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Abstract 

Lattice Boltzmann method is implemented to study 2D hydrodynamically and thermally 

developing steady laminar flows in a channel and the lid-driven cavity flows. Numerical 

simulation of two dimensional convective heat transfer problem is conducted using nine 

directional D2Q9 thermal lattice Boltzmann arrangements. The velocity and temperature 

profiles in the developing region predicted by Lattice Boltzmann method are compared 

against those obtained by ANSYS-FLUENT. Velocity and temperature profiles as well as 

the skin friction and the Nusselt numbers agree very well with those predicted by the self 

similar solutions of fully developed flows. Furthermore, simulations of velocity and 

temperature filed in 2D lid-driven cavity flows are conducted by using D2Q9 thermal 

lattice Boltzmann technique. The velocity and temperature profiles predicted by velocity 

and temperature profiles predicted by LBM agree well with those obtained by ANSY-

FLUENT. It is clearly shown here that thermal lattice Boltzmann method is an effective 

computational fluid dynamics (CFD) tool to study nonisothermal flow problems.  
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Nomenclatures 

 

 

f Density distribution function 

f
eq 

Local equilibrium density distribution function 

g Temperature distribution function 

g
eq 

Local equilibrium temperature distribution function 

c=(cx,cy) Lattice discrete velocity, cx and cy are x- and y-components  

V=(u,v) Bulk velocity of the fluid, u and v are x- and y-components 

U Normalized x-component of the fluid velocity 

θ Normalized temperature 

ω Dimensionless relaxation frequency 

w Weight factor 

Tw Wall temperature in (°C) 

cs Lattice sound speed 

τ Dimensionless collision relaxation time  

r Position vector 

(X,Y) Dimensionless x and y coordinate 

Uin Fluid speed at the inlet 

Tin Temperature profile at the inlet in (°C), Tin(y) 

ρ Density of fluid, kg/m
3 

υ Kinematic viscosity of fluid,  m
2
/sec 

α Thermal diffusivity of fluid, m
2
/sec 

Pr Prandtl Number  

Re Reynolds Number 

T Bulk temperature  in (°C) 
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CHAPTER 1: INTRODUCTION, MOTIVATION A ND LITERATURE REVIEW 

Introduction 

Ludwig Eduard Boltzmann (1844-1906), the Austrian physicist, had the greatest 

achievement in the development of statistical mechanics. This approach has been used to 

predict macroscopic properties of matter such as the viscosity, thermal conductivity, and 

diffusion coefficient from the microscopic properties of atoms and molecules [1-3]. The 

probability of finding particles within certain range of velocities at a certain range of 

locations replaces tagging each particle as in molecular dynamic simulation. Historically, 

the lattice Boltzmann method originated from the lattice-gas cellular automata method 

(LGCA)[4], The LBGK which is known as the lattice Bhatnagar-Gross-Krook method 

has been developed rapidly and applied for many studies. The nonlinear term in the 

lattice Boltzmann approximated by BGK to become linear term, and this term is known 

as the collision term in the lattice BGK governing equation.  The main idea of LBM is to 

bridge the gap between micro-scale and macro-scale by not considering individual 

behavior of particles alone but behavior of a collection of particles as a unit. The property 

of particle is represented by a distribution function. The distribution function acts as a 

representative for collection of particles. This scale is unknown as mesoscopic scale. The 

terminology of the kinetic theory is the heart of lattice Boltzmann equation. The thesis is 

outlined as follows: The lattice Boltzmann governing equation and its arrangements, 

LBM mode, and BCs are discussed in chapter2. The results are presented in chapter 3 for 

thermally developing flow using D2Q square lattice. The results for nonisothermal cavity 

flow are presented in chapter 4 using D2Q9 thermal lattice Boltzmann method.   

Conclusion and future work are presented in chapter 5.  

8 
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1.1 MOTIVATION 

Since its precursor-the lattice gas automaton (LGA) was proposed more than twenty 

years ago as a useful computational fluid dynamics (CFD) method. The lattice Boltzmann 

method has emerged as promising approach for simulation either simple flow or complex 

flow. Although the lattice Boltzmann is more advanced simulation method, the 

researchers focused more on the traditional simulation technique. The lattice Boltzmann 

is used to solve microscopic or mesoscopic kinetic equations. It is unlike traditional (CFD) 

method which solves macroscopic equations by solving Navier stokes equation. The 

beauty of LBM in treating multi-phase flows -for instance- is that there is no need to trace 

the interface between phases as in the case of NSE. Moreover, the  attractive advantages 

of  LBM is that it can be naturally adapted to parallel processes computing,  there is no 

need to solve Laplace equation at each time step to satisfy the continuity equation of 

incompressible flow as it is in solving Navier-Stokes equation (NSE). However, LBM 

needs more computer memory compared with NS E solver, which is not a huge constraint.  

Furthermore, LBM can be used to handle a problem in micro-and macros-scales with 

reliable accuracy. Our motivation is that we would like to apply LBM not only for two 

dimensional single flows, but also would like to model multi-phase-three dimensional 

flows using LBM method.  Study complex flows will be difficult to be solved using 

traditional (CFD) technique. Researchers have used LBM to solve single and multi-phase 

flows [5,6].  As we conclude that LBM is a promising simulation tool for not only 

complex computational flow simulation. 
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1.2 LITERATURE REVIEW 

Many approaches of the lattice Boltzmann scheme have been discussed [ Skordos (1993), 

Nobel; Chen Shan, and Mei (1996)]. However, a successful LBM simulation rests on the 

correct implementation of the boundary conditions, where unknown distribution 

functions originated from the operation. As it stated in several literature, the 

implementation of the boundary conditions in the LBM is a challenging task. In this work, 

the lack of accuracy caused by less accurate discrete of boundary condition with the 

conservation of mass and momentum at each BCs is avoided.  

Furthermore, pervious investigators applied hydrodynamically developing flow in 

channels for low Reynolds numbers (Re=2,10,12) [7,8]. One of the this work is to apply 

LBM for hydromdynamicall and thermally developing flow at high Reynolds number. 

Nonisothermal steady 2D cavity flow will also be studied at Re=1000, Re=5000, and 

Re=10000 and the results of LBM method will be compared against   those obtained by 

Fluent. 

Qisu Zou et al 1996 used velocity flow boundary conditions and bounce back for the 

lattice Boltzmann BGK model (D2Q9) at Re=10 with single relaxation time which is 

different for different value of Re. He presented unstable results for certain type of BCs 

[7]. Lattice Boltzmann D2Q9 was implemented for simulating thermal flow in 

compressible fluids by Bruce J. Plamer et al 1999 for Pr=1 & 2  and Re=200 [8]. A 

thermal lattice Boltzmann was applied by X.D. Niu et al 2005 with diffuse scattering 

boundary condition for micro thermal flows [8]. LBM D2Q9 model was applied for fluid-

fluid conjugate heat transfer by Jinku Wang et al 2006. They studied and compared some 

results with the analytical solution [9].  

10 



14 
 

Ghia et al (1982) employed stream function-vorticity method to solve NSE. They used 

implicit multi-grid method to two dimensional lid-driven cavity flow at various Reynolds 

numbers ( Re=100,400,5000,and 10000) [10]. Renwei Mei  et al 2002 used LBM to study 

lid-driven cavity flow for Rynolds number ( Re=100,400,100, and 2000) with uniform 

grids [7]. E. Erturk et  al 2003 using NSE multi-grid method  to investigate the  2D lid-

driven for Re up to  21000 [11].  

LBM is implemented here to study thermally and hydrodynamically developing flow in 

channel and nonisothermal cavity flows. For these two problems, we compared our 

results against the results obtained by ANSYS-FLUENT and with some well documented 

results in the literature such as U.Ghia  (1982) and E. Erturk et(2003) for squared lid-

driven cavity flow.  
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CHAPTER 2:  LATTICE BOLTZMMANN ARRANGMENTS AND BOUNDARY 

CONDITIONS 

2.1. LATTICE BOLTZMANN GOVERNING EQUATION 

The probability of finding particles within certain range of velocities at a certain range of 

locations replaces tagging each particle as in molecular dynamics simulation. The lattice 

Boltzmann transportation can be governed by distribution function which represents 

particles at location  r(x,y) at time t, the particle will be displaced by (𝜟x,𝜟y) in time 𝜟t 

with the application force F on the liquid molecules [11]. The equation governing the 

distribution function f(x,y,c,t) has two terms, the streaming step and the collision term. 

Here x and y are spatial coordinates, t is the time and c is the lattice discrete velocity. 

The collision takes place between the molecules; there will be a net difference between 

the numbers of molecules in the interval drdc . The rate of change of the distribution 

function is expressed as 

 

 

 

 

  

 

Here:      

With the collision takes place between the molecules, there will be a net difference 

between the numbers of molecules in the interval dxdydc. The collision terms is defined 

as the rate of change between final and initial status of the distribution function.  

Therefore, governing the distribution function is given by the equation (2.1): 

dt

dy
c

dt

dx
c

yx
 ,

), ( dycydxcx
yx

  F 

 

     

),( yx  

x 

y 

Figure 1.  Kinetic Motion of Molecules 
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(2.1)         )(),,,(),/,,( dxdydcdtfdxdydctcyxfdxdydcdttmFdtdyydxxf
iii

  

Dividing both side of equation (2.1) by dxdydc yields: 

(2.2)                 )(
),c,yx,(),/F,,xx(

i

ii f
dt

tfdttmdtcdyydf




 

 

With position vector:  yjxir   , the equation (2.2) can be written as  

 )(.
),c,r(),/F,rr( F

i

ii

y

i

x

iii f
c

f

my

f
c

x

f
c

t

f

dt

tfdttmdtcdf
























    
(2.3)

 
Here F denotes external forces applied and φ(f) is the source or the collision term. With 

the absence of the external forces equation (2.1) becomes 

   

)(
ii

i ffc
t

f






                                                            

(2.4) 

Equation (2.5) is known as the lattice Boltzmann governing equation. The right hand side 

of equation is called a source and is approximated by BGK as 

 
)(

1
)(

i

eq

ii
fff 


                                                                   

Here ω = 1/τ is the relaxation frequency and the τ is the relaxation time 
eqf  is the 

equilibrium value of distribution function and is written as  

 
(2.5)                                                      

VV
5.1

V
5.4

V3
1

24

2

2 






 








ss

i

s

i

i

eq

i

cc

c

c

c
wf                                                            

 

where ci is the discrete velocities vector, V is the bulk fluid velocity and wi is the weight 

factor.

  The equation (2.2) becomes 

                               ),()1(),rr(    (2.6) 
eq

iii
ftrfttf  
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2. 2. MODELING OF LATTICE BOLTZAMANN 

2. 2.1. Momentum Lattice Boltzmann Model  

The momentum LBM models of lattices [12]. For instance, in D2Q9 model, the lattice at 

the origin is at rest and the remaining lattices move in different directions with different 

speed. Each velocity vector is a lattice per unit step. These velocities are exceptionally 

convenient in that all x and y-components are either 0 or ±1. Mass of particle is taken as 

unity uniformly throughout the flow domain. The bulk fluid density is governed by 

conservation of mass 

  



9

1i

if                                                                                         (2.7)   

The bulk fluid velocity (V = (u,v)) is the average of microscopic lattice directional 

velocities (c=(cx,cy)) and the directional densities and is governed by conservation of 

momentum 

 
i

i
i
cf




9

1

1
V


                                                                        

(2.8) 

Here cx = dx/dt, cy = dy/dt  are x- and y-components of the lattice directional velocity. 

Conservation of mass and momentum are also applied at each boundary condition. 
 

The kinematic viscosity is defined as 
 

)                                  )
2

11
(

3
(2.9

2










t

x

.2.2.2. Thermal Lattice Boltzmann Model  

Recently, there has been rapid progress in developing the construction of stable thermal 

lattice Boltzmann equation models to study heat transfer problems. McNamara and Alder 

successfully applied multispeed thermal fluid lattice Boltzmann method to solve heat 

transfer problems [6]. At the outlet, bounce back or extrapolation boundary conditions are 

considered as the thermal and flow boundary conditions. Bounce back type boundary 

conditions are proven to provide more accurate numerical approximations [11] and are 

used by the present work. The temperature at each wall is specified. The temperatures 

which are pointing to the flow domain are unknowns and they can be evaluated from 

streaming and collision steps.   

For the thermal distribution function, the equation (2.4)   can be written as  

  (         )  (   )  (   )       
                                                                 (    ) 
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where g
eq

 as follow:
                            

 

 
(2.11)                                       

V.V
5.1

V
5.4
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1
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2
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










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i

s

i

i

eq

i

cc

c

c

c
g 

  

The normalized bulk fluid temperature is given by       

(2.12)                                                                                 
win

w

TT

TT






The conservation of energy is given by 

 

(2.13)                                                                                                   g
9

1i
i



T

 

The thermal diffusivity is defined as
 

)                                 )
2

11
(

3
(2.14 

2










t

x

 

2.3. LATTICE BOLTZAMMAN D2Q9 ARRANGMENT 

2.3.1. Lattice Boltzmann Arrangements (D2Q9) 

Lattice Boltzmann is relatively recent technique that has been shown to be as accurate as 

traditional CFD methods having ability to integrate arbitrarily complex geometrics. LBM 

can be used for different arrangements such as D1Q2, D2Q4, D2Q9, D3Q15, D3Q19, or 

D3Q27 [13]. In the present work, D2Q9 lattice will be used to examine noisothermal 2D 

problems. D2Q9 lattice arrangement is shown in figure 2.  

 

  

 

  

 

 

Each distribution function has position vector (r), velocity vector (c) and weight factor 

(w).

 

 

3f

2f4f

6f5f
7f

9f
8f

 Flow domain 

Solid wall 

1
f

Figure 2. D2Q9 LBM 

arrangement  
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For D2Q9, the lattice veolcties and weight factor are given by
 

(2.15))             

9,8,764/112sin24/112cos2c
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c




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
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
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






i

w

 

2.4. BOUNDARY CONDITIONS  

Applying boundary condition is the crucial part using LB method. There are several types 

of BCs which can be applied using LBM. First type is the first order bounce back 

boundary condition which is applied at the boundary. The second order bounce back BCs 

which is applied the half away from the boundary. Third type is applying conservation of 

mass and momentum at each boundary. In this section the type of boundary conditions 

imposed on both velocity and temperature filed will be discussed.   

2.4.1. FIRST ORDER AND SECOND ORDER BOUNCE BACK 

2.4.1.1. First Order Bounce Back 

This type of the boundary condition determines the unknown distribution functions at the 

boundary with the first order of accuracy as so many researchers claimed. It doesn’t give 

accurate results for developing flow inside the channel. The schematic diagram shown 

below illustrates the first order bounce back type of boundary condition is applied.  
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Each distribution function reflects inside the flow domain as shown in figure3: 

The unknown distribution functions are  
6

f ,  
5

f , and  
7

f  

 

 The distribution functions  
8

f ,  
3

f , and  
9

f are known  which can be evaluated from 

streaming step and collision step.  

2.4.1.2. Second Order Bounce Back 

In the second order bounce back, the distribution functions are located half way from the 

solid boundary. This type of boundary condition is known as the second order bounce 

back boundary condition. Application of the second order bounce back type of boundary 

condition provides more accurate results against those with the first order bounce back 

boundary condition.  Figure 4 shows how this type of the boundary condition is applied. 

 

Flow domain 

 

 

 

 

The unknown distribution functions are  
6

f ,  
5

f , and  
7

f  

 

 The distribution functions are  
8

f ,  
3

f , and  
9

f are known which can be evaluated 

from streaming step and collision step. Notice that, the  
8

f ,  
3

f , and  
9

f  are inside the 

flow domain and shifted away from the solid BCs by 
2

y
. 

2.4.2. NEUMMAN BOUNDARY CONDITIONS (VELOCITY KNOWN) 

For this type of boundary conditions, the conservation of mass and conservation of 

momentum are applied at each boundary. For D2Q9, there are nine velocities components 

pointed in different directions. 
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Figure 4. 2
nd

 order bounce back 
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Applying the conservation of mass yields: 
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Applying the conservation of momentum yields: 
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Adding equations (2.18) and equation (2.19) yields:  

834652
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(2.20) 

Equations (2.17-2.20) have four unknowns; namely three distribution functions pointing 

inside the flow domain and the density.  

Using the local equilibrium distribution function perpendicular to the boundary provides  


eqeq

ffff
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(2.21) 

Here no-slip condition is applied at the upper and lower plates. 

Substitution equation (2.21) into equation (2.20) yields:  
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(2.22)

   
 

In equation (2.15) there are two unknowns; namely 6
f   and 

 
 

Substitution equation (2.14) into equation (2.10) and adding equation (2.10) to equation 

(2.11) yield to: 
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(2.23)

   
 

Subtracting equation (2.15) from equation 2.16 yields: 
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Similarly at the lower boundary no-slip and no penetration condition yields  
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At the inlet: 
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For the outlet condition (account for an open BCs) 

The outlet boundary condition can be taken outflow boundary condition, by using second 

order extrapolation which yields  

(2.33)
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Where N is the number of lattice nodes in x-direction. If the outlet velocity is known, the 

conservation of mass and conservation of momentum can be applied at the outlet to 

determine distribution functions.  

2.4.3. Thermal Boundary Conditions 

Various types of thermal boundary conditions will be discussed here for D2Q9 thermal 

lattice Boltzmann arrangements. These boundary conditions are adiabatic, constant heat 

flux, and constant temperature at the boundary. Several investigators have studied some 

of these type of thermal boundary condition.  

2.4.3.1. Adiabatic Boundary Condition 

When the upper and lower boundary are insulated (no heat moves over the boundary), the 

heat flux " q " should be equal zero. The boundary conditions for both surfaces (Upper 

and Lower surface) become:  
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2.2.2. Constant Temperature at the Upper and theLower Boundary 

 

 

In case of the temperature is constant (T=Tw) at the lower and upper boundary condition:  

 

 

 

 

2.4.3.2. Constant Flux Boundary Condition 

In case of the upper and lower boundary are at constant heat flux (There is a heat moves 

over the boundary), the heat flux “q " should be mentioned as it is defined in the Fourier 

law. The boundary conditions for both surfaces (Upper and Lower surface) become:  
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In case of the heat flux is constant at the upper surface: 
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In case of the heat flux is constant at the lower surface: 
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The local and Average Nusselet Number  

 

 

 

The mean temperature can be evaluated by: 
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Where T s is the surface temperature 

The average Nusselt number is  
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After applying the scaling yields: 
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CHAPTER 3:  STEADY STATE TWO DIMENSIONAL   

HYDRODYNAMICALLY THERMALLY DEVELOPING IN A CHANNEL 

3.1. PROBELEM STSTAMENT  

Hydrodynamically and thermally developing flow in the entrance region of a channel is 

considered.  At the upper and the lower boundary no-slip and no penetration is applied. 

At the fluid velocity is uniform U=0.02m/sec. The height of channel is 0.02m and the 

aspect ratio is AR=50. The temperature is constant at the upper and the lower boundary 

and the temperature profile at the inlet is taken as   )(4 2YYin   . Figure 6 displays the 

velocity, temperature boundary conditions and the inlet condition.  

 

 

 

 

Figure 6. Flow Geometry  

The scaling parameters are 

 

 

3.2. APPLYING LATTICE BOLTZMANN (D2Q9) TO HYDRODYNAMICALLY 

THERMALLY DEVELOPING 

The conservation of mass is expressed as 
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The bulk fluid velocity (V = (u,v)) is the average of microscopic lattice directional 

velocities (c=(cx,cy)) and the directional densities and is governed by conservation of 

momentum 
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Here cx = dx/dt, cy = dy/dt  are x- and y-components of the lattice directional velocity. 

Conservation of mass and momentum are also applied at each boundary as shown in 

figure7.  

 

 

 

 

 

 

 

                            Figure 7. Velocity boundary conditions schematic diagram 

The inlet velocity is Uin , the length of channel is L and the distance between lower and 

upper     plate is H. u is measured in units of Uin (U = u/Uin), x and y are measured in units 

of L and H (X = x/L and Y = y/H), respectively. Scaled inlet velocity becomes U = 1 and 

the flow domain (X,Y) becomes  1.X0 and  ,1Y0     

The conservation of energy is expressed as 





9

1i
i

gT     

The temperature at each wall is specified. The temperatures which are pointing to the 

flow domain are unknowns and they can be evaluated from streaming and collision steps 

as shown in the Figure 8.   
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Figure.8. Temperature boundary conditions schematic diagram 

3.3. Results and Discussion 

The results are presented for steady incompressible two dimensional laminar flows in an 

entrance region of a channel. Flow develops hydrodynamically and thermally in a 1m 

long and 0.02m height channel with the aspect ratio AR of 50. At the inlet the flow is 

uniform ( sec)/02.0 mU in   and the temperature of the fluid satisfies )(4 2YYin  . 

Boundary conditions imposed on the velocity field at Y = 0 and 1 are no-slip and no-

penetration and the thermal boundary conditions applied on each surface is   = 0.  The 

physical properties are considered to be constant and are determined for water at 300K - 

(
3/1.999 mkg and

23 /.10855 msN  ).  For the example illustrated in this paper the 

flow rate considered is 0.4 kg/s and the corresponding Reynolds number Re = ρ2HUin/µ = 

800[18]. 
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Spectral convergence is checked for LBM to ensure that the results predicted by the LBM 

are not dependent on the number of nodes selected for the numerical simulations. Nodes 

(NxM) are placed uniformly in the direction of x (N nodes) and y (M nodes). The 

convergence test is displayed in Figure 9 as the velocity and temperature profile at X = 

0.2 plotted for various N and M. It is shown that the (50×1000) mesh provides 

satisfactory spectral convergence and numerical accuracy and is thereby chosen for the 

numerical simulation results predicted by LBM. 

 

 

The velocity and temperature profiles are displayed at various cross-sections in the 

developing region. The profiles that are obtained by LBM are compared against those 

obtained by ANSYS-FLUENT at the same conditions. The boundary conditions at the 

inlet and the outlet and on the surface of the plates are selected as the same for both 

methods. The Gauss-Siedel iterative method has been employed for LBM simulations. 

Figure 9. a) Velocity and b) temperature profiles at X=0.2 plotted for various N and M 

a b 

Figure 9. a-Velocity profiles and b- Temperature profiles at X=0.2 plotted for 
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The velocity and temperature field are considered to be converged when the error 

tolerance is less than 10
-3

.   

The velocity profiles predicted by LBM and FLUENT at various cross-sections are 

shown in Figure 10. The solid lines denote the prediction obtained by LBM while the 

symbols denote the predictions obtained by FLUENT. The velocity profiles at all cross-

section predicted by LBM agree very well with those predicted by FLUENT, as shown in 

Figure 10a. The development length for velocity field at Re = 800 in this flow is expected 

to be x/H= 47.4. The thermal filed has the same development length as the hydrodynamic 

field since Pr is selected to be unity. The nearly fully-developed velocity profile obtained 

by both method at X = 0.725 also agree very well with each other. They also agree well 

with the analytical solution, U = 6 (YY
2
), for the fully developed laminar velocity profile, 

as shown in Figure 10b. 

 

b a 

Figure 10. a) Velocity profiles at various cross sections predicted by LBM and FLUENT b) 

Velocity profile at X = 0.725 predicted by LBM and FLUENT and the self-similar velocity 

profile of the fully developed flow 

 

b 
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The temperature profiles predicted by LBM and FLUENT at various cross-sections are 

shown in Figure 11. The solid lines denote the prediction obtained by LBM and the 

symbols denote the predictions obtained by FLUENT. The temperature profiles predicted 

by LBM agree very well with those predicted by FLUENT. 

 

 

 

Wall shear stress and heat transfer coefficient are predicted at various cross sections in 

the developing region. The local value of skin friction, Cf, and the Nusselt number, Nu, 

are determined 

  ( )  
 

 
 ⁄     

 

  

  
(   )  

 

  

  

  
(   )              ( )   

      

     

  

  
(   )        (2.52) 

Figure 11. Temperature profile at various cross-sections 

predicted by LBM and FLUENT. 
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where Tm is the bulk temperature of the fluid and is calculated at each cross-section as 

    
 

∫   
∫[   (   (    )    ) ]                                (2.53) 

The skin friction and the Nusselt number predicted by LBM are plotted in Figure 7 as a 

function x/2H. ReCf tends to 24 as the fully developed region is approached. Similarly, 

Nusselt number tends to 7.54 as the thermally fully developed region is approached, as 

shown in Figure 7b. These values are in perfect agreement with the fully developed 

values of Cf and Nu as well documented in the literature. 

 

Figure 12.  a) Skin friction and b) Nusselt number plotted as a function of x/2H. 

Consequently, hydrodynamically and thermally developing laminar steady flow in a 

channel is considered as an example to illustrate that Lattice Boltzmann method is a 

promising computational fluid dynamics tool. D2Q9 lattice arrangement is used to predict 

both velocity and temperature field. Profiles obtained by LBM-D2Q9 and ANSYS-

   a b 
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FLUENT agree very well. Away from the inlet as the fully developed region is 

approached and the profiles tend to self-similar solutions of fully developed flows. That 

is confirmed by prediction of the skin friction and Nusselts number. They tend to well-

known fully developed values as full developed region is approached away from the inlet.  
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CHAPTER 4:  NON-ISOTHERMAL TWO DIMENSIONAL LID- DRIVEN 

FLOW  

Thermal lattice Boltzmann method is applied to investigate lid-driven cavity flow at 

various Reynolds number. The range of Reynolds number considered here is Re=1000 to 

10000. The velocity and temperature fields predicted by LBM at various Reynolds are 

compared against those predicted by ANSYS-FLUENT and those documented in the 

literature [1,2]. Objective of this study is solving complex flow problems and show that 

LBM can be an effective CFD tool.  

4.1 PROBLEM STATEMENT  

Non isothermal lid-driven cavity flow is considered for various Reynolds number. The 

aspect ratio is taken AR=L/H=1. The upper boundary is moving with a constant speed 

while others boundaries are stationary. The boundary conditions imposed on the velocity 

and temperature field is shown in the figure below. The temperature of the moving 

boundary is at 100
o
C while others boundaries are kept at 50

 o
C.  

 

 

 

 

                                           

  

 

 T=50ºC 

 

Ulid =0.002, 0.01, 0.02 m/sec 

AR=L/H =1 

water  

 

L=0.5 m 

T=50C 

H=0.5 m 

T=100C 

T=50ºC 

x 

y 

Figure13. The geometry of flow domain 
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4.2. APPLYING LATTICE BOLTZMANN (D2Q9) TO HEATED LID DRIVEN 

CAVITY 

4.2.1. Normalized Parameters 

The advantage of scaling parameters is to reduce the number of variables pertaining to 

the physical situation but it still describes the behavior of solution. The velocity and 

temperature field predicted by both LBM and ANSYS-FLUENT for Re=1000, Re=5000, 

and Re=10000.  

The scaling parameters are 

latticelattice

nd

lattice

lid

U
,

U

u
u  ,10,10

Re
 U,,   ,  11)(Y    0,0)(Y

u
Re  0,1)(X    0,0)(X      ,


















nd

lu

wlid

w

vYX

MH

y
Y

L

x
X

H

TT

TT

 

The  flow domain and the boundary conditions are displayed in Figure 14 in terms of 

normalized variables.  

                                                                                                                            Ulattice=0.2  
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Figure 14.  Internal distribution functions (Collision and streaming term) 
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The velocity per unit lattice is defined using the velocity of the lid.  The macroscopic 

Reynolds number is equal to the lattice Reynolds number. Applying the conservation of 

mass and momentum at the moving boundary condition yields 

 

 

 

Figure 15a. Distribution functions at the upper boundary 
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The second order bounce back type boundary condition for the velocity field is used at 

other three boundaries. Typical distribution functions at these boundaries are displayed in 

Figure 15b. 
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Figure 15. Distribution functions at the left, the right, and the lower boundary 
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4.3. Results and Discussion 

The velocity and temperature field are presented in this section for at various values of 

Reynolds numbers. The results predicted by LBM are compared against those 

documented by Ghia et  [10] and E.Elruck et  [11] and are also compared against results 

obtained by ANSYS-FLUENT.   

4.3.1. Velocity, &Temperature For Re=1000 

Velocity profiles in transversal and the flow directions are plotted at various cross-section 

and compared against with those obtained by FLUENT, and those documented in the 

literature. The x-component velocity obtained by using LBM at X=0.5 is plotted as 

function of Yin Figures16 and 17. The x-component of the velocity predicted by Fluent  

and documented by Ghia et al (1982)  is also plotted in Figures 16 and 17.  The square 

line denotes the result obtained by FLUENT while the delta line denotes the results 

obtained by LBM.  The circle line denotes the results obtained by Ghia et in 1982.   

  As clearly seen from Figures 16 and 17 the velocity profiles obtained by LBM &Fluent 

and documented in the literature agree very well.The x and y components of the velocity 

at various X and Y locations are also displayed in Table 1.1. 

Table 1.1. Normalized horizontal and transversal velocity values at various grid points  

 

 

 

 

 

Grids 

location 

u/Ulid v/Ulid 

0.25 0.5 0.375 0.25 0.5 0.375 

0 0 0 0 0 0 0 

0.003333 -0.00075 -0.01253 0.004079 -0.00075 -0.01255 0.004079 

0.179982 -0.22664 -0.3921 -0.23631 -0.22664 -0.39245 -0.23631 

0.183315 -0.22991 -0.3915 -0.24341 -0.22991 -0.39185 -0.24341 

0.839916 0.200663 0.335378 0.230551 0.200663 0.335581 0.230551 

1 1 1 1 0 0 0 
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Figure 16. Normalized horizontal velocity at   X=0.25 of 

Re=1000 for uniform grids for each method 

 

Figure 17. Normalized horizontal velocity at X=0.375 of 

Re=1000 for uniform grids for each method 

36 



40 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 displays temperature profiles predicted by LBM and FLUENT at X=0.25 for 

Re=1000, and Pr=7.01. The square line denotes the temperature profile obtained by 

FLUENT while the delta line denotes the temperature profile obtained by LBM. Both 

temperature profiles agree very well. 

 

 

 

 

 

 

Figure 18. Normalized temperature at X=0.25 of Re=1000 

for uniform grids for each method 
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Figure19 shows the contour of isotherms predicted by thermal LBM. Fluid near the upper 

boundary is warmer compared to that of near lower boundary since the lid is heated while 

Figure19. Temperature contour of Re=1000 for uniform 

Grid 300x300 using LBM 

 

Figure20. Velocity contour of Re=1000 for Uniform Grid 

300x300 using LBM 
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the other boundaries are kept at lower temperature.  Figure 20 displays the velocity 

contour predicted by LBM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Streamlines of the lid-driven cavity flow predicted by LBM for Re=100 is shown in 

Figure 21.A large size of corner eddy is present in right and left corners.. There is an 

onset small eddy at the top left corner. The streamlines predicted by LBM matches 

closely to that documented by Ghia et al [10] and by Erturk et al [11] . The 2
nd

 order 

bounce back boundary condition for Re=1000 captures all eddies in thee lower corner of 

the square lid-driven.  No eddies appear in the top right corner. As Re is increased the 

eddy that about the onset at Re=1000 in later subsection in this chapter becomes stronger 

and larger. The second order bounce back boundary condition has limitation to provide 
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Figure21. Streamlines contour of Re=1000 for uniform grid 

300x300 using LBM 
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an accurate solution. As it is observed here, it can be applied for Reynolds number up to 

10000. For Re greater than 10000 more accurate discretization should be applied at the 

boundary.  

4.3.2. Velocity and Temperature profiles at Re=5000 

Normalized x-and y-component of the velocity predicted by LBM is listed in Table1.2. 

The x-component velocity obtained by LBM and Fluent are plotted as a function of Y at 

X=0.25 and X=0.5. The lines with square denote the profiles obtained by Fluent while the 

lines with triangle denote the profiles predicted by LBM. The velocity profiles predicted 

by both method at x locations agree very well, as shown in Figure 22 and 23. 

Table 1.2. Normalized horizontal and transversal velocity values at various grid points  

 

 

 

 

 

 

 

 

 

 

 

 

Grid 

location 

u/Ulid v/Ulid 

0.25 0.5 0.375 0.25 0.5 0.375 

0 0 0 0 0 0 0 

0.010101 0.00543 -0.11143 0.055191 -9.77E-06 0.001425 -4.50E-05 

0.060606 -0.09037 -0.38266 0.028156 0.00123 0.003974 0.000882 

0.828284 0.257625 0.299918 0.225488 -0.00323 -0.00242 -0.00323 

0.838384 0.263453 0.312698 0.237819 -0.00335 -0.00253 -0.00335 

0.848486 0.268004 0.325789 0.250567 -0.00347 -0.00266 -0.00347 

1 1 1 1 0 0 0 
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Figure 23. Normalized horizontal velocity at various cross-section of Re=5000 for 

uniform grids for each method                       

Figure 22. Normalized horizontal velocity at various cross-section of Re=5000 for 

uniform grids for each method                       
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Figure 24. Normalized temperature at X=0.5 of Re=5000 for uniform grids 

for each method 

Figure 25. Normalized temperature at X=0.5 of Re=5000 for uniform 

grids for each method 
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In the previous Figures 24 and 25, they display the temperature profiles predicted by 

LBM and Fluent   at X=0.5 and X=0.25 plotted against Y. The temperature is normalized 

to be 0 and 1, with (θ=1) represents the temperature of the moving boundary and (θ=0) 

represents the temperature of the stationary boundaries 
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Figure26. Velocity contour of Re=5000 for uniform Grid 

800x800 using LBM 
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Figures 26 and 27 depict the velocity contour and streamlines, respectively. There are 

two large eddies at the bottom corners and the eddy at top left corner becomes larger at 

this Re. The streamlines predicted by LBM agrees well with streamlines documented by 

Ghia et al[10] and Ertruck et al [11] for Re=5000.  
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Figure27. Streamlines of Re=5000 for uniform 

Grid 800x800 using LBM 
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4.3.3. Velocity and Temperature profiles at Re=10000 

Normalized x-and y-component of the velocity predicted by LBM is listed in Table1.3. 

The x-component velocity obtained by LBM and Fluent are plotted as a function of Y at 

X=0.25 and X=0.5. The lines with square denote the profiles obtained by Fluent while the 

lines with triangle denote the profiles predicted by LBM. The velocity profiles predicted 

by both methods at x locations agree very well, as shown in Figure 28 and 29. 

Table 1.3. Normalized horizontal and transversal velocity values at various grid points  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Grid 

location 

u/Ulid v/Ulid 

0.25 0.5 0.375 0.25 0.5 0.375 

0 0 0 0 0 0 0 

0.010101 0.007782 -0.14762 0.063658 0.003309 -0.00034 -0.00018 

0.060606 -0.11228 -0.38012 -0.0107 0.007891 0.002929 0.002179 

0.828284 0.241463 0.261229 0.200086 -0.00562 -0.00657 -0.00419 

0.848486 0.255871 0.285508 0.223652 -0.00585 -0.00676 -0.00441 

1 1 1 1 0 0 0 

Figure 28. Normalized horizontal velocity at X=0.5 of Re=10000 

for uniform grids for each method                       
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Figure 30. Normalized temperature at X=0.5 of Re=10000 for uniform 

grids for each method 

Figure 29. Normalized horizontal velocity at X=0.5 of Re=10000 

for uniform grids for each method                       
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In the separated the Figures 28 and 29, the square line represents the results obtained by 

FLUENT while the delta line represents the results obtained by LBM.   

In the separated plots in the Figure 30, the temperature profiles are plotted at X=0.5 

against those obtained by FLUENT. The temperature is normalized and the lid 

temperature is (θ=1) and the wall temperatures are (θ=0). The velocity profiles are shown 

in the figure 26 at various cross-sections, the boundary layer in the wall of the lid-driven 

cavity strongly affects on the velocity profiles.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure31. Temperature contour of Re=10000 for 

uniform grid 2000x2000 
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In the Figure31 , the temperature contour plotted for the whole flow cavity domain which 

shows that the higher temperature at the upper of the cavity (lid region) and the 

temperature varies since the temperature of  cavity wall is placed at cold temperature 

(θ=0). The velocity contour represents the resultant velocity in x-direction and y-direction   

as shown in the Figure32.  The temperature contour behaves similar to the velocity 

contour. The lid is heated at normalized temperature θ=1 and the others walls are placed 

at cold temperature which is normalized by θ=0.  

 

 

 

Figure 32.  Velocity contour of Re=10000 for 

uniform grid 2000x2000 
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The figure 33 displays the streamlines predicted by LBM for Re=10000. The bottom 

right corner region of the flow structure becomes very complicated with the presence of 

small and large scale eddies. This result implies that the second order bounce back type 

of boundary condition is not accurate enough to capture the flow structure at this high 

Reynolds number.  
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Figure33. Streamlines contour of Re=10000 for uniform grid 

2000x2000 using LBM 
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CHPATER 5:    CONCLUSION & FUTURE WORK 

5.1. CONCLUSION 

Two dimensional nine directional (D2Q9) thermal lattice Boltzmann method has been 

developed to investigate nonisothermal flow problems. Velocity and temperature field of 

hydrodynamically and thermally developing flows in the entrance region of a channel has 

been predicted by the lattice Boltzmann technique. The velocity and temperature profiles 

at various cross sections in the developing region have been compared against those 

predicted by the ANSYS-Fluent. The profiles obtained by both methods agree very well. 

The nonisothermal lid-driven cavity flow at various values of Reynolds number up to 

10,000 has also been considered to validate the thermal lattice Boltzmann method as an 

effective computational fluid dynamics tool. The velocity and temperature profiles 

obtained using both thermal LBM and Fluent are compared for Re = 100, 1000 and 

10000. The profiles predicted by both methods at all Re agree very well and they also 

agree well with results documented earlier by previous investigators. Strong agreement 

between the results obtained by LBM and Fluent for both problems proves that the 

thermal lattice Boltzmann technique can be used to investigate complex flow and heat 

transfer problems. The author is currently investigating the possibility of using the LBM 

method developed here for multi-phase complex flow problems and phase change 

problems. 

5.2. FUTURE WORK 

LBM method is proven to be a promising CFD tool. The author will develop the thermal 

lattice Boltzman method to investigate transient multiphase flows of solids, liquids and 

gasses in two or three dimensional systems. Developing of LBM method to investigate 
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three dimensional unsteady complex multi-phase flows is underway. Transient three 

dimensional multiphase flows pose a challenge for traditional CFD tools. The setup of 

LBM suits well to handle the transient multiphase flows. 
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