 

            while temp>length(d) 

                temp=temp-length(d); 

            end 

            while temp1>length(d) 

                temp1=temp1-length(d); 

            end 

            Angle(i)=acosd(dot(Normal(temp,:),Normal(temp1,:))); 

        end 

    end 

end 

function [GraphObjectData]=plotvariables(GeometryData,GraphObjectData, 

Color,Linestyle) 

% plot edges, face numbers, face normals, and edge angles or edge numbers 

    Face=GeometryData{1}; 

    Edge=GeometryData{2}; 

    Vertex=GeometryData{3}; 

    newVertex=GeometryData{4}; 
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    newFace=GeometryData{5}; 

    Normal=GeometryData{6}; 

    link=GraphObjectData{1}; 

    linknum=GraphObjectData{2}; 

    NormalLine=GraphObjectData{3}; 

    facenum=GraphObjectData{4}; 

    linewidth=1.1; 

    h=findobj('Type','figure','Name','Triangular Surface'); 

    if isempty(h) 

        h=figure('Name','Triangular 

Surface','NumberTitle','Off','BackingStore','Off','Color','w'); 

        hold on; 

        set(gca,'DrawMode','Fast'); 

        set(gca,'color','w','xcolor','k','ycolor','k','zcolor','k'); 

        axis equal vis3d; 

        axis([-0.1 max(Vertex(:,1))+0.1 -0.1 max(Vertex(:,2))+0.1 -0.15 10*0.0254]); 

        grid on; 

        xlabel('x');ylabel('y');zlabel('z'); 

        camorbit(10,-30); 

        rotate3d on;  

    end          

    %% Initialize Plot Variables 

    if isempty(GraphObjectData{1}) 
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        %Edges 

        for i=1:length(Edge) 

            P=Vertex(Edge(i,:),:); 

link(i)=line(P(:,1),P(:,2),P(:,3),'Color',Color,'LineStyle',Linestyle,'LineWidth',linewidt

h);  

            %link(2*i)=plot3(sum([P(1,1) sum(P(:,1))/2])/2,sum([P(1,2) 

sum(P(:,2))/2])/2,sum([P(1,3) 

sum(P(:,3))/2])/2,'Color',Color,'LineStyle','.','LineWidth',linewidth);  

            %link(3*i)=plot3(sum([P(2,1) sum(P(:,1))/2])/2,sum([P(2,2) 

sum(P(:,2))/2])/2,sum([P(2,3) 

sum(P(:,3))/2])/2,'Color',Color,'LineStyle','o','LineWidth',linewidth);  

%linknum(i)=text(sum(P(:,1))/2,sum(P(:,2))/2,sum(P(:,3))/2,num2str(i),'Horizont

alAlignment','center','VerticalAlignment','bottom','Color',Color,'LineStyle','-

','LineWidth',linewidth);% Edge numbers and angles 

            %linknum(i)=text(P(1,1),P(1,2),P(1,3),['   ' 

num2str(Edge(i,1))],'HorizontalAlignment','left','VerticalAlignment','bottom','Color',

Color,'LineStyle','-','LineWidth',linewidth); 

        end 

    end 

    %% Set Graph Object Data 

    %Edges 

    for i=1:length(Edge) 

        P=Vertex(Edge(i,:),:); 
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        set(link(i),'Xdata',P(:,1),'Ydata',P(:,2),'Zdata',P(:,3));  

     %   

set(linknum(i),'Position',[sum(P(:,1))/2,sum(P(:,2))/2,sum(P(:,3))/2],'String',num2

str(i));% Edge numbers 

    end 

    figure(h); 

    drawnow 

    GraphObjectData={link,linknum,NormalLine,facenum}; 

end 

function [kGlobal,T,k]=GlobalBeamElementGeneralStiffness(X,E,A,G,I) 

% Calculates an element stiffness matrix in global coordinates for any 

% general truss element given the location of the two endpoints, the 

% modulus of elasticity, and the cross-sectional area. 

Ix=I(1); 

Iy=I(2); 

Iz=I(3); 

%X1=X(1:3);% x, y, and z coordinates of node 1 

%X2=X(4:6);% x, y, and z coordinates of node 2 

% choose a local z-axis on a plane formed by the local x- and global z-axes 

  

X=(X(1,:)-X(2,:))'; 

Y=cross([0;0;1],X); 

Y=Y/((sum(Y.^2))^0.5); 
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Z=cross(X,Y); 

Z=Z/((sum(Z.^2))^0.5); 

L=(sum(X.^2))^0.5; % total length of link 

cxx=X(1)/L;% cosine of angle between link x- and global x-axes 

cxy=X(2)/L;% cosine of angle between link x- and global y-axes 

cxz=X(3)/L;% cosine of angle between link x- and global z-axes 

cyx=Y(1);% cosine of angle between link y- and global x-axes 

cyy=Y(2);% cosine of angle between link y- and global y-axes 

cyz=Y(3);% cosine of angle between link y- and global z-axes 

czx=Z(1);% cosine of angle between link z- and global x-axes 

czy=Z(2);% cosine of angle between link z- and global y-axes 

czz=Z(3);% cosine of angle between link z- and global z-axes 

k=[E*A/L     0      0       0      0      0    -E*A/L    0       0      0      0      0     ; 

     0  12*E*Iz/L^3 0       0      0 -6*E*Iz/L^2 0 -12*E*Iz/L^3  0      0      0 -6*E*Iz/L^2; 

     0       0 12*E*Iy/L^3  0 -6*E*Iy/L^2 0      0       0 -12*E*Iy/L^3 0 -6*E*Iy/L^2 0     ; 

     0       0      0    G*Ix/L    0      0      0       0       0   -G*Ix/L   0      0     ; 

     0       0 -6*E*Iy/L^2  0   4*E*Iy/L  0      0       0  6*E*Iy/L^2  0    2*E*Iy/L 0     ; 

     0  -6*E*Iz/L^2 0       0      0   4*E*Iz/L  0   6*E*Iz/L^2  0      0      0   2*E*Iz/L ; 

  -E*A/L     0      0       0      0      0     E*A/L    0       0      0      0      0     ; 

     0 -12*E*Iz/L^3 0       0      0  6*E*Iz/L^2 0  12*E*Iz/L^3  0      0      0  6*E*Iz/L^2; 

     0       0 -12*E*Iy/L^3 0  6*E*Iy/L^2 0      0       0  12*E*Iy/L^3 0  6*E*Iy/L^2 0     ; 

     0       0      0    -G*Ix/L   0      0      0       0       0    G*Ix/L   0      0     ; 

     0       0  -6*E*Iy/L^2 0  2*E*Iy/L   0      0       0  6*E*Iy/L^2  0   4*E*Iy/L  0     ; 
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     0 -6*E*Iz/L^2  0       0      0   2*E*Iz/L  0  6*E*Iz/L^2   0      0      0   4*E*Iz/L ]; 

%  u1  v1  w1  k1  e1  z1  u2  v2  w2  k2  e2  z2 

T=[ cxx cyx czx  0   0   0   0   0   0   0   0   0  ; % u1 

    cxy cyy czy  0   0   0   0   0   0   0   0   0  ; % v1 

    cxz cyz czz  0   0   0   0   0   0   0   0   0  ; % w1 

     0   0   0  cxx cyx czx  0   0   0   0   0   0  ; % k1 

     0   0   0  cxy cyy czy  0   0   0   0   0   0  ; % e1 

     0   0   0  cxz cyz czz  0   0   0   0   0   0  ; % z1 

     0   0   0   0   0   0  cxx cyx czx  0   0   0  ; % u2 

     0   0   0   0   0   0  cxy cyy czy  0   0   0  ; % v2 

     0   0   0   0   0   0  cxz cyz czz  0   0   0  ; % w2 

     0   0   0   0   0   0   0   0   0  cxx cyx czx ; % k2 

     0   0   0   0   0   0   0   0   0  cxy cyy czy ; % e2 

     0   0   0   0   0   0   0   0   0  cxz cyz czz ];% z2 

kGlobal=T*k*T'; 

end 

Motion Simulator for the rhombic surface: 

function nestedRSS 

% Robotic Rhombic Surface 

%    

clear all;close all;clc; 

%}  

%% RSS 
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    Dia=1.75*2.54; H=(0.75+0.68)*2.54; 

% alpha(i-1) , A(i-1),   D    , theta(degrees) 

     DH=[  0 , 3*Dia ,   H    ,  90 ;  % link 1 

           0 , 3*Dia ,  -H    ,  90 ;  % link 2    

           0 , 3*Dia ,   H    ,  90 ;  % link 3 

          90 ,  Dia  ,-1.5*Dia,   0 ;  % link 4 

           0 ,   0   ,   0    ,   0 ;  % link 5 

          90 ,  Dia  ,-1.5*Dia,   0 ;  % link 6 

           0 ,   0   ,   0    ,   0 ;  % link 7 

         -90 ,  Dia  ,  -H/2  ,   0 ;  % link 8 (between modules right) 

         -90 ,  Dia  ,  -H/2  , -90 ]; % link 9 (between modules top) 

% joint range 

    % range1=30;range2=150; %theta1 

    % range3=-45;range4=45; %theta4 and theta6 

    % range5=-10;range6=10; %D5 and D7 

    border=0; % joints on the borders aren't attached 

% desired joint variables 

    %  theta1 theta4 theta6  D5      D7 

    Q =[ 90  ,   0  ,   0  ,  0   ,   0  ;  % module 1 

         90  ,   0  ,   0  ,  0   ,   0  ;  % module 2 

         90  ,border,   0  ,border,   0  ;  % module 3 

         90  ,   0  ,   0  ,  0   ,   0  ;  % module 4 

         90  ,   0  ,   0  ,  0   ,   0  ;  % module 5 
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         90  ,border,   0  ,border,   0  ;  % module 6 

         90  ,   0  ,border,  0   ,border;  % module 7 

         90  ,   0  ,border,  0   ,border;  % module 8 

         90  ,border,border,border,border]; % module 9 

    [mT12 mT14 p1]=position(DH,Q,1); 

    [mT23 mT25 p2]=position(DH,Q,2);                 

    [mT3border mT36 p3]=position(DH,Q,3);         

    [mT45 mT47 p4]=position(DH,Q,4);         

    [mT56 mT58 p5]=position(DH,Q,5);         

    [mT6border mT69 p6]=position(DH,Q,6); 

    [mT78 mT7border p7]=position(DH,Q,7);         

    [mT89 mT7border p8]=position(DH,Q,8);         

    [mT9border mT9border p9]=position(DH,Q,9); 

    p2=mT12*p2; 

    p3=mT12*mT23*p3; 

    p4=mT14*p4; 

    p5=mT14*mT45*p5; 

    p6=mT14*mT45*mT56*p6; 

    p7=mT14*mT47*p7;      

    p8=mT14*mT47*mT78*p8; 

    p9=mT14*mT47*mT78*mT89*p9; 

% plots initial position and sets variables for animation 

    azimuth=-45; 
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    link1=plotRSS(p1,0,azimuth,1);       

    link2=plotRSS(p2,0,azimuth,1);       

    link3=plotRSS(p3,0,azimuth,1);       

    link4=plotRSS(p4,0,azimuth,1);       

    link5=plotRSS(p5,0,azimuth,1);       

    link6=plotRSS(p6,0,azimuth,1);       

    link7=plotRSS(p7,0,azimuth,1);       

    link8=plotRSS(p8,0,azimuth,1);       

    link9=plotRSS(p9,0,azimuth,1);     

%} 

% 

% animation 

for theta=-45:45 

    ACS=cosd(theta); 

    theta4=atand(sind(theta));%theta4 and 6 for corner modules... 

    theta1=asind(cosd(theta)/cosd(atand(sind(theta))));%for corners 

    D5=-(cosd(theta4)*(DH(6,2) + DH(7,2)*cosd(theta4) + DH(9,2)*cosd(theta4) - 

cosd(theta4)*(DH(2,2)/2 + DH(4,3)) - DH(9,3)*sind(theta4) + DH(4,2)*(1 - 

ACS^2/cosd(theta4)^2)^(1/2) - sind(theta4)*(DH(5,2)/2 + DH(8,2)/2 + DH(1,3) - 

DH(3,3)/2 + (3^(1/2)*DH(8,3))/2) + DH(5,2)*cosd(theta4)*(1 - 

ACS^2/cosd(theta4)^2)^(1/2) + DH(8,2)*cosd(theta4)*(1 - 

ACS^2/cosd(theta4)^2)^(1/2) - DH(8,3)*sind(theta4)*(1 - 

ACS^2/cosd(theta4)^2)^(1/2) - (ACS*(DH(2,2) + DH(6,2) - DH(9,3)/2 + 
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(3^(1/2)*DH(7,2))/2 + (3^(1/2)*DH(9,2))/2))/cosd(theta4) + cosd(theta4)*(1 - 

ACS^2/cosd(theta4)^2)^(1/2)*(DH(1,2) - DH(3,2)/2 + DH(6,3)) - sind(theta4)*(1 - 

ACS^2/cosd(theta4)^2)^(1/2)*(DH(7,2)/2 + DH(9,2)/2 + DH(1,3) + DH(2,3)/2 + 

(3^(1/2)*DH(9,3))/2) + (3*ACS*DH(2,2))/(2*cosd(theta4)) + 

(ACS*DH(4,3))/cosd(theta4)))/ACS; 

    D7=-D5; 

    %    theta1 theta4 theta6   D5      D7 

    Q =[ theta1,theta4,theta4,  D5  ,  D7  ;  % module 1 

         90    ,theta4,theta , -D5  ,   0  ;  % module 2 

     180-theta1,border,theta4,border, -D7  ;  % module 3 

         90    ,theta ,theta4,  0   , -D7  ;  % module 4 

         90    ,theta ,theta ,  0   ,   0  ;  % module 5 

         90    ,border,theta4,border,  D7  ;  % module 6 

     180-theta1,theta4,border, -D5  ,border;  % module 7 

         90    ,theta4,border,  D5  ,border;  % module 8 

         theta1,border,border,border,border]; % module 9 

    [mT12 mT14 p1]=position(DH,Q,1); 

    [mT23 mT25 p2]=position(DH,Q,2);                 

    [mT3border mT36 p3]=position(DH,Q,3);         

    [mT45 mT47 p4]=position(DH,Q,4);         

    [mT56 mT58 p5]=position(DH,Q,5);         

    [mT6border mT69 p6]=position(DH,Q,6); 

    [mT78 mT7border p7]=position(DH,Q,7);         
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    [mT89 mT7border p8]=position(DH,Q,8);         

    [mT9border mT9border p9]=position(DH,Q,9); 

    p2=mT12*p2; 

    p3=mT12*mT23*p3; 

    p4=mT14*p4; 

    p5=mT14*mT45*p5; 

    p6=mT14*mT45*mT56*p6; 

    p7=mT14*mT47*p7;      

    p8=mT14*mT47*mT78*p8; 

    p9=mT14*mT47*mT78*mT89*p9; 

    azimuth=theta; 

    link1=plotRSS(p1,link1,azimuth,0);       

    link2=plotRSS(p2,link2,azimuth,0);       

    link3=plotRSS(p3,link3,azimuth,0);       

    link4=plotRSS(p4,link4,azimuth,0);       

    link5=plotRSS(p5,link5,azimuth,0);       

    link6=plotRSS(p6,link6,azimuth,0);       

    link7=plotRSS(p7,link7,azimuth,0);       

    link8=plotRSS(p8,link8,azimuth,0);       

    link9=plotRSS(p9,link9,azimuth,0);   

end 

%} 

function [mT0right mT0top p]=position(DH,Q,R) 
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% forward kinematics using transformation matrices for RSS 

        T01=[cosd(Q(R,1))              , -sind(Q(R,1))              ,       0       ,  DH(1,2)               ; 

             sind(Q(R,1))*cosd(DH(1,1)),  cosd(Q(R,1))*cosd(DH(1,1)), -sind(DH(1,1)), -

sind(DH(1,1))*DH(1,3) ; 

             sind(Q(R,1))*sind(DH(1,1)),  cosd(Q(R,1))*sind(DH(1,1)),  cosd(DH(1,1)),  

cosd(DH(1,1))*DH(1,3) ; 

                         0             ,             0              ,       0       ,              1         ];          

        T12=[-cosd((Q(R,1)))              , -sind((Q(R,1)))              ,       0       ,  DH(2,2)               ; 

             sind((Q(R,1)))*cosd(DH(2,1)),  -cosd((Q(R,1)))*cosd(DH(2,1)), -

sind(DH(2,1)), -sind(DH(2,1))*DH(2,3) ; 

             sind((Q(R,1)))*sind(DH(2,1)),  -cosd((Q(R,1)))*sind(DH(2,1)),  

cosd(DH(2,1)),  cosd(DH(2,1))*DH(2,3) ; 

                         0                   ,             0                    ,       0       ,              1         ];                  

        T23=[cosd(Q(R,1))              , -sind(Q(R,1))              ,       0       ,  DH(3,2)               ; 

             sind(Q(R,1))*cosd(DH(3,1)),  cosd(Q(R,1))*cosd(DH(3,1)), -sind(DH(3,1)), -

sind(DH(3,1))*DH(3,3) ; 

             sind(Q(R,1))*sind(DH(3,1)),  cosd(Q(R,1))*sind(DH(3,1)),  cosd(DH(3,1)),  

cosd(DH(3,1))*DH(3,3) ; 

                         0             ,             0              ,       0       ,              1         ];                               

        T14=[ 0 1 0     0     ; 

             -1 0 0     0     ; 

              0 0 1 -DH(3,3)/2; 

              0 0 0     1     ]*... 
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            [cosd(Q(R,2))              , -sind(Q(R,2))              ,       0       ,  DH(4,2)               ; 

             sind(Q(R,2))*cosd(DH(4,1)),  cosd(Q(R,2))*cosd(DH(4,1)), -sind(DH(4,1)), -

sind(DH(4,1))*DH(4,3) ; 

             sind(Q(R,2))*sind(DH(4,1)),  cosd(Q(R,2))*sind(DH(4,1)),  cosd(DH(4,1)),  

cosd(DH(4,1))*DH(4,3) ; 

                         0             ,             0              ,       0       ,              1         ]; 

        T45=[cosd(DH(5,4))              , -sind(DH(5,4))              ,       0       ,  DH(5,2)          ; 

             sind(DH(5,4))*cosd(DH(5,1)),  cosd(DH(5,4))*cosd(DH(5,1)), -sind(DH(5,1)), 

-sind(DH(5,1))*Q(R,4) ; 

             sind(DH(5,4))*sind(DH(5,1)),  cosd(DH(5,4))*sind(DH(5,1)),  cosd(DH(5,1)),  

cosd(DH(5,1))*Q(R,4) ; 

                         0              ,             0               ,       0       ,              1    ]; 

        T26=[ 0 1 0      0; 

             -1 0 0      0; 

              0 0 1  -DH(2,3)/2; 

              0 0 0      1]*... 

            [cosd(Q(R,3))              , -sind(Q(R,3))              ,       0       ,  DH(6,2)               ; 

             sind(Q(R,3))*cosd(DH(6,1)),  cosd(Q(R,3))*cosd(DH(6,1)), -sind(DH(6,1)), -

sind(DH(6,1))*DH(6,3) ; 

             sind(Q(R,3))*sind(DH(6,1)),  cosd(Q(R,3))*sind(DH(6,1)),  cosd(DH(6,1)),  

cosd(DH(6,1))*DH(6,3) ; 

                         0             ,             0              ,       0       ,              1         ];  

        T67=[cosd(DH(7,4))              , -sind(DH(7,4))              ,       0       ,  DH(7,2)           ; 
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             sind(DH(7,4))*cosd(DH(7,1)),  cosd(DH(7,4))*cosd(DH(7,1)), -sind(DH(7,1)), 

-sind(DH(7,1))*Q(R,5) ; 

             sind(DH(7,4))*sind(DH(7,1)),  cosd(DH(7,4))*sind(DH(7,1)),  cosd(DH(7,1)),  

cosd(DH(7,1))*Q(R,5) ; 

                         0              ,             0               ,       0       ,          1        ];       

        if (R==3)||(R==6)||(R==9) 

            r=0; 

        else 

            r=1; 

        end 

        T53=[sind(Q(R+r,1))              , -cosd(Q(R+r,1))              ,       0       ,  DH(8,2)               ; 

             cosd(Q(R+r,1))*cosd(DH(8,1)),  sind(Q(R+r,1))*cosd(DH(8,1)), -

sind(DH(8,1)), -sind(DH(8,1))*DH(8,3) ; 

             cosd(Q(R+r,1))*sind(DH(8,1)),  sind(Q(R+r,1))*sind(DH(8,1)),  

cosd(DH(8,1)),  cosd(DH(8,1))*DH(8,3)+DH(2,2)/2 ; 

                          0             ,               0             ,       0       ,            1           ]; 

        T70=[cosd(DH(9,4))              , -sind(DH(9,4))              ,       0       ,  DH(9,2)               ; 

             sind(DH(9,4))*cosd(DH(9,1)),  cosd(DH(9,4))*cosd(DH(9,1)), -sind(DH(9,1)), 

-sind(DH(9,1))*DH(9,3) ; 

             sind(DH(9,4))*sind(DH(9,1)),  cosd(DH(9,4))*sind(DH(9,1)),  cosd(DH(9,1)),  

cosd(DH(9,1))*DH(9,3)-DH(3,2)/2 ; 

                          0             ,               0             ,       0       ,            1           ]; 

    % Link0             
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        p=[0;0;0;1]; 

        p(:,3)=T01(:,4); % O1 

        p(:,2)=p(:,3)+[0 0 -DH(1,3) 0]'; 

    % Link1 

        p(:,5)=T01*T12(:,4); % O2 

        p(:,4)=T01*(T12(:,4)+[0 0 -DH(2,3) 0]'); 

        p(:,10)=T01*T14(:,4); % O4  

    % Link2 

        p(:,7)=T01*T12*T23(:,4); % O3 

        p(:,6)=p(:,7)+[0 0 -DH(3,3) 0]'; 

        p(:,13)=p(:,5)+[-DH(2,2)/2 0 0 0]'; 

        p(:,14)=T01*T12*T26(:,4); % O6  

    % Link3 

        p(:,8)=p(:,1)+[0 0 DH(1,3) 0]'; 

        p(:,9)=T01*(T12(:,4)+[-DH(3,2)/2 0 -DH(2,3) 0]'); 

    % Link4 

        p(:,11)=T01*T14*T45(:,4); % O5  

    % Link5 

        p(:,12)=T01*T14*T45*[DH(4,2) DH(3,3)/2 0 1]'; 

    % Link6 

        p(:,15)=T01*T12*T26*T67(:,4); % O7 

    % Link7 

        p(:,16)=T01*T12*T26*T67*[DH(6,2) DH(2,3)/2 0 1]'; 
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        mT0right=T01*T14*T45*T53; 

        mT0top=T01*T12*T26*T67*T70; 

end 

function link=plotRSS(p,link,azimuth,v) 

% plotting/animation for RSS 

        h=findobj('Type','figure','Name','RSS'); 

        if v>0; 

          x0=-37;y0=-20;z0=-62.5;range=125;linewidth=2;pointwidth=0.1; 

          %x0=-10;y0=-22;z0=-50;range=100;linewidth=2; 

          if isempty(h)&&v==1 

              figure('Name','RSS','NumberTitle','Off','BackingStore','Off','Color','k'); 

          end          

          hold on; 

          set(gca,'DrawMode','Fast'); 

          set(gca,'color','k','xcolor','b','ycolor','g','zcolor','r'); 

          axis('square'); axis([x0 x0+range y0 y0+range z0 z0+range]); 

          grid on; xlabel('x');ylabel('y');zlabel('z'); 

          view(azimuth,azimuth);   

         

          link(1)=line(p(1,[1 2]),p(2,[1 2]),p(3,[1 2]),'Color','c','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor');        

          link(2)=line(p(1,[2 3]),p(2,[2 3]),p(3,[2 3]),'Color','c','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor'); 
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          link(3)=line(p(1,[3 4]),p(2,[3 4]),p(3,[3 4]),'Color','b','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor'); 

          link(4)=line(p(1,[4 5]),p(2,[4 5]),p(3,[4 5]),'Color','b','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor'); 

          link(10)=line(p(1,[9 10]),p(2,[9 10]),p(3,[9 10]),'Color','b','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor');  

          link(5)=line(p(1,[5 6]),p(2,[5 6]),p(3,[5 6]),'Color','m','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor'); 

          link(6)=line(p(1,[6 7]),p(2,[6 7]),p(3,[6 7]),'Color','m','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor'); 

          link(7)=line(p(1,[13 14]),p(2,[13 14]),p(3,[13 14]),'Color','m','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor');  

          link(8)=line(p(1,[7 8]),p(2,[7 8]),p(3,[7 8]),'Color','r','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor'); 

          link(9)=line(p(1,[8 1]),p(2,[8 1]),p(3,[8 1]),'Color','r','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor'); 

          link(11)=line(p(1,[10 11]),p(2,[10 11]),p(3,[10 11]),'Color','g','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor'); 

  

          link(12)=line(p(1,[11 12]),p(2,[11 12]),p(3,[11 12]),'Color','r','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor'); 

          link(13)=line(p(1,[14 15]),p(2,[14 15]),p(3,[14 15]),'Color','y','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor');  
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          link(14)=line(p(1,[15 16]),p(2,[15 16]),p(3,[15 16]),'Color','c','LineStyle','-

','LineWidth',linewidth,'EraseMode','xor'); 

          return; 

        end; 

        view(azimuth,azimuth);   

        set(link(1),'Xdata',p(1,[1 2]),'Ydata',p(2,[1 2]),'Zdata',p(3,[1 2])); 

        set(link(2),'Xdata',p(1,[2 3]),'Ydata',p(2,[2 3]),'Zdata',p(3,[2 3])); 

        set(link(3),'Xdata',p(1,[3 4]),'Ydata',p(2,[3 4]),'Zdata',p(3,[3 4])); 

        set(link(4),'Xdata',p(1,[4 5]),'Ydata',p(2,[4 5]),'Zdata',p(3,[4 5])); 

        set(link(5),'Xdata',p(1,[5 6]),'Ydata',p(2,[5 6]),'Zdata',p(3,[5 6])); 

        set(link(6),'Xdata',p(1,[6 7]),'Ydata',p(2,[6 7]),'Zdata',p(3,[6 7])); 

        set(link(7),'Xdata',p(1,[13 14]),'Ydata',p(2,[13 14]),'Zdata',p(3,[13 14])); 

        set(link(8),'Xdata',p(1,[7 8]),'Ydata',p(2,[7 8]),'Zdata',p(3,[7 8])); 

        set(link(9),'Xdata',p(1,[8 1]),'Ydata',p(2,[8 1]),'Zdata',p(3,[8 1])); 

        set(link(10),'Xdata',p(1,[9 10]),'Ydata',p(2,[9 10]),'Zdata',p(3,[9 10])); 

        set(link(11),'Xdata',p(1,[10 11]),'Ydata',p(2,[10 11]),'Zdata',p(3,[10 11])); 

        set(link(12),'Xdata',p(1,[11 12]),'Ydata',p(2,[11 12]),'Zdata',p(3,[11 12])); 

        set(link(13),'Xdata',p(1,[14 15]),'Ydata',p(2,[14 15]),'Zdata',p(3,[14 15])); 

        set(link(14),'Xdata',p(1,[15 16]),'Ydata',p(2,[15 16]),'Zdata',p(3,[15 16])); 

        figure(h); 

        drawnow; 

end 

end 
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Forward kinematics solver for the rhombic surface: 

% Robotic Rhombic Surface 

     clear all;close all;clc; 

%% RSS 

    Dia=1.75*2.54; H=(0.75+0.68)*2.54; 

% alpha(i-1) , A(i-1),   D    , theta(degrees) 

     DH=[  0 , 3*Dia ,   H    ,  pi/2 ;  % link 1 

           0 , 3*Dia ,  -H    ,  pi/2 ;  % link 2    

           0 , 3*Dia ,   H    ,  pi/2 ;  % link 3 

          pi/2 ,  Dia  ,-1.5*Dia,   0 ;  % link 4 

           0 ,   0   ,   0    ,   0 ;  % link 5 

          pi/2 ,  Dia  ,-1.5*Dia,   0 ;  % link 6 

           0 ,   0   ,   0    ,   0 ;  % link 7 

         -pi/2 ,  Dia  ,  -H/2  ,   0 ;  % link 8 (between modules right) 

         -pi/2 ,  Dia  ,  -H/2  , -pi/2 ]; % link 9 (between modules top) 

% joint range 

    % range1=30;range2=150; %theta1 

    % range3=-45;range4=45; %theta4 and theta6 

    % range5=-10;range6=10; %D5 and D7 

syms th11 th12 th13 th14 th15 th16 th17 th18 th19  

syms th41 th42 th43 th44 th45 th46 th47 th48 th49  

syms th61 th62 th63 th64 th65 th66 th67 th68 th69  

syms D51 D52 D53 D54 D55 D56 D57 D58 D59  
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syms D71 D72 D73 D74 D75 D76 D77 D78 D79  

syms DH21 DH22 DH23 DH24 DH25 DH26 DH27 DH28 DH29 

syms DH31 DH32 DH33 DH34 DH35 DH36 DH37 DH38 DH39 

% alpha(i-1) ,A(i-1),  D   , theta(degrees) 

  DHsym=[  0 ,  DH21  ,  DH31  , pi/2 ;  % link 1 

           0 ,  DH22  ,  DH32  , pi/2 ;  % link 2    

           0 ,  DH23  ,  DH33  , pi/2 ;  % link 3 

          pi/2 ,DH24  ,  DH34  ,  0 ;  % link 4 

           0 ,  DH25  ,  DH35  ,  0 ;  % link 5 

          pi/2 ,DH26  ,  DH36  ,  0 ;  % link 6 

           0 ,  DH27  ,  DH37  ,  0 ;  % link 7 

         -pi/2 ,DH28  ,  DH38  ,  0 ;  % link 8 (between modules right) 

         -pi/2 ,DH29  ,  DH39  ,-pi/2 ]; % link 9 (between modules top) 

    border=0;   

    %      theta1  theta4  theta6   D5     D7 

    Qsym =[th11,th41,th61, D51  , D71  ;  % module 1 

           th12,th42,th62, D52  , D72  ;  % module 2 

           th13,border ,th63,border, D73  ;  % module 3 

           th14,th44,th64, D54  , D74  ;  % module 4 

           th15,th45,th65, D55  , D75  ;  % module 5 

           th16,border ,th66,border, D76  ;  % module 6 

           th17,th47,border , D57  ,border;  % module 7 

           th18,th48,border , D58  ,border;  % module 8 
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           th19,border ,border ,border,border]; % module 9 

    [mT12 mT14 p1]=positionsym(DHsym,Qsym,1); 

    [mT23 mT25 p2]=positionsym(DHsym,Qsym,2);                 

    [mT3border mT36 p3]=positionsym(DHsym,Qsym,3);         

    [mT45 mT47 p4]=positionsym(DHsym,Qsym,4);         

    [mT56 mT58 p5]=positionsym(DHsym,Qsym,5);         

    [mT6border mT69 p6]=positionsym(DHsym,Qsym,6); 

    [mT78 mT7border p7]=positionsym(DHsym,Qsym,7);         

    [mT89 mT7border p8]=positionsym(DHsym,Qsym,8);         

    [mT9border mT9border p9]=positionsym(DHsym,Qsym,9); 

    p2=mT12*p2; 

    p3=mT12*mT23*p3; 

    p4=mT14*p4; 

    p5=mT14*mT45*p5; 

    p6=mT14*mT45*mT56*p6; 

    p7=mT14*mT47*p7;      

    p8=mT14*mT47*mT78*p8; 

    p9=mT14*mT47*mT78*mT89*p9; 

    M15a=mT12*mT25; 

    M15b=mT14*mT45; 

    M15=(M15a(1:3,:)-M15b(1:3,:)); 

    M26a=mT23*mT36; 

    M26b=mT25*mT56; 



 

136 
 

    M26=(M26a(1:3,:)-M26b(1:3,:)); 

    M48a=mT45*mT58; 

    M48b=mT47*mT78; 

    M48=(M48a(1:3,:)-M48b(1:3,:)); 

    M59a=mT56*mT69; 

    M59b=mT58*mT89; 

    M59=(M59a(1:3,:)-M59b(1:3,:)); 

% 

% controlled joint variables for 4 leg mode (non-walking) 

    %    theta1  theta4  theta6   D5     D7 

    Qleg =[th11, th41 , th61 ,  D51 ,  D71 ;  % module 1 

           pi/2, th42 , pi/6 ,  D52 ,   0  ;  % module 2 

           th13,border, th63 ,border,  D73 ;  % module 3 

           pi/2, pi/6 , th64 ,   0  ,  D74 ;  % module 4 

           pi/2, pi/6 , pi/6 ,   0  ,   0  ;  % module 5 

           pi/2,border, th66 ,border,  D76 ;  % module 6 

           th17, th47 ,border,  D57 ,border;  % module 7 

           pi/2, th48 ,border,  D58 ,border;  % module 8 

           th19,border,border,border,border]; % module 9 

%} 

    %  theta1 theta4 theta6  D5      D7 

    Q =[ pi/2  ,   0  ,   0  ,  0   ,   0  ;  % module 1 

         pi/2  ,   0  ,   0  ,  0   ,   0  ;  % module 2 
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         pi/2  ,border,   0  ,border,   0  ;  % module 3 

         pi/2  ,   0  ,   0  ,  0   ,   0  ;  % module 4 

         pi/2  ,   0  ,   0  ,  0   ,   0  ;  % module 5 

         pi/2  ,border,   0  ,border,   0  ;  % module 6 

         pi/2  ,   0  ,border,  0   ,border;  % module 7 

         pi/2  ,   0  ,border,  0   ,border;  % module 8 

         pi/2  ,border,border,border,border]; % module 9 

    %digits 10 

    %M15 

    %One=simple((M15)) 

    syms c12 c14 c15 c16 c18 c44 c45 c62 c65 COS41 COS61  

    syms s12 s14 s15 s16 s18 s44 s45 s62 s65 SIN41 SIN61 

    COS=[cos(th12) cos(th14) cos(th15) cos(th16) cos(th18) cos(th44) cos(th45) 

cos(th62) cos(th65)]; 

    SIN=[sin(th12) sin(th14) sin(th15) sin(th16) sin(th18) sin(th44) sin(th45) 

sin(th62) sin(th65)]; 

    c=[c12 c14 c15 c16 c18 c44 c45 c62 c65]; 

    s=[s12 s14 s15 s16 s18 s44 s45 s62 s65]; 

    a=(subs(simple(M15),[COS SIN],[c s])); 
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Appendix B: XC Control 

Manual Actuator Control 

 The following code is written in the XC language for the XMOS controller. It is 

used to manually actuate each joint of the mechanism using the buttons on the 

microcontroller device. Because there are no feedback sensors, this is necessary to 

correct any mismatch caused by losing steps when the device is used. The code is 

included only for reference. 

// System headers 

#include <xs1.h> 

#include <platform.h> 

#include <print.h> 

#define SEC 100000000 

#define steptime SEC*3/16/ 1000 //rpm 

/* Port declarations */ 

// Buttons and Button-leds 

out port p_kled = PORT_BUTTONLED;//4 bits for 4 green leds near buttons 

in port p_key = PORT_BUTTON;   //4 bits for 4 buttons 

// Motor Out 

on stdcore[0] : out port Core0Port4F = XS1_PORT_4F;  //2 rotary motors 

on stdcore[1] : out port Core1Port8A = XS1_PORT_8A;  //4 rotary motors 

on stdcore[2] : out port Core2Port8A = XS1_PORT_8A;  //4 linear motors 

on stdcore[3] : out port Core3Port16A = XS1_PORT_16A;//8 linear motors 

void motorSlave(chanend motor, out port m); //prototype 



 

139 
 

void motorSlave(chanend motor, out port m) 

{ 

 int x; 

 while(1) 

 { 

  motor:>x; 

  m<:x; 

 } 

} 

//main function that runs on core0 

void masterThread(chanend rmotor1, chanend rmotor2, chanend lmotor1, chanend 

lmotor2) 

{ 

 //variables 

 char buttonValue; 

 int b=0xF,time,shift=0; 

 timer t; 

 p_kled <: b; //turn on green lights near buttons 

 while(1){ //loop forever 

  //TurnAllLEDsOff(cLED); //turn off all LEDS 

  p_key :> buttonValue; //read buttons 

  //motor <: 0;//no steps 0b0000 0 

  if (buttonValue == 0b1110) //button 'A' (upside-down left) 
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  { 

   b^=1; //alternate button led so you know if button push was 

registered 

   p_kled <: b; 

   if(shift<8) 

   { 

    lmotor1 <: (1<<(2*shift));//0x5555;//direction right 

0b0101010101010101 21845 0x5555 

    lmotor1 <: (3<<(2*shift));//0xFFFF;//step right 

0b0000000011111111 65535 0xFFFF 

   } 

   if((shift>7)&(shift<12)) 

   { 

    lmotor2 <: (1<<(2*(shift-8)));//0x55;//direction right 

0b0101010101010101 21845 0x5555 

    lmotor2 <: (3<<(2*(shift-8)));//0xFF;//step right 

0b0000000011111111 65535 0xFFFF 

   } 

   if((shift>11)&(shift<16)) 

   { 

    rmotor1 <: (1<<(2*(shift-12)));//0x55;//direction right 

0b0101010101010101 21845 0x5555 
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    rmotor1 <: (3<<(2*(shift-12)));//0xFF;//step right 

0b0000000011111111 65535 0xFFFF 

   } 

   if((shift>15)&(shift<18)) 

   { 

    rmotor2 <: (1<<(2*(shift-16)));//0x5;//direction right 

0b0101010101010101 21845 0x5555 

    rmotor2 <: (3<<(2*(shift-16)));//0xF;//step right 

0b0000000011111111 65535 0xFFFF 

   } 

      t :> time; 

      t when timerafter(time + steptime) :> void; 

  } 

  else if (buttonValue == 0b1101) //button 'B' 

  { 

   b^=1<<1;//alternate button led so you know if button push 

was registered 

   p_kled <: b; 

   if(shift<8) 

   { 

    lmotor1 <: (0<<(2*shift)); 

    lmotor1 <: (2<<(2*shift)); 

   } 
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   if((shift>7)&(shift<12)) 

   { 

    lmotor2 <: (0<<(2*(shift-8))); 

    lmotor2 <: (2<<(2*(shift-8))); 

   } 

   if((shift>11)&(shift<16)) 

   { 

    rmotor1 <: (0<<(2*(shift-12))); 

    rmotor1 <: (2<<(2*(shift-12))); 

   } 

   if((shift>15)&(shift<18)) 

   { 

    rmotor2 <: (0<<(2*(shift-16))); 

    rmotor2 <: (2<<(2*(shift-16))); 

   } 

      t :> time; 

      t when timerafter(time + steptime) :> void; 

  } 

  else if (buttonValue == 0b1011)//button 'C' 

  { 

   b^=1<<2;//alternate button led so you know if button push 

was registered 

   p_kled <: b; 
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   shift+=1; 

   if (shift>17) 

   { 

    shift=0; 

   } 

   t :> time; 

      t when timerafter(time + SEC/2) :> void; 

  } 

  else if (buttonValue == 0b0111) //button 'D' (upside-down right) 

  { 

   b^=1<<3;//alternate button led so you know if button push 

was registered 

   p_kled <: b; 

   shift-=1; 

   if (shift<0) 

   { 

    shift=17; 

   } 

   t :> time; 

      t when timerafter(time + SEC/2) :> void; 

  } 

 } 

} 
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//program entry point for all cores 

int main() 

{ 

 chan rmotor1, rmotor2, lmotor1, lmotor2; //communication channels 

 par 

 { 

     on stdcore[0]: masterThread(rmotor1,rmotor2,lmotor1,lmotor2); 

     on stdcore[0]: motorSlave(rmotor2, Core0Port4F); //2 rotary 

motors 

     on stdcore[1]: motorSlave(rmotor1, Core1Port8A); //4 rotary 

motors 

     on stdcore[2]: motorSlave(lmotor2, Core2Port8A); //4 linear 

motors 

     on stdcore[3]: motorSlave(lmotor1, Core3Port16A);//8 linear 

motors 

 } 

 return 0; 

} 

 

Preprogrammed Offline Control 

 The code in this section is an example motion with each point along the path 

of each vertex embedded on the microcontroller. This limits the quality of the 

motion to whatever will fit on the memory of the microcontroller. In this particular 
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example, the device forms a pyramid and then returns to the neutral planar position. 

All positions in this code were precalculated with the Matlab control code given in 

Appendix C. This code is included only as a reference. 

// System headers 

#include <xs1.h> 

#include <platform.h> 

#include <print.h> 

#define SEC 100000000 

#define steptime SEC*3/16/  1000 //rpm 

/* Port declarations */ 

// Buttons and Button-leds 

out port p_kled = PORT_BUTTONLED;//4 bits for 4 green leds near buttons 

in port p_key = PORT_BUTTON;   //4 bits for 4 buttons 

// Motor Out 

on stdcore[0] : out port Core0Port4F = XS1_PORT_4F;  //2 rotary motors 

on stdcore[1] : out port Core1Port8A = XS1_PORT_8A;  //4 rotary motors 

on stdcore[2] : out port Core2Port8A = XS1_PORT_8A;  //4 linear motors 

on stdcore[3] : out port Core3Port16A = XS1_PORT_16A;//8 linear motors 

void motorSlave(chanend motor, out port m); //prototype 

//catches all out port writes 

void motorSlave(chanend motor, out port m) 

{ 

 int x; 
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 while(1) 

 { 

  motor:>x; 

  m<:x; 

 } 

} 

//main function that runs on core0 

void masterThread(chanend rmotor1, chanend rmotor2, chanend lmotor1, chanend 

lmotor2) 

{ 

 int a, i, j, k, time, linearmotor1, linearmotor2, rotarymotor1, rotarymotor2; 

 short 

 lsteps1[8][782]= 

 { 

 {**782 element vector calculated by code in Appendix C**}, 

 {**782 element vector calculated by code in Appendix C**}, 

 {**782 element vector calculated by code in Appendix C**}, 

 {**782 element vector calculated by code in Appendix C**}, 

 {**782 element vector calculated by code in Appendix C**}, 

 {**782 element vector calculated by code in Appendix C**}, 

 {**782 element vector calculated by code in Appendix C**}, 

 {**782 element vector calculated by code in Appendix C**} 

 }, 
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 lsteps2[4][782]= 

 { 

 {**782 element vector calculated by code in Appendix C**}, 

 {**782 element vector calculated by code in Appendix C**}, 

 {**782 element vector calculated by code in Appendix C**}, 

 {**782 element vector calculated by code in Appendix C**} 

 }, 

 rsteps1[4][782]= 

 { 

 {**782 element vector calculated by code in Appendix C**}, 

 {**782 element vector calculated by code in Appendix C**}, 

 {**782 element vector calculated by code in Appendix C**}, 

 {**782 element vector calculated by code in Appendix C**} 

 }, 

 rsteps2[2][782]= 

 { 

 {**782 element vector calculated by code in Appendix C**}, 

 {**782 element vector calculated by code in Appendix C**} 

 }; 

 timer t; 

 for(i=0;i<782;i++) 

 { 

  for(j=0;j<266;j++) 
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  { 

   //initialize motors for each new step 

   linearmotor1=0;linearmotor2=0; 

   rotarymotor1=0;rotarymotor2=0; 

   for(k=0;k<8;k++) 

   { 

    a=((lsteps1[k][i])<0)?(0-lsteps1[k][i]):(lsteps1[k][i]); 

    if(a>j) 

    { 

     if (lsteps1[k][i]<0) 

     { 

      linearmotor1+=(2<<(2*k));//shorter 

     } 

     if (lsteps1[k][i]>0) 

     { 

      linearmotor1+=(3<<(2*k));//longer 

     } 

    } 

   } 

   lmotor1<:linearmotor1&0x5555;//send just direction first 

   lmotor1<:linearmotor1;//then direction + step to ensure 

direction is registered 

   for(k=0;k<4;k++) 
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   { 

    a=((lsteps2[k][i])<0)?(0-lsteps2[k][i]):(lsteps2[k][i]); 

    if(a>j) 

    { 

     if(lsteps2[k][i]<0) 

     { 

      linearmotor2+=(2<<(2*k));//shorter 

     } 

     if(lsteps2[k][i]>0) 

     { 

      linearmotor2+=(3<<(2*k));//longer 

     } 

    } 

   } 

   lmotor2<:linearmotor2&0x55;//send just direction first 

   lmotor2<:linearmotor2;//then direction + step to ensure 

direction is registered 

   for(k=0;k<4;k++) 

   { 

    a=((rsteps1[k][i])<0)?(0-rsteps1[k][i]):(rsteps1[k][i]); 

    if(a>j) 

    { 

     if(rsteps1[k][i]<0) 
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     { 

      rotarymotor1+=(2<<(2*k));//concave 

down 

     } 

     if(rsteps1[k][i]>0) 

     { 

      rotarymotor1+=(3<<(2*k));//concave up 

     } 

    } 

   } 

   rmotor1<:rotarymotor1&0x55;//send just direction first 

   rmotor1<:rotarymotor1;//then direction + step to ensure 

direction is registered 

   for(k=0;k<2;k++) 

   { 

    a=((rsteps2[k][i])<0)?(0-rsteps2[k][i]):(rsteps2[k][i]); 

    if(a>j) 

    { 

     if(rsteps2[k][i]<0) 

     { 

      rotarymotor2+=(2<<(2*k));//concave 

down 

     } 
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     if(rsteps2[k][i]>0) 

     { 

      rotarymotor2+=(3<<(2*k));//concave up 

     } 

    } 

   } 

   rmotor2<:(rotarymotor2&0x5);//send just direction first 

   rmotor2<:rotarymotor2;//then direction + step to ensure 

direction is registered 

      t :> time;//store the timer in variable time 

      t when timerafter(time + steptime) :> void;//wait until 

time+=steptime before moving on 

  } 

 } 

} 

//program entry point for all cores 

int main() 

{ 

 chan rmotor1, rmotor2, lmotor1, lmotor2; //communication channels 

 

 par 

 { 

     on stdcore[0]: masterThread(rmotor1,rmotor2,lmotor1,lmotor2); 
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     on stdcore[0]: motorSlave(rmotor2, Core0Port4F); //2 rotary 

motors 

     on stdcore[1]: motorSlave(rmotor1, Core1Port8A); //4 rotary 

motors 

     on stdcore[2]: motorSlave(lmotor2, Core2Port8A); //4 linear 

motors 

     on stdcore[3]: motorSlave(lmotor1, Core3Port16A);//8 linear 

motors 

 } 

 return 0; 

} 
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Appendix C: Matlab Control  

 This code sets up the object mesh used by the device to sample shapes, 

calculates and plans the desired equation driven (rather than dynamic shape 

driven) path based on a maximum actuator speed, calculates all joint motions, and 

then generates the actual steps that each actuator will have to take in order to 

perform the desired motion. There are also extra sections of code to calculate 

different implementations of the mechanism included as programming comments. 

This code is included as a reference only. 

clear all 

close all 

clc 

L=15 ; % shortest link length 

Dia=2; % link thickness limited by actuator diameter 

% Large... 

%{ 

X=[(L:L:2*L)',zeros(2,1),zeros(2,1); 

   (L/2:L:5/2*L)',sind(60)*L*ones(3,1),zeros(3,1); 

   (0:L:3*L)',sind(60)*2*L*ones(4,1),zeros(4,1); 

   (L/2:L:5/2*L)',sind(60)*3*L*ones(3,1),zeros(3,1)]; 

%} 

X=[(L/2:L:3/2*L)',zeros(2,1),zeros(2,1); 

   (0:L:2*L)',sind(60)*L*ones(3,1),zeros(3,1); 

   (L/2:L:3/2*L)',sind(60)*2*L*ones(2,1),zeros(2,1)]; 
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% switched x and y 

%{ 

X=[zeros(2,1),(L/2:L:3/2*L)',zeros(2,1); 

   sind(60)*L*ones(3,1),(0:L:2*L)',zeros(3,1); 

   sind(60)*2*L*ones(2,1),(L/2:L:3/2*L)',zeros(2,1)]; 

%} 

 Tri = DelaunayTri(X(:,1:2)); 

Face=Tri.Triangulation; 

Vertex=Tri.X; 

%% Temporary Shape to Find Unique Edges 

% find edge indices 

% assuming x and y distribution is not inversely quadratic, this gives 

% linearly independent edge lengths - other functions can easily be chosen 

Vertex(:,3)=(1:length(Vertex)).^0.5; 

for i=1:length(Face) 

    for j=1:3 

        P(j,:)=Vertex(Face(i,j),:); 

    end 

    tempVertex(:,:)=[P(1,:);P(2,:);P(3,:);P(1,:)]; 

    x=diff(tempVertex(:,1));% link lengths in x direction 

    y=diff(tempVertex(:,2));% link lengths in y direction 

    z=diff(tempVertex(:,3));% link lengths in z direction 

    d(i,:)=hypot(hypot(x,y),z);% overall link lengths 
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end 

[Unused M ~]=unique(d,'first');% M is an index vector for unique edges 

[Unused1 M1 ~]=unique(d);% M1 is for the same edges, but attached to adjacent 

faces 

 %% Calculate Edge Indices 

for i=1:length(M) 

    if M(i)>(2*length(d)) 

        N(i,1)=M(i)-2*length(d); 

    else  

        N(i,1)=M(i)+length(d); 

    end 

end 

Edge=[Face(M) Face(N)];% index for endpoints of unique edges 

 clear x y z d i j Unused Unused1 P tempVertex 

 %% Initialize Graph Objects 

Vertex(:,3)=0;direction=zeros(3,18);Sign=ones(18); 

[Normal newVertex newFace d]=NormAndOffset(Face,Vertex,Dia); 

[FaceAngle direction Sign]=CalculateAngle(M,M1,d,Normal,direction,Sign); 

% Cell arrays used to shorten some lines for improved readability 

%{ 

GeometryData={Face,Edge,Vertex,newVertex,newFace,Normal,FaceAngle}; 

GraphObjectData=plotvariables(GeometryData,cell(1,5)); 

%} 
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%% Plot 

% center (H,K) 

H=(min(Vertex(:,1))+max(Vertex(:,1)))/2; 

K=(min(Vertex(:,2))+max(Vertex(:,2)))/2; 

R=4;% radius 

tempd=L; tempA=0;% initialize temp joint variables 

S=0; TempChangeofLinkLength=0; 

last=0; last1=0; pStep=0;  

linearstep=7.9375/128000; % cm (6.20117187 × 10-5) 

rotarystep=360/(312785+5/11); % deg (1.15094866 × 10-3) 

 MaxVrpm=1e3; % rpm 

MaxV=MaxVrpm*16/3; % steps/second 

%dT=1/MaxV % length of time slot in seconds 

 % 

Amplitude=3; % one-d sinusoid 

dT=0.05 % length of time slot in seconds 

fIncrement=1e-1; % increment of function argument 

%} 

%{ 

Amplitude=2; % two-d sinusoid 

dT=5e-1 % length of time slot in seconds 

fIncrement=1e-1; % increment of function argument 

%} 
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tic 

count=0; 

for H=0:fIncrement:R 

    %Vertex(:,3)=(R^2-(Vertex(:,1)-H).^2-(Vertex(:,2)-K).^2).^0.5; % sphere 

    %Vertex(:,3)=(R^2-(Vertex(:,1)-H).^2).^0.5; % 2-D cylinder 

    %Vertex(:,3)=(R^2-(Vertex(:,1)-H).^2+(Vertex(:,2)-K).^2).^0.5; % spheroid 

cylinder 

    %Vertex(:,3)=((Vertex(:,1)-H).*(Vertex(:,2)-K))/R; % hyperbola 

    %Vertex(:,3)=R-abs(Vertex(:,1)-H); % 1D absolute value 

    %Vertex(:,3)=R-abs(Vertex(:,1)-H)-abs(Vertex(:,2)-K); % 2D absolute value 

    Vertex(4,3)=H; 

    %{ 

    Vertex(:,3)=((abs(sin(Vertex(:,1)-H))<fIncrement)|last).*sin(Vertex(:,1)-H); % 1D 

sinusoid 

        last=last|(abs(sin(Vertex(:,1)-H))<fIncrement); 

    %} 

    %{ 

    Vertex(:,3)=((sin(Vertex(:,1)-H)<fIncrement)|last)*R/2.*sin(Vertex(:,1)-H)+... 

             ((sin(Vertex(:,2)-H)<fIncrement)|last1)*R/2.*sin(Vertex(:,2)-H); % 2D 

sinusoid 

       last=last|(abs(sin(Vertex(:,1)-H))<fIncrement); 

       last1=last1|(abs(sin(Vertex(:,2)-H))<fIncrement); 

    %} 
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    %{ 

    Vertex(:,3)=((sin(Vertex(:,1)-H)<fIncrement)|last)*R/2.*sin(Vertex(:,1)-H)+... 

        ((cos(Vertex(:,2)-H)<fIncrement)|last1)*R/2.*cos(Vertex(:,2)-H); % 2D offset 

sinusoid 

        last=last|(abs(sin(Vertex(:,1)-H))<fIncrement); 

        last1=last1|(abs(cos(Vertex(:,2)-H))<fIncrement); 

    %} 

        % Change all points not on function to zero 

    Vertex(:,3)=(imag(Vertex(:,3))==0).*Vertex(:,3); 

            % set low point to 0 

    Vertex(:,3)=Vertex(:,3)-min(Vertex(:,3)); 

    %Vertex(:,3)=Vertex(:,3)+2.5; 

        % make sure links do not exceed max length - x and y are fixed 

    Vertex(:,3)=Amplitude*Vertex(:,3); 

    while max(Vertex(:,3))>((((1+1/3)*L)^2-L^2)^0.5) 

        Vertex(:,3)=Vertex(:,3)*0.999 

    end 

    %TODO:GlobalVertex=GlobalCoordinates(Edge,Vertex); 

    %F=CalculateLinkForces(Edge,Vertex); 

    %TODO: Check F to make sure max actuator force is not exceeded 

    [Normal newVertex newFace d LinkAngle]=NormAndOffset(Face,Vertex,Dia); 

    [FaceAngle direction Sign]=CalculateAngle(M,M1,d,Normal,direction,Sign); 
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    count=count+1; 

    maxcheckangle(count)=max((FaceAngle)); 

    mincheckangle(count)=min((FaceAngle)); 

    %{ 

    GeometryData={Face,Edge,Vertex,newVertex,newFace,Normal,FaceAngle}; 

    GraphObjectData=plotvariables(GeometryData,GraphObjectData); 

    %} 

    ChangeofLinkLength=d(M)-tempd;% for output to microcontroller 

    ChangeofAngle=FaceAngle-tempA;% for output to microcontroller 

    ChangeofAngle=ChangeofAngle(:,[2,3,6:8,12])'; 

    max(ChangeofAngle); 

    tempd=d(M); tempA=FaceAngle; 

    numSteps=[ChangeofLinkLength/linearstep;ChangeofAngle/rotarystep]; 

    %{ 

        if ~min(min(sign(ChangeofLinkLength)~=sign(TempChangeofLinkLength))) 

            count=count+1 

        end 

        TempChangeofLinkLength=ChangeofLinkLength; 

    %} 

    %{     

        max(max(abs(FaceAngle))) 

        max(max(abs(d))) 

        pause 
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    %} 

    if max(abs(numSteps))~=0 

        MaxNumSteps=max(max(abs(numSteps))); 

        V=MaxV*numSteps/MaxNumSteps; 

        Slots=ceil(MaxNumSteps./max(abs(V))/dT); 

        d0=fix(V*dT); 

        for n=1:Slots 

            pStep=pStep+V*dT-d0; 

            if(abs(pStep)>=1) 

                StepArray(:,n)=d0+sign(d0); 

                pStep=pStep-sign(pStep); 

            else 

                StepArray(:,n)=d0; 

            end 

        end 

        if (round(abs(pStep))==1) %account for round-off error 

            StepArray(:,n)=StepArray(:,n)+sign(pStep); 

        end 

        StepOut(:,S+1:S+size(StepArray,2))=StepArray; 

        S=size(StepOut,2); 

    end 

end 
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last=0;last1=0; 

for H=R:-fIncrement:0 

    %Vertex(:,3)=(R^2-(Vertex(:,1)-H).^2-(Vertex(:,2)-K).^2).^0.5; % sphere 

    %Vertex(:,3)=(R^2-(Vertex(:,1)-H).^2).^0.5; % 2-D cylinder 

    %Vertex(:,3)=(R^2-(Vertex(:,1)-H).^2+(Vertex(:,2)-K).^2).^0.5; % spheroid 

cylinder 

    %Vertex(:,3)=((Vertex(:,1)-H).*(Vertex(:,2)-K))/R; % hyperbola 

    %Vertex(:,3)=R-abs(Vertex(:,1)-H); % 1D absolute value 

    %Vertex(:,3)=R-abs(Vertex(:,1)-H)-abs(Vertex(:,2)-K); % 2D absolute value 

    Vertex(4,3)=H; 

    %{ 

    Vertex(:,3)=(~((abs(sin(Vertex(:,1)-H))<fIncrement)|last)).*sin(Vertex(:,1)-H); % 

1D sinusoid 

        last=(last|(abs(sin(Vertex(:,1)-H))<fIncrement)); 

    %} 

    %{ 

    Vertex(:,3)=(~((sin(Vertex(:,1)-H)<fIncrement)|last))*R/2.*sin(Vertex(:,1)-H)+... 

             (~((sin(Vertex(:,2)-H)<fIncrement)|last1))*R/2.*sin(Vertex(:,2)-H); % 2D 

sinusoid 

       last=last|(abs(sin(Vertex(:,1)-H))<fIncrement); 

       last1=last1|(abs(sin(Vertex(:,2)-H))<fIncrement); 

    %} 

    %{ 
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    Vertex(:,3)=((sin(Vertex(:,1)-H)<fIncrement)|last)*R/2.*sin(Vertex(:,1)-H)+... 

        ((cos(Vertex(:,2)-H)<fIncrement)|last1)*R/2.*cos(Vertex(:,2)-H); % 2D offset 

sinusoid 

        last=last|(abs(sin(Vertex(:,1)-H))<fIncrement); 

        last1=last1|(abs(cos(Vertex(:,2)-H))<fIncrement); 

    %} 

    % Change all points not on function to zero 

    Vertex(:,3)=(imag(Vertex(:,3))==0).*Vertex(:,3); 

    % set low point to 0 

    Vertex(:,3)=Vertex(:,3)-min(Vertex(:,3)); 

    %Vertex(:,3)=Vertex(:,3)+2.5; 

    % make sure links do not exceed max length - x and y are fixed 

    Vertex(:,3)=Amplitude*Vertex(:,3); 

    while max(Vertex(:,3))>((((1+1/3)*L)^2-L^2)^0.5) 

        Vertex(:,3)=Vertex(:,3)*0.999 

    end 

    %TODO:GlobalVertex=GlobalCoordinates(Edge,Vertex); 

    %F=CalculateLinkForces(Edge,Vertex); 

    %TODO: Check F to make sure max actuator force is not exceeded 

    [Normal newVertex newFace d LinkAngle]=NormAndOffset(Face,Vertex,Dia); 

    [FaceAngle direction Sign]=CalculateAngle(M,M1,d,Normal,direction,Sign); 

    count=count+1; 

    maxcheckangle(count)=max((FaceAngle)); 
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    mincheckangle(count)=min((FaceAngle)); 

    %{ 

    GeometryData={Face,Edge,Vertex,newVertex,newFace,Normal,FaceAngle}; 

    GraphObjectData=plotvariables(GeometryData,GraphObjectData); 

    %} 

    ChangeofLinkLength=d(M)-tempd;% for output to microcontroller 

    ChangeofAngle=FaceAngle-tempA;% for output to microcontroller 

    ChangeofAngle=ChangeofAngle(:,[2,3,6:8,12])'; 

    tempd=d(M); tempA=FaceAngle; 

    numSteps=[ChangeofLinkLength/linearstep;ChangeofAngle/rotarystep]; 

    %{ 

        if ~min(min(sign(ChangeofLinkLength)~=sign(TempChangeofLinkLength))) 

            count=count+1 

        end 

        TempChangeofLinkLength=ChangeofLinkLength; 

    %} 

    %{     

        max(max(abs(FaceAngle))) 

        max(max(abs(d))) 

        pause 

    %} 

    if max(abs(numSteps))~=0 

        MaxNumSteps=max(max(abs(numSteps))); 
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        V=MaxV*numSteps/MaxNumSteps; 

        Slots=ceil(MaxNumSteps./max(abs(V))/dT); 

        d0=fix(V*dT); 

        for n=1:Slots 

            pStep=pStep+V*dT-d0; 

            if(abs(pStep)>=1) 

                StepArray(:,n)=d0+sign(d0); 

                pStep=pStep-sign(pStep); 

            else 

                StepArray(:,n)=d0; 

            end 

        end 

        if (round(abs(pStep))==1) %account for round-off error 

            StepArray(:,n)=StepArray(:,n)+sign(pStep); 

        end         

        StepOut(:,S+1:S+size(StepArray,2))=StepArray; 

        S=size(StepOut,2); 

    end 

end 

max(max(maxcheckangle)); 

min(min(mincheckangle)); 

StepOut; 

size(StepOut) 
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toc 

%% Check 

%{ 

xyzdistance=(Vertex(Face(N),:)-Vertex(Face(M),:)); 

distances=hypot(hypot(xyzdistance(:,1),xyzdistance(:,2)),xyzdistance(:,3)); 

%make sure distances calculated from endpoints is the same 

check=distances-d(M);% should equal zero 

%} 

%} 

function [Normal newVertex newFace d 

LinkAngle]=NormAndOffset(Face,Vertex,Dia) 

% Show Link Thickness by Offsetting Vertices 

% redefine faces to accommodate extra vertices 

newFace=zeros(length(Face),3); 

for i=1:length(Face) 

    for j=1:3 

        x(j,:)=Vertex(Face(i,j),:); 

        newFace(i,j)=3*i+j-3; 

    end 

    tempVertex(:,:,i)=[x(1,:);x(2,:);x(3,:);x(1,:)]; 

end 

% offset vertices to show link thickness and calculate face normals 

for k=1:length(Face) 
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   x=diff(tempVertex(:,1,k));% link lengths in x direction 

   y=diff(tempVertex(:,2,k));% link lengths in y direction 

   z=diff(tempVertex(:,3,k));% link lengths in z direction 

   d(:,k)=(x.^2+y.^2+z.^2).^0.5;% overall link lengths 

   A(1,1)=acosd((-d(2,k)^2+d(1,k)^2+d(3,k)^2)/(2*d(1,k)*d(3,k)));%angle from L1 

to L3 

   A(2,1)=acosd((-d(3,k)^2+d(2,k)^2+d(1,k)^2)/(2*d(2,k)*d(1,k)));%angle from L1 

to L2 

   A(3,1)=acosd((-d(1,k)^2+d(2,k)^2+d(3,k)^2)/(2*d(2,k)*d(3,k)));%angle from L2 

to L3 

   d1=Dia./2./sind(A);% offset distance in direction of links 

   sx=x./d(:,k);% scale factors in x direction 

   sy=y./d(:,k);% scale factors in y direction 

   sz=z./d(:,k);% scale factors in z direction 

   dx=(sx-[sx(3);sx(1);sx(2)]).*d1;% offset distance of vertices in x 

   dy=(sy-[sy(3);sy(1);sy(2)]).*d1;% offset distance of vertices in y 

   dz=(sz-[sz(3);sz(1);sz(2)]).*d1;% offset distance of vertices in z 

   newVertex(3*k-2:3*k,:)=tempVertex(1:3,:,k)+[dx dy dz];% new vertices 

   LinkAngle(1:3,k)=A; 

   temp=cross([x(1),y(1),z(1)],[x(2),y(2),z(2)]);% compute vectors normal to faces 

   Normal(k,:)=temp/(hypot(hypot(temp(1),temp(2)),temp(3)));% use unit normal 

vectors 

end 
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d=d'; 

end 

function [FaceAngle,direction,Sign]=CalculateAngle(M,M1,d,Normal,direction,Sign) 

% calculate angles between faces 

    Angle=zeros(length(M),1); 

    for i=1:length(M) 

        if M(i)~=M1(i) 

            temp=M(i); 

            temp1=M1(i); 

            while temp>length(d) 

                temp=temp-length(d); 

            end 

            while temp1>length(d) 

                temp1=temp1-length(d); 

            end 

            newdirection=cross(Normal(temp,:),Normal(temp1,:)); 

acosd(dot(direction(:,i),newdirection)/(sum(direction(:,i).^2).^0.5)/(sum(newdirec

tion.^2).^0.5)); 

if((acosd(dot(direction(:,i),newdirection)/(sum(direction(:,i).^2).^0.5)/(sum(newdi

rection.^2).^0.5)))>90) 

                Sign(i)=-Sign(i); 

            end 

            direction(:,i)=newdirection; 
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            FaceAngle(i)=Sign(i)*acosd(dot(Normal(temp,:),Normal(temp1,:))); 

        end 

    end 

end 

function [GraphObjectData]=plotvariables(GeometryData,GraphObjectData) 

% plot edges, face numbers, face normals, and edge angles or edge numbers 

Face=GeometryData{1}; 

Edge=GeometryData{2}; 

Vertex=GeometryData{3}; 

newVertex=GeometryData{4}; 

newFace=GeometryData{5}; 

Normal=GeometryData{6}; 

link=GraphObjectData{1}; 

linknum=GraphObjectData{2}; 

NormalLine=GraphObjectData{3}; 

facenum=GraphObjectData{4}; 

TM=GraphObjectData{5}; 

linewidth=1; 

h=findobj('Type','figure','Name','Triangular Surface'); 

if isempty(h) 

    h=figure('Name','Triangular 

Surface','NumberTitle','Off','BackingStore','Off','Color','k'); 

    hold on; 
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    set(gca,'DrawMode','Fast'); 

    set(gca,'color','k','xcolor','b','ycolor','g','zcolor','r'); 

    %% Initialize Plot Variables 

    %Edges 

    for i=1:length(Edge) 

        P=Vertex(Edge(i,:),:); 

        link(i)=line(P(:,1),P(:,2),P(:,3),'Color',[i-1 0 length(Edge)-i]/(length(Edge)-

1),'LineStyle','-','LineWidth',linewidth); 

linknum(i)=text(sum(P(:,1))/2,sum(P(:,2))/2,sum(P(:,3))/2,num2str(i),'Horizontal

Alignment','center','Color',[i-1 0 length(Edge)-i]/(length(Edge)-1),'LineStyle','-

','LineWidth',linewidth);% Edge numbers and angles 

    end 

    %Faces 

    for j=1:length(Face) 

        P=Vertex(Face(j,:),:); 

        NormalLine(j)=line(sum(P(:,1))/3+[0 2*Normal(j,1)],sum(P(:,2))/3+[0 

2*Normal(j,2)],sum(P(:,3))/3+[0 2*Normal(j,3)],'Color',[j-1 length(Face)-j 

0]/(length(Face)-1),'LineStyle','-','LineWidth',linewidth); 

        facenum(j)=text(sum(P(:,1))/3,sum(P(:,2))/3,sum(P(:,3))/3,{'' 

num2str(j)},'HorizontalAlignment','center','Color',[j-1 length(Face)-j 

0]/(length(Face)-1),'LineStyle','-','LineWidth',linewidth); 

    end 
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TM=trimesh(newFace,newVertex(:,1),newVertex(:,2),newVertex(:,3),'FaceAlpha',0); 

    axis equal vis3d; 

    axis([0 max(Vertex(:,1)) 0 max(Vertex(:,2)) 0 20]); 

    grid on; 

    xlabel('x');ylabel('y');zlabel('z'); 

    camorbit(10,-30); 

    rotate3d on; 

end 

%Edges 

for i=1:length(Edge) 

    P=Vertex(Edge(i,:),:); 

    set(link(i),'Xdata',P(:,1),'Ydata',P(:,2),'Zdata',P(:,3)); 

set(linknum(i),'Position',[sum(P(:,1))/2,sum(P(:,2))/2,sum(P(:,3))/2],'String',num2

str(i));% Edge numbers and angles 

end 

%Faces 

for j=1:length(Face) 

    P=Vertex(Face(j,:),:); 

    set(NormalLine(j),'Xdata',sum(P(:,1))/3+[0 

2*Normal(j,1)],'Ydata',sum(P(:,2))/3+[0 2*Normal(j,2)],'Zdata',sum(P(:,3))/3+[0 

2*Normal(j,3)]); 
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    set(facenum(j),'Position',[sum(P(:,1))/3,sum(P(:,2))/3,sum(P(:,3))/3],'string',{'' 

num2str(j)}); 

end 

% small offset triangles 

set(TM,'Vertices',newVertex); 

figure(h); 

drawnow 

GraphObjectData={link,linknum,NormalLine,facenum,TM}; 

end 
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Appendix D: Online Communication 

Simplex Communication 

 The following code was written to test one-way online communication from 

a computer to the XMOS microcontroller. This code sends musical signals to the 

speaker on the microcontroller. For the purposes of this project, the speaker port 

simply needs to be changed to the mechanism port, and the musical signal needs to 

be changed to the mechanism control signal. This is a very simple change, and was 

only not implemented due to time and licensing constraints. The code is included 

only as a reference for future work. 

 

Simplex C++ 

#include "stdafx.h" 

#include <windows.h> 

#include "ftd2xx.h" 

#include <iostream> 

#include <cstdio> 

#include <ctime> 

#define TXBUFFERSIZE 256 

#define RXBUFFERSIZE 1024 

using namespace std;// for cout 

//forward declaration of helper functions 

FT_STATUS InitXMOSComm(FT_HANDLE &myHandle); 

//main program 
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int _tmain(int argc, _TCHAR* argv[]) 

{ 

 //variables 

 FT_HANDLE fthandle; //special datatype to reference device to open, 

passed by reference then overwritten 

 FT_STATUS ftStatus; //another special datatype which indicates status of 

device 

 

 DWORD BytesWritten,BytesReceived,EventDWord; //return variables from 

FT_Write or FT_Read 

 DWORD RxBytes,TxBytes; //how many bytes are available in the buffer, used 

in an FT_GetStatus call 

 char TxBuffer[3],RxBuffer[1]; 

 int Notes[26]={7,5,3,5,7,7,7,5,5,5,7,10,10,7,5,3,5,7,7,7,7,5,5,7,5,3}; 

 int beat[26]={1,1,1,1,1,1,2,1,1,2,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,4}; 

 double Note=220; 

 int note,loop=1; 

 //open the device 

 ftStatus=InitXMOSComm(fthandle); 

 while(1) 

 { 

  //wait for bytes 

  FT_GetStatus(fthandle,&RxBytes,&TxBytes,&EventDWord); 
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  if (RxBytes > 0)  

  { 

   FT_Read(fthandle,RxBuffer,RxBytes,&BytesReceived);//dump 

start bit 

   for(int i=0;i<26;i++) 

   { 

    //* 

    for(int j=0;j<Notes[i];j++) 

    { 

     Note*=1.059463094; //2^(1/12)=scaling factor 

for piano scale 

    } 

    note=Note; 

    Note=220; 

     //cout<<note<<"\n"; 

    //*/ 

    TxBuffer[0]=(note>>8)&0xFF; //MSByte 

    TxBuffer[1]=note&0xFF; //LSByte 

    TxBuffer[2]=beat[i]&0xFF; //beat 

    //cout<<Notes[i]<<"\n"; 
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 cout<<(TxBuffer[0]&0xFF)<<":"<<(TxBuffer[1]&0xFF)<<":"<<(TxBuffer[2]&

0xFF)<<"\n"; 

    FT_Write(fthandle, TxBuffer, 3, &BytesWritten);  

   FT_Read(fthandle,RxBuffer,RxBytes,&BytesReceived); 

 cout<<(RxBuffer[0]&0xFF)<<":"<<((TxBuffer[0]+TxBuffer[1]+TxBuffer[2])&

0xFF)<<"\n\n"; 

    if 

((RxBuffer[0]&0xFF)!=((TxBuffer[0]+TxBuffer[1]+TxBuffer[2])&0xFF)) 

    { 

     cout<<"Tx error. Trying again"<<"\n"; 

     i--; 

    } 

   } 

  } 

 } 

 return 0; 

} 

//helper functions 

FT_STATUS InitXMOSComm(FT_HANDLE &fthandle) 

{ 

 //variables 

 FT_STATUS ftStatus; 
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 double timeDiff; 

 int i;  

 //open the FTDI Device based on Description -> change if using different 

device 

 ftStatus = FT_OpenEx("XC-1A 1V0 B",FT_OPEN_BY_DESCRIPTION,&fthandle);  

   

 if (ftStatus == FT_OK)  

 { // success  

  printf("Opened XMOS UART\n"); 

 }  

 else  

 { // failure  

  printf("Cannot open device.\n"); 

 }  

 // Set read timeout of 5000ms, no write timeout  

 ftStatus = FT_SetTimeouts(fthandle,5000,0); 

 // Set RX and TX Buffer size, 64 to 64k, multiples of 64, bigger is better 

transfer rate 

 ftStatus = FT_SetUSBParameters(fthandle, RXBUFFERSIZE, TXBUFFERSIZE); 

 // Set RX and TX Buffer size, 64 to 64k, multiples of 64, bigger is better 

transfer rate 

 //ftStatus = FT_SetUSBParameters(fthandle, 64, 64); 

 ftStatus = FT_SetFlowControl(fthandle, FT_FLOW_NONE, 0x11, 0x13); 
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 // Set Baud Rate to 115,200 and 8n1 

 ftStatus = FT_SetBaudRate(fthandle, 115200); 

 ftStatus = 

FT_SetDataCharacteristics(fthandle,FT_BITS_8,FT_STOP_BITS_1,FT_PARITY_NONE); 

 // Purge both Rx and Tx buffers 

 ftStatus = FT_Purge(fthandle, FT_PURGE_RX | FT_PURGE_TX);  

 return ftStatus; 

} 

 

Simplex XC 

// System headers 

#include <xs1.h> 

#include <platform.h> 

#include <print.h> 

#define BIT_TIME XS1_TIMER_HZ / 115200 

#define MM 120 //tempo in beats per second ("Maelzel's Metronome") 

buffered out port:1 p_spk = XS1_PORT_1K; 

out port UART_TX_PORT = PORT_UART_TX; // 1bit port Tx 

in  port UART_RX_PORT = PORT_UART_RX; // 1bit port Rx 

// Functions 

unsigned char getch(void); 

void putch(unsigned char buffer); 

void uart_configure(int baud_rate); 
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void play(int note, int beats, int octave); 

// Global state 

static unsigned bit_time = 0; 

/** Initialize UART... bit_time 

 *  Its fixed to, Data : 8bits, Parity : None, Stop : 1bit, Flow control : none. 

 */ 

void uart_configure(int baud_rate) 

{   

   bit_time  = XS1_TIMER_MHZ * 1000000 / (unsigned) baud_rate; 

   UART_TX_PORT <: 1;       

} 

/** UART receive a character  **/ 

unsigned char getch(void) 

{ 

    unsigned data = 0, time; 

    int i; 

    unsigned char c; 

     

  // Wait for stop bit  

    UART_RX_PORT when pinseq (1) :> int _;  

 

    // wait for start bit 

    UART_RX_PORT when pinseq (0) :> int _ @ time;   
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    time += BIT_TIME + (BIT_TIME >> 1); 

     

    // sample each bit in the middle. 

    for (i = 0; i < 8; i += 1) 

    { 

    UART_RX_PORT @ time :> >> data; 

       time += BIT_TIME; 

    } 

 

    // reshuffle the data. 

    c = (unsigned char) (data >> 24); 

    return c; 

} 

/** UART transmit a character.  This is blocking call for now. */ 

void putch(unsigned char buffer) 

{ 

   unsigned time, data; 

   data = buffer; 

   // get current time from port with force out. 

   UART_TX_PORT <: 1 @ time; 

   // Start bit. 

   UART_TX_PORT <: 0; 

   // Data bits. 
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   for (int i = 0; i < 8; i += 1) 

   { 

      time += bit_time; 

      UART_TX_PORT @ time <: >> data;          

   } 

   // Stop bit 

   time += bit_time; 

   UART_TX_PORT @ time <: 1; 

   time += bit_time; 

   UART_TX_PORT @ time <: 1;  

} 

void play(int note, int beats, int octave) 

{    

  int note_delay=100000000/(2*note); 

  int time, spkVal = 0, x = 2, lowoctave=1; 

  timer t; 

  if (octave>0) 

  { 

 for (int k=0;k<(octave-1);k++) 

 { 

   x*=2; 

 } 

 octave=x; 
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  } 

  if (octave<0) 

  { 

   for (int k=(octave+1);k<0;k++) 

   { 

     x*=2; 

   } 

   lowoctave=x; 

   octave=1; 

  }   

  if (octave==0)octave=1; 

  for (int i=0;i<beats;i++) 

  { 

    for (int j=0;j<(100000000/note_delay*60/MM*octave/lowoctave);j++) 

    { 

      p_spk <: spkVal; 

      t :> time; 

      t when timerafter(time + note_delay/octave*lowoctave) :> void; 

      spkVal = !spkVal; 

    } 

  } 

  t :> time; 

  t when timerafter(time + 100000) :> void;//pause for a millisecond between notes 
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} 

int main(void) 

{ 

  int octave=0; // 0 is middle octave; -1 is one octave lower, and 1 is one octave 

higher 

  int note2,note1,note,beat; 

  uart_configure(115200); 

  putch(1); 

  while(1) 

  {    

   note1=getch(); 

   note2=getch(); 

   beat=getch(); 

   note=(note1<<8)+note2; 

   play(note,beat,octave); 

   putch((note1+note2+beat)&0xFF); 

  } 

} 

 

Duplex Communication 

 The next step is to test duplex (bidirectional) communication between the 

computer and the microcontroller. The example used is a simple binary calculator 

that utilizes the buttons on the microcontroller for input. This manual feedback can 
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easily be obtained from sensors rather than the buttons if and when sensors are 

introduced to the mechanism. This code is also given solely for future research 

efforts. 

Duplex C++ 

#include "stdafx.h" 

#include <windows.h> 

#include "ftd2xx.h" 

#include <iostream> 

#include <cstdio> 

#include <ctime> 

#define TXBUFFERSIZE 256 

#define RXBUFFERSIZE 1024 

using namespace std;// for cout 

//forward declaration of helper functions 

FT_STATUS InitXMOSComm(FT_HANDLE &myHandle); 

//main program 

int _tmain(int argc, _TCHAR* argv[]) 

{ 
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 //variables 

 FT_HANDLE fthandle; //special datatype to reference device to open, 

passed by reference then overwritten 

 FT_STATUS ftStatus; //another special datatype which indicates status of 

device 

 DWORD BytesWritten,BytesReceived,EventDWord; //return variables from 

FT_Write or FT_Read 

 DWORD RxBytes,TxBytes; //how many bytes are available in the buffer, used 

in an FT_GetStatus call 

 char TxBuffer[3],RxBuffer[3]; 

 int Total=0,loop=1; 

 //open the device 

 ftStatus=InitXMOSComm(fthandle); 

 while(1) 

 { 

  //wait for bytes 

  FT_GetStatus(fthandle,&RxBytes,&TxBytes,&EventDWord); 

  if (RxBytes > 2)  
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  { 

   while(loop) 

   { 

    FT_Read(fthandle,RxBuffer,RxBytes,&BytesReceived); 

    cout<<"Rx: 

"<<(RxBuffer[1]&0xFF)<<":"<<(RxBuffer[0]&0xFF)<<(RxBuffer[2]&0xFF)<<"\n"; 

    if(RxBuffer[2]==(RxBuffer[0]+RxBuffer[1])) 

    { 

    Total+=(RxBuffer[0]&0xFF)+((RxBuffer[1]&0xFF)<<8); 

     TxBuffer[0]=Total&0xFF; //LSByte 

     TxBuffer[1]=((Total&0xFFFF)>>8)&0xFF; 

//MSByte 

     TxBuffer[2]=TxBuffer[0]+TxBuffer[1]; 

//checksum 

     FT_Write(fthandle, TxBuffer, 3, &BytesWritten);  

     cout << "Sum: 

"<<(TxBuffer[1]&0xFF)<<":"<<(TxBuffer[0]&0xFF)<<"\n"; 

     loop=0; 
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    } 

    else 

if(((RxBuffer[0]+RxBuffer[1])==0)&&(RxBuffer[2]==1)) 

    { 

     Total=0; 

     TxBuffer[0]=0&0xFF; //LSByte 

     TxBuffer[1]=0&0xFF; //MSByte 

     TxBuffer[2]=TxBuffer[0]+TxBuffer[1]; 

//checksum 

     FT_Write(fthandle, TxBuffer, 3, &BytesWritten);  

     cout<<"Total Cleared\n"; 

     loop=0; 

    } 

    else 

    { 

     loop=1; 

    } 

   } 
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  loop=1; 

  } 

 } 

 return 0; 

} 

//helper functions 

FT_STATUS InitXMOSComm(FT_HANDLE &fthandle) 

{ 

 //variables 

 FT_STATUS ftStatus; 

 double timeDiff; 

 int i; 

  //open the FTDI Device based on Description -> change if using 

different device 

 ftStatus = FT_OpenEx("XC-1A 1V0 B",FT_OPEN_BY_DESCRIPTION,&fthandle);  

 if (ftStatus == FT_OK)  

 { // success  
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  printf("Opened XMOS UART\n"); 

 }  

 else  

 { // failure  

  printf("Cannot open device.\n"); 

 } 

 // Set read timeout of 5000ms, no write timeout  

 ftStatus = FT_SetTimeouts(fthandle,5000,0); 

 // Set RX and TX Buffer size, 64 to 64k, multiples of 64, bigger is better 

transfer rate 

 ftStatus = FT_SetUSBParameters(fthandle, RXBUFFERSIZE, TXBUFFERSIZE); 

 // Set RX and TX Buffer size, 64 to 64k, multiples of 64, bigger is better 

transfer rate 

 //ftStatus = FT_SetUSBParameters(fthandle, 64, 64); 

 ftStatus = FT_SetFlowControl(fthandle, FT_FLOW_NONE, 0x11, 0x13); 

 // Set Baud Rate to 115,200 and 8n1 

 ftStatus = FT_SetBaudRate(fthandle, 115200); 
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 ftStatus = 

FT_SetDataCharacteristics(fthandle,FT_BITS_8,FT_STOP_BITS_1,FT_PARITY_NONE); 

 // Purge both Rx and Tx buffers 

 ftStatus = FT_Purge(fthandle, FT_PURGE_RX | FT_PURGE_TX);  

 return ftStatus; 

} 

Duplex XC 

// System headers 

#include <xs1.h> 

#include <platform.h> 

#include <print.h> 

#define SEC 100000000 

#define BIT_TIME XS1_TIMER_HZ / 115200 

/* Port declarations */ 

// Keys/Key-leds 

out port p_kled = PORT_BUTTONLED;  //4 bits for 4 green leds near buttons   

in port p_key = PORT_BUTTON;  //4 bits for 4 buttons 

// 'Clock' leds 

out port p_cled_g = PORT_CLOCKLED_SELG; 

out port p_cled_r = PORT_CLOCKLED_SELR; 
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out port p_cled_0 = PORT_CLOCKLED_0; //8 bit port bits 4,5,6 from right -> 

0b01110000 turns all on 

out port p_cled_1 = PORT_CLOCKLED_1; //note this is on a different core 

out port p_cled_2 = PORT_CLOCKLED_2; //note this is on a different core 

out port p_cled_3 = PORT_CLOCKLED_3; //note this is on a different core 

buffered out port:32 p_spk = PORT_SPEAKER; 

out port UART_TX_PORT = PORT_UART_TX; // 1bit port Tx 

in  port UART_RX_PORT = PORT_UART_RX; // 1bit port Rx 

// Functions 

unsigned char uart_getch(void); 

void uart_putch(unsigned char buffer); 

void uart_configure(int baud_rate); 

void ledSlaves(chanend cLED, out port p); 

void setLEDtoRed(); 

void setLEDtoGreen(); 

void TurnAllLEDsOff(chanend cLED[3]); 

void LightUp(chanend cLED[3], int a); 

// Global state 

static unsigned bit_time = 0; 

void wait(timer tmr, unsigned delay) 

{ 

  unsigned t; 

  tmr :> t; 
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  tmr when timerafter(t + delay) :> t; 

} 

/** Initialize UART... bit_time 

 *  Its fixed to, Data : 8bits, Parity : None, Stop : 1bit, Flow control : none. 

 */ 

void uart_configure(int baud_rate) 

{   

   bit_time  = XS1_TIMER_MHZ * 1000000 / (unsigned) baud_rate; 

   UART_TX_PORT <: 1;       

} 

/** UART receive a character  **/ 

unsigned char uart_getch(void) 

{ 

    unsigned data = 0, time; 

    int i; 

    unsigned char c; 

  // Wait for stop bit  

    UART_RX_PORT when pinseq (1) :> int _;  

    // wait for start bit 

    UART_RX_PORT when pinseq (0) :> int _ @ time;   

    time += BIT_TIME + (BIT_TIME >> 1); 

    // sample each bit in the middle. 

    for (i = 0; i < 8; i += 1) 
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    { 

    UART_RX_PORT @ time :> >> data; 

       time += BIT_TIME; 

    } 

    // reshuffle the data. 

    c = (unsigned char) (data >> 24); 

    return c; 

} 

/** UART transmit a character.  This is blocking call for now. */ 

void uart_putch(unsigned char buffer) 

{ 

   unsigned time, data; 

   data = buffer; 

   // get current time from port with force out. 

   UART_TX_PORT <: 1 @ time; 

   // Start bit. 

   UART_TX_PORT <: 0; 

   // Data bits. 

   for (int i = 0; i < 8; i += 1) 

   { 

      time += bit_time; 

      UART_TX_PORT @ time <: >> data;          

   } 
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   // Stop bit 

   time += bit_time; 

   UART_TX_PORT @ time <: 1; 

   time += bit_time; 

   UART_TX_PORT @ time <: 1;  

} 

void LightUp(chanend cLED[3], int a) 

{ 

 a&=0xFFF; //12-bit max, cut off extra 

 p_cled_0 <: (a&7)<<4; //7 is binary 111 

 cLED[0] <: ((a>>3)&7)<<4; 

 cLED[1] <: ((a>>6)&7)<<4; 

 cLED[2] <: ((a>>9)&7)<<4; 

} 

//slaves that are run on  

void ledSlaves(chanend cLED, out port p) 

{ 

  int x; 

  while (1) 

  { 

 cLED :> x; 

    p <: x; 

  } 
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} 

//helper functions 

void setLEDtoRed() 

{ 

 p_cled_g <: 0; 

 p_cled_r <: 1;  

} 

void setLEDtoGreen() 

{ 

 p_cled_g  <: 1; 

 p_cled_r <: 0; 

} 

//help function, run from core0 only 

void TurnAllLEDsOff(chanend cLED[3]) 

{ 

 p_cled_0 <: 0; //core0 

 cLED[0] <: 0; //core 1 

 cLED[1] <: 0; //core 2 

 cLED[2] <: 0; //core 3 

  

} 

//main function that runs on core0 

void masterThread( chanend cLED[3]) 
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{ 

 //variables 

 char buttonValue; 

 int a,i=0,j=0,b=0xF,Total=0,loop=1; 

 uart_configure(115200); 

 setLEDtoGreen(); 

 p_kled <: b; //turn on green lights near buttons 

  

 while(1){ //loop forever 

  //TurnAllLEDsOff(cLED); //turn off all LEDS 

  p_key :> buttonValue; //read buttons 

  if (buttonValue == 0b0111) //button 1 (1) 

  {  

   b^=1<<3; //alternate button led so you know if button push 

was registered 

   p_kled <: b; 

   i*=2;//shifts left by one to add a zero to the right side of the 

number 

   i+=1;//adds one to change the above mentioned zero to a one 

   LightUp(cLED,i); //displays number as you type to make sure 

you are typing what you think you are 

   for (a=0;a<(SEC/20);a++);//debouncing 

  } 
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  else if (buttonValue == 0b1011) //button 2  (0) 

  {  

   b^=1<<2;//alternate button led so you know if button push 

was registered 

   p_kled <: b; 

   i*=2;//shifts left by one to add a zero to the right side of the 

number 

   LightUp(cLED,i);//displays number as you type to make sure 

you are typing what you think you are 

   for (a=0;a<(SEC/20);a++);//debouncing 

  } 

  else if (buttonValue == 0b1101)//button 3 (+) 

  {  

   while(loop) 

   { 

    b^=1<<1;//alternate button led so you know if button 

push was registered 

    p_kled <: b; 

    uart_putch(i&0xFF);//send two bytes because up to 11-

bit numbers can be added 

    uart_putch((i>>8)&0xFF); 

    uart_putch((i&0xFF)+((i>>8)&0xFF));//checksum 

    i=uart_getch()&0xFF; 
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    j=uart_getch()&0xFF; 

    if(((i+j)&0xFF)==(uart_getch()&0xFF)) 

    { 

     Total=i+(j<<8); 

     LightUp(cLED,Total);//displays current total 

     i=0; 

     loop=0; 

    } 

    else 

    { 

     loop=1; 

    } 

    for (a=0;a<(SEC/20);a++);//debouncing 

   } 

   loop=1; 

  } 

  else if (buttonValue == 0b1110) //button 4 (clear) 

  {  

   while(loop) 

   { 

    b^=1;//alternate button led so you know if button push 

was registered 

    p_kled <: b; 
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    uart_putch(0&0xFF);//send two bytes because up to 

11-bit numbers can be added 

    uart_putch(0&0xFF); 

    uart_putch((0&0xFF)+(1&0xFF));//checksum 

    i=uart_getch()&0xFF; 

    j=uart_getch()&0xFF; 

    if((i+j)==uart_getch()) 

    { 

     Total=i+(j<<8); 

     LightUp(cLED,Total);//displays current total 

(zero) 

     i=0; 

     loop=0; 

    } 

    else 

    { 

     loop=1; 

    } 

    for (a=0;a<(SEC/20);a++);//debouncing 

   } 

   loop=1; 

  }  

 } 
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} 

//program entry point for all cores 

int main(){ 

 chan cLED[3]; //communication channels 

// uart_configure(UART_115200); //set up the uart 

 par {  

     on stdcore[0]: masterThread(cLED); 

     on stdcore[1]: ledSlaves(cLED[0], p_cled_1); 

     on stdcore[2]: ledSlaves(cLED[1], p_cled_2); 

     on stdcore[3]: ledSlaves(cLED[2], p_cled_3); 

 } 

 return 0; 

} 
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