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NOMENCLATURE 

A Surface area  fi particle density distribution function 

c lattice speed h channel height 

cs lattice sound speed s Collision frequency 

C concentration [mol/m3] L membrane length [m] 

CD drag coefficient Re Reynolds number [-] 

D diffusion coefficient [m2/s] Sc Schmidt number [-] 

d HFM diameter [m]  l thickness of membrane [m]  

dh Hydraulic diameter of a spacer mm velocity moment vector 

ei discrete lattice velocity set ���� equilibrium velocity moment vector 

J molar flux [mol/m2] ��  permeability [
��	

� � �]  

M molecular weight [g/mol]   U average velocity [m/s] 

Na mole fraction [-] hm mass transfer coefficient [m/s] 

P permeance [
��	

��� �]  p pressure [Pa] 

S spacing between HFM [m] β∗,β1,β turbulent model parameters [-] 

Sh Sherwood number [-] υ kinematic viscosity [m2/s] 

Vw suction rate [m/s] ω specific dissipation rate[1/s] 

k turbulent kinetic energy [J/kg] u velocity vector 

m mass flux [kg/(s m2)] ��, �� blending functions 

u x-component of velocity [m/s] �� eddy viscosity 

x x coordinate [m] τ nondimensional time 

Δp pressure difference [Pa] ρ density [kg/m3] 

α mass selectivity [-] γ               rate of strain tensor  

σ,λ turbulent model parameters [-] St Strouhal number 

DT eddy diffusion coefficient � dynamic viscosity 

ScT turbulent Schmidt number t time �� lattice width �� time step �� weighting vector � selectivity 

gi particle concentration distribution  M             transformation matrix 

                  function 

Subscripts and Superscripts 

a and b species: CO2 or CH4 w properties at the membrane surface 

i and j index notation T eddy properties 

CH4 properties of CH4 CO2 properties of CO2 

tot total properties � �⁄  ratio of properties of a to b  
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Abstract 

           

Computational fluid dynamics simulations are conducted for multicomponent fluid flows 

over banks of hollow fiber membranes. The hollow fiber membrane systems is considered 

here for gas separation applications. Separation of carbon dioxide (CO2) from methane 

(CH4) is studied using hollow fiber membranes packed in different arrangements. The 

membrane surface is considered as a functional surface where the mass flux and 

concentration of each species are coupled and are determined as a function of the local 

partial pressures, the permeability, and the selectivity of the membrane. k-ω Shear Stress 

Transport (k-ω SST) turbulent model is employed to study the mixture flow over banks of 

hollow fiber membrane for values of the Reynolds number up to 1000. The flow structure 

around the hollow fiber membranes dominates the performance of the separation process. 

This study demonstrates clearly that good mixing in the bank of hollow fiber membranes 

enhances the separation performance. The results show that hollow fiber membrane 

module with staggered arrangement performs much better than that with inline 

arrangement. For the spiral wound membrane, it has been shown that membrane 

performance could be greatly enhanced by momentum mixing in the feed channel induced 

by spacers. Square shaped spacer will be considered in the inline arrangement for values 

of the Reynolds number up to 500. In order to validate the turbulence model transient flow 

simulations are conducted using lattice Boltzmann method. The lattice Boltzmann method 

to simulate flow in the geometries related to the spiral wound membrane modules is 

developed by our research group at Lehigh. Two dimensional nine velocity directional, 

D2Q9, lattice arrangement with multi-relaxation time (MRT) lattice Boltzmann method is 

used to simulate transient flow field while single relaxation time (SRT) lattice Boltzmann 
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method. Simulations are performed to determine concentration field for values of Re up to 

300. The bounding surfaces are treated as impermeable walls for simulations conducted 

using the lattice Boltzmann method. The results predicted by the lattice Boltzmann method 

and the SST turbulence model agree well, validating the turbulence model and the 

numerical method.  
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1. Introduction 

 

Membrane based gas separation has been successfully used in various industrial 

applications since it offers several advantages. It is cost effective, is easy to implement, 

and is energy efficient compared to conventional separation processes [1]. There are 

different types of flows in these membrane modules: countercurrent flows; concurrent 

flows and radial crossflows [2]. The present study investigates the spatial and temporal 

characteristics of the radial crossflows in the hollow fiber membrane modules and their 

effects on the membrane performances.   

 Several studies model only the mass balance in the hollow fiber membrane to 

examine membrane system performance for gas separation applications [1-4]. The effect 

of flow in the feed channel on the membrane performance in a spiral wound membrane 

module containing spacers has been studied for desalination and food processes [5-9]. 

Membrane surface is treated as an impermeable wall in Refs [5, 8] while Guillen and Hoek 

[6], Pal et al. [7] and Subramani et al. [9] considered permeable membrane surface in their 

studies. Anqi et al. [10] study steady and transient two dimensional flows in a feed channel 

containing circular shaped spacers in different arrangements. The mass flux through the 

membrane is modeled as a function of the osmosis pressure and the concentration. The k-

ω Shear Stress Transport (SST) turbulence was employed to obtain the pressure, the 

concentration, and the velocity fields. Anqi et al. [10] demonstrated that the membrane 

performance significantly enhanced by spacers in a desalination process. Sohrabi et al. [11] 

consider the effect of flow over banks of hollow fiber membrane in a process separating 

liquid from gas. They have used predetermined velocity profile and solve just the mass 

transport equation to study membrane performance.  Kaya et al. [12] used the k-ε 
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turbulence model to capture the flow over banks of hollow fiber membrane for water 

desalination. They concluded that characterizing flow in the feed channel should be 

considered in membrane simulations. However, these investigators neglect mass flux 

through the membrane by considering membrane surfaces as impermeable boundary. 

Similarly, Huang et al. [13] and Jiang et al. [14] solve the Navier-Stokes equations to study 

the flow over banks of hollow fiber membrane with impermeable surfaces for 

dehumidification processes. Real separation process in hollow fiber membrane modules 

requires a proper mass flux model through the membrane. Mass fluxes through the 

membrane should be determined as a function of the local pressure and mass fraction and 

membrane properties. 

 Alkhamis et al. [15] introduced a unique model for the mass flux through the 

membrane for gas separation process. The membrane wall is treated as a functional surface, 

where the mass fluxes of species are calculated based on the local pressure, membrane 

permeability and the selectivity. Alkhamis et al. [15] studied the separation CO2 from CH4 

in a spiral wound membrane module containing spacers and concluded that separation 

process can be enhanced significantly by the presence of spacers in the membrane system. 

It has been demonstrated by these investigators that spacers should be an integral part of 

the membrane system design and optimization in the application of gas-gas separation. 

More recently, Alkhamis et al. [16] conducted computational simulations to study a gas 

separation process in a hollow fiber membrane containing a porous support layer. They 

employed the same flux model described above to investigate the effect of the porous 

support layer on the separation process of CO2 in a CO2/CH4 mixture. It has demonstrated 

that the presence of the porous layer has profound adverse effects on the hollow fiber 
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membrane performance. Mass flux of both CH4 and CO2 is reduced by the presence of the 

porous layer. Alkhamis et al. [17] showed that flow restricting devices such as orifices can 

be utilized to alleviate undesirable effects of the porous support layer on the membrane 

performance.  

 In this study, the membrane flux model proposed by the present authors [15-17] is 

employed to study membrane performance in a separation module containing bundles of 

hollow fiber membranes. The present work utilizes CFX commercial software to simulate 

steady two dimensional velocity and concentration fields to investigate the effect of 

momentum mixing in the feed channel on the hollow fiber membrane performance. A 

binary mixture of methane (CH4) and carbon dioxide (CO2) is considered as fluid flowing 

over hollow fiber membrane banks. Flow simulations are conducted for a wide range the 

Reynolds numbers, 200 ≤ Re ≤ 1000. Spatial characteristics of the cross flow over a bank 

of hollow fiber membrane with an inline and staggered arrangements are simulated using 

the k-ω Shear Stress Transport (k-ω SST) turbulence models. Turbulence model and the 

numerical method are validated by comparing the predicted values of the drag coefficient 

and the Strouhal number for flows past a cylinder against those documented in the 

literature. 

 For spiral wound membrane, square spacers will be considered in inline 

arrangement for Re = 300 and 500 inside channel bounded by two parallel spiral wound 

membranes. In a channel without spacers, the steady flow is characterized by a laminar 

flow model. In a channel containing spacers, the Shear Stress Transport (SST) k-ω 

turbulence model is employed to simulate the flow field. The present authors documented 

that the shape and arrangements of spacers have profound influence on the membrane 
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performance in spiral wound membrane modules containing circular and triangular spacers 

in inline and staggered arrangements [15-16]. The present study focuses on improving 

membrane performance using momentum mixing by placing square cross-sectioned 

spacers in the feed channel. Enhancing turbulence to improve membrane performance has 

been studied extensively in the context of Reverse Osmosis [8-9, 18-24]. These studies 

investigated the effect of the momentum mixing without utilizing the mass transport 

equation. Karode and Kumar [18] study steady three dimensional laminar flow in a channel 

containing cylindrical spacers. Bounding surfaces in their study was impermeable and there 

was no mass flux through which. Wiley and Fletcher [19] and Villaluega and Cohen [20] 

have been calculated mass flux through a membrane from the local concentration for flows 

inside channel without spacers. Ma et al. [21] studied laminar flows in a channel bounded 

by two parallel membrane. The channel contained uniformly spaced square spacers. It was 

demonstrated that the average permeate flux could be significantly improved by the 

presence of spacers. Fimbres-Weihs et al. [22] and Subramani et al. [9] studied laminar 

flows in channels containing circular spacers. Fimbres-Weihs and Wiley [23] and Shkaib 

et al. [8] have studied three dimensional laminar flows inside channel between two parallel 

membranes.  

 Lattice Boltzmann method (LBM) is shown to be an effective computational tool 

to simulate complex flows [25-26]. It has been successfully applied to model isothermal 

and non-isothermal flows with the limitations of numerical instabilities [27-28]. This 

method could be considered as a special discretization of Boltzmann equation. Successive 

collision and propagation steps are utilized to iteratively calculate the velocity and the 

concentration field. Collision operation can be carried out using different approaches, i.e. 
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the velocity space relaxation resulting in single relaxation time (SRT) and the moment 

space relaxation resulting in multi relaxation (MRT) [29-30]. The lattice Boltzmann 

method is developed by a researcher in our group and is employed here to help validating 

the turbulence model and the numerical method employed. The lattice Boltzmann method 

can also be effectively used to study the transient effect on the membrane performance. 

2. Hollow fiber membrane model  

The schematic of the flow geometry is illustrated in Figure 1.  It consists of arrays 

of hollow fiber membrane with an inline and a staggered arrangement.  The diameter of 

hollow fiber membrane is d, the length of the membrane module is L = 50d, and the spacing 

between two consecutive hollow fiber membrane is S. The inline and staggered 

arrangement of the hollow fiber banks with the spacing S/d of 2 and 2.5 are considered. 

The height of the hollow fiber bundle, h, is 12d for banks with S/d = 2 and is 15d for banks 

with S/d = 2.5. The distance 6  is assigned between the inlet and the bank of hollow fiber 

membrane. The distance between the outlet and the hollow fiber membrane bank is 28  

for S/d = 2 while it is 24d for S/d = 2.5. The length of the inlet and outlet regions are 

selected such that the effect of the boundary conditions imposed at the inlet and the outlet 

have minimal influence on the flow structure in the bank of the hollow fiber membranes. 

The physical properties of the binary mixture of CH4 and CO2 are assumed to be constant. 

The flow is isothermal and incompressible. The diffusion coefficient is assumed to be 

independent of the concentration. Steady state simulations for banks of circular cross-

sectioned hollow fiber membranes are conducted for the Reynolds numbers up to 1000. 

Moreover, a transient simulation at Re = 200 is conducted using the k-ω Shear Stress 
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Transport (k-ω SST) turbulent model for validation in flows over a single circular cylinder 

that has an impermeable surface.  

 

Figure 1: The schematic of the (a) inline geometry and (b) staggered geometry for S/d = 2. The inlet 

region, the outlet region and the bank of the hollow fiber membranes are shown with dimensions. 

 

 The binary mixture of CH4 and CO2 is assumed to be incompressible and 

Newtonian fluids with constant density (#), dynamic viscosity (�) and mass diffusion 

coefficient (%).  

 At the inlet, uniform velocity and mole fraction profiles are applied while at the 

outlet, zero pressure and zero gradient boundary condition is applied. Periodic boundary 

condition is applied at the side boundaries of the computational domain to model an 
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infinitely wide hollow fiber membrane bank region. A detailed description of the 

membrane model and the boundary conditions is given later in this chapter. 

3. Spiral Wound Membrane model 

 Steady two dimensional flows of CH4 and CO2 binary mixture in a channel 

containing spacers are studied using k-ω Shear Stress Transport turbulence model for Re = 

300 and 500. The Reynolds numbers is defined as &' = )ℎ/,, where , is kinematic 

viscosity, U is the average velocity at the inlet, and ℎ is the channel height. The aspect ratio 

of the computational domain is 120 (L/h). Seventeen square cross-sectioned spacers are 

placed in inline arrangement at the mid-plane between the membranes as shown in  

 

At the inlet, the fully developed flow is considered. On the surface of the membrane, the 

no-slip boundary condition is imposed on the velocity field with the suction rate determined 

from local pressure and concentration. At the exit, the zero gradient conditions are applied. 

Boundary conditions imposed on the velocity and concentration field are described in detail 

below. 

Figure 2: The schematic of the membrane module containing an array of spacers 
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This objective of simulations conducted for this geometry illustrated in Figure 2 is to 

validate the turbulence model and the numerical model employed for simulations 

conducted for hollow fiber membrane module. 

4. Governing Equations  

The equations governing the fluid motions and mass transfer are: 

the continuity 

-.�-�� = 0,                                                                                                                                             01) 

the conservation of momentum 

-.�-� + .3 -.�-�3 = − 1# -5-�� + 1# --�3 6� -.�-�3 7 ,                                                                               02) 

and the mass transport equation of species “a” 

-89:-� + .3 -89:-�3 = --�3 6% -89:-�3 7.                                                                                           03) 

Here i = 1,2. j is the summation index, u1 = u is the stream-wise component of the velocity 

and u2 = v is the span-wise component of the velocity, x1 = x and x2 = y are the spatial 

coordinates, t is time, , is kinematic viscosity (, = �/#) and p is pressure. C = Ca + Cb is 

the concentration of the binary mixture, Ca is the concentration of species “a”, Cb is the 

concentration of species “b”. Na  = Ca/C is the mole fraction of species “a”. 

4.1 Turbulence modeling 

The present authors [10] successfully employed k-= Shear Stress Transport (k-= 

SST) turbulence model to characterize flows in the feed channel of a spiral wound 

membrane module containing spacers. They have conducted computational fluid dynamics 

simulations for the range of Re from 400 to 4000 in a desalination process. k-ω SST 
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turbulence model proposed by Menter [31] is also utilized in the present work to simulate 

flows past arrays of hollow fiber membrane. The turbulence model can predict the turbulent 

flow structure near boundaries and the inception of flow separation accurately. With the 

eddy viscosity defined as  �� = # :>?
�@0:>A;CD�) the equations for k-ω SST turbulence model 

yields 

 EFGE� + .3 EFGEHI = − �
J

EK
EHG + �

J
E

EHI 60� + ��) EFGEHI7                                                                         04)  
The equations governing the turbulent kinetic energy, k, and the specific dissipation rate, 

ω 

-0#M)-� + .� -0#M)-�� = N�3 -.�-�3 − O∗#=M + --�3 Q0� + R?���) -M-�3S                                        05) 
-0#=)-� + .� -0#=)-��

= U,� N�3 -.�-�3 − O#=� + --�3 Q0� + RA��) -=-�3S + 2#01 − ��)RA� 1= -M-�3
-=-�3      06) 

The equation governing the mass transport of species “a” for the turbulent flow is 
-89:-� + .3 -89:-�3 = --�3 V0% + R%W) -89:-�3 X                                                                          07) 

where Ω is the vorticity magnitude, ��, O, O∗, R?�, RA, RA� are closure coefficients. β is 

selected to be 0.09. DT is the eddy diffusion coefficient and ScT = υT /DT is the turbulent 

Schmidt number. ScT is selected to be 0.85. Detailed description of the turbulence model 

parameters are given in Ref [17]. 
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4.2 Membrane Modeling and Boundary Condition 

Following the approach proposed by the present authors [15-17] the boundary 

conditions imposed on the velocity and the concentration field along the surface of the 

membranes are determined from the first principles. The molar flux of the species “a” 

across the membrane per unit area, Ja, extracted from the feed flow is determined as 

[: = \]�^ _5:0�) − 5:0�)` = \]�^ ∆5:                                                                                         (8) 

where l is the thickness of the membrane, ��: is the molar permeability of species “a”, and 

∆5: = _5:0�) − 5:0�)` is the partial pressure difference of species “a” across the membrane. 

Then the total molar flux (J) per unit area through the membrane can be determined as 

[ = [b + [: = ∆5b \c�^ + ∆5: \]�^                                                                                           (9) 

Equation (9) can be rewritten in terms of molar selectivity,� = �:� /�b� , as 

[ = \c�^ d∆5�e�� + ∆5b01 − �)f                                                                                        (10) 

where Ja and Jb are molar flux of species of “a” and “b”, Δptot = Δpb +Δpa is the total 

pressure difference through the membrane. The membrane selectivity is defined as α 

=�:� /�b� = Pa/Pb where Pa = 
\]�^  and Pb =  

\c�^  are permeance of species “a” and “b”, 

respectively. Equation (7) also uses the relationship between the total pressure and the 

partial pressure of species: Δpa = Na Δptot equation (9) yields 

[ = ∆5�e��bdgb01 − �) + �f                                                                                           (11) 

With the definition Vw = J/C, the suction rate, Vw, can be calculated as 
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hi = ∆Kjkjlcm d9b01 − �) + �f                                                                                         (12) 

The suction rate along the membrane surfaces is shown to be a function of the selectivity 

of the membrane, the permeability of the membrane, the total pressure drop across the 

membrane, and the local mass fractions of the species. The boundary conditions imposed 

on the velocity field at the surface of membrane is no slip (u = 0) and the suction (v = 

Vw). The boundary conditions at the surface of the membrane imposed on the 

concentration field is obtained from the conservation of mass 

 [: = −% Em]En = −% E
En 089:)                                                                                          (13) 

where Ca is the concentration of species “a”. Accounting for the concentration variation 

and utilizing equation (8) the boundary condition for the mole fraction of species “a” 

along the surface of membrane is derived as 

Eo]En = E
En _ m]mcpm]` = �

m� q08b + 8:) Em]En − 8: E
En 08b + 8:)r = �

m� _8b Em]En − 8: EmcEn `      (14) 

As shown in equation (14) the variation in total density is accounted for. Using [: =
−% Em]En = −% E

En 089:) and equation (14) the boundary condition for the mass fraction of 

species “a” along the surface of membrane is 

% Eo]En = �
m� _8b% Em]En − 8:% EmcEn ` = �

m� 08:[b − 8b[:)                                                    (15) 

Using the definition of mole fraction equation (15) can written as 

% Eo]En = �
m _m]m [b − mcm [:` =  �

m 09:[b − 9b[:)                                                                 (16) 

Using the molar flux through the membrane given in equation (16) 

[: = ∆5:�:    and    [b = ∆5b�b,                                                                                     (17) 

Equation (16) yields 
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% Eo]En =  �
m 09:∆5b�b − 9b∆5:�:)                (18) 

Utilizing the definition of selectivity and partial pressure (α =Pa/Pb) the boundary condition 

for the molar fraction at the surface of the membrane can be written as 

% Eo]En =  �
m 09b∆5:�: − 9:∆5b�b) =  \c∆Kjkjm 01 − �)9b9:                                          (19) 

The diffusive flux at the surface of the membrane is equated to the intrinsic rejection 

−% Em]En = &hi8:                                                                                                             (20) 

The rejection rate can then be written as 

& = s
sp0�ts)oc                                                                                                                 (21) 

The detailed derivation of the suction rate and the flux condition applied at the surface of 

the is provided in [16].   

 The diffusion coefficient for CO2 and CH4 is 1.9x10-6 m2/s. The mole fraction of 

CH4 at the inlet is selected to be 0.7. The permeance of the membrane is �mu� = 9.8x10-6 

�vw' ��x ��⁄  and the membrane selectivity is � = �myz �mu�⁄  = 0.0086. Schmidt number 

is selected as 1.5 and a total pressure difference across the membrane is selected as Δptot = 

7 MPa for all the results presented 

4.3 Lattice Boltzmann method 

 Lattice Boltzmann method solves the Navier-Stokes equation with small velocity 

expansion. It solves microscopic kinetic equation for particle distribution to obtain 

macroscopic velocity and density. 

 SRT and MRT approach has been used to simulate concentration and velocity 

fields, respectively.  

 The MRT approach is expressed as 
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{�0�| + '|���, � + ��) = {�0�|, �) − }t� ∙ �� ∙ ���0�|, �) − ����0�|, �)�,                             (22) 

where {� is particle density distribution function at the velocity direction '|�. } matrix 

transforms distribution functions { to the velocity moments ��. �� is diagonal collision 

matrix defined by 

� = dx�, x�, x�, x�, x�, x�, x�, x�, x�f  and �� = � ∙ �                                                          (23) 

The collision frequencies are 

� = d1 1.4 1.2 1 1 1 1 1.58 1.58f                                                                             (24) 

Transformation between velocity space and moment space is expressed as 

�� = } ∙ {  and  { = }t� ∙ ��                                                          (25) 

The coefficients of the transformation matrix are 

} =

��
��
��
��
� 1−44     

000    
000    

1−1−2    
1−20     
010    

1−1−2    
001    

−2−10     

1−1−2    
−120     
010    

1−1−2    
00−1    
2−10     

121    
111    
101    

121    
−1−11     
10−1    

121    
−1−1−1    
−101     

12111−1−101 ��
��
��
��
�

                                                      (26) 

Macroscopic variables are obtained from following equations. 

# = ∑ {��                                                                                                                                            (27) 

.�| = �
J ∑ '��|�{��                                                                                                             (28) 

Discrete velocities are defined by 

'� = � �00    10    01    −10     0−1    11    −11     −1−1    1−1�                                                            (29) 

The kinematic viscosity of the fluid is 

, = q 1x� − 12r ����� = q 1x� − 12r �����,                                                                                       030) 
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where �� = � √3⁄  is lattice speed of sound and � = �� ��⁄  is the lattice speed. Here �� and 

�� are lattice width and time step, respectively. The concentration field is calculated by 

using SRT lattice Boltzmann method. 

The SRT approach can be expressed as 

��0�| + '|���, � + ��) = ��0�|, �) − �
�� ���0�|, �) − ����0�|, �)�,                                          (31) 

where �� is particle concentration distribution function on the velocity direction '|� and N� 

is the dimensionless relaxation time. The macroscopic variables are defined as 

9: = ∑ ���                                                                                                              (32) 

where 9: is mole fraction of species “a”  

The equilibrium concentration distribution function is given by the following function 

���� = ��9: �1 + ��|G∙F��|
�� + �0�|G∙F��|)�

��z − �F��|∙F��|
��� �,                                                                                                 (33) 

where �� is a weighting factor. 

Weighting vectors for D2Q9 lattice scheme is defined as 

�� = � 4 9⁄1 9⁄1 36⁄      forforfor    � = 0� = 1,2,3,4 � = 5,6,7,8                                                                                      (34) 

Zou-He [32] type boundary condition is employed to determine hydrodynamic properties 

while a boundary condition proposed in Ref [33] is used to calculate concentration values 

on boundaries.  

5. Results and Discussions  

5.1 Hollow fiber membrane 

 The performance of the hollow fiber membrane module will be assessed by 

determining the mass transfer coefficient of the hollow fiber membrane and the frictional 
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losses through the hollow fiber bank. The mass transfer coefficient, hm, the corresponding 

local Sherwood number, Sh, and the average friction factor, f, are determined from 

ℎ¤0�) = ¥¦§]¦¨0o©toª), �ℎ = «©¬
¥  and{ = �¬

J�
∆K
®                                                                   (35) 

Here Nm is the bulk mole fraction, Nw is the mole fraction at the wall, Δp is the pressure 

drop across the hollow fiber bank, and L is the length of the membrane bank. 

 Transient two dimensional simulations utilizing k-ω (SST) turbulence models are 

conducted at Re = 200 with and without suction at the boundary of the cylinders. Drag 

coefficients and Strouhal number without suction are compared against well documented 

predictions [34] and measurements [35]. Our results agree well with these previous results, 

as illustrated in Table 1; validating the turbulence model used in the present study. Drag 

coefficient is defined CD = 2 FD/ρAU2 and the Strouhal number is defined by St = fU/d. 

Here FD is the component of the force exerted by the fluid on the cylinder in the stream-

wise direction, A is the area of the cylinder projected normal to the flow, U is the average 

velocity at the inlet and f is the frequency of the shedding. FD is determined by integrating 

pressure and the frictional forces along the surface of the cylinder. 

 

Table1: Drag coefficient and the Strouhal number for flows pass an impermeable cylinder. Results 

predicted by the turbulence model utilized here are compared against those documented in Refs 

[34,35] . 

 

¯° = ±²² 

 CD St 

Present 1.34 0.197 

Glowinski[34] 1.36 0.198  

Henderson[35] 1.34 0.197 
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 When the cylinder is modeled as a hollow fiber membrane the drag coefficient and 

the Strouhal number are determined to be 1.3 and 0.184, respectively. They are very similar 

to those for flows past impermeable cylinder, as listed in Table 1. This demonstrates that 

flow structure in the bank of hollow fiber membranes is dominated by the vortex shedding. 

The Karman vortex street is not influenced strongly by the suction along the surface of the 

hollow fiber membrane since the intensity of the suction is not strong enough. 
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Figure 3: Drag coefficient (a,b) as a function of time and the power spectral density of the drag 

coefficient (c,d) at Re = 200 for flow past (a,c) an impermeable cylinder and (b,d) a hollow fiber 

membrane. 

 

 Steady state velocity and concentration field are characterized in hollow fiber banks 

using k-ω SST turbulence model. The hollow fibers are structured with an inline and a 

staggered arrangement. The hollow fiber membrane is treated as a functional permeable 

surface. The species permeates through the membrane at a rate that varies with the local 
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concentration. Simulations are conducted for values of the Reynolds number up to 1000. 

The Reynolds number is defined based on the hydraulic diameter of the hollow fiber 

membrane and the average fluid speed at the inlet, &' = ) ,⁄ .  

 Figure 3 depicts steady state contours of the velocity field and the mole fraction of 

CH4 for Re = 600 and S/d = 2. Images are acquired for both inline and staggered 

arrangements of hollow fiber membranes in the bank. It is noted that there are two distinct 

flow types in the inline geometry: jet-like flows and wake flows. Jet-like flows are obtained 

in the region between rows of hollow fiber membranes and wake flows are obtained in the 

region behind hollow fiber membranes. This creates flows similar to flow past stacks of 

cavities. Concentration field follows the same pattern: in the jet flow region nearly uniform 

low concentration of CH4 is obtained while higher concentration is obtained in the wake 

region, as depicted in Figure 3. Obviously, mixing in the hollow fiber bank is not strong 

and this is reflected in the concentration profiles.  In the staggered geometry straight jet-

like flow region is not present, high speed flow surrounds the hollow fiber membrane. 

Wake flow region behind each hollow fiber becomes smaller and is attached to the hollow 

fiber membrane. Concentration distribution is more uniform in the staggered geometry 

compared to that in the inline geometry, as seen in Figure 3. There is a higher level of 

momentum mixing in the staggered geometry. The mixture becomes gradually CH4 rich in 

the stream-wise direction. The concentration in the wake region is slightly elevated. There 

is a high level concentration polarization near the region where flow separates and the 

boundary layer detached from the surface of the hollow fiber membranes. The 

concentration polarization may not be significant for the gas separation process, but it is 

extremely important in the desalination process. It is well-known that concentration 
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polarization over the membrane surfaces influences the performance of the hollow fiber 

membranes adversely in the desalination process. Better mixing in the hollow fiber bank 

in the staggered geometry is expected to enhance hollow fiber membrane performance. 

 

Figure 4: The contours of velocity and concentration for Re = 600 and S/d = 2. Velocity contours (a) 

in the inline geometry and (b) in the staggered geometry.  Contours of mole fraction of CH4 (c) in the 

geometry and (d) in the staggered geometry. 

 

Velocity and concentration field are shown near two hollow fiber membranes for Re = 200 

and 1000 and for S/d = 2 and 2.5. Representative hollow fiber membranes are illustrated in 

Figure 5. 
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 Velocity and concentration contours in the region near AL and AW hollow fiber 

membrane are depicted. Figure 6 and Figure 7 shows velocity contour at Re = 200 and Re 

= 1000, respectively, for flows over a staggered arrangement of hollow fiber membrane 

bank with S/d = 2. The spatial structure of the flow is very similar near these membranes 

with slight alterations. Similarly Figure 8 and Figure 9 shows velocity contour at Re = 200 

and Re = 1000, respectively, for flows over a staggered arrangement of hollow fiber 

membrane bank with S/d = 2.5. Flow patterns are repeated around the hollow fiber 

membranes, as indicated in Figures 6-9. 

 

 

Figure 5: The schematic of hollow fiber bank illustrating selected hollow fiber membranes labelled as 

AL and AW 
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Figure 6: Velocity contours in the staggered geometry for Re = 200 and S/d=2 near two hollow fiber 

membranes: (a) AL and (b) AW. 
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Figure 7: Velocity contours in the staggered geometry for Re = 1000 and S/d=2 near two hollow fiber 

membranes: (a) AL and (b) AW. 
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Figure 8: Velocity contours in the staggered geometry for Re = 200 and S/d=2.5 near two hollow fiber 

membranes: (a) AL and (b) AW. 
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Figure 9: Velocity contours in the staggered geometry for Re = 1000 and S/d=2.5 near two hollow 

fiber membranes: (a) AL and (b) AW. 
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 Figure 10 and Figure 11 illustrate mole fraction contours around hollow fibers near 

the inlet and the exit of the hollow fiber bank at Re = 200 and 1000, respectively, for the 

staggered geometry with S/d = 2. The characteristics of the concentration profiles near the 

hollow fiber membranes are similar at upstream and at downstream of the bank. The 

mixture becomes gradually CH4 rich in the stream-wise direction near the outlet. The close-

up concentration contours clearly illustrate the presence of concentration polarization 

region near the boundary layer is detached from the hollow fiber surface at both flow rates, 

as depicted in Figure 10 and Figure 11. Tighter spacing of the hollow fiber membranes 

does not influence the characteristics of the concentration profiles near surfaces, as seen in 

Figure 12 and Figure 13 for S/d = 2.5. 
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Figure 10: Mole fraction contours in the staggered geometry for Re = 200 and S/d=2 near two hollow 

fiber membranes: (a) AL and (b) AW. 
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Figure 11: Mole fraction contours in the staggered geometry for Re = 1000 and S/d=2 near two 

hollow fiber membranes: (a) AL and (b) AW 
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Figure 12: Mole fraction contours in the staggered geometry for Re = 200 and S/d=2.5 near two 

hollow fiber membranes: (a) AL and (b) AW 
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Figure 13: Mole fraction contours in the staggered geometry for Re = 1000 and S/d=2.5 near two 

hollow fiber membranes: (a) AL and (b) AW 
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The suction rate along several hollow fiber membranes is calculated for the inline 

and the staggered geometry. The suction rate for the representative hollow fiber membranes 

is plotted as a function of angle along the surface. θ = 0 denotes the forward stagnation 

point while θ = π denotes the backward stagnation point. The region 0 ≤ θ ≤ π represents 

upper section of the hollow fiber surface and the region π ≤ θ ≤ 2π the lower section of the 

surface. The profiles of the suction rate are illustrated in Figure 14 for Re = 200 and 1000 

and S/d = 2 for the representative hollow fibers. The hollow fiber membranes along which 

the suction profiles are plotted are depicted in Figure 14a. The suction rate in each geometry 

decreases gradually for the hollow fibers situated downstream, as illustrated in Figure 14. 

The suction rate along the membrane increases as Re is increased in both geometries. For 

both flow rates hollow fiber membranes arranged in the staggered geometry have higher 

suction rate compared to those in the inline geometry. The suction rate is the lowest in both 

geometries where boundary layer is detached from the surface of the hollow fiber. The 

angle at which the boundary layer detached approaches to π/2 as the flow rate increases. 

As illustrated in Figure 14, the suction rate assumes lowest value in the region close to π/2 

and 3π/2 in the staggered geometry. The suction rate is much lower in the wake behind the 

hollow fiber membrane in the staggered geometry and it is the highest in the region near 

the forward stagnation region, as shown in Figure 14. On the other hand, the suction rate 

is low in regions near the forward and the backward stagnation point for the hollow fibers 

in the inline geometry. The suction rate profiles clearly shows that flow characteristics in 

the hollow fiber membrane bank directly influence the performance of the separation 
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module. It is also noticed that for the suction rate upper and lower section of the hollow 

fiber membrane is nearly the same in both geometries, as shown in Figure 14. 
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Figure 14: Profiles are shown for (a) six different hollow fiber membrane as shown in the schematic. 

The suction rate along the membrane at (b,c) Re=200 and (d,e) Re = 1000 for (b,d) in the inline 

geometry (c,e) in the staggered geometry. 
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The Sherwood number profiles for the hollow fibers labeled in Figure 14a are 

calculated for Re = 200 and 1000 and S/d = 2 and are illustrated in Figure 15 for both inline 

and staggered geometries. The Sherwood number profiles are plotted as a function of angle 

(θ) along the surface of hollow fiber membranes. The Sherwood number decreases in the 

flow direction in both geometries. The level of decrease is much greater in the inline 

geometry compared to that in the staggered geometry for both flow rates. It is also noted 

that the decrease in the Sherwood number in the stream-wise direction in both geometries 

is much less at higher flow rate. The decrease in the Sherwood number is only obtained in 

the region near forward stagnation point in the staggered geometry, as shown in Figure 15. 

Sherwood number profiles display a similar trend along the surface of the hollow fiber 

membrane. The maximum value of the Sherwood number occurs near the forward 

stagnation point and the minimum value is assumed in the region near the boundary layer 

is detached. The Sherwood number is lower in the wake of the hollow fiber membrane. 

The Sherwood number increases drastically as the flow rate is increased in both geometries. 

Also, it should be noticed that the Sherwood number in the staggered geometry is at least 

two-fold greater compared to that in the inline geometry at Re = 200 and 1000, as depicted 

in Figure 15. As mentioned earlier, the region near the boundary layer is detached from 

hollow fiber surface has profound influence on the hollow fiber membrane performance. 

That is the location nearby the Sherwood number and the suction rate assume minimum 

and that is also the location nearby the concentration polarization occurs. 
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Figure 15: The local Sherwood number as a function of ϴ at (a,b) Re=200 and at (c,d) Re = 1000 for 

(a,c) the inline geometry (b,d) the staggered geometry. Profiles are calculated for six different hollow 

fibers shown in the schematic of Figure 4. 

 

The average value of the Sherwood number is calculated for the entire hollow fiber 

membrane bank for the inline and staggered geometry with S/d = 2 and S/d = 2.5. The 

average value of the Sherwood number is plotted in Figure 16 as a function of the Reynolds 

number. The Sherwood number increases as the Reynolds number is increased in both 

geometries for S/d = 2 and S/d = 2.5. The tighter spacing of the hollow fiber membrane 

does not alter the average value of the Sherwood number noticeably at any flow rate in the 
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inline geometry. On the other hand the Sherwood number increases significantly as the 

hollow fiber is arranged more tightly. The effect of the spacing of hollow fibers becomes 

more pronounced at higher Re in the staggered geometry, as shown in Figure 16. The 

Sherwood number of the staggered geometry is much greater than that of the inline 

geometry for both spacing at all flow rates. The difference in the Sherwood number is 

greater at lower values of the Reynolds number. The Sherwood number at Re = 200 is about 

three times higher in the staggered geometry compared to that in the inline geometry for 

both spacing, as shown in Figure 16. The arrangement of the hollow fiber membrane in the 

bank is essential in designing and optimizing the separation module.  

 

Figure 16: The average value of Sherwood number as a function of the Reynolds number for the 

inline and staggered geometry with S/d = 2 and 2.5. 
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 The friction factor across the bank of the hollow fiber membranes is calculated for 

the inline and staggered geometry for both spacing. The friction factor is plotted in Figure 

17 as a function of the Re. Energy losses are higher in the inline geometry for both spacing 

compared to those in the staggered geometry at all values of Re. Pressure drops are higher 

for the tighter spacing in each geometry, as shown in Figure 17. It is observed that the 

friction factor is not very sensitive to Re. Staggered arrangement of the hollow fiber 

membranes is more promising in terms of the energy losses. 

 

Figure 17: The friction factor for flows through the bank of hollow fibers as a function of the 

Reynolds number for the inline and the staggered geometry with S/d = 2 and 2.5. 
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The merit number is introduced to compare the efficiency of the inline and the 

staggered arrangement in the separation module. The merit number based on the 

enhancement of the membrane flux for the same power usage can be written as 

(Shs/Shi)/(fs/fi)
1/3, where Shs is the average value of the Sherwood number of the staggered 

geometry, Shi is the Sherwood number of the inline geometry, fs is the friction factor in the 

staggered geometry, and  fi is the friction factor in the inline geometry. Values of the merit 

number are listed in Table 2 at various values of the Reynolds number for two different 

spacing S/d = 2 and 2.5. Merit number is calculated to be above unity at all Re for both 

spacing; implying that staggered arrangement of the hollow fiber membranes would be 

more efficient option compared to the inline arrangement of hollow fibers.  

 Re         S/d = 2             S/d = 2.5 

200 3.927488                               1.503547 

400 3.374456                               2.667438 

600 2.631122                               2.354112 

800 2.369034                2.236463 

1000 2.217866         2.170964 

 

Table 2: Merit number to compare separation module containing staggered arrangement of hollow 

fibers and against that containing inline arrangement for S/d of 2 and 2.5 at various values of the 

Reynolds number. 
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5.2 Spiral wound membrane 

5.2.1. Validation – transient simulations - LBM 

    The transient simulations are conducted in a channel containing two square cross-

sectioned spacers as shown in Figure 18, using lattice Boltzmann method for Re =100 

and 300. The lattice Boltzmann simulations are conducted by another PhD student in 

our research group. The channel is bounded by two impermeable walls for these 

simulations. The time averaged velocity and concentration field are calculated and are 

compared for results predicted by the steady state k-ω SST model for Re = 100 and 

300. The boundary conditions imposed on the bounding walls and on the spacers are 

no-slip and no-penetration. Constant CH4 mole fraction is used as a boundary condition 

for the mass transport equation on the bounding surfaces. The mole fraction at the inlet 

is 0.7 and at the walls it is fixed as 0.75. 

 

Figure 18: Schematic of the flow geometry for the lattice Boltzmann simulation. 

 Figures 19 and 20 show the comparison of flow profiles predicted by LBM and  ³-

´ SST turbulence model at Re = 100 and 300. The profiles of the stream-wise component 

of the velocity behind the first and second spacer are depicted. The velocity profiles 

predicted by  ³-´ SST and LBM are nearly identical at Re = 100. The velocity profiles 
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predicted by these two methods are slightly different at Re = 300, however, they have the 

similar characteristics, as depicted in Figure 20. The deviation in the velocity profiles 

predicted by these methods can be attributed to the transient effect. In order to confirm 

these results a careful mesh optimization study needs to be conducted for both numerical 

methods. 

 

Figure 19: Velocity profiles behind the 1st and the 2nd spacer at Re = 100 
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Figure 20: Velocity profiles behind the 1st and the 2nd spacer at Re = 300 

 

5.2.2 Steady state simulations – k-ω SST 

       The steady state velocity and mole fraction profiles in a channel containing 

uniformly spaced seventeen spacers are obtained by employing k-ω SST turbulent 

model for Re = 300 and 500. Seventeen square cross-sectioned spacers are placed in 

inline arrangement at the mid-plane between the membranes as shown in Figure 2. The 

flow in a channel without spacers bounded by the membrane with the same properties 

is also simulated to provide a baseline in order to determine the influence of the spacers 
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on the membrane performance. Figure 21 shows the suction rate along the membrane 

for Re = 300 and 500, with and without the spacers. Turbulators are uniformly placed 

in a channel with spacing S/dh of 10, where S is the gap between the two successive 

spacers and dh is the hydraulic diameter of spacer. The suction rate increases as Re is 

increased along the membrane. The spacer’s effect on the mass flux through the 

membrane is more pronounced at Re = 500. The suction rate shows a local maximum 

near the spacers and a local minimum near the middle point between the spacers. 

     Figure 22 shows the mole fraction of CH4 as a function of x along the surface of 

the membrane with and without the spacers for Re = 300 and 500. The mole fraction 

profile displays a local maximum as the flow passes the spacer and while the local 

minimum is in the wake of each spacer. Although the CH4 mole fraction on the surface 

of the membrane with spacers is lower compared to that without the spacer the mean 

value of CH4 is higher when there are spacers in the feed channel. This indicates that 

CO2 absorption by the membrane is enhanced by the turbulent mixing due to obstacles. 

The mixture concentration becomes richer in CH4 when the distance from the inlet 

increases. Both CO2 and CH4 are absorbed by the membrane. The absorption of CO2 

exceeds that of the CH4, which leads to more CH4 mole fraction.  
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Figure 21: The suction rate along the membrane for Re=300 and 500 in a feed 

channel with and without spacers 
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Figure 22: The mole fraction of CH4 along the membrane for Re = 300 and 500 in a 

feed channel with and without spacers 

 

6. Conclusions  

 The results of numerical simulations for flows over banks of hollow fiber 

membranes with different configurations are presented. The separation of carbon dioxide 

from methane in the binary mixture is studied using a separation module containing hollow 

fiber membranes. Surface of the hollow fiber membrane is modeled as a functional 

boundary where mass flux of species is determined based on the local partial pressure, the 

permeability, and the selectivity of the hollow fiber membrane.  Velocity and the 

concentration field are characterized in the bank of hollow fiber membrane. The profiles 
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of the suction rate and the Sherwood number along the surface of the hollow fiber 

membranes are presented for a wide range of the Reynolds number. Staggered and inline 

geometry with two different spacing of hollow fiber membrane are considered. The 

turbulence model and the numerical method are validated by comparing predicted and 

measured results for flows over an impermeable cylinder. The mass flux through the 

membrane and the concentration polarization are greatly influenced by the local flow 

around the hollow fiber membranes. The suction rate is lowest and the concentration 

polarization is greatest in the region near the boundary layer is detached from the hollow 

fiber membrane surface. The amount of carbon dioxide extracted is increased and the 

amount of methane lost through hollow fiber membranes is reduced when hollow fibers 

are arranged in a staggered array. For the range of Re considered energy losses due to 

friction is less in modules containing staggered arrangement of hollow fiber membranes 

compared to modules containing inline arrays of hollow fibers. It is shown here that 

staggered arrangement of hollow fiber membranes in the gas separation modules 

considered is a better design. Further study is needed to optimize these systems by 

considering various spacing, arrangement and shape of hollow fiber membranes. It is also 

demonstrated here the separation module considered here can be very effective in gas 

separation, but the feasibility analysis is needed to determine the applicability of these 

systems in industrial processes. The application of these separation modules is currently 

studied by the present authors for desalination processes. 

For spiral wound membrane, flow simulations in a channel bounded by membranes are 

conducted with and without the spacers. Laminar flow modeling for the flow without the 

spacers is used to determine the flow and concentration field. The absorption of CO2 and 
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the loss of CH4 through membrane are calculated in a channel bounded by membranes with 

and without spacers. The k-ω SST turbulence model is used to predict the steady state flow 

characteristics in the channel with an array of square cross-sectioned spacers. The 

turbulence model and the numerical methods are validated by comparing results obtained 

by lattice Boltzmann method. The comparison is performed for flow in a channel bounded 

by impermeable walls containing spacers. It also shows that the lattice Boltzmann method 

could be used to study the transient effect on the membrane performance. The presence of 

the spacers enhances the membrane performance at both Re, but the improvement is more 

pronounced at higher Re (Re = 500). 
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