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ABSTRACT 

With the advent of downsized engines, castable high strength aluminum alloys for 

lightweight engine components are urgently needed for the replacement of cast iron. The 

aim of this study is to develop new casting aluminum alloys and processing technologies 

for the production of lightweight powertrain components with as cast high strengths.  

The first stage of this study was to develop an appropriate casting method which was 

advantageous to increase the mechanical properties of aluminum alloy A380. Squeeze 

casting was found to be effective for the elimination of porosity in aluminum alloy A380 

with a relatively thick cross section compared with the conventional high pressure die 

casting process. Mechanical properties such as ultimate tensile strength (UTS) and 

elongation to failure (Ef) was enhanced up to 215.9 MPa and 5.4% respectively over those 

of the conventional high-pressure die cast part (UTS: 173.7 MPa, Ef::1.0%).  The analysis 

of tensile behavior showed that the squeeze cast A380 exhibited a high tensile toughness 

(8.5 MJ·m3) and resilience (179.3 kJ·m3) compared with the die cast alloy (toughness: 1.4 

MJ·m3, resilience: 140.6 kJ·m3). 

To meet the requirement of high temperature environment for automotive application 

components, transition alloying element nickel (Ni) was added into the aluminum alloy 

A380. The results of tensile testing on the Ni-containing A380 alloys showed that Ni was 

an effective additive for improving mechanical properties. As the Ni addition increased 

from 0 to 2.0 wt.%, the ultimate tensile and yield strengths and resilience rise to 225.40 

MPa, 128.04 MPa and 175.90 kJ/m3 respectively. Examination of the analyzed 

microstructures indicates that the complex Ni-containing intermetallic phases forms once 

Ni added. The influence of transition alloying element nickel addition to the solidification 
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of squeeze cast aluminum alloy A380 was also investigated via thermal analysis. 2%Ni 

addition to A380 promoted the formation of the Ni-containing ternary phase at a relatively 

high temperature and suppressed the formation of the Al-Cu phase which took place at a 

relatively low temperature during solidification. One less phase formation was observed in 

cooling process. With alkaline earth element, strontium added into A380 as a modifier of 

eutectic silicon, the strength of alloy was further improved up to UTS: 241.6MPa and YS: 

172.5MPa. 

A design of experiment (DOE) technique, the Taguchi method, was used to develop as-cast 

high strength aluminum alloys with various element additions of Si, Cu, Ni and Sr. For each 

element, three different levels of weight percentages were selected (Si: 6, 9, 12%, Cu: 3, 5, 

7%, Ni: 0.5, 1, 1.5% and Sr: 0.01, 0.02, 0.03%). Tensile properties as ultimate tensile 

strength, yield strength and elongation at failure were selected as three individual responses 

to evaluate the engineering performance of the designed alloys. The alloy with the optimal 

composition had average UTS of 267.00 MPa, elongation at failure of 1.13% and yield 

strength of 210.37 MPa under the as-cast condition. The contribution on tensile properties 

of each element was determined by an analysis of variance.  

The results of the tensile testing at high temperatures up to 300oC showed that 2 wt. % Ni 

additions increased the UTS and YS by 27.4% and 11.7% over those of A380 alloy. The Sr 

addition had a mirror effect on the high temperature tensile strengths. The XRD patterns and 

TEM analysis revealed that the presence of Ni-containing intermetallics should be 

responsible for the improvements of the strengths of the tested hypoeutectic Al-Cu-Si alloy 
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CHAPTER 1 

Introduction 

1.1 Background 

Aluminum alloy is one of the most commonly used lightweight material in human daily 

life because of its remarkable properties. First, it is lightweight, aluminum alloy weighs 

only 1/3 as much as equal volumes of general used iron or steel. With its relatively low 

density, aluminum alloy exhibits high specific strength. The high strength-to-weight ratio 

of aluminum alloy is extremely attractive, especially in the aerospace and automotive 

industries. With increasingly stringent government regulations and growing market 

demand, engine downsizing has become an urgent and essential task for the automotive 

industry. Downsizing is referred to as the installation of a small engine in a vehicle which 

meets the performance aspirations of a driver by designing the engine to operate at 

extremely high powers when needed [1-3]. The most common approach to achieving this 

goal is through turbocharging and/or supercharging the engine. Both techniques compress 

the air entering the engine, allowing more fuel to be burnt and more power to be generated. 

As the primary improvement of engine efficiency, engine downsizing has become an 

established trend in the automotive industry in the past few years. Recently, the 

development and application of three-cylinder engines have attracted great interest from 

researchers and designers in the automotive industry. The basic advantage of a small engine 

over a large one is that it is inherently more fuel efficient (as there are fewer cylinders of 

volume of fuel to burn). The smaller the engine size, the less fuel it will burn making the 

system more fuel efficient [4]. However, to maintain the engineering performance and 



 

2 
 

output horsepower and to reduce the weight of downsized engines, high strength 

lightweight materials must be employed. Aluminum alloy as a lightweight material is the 

best substitute for traditional cast iron. Most of commercially available aluminum alloys 

could meet the engineering specification of cast irons used for downsized engines when 

proper heat treatments are applied. The application of heat treatments adds extra costs to 

castings, particularly high for large castings and makes them less competitive despite of 

mechanical property enhancement. As such, development of castable high strength 

aluminum alloys without heat treatments need to be developed.  

As the one of the most widely used lightweight material, aluminum alloy A380, as a 

representative of hypoeutectic Al-Si-Cu alloys, which is the most commonly used 

aluminum alloy in automotive industry. While advanced Al casting technologies are 

emerging, the potential of conventional Al casting alloys needs to be further explored to 

maximize their engineering performance without significant increases in materials and 

manufacturing cost. High pressure die casting (HPDC) with the advantages of high 

production speed, accurate dimension and good surface finish is the most common process 

for manufacturing neat net shape cast components of aluminum alloys. However, parts 

made using HPDC generally suffer from a high level of porosity resulting from gas 

entrapment during the high-speed injection of turbulent molten metal into the die [5]. The 

presence of such a casting defect has a great influence on microstructure and it is harmful 

to mechanical properties such as ultimate strength, yield strength and elongation [6-8]. It 

has been indicated by other studies that tensile ductility decreases with an increase in the 

level of porosity. Meanwhile, an increasing soundness results in higher elongation to 

fracture in aluminum alloys [9-11]. Moreover, the section thickness of die castings has a 
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great influence on their microstructure and tensile properties including yield strength (YS), 

ultimate tensile strength (UTS), and elongation. An increase in the cross-section thickness 

of die castings reduces mechanical tensile properties significantly. This is attributed to the 

presence of a large amount of porosity and coarse microstructure resulting from high 

tendency of gas entrapment and relatively low solidification rate in thick castings during 

the high pressure die casting process [12].  

Squeeze casting is a general term to specify a fabrication technique where, liquid metal 

is fed into a permanent die and pressure is applied via a hydraulic ram until solidification 

is complete. Squeeze casting is also known as liquid metal forging, squeeze forming, 

extrusion casting and pressure crystallization. It is a casting process in which liquid metal 

solidifies under the direct action of pressure. The major advantages of squeeze casting: 

porosity or shrinkage porosity elimination; no need for feeders or risers; suitable for wide 

range of material fluidity and enhancement on mechanical properties. On the other hand, 

it is shown that the mechanical properties of squeeze casting alloys increase; the grain size 

and the dendrite arm spacing decrease and more dendrites appear with the increase of 

applied pressure [13]. Squeeze casting offers high metal yield, no or minimum gas or 

shrinkage porosity, excellent surface finish and low operating costs. This process provides 

probably the most effective and efficient route to produce near net-shape components and 

metal matrix composites for engineering application. Among all the casting techniques 

available today, squeeze casting has greater potential to create less defective cast 

component. Since the as-fabricated components can be readily used in service or after a 

minor post-fabrication treatment, squeeze casting is regarded as a net or near net-shape 

fabrication rote.  
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As a commonly used material in auto industry, an outstanding mechanical property at 

high-temperature working environment is necessary.  Transition alloying element nickel 

(Ni) and copper are found to be effective element for improvement of mechanical 

properties of Al-Si alloy at elevated temperature [14-20]. Studies on the modification with 

nickel on the morphologies on aluminum alloys conclude that the presence of additional 

transition alloying elements in the aluminum alloy system allows many complex 

intermetallic phases to form including Al2Cu, Al3Ni, Al7Cu4Ni, Al9FeNi and 

Al5Cu2Mg8Si6. Among those intermetallic, ε-Al3Ni, δ-Al3CuNi, ϒ-Al7Cu4Ni are found to 

be more effective to the enhancement of mechanical properties at elevated temperature [21-

23].  

Aluminum alloy A380 as a typical Al-Si-Cu alloy contains high level of Si as 8.5%, 

which facilitate formation of large size of eutectic Al-Si. Since the Si phase is hard brittle, 

coarse Al-Si eutectic reduces mechanical properties of A380 alloys. To modify the silicon 

eutectic phase, modifying elements such as strontium (Sr) has been found influencing the 

nucleation and growth processes of eutectic silicon crystals effectively. The alkaline earth 

element, Sr is capable to effectively modifying the morphology of eutectic silicon from 

acicular to fibrous from despite that Sr addition enhanced tensile properties of both 

hypereutectic and hypoeutectic properties significantly [24]. 

1.2 Objectives 

In the present work, the major effort was placed into developing new casting aluminum 

alloys and processing technologies for production of lightweight automotive powertrain 

components with high strengths. To develop as-cast high strength aluminum alloys, the 
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existing aluminum alloy A380 was considered as a base alloy. Several objectives were 

aimed to be achieved: 

1. To study the effect of squeeze casting on microstructure and tensile behavior on 

aluminum alloy A380; 

2. To study the effect of Ni addition on mechanical properties, phase morphology, 

solidification of squeeze cast Al Alloy A380; 

3. To investigate the relation between microstructure and mechanical behavior of 

hypereutectic Al-Si-Cu alloys with transition element Ni; 

4. To study the effect of Sr addition on the modification of eutectic Si phases and their 

influence on mechanical properties; 

5. To develop as-cast high strength Al-Si-Cu alloys with optimal compositions of Ni and 

Sr by using design of experiment of Taguchi method; and 

6. To study the mechanical behavior and microstructure of developed as-cast high 

strength aluminum alloy at high temperature 

1.3 Dissertation Outline 

This work embodied in this dissertation is described in a total of ten chapters: 

In Chapter 1, introductory remarks were provided, while the objectives and a general 

description of the outline of the work was presented. 

In Chapter 2, a literature review related to this study was carried out. Background 

knowledge of aluminum alloy, specifically A380 alloy was introduced. Squeeze casting 

technology for aluminum alloys was discussed. A design of experiment technique, the 

Taguchi method is reviewed.  
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In Chapter 3, the first attempt of this study to find an appropriate casting method was 

presented. A comparison between the squeeze cast A380 and conventional die cast 

counterpart in aspects of microstructure, tensile properties, strain hardening, deformation 

behavior, fracture behavior and porosity evaluation was presented.  

In Chapter 4, the influence of transition alloying element nickel to the tensile properties of 

squeeze cast aluminum alloy A380 was investigated. Nickel (Ni) addition varying from 0.5 

up to 2.0 wt.% was introduced into A380. Mechanical properties such as ultimate tensile 

strength, yield strength, elongation at failure, toughness and resilience and microstructure 

were compared with those of the conventional A380 at room temperature.  

In Chapter 5, the influence of transition alloying element nickel addition to the 

solidification and microstructure development of cast aluminum alloy A380 was 

investigated via thermal analysis based on differential scanning calorimeter(DSC) and by 

scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). 

In Chapter 6, aluminum alloy A380 was alloyed and modified with the addition of 

transition metal, nickel and alkaline earth element, strontium (Sr). Tensile properties and 

microstructure of the Ni and Sr-containing alloy were compared with those of the 

conventional alloy A380 in as-cast condition.  

In Chapter 7, a design of experiment (DOE) technique, the Taguchi method, was used to 

develop as-cast high strength aluminum alloys with element additions of Si, Cu, Ni and Sr. 

Tensile properties such as ultimate tensile strength, yield strength and elongation at failure 

were selected as three individual responses to evaluate the engineering performance of the 

designed alloys. The results of the factor response analysis were used to derive the optimal 

level combinations.  
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In Chapter 8, the influence of transition alloying element nickel and alkaline earth element 

strontium on the microstructure and tensile properties of squeeze cast Al-Si-Cu alloy under 

as-cast condition at elevated temperatures of 100, 200 and 300 oC was investigated in 

comparison with  those of the conventional hypoeutectic Al-Si-Cu alloy (A380). 

In Chapter 9, important conclusions drawn from the preceding chapters were summarized, 

together with suggestions for future work to original knowledge. 

In Chapter 10, suggestions for futrue work were given based on the knowledge discovered 

from the present study. 
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CHAPTER 2 

Literature Review 

2.1 Introduction 

Aluminum is the third most plentiful element on the earth. Aluminum is extremely 

attractive for engineering application because of its excellent specific strength. Other 

advantages of aluminum include great formability, corrosion/oxidation resistance, non-

magnetic behavior. To meet the increasing demands for lightweight components with 

uniform properties necessary for mass production, various aluminum alloys have been 

developed. Aluminum alloys can be divided into two major groups as wrought and casting 

alloys, depending on their method of fabrication [1]. Advantages of casting alloys are good 

fluidity, good castability and low melting points. The Aluminum Association (AA) has 

adopted a nomenclature of cast aluminum alloys. In the AA system, the second two digits 

reveal the minimum percentage of aluminum. The main alloying elements in the AA 

system are shown in Table 2-1. 

2.2 Aluminum Alloy A380 

Aluminum alloy A380 is one of the most widely used cast hypoeutectic aluminum silicon 

alloys in automotive industry. 7.5~10% silicon content provides good castability, and high 

copper content (3~4.5%) contributes to moderately high strength and good machinability. 

This family of alloys provides a good combination of cost, strength and corrosion 

resistance, together with high fluidity and freedom from hot shortness. The alloys are used 

for many components in the automotive and electronic industries. 



 

13 
 

In the United States, there are presently five types of 380 alloys specified for die casting; 

namely, 380.0, A380.0, B380.0, C380.0, and D380.0 [2]. Both C380.0 and D380.0 differ 

from A380.0 and B380.0 only in Mg content. Other 380 type alloys including 383.0, 

A383.0, 384.0, A384.0, B384.0, C384.0, 385.0 and 381.0, with the increase in the Si 

content, and a slight variation in the Cu, Zn, or Cr content [3]. 

Table 2-1 Cast Aluminum Alloy Designation System 

Alloy Series Principal Alloying Element 

1xx.x Aluminum (≥99%) 

2xx.x Copper 

3xx.x Silicon, Copper and/or Magnesium 

4xx.x Silicon 

5xx.x Magnesium 

6xx.x Unused 

7xx.x Zinc 

8xx.x Tin 

9xx.x Other 

2.3 Alloying Elements in A380  

Aluminum alloy A380 as a typical Al-Si-Cu alloy contains high level of Si as 8.5wt. % and 

high level of Cu as 3.5 wt. %. A detailed chemical composition of aluminum alloy A380 

is listed in Table 2.  
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Table 2-2 Chemical Composition of A380 alloy 

Al 

wt. % 

Si 

wt. % 

Cu 

wt. % 

Zn 

wt. % 

Fe 

wt. % 

Mn 

wt. % 

Ni 

wt. % 

Sn 

wt. % 

Mg 

wt. % 

80.5-89.5 7.5-9.5 3-4 ≤2.9 ≤1.0 ≤0.5 ≤0.5 ≤0.35 ≤0.1 

2.3.1 Silicon        

Silicon is the most important single alloying element and one of the most common used in 

majority of aluminum casting alloys. The benefits of alloying silicon are the improvement 

of castability, increases of strength, resistance to abrasive wear; silicon in a combination 

with magnesium allows to strengthen the alloys by precipitation hardening. Depending on 

the Si concentration in weight percentage, the Al-Si alloy systems are divided into three 

major categories: Hypoeutectic (<12 wt. % Si), Eutectic (12 wt. % Si), Hypereutectic (> 

wt. 12 % Si). It is found that, with Si addition in aluminum, it increases the fluidity of alloy. 

Fluidity is one of the most important properties for casting alloys; which is considered as 

one of the most important standard to judge castability. Generally, the smaller the 

solidification temperature range, the lower the viscosity, the lower the surface tension of 

the melt, and the fewer the mount of inclusion present, the better the fluidity of an alloy. 

Addition of Si to aluminum produces a simple eutectic system with a narrow freezing range. 

The freezing range of the alloy decreases with increases in the Si content up to the eutectic 

composition (at 12.5 wt. %Si). Also, increase in the Si content results in reductions in the 

alloy viscosity because of the high latent heat of fusion of Si [4]. 

It was found by some research that with increasing Si content from 3% to 8%, there was a  

slightly increase in ultimate tensile strength, whenever a liner increase in UTS was found 
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with the increase of silicon content from 8% to 15%. With an increase in silicon content, 

the elongation rose gradually and reached its maximum value at 12% Si [5,6]. The studies 

of Elzanaty [7] and Kalhapure [8], it has been shown that the yield strength, ultimate tensile 

strength hardness of Al-Si alloy increased with the increase in silicon content while the 

total elongation decreased with the increase in silicon content as showen in Figure 2-1. The 

mechanical properties (ductility and toughness) of Al-Si alloys depended more on the 

distribution and the shape of the silicon particles than on the silicon content. Alloys in 

which the silicon particles (eutectic or primary) were small, round, and evenly distributed 

were usually highly ductile. On the other hand, alloys in which the silicon particles are 

faceted and acicular were usually much less ductile but exhibited slightly higher strength 

[4]. 

 

(a)                                                                 (b) 
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(c)                                                              (d) 

Figure 2-1 Effect of different Si content on the mechanical properties (a) Ultimate 

strength, (b) Yield Strength, (c) Total elongation and (d) Hardness) in Al-based alloy [7]. 

2.3.2 Copper       

Copper (Cu) has the single greatest impact of all alloying elements on the strength and 

hardness of aluminum casting alloys, as cast and heat-treated conditions. Alloys containing 

4 to 5.5 wt.% Cu respond most strongly to thermal treatment and display relatively 

improved properties. In Al-Si-Cu alloys, copper improves hardness, strength, fatigue, creep 

resistance, and machinability. With copper added into aluminum, dissolving copper atoms 

into aluminum atom lattice, result in an “atmosphere” that need more energy to make 

dislocation to move. Such phenomenon is called solid solution hardening, thus improve 

alloys mechanical properties. Other elements such as Mn and Ni may also tie up Cu and 

form Cu-Mn and Cu-Ni compounds [4, 9]. Figure 2-2 shows the variation in properties of 

Al-Cu alloys as a function of their Cu content. As Cu content increases, alloy hardness 

increases. Strength and ductility depend, however, on whether the Al2Cu phase is present 

in solid solution as evenly distributed spheroidised particles, or as a continuous network at 
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the grain boundaries. Alloys with dissolved Cu have the largest increase in strength, and 

retain substantial ductility. Conversely, alloys where Al2Cu is present as a continuous 

network at grain boundaries do not show appreciable increase in strength, but rather a loss 

of ductility [10]. 

 

Figure 2-2 Mechanical properties of Al-Cu alloys as function of Cu content (H work 

hardened; O annealed; T4 quenched and naturally aged; T6 quenched and artificially 

aged) [10]. 

Copper generally reduces resistance to general corrosion and in specific compositions and 

material conditions increases stress-corrosion susceptibility. Conversely, low 

concentrations of copper in aluminum-zinc alloys inhibit stress corrosion. Copper reduces 

hot tear resistance and increases the potential for interdendritic shrinkage. In pure 
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aluminum and in most corrosion resistant alloy, an oxide film forms on the metal’s surface 

that causes passivity. In Al-Cu alloys, however, the copper disperses in the oxide film on 

the metal surface and prevents complete passivation, which reduces their corrosion 

resistance. Because of the relatively wide freezing ranges of Al-Cu Alloys with 4-6% Cu, 

their fluidity, feedability, and resistance to hot tearing are poor [4]. 

2.3.3 Zinc      

 Zinc offers no significant benefits in aluminum casting. The only intentional and 

controlled additions of zinc (Zn) to aluminum casting alloys are in the 7XX series, and 

those are not yet suitable for die casting or any of its variations. Zinc in amount up to 1% 

in aluminum alloys is in solid solution and does not form any visibly detectable phases. 

However, zinc results in attractive heat treatable or naturally aging compositions. A 

number of such compositions are in common use. Zinc is also commonly found in 

secondary gravity and die casting compositions. In these alloys, tolerance for up to 3% Zn 

allows the use of lower-grade and wrought alloy scrap. When present in Al-Si alloys, zinc 

decreased high temperature strength, and tended to increase the tendency for hot tearing, 

but improved the machinability of alloys [4,11,12]. Study on the effect of Zn on mechanical 

properties of die cast alloy A380 indicated that the alloy with 2% Zn had a higher tensile 

strength than that with 1.2% Zn [13]. Study of Zn addition on the grain boundry 

precipitation and corrosion of Al-Mg alloy suggested that Additions of Zn to Al-Mg alloys 

in levels of 1–2wt% was effective to improve the stress corrosion cracking resistant due to 

the formation of a stable ternary Al-Mg-Zn [14].  
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2.3.4 Iron        

Iron improves hot-tear resistance and decreases the tendency for die sticking or soldering 

in die casting. Increases in iron content are accompanied by substantially decreased 

ductility. Iron reacts to form a number of intermetallic phases, the most common of which 

are FeAl3, FeMnAl6, and Al-Fe-Si. These essentially insoluble phases are responsible for 

improvements in strength especially at elevated temperatures. Iron in aluminum die casting 

alloys can minimize die soldering. Various iron bearing phases may form in aluminum 

alloys. Mondolfo [15] pointed out that the effect of iron depended on the type of 

morphology of phases it formed. The morphology and size of Fe bearing phases in 

aluminum casting alloys were related to alloy composition and casting conditions. In the 

Al-Fe-Si system, several ternary phases were present in equilibrium with aluminum: 

Fe2SiAl8 ( phase, the morphology of which are preferable), FeSiAl5 ( phase, needle 

shaped, which are detrimental to properties), FeSi2Al4 ( phase) in high silicon alloys, and 

FeSiAl3 ( phase) in high iron and high silicon contents. In commercial castings, the iron 

bearing phases appeared as Chinese script, needles (platelets), or angular globules, and 

sometimes in the form of petal-like particles. Backerud et al. [16] indicated that in A380 

alloy, the addition of manganese expands the composition range in which the Chinese 

script phase [Al15(Fe,Mn)3Si2] formed. Since the Chinese script shape is less detrimental 

to the tensile properties of the alloys than the needles (FeSiAl5), it is preferable to shift 

more of the iron-bearing phase from the needles to the Chinese script shape. In addition to 

Mn, Cr, Ni and Co  could also be used to correct iron. An investigation on the effect of iron 

in Al-Si casting alloys was achieved by Taylor [17]. Practical guidelines for addition of 

iron in Al-Si casting alloys was given by author as: 1. Serious loss of ductility in the final 
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cast product if iron levels above the critical level for the silicon content; the critical iron 

content for an alloy can be calculated as Eq. 2-1; 2. solidification/cooling rates should be 

aware to prevent critical iron levels causing problems; 3. traditional heat treatment regime 

for Al-Si alloys might not alter the nature of the offending Fe-containing phases, it would 

be better still with low iron levels initially; 4. additions of Mn to neutralize the effects of 

iron were common at Mn:Fe ratios of ~ 0.5. Excess Mn content may reduce β-phase and 

promoted α-phase formation which led to hard spots and difficulties in machining; 5. The 

addition of Mn to melts with high iron levels also promoted the formation of sludge which 

led to the formation and sedimentation of very hard inclusions that had a detrimental effect 

on mechanical properties of the alloys 

Fecritical ≈ 0.075 x [wt. % Si] – 0.05                     (2-1) 

2.3.5 Manganese       

Manganese normally is considered as an impurity in casting compositions, thus it is 

controlled to low levels in most gravity cast compositions. Manganese is able to change 

the morphology of the iron-rich Al5FeSi phase (Figure 2-3a) from its typical 

platelet/acicular form to a more cubic Al15(MnFe)3Si2 form (Figure 2-3b) that is less 

harmful to ductility. It has been studied that the solubility of manganese in aluminum was 

reduced by the presence of iron and silicon, leading to the formation of compounds, such 

as Al15(Fe,Mn)3Si2, and (Fe,Mn)Al6. The presence of manganese in Al-Si alloys slightly 

improved high temperature properties, enhance their fatigue resistance, and reduced its 

shrinkage [4,18]. While manganese and/or chromium caused a beneficial change to the 

morphology of iron phases, it is that change in combination with large concentrations of 
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iron, manganese leds to “sludge” in traditional secondary die casting alloys.  Manganese 

has proven to be a suitable substitute for iron to minimize "soldering" of the cast melt to 

steel tooling during die casting.  

     

(a)                                                                  (b) 

Figure 2-3 Influence of Mn addition on Al-Fe-Si phase morphology: (a) Fe-rich Al5FeSi 

(b) Al15(MnFe)3Si2 [18]. 

2.3.6 Nickel       

Nickel is added into aluminum alloys to increases the strength of alloys at both room and 

elevated temperatures. It was also found that Ni increased both hardness and strength of 

aluminum-copper and aluminum-silicon at elevated temperatures while reducing the 

coefficient of thermal expansion of alloys. It might also slightly increase ductility, but only 

if it acts as an iron corrector; otherwise nickel reduces ductility [4]. The study by Asghar 

et al [19,20] indicated that the addition of 1.2 wt.% Ni and 0.7 wt.% Fe to a eutectic AlSi12 

alloy led the formation of 8 vol.% of Fe and Ni aluminides.  The aluminides formed, 

similarly to the eutectic Si, a highly interconnected three-dimensional (3D) structure.  Both 

the eutectic Si and the aluminides made up around 20 vol.% of a highly interconnected 3D 
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structure. The eutectic Si and the aluminides had a higher strength and modulus than the 

α-Al, especially at high temperatures, which was also observed in a hypereutectic Al-Si 

alloy with the addition of 2.06% Cu and 1.58 wt% Ni by Chen et al [21].  The high 

temperature tensile behaviour of a hypoeutectic Al-Si alloy and Al-Si alloy reinforced with 

the addition of transition elements (Cu, Ni) and graphite particulate was investigated by 

Raharam et al. [22]. It was reported that tensile strength of the alloy and composite 

decreased with increasing temperatures. The ultimate tensile strength, yield strength and 

hardness of the composites were higher than that of the alloy for all testing temperatures. 

This was due to presence of graphite and transition elements such as Cu and Ni which 

obstructed the advancing dislocation front. The percentage elongation of Al-Si alloy and 

composite decreased with increasing temperature up to 150 ℃ and then increased with an 

increase of operating temperature. The reduction in elongation was due to the segregation 

of impurities in the grain boundaries which caused brittleness. The strain hardening 

exponent value decreased with increasing temperature, indicating the strain softening of 

the alloy and composite. Studies on the modification with nickel on the morphologies on 

aluminum alloys conclude that the presence of additional transition alloying elements in 

the aluminum alloy system allows many complex intermetallic phases to form including 

Al3Ni, AlSi12Ni, Al3CuNi, Al7Cu4Ni and Al9FeNi. Among those intermetallics, ε-Al3Ni, 

δ-Al3CuNi, ϒ-Al7Cu4Ni are found to be more effective to the enhancement of mechanical 

properties at elevated temperature [23]. Figure 2-4 shows the morphologies of such Ni-

containing phases in Al-Si alloy.  In comparison of the effect of Ni addition on the hardness, 

it was shown that the hardness increases as the Ni ratio increased in the AlCuNi phases 

(Al3Ni2 > Al7Cu4Ni> Al2Cu) at different temperatures. The Ni containing phases Al3Ni2 
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and Al7Cu4Ni was found to have good high temperature stability up to 200 ºC, but droped 

significantly at 350 ºC. This also corresponded to the degree of their creep effect, indicating 

that a phase exhibiting high creep results in a lower hardness [21]. 

 

Figure 2-4 The morphologies of Ni-containing phases in Al–Si piston alloys: (a) ε-Al3Ni, 

(b) δ-Al3CuNi, (c) ϒ-Al7Cu4Ni [23]. 

2.3.7 Tin  

Tin is effective in improving antifriction characteristics in bearing and bushing applications. 

The mechanism of antifriction is explained as tin can exudes under emergency conditions 

to provide short-term liquid lubrication to rubbing surfaces if such bearings/bushings 

severely overheat in service [12, 18] 
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2.3.8 Magnesium        

Magnesium is the basis for strength and hardness development in heat treated aluminum-

silicon alloys and is commonly used in more complex aluminum-silicon alloys containing 

copper, nickel, and other elements for the same purpose. Common high-strength 

aluminum-silicon compositions specify magnesium in the range of 0.40 to 0.070%. The 

reason to restrict magnesium content level could be attributed to the strong tendency of 

magnesium to react with other elements to form inclusions and intermetallic particles such 

as MgO, Al8FeMg3Si6 and Cu2Mg8Si6Al5. All these inclusions and intermetallic tend to 

reduce the alloy’s fluidity and adversely affect its overall properties [4, 18]. 

2.4 Modifier of Aluminum-Silicon Alloys 

2.4.1 Al-Si alloy modification 

As a hypoeutectic aluminum-silicon alloy, it contains a relatively high level of Si as 8.5%, 

which facilitate the formation of large eutectic Si phases with needle and flake-like shapes 

shown in Figure 2-5. These usually be considered be detrimental to mechanical properties, 

being assumed to act as crack initiator or stress concentration point. Thus, to enhance the 

strengths of A380 alloy, the needle shaped eutectic silicon must be modified [24-28].  
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Figure 2-5 Morphology of unmodified Al-Si eutectic in Al-7Si alloy [28]. 

Several elements have been found to produce the fibrous modified structure such as, 

sodium, potassium, rubidium, cerium, calcium, strontium, barium, lanthanum, ytterbium, 

antimony, selenium and cadmium. Previous studies found that alkali element, sodium (Na), 

alkaline earth element, strontium (Sr), and metalloid, antimony (Sb), influenced the 

nucleation and growth processes of eutectic silicon crystals most effectively [29]. The 

amount of required modification element depends on silicon content in alloy, generally, 

more silicon needs more modifier. Since the different properties of the most effective three 

melt treatment agents (Na, Sr, Sb), the application process of each agents is different. 

Sodium is found to be reactive for oxidation and hydrogenation, thus, it needs to be stored 

carefully. Because sodium has a low solubility in aluminum, sodium can be added in melt 

as flux vacuum packed in aluminum cans. Pure strontium is also found to be reactive with 

air and water vapor to form a layer of mixture of SrO, SrO2, Sr(OH)2 and (CaSr)NO3. Such 

layer of mixture is completely un-dissoluble. Since the high reactivity of pure strontium, 

strontium is usually added as in aluminum-strontium master alloys. Unlike sodium and 
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strontium, antimony cannot be added into melt directly. The reason for that is antimony is 

found to be a toxic material which can for a deadly stibine gas. Thus, antimony is usually 

used as a pre-modified ingot [28, 29].  

2.4.2 Comparison of Modifiers 

Back in 1987, Lu et al [30] studied the mechanism of silicon modification in a eutectic Al-

Si alloy. Sr addition into Al-Si alloy resulted in a transformation of the eutectic silicon 

morphology from a coarse flake and needle like shape to a fine fibrous structure. Sarada et 

al [31] analyzed study on the microstructural characteristics of Sr and Na modified Al-Mg-

Si alloy. Beside the refinement on Al-Si eutectic, α-Al dendrites also showed a more 

equiaxied structure than the unmodified one.  In comparison of Na and Sr, the eutectic Si 

phase modified by Na was found to be coarser and more acicular than Sr modified 

specimen. Dahle et al [32] compared the morphology modified by Sr and Sb with a nominal 

Al-10 wt% Si alloy. A comparison of the silicon morphology from the study is shown in 

Figure 2-6. Although Sb addition refined the morphology of eutectic Si phase, the 

refinement was not so dramatic with the coarse plates being refined rather than being 

transformed to a fibrous morphology. Each grain in the Sb-modified alloy contained 

numerous closely aligned silicon plates which were refined to an intermediate size and 

more spherical than the unmodified grains. With higher content of Sb (2400 ppm), it could 

be observed obviously that alloy with Sr modified showd better modification on eutectic 

silicon.  Comparing with other modifiers, strontium was widely suggested since it was easy 

to handle, had a good modification rate, low fading effect, long incubation period, and high 

recovery efficiency.   
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Figure 2-6 Comparison of the silicon morphology in (a) unmodified, (b) Sr-modified 

(300 ppm Sr) and (c) Sb-modified (2400 ppm Sb) [32]. 

2.4.3 Modification with Strontium 

The application of Sr in various aluminum alloys has been investigate. The work by Cho 

et al [33] indicated that the addition of strontium restrained nucleation caused by the 

impurity elements of phosphorus (P) and iron (Fe). Aluminum phosphide (AlP) particles 

were very potent nuclei for eutectic silicon in hypoeutectic Al-Si alloys while Fe in Al-Si 

alloys formed a hard and brittle Fe-rich intermetallic compounds (β-Al5FeSi) which 

decreased the ductility of casting. When Sr addition exceeding 100 ppm, an intermetallic 

phase of Al2Si2Sr formed onto the AlP particles and reduced the nucleation of eutectic Al-

Si. Moreover, the formation of Al2Si2Sr suppressed the formation of β-Al5FeSi by 

decreasing its nucleation temperature. The study by Chen [34] tested various content of Sr 

was tested from 14 ppm up to 120 ppm. The results indicated that the eutectic silicon 

modification level of Al–7Si alloys increased with the increase of Sr content. The eutectic 
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structure was fully modified when the Sr content reached 56 ppm. Such observation is 

shown in Figure 2-7.  

 

Figure 2-7 Eutectic microstructure of Al–7Si alloy: (a) unmodified, (b) 14 ppm Sr, (c) 38 

ppm Sr, (d) 56 ppm Sr, (e) 70 ppm Sr, and (f) 120 ppm Sr [34]. 

Shabestari et al [35] performed thermal analyses on the solidification of Sr modified A319 

alloy. The modification by Sr increased the growth undercooling of the eutectic silicon and 

the recalescence undercooling. With Sr addition, the formation temperature of undesirable 
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Al15(Fe, Mn)3Si2 and Al8Mg3FeSi6 decreased by about 2 ℃. The optimum level of 

strontium addition of 0.014 wt.% was suggested. Zamani et al. [36] investigated the role 

of Sr on microstructure formation of Al-Si-Cu-Mg cast alloy with the secondary dendrite 

arm spacing (SDAS) controlled by water cooling rate varying from 10 to 50 µm. They 

found that the required amount of Sr addition from 35 ppm to 150 ppm was affected by the 

cooling rates. For cast sample with relatively higher cooling rates and smaller SDAS, less 

Sr addition was needed. Tensile strengths of the modified alloys were a function of both 

the SDAS and refinement of eutectic Si microstructure.  Despite that highly modified 

samples showed evidence of improvement on elongation to fracture, the Al-Si modification 

could not substitute the domination of Fe-rich intermetallic on the elongation to fracture. 

Dahle et al [37] investigated the eutectic nucleation and growth in hypoeutectic Al-Si alloy 

(A319) with strontium addition at 70, 110 and 500 ppm (shown in Figure 2-8). With 70 

and 110 ppm Sr, well modified eutectic silicon structure was observed. Eutectics nucleated 

in intergranular regions. With 500 ppm of Sr, although eutectic was well modified, it was 

found to nucleate on the dendrites which was also been observed in the unmodified sample.  
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Figure 2-8 Microstructure at the end of solidification (unquenched): (a)unmodified, (b) 

70 ppm Sr, (c) 110 ppm Sr, and (d) 500 ppm Sr [37]. 

Sangchan et al [38] studied the microstructure and mechanical properties of semi-solid 

A356 alloy with 0.08 and 0.2 wt. % of Sr. Their results indicated that, with too much Sr 

addition, large Al2Si2Sr intermetallic particles formed, which lowered ultimate tensile 

strength and elongation at failure. In the research of Kim el al [39], Sr addition was added 

to A356 alloy from 50 to 300 ppm.  From the view of solidification, the range of semi-

liquid zone increased as eutectic temperature decreased with Sr level up to 100 ppm. The 



 

31 
 

morphology of eutectic silicon refinement showed an obvious change from a flake-like 

shape to a fibrous shape with an increase of Sr level up to 100 ppm while only slight 

changes on morphology were observed with further increasing Sr levels. The optimum 

amount of strontium addition into A356 alloy was 100 ppm.  Kulunk et al [40] studied the 

Sr effect on A380 alloy with variation from 200 ppm to 600 ppm. An increase of Sr from 

200 ppm to 600 ppm did not contribute much on the improvement of ultimate tensile 

strength (UTS), yield strength (YS) nor elongation (ef). But, the increase of Sr reduced the 

porosity and improved the pressure tightness of A380 alloy by about 45% and 60% 

respectively. Stunova [41] introduced 400 ppm of various Sr agents into Sr modified AlSi10 

Mg alloy. Strontium affected the morphology of intermetallic phases, namely phase iron 

and manganese. It was found that strontium to some extent changed the morphology of 

phases containing magnesium. Low-strontium agents (AlSr3.5, AlSr5, AlSr10) helpd to 

create “bone” like shaped phases of Mg2Si and “bone” like to finer dispersed phase 

containing iron and manganese. The effect of pure strontium was limited by the difficulties 

in dissolving in the melt, resulting in its lower residual content in the casting and its lower 

recovery. This resulted in coarser morphology of intermetallic, similar to the unmodified 

alloy. Modified structures showed more porosity (gas + shrinkage). Modification by pure 

Sr resulted in porosity, with its low recovery and residual content in samples were low. 

The reports about the Sr effect on porosity content in Al-Si alloys appeared contradicting 

in the literature. 



 

32 
 

2.5 Squeeze Casting 

2.5.1 Introduction 

The concept of squeeze casting was originally introduced in 1819 via a British Patent [42] 

and further envisioned by a Chernov [43]. With about 2 centuries development, squeeze 

casting has been successfully applied to the manufacture of aluminum automotive 

components. Squeeze casting (SC) is a generic term to specify a fabrication technique 

where solidification is promoted under high pressure within a re-usable die. It is a metal-

forming process, which the solidification of molten metal in a closed die under an imposed 

high pressure. It combines permanent mold casting with die forging into a single operation 

where molten metal is solidified under applied hydrostatic pressure. Other terms used to 

describe the same or similar processes are extrusion casting, liquid metal forging, liquid 

pressing, pressure crystallization and squeeze forming. The high applied pressure keeps 

entrapped gases in solution and squeezes molten metal from hot spots to incipient shrinkage 

pores. As a result, the porosity in squeeze cast component could be eliminated. Moreover, 

since the elimination of the air gap at liquid-mold interface by the applied high pressure, 

the heat transfer across die surfaces in enhanced, which increases solidification and cooling 

rates. Generally, engineering components fabricated by squeeze casting are fine grained 

with excellent surface finish and have almost no porosity. They come in a variety of shapes 

and sizes. The mechanical properties of these parts are significantly improved over those 

of conventional castings and more sophisticated casting routes of pressure or gravity die-

casting. [44-47] 
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2.5.2 Process of Squeeze Casting 

  A typical process of squeeze casting is shown in schematic diagram [48] 

1. A suitable dieset is installed on the bed of a hydraulic press. The die is preheated to a 

required working temperature. Commercial graphite lubricant is usually sprayed 

during the preheat process. 

2. A pre-specified amount of molten metal is poured into a female die cavity. The upper 

male die or punch is lowered, meeting the liquid metal. 

3. The pressure is applied shortly after molten metal begins to solidify and is maintained 

until all the molten metal has solidified. 

4. The upper punch is withdrawn back to original position and the casting component is 

ejected.  

 

Figure 2-9 Schematic Diagram of the direct squeeze-casting process. (a) Preheat, (b) 

pouring, (c) solidification, and (d) ejection [48] 

 

Depending on whether the pressure is applied directly on to the solidifying cast product 

through a punch or the applied pressure is exerted through an intermediate feeding system, 
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squeeze casting can be classified as “direct” and “indirect”. A schematic diagram is shown 

in shown in Figure 2-10: (i) the direct squeeze casting mode, and (ii) the indirect squeeze 

casting mode. With the direct squeeze casting, casting component shows higher mechanical 

properties since the pressure is directly applied to the entire surface o the melting which 

gives fully densified components and extremely fast heat transfer and fine grain structure. 

In the indirect squeeze casting, since a gating system is added which gives a presence 

control on injection of material. However, with the indirect system, it is difficult to 

maintain a high pressure on the casting throughout the solidification because the pressure 

is imposed at a distance from castings. Thus, alloys with long freezing range is not prefer 

with the indirect squeeze casting [48,49].  

 

Figure 2-10 Schematic diagram to illustrate the direct and indirect modes of the squeeze 

casting process [49]. 

A further classification can be distinguished on the direct squeeze casting base to the 

movement on molten material. As shown in Figure 2-11(a), no displacement of liquid metal 

is initiated by the punch movement, such process is usually observed in ingot production. 

For liquid metal with displacement as indicated in Figure 2-11(b), such process is known 

as backward process, is more versatile and can be used to cast a wide range of shaped 

components.   
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Figure 2-11 Schematic diagram to show two forms of the direct squeeze casting process 

[49]. 

2.5.3 Theoretical Background  

The pressure as a primary parameter in squeeze casting has the most significant effects on 

a component via variety of approaches which basically include changes in solidification 

temperature and heat transfer rates across casting/mold interface. The application of 

pressure during solidification would be expected to affect phase relationships in an alloy 

system. Such effect of applied pressure on solidification temperature of casting is explained 

by the Clausius-Clapeyron equation: 

∆𝑇𝑚

∆𝑃
=

𝑇𝑚(𝑉𝑠−𝑉𝑙)

∆𝐻𝑓
                 (2-2)         

Where P is the the applied pressure, Tm is the solidification temperature, Vl and Vs are the 

specific volumes of the liquid and solid and Hf is the latent heat of fusion. During 

solidification, normally both ∆𝐻𝑓 and ∆𝑉 are negative due to heat release and shrinkage of 

metal. Thus, ∆𝑇𝑚 is positive, which indicates that an increase in applied pressure results in 
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higher solidification temperature [48,49]. Such a theory has been experimentally confirmed. 

With application of squeeze casting application, the liquidus temperature has been 

increased, and the eutectic point moves to the left to higher Si content for pure Al/Si binary 

alloys (shown in Figure 2-12) [50]. The consequences of such changes in the phase 

diagrams are a significant improvement in the microstructure and mechanical properties of 

squeeze cast components. As reported by Chadwick and Yue [51] and Franklin et al. [52], 

grain refinement is quite noticeable in squeeze cast parts. The interpretation of such 

refinement is related to: 1. the increase in heat transfer coefficients and 2. the application 

of pressure brings about undercooling in an initially superheated alloy and thus increases 

nucleation rates and a finer grain size structure.  

 

Figure 2-12 Effect of rapid cooling and application of pressure on Al-Si phase diagram 

[50] 
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2.6 Design of Experiments Technique  

Since the late 1950s, Dr Genichi Taguchi has introduced several new statistical tools and 

concepts of quality improvement that depend heavily on the statistical theory for design of 

experiment. It has been widely used in engineering to optimize the performance 

characteristics within a combination of design parameters, and in the design of quality 

systems. The Taguchi method has been effectively applied to improve product quality and 

manufacturing efficiency, which uses a special design of orthogonal arrays to study all the 

designed factors with a minimum of experiments at a relatively low cost. Orthogonality 

means that factors can be evaluated independently of one another; the effect of one factor 

does not interfere with the estimation of the influence of another factor. With a classical 

full factorial design of experiment, it would design experiments that identify all possible 

combinations for a given set of variables which take in account of a large number of 

experiments and can be costly and time consuming. The design of experiment method 

proposed by Taguchi minimizes the number of experiments to a practical level for 

optimization processes. Taguchi’s parameter design has proved to be an effective approach 

producing high-quality products at a relatively low cost [53]. A typical procedure of the 

Taguchi method is shown in Figure. 2-13 [54].  

2.6.1 Design of orthogonal array  

The Taguchi method uses a special design of orthogonal arrays to study all the designed 

factors with a minimum of experiments. Orthogonality means that factors can be evaluated 

independently of one another; the effect of one factor does not interfere with the estimation 

of the influence of another factor. The design of experiment considers the influencing 
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extent of each individual process parameter. This consideration leads to the selection of 

influential factors (i.e.: A, B, C or A, B, C and D) with different levels (i.e.:1, 2 and 3, or 

1, 2, 3 and 4). An example of using Taguchi method for development of aluminum chips 

recycling is given in Table 2-3. Four influential factors were selected as: Flux type, 

Chips/flux ratio, Holding time and Holding temperature with 3 different levels. The 

selected factors and levels were used to design an orthogonal array L9 (34) for 

experimentation as detailed in Table 5.2 [55]. The nine Taguchi experiments were 

conducted three times to ensure the reliability of experimental data for a signal-to-noise 

analysis. In comparison, with a full factorial design, 34(81) experiments are needed. 
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Figure 2-13 Procedures for the Taguchi method [54]. 

Determine the Quality Characteristic

Identify Noise Factors and Test Conditions

Identify Control Factors and Alternative leves

Design Matrix Experiment and Data Analysis Procedure

Conduct Experiments

Data Analysis and Optimum Level 
Determination

Performance Prediction
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Table 2-3 Factors and levels used for the Taguchi experiments 

 

Level 

Factor 

Flux type Chips/flux ratio Holding time Holding time 

A B C D 

1 5 6 0.9 9.0 

2 8 12 1.2 12.0 

3 12 18 1.5 15.0 

 

Table 2 4 Experimental layout using a L9 orthogonal array 

Experiment A B C D 

1 1 1 3 2 

2 2 1 1 1 

3 3 1 2 3 

4 1 2 2 1 

5 2 2 3 3 

6 3 2 1 2 

7 1 3 1 3 

8 2 3 2 2 

9 3 3 3 1 

2.6.2. Signal-to-noise analysis   

In process design, it is almost impossible to eliminate all errors caused by the variation of 

characteristics. To minimize the influence of variation on the analysis of experimental data, 
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Taguchi method uses signal-to-noise (S/N) ratio instead of the average value to interpret 

the trial results data into a value for the evaluation characteristic in the optimum setting 

analysis. The S/N ratio consolidates several repetitions into one value which reflects the 

amount of variation present. This is because the S/N ratio can reflect both the average and 

the variation of the quality characteristics. Depending on the particular type of 

characteristics involved, different S/N ratios may be applicable: higher is better (HB), 

lower is better (LB), and nominal is best (NB) which are expressed in the following 

equations: 

S/NHB=−10log (
1

𝑛
∑

1

𝑦𝑖
2

𝑛
𝑖=1 )             (2-3) 

S/NLB=−10log (
1

𝑛
∑ 𝑦𝑖

2𝑛
𝑖=1 )             (2-4) 

S/NNB=−10log (
𝑦

2

𝑆𝑦
2)                 (2-5) 

where n is the repetition number of each experiment under the same condition for design 

parameters, y is the average of observed values, 𝑆𝑦
2  is the variance of y [56]. After 

calculating and plotting the mean S/N ratios at each level for various factors, the optimal 

level, that is the largest S/N ratio among all levels of the factors, can be determined.  

The proposition for the optimization of a gating system with multiple performance 

characteristics (three objectives) using a weighting method is defined as the Eqs. (2-6)–(2-

8) [55, 57]: 

YSUM=YP×W       (2-6) 

where 
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Y𝑆𝑈𝑀 = [

η1c
η2c

⋮
η9c

], Y𝑝 = [

η11
η21

⋮
η91

  η12

  η22

⋮
  η92

],  𝑤 = [
𝑤1

⋮
𝑤3

]                (2-7) 

and 

∑ 𝑤𝑖
3
𝑖=1 = 1              (2-8) 

where w1, w2 and w3 are the weighting factor quality/performance character. ηjc is the multi 

S/N ratio in the jth test, ηji is the ith single response S/N ratio for the jth test; wi is the 

weighting factor in the ith performance characteristics. The objective function was 

formulated according to the previous optimization criteria: 

Maximaze 𝑓(𝑋) = 𝑤1 ∙ η1 + 𝑤2 ∙ η2   + 𝑤3 ∙ η3       (2-9) 

2.6.3. Analysis of variance (ANOVA)  

Two main statistical methods: analysis of the mean (ANOM) and analysis of Variance 

(ANOVA) can be used to analyze results for Taguchi method. ANOM uses the mean 

characteristics to determine the important factors and optimal combined factors. ANOM is 

incapable of deciding what is the contribution of, and how important are, the different 

factors, but ANOVA is a more math-based approach and provides an effective tool for 

finding out the relative contribution of factors by comparing their relative variance [53, 58-

60].  

The analysis of variance (ANOVA) on the experimental results is performed to 

evaluate the source of variation during the electrolytic plasma oxidation. Following the 

analysis, it is relatively easy to identify the effect order of factors on coating properties and 

the contribution of factors to corrosion resistance of coatings. Variation due to both the 

four factors and the possible error should be taken into consideration. The ANOVA is 
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established based on the sum of the square (SS), the degree of freedom (D), the variance 

(V), and the percentage of the contribution to the total variation (P). The five parameter 

symbols typically used in ANOVA [59] are described below: 

1. Sum of squares (SS): SSp denotes the sum of squares of factors A, B, C, and D; SSe 

denotes the error sum of squares; SST denotes the total sum of squares.  

The total sum of square SST from S/N ratio can be calculated as: 

         (2-10) 

where m is the total number of the experiments, and i is the S/N ratio at the ith test. 

The sum of squares from the tested factors, SSP, can be calculated as:  

        (2-11) 

where p represents one of the tested factors, j the level number of this specific factor p, 

t the repetition of each level of the factor p, and  the sum of the S/N ratio involving 

this factor and level j. 

2. Degree of freedom (DOF): D denotes the number of independent variables. The degree 

of freedom for each factor (Dp) is the number of its levels minus one. The total degree 

of freedom (DT) is the number of total number of the result data points minus one, i.e., 

the total number of trials times number of repetition minus one. And the degree of 

freedom for the error (De) is the number of the total degrees of freedom minus the total 

of degree of freedom for each factor.  
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3. Variance (V): Variance is defined as the sum of squares of each trial sum result 

involved the factor, divided by the degrees of freedom of the factor 

               (2-12) 

4. The corrected sum of squares (SS’p): SS’p is defined as the sum of squares of factors 

minus the error variance times the degree of freedom of each factor.  

SS’p =SSp – Dp Ve               (2-13) 

5. Percentage of the contribution to the total variation (P): Pp denotes the percentage of 

the total variance of each individual factor: 

                (2-14) 

2.7 Summary 

Aluminum is extremely attractive for engineering application because of it excellent 

specific strength. In the automotive industry, aluminum alloy A380 is one of the most 

commonly used aluminum alloy which has attractive properties and relatively low cost. 

With the trend of weight loss and engine downsizing in the automotive industry, the 

mechanical performance of existing aluminum alloy need to be further improved. 

According to chemical composition, A380 is classified as a typical Al-Si-Cu alloy which 

contains high silicon content with good castability and machinability but moderate strength. 

To address the challenges of high temperature working environment, nickel is found to be 

the most effective element to increase the strength of aluminum alloys at both room and 

elevated temperatures. The alkaline earth element, Sr is found to be capable of effectively 
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modifying the morphology of eutectic silicon from acicular (plate or needle-like) to fibrous 

form and consequently enhanced the mechanical properties of both hypereutectic and 

hypoeutectic properties significantly. From the manufacturing point of view, the advanced 

casting technology demonstrates its capability of effectively casting defects such as 

porosity and producing fine microstructure in alloy, consequently the performance of 

casting components could be further improved. The design of experiments technique, 

Taguchi method uses a special design of orthogonal arrays to study all the designed factors 

with a minimum of experiments which will be advantageous in development of novel 

aluminum alloys. Up to date, studies on the combined effect of Ni and Sr on the mechanical 

properties and microstructure of as-cast Al-Si-Cu alloys are limited in the open literature 
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CHAPTER 3 

Squeeze Casting of Aluminum Alloy A380: Microstructure and Tensile 

Behavior 

3.1 Introduction: 

Aluminum and its alloys as lightweight structural materials have been in widespread use, 

and their commercial applications continue to increase. In the automotive industry, 

aluminum alloy A380 is one of the most widely used material because of its excellent 

properties and relatively low cost. High pressure die casting (HPDC) with advantages of 

high production speed, accurate dimension and good surface finish is the most common 

process for manufacturing neat net shape cast components of aluminum alloys. However, 

parts made using HPDC generally suffer from high level of porosity resulting from gas 

entrapment during the high-speed injection of turbulent molten metal into the die [1]. The 

presence of such casting defect has a great influence on microstructure and it is harmful to 

mechanical properties such as ultimate strength, yield strength and elongation [2-4]. It has 

been indicated by other studies that tensile ductility decreased with the increase of level of 

porosity, meanwhile an increasing soundness results in high elongation to fracture in 

aluminum alloys [5-7]. Moreover, the section thickness of die castings has a great influence 

on their microstructure and tensile properties including yield strength (YS), ultimate tensile 

strength (UTS), and elongation. An increase in the cross-section thickness of die castings 

reduces mechanical tensile properties significantly. This is attributed to the presence of a 

large amount of porosity and coarse microstructure resulting from high tendency of gas 

entrapment and relatively low solidification rate in thick castings during the high-pressure 

die casting process [8].  
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Squeeze casting also described as liquid metal forging, extrusion casting and pressure 

crystallization. During squeeze casting, molten metal is first filled without turbulence into 

the closed die cavity, the liquid solidifies under a high pressure. The high applied pressure, 

which is several orders of magnitude greater than the melt pressure developed in normal 

casting processes, keeps entrapped gases in solution and squeeze molten metal from hot 

spots to incipient shrinkage pores. The elimination of shrinkage porosity by squeeze casting 

suggests that it should be possible to produce sound castings and increase the heat transfer 

across die surfaces, which consequently increases solidification and cooling rates. Thus, 

squeeze cast components generally show improved mechanical properties and fine-grained 

compare with conventional sand casting and gravity or die casting processes [9-10].  

This article presents the progress of an ongoing research work on squeeze casting of 

aluminum alloy A380. The microstructure, deformation behavior, and fracture behavior of 

squeeze cast A380 alloy are studied. The informative results are compared with those for 

the identical alloy, which was high pressure die cast. The structure-property relationship 

and mechanism of property enhancement are also discussed. 

3.2 Experimental Procedures 

3.2.1 Alloy and Casting Preparation 

The material selected for this study is the conventional aluminum alloy A380, of which 

chemical composition is listed in Table 3-1. Cylindrical coupons of Φ 100 mm with a 

section thickness of 25 mm were squeeze cast. The squeeze casting experiments started 

with the transfer of a metered quantity of molten aluminum A380 alloy (660 °C) into the 

bottom half of the preheated (300 °C) die set mounted in a hydraulic press. The dies were 
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then closed, with the top half (punch) lowering into the bottom die. The pressure exerted 

by the punch on the molten metal is steadily increased to a predetermined level of 90 MPa 

and maintained until the entire casting was solidified. For the purpose of comparison, the 

A380 alloy was also high pressure die cast on a 1200 ton cold chamber horizontal die 

casting machine.  Die cast specimens was sectioned from casting runners with a section 

thickness of 25 mm. During die casting, the die temperature was set at 250 °C and the melt 

temperature at 630 °C. 

Table 3-1 Chemical composition of A380 

 Si Cu Fe Mn Mg Ni Zn Sn Other 

A380 8.5 3.5 1.3 0.50 0.10 0.50 3.0 0.35 0.50 

 

3.2.2 Porosity Evaluation 

To determine porosity levels, the density of both squeeze cast and die cast specimens was 

first calculated by using the weights of specimens measured in both air and water. The 

actual density (Da) of each specimen was determined using Archimedes principle base on 

ASTM Standard D3800 [11]. 

𝜌𝑠 =
𝑊𝑎 𝜌𝑤

𝑊𝑎−𝑊𝑤
              (3-1) 

where 𝜌𝑠  is the actual density of specimen, 𝑊𝑎  and 𝑊𝑤  are the weight of specimen 

measured in air and water respectively and 𝜌𝑤 is the density of water.  

The porosity of each specimen was then calculated by the density values through the 

following equation [12]: 
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Porosity (%) =[
𝐷𝑡−𝐷𝑠

𝐷𝑡
] × 100%        (3-2) 

Where 𝐷𝑡 is the theoretical density of the aluminum alloy A380, which is 2.7981g/cm3 [13]. 

3.2.3 Microstructural Analysis 

Specimens were sectioned, mounted, and polished from the center of the squeeze disk and 

the die cast coupons and prepared following the standard metallographic procedures. A 

Buehler (Lake Bluff, IL) optical image analyzer 2002 system was used to determine 

primary characteristics of the specimens. The detailed features of the microstructure were 

also characterized at high magnifications by a scanning electron microscope (SEM), 

Hitachi Tabletop Microscope TM3000, with a maximum resolution of 30 nm in a 

backscattered mode/1 µminx-ray diffraction mapping mode, and useful magnification of 

10 to 30,000. To maximize composition reading of the energy dispersive spectroscopy 

(EDS) data, an etchant was applied to polished specimens for microscopic examination. 

Fractured surfaces of tensile specimens were analyzed by the SEM to ascertain the nature 

of fracture mechanisms. The grain size was determined by the linear intercept method aided 

with Image J analysis software. Fifty grains were measured for each specimen, of which 

the average grain size values were evaluated with a standard deviation under 5%.  

3.2.4 Tensile Testing 

The mechanical properties of both the squeeze cast and die cast A380 alloys were evaluated 

by tensile testing, which was performed at ambient temperature on a MTS criterion Tensile 

Test Machine (Model 43) equipped with a data acquisition system. Following ASTM B557 

[14], flat tensile specimens (25 mm in gage length, 6 mm in width, and 4 mm in thickness) 
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were machined from the squeeze cast disks and the die cast coupons. The tensile properties, 

including 0.2% yield strength (YS), ultimate tensile strength (UTS), and elongation to 

failure (Ef), were obtained based on the average of three tests. 

3.3 Results and Discussion 

3.3.1 Porosity Evaluation 

Figures 3-1 and 3-2 reveal the porosity distribution in the polished die cast and squeeze 

cast A380 alloys through the optical microscopy examination, respectively. Representative 

pores can be easily spotted in the die cast A380 specimens with a section thickness of 25 

mm as indicated in Figure 3-1. However, it is evidently shown in Figure 3-2 that the 

squeeze cast A380 with the same section thickness is virtually free of gas and shrinkage 

porosities. Figure 3-3 presents quantitatively the percentage of the porosity of both the 

squeeze cast and die cast A380 alloys, based on the density measurements. In comparison 

with that (2.32%) of the die casting, the porosity level of the squeeze castings is only 0.41%. 

The difference in casting soundness in terms of the porosity level between the squeeze 

casting and die casting is evident, which is consistent with the observation of their 

microstructure. 

The porosity elimination of squeeze casting should be attributed primarily to the 

high-applied pressure during solidification and low filling velocity during mold filling. The 

purpose of the low filling velocity is to avoid air entrapment, which usually occurs in the 

die casting process due to turbulent mold filling at high velocity. The high applied pressure 

suppresses gas porosity and reduces the shrinkage porosity by squeezing the semiliquid 

metal through a network of solid skeleton in the last region of the casting to solidify. The 
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melting point of alloys would be changed during squeeze casting, and an increased 

solidification temperature could also make contribution to the refinement of microstructure 

[9, 15, 16].  

 

Figure 3-1 Optical micrograph showing porosity in die cast A380 alloy with a section 

thickness of 25 mm. 
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Figure 3-2 Optical micrograph showing almost porosity-free squeeze cast A380 alloy 

with a section thickness of 25 mm. 

 

Figure 3-3 Porosity levels of squeeze cast and die cast A380. 
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3.3.2 Microstructure 

Figure 3-4 shows the microstructure of the etched die cast A380 coupon with a section 

thickness of 25 mm revealed by optical microscopy. Its microstructure mainly consists of 

the primary α-Al grains (labeled A) and eutectic phases surrounding their boundaries. The 

size of the primary α-Al grains is around 36.7 µm. The SEM results (Figure 3-5) display 

the eutectic phases (bright contrast), which are present in a matrix (dark contrast) of the 

primary α-Al solid solution and tends to form a divorced network surrounding the primary 

phase. Three different types of the eutectic phases labeled B, C (white spots) and D (dark 

spot) were identified by the EDS analysis. Figure 3-6 illustrates the EDS spectra for A, 

which is the primary α-Al matrix, B as Al5FeSi phase, C as Al2Cu intermetallic and D as 

needle shaped Si phases. 

 

Figure 3-4 Optical micrograph showing microstructure in die cast A380 alloy with a 

section thickness of 25 mm. 
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Figure 3-5 SEM micrograph showing the microstructure of the die cast part in the as-cast 

condition. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 3-6 EDS spectra (a), (b), (c) and (d) for the regions marked A, B, C and D in 

Figure 3-5, respectively. 

The microstructure of the squeeze cast specimens with 25 mm section thickness is shown 

in Figure 3-7. The morphology and distribution of the eutectic phases are similar to those 

present in the die cast A380. Compared with those of the correspondent die cast specimens, 

the grain size of the squeeze cast specimens is slightly large around 44.6 µm, which is 

comparable to that of the die cast specimen. This is because the die (300 °C) and melt 

(660 °C) temperatures  used in the squeeze casting process is somewhat higher than those 

(250 °C for the die and 630 °C for the melt) of die casting in this study. In general, heat 

transfer across die surfaces is enhanced with the high applied pressure, which eliminates 

air gaps at mold-liquid metal interface. However, a relatively low temperature difference 

between the mold and liquid metal in the squeeze casting could offset the enhancement of 
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heat transfer resulting from the elimination of air gaps. As a result, the relatively slow 

solidification of squeeze casting compared with that in die casting may be responsible for 

its somewhat coarse grain structure.  

Figure 3-8 reveals the presence of the primary α-Al grain and three types of the 

eutectic phases in the squeeze cast specimens by SEM.  The results of EDS analysis as 

depicted in Figure 3-9 confirm that they are Al5FeSi phase (marked B) phase, Al2Cu 

intermetallic (labeled C), and the eutectic Si phase (D), which are similar to those in the 

die cast coupon. However, the Al2Cu phase present in the squeeze cast alloy is relatively 

large in size and quantity. 

 

Figure 3-7 Optical micrograph showing microstructure in squeeze cast A380 alloy with a 

section thickness of 25 mm. 
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Figure 3-8 SEM micrograph showing the microstructure of the squeeze cast coupon in 

as-cast condition. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 3-9 EDS spectra (a), (b), (c) and (d) for the regions marked A, B, C and D in 

Figure 3-8, respectively. 

3.3.3 Tensile Behavior 

3.3.3.1 Tensile Properties 

The representative true stress-strain curves obtained from tensile testing of both the die cast 

and squeeze cast A380 alloys with 25 mm section thickness are shown in Figure 3-10, and 

the corresponding tensile property data are summarized in Table 3-2. The UTS of the 

squeeze cast specimens is 215.9 MPa on average, while it is only 173.7 MPa for die cast 

specimen. It is a large improvement of 24% on tensile properties of the squeeze cast A380 

alloy over the die cast counterpart is primarily attributed to the significant reduction in 

porosity by squeeze casting and the presence of extra amount of Al2Cu phase. Examination 

of the linear portion of the tensile curves reveals that the squeeze cast A380 exhibits a low 
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YS and elastic modulus compared with the die cast alloy.  The relatively coarse grain 

structure in the squeeze cast A380 alloy should give rise to its low YS in comparison to the 

die cast counterpart.  The elongation of the squeeze cast A380 specimens is 5.4%, over 

four times higher than that of the die cast A380 specimens (1.0 %). During tensile testing, 

no necking phenomenon was observed for the die cast material before fracture, whereas a 

remarkable necking occurred in the squeeze cast specimens. The considerable reduction in 

porosity should be responsible for the significant improvement (440 %) of the squeeze cast 

A380 in elongation over the die cast alloy.   

3.3.3.2. Strain Hardening 

The strain-hardening behaviors of both the die cast and squeeze cast A380 alloys can be 

clearly seen in a plot of strain-hardening rate (dσ/dε) versus true plastic strain (ε) during 

the plastic deformation, as shown in Figure 3-11, which is derived from Figure 3-10. It is 

evident that the strain-hardening rate of the high pressure die cast specimen is higher than 

that of the squeeze cast specimens in the early stage of plastic deformation. A high strain-

hardening rate implies that, compared with the squeeze cast one, the high pressure die cast 

A380 is able spontaneously to strengthen itself increasingly to a large extent, in response 

to extensive plastic deformation prior to fracture. However, with increasing strains, the 

strain-hardening rate of high pressure die cast specimen dramatically decreases. At the 

fracture point, it approaches that of the squeeze cast alloy. The sharp decreasing trend of 

strain-hardening rate with increasing strain may cause by the high porosity level of the high 

pressure die cast specimen.  



 

67 
 

Table 3-2 Tensile properties of squeeze cast and die cast A380 alloy with 25 mm section 

thickness at room temperature 

Casting 

condition 

UTS 

( MPa ) 

Elongation 

(%) 

0.2% YS 

( MPa ) 

Elastic 

Modulus 

( GPa ) 

Squeeze cast 215.9± 25.8 5.4± 1.9 92.6± 4.7 23.9± 1.8 

Die cast 173.7± 23.5 1.0± 0.3 108.7± 3.2 44.9± 1.6 

 

 

Figure 3-10 Representative true stress versus strain curves for squeeze cast and die cast 

A380 alloys 
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Figure 3-11 Strain-hardening rate versus true strain for plastic deformation of squeeze 

cast and die cast A380 alloys 

3.3.3.3 Deformation Behavior 

3.3.3.3.1 Resilience 

The ability of a material to absorb energy is referred to as resilience when it is deformed 

elastically, and releases that energy upon unloading.  The resilience is usually measured by 

the modulus of resilience which is defined as the maximum strain energy absorbed per unit 

volume without creating a permanent distortion. It can be calculated by integrating the 

stress-strain curve from zero to the elastic limit.  In uniaxial tension, the strain energy per 

unit volume can be determined by the following equation 

𝑈𝑟 =  
(𝑌𝑆)2

2 𝐸
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Where Ur is the modulus of resilience, YS is the yield strength, and E is the Young's 

modulus.  The calculated moduli of resilience for both the squeeze cast and die cast alloy 

A380 are given in Table 3-2.  The squeeze cast alloy has a modulus of resilience of 179.3 

kJ/m3 on average while the modulus of the die cast sample is only 140.6 kJ/m3.  Because 

of its moderate yield strength and low modulus, the squeeze cast alloy A380 has the greater 

resilience. This implies that the squeeze cast alloy A380 is a good material candidate to 

resist energy loads in engineering application during service, in which no permanent 

deformation and distortion are allowed [17].  

3.3.3.3.2 Toughness 

The tensile toughness of a ductile alloy is its ability to absorb energy during static loading 

condition, i.e., static deformation with a low strain rate.  The ability to bear applied stresses 

higher than the yield strength without fracturing is usually required for various engineering 

applications.  The toughness for ductile alloys can be considered as the total area under the 

stress-strain curve for the amount of the total energy per unit volume.  To evaluate the 

deformation behavior, the energy expended in deforming a ductile alloy per unit volume 

given by the area under the stress-strain curve can be approximated by  

𝑈𝑡 =  𝑈𝑒𝑙 +  𝑈𝑝𝑙 =  
(𝑌𝑆+𝑈𝑇𝑆)×𝑒𝑓

2
                       (3-4) 

where Ut is the total energy per unit volume required to take to point of fracture, Upl is the 

energy per unit volume for elastic deformation, and Uel is the energy per unit volume for 

plastic deformation, and ef is the elongation at fracture [18].  Table 3-3 lists the calculated 

values of the Ut for the squeeze cast and die cast A380 alloys.  Examination of the Ut values 

reveals that the squeeze cast A380 exhibits an Ut value of 8.5 MJ/m3 higher than that (1.4 
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MJ/m3) of the die cast counterpart, and is tougher than the die cast alloy.  This is because 

the squeeze cast alloy has a higher ultimate tensile strength and a greater elongation, 

although the die cast part possesses a higher yield strength.  As a result, the total area under 

the stress and strain curve is greater for the squeeze cast A380.    

Table 3-3 Resilience and tensile toughness of squeeze cast and die cast A380 alloy A380 

alloy with 25 mm section thickness at room temperature 

Casting condition 

 

Resilience 

(KJ/m3) 

Toughness 

(MJ/m3) 

Squeeze cast 179.3± 9.3 8.5±3.6 

Die cast 140.6± 1.4 1.4±0.5 

 

3.3.4 Fracture Behavior 

Figures 3-12 and 13 evidently reveal the differences in the fracture behaviors between the 

die cast and squeeze cast A380 alloys by the SEM fractography. A typical fracture surface 

of the squeeze cast A380 is shown in Figure 3-12, which is primarily ductile in nature. The 

observed fracture mode of the squeeze cast specimens in as-cast conditions is quasi-

cleavage as illustrated in Figure 3-12(a). Flat facets and significant dimple are observed 

accompany with cleavage morphology. The flat facets are covered fully and partially by 

river markings and dimples on the fracture surface of the squeeze cast specimen. The river 

marking is the result of the crack moving through the grains along a number of parallel 

planes, which forms a series of plateaus and connecting ledges; and the localized microvoid 

coalescence causes dimples. These features are an indication of the absorption of energy 
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through local deformation. The fractograph with higher magnification, Figure 3-12(b), 

portrays dimples with extensive deformation marking along the walls of individual craters. 

A considerable amount of energy is consumed in the process of the formation of 

microvoids and microvoid-sheet, eventually leading to the creation of cracks. Thus, this 

type of fracture failure results from the coalescence of microvoids under the tensile stress 

[19]. However, the tensile fracture surface of the die cast A380 alloy with 25 mm section 

thickness, in Figure 3-13 is showing appearance of porosity and somewhat brittle in nature. 

It is evident that the failure of the die cast specimens is caused by a combined brittle 

fracture mechanism of void coalescence and intergranular fracture. Due to the presence of 

porosity, cracks first initiate at the internal discontinuity in the die cast specimens then 

grow and coalesce to final fracture. In the region away from the porosities, the failure is 

mainly attributed to the intergranular fracture, which is depicted in Figure 3-13(a). The 

cause of this intergranular fracture could be the segregation the brittle eutectic phases at 

the grain boundaries. In general, the results of the SEM fractography for both the squeeze 

cast and die cast A380 alloys are in good agreement with the data of tensile properties listed 

in Table 3-2. The elimination of porosity in A380 is mainly responsible for the difference 

in fracture modes between the squeeze cast and die cast A380 alloys [19, 20]. 
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(a) 

 

(b) 

Figure 3-12 SEM fractographs of squeeze cast A380. (a) low magnification and (b) high 

magnification 
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(a) 

 

(b) 

Figure 3-13 SEM fractographs of die cast A380. (a) low magnification and (b) high 

magnification 
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3.4. Conclusions 

Squeeze casting eliminates porosity in aluminum alloy A380 with a relatively thick cross 

section of 25 mm compared with the high pressure die cast alloy.  The microstructure 

analyses show that the squeeze cast A380 has a porosity level of 0.41% much lower than 

the die cast counterpart (2.32%).  Despite that both the squeeze and die cast specimens 

contains the primary α-Al, Al2Cu, Al5FeSi phase, and the eutectic Si phase, the Al2Cu 

phase present in the squeeze cast alloy is relatively large in size and quantity. The squeeze 

cast A380 shows high tensile properties with the UTS of 215.9 MPa and elongation of 

5.4%. The significant improvements in UTS (24%) and elongation (440%) of the squeeze 

cast A380 over the die cast one have been achieved. This is primarily attributed to the 

extremely low level of porosity and the large amount of the strengthening Al2Cu phase 

present in the squeeze cast specimen with a comparable size of grains. Although the strain-

hardening rate of the die cast specimen is higher than those of the squeeze cast ones, 

indicating that the die cast A380 is able to spontaneously strengthen itself increasingly, it 

decreases dramatically and approaches rapidly to that of the squeeze cast alloy at its 

fracture point. The evaluation of the deformation behavior indicates that the squeeze cast 

A380 has a resilience and tensile toughness higher than the die cast one.  This implies that 

the squeeze cast A380 is a good material candidate to absorb energy during static loading 

condition and resist energy loads in engineering application during service.  The SEM 

analysis of fracture surfaces shows that the squeeze cast A380 displays the characteristics 

of ductile fracture, whereas the die cast one exhibits brittle fracture modes.   
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CHAPTER 4 

Effect of Ni Addition on Tensile Properties of Squeeze Cast Al Alloy 

A380 

4.1 Introduction 

As the one of the most widely used lightweight material, aluminum alloy A380, as a 

representative of hypoeutectic Al-Si-Cu alloys, has moderate properties and relatively low 

cost.  While advanced Al casting technologies are emerging, the potential of conventional 

Al casting alloys needs to be further explored to maximize their engineering performance 

without significant increases in materials and manufacturing cost.  Gas and shrinkage 

porosity-related defects are usually present in components made by conventional casting 

methods such as gravity, sand and die casting.  The porosity has a great influence on 

microstructure and is harmful to tensile properties such as elastic modulus (E), ultimate 

tensile strength (UTS), yield strength (YS) and elongation at failure (ef) [1-3].  Squeeze 

casting, also known as liquid metal forging, extrusion casting and pressure crystallization, 

is one of the advanced casting technology which is capable of eliminating casting defects 

such as gas and shrinkage porosity.  This is because, during squeeze casting, molten metal 

is first filled without turbulence into the closed die cavity, and then solidifies under large 

external pressures. The high applied pressure, which is several orders of magnitude greater 

than the melt pressure developed in conventional casting processes, keeps entrapped gases 

in solution and squeezes molten metal from hot spots to incipient shrinkage pores.  The 

elimination of shrinkage porosity by squeeze casting suggests that it should be able to 

produce sound castings.  Also, the application of external pressures enhances the heat 

transfer across die surfaces, which increases solidification and cooling rates. Compared 
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with conventional castings, thus, squeeze cast components generally show fine grain 

structure, and exhibit improved mechanical properties [4, 5].  

Although die cast A380 is a commonly used lightweight material in the automotive 

industry, the relatively low mechanical properties limits its applications only to those 

components which are required to sustain moderate mechanical loading. From previous 

studies, transition alloying element nickel (Ni) is found to be effective element for 

improvement of mechanical properties of Al-Si alloy at elevated temperature [6-12]. 

Studies on the modification with nickel on the morphologies on aluminum alloys conclude 

that the presence of additional transition alloying elements in the aluminum alloy system 

allows many complex intermetallic phases to form including Al2Cu, Al3Ni, Al7Cu4Ni, 

Al9FeNi and Al5Cu2Mg8Si6. Among those intermetallics, ε-Al3Ni, δ-Al3CuNi, ϒ-Al7Cu4Ni 

are found to be more effective to the enhancement of mechanical properties at elevated 

temperature [13-15]. However, previous studies on aluminum alloys containing Ni addition 

were focused on the improvement of elevated-temperature mechanical properties of 

experimental Al-Si alloys prepared by sand and permanent mold casting methods. Limited 

information on the effect of nickel content on tensile properties of squeeze cast Al-Si-Cu 

alloys is available in the open literature. 

In the present work, aluminum alloy A380 with the addition of nickel (Ni) contents varying 

from 0.5 up to 2.0 wt.% was squeeze cast. The tensile properties of squeeze cast Ni-

containing A380 alloys at room temperature were evaluated, while the microstructures 

were analyzed by optical microscopy (OM). The structure-property relationship and the 

mechanism of property enhancement are also discussed to understand the role of transition 
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alloying element nickel playing in the improvement of mechanical properties of the tested 

alloys. 

4.2 Experimental Procedure 

4.2.1 Alloy Preparation & Squeeze Casting 

The base material selected for this study is the conventional aluminum alloy A380 with its 

chemical composition listed in Table 4-1. Predetermined amount of A380 alloy and Al-20 

wt.% Ni master alloy was melt and mixed in an electric resistance furnace to achieve the 

desired compositions which were verified by an Inductively-Coupled Plasma Atomic 

Emission Spectrometer based on ASTM E1479-99. The melt was kept at 730±10 oC for 30 

minutes for the completion of homogenization and modification, and then the melt 

temperature was decreased to 700 oC for squeeze casting. The squeeze casting experiments 

started with the transfer of a metered quantity of the prepared melt (700°C) into the bottom 

half of the preheated (300 °C) die set mounted in a hydraulic press. The top and bottom 

dies were closed.  An applied pressure of 90 MPa was exerted on the molten metal and 

maintained until the entire casting solidified to form cylindrical coupons having a diameter 

of 100 mm and a section thickness of 30 mm.  
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Table 4-1 Chemical composition of A380 (wt.%) 

Alloys Si Cu Fe Mn Mg Zn Ni 

A380 8.5 3.5 1.3 0.5 0.10 3.0 0.50 

0.5Ni/A380 8.5 3.5 1.3 0.5 0.10 3.0 1 

1.0Ni/A380 8.5 3.5 1.3 0.5 0.10 3.0 1.5 

2.0Ni/A380 8.5 3.5 1.3 0.5 0.10 3.0 2.5 

4.2.2 Tensile Testing 

The mechanical properties of both the squeeze cast conventional and Ni-containing A380 

alloys were evaluated by tensile testing, which was performed at ambient temperature on 

a MTS criterion Tensile Test Machine (Model 43) equipped with a data acquisition system. 

Following ASTM B557 [16], flat tensile specimens (25 mm in gage length, 6 mm in width, 

and 4 mm in thickness) were machined from the squeeze cast coupons. The tensile 

properties, including 0.2% yield strength (YS), ultimate tensile strength (UTS), elongation 

to failure (ef) and elastic modulus (E) were obtained based on the average of three tests. 

4.2.3 Metallography 

Specimens were sectioned, mounted, and polished from the center of the squeeze coupons 

following the standard metallographic procedures. A Buehler (Lake Bluff, IL) optical 

image analyzer 2002 system was used to determine primary characteristics of the 

specimens. An etchant was applied to polished specimens for microscopic examination. 

Measurements of area fractions of intermetallic were performed using ImageJ [17], a public 

domain Java image processing program. 



 

82 
 

4.2.4 Density Measurement 

To determine the Ni influence on the mass increment of A380 alloy, the densities of the 

tested alloys were calculated by using the weights of specimens measured in both air and 

water. The actual density (s) of each specimen was determined using Archimedes 

principle base on ASTM Standard D3800 [18]. 

𝜌𝑠 =
𝑊𝑎  𝜌𝑤

𝑊𝑎−𝑊𝑤
                      (4-1) 

where 𝜌𝑠  is the actual density of specimen, 𝑊𝑎  and 𝑊𝑤  are the weight of specimen 

measured in air and water respectively, and 𝜌𝑤 is the density of water.  

4.3 Results and Discussion 

4.3.1 Microstructure 

Figure 4-1 shows the microstructure of the etched squeeze A380 alloys with Ni addition of 

0, 0.5, 1.0 and 2.0 wt.%, revealed by optical microscopy. Their microstructures mainly 

consist of the primary α-Al dendrites (light grey) and eutectic phases surrounding their 

boundaries. The sizes of the primary α-Al dendrites are similar for both conventional and 

Ni-containing A380 alloys.  The comparison of Fig. 1(a) through (d) manifests that the 

variation of Ni contents has a limited influence on the morphology and size of the primary 

α-Al phase. The SEM and EDS analysis indicate that the eutectic silicon phase is identified 

as long needle shape in deep grey color in optical microscope pictures while primary Al is 

the bright background and the intermetallic are in lighter grey color. Using ImageJ software, 

it can calculate area and pixel value statistics of user-defined selections of color. To do 

such area calculation, ImageJ converts micrographs to binary and white images, with black 
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areas representing intermetallics and light areas representing primary α-Al and eutectic 

silicon phases. Following the conversion, the software automatically calculated area 

fractions of black and white areas. Figure 4-2 presents the converted micrographs 

highlighting the presence of intermetallics in the observed alloys represented by the black 

area.  By comparing the Ni-containing A380 alloys with the conventional base alloy shown 

in Figure 4-2, the image analysis reveals that the volume fraction of the intermetallic phases 

increases with the content of the Ni addition.  Figure 4-3 shows the variation of the volume 

fraction of the intermetallics with the content of Ni addition.  The volume fractions of the 

intermetallic phases in the as-cast Ni-containing alloys are measured to be 5.3%, 7.6% and 

10.2% for the alloys with 0.5, 1.0 and 2.0 wt. % Ni addition respectively, when there is 

only 4.3% of the intermetallics present in the conventional base alloy. 
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(a)                                (b) 

  

(c)                                (d) 

Figure 4-1 Optical micrographs showing microstructures of the squeeze cast A380 alloys 

with Ni addition of (a) 0, (b) 0.5, (c) 1.0, and (d) 2 wt.%. 
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(a) (b) 

  

(b) (b) 

Figure 4-2 Micrographs in binary black and white images showing intermetallic contents 

in the squeeze cast A380 alloys with Ni addition of (a) 0, (b) 0.5, (c) 1.0, and (d) 2 wt.%. 
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Figure 4-3 Variation of the volume fraction of intermetallic with the content of Ni 

addition 

4.3.2 Tensile Properties 

The representative stress-strain curves obtained from tensile testing are shown in Figure 4-

4. It is observed from the results that an increase in the Ni content enhances the YS and E 

substantially and the UTS moderately, but somewhat decreases the ef. The UTS, YS and 

Elastic Modulus for the squeeze cast conventional A380 are only 200.30 MPa, 91.97 MPa 

and 35.64 GPa, respectively.  The effect of the Ni addition on the UTS, YS and ef of A380 

alloy is shown in Figure 4-5. With the additional 2.0 wt. % Ni, the UTS, YS and E of the 

2.0Ni/A380 alloy are 225.40 MPa, 128.04 MPa and 49.20 GPa, which lead to the increases 

by 13%, 39% and 38% over those of the A380 base alloy, respectively. However, the 

elongation of the 2.0Ni/A380 alloy reduces by 26%. The significant improvement of the 

UTS, YS and elastic modulus should be attributed to the presence of the increased 
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intermetallic phases by the introduction of Ni to the conventional base alloy. To better 

understand the contribution of intermetallic phases to tensile properties, a detailed 

investigation into microstructure characteristics needs to be carried out.   

 

Figure 4-4 Representative stress versus strain curves for the squeeze cast Ni-containing 

A380 alloys. 
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Figure 4-5 Effect of Ni Addition on the UTS, YS and ef of the squeeze cast Ni-

containing A380 alloys. 

The ability of a material to absorb energy is referred to as resilience when it is deformed 

elastically, and releases that energy upon unloading. The resilience is usually measured by 

the modulus of resilience which is defined as the maximum strain energy absorbed per unit 

volume without creating a permanent distortion. It can be calculated by integrating the 

stress-strain curve from zero to the elastic limit [19]. In uniaxial tension, the strain energy 

per unit volume can be determined by the following equation 

𝑈𝑟 =  
(𝑌𝑆)2

2 𝐸
                 (4-2) 

Where Ur is the modulus of resilience, YS is the yield strength, and E is the Young's 

modulus. The calculated moduli of resilience for the experimented alloys are given in Table 

3. The effect of Ni content on the alloy resilience shown in Fig 4-6 clearly reveals that, 

with the increase of Ni addition up to 2.0 wt.%, the resilience shows an increase trend.  The 
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as-cast alloy with 2.0 wt. % Ni addition achieves the highest Ur (175.9 KJ/m3) among all 

the tested alloys.  This implies that the 2.0Ni/A380 alloy is a good material candidate to 

resist energy loads in engineering application during service, in which no permanent 

deformation and distortion are allowed.  

The tensile toughness of a ductile alloy is its ability to absorb energy during static loading 

condition, i.e., static deformation with a low strain rate. The ability to bear applied stresses 

higher than the yield strength without fracturing is usually required for various engineering 

applications. The toughness for ductile alloys can be considered as the total area under the 

stress-strain curve for the amount of the total energy per unit volume. To evaluate the 

deformation behavior, the energy expended in deforming a ductile alloy per unit volume 

given by the area under the stress-strain curve can be approximated by  

𝑈𝑡 =  𝑈𝑒𝑙 +  𝑈𝑝𝑙 =  
(𝑌𝑆+𝑈𝑇𝑆)×𝑒𝑓

2
              (4-3) 

where Ut is the total energy per unit volume required to take to point of fracture, Upl is the 

energy per unit volume for elastic deformation, and Uel is the energy per unit volume for 

plastic deformation, and ef is the elongation at fracture [20]. Figure 4-6 reveals the 

calculated values of the Ut for the conventional A380 and Ni-containing alloys. 

Examination of the Ut values reveals that the conventional squeeze cast A380 exhibits the 

highest Ut value of 4.19 MJ/m3 higher than all the Ni-containing alloys.  This is because 

the conventional base alloy has a relatively high ductility, although the Ni-containing alloys 

possess a high yield strength.  As a result, the total area under the stress and strain curve 

for the base alloy is larger than those for the Ni-containing alloys.    
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Figure 4-6 Variation of resiliences and tensile toughnesses of the squeeze cast Ni-

containing A380 alloys with the content of the Ni addition. 

4.3.3 Density Measurement 

The measured densities of the squeeze cast conventional and Ni-containing A380 alloys 

are shown in Figure 4-7. The measured density of the squeeze cast A380 is 2787 kg/m3, 

while the density of nickel is 8908 kg/m3, which is over three times higher than the A380. 

It was expected that the addition of Ni to aluminum alloys could lead to a significant 

increase in the density of the alloy. With 2.0 wt. % Ni addition into the A380 alloy, the 

density rises to 2799 kg/m3, which gives an increase of only 0.5%. The observation on the 

density measurements suggests that the Ni addition up to 2.0 wt.% to the A380 alloy has a 

limited effect on its density and does not offset the lightweight advantage of the 

hypoeutectic Al-Si-Cu alloy.   
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Figure 4-7 Variation of densities of the squeeze cast Ni-containing A380 alloys with the 

content of the Ni addition 

4.4 Conclusions 

The effect of Ni addition to the squeeze cast hypoeutectic Al-Si-Cu (A380) alloy 

on the tensile properties and microstructure was investigated. The results of tensile 

testing indicate that the tensile properties, UTS, YS and elastic modulus increase with 

an increase in Ni content. However, elongation is reduced as additional Ni is 

introduced into the alloy.  With the introduction of the 2.0 wt.% Ni addition, the UTS, 

YS, E and Ur of the 2.0Ni/A380 alloy to an increase by 13%, 39%, 38% and 13% over 

those of the base alloy, respectively.  The observation of the microstructure suggests 

that the introduction of the transition element Ni, results in the formation of Ni-

containing intermetallic phases in the alloy.  The presence of the large amount of 

intermetallics is responsible for the change of mechanical properties of the tested 

alloys.  Also, the Ni addition up to 2.0 wt.% to the base alloy has a limited effect on 
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its density and does not offset the lightweight advantage of the hypoeutectic Al-Si-Cu alloy.  
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CHAPTER 5 

Effect of Ni Addition on Solidification and Microstructure of Squeeze 

Cast Al Alloy A380 

5.1 Introduction 

Aluminum alloy A380 as a representative of hypoeutectic Al-Si-Cu alloy has moderate 

properties and relatively low cost which is one of the most widely used lightweight material. 

Although die cast A380 is a commonly used lightweight material in the automotive industry, 

the relatively low mechanical properties limits the material to sustain moderate mechanical 

loading application. From previous studies, transition alloying element nickel (Ni) is found 

to be effective element for improvement of mechanical properties of Al-Si alloy at elevated 

temperature [1-3]. Studies on the modification with nickel on the morphologies on 

aluminum alloys conclude that the presence of additional Nickel elements in the aluminum 

alloy system allows formation of complex intermetallic phases including Al2Cu, Al3Ni, 

Al7Cu4Ni, Al9FeNi and Al5Cu2Mg8Si6 which are found effective to the enhancement of 

mechanical properties at elevated temperature [4-6].  

While advanced Al casting technologies are emerging, the potential of conventional Al 

casting alloys needs to be further explored to maximize their engineering performance 

without significant increases in materials and manufacturing cost. Squeeze casting, also 

known as liquid metal forging, extrusion casting and pressure crystallization, is one of the 

advanced casting technology which is capable of eliminating casting defects such as gas 

and shrinkage porosity [7-9]. Moreover, the soundness of squeeze cast A380 as well as Ni-

containing A380 enables thermal treatment for further improvement of mechanical 

properties.  Hence, a scientific understanding of the solidification behavior of these alloys 
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becomes essential for the establishment of correct thermal treatment processes. 

However, most previous studies on aluminum alloys containing Ni addition were focused 

on the property evaluation and microstructure. Limited information on the effect of nickel 

content on solidification of squeeze cast Al-Si-Cu alloys is available in the open literature. 

The objective of this study is to investigate the effect of nickel(Ni) addition on the 

solidification behavior and microstructure development of aluminum alloy A380. Thus, 

computer based thermal analyses was utilized to study the occurrence of nucleation during 

solidification and grain microstructure. 

5.2 Experimental Procedures 

5.2.1. Materials and Processing 

The base material selected for this study is the conventional aluminum alloy A380 with its 

chemical composition listed in Table 5-1. Predetermined amount of A380 alloy and Al-20 

wt.% Ni master alloy were melt and mixed in an electric resistance furnace to achieve the 

desired compositions which were verified by an Inductively-Coupled Plasma Atomic 

Emission Spectrometer based on ASTM E1479-99. The melt was kept at 730±10°C for 30 

minutes for the completion of homogenization and modification under the protective gas 

of nitrogen, and then the melt temperature was decreased to 700°C for pouring.  

Table 5-1Chemical composition of A380 (wt.%) 

Alloys Si Cu Fe Mn Mg Zn Ni 

A380 8.5 3.5 1.3 0.5 0.10 3.0 0.50 

2.0Ni/A380 8.5 3.5 1.3 0.5 0.10 3.0 2.5 



 

97 
 

5.2.2 Thermal Analysis 

For each thermal analysis, about 300 grams of melt sample were taken from the well-stirred 

alloys at into a small crucible. A chromel-alumel (K-type) thermocouple protected by a 

thin steel sheath was positioned at a distance of 0.02 m from the bottom of the crucible 

center, and was connected to a computer-based data acquisition system to measure the 

temperature variation. In thermal analysis, the temperature of the solidifying alloy samples 

was recorded by the data acquisition system at a regular interval of 100 ms as they cooled 

from the completely liquid state, through the solidification range, to become fully solid. 

The acquired temperature (T) vs. time (t) data from 650 °C to 450 °C were processed, and 

cooling curves (T vs. t) were plotted using the Microsoft Excel spreadsheet software. The 

corresponding first and second derivative curves (dT/dt and d2T/dt2) were also derived and 

plotted to reveal detailed characteristics of solidification that cannot be detected on the 

cooling curves alone. Several duplicate runs on each melt were conducted to ensure an 

uncertainty of ±0.1%. 

5.2.3 Microstructural Analysis 

Specimens were sectioned, mounted, and polished from the center of the squeeze cast 

cylindrical coupons, and prepared following the standard metallographic procedures. A 

Buehler (Lake Bluff, IL) optical image analyzer 2002 system was used to observe primary 

characteristics of the specimens. The detailed features of the microstructure were also 

characterized at high magnifications by a scanning electron microscope (SEM), i.e., 

Hitachi Tabletop Microscope TM3000. To maximize composition reading of the energy 
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dispersive spectroscopy (EDS) data, an etchant of 0.1 % NaOH solution was applied to 

polished specimens for microscopic examination.  

5.3 Results and Discussion 

5.3.1 Thermal Analysis 

Figure 1. represents a cooling curve recorded during solidification of the A380 casting 

alloy along with the corresponding first derivative and second derivative curves. The 

presence of peaks on a dT/dt derivative curve indicates that a phase transformation occurs 

due to releasing latent heat at an increased rate. The peaks on a second derivative curve are 

considered as the accurate indicator of nucleation temperatures, when the d2T/dt2 curve 

varies considerably [10]. The temperature at which the very first crystal nucleates, 

stabilizes and starts to grow can be determined. Furthermore, the peak on the second 

derivative curve indicates a minimum temperature, at which the nucleated crystals have 

grown in such a way that the liberated latent heat of fusion balances the heat extracted from 

the samples. Examination of the cooling curve illustrated in Figure 5-1 manifests four 

distinguished stages during the solidification process of A380 alloy. The nucleation of 

primary aluminum-phase happened in stage I, from which the non-equilibrium liquid 

temperature was recorded as 574.03-577.48 °C. Stage II at 569.76°C is the nucleation of 

Al5FeSi phase, which has no obvious undercooling detected. Stage III is the occurrence of 

the eutectic reaction, i.e., LAl () + Si(β), where the non-equilibrium solidus temperature 

was determined as 558.48°C with an observed undercooling phenomena of 1.09 °C. At 

stage IV, the intermetallic phases precipitated at 490.03 °C, i.e., L → Al (α) + Si(β) + 

Al2Cu(θ). No undercooling phenomena were observed for the solidification of the 



 

99 
 

intermetallic phase. The solidification rate of the A380 alloy is 10.7 °C/min, which was 

calculated by the division of the temperature difference between Stages I and IV with the 

corresponding time interval. The non-equilibrium phase change temperatures are in good 

agreement with the data existing in the literature [11]. 

 

Figure 5-1 The typical cooling curve of the as-cast A380 alloy and its corresponding first 

and second derivative curves 

The typical cooling curve of A380 alloyed with 2.0 wt.% Ni addition is given in Figure 5-

2, which reveals a three-stage solidification behavior. The formation of primary-phase 

begins at 576.28°C in stage I. Moving to the second stage, a very interesting feature 

observed from A380+2%Ni alloy cooling curve is that the second stage of the solidification 

takes place at temperature of 575.96°C, which is even higher (5.7 °C) than the temperature 
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of the first stage present during the solidification of A380. The reason for such phenomenon 

might be related to the formation of Ni-containing Al-Cu phase. It has been reported [12] 

that, during the equilibrium solidification of an Al-Cu- Ni alloy, a ternary phase NiCu2Al5 

formed around 585 °C. Stage three of A380+2%Ni cooling curve is also observed which 

begins at 554.23°C. Based on the cooling curves depicted in Figures 5-1 and 5-2, a 

reduction of 4.25 °C present at stage III because the addition of 2%Ni into the A380 alloy 

could lead to a ternary reaction, L =˃ (Al) + Al2Cu + NiCu2Al5. Although the evident 

appearance of stage III suggests that it should be considered as the last stage of the 

solidification process for the A380+2%Ni alloy, a slight change of the slope of the first 

derivation curve is present at around 525 °C. But, it is too weak to be regarded as a peak. 

This observation implies that Al2Cu phase might form at the end of the A380+2%Ni 

solidification. However, the amount of the Al2Cu phase is insufficient to generate adequate 

latent heat. Considering that the solidification ends at the formation of the last Al2Cu phase, 

the solidification rate of the A380+2%Ni alloy is only 6.5 °C /min, which is lower than 

that of the A380. 
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Figure 5-2 The typical cooling curve of the as-cast A380+2%Ni alloy and its first and 

second derivative curves. 

5.3.2 Microstructure Analysis 

Figure 5-3 shows the microstructure of the etched A380 and A380+2%Ni alloys revealed 

by optical microscopy. Their microstructures mainly consist of the primary α-Al dendrites 

and eutectic phases surrounding their boundaries. The sizes of the primary α-Al dendrites 

are similar for both conventional and Ni-containing A380 alloys. The comparison of Figure 

3(a) and (b) manifests that the Ni addition has a limited influence on the morphology and 

size of the primary α-Al phase. Eutectic silicon phase is identified as long needle shape 

which is in deep grey color. Using ImageJ, micrographs were converted to binary black 

and white images, with black areas representing intermetallics, while light areas 

representing primary α-Al and eutectic silicon phases. Following conversion, the software 
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automatically calculated area fractions of black and white areas. Figure 5-4 presents the 

converted micrographs highlighting the presence of intermetallics in the observed alloys 

represented by the black area. By comparing the Ni-containing A380 alloy with the 

conventional base alloy, the image analysis reveals that the area percentage of the 

intermetallic phases increases with additional Ni content. Figure 5-4 shows the variation 

of the volume fraction of intermetallic with the 2% Ni content addition.  The area 

percentage of the intermetallic phases in the conventional A380 alloy is measured to be 

4.3% and 10.2% for A380 and A380+2%Ni alloys respectively. This observation can be 

concluded as that with additional Ni content in the base A380 alloy, the size and amount 

of Ni-containing intermetallic dramatically increase. Ni as a transit element, forms 

intermatallics with both Al-Cu and Al-Fe phase and trend to aggregate to bigger 

intermetallic. Figure 5-5 presents the SEM micrographs and the EDS patterns evidently 

showing the presence of (a) Al2Cu phase in the A380 and (b) Ni-containing Al-Cu phase 

in the A380+2%Ni alloys. The presence of the Ni-containing Al-Cu phase should be 

responsible for the evident appearance of the second stage on the dT/dt derivative curve of 

the A380+2%Ni alloy.  Compared with that of the base A380 alloy, the relatively low 

solidification rate appeared during the solidification of the A380+2%Ni alloy should be 

attributed to the high latent heat release resulting from the formation of a large amount of 

the ternary phase (NiCu2Al5) might result in the the Ni-containing Al-Cu phase. 
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(a) 

 

(b) 

Figure 5-3 Optical micrographs showing microstructures of the squeeze cast (a) A380 

alloys and (b) A380+2%Ni alloy 
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(a) 

 

(b) 

Figure 5-4 Micrographs in binary black and white images showing intermetallic contents 

in squeeze cast (a)A380 and (b) A380+2%Ni alloys 
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(a) 

 

(b) 

Figure 5-5 SEM micrographs showing the presence of (a) Al2Cu phase in the A380 and 

(b) Ni-containing Al-Cu phase in the A380+2%Ni alloys. 

 

5.4 Conclusions 

The solidification behaviors of the conventional A380 and A380+2%Ni alloys are 

investigated by the thermal analysis. The observation of the high eutectic temperatures of 

imtermetallics on the cooling curve of the A380+2%Ni alloy implies the Ni addition 

promotes the formation of Ni-containing ternary phases which are absent in the base A380 

alloy.  The release of the latent heat by the Ni-containing ternary phase slows down the 
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solidification process of the A380+2%Ni alloy. The detection of the Ni-containing ternary 

phase in large quantity present in the microstructure of the A380+2%Ni alloy supports the 

results of the thermal analyses.  The determined phase change temperatures could be used 

to guide the establishment of thermal treatment procedures for the A380+2%Ni alloy. 
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CHAPTER 6 

Microstructure and Tensile Properties of Squeeze Cast Aluminum Alloy 

A380 containing Ni and Sr addition 

6.1 Introduction 

In past few years, high-performance downsized engines gain their popularity in the 

automotive industry due to strict government regulations and market demand for fuel 

economy. With the advent of downsized engines, castable high strength aluminum alloys 

for light weight engine components are urgently required [1]. Since development of novel 

castable and cost-effective alloys often takes years, modification of commercially-

available conventional alloys by introducing additional elements might be a quick solution.  

Aluminum alloy A380 is one of the most widely used Al-Si-Cu alloys because of its 

moderate properties and relatively low cost. Many researches have been carried out in 

attempt to further improve the mechanical properties of Al-Si-Cu alloy through 

implementation of different manufacturing processes, alloying addition, and 

microstructure design such as refinement of primary α-Al and eutectic phases [2-6]. Salleh 

et al [3] investigated the effects of Mg addition on the microstructure and mechanical 

properties of thixoformed Al–5% Si–Cu alloys.  Their results showed that Mg addition 

improved the tensile strengths of the heat-treated Al–5% Si–Cu alloys prepared by a 

thixoforming process. The study by Alhawari et al [4] on the thixofomred A319 alloy 

exhibited improved wear resistance over the cast alloy due to the presence of a fine globular 

primary phase, fragmented and uniformly distributed silicon and intermetallic compounds.  

As a hypoeutectic aluminum-silicon alloy, it contains a relatively high level of Si as 8.5%, 

which facilitate the formation of large eutectic Si phases with needle and flake-like shapes 
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[7,8]. To enhance the strengths of A380 alloy, the needle shaped eutectic silicon has to be 

modified.  Previous studies [9-20] found that alkali element, sodium (Na), alkaline earth 

element, strontium (Sr), and metalloid, antimony (Sb), influenced the nucleation and 

growth processes of eutectic silicon crystals effectively in Al-Si alloys.  Among the three, 

Sr is by far the most efficient and effective modifier due to the handling difficulty of sodium 

and the toxicity of the antimony.  Most of past studies on modification have been focused 

on eutectic or near-eutectic Al-Si alloys [9-14].  This is because the eutectic or near-eutectic 

Al-Si alloys contains massive eutectic silicon, which facilitates macroscopic and 

microscopic examination.  Since the eutectic or near-eutectic Al-Si alloys have a high 

tendency of hot cracking and are difficult to cast, they are hardly employed for real 

engineering applications.  The majority of conventional aluminum casting alloys used in 

the automotive industry is hypoeutectic Al-Si alloys owing to their excellent castability 

and good mechanical properties.  Hence, great efforts have been made on modifying the 

conventional hypoeutectic Al-Si alloys such as A319, A356 and A357 [15-20]. It has been 

suggested that the Sr addition of around 200 ppm provides a good level of modification to 

the Si eutectic phase in hypoeutectic Al-Si alloys.  An excessive amount of strontium seems 

to result in a greater degree of gas and shrinkage porosity, and deteriorate the mechanical 

properties of the alloy as a result of the Al2Si2Sr particle formation [20,21]. But, research 

on Sr addition to hypoeutectic aluminum alloy A380 is limited.  

Also, transition alloying elements as copper (Cu) and nickel (Ni) have been found to be 

effective additives for improving mechanical properties of Al-Si alloys at both room and 

elevated temperatures due to the formation of complex Al-Ni and Al-Cu-Ni intermetallic 

phases [22-29].  Recently, Salleh and Omar [24] studied the influence of Cu content on 
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microstructure and mechanical properties of the thixoformed heat-treated Al−Si−Cu−Mg 

alloys.  An increase in the Cu content enhanced the hardness and tensile strength of the 

thixoformed heat-treated alloys compared with those made by the permanent mould casting.  

Pratheesh et al [28,29] used Sr to modify a near-eutectic Al-Si-Cu-Mg-Ni alloy which was 

squeeze cast. Their results show that the mechanical properties and wear rates of the 

squeeze cast modified alloy are higher than the gravity cast unmodified counterpart. But, 

studies on introducing two transition elements (Ni and Cu) and one alkaline earth element 

(Sr) together in hypoeutectic Al-Si casting alloy A380 to improve its mechanical properties 

are scarce so far.   

From the manufacturing point of view, components made of A380 alloy are usually cast 

by conventional high pressure die casting (HPDC) processes, which generally suffer from 

high level of porosity resulting from gas entrapment. The presence of casting defects 

influences microstructure integrity and deteriorates mechanical properties such as ultimate 

strength, yield strength and elongation [2,7,10].  Most recently, squeeze casting as an 

advanced casting technology demonstrates its capability of effectively eliminating casting 

defects such as porosity and producing fine microstructure in A380 alloy. Consequently, 

mechanical properties of squeeze cast A380 alloy are enhanced over the counterpart 

produced by HPDC [2].  

In this article, modification effect of Sr and Ni on A380 aluminum alloy was investigated 

through aspects of microstructure, tensile behavior, and fracture behavior. The informative 

results are compared with conventional squeeze cast A380. The structure-property 

relationship and mechanism of property enhancement are also discussed. 
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6.2 Experimental Procedure 

6.2.1 Alloy Preparation and Squeeze Casting  

The base material selected for this study is the conventional aluminum alloy A380 with its 

chemical composition listed in Table 6-1.  To prepare the alloy containing Ni and Sr of 

which chemical composition is given in Table 6-1, a predetermined amount of A380 alloy 

and Al-20 wt.% Ni was melt and mixed in an electric resistance furnace to achieve the 

desired compositions which were verified by an Inductively-Coupled Plasma Atomic 

Emission Spectrometer based on ASTM E1479-99.  The melt was modified by introducing 

Al-10 wt.% Sr for modification of Si eutectic phase, and was stirred by stirring machine 

for homogenous mixture of A380 and added Ni/Sr. The mixed melt was kept at 730±10 oC 

for 30 minutes for the completion of homogenization and modification, and then the melt 

temperature was decreased to 650 oC for squeeze casting.  Cylindrical coupons having a 

diameter of 100 mm and a section thickness of 25 mm were squeeze cast with the prepared 

melt. The squeeze casting experiments started with the transfer of a metered quantity of the 

prepared melt (650 °C) into the bottom half of the preheated (300 °C) die set mounted in a 

hydraulic press. The top and bottom dies were closed. An applied pressure of 90 MPa was 

exerted on the molten metal and maintained until the entire casting solidified.  
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Table 6-1 Chemical composition of A380 (in wt.%) 

Materials Si Cu Fe Mn Mg Zn Ni Sr Others 

A380 8.5 3.5 1.3 0.5 0.10 3.0 0.50 N/A 0.5 

Ni and Sr-containing 

A380 

8.5 3.5 1.3 0.5 0.10 3.0 1.5 0. 02 0.5 

6.2.2 Microstructural Analysis 

Specimens were sectioned, mounted, and polished from the center of the squeeze disk and 

prepared following the standard metallographic procedures. A Buehler (Lake Bluff, IL) 

optical image analyzer 2002 system was used to observe primary characteristics of the 

specimens. The detailed features of the microstructure were also characterized at high 

magnifications by a scanning electron microscope (SEM), Hitachi Tabletop Microscope 

TM3000, with a maximum resolution of 30 nm in a backscattered mode/1 µminx-ray 

diffraction mapping mode, and useful magnification of 10 to 30,000. To maximize 

composition reading of the energy dispersive spectroscopy (EDS) data, an etchant of 0.1 % 

NaOH solution was applied to polished specimens for microscopic examination. Fractured 

surfaces of tensile specimens were analyzed by the SEM to ascertain the nature of fracture 

mechanisms.  In addition, the longitudinal section of tensile tested specimens passing 

through the fractured surface were polished and examined in an effort to locate crack 

origins and understand the extent of damage beneath the fractured surface. 
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6.2.3. Tensile Testing 

The mechanical properties of both the squeeze cast conventional and Ni and Sr-containing 

A380 alloys were evaluated by tensile testing, which was performed at ambient 

temperature on a MTS criterion Tensile Test Machine (Model 43) equipped with a data 

acquisition system. Following ASTM B557, flat tensile specimens (25 mm in gage length, 

6 mm in width, and 4 mm in thickness) were machined from the squeeze cast disks. The 

tensile properties, including 0.2% yield strength (YS), ultimate tensile strength (UTS), and 

elongation to failure (Ef), were obtained based on the average of three tests. 

6.3 Results and Discussion 

6.3.1 Microstructure 

 The microstructure of the squeeze cast conventional A380 alloys with a 25-mm section 

thickness is shown in Figure 6-1. Its microstructure mainly consists of the primary α-Al 

dendrite (labeled A) and eutectic phases surrounding their boundaries. The dendrite arm 

spacing (DAS) is around 44.6 µm. The SEM results (Figure 6-1(b)) display the eutectic 

phases (bright contrast), which are present in a matrix (dark contrast) of the primary α-Al 

solid solution and tends to form a network surrounding the primary phase. Three different 

types of the eutectic phases labeled B, C (white spots) and D (dark spot) were identified by 

the EDS analysis. Figure 6-2 illustrates the EDS spectra for A, which is the primary α-Al 

matrix, B as Al5FeSi phase, C as Al2Cu intermetallic and D as needle shaped Si phases. 
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  (a)                       

                                       

(b) 

Figure 6-1  (a) Optical and (b) SEM micrographs showing as-cast microstructure in the 

squeeze cast A380 alloy with a section thickness of 25 mm. 
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(a) 

   

     (b) 

 

(c)     

 

(d) 

Figure 6-2 EDS spectra (a), (b), (c) and (d) for the regions marked A, B, C and D in Fig. 

1(b), respectively 
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Figure 6-3(a) shows the microstructure of the etched Ni and Sr-containing A380 coupon 

with a section thickness of 25 mm revealed by optical microscopy. Its microstructure 

mainly consists of the primary α-Al dendrite (labeled A), eutectic silicon phases and Ni-

containing intermetallic phases surrounding their boundaries. The DAS of the primary α-

Al dendrite is almost the same as that of the conventional alloy. Figure 6-3(b) reveals the 

presence of the primary α-Al grain, eutectic Si phases and intermetallic phases in the Ni 

and Sr-containing alloy by SEM. Comparing with that of the conventional A380 sample, 

the addition of Sr changes the morphology of eutectic silicon from a flake-like shape 

(Figure 6-1(b) and 6-2(d)) to a fibrous and globular shape (Figure 6-3(b) and 6-4(d)). The 

observed transformation on the morphology of the eutectic Si phase was in consistent with 

those presented in the previous research [9-20]. The previous TEM work by Lu and 

Hellawell [30] revealed that, during solidification, unmodified silicon grew in specific 

crystallographic directions, which resulted in an unbranched, flake-like morphology. 

Modified silicon fibers had orders of magnitude more twins than unmodified silicon plates, 

and the intersection of myriads of twin planes made the surface of the fibres microfaceted, 

brunched and rough, which named impurity induced twinning.  Consequently, the growth 

of the flakes was inhibited and they only formed in a coarse fibrous and globular shape.  

The EDS analysis as depicted in Figure 6-4 indicates the presence of Al-Fe-Ni phase 

(marked B) phase, Al-Cu-Ni intermetallic (labeled C), and the eutectic Si phase (D), which 

are similar as those in the conventional A380 coupon. However, the Al-Cu-Ni phase 

present in the Ni and Sr-containing A380 showing a high tendency of contacting and 

overlapping with other intermetallic phases. Similar types of phenomena were reported in 

the literature. It has been suggested that the addition of Ni element, as a transition element, 
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collaborates with both Cu and Fe to form intermetallic Al-Cu-Ni (Al3CuNi or Al7Cu4Ni) 

and Al-Fe-Ni (Al9FeNi) phases [23,25].  A detailed X-ray diffraction analysis is currently 

being carried out to verify phase identification, and the results will be published elsewhere.  
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(a)                                        

              

 (b) 

Figure 6-3 (a) Optical (b) SEM micrographs showing as-cast microstructure in the 

squeeze cast Ni and Sr-containing A380 alloy with a section thickness of 25 mm. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6-4 EDS spectra (a), (b), (c) and (d) for the regions marked A, B, C and D in Fig. 

3(b), respectively 
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6.3.2 Tensile Behavior 

6.3.2.1 Tensile Properties 

The representative true stress-strain curves obtained from tensile testing of both the 

squeeze cast conventional and Ni and Sr-containing A380 alloys with 25 mm section 

thickness are shown in Figure 6-5, and the corresponding tensile property data are 

summarized in Table 6-2. The UTS of the squeeze cast conventional A380 alloy is 215.9 

MPa on average, while it is 241.6 MPa for the Ni and Sr-containing specimen. There is an 

improvement of 12% on the strength of the Ni and Sr-containing A380 alloy over the 

conventional alloy. Examination of the linear portion of the tensile curves reveals that the 

conventional A380 also exhibits a YS of 92.6 MPa and elastic modulus of 23.9 GPa. In 

comparison, the YS of the Ni and Sr-containing A380 alloys increases by 86% to 172.5 

MPa, and the E rises by 212% up to 74.6 GPa. The significant improvement of UTS, YS 

and elastic modulus should be attributed to the modification of eutectic silicon phase by Sr 

addition and the presence of increased intermetallic content by the introduction of Ni to the 

conventional alloy. The mechanism of Si modification affecting mechanical properties has 

been discussed by Campbell [31] in association with the morphology of inclusions.  It has 

been suggested that the favored planar growth of unmodified Si in a flake-like shape forces 

the straightening of the bifilms which are attached to the Si.  The unravelled and unfolded 

bifilms facilitate the initiation and growth of planar cracks under tensile loading. However, 

the bifilms remain in their original, crumpled and compacted state in the modified alloy 

with a globular shape of Si.  Consequently, the initiation and growth of cracks are inhibited, 

and mechanical properties are improved. The image analyses of Figure 6-1(b) and Figure 
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6-3(b) shows that the area percentage of intermetallics increases from 4.23% up to 9.17%. 

However, the elongation of the conventional A380 specimens is 5.4%, over four times 

higher than that of the Ni and Sr-containing A380 specimens (1.1%). During tensile testing, 

no necking phenomenon was observed for the Ni and Sr-containing specimens before 

fracture, whereas a remarkable necking occurred in the conventional alloy.   

6.3.2.2. Strain Hardening 

The strain-hardening behaviors of both the squeeze cast conventional and Ni and Sr-

containing A380 alloys can be clearly seen in a plot of strain-hardening rate (dσ/dε) versus 

true plastic strain (ε) during the plastic deformation, as shown in Fig. 6-6, which is derived 

from Fig. 6-5. It is evident that the strain-hardening rate of the Ni and Sr-containing 

specimen is higher than that of the conventional squeeze cast specimens in the early stage 

of plastic deformation. A high strain-hardening rate implies that, compared with the 

conventional one, the squeeze cast Ni and Sr-containing A380 is able spontaneously to 

strengthen itself increasingly to a large extent, in response to certain plastic deformation 

prior to fracture. The considerably high strain-hardening rate of the Ni and Sr-containing 

A380 in the early stage of plastic deformation as indicated in Fig. 6-6, may be attributed to 

the dispersion of fine intermetallic particles inside grains and around grain boundaries, 

which resist slip in the primary phase and grain boundary sliding [32,33].  

 

 

 

 

 



 

123 
 

Table 6-2 Tensile properties of the squeeze cast conventional and Ni and Sr-containing 

A380 alloys with 25 mm section thickness in the as-cast condition at room temperature 

Materials 

UTS 

(MPa) 

Elongation 

(%) 

0.2% YS 

(MPa) 

Elastic 

Modulus 

(GPa) 

Conventional 

A380 

215.9± 25.8 5.4± 1.9 92.6± 4.7 23.9± 1.8 

Ni and Sr-

containing 

A380 

241.6± 15.2 1.1± 0.2 172.5± 5.6 74.6± 5.7 

 

Figure 6-5 Representative true stress versus strain curves for the squeeze cast 

conventional and Ni and Sr-containing A380 alloys. 
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Figure 6-6 Strain-hardening rate versus true strain for plastic deformation of the squeeze 

cast conventional and Ni and Sr-containing A380 alloys 

6.3.2.3 Fracture Behavior 

Figures 6-7 and 6-8 evidently reveal the differences in the fracture behaviors between the 

squeeze cast conventional and Ni and Sr-containing A380 alloys by the SEM fractography. 

A typical fracture surface of the squeeze cast A380 is shown in Figure 6- 7, which is 

primarily ductile in nature. The observed fracture mode of the squeeze cast specimens in 

the as-cast condition is quasi-cleavage as illustrated in Figure 6-7(a). Flat facets and 

significant dimple are observed, which are accompanied by cleavage morphology. The flat 

facets are covered fully and partially by river markings and dimples on the fracture surface. 

The river marking is the result of the crack moving through the grains along a number of 

parallel planes, which forms a series of plateaus and connecting ledges; and the localized 

microvoid coalescence causes dimples. These features are an indication of the absorption 
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of energy through local deformation. The fractograph with higher magnification, Figure 6-

7(b), portrays dimples with extensive deformation marking along the walls of individual 

craters. A considerable amount of energy is consumed in the process of the formation of 

microvoids and microvoid-sheet, eventually leading to the creation of cracks. Thus, this 

type of fracture failure results from the coalescence of microvoids under the tensile stress 

[34].  However, the tensile fracture surface of the squeeze cast Ni and Sr-containing A380 

alloy (Figure 6-8) is somewhat brittle in nature. It is evident that the failure of the Ni and 

Sr-containing cast specimens is caused by a combined brittle fracture mechanism of void 

coalescence and intergranular fracture.  
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(a)                   

                                  

 (b) 

Figure 6-7 SEM fractographs showing fractured surfaces of the squeeze cast 

conventional A380, (a) low magnification and (b) high magnification 
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(a)                              

         

 (b) 

Figure 6-8 SEM fractographs showing fractured surfaces of the squeeze cast Ni and Sr-

containing A380 alloy, (a) low magnification and (b) high magnification. 
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Microstructure beneath the tensile side surfaces was studied by SEM with further point 

spectrum analysis on the crack imitation site by EDS. The SEM and EDS results presented 

in Figure 6-9(a) indicates that the flake-shaped eutectic Si phases provide the primary site 

of crack initiation. Under tensile loads, stress concentration occurs at the sharp tip of silicon 

phases which initiates cracks at early stage of plastic deformation and lead to fracture. 

Figure 6-9(b) shows the microstructure beneath the fracture surface of squeeze cast Ni and 

Sr-containing A380. The modification of eutectic Si phase effectively retrains the initiation 

of cracks since the spheroidization of silicon particles minimizes the occurrence the extent 

of stress concentration. However, the stress concentration and crack initiation takes place 

at the hard and brittle intermetallic phases, which exhibit high amount and occupy 

relatively large area. The observation of the fractured surfaces and the tensile side surfaces 

is consistent with tensile data listed in Table 6-2. 
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(a) 

 

(b) 

Figure 6-9 Microstructure beneath the tensile side surfaces of (a) the squeeze cast 

conventional and (b) the Ni and Sr-containing A380 alloys. 
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6.4 Conclusions 

In this work the effect of addition with Ni and Sr on the microstructure and tensile 

properties of squeeze cast A380 alloy were investigated. Based on the analysis of the results, 

the following conclusions are drawn: 

1. With the addition of Sr, the eutectic Si phase in A380 alloy is modified to a fine fibrous 

structure from a flake-like shape.   

2. The introduction of the transition element, Ni, results in the formation of relatively 

large amount of Ni-containing intermetallics in the alloy.   

3. Because of the change on morphology, the UTS of the squeeze cast Ni and Sr-

containing A380 increases to 241.6 MPa from 215.9 MPa for the conventional A380. 

The YS of Ni and Sr-containing alloy rises considerably to 172.5 MPa in comparison 

with only 92.6 MPa of the conventional A380.  

4. The high strain-hardening rates of the Ni and Sr-containing A380 alloy indicate that 

the alloy is able spontaneously to strengthen itself increasingly to a large extent, in 

response to certain plastic deformation prior to fracture. 

5. The SEM and EDS analyses of the fracture surfaces show that the squeeze cast 

conventional A380 displays the characteristics of ductile fracture, whereas the Ni and 

Sr-containing specimen exhibits brittle fracture modes.  

6. The observation on the microstructure beneath the tensile side surfaces indicates that 

the flake-shaped eutectic Si phases are responsible for crack initiation in the 

conventional alloy and the presence of hard and brittle Ni-containing intermetallic 

phases causes the initiation of cracking in the Ni-containing alloys.  
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CHAPTER 7 

Design of As-Cast High Strength Al-Si-Cu-Ni-Sr Alloys Using the 

Taguchi method 

7.1 Introduction 

With increasingly stringent government regulations and growing market demand, engine 

downsizing has become an urgent and essential task for the automotive industry. 

Traditionally, passenger vehicle engine output is much more powerful than required for 

average driving usage. To deliver such high power using a large engine indicates that 

almost all of the time, the engine is operating at a tiny fraction of its maximum power and 

therefore inefficiently. To improve its efficiency, engine downsizing has become an 

established trend in the automotive industry in the past few years. Downsizing is referred 

to as the installation of a small engine in a vehicle which meets the performance aspirations 

of a driver by designing the engine to operate at extremely high powers when needed [1-

3]. The most common approach to achieving this goal is through turbocharging and/or 

supercharging the engine. Both techniques compress the air entering the engine, allowing 

more fuel to be burnt and more power to be generated.  

Recently, the development and application of three cylinder engines have attracted great 

interest from researchers and designers in the automotive industry. The basic advantage of 

a small engine over a large one is that it is inherently more fuel efficient (as there are fewer 

cylinders of volume of fuel to burn). The smaller the engine size, the less fuel it will burn 

making the system more fuel efficient [4]. However, to maintain the engineering 

performance and output horsepower and to reduce the weight of downsized engines, high 
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strength lightweight materials must be employed. Aluminum alloy as a light weight 

material is the best substitute for traditional cast iron. Most of commercially available 

aluminum alloys could meet the engineering specification of cast irons used for downsized 

engines when proper heat treatments are applied. The application of heat treatments adds 

extra costs to castings, particularly high for large castings and makes them less competitive 

despite of mechanical property enhancement. As such, development of castable high 

strength aluminum alloys without heat treatments need to be developed.   

In the past two decades, great research efforts have been made to develop Ni-containing 

Al-Si alloys for engine applications [5-11]. It has been found that Ni addition combining 

with Cu improved the strengths of Al-Si alloys at room and elevated temperatures by 

forming complex Al-Ni and Al-Cu-Ni intermetallic phases. Also, previous studies [12-21] 

also indicated that the morphology of primary or eutectic silicon phases affected the 

mechanical properties of Al-Si alloys. The alkaline earth element, Sr was capable of 

effectively modifying the morphology of eutectic silicon from acicular (plate or needle-

like) to fibrous form despite that Sr addition might coarsened the primary silicon in 

hypereutectic Al-Si alloys. The results of mechanical properties showed that Sr 

modification enhanced tensile properties of both hypereutectic and hypoeutectic properties 

significantly. The introduction of strontium resulted in a certain degree of porosity present 

in Al-Si alloys [21]. Up to date, however, no extensive research has been performed with 

the addition of two transition elements (Ni and Cu) and one alkaline earth element (Sr) 

together in a cast alloy to maximize mechanical properties of Al-Si alloys. Past studies 

failed to systematically and thoroughly design this type of the alloys using an optimization 

approach. 
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To minimize the side effect of Sr addition, proper selection of casting processes becomes 

essential and critical, in which the advantages of alloying elements in Al-Si alloys could 

be maximized. Squeeze casting, also known as liquid metal forging, extrusion casting and 

pressure crystallization, has become an emerging technology for manufacturing light 

weight components alloy with aluminum and magnesium alloys [22-37]. This is because 

the process involves the solidification of a molten metal in a closed die under an imposed 

high pressure which keeps entrapped gases in solution and squeeze molten metal from hot 

spots to incipient shrinkage pores. As a result, the porosity in a squeeze-cast component is 

almost eliminated. Furthermore, due to the elimination of the air gap at the liquid-mould 

interface by the applied high pressure, the heat transfer across die surfaces is enhanced, 

which increases solidification and cooling rates [38-40]. Thus, superior mechanical 

properties of the casting resulting from the pore-free fine microstructure are achieved in 

squeeze-casting processes. 

In this study, a design of experiment (DOE) technique, the Taguchi method, was used to 

design the chemistry of as-cast Al-Si alloys with element additions of Ni, Cu and Sr for 

their maximized engineering performance, which was evaluated by the resultant tensile 

properties  
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7.2 Experimental Procedures  

7.2.1 Materials 

Designed A-Si-Cu-Ni-Sr alloys were prepared by using commercially pure Al, Si, Cu, Al-

20 wt.% Ni and Al-10 wt.% Sr. Al, Si, Cu, and Al-20 wt.% Ni were melt and mixed in an 

electric resistance furnace to achieve the desired compositions which were verified by an 

Inductively-Coupled Plasma Atomic Emission Spectrometer based on ASTM E1479-99. 

The melt was modified by introducing Al-10 wt.% Sr for modification of Si eutectic phase, 

and was kept at 730±10 oC for 30 minutes for the completion of homogenization and 

modification, and then the melt temperature was decreased to 650 oC for squeeze casting.  

7.2.2 Squeeze Casting 

Cylindrical coupons having a diameter of 100 mm and a section thickness of 25 mm were 

squeeze cast with the prepared melt. The squeeze casting experiments started with the 

transfer of a metered quantity of the prepared melt (650 °C) into the bottom half of the 

preheated (300 °C) die set mounted in a hydraulic press. The dies were then closed, with 

the top half (punch) lowering into the bottom die. An applied pressure of 90 MPa was 

exerted by the punch on the molten metal and maintained until the entire casting solidified.  

7.2.3 Tensile Testing 

The mechanical properties of the squeeze cast novel alloys were evaluated by tensile testing, 

which was performed at ambient temperature on a MTS criterion Tensile Test Machine 

(Model 43) equipped with a data acquisition system. Following ASTM B557, flat tensile 
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specimens (25 mm in gage length, 6 mm in width, and 4 mm in thickness) were machined 

from the squeeze cast disks. The tensile properties, including 0.2% yield strength (YS), 

ultimate tensile strength (UTS), and elongation to failure (Ef), were obtained based on the 

average of three tests. 

 7.2.4 Microstructure Analysis 

Specimens were sectioned, mounted, and polished from the center of the squeeze disk and 

prepared following the standard metallographic procedures. Samples were cut from the 

castings and were mounted with Diallyl Phthalate mounting powder by Buehler Simplimet 

3 mount machine. The mounted samples were first plane ground down to 180 grit using a 

belt grinder and then fine ground with SiC paper in the sequence: 500, 1200 and 2400 grit. 

The samples were then polished with using 1 µm alpha C and 0.05 µm gamma B alumina 

powder. After polishing the specimens, they were cleaned and washed using cold water 

and ethyl alcohol. Etching was performed by submerging the sample into the etchant of 

0.5% NaOH solution for 40 seconds. The etched specimens were washed with running 

distilled water and ethanol for microstructure assessment. Specimens were also deep etched 

for a more accurate chemical analysis. Deep etched is performed by submerging sample 

into NaOH solution for 30 minutes. 

A Buehler (Lake Bluff, IL) optical image analyzer 2002 system was used to determine 

primary characteristics of the specimens. The detailed features of the microstructure were 

also characterized at high magnifications by a scanning electron microscope (SEM), 

Hitachi Tabletop Microscope TM3000, with a maximum resolution of 30 nm in a 

backscattered mode/1 µminx-ray diffraction mapping mode, and useful magnification of 
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10 to 30,000. To maximize composition reading of the energy dispersive spectroscopy 

(EDS) data, an etchant was applied to polished specimens for microscopic examination 

7.3 Taguchi design of experiment 

7.3.1 Design of orthogonal array and Signal-to-noise analysis 

For alloy chemistry design, based on the literature survey, four alloying elements, Si, Cu, 

Ni and Sr, were chosen with three levels and are listed in Table 7-1. The experimental 

layout for the four factors using L9 orthogonal array is given in Table 7-2. Two sets of the 

Taguchi experiments were conducted to ensure the reliability of experimental data for 

signal-to-noise analysis. 

Table 7-1 Design factors and levels 

Level 

Factor 

A 

Si (wt%) 

B 

Cu (wt%) 

C 

Sr (wt%) 

D 

Ni (wt%) 

1 6 3 0.01 0.5 

2 9 5 0.02 1 

3 12 7 0.03 1.5 
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Table 7-2 Designed experiment plans 

Experiment Si (wt%) Cu(wt%) Sr (wt%) Ni (wt%) 

1 6 (A1) 3 (B1) 0.01 (C1) 0.5 (D1) 

2 6 (A1) 5 (B2) 0.02 (C2) 1 (D2) 

3 6 (A1) 7 (B3) 0.03 (C3) 1.5 (D3) 

4 9 (A2) 3 (B1) 0.02 (C2) 1.5 (D3) 

5 9 (A2) 5 (B2) 0.03 (C3) 0.5 (D1) 

6 9 (A2) 7 (B3) 0.01 (C1) 1 (D2) 

7 12 (A3) 3 (B1) 0.03 (C3) 1 (D2) 

8 12 (A3) 5 (B2) 0.01 (C1) 1.5 (D3) 

9 12 (A3) 7 (B3) 0.02 (C2) 0.5 (D1) 

 

In process design, it is almost impossible to eliminate all errors caused by the variation of 

characteristics. An increase in the variance of multiple characteristics lowers the properties 

of material. The Taguchi method [41-44] uses signal-to-noise (S/N) ratio instead of the 

average value to interpret the trial results data into a value for the evaluation characteristic 

in the optimum setting analysis. To minimize the influence of the error caused by the 

variation of characteristics, the signal-to-noise(S/N) ratio was employed, which converted 

the trial result data into a value for the response to evaluate the mechanical properties in 

the optimum setting analysis. The S/N ratio consolidated several repetitions into one value 

which reflected the amount of variation present. This is because the S/N ratio can reflect 

both the average and the variation of the quality characteristics. There are several S/N ratios 

available depending on the types of characteristics: lower is best (LB), nominal is best (NB), 
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and higher is best (HB). In the present study, mechanical properties were treated as a 

characteristic value. Since the mechanical properties of novel alloys were intended to be 

maximized, the S/N ratio for HB characteristics was selected, which was be calculated as 

follows: 

S/NHB = −10 log (
1

n
∑

1

ηpi
2

n

i=1

)          (7 − 1) 

where n is the repetition number of each experiment under the same condition for design 

parameters, and ɳpi is recovery rate of an individual measurement at the ith test. After 

calculating and plotting the mean S/N ratios at each level for various factors, the optimal 

level, that was the largest S/N ratio among all levels of the factors, was determined. 

The proposition for the optimization of mechanical properties with multiple performance 

characteristics (three objectives) using a weighting method is defined as the Eqs. (2)– (4): 

YSUM=YP×W        (7 − 2) 

where 

Y𝑆𝑈𝑀 = [

η1c
η2c

⋮
η9c

], Y𝑝 = [

η11
η21

⋮
η91

  η12

  η22

⋮
  η92

],  𝑤 = [
𝑤1

⋮
𝑤3

]      (7 − 3) 

and 

∑ 𝑤𝑖

2

𝑖=1

= 1           (7 − 4) 

where 𝑤1 , 𝑤2and 𝑤3are the weighting factor of ultimate strength, elongation at failure and 

yield strength, respectively. ηjc is the multi S/N ratio in the jth test,  ηji is the ith single 

response S/N ratio for the j th test; 𝑤𝑖  is the weighting factor in the i th performance 

characteristics.  
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The objective function was formulated according to the previous optimization criteria: 

Maximaze 𝑓(𝑋) = 𝑤1 ∙ ηUTS + 𝑤2 ∙ ηEf   + 𝑤3 ∙ η𝑌𝑆    (7 − 5) 

The above objective function is presented in an analytical form as a function of input 

parameters since two strengths and elongation as three characteristics are important 

properties for cast components. The three characters should be considered as different 

critical roles by weighting factors. For various engineering applications, required technical 

specifications can vary due to the presence of differences in loading conditions. For cast 

components of which strengths have a priority higher than ductility, high weighting factors 

of ultimate tensile strength and yield strength need to be considered. When cast parts are 

required to be relatively ductile for energy absorption, elongation at failure becomes more 

important than strengths and has a high value of the weighting factor. As an example, in 

this study, for strength-related application, a combination of weighting factor as 0.4:0.2:0.4 

was selected to demonstrate the optimization of strength. The combinations of weighting 

factors may vary for various application and engineering requirements 

7.3.2 Analysis of variance (ANOVA) 

The purpose of the analysis of variance is to investigate the contribution of each factor 

(chemical element) with multiple characteristics that significantly affect the mechanical 

properties. Following the analysis, it is relatively easy to identify the effect order of factors 

on mechanical properties and the contribution of factors to mechanical properties. In this 

study, variation due to both the four factors and the possible error was taken into 

consideration. The ANOVA was established based on the sum of the square (SS), the 



 

145 
 

degree of freedom (D), the variance (V), and the percentage of the contribution to the total 

variation (P). The five parameters symbol typically used in ANOVA are described below: 

7.3.2.1 Sum of squares (SS).  

SSP denotes the sum of squares of factors A, B, C, and D; SSe denotes the error sum of 

squares; SST denotes the total sum of squares.  

The total sum of square SST from S/N ratio was calculated as: 

SST = ∑ ηi
2

m

i=1

−
1

m
[∑ ηi

m

i=1

]

2

              (7 − 6) 

where m is the total number of the experiments, and ηi is the factor response at the ith test. 

The sum of squares from the tested factors, SSp, was calculated as: 

SSP = ∑
(Sηjc

)
2

t

m

i=1

−
1

m
[∑ ηi

m

i=1

]

2

            (7 − 7) 

where m is the number of the tests (m= 9), j the level number of this specific factor p, t is 

the repetition of each level of the factor p, and Sηj the sum of the multi-response S/N ratio 

involving this factor p and level j. 

7.3.2.2 Variance (V).  

Variance is defined as the sum of squares of each trial sum result involved the factor, 

divided by the degrees of freedom of the factor: 

Vp (%) =
SSP

DP
× 100                        (7 − 8) 
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Where Dp is the number of the degree of freedom for each factor which is the number of 

its levels minus one. 

7.3.2.3 The corrected sum of squares (SSp).  

SSp is defined as the sum of squares of factors minus the error variance times the degree 

of freedom of each factor: 

SSP
′ =  SSP −  DPV𝑝                         (7 − 9) 

7.3.2.4 Percentage of the contribution to the total variation (P). 

 Pp denotes the percentage of the total variance of each individual factor: 

Pp (%) =
SSP

′

SSP
 × 100                       (7 − 10) 

7.4 Results and Discussion 

7.4.1 Tensile Properties and multi-response S/N ratios  

The mechanical properties of the designed alloys were evaluated by tensile testing. 

Properties including ultimate strength (UTS), elongation at failure (Ef) and Yield strength 

(YS) are listed in Table 7-3.  

Since the objectives, i.e., tensile properties, were intended to be maximized, the S/N ratio 

for HB (higher-is-better) characteristics was used. The S/N ratios of these tensile properties 

were given in Table 7-4, and the multi-responses of S/N ratio using three weighting factor 

combinations were also concluded in Table 7-4. The response of each factor to its 
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individual level was calculated by averaging the S/N ratios of all experiments at each level 

for each factor. With three combinations of weighting factors, the factor’s mean multi-

response S/N ratios for each level were summarized in Table 7-5, respectively. For instance, 

the mean S/N ratio (37.37) for Sr addition at level 2 in Table 7-5 with the weighting factors 

of w1=0.4, w2=0.2 and w3=0.4 was the average value of the S/N ratios of experiment No.2 

(37.44), No.4 (37.32) and No.9 (37.34) which were listed in Table 7-4. 

Table 7-3 Tensile properties of the designed alloys 

Experiment 

UTS (MPa) Ef (%) YS (MPa) 

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

1 243.26 247.59 0.88 0.94 213.79 206.59 

2 243.93 253.37 0.78 0.79 215.20 213.97 

3 228.88 232.69 1.93 1.79 146.71 150.28 

4 245.82 246.16 1.21 1.15 170.83 175.86 

5 271.81 281.53 0.83 0.82 229.95 241.55 

6 291.36 281.93 0.90 0.85 221.29 223.02 

7 243.04 249.18 1.40 1.55 153.36 150.41 

8 234.00 230.00 0.73 0.79 197.31 183.96 

9 239.75 250.48 0.99 1.07 184.55 189.39 
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Table 7-4 The S/N ratio of objectives and Multi-Response S/N ratio with three weighting 

Experiment 

S/N ratio 

(UTS) 

S/N ratio 

(Ef) 

S/N ratio 

(YS) 

Multi-response of S/N ratio 

w1=0.4, w2=0.2 and w3=0.4 

1 47.80 -0.82 46.45 37.53 

2 48.02 -2.10 46.63 37.44 

3 47.26 5.37 43.43 37.35 

4 47.82 1.43 44.78 37.32 

5 48.84 -1.68 47.44 38.17 

6 49.14 -1.17 46.93 38.20 

7 47.82 3.34 43.63 37.25 

8 47.31 -2.39 45.59 36.68 

9 47.78 0.25 45.43 37.34 

 

Table 7-5 The Factor’s Mean multi-response S/N ratio for each level with two weighting 

factors 

Level 

Mean S/N ratio for case: w1=0.4, w2=0.2 and w3=0.4 

A 

Si 

B 

Cu 

C 

Sr 

D 

Ni 

1 37.44 37.37 37.47 37.68 

2 37.90 37.43 37.37 37.63 

3 37.09 37.63 37.59 37.12 
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7.4.2 Optimal chemical composition for strength performance 

In order to optimize strength of alloy, the order of the performance characteristics is given 

as ultimate tensile strength (w1 = 0.4) and yield strength (w3 =0.4), and the elongation at 

failure (w2 = 0.2). Figures 1 depicts the multi-response S/N ratios for the certain case of 

strength optimization. 

As show in Figure 7-1, the mean S/N ratio for factor A of Si addition increased with the 

amount of Si from 6% (level 1) to 9% (level 2) and decreased to the low value with further 

addition of Si up to 12% (level 3). When the relatively high amount of Si was introduced 

to the alloy with the presence of a low level of Sr addition, the volume of partially modified 

eutectic Si phase likely increased. They were found to have a plate-like shape, hard, brittle, 

and reduce mechanical properties of alloys [12]. The effect of the Cu addition (factor B) 

on the mean S/N ratio of the mechanical properties was also plotted in Figure 7-1. The 

mean multi-response S/N ratio of tensile properties rose when Cu was added. As Cu 

addition increased from the 3% (level 1) to 7% (level 3), the mean multi-response S/N ratio 

of tensile properties increased to 37.63 from 37.37. This might be because sufficient Cu 

addition could form a large amount of the strengthening intermetallic phase. For Sr addition, 

as increasing from levels 1 to 2, the S/N ratio decreased slightly. Further addition of Sr led 

to an increase in the S/N ratio, which suggested that the presence of a high level of Sr 

benefited the strengths of the designed alloys. Examination of the effect of Ni addition 

(factor D) revealed that the S/N ratio of the tensile properties decreased as the amount of 

Ni addition increased. It was also pointed out [5] that Ni apparently had a little influence 

on the room temperature strengths of Al–Si–Ni cast alloys with the presence of Sr.  Also, 

the introduction of 3 wt.% Cu and 1 wt.% Ni together into the Al-13 wt.% Si alloy resulted 
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in the formation of -Al7Cu4Ni instead of -Al3CuNi, which had a limited influence on 

strength. By selecting the highest value of the mean S/N ratio for each factor, the optimal 

levels were determined, which were A2B3C3D1; i.e. 9% Si, 7% Cu, 0.03% Sr and 0.5% 

Ni.  

 

Figure 7-1 Multi-response signal-to-noise graph for case: w1 = 0.4, w2 = 0.2 and w3 = 0.4 

7.4.3 The factor contributions with combination of weighting factors 

The contribution of each factor to the tensile properties was determined by performing 

analysis of variance based on Eqs. (6) – (9). The results of analysis of variance (ANOVA) 

for case: w1 = 0.4, w2 = 0.2 and w3 = 0.4, is summarized in Tables 7-6 and 7-7. 
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Table 7-6 Results of the ANOVA for case: w1 = 0.4, w2 = 0.2 and w3 = 0.4 

 

Table 7-6 lists the contribution of the four factors (Si, Cu, Sr and Ni addition) in case: w1 

= 0.4, w2 = 0.2 and w3 = 0.4, in which the strengths has a priority, was 31.32%, 20.66%, 

16.94% and 31.08%, respectively. The addition of Si had the highest contribution of 

31.32%, which indicated that Si had the major influence on the tensile properties of the 

designed alloys. Ni (31.08%) was ranked as the second highest contributor which had a 

very close contribution to Si. The addition of Cu had a contribution of 20.66% took the 

third place while Sr had the lowest contribution of 16.94%.  

7.4.4 Confirmation Experiment 

To confirm the optimal combinations drawn from the DOE based on the Taguchi method, 

two individual experiments were conducted focusing on strength optimization response.  

Factors 

Degree of 

freedom 

(D) 

Sum of 

squares 

(SSp) 

Variance 

(V) 

Corrected 

sums of 

squares 

(SSp’) 

Contribution Rank 

Si (%) 2 2.58 1.29 2.58 31.32% 1 

Cu (%) 2 6.57 3.29 6.57 20.66% 3 

Sr (%) 2 5.84 2.92 5.84 16.94% 4 

Ni (%) 2 4.09 2.05 4.09 31.08% 2 

error  0.00 0.00  0  

Total  19.09   100%  
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As discussed above, the designed factors A2B3C3D1 were selected as the optimal 

combination for strength optimization (w1=0.4, w2=0.2 and w3=0.4), of which detailed 

alloy composition was 9% Si, 7% Cu, 0.03% Sr and 0.5% Ni.  The results from the 

confirmation experiment shown in Table 7-7 showed that Al-Si with such chemistry had 

an average UTS of 267.00 MPa, an elongation at failure of 1.13% and a yield strength of 

210.37 MPa.  Figure 7-2 shows a typical stress versus strain curve of the confirmation 

experiment in comparison with experiment 3 which has the highest average strain and 

experiment 6 which has the highest average strength. Using Eqs. (7-1) to (7-5), the S/N 

ratio of multi-response of the optimized alloy was calculated as 38.21 and listed in Table 

7-8.  The comparison of the S/N ratios of multi-responses listed in Tables 4 and 8 indicated 

that the confirmation experiment gave the highest value of the S/N ratios of multi-responses, 

which verified the most effective combination of experimental factors and levels when 

alloy strengths was a primary concern.  

Table 7-7 Tensile properties of the designed alloys with optimal combinations 

 

Experiment 

UTS (MPa) Ef(%) YS (MPa) 

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

Confirmation 267.49 266.52 1.13 1.13 209.32 211.42 
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Figure 7-2 Typical stress versus strain curve of the confirmation experiment in 

comparison with experiment 3 and 6. 

 

Table 7-8 The S/N ratio of objectives and Multi-Response S/N ratio of confirmation 

experiments 

Experiment 

S/N 

ratio 

(UTS) 

S/N 

ratio 

(Ef) 

S/N 

ratio 

(YS) 

Multi-response of S/N ratio 

Case: 

w1=0.4, w2=0.2 and w3=0.4 

Confirmation 48.53 1.06 46.46 38.21 

 

Figure 7-3 presents the microstructure of the optimized alloy obtained from confirmation 

experiment.  The analysis by the optical microscopy (Figure 7-3(a)) showed the 

microstructure mainly consisted of the primary α-Al dendrite, eutectic silicon phases and 

intermetallic phases surrounding their boundaries.  Examination of the detailed features of 
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the microstructure characterized by SEM analyses on the deep etched specimen revealed 

the presence of various intermetallic containing Cu, Ni and Fe, which needs to be further 

identified.  The addition of Ni facilitated the formation of Ni contained intermetallic. Also, 

it can be seen from Figure 7-3(b) that the addition of Sr refined the morphology of eutectic 

silicon from a flake-like shape to a fibrous and globular shape. The significant 

improvement of the UTS and YS should be attributed to the modification of eutectic silicon 

phase by the addition of Sr and the presence of increased intermetallic content by the 

introduction of Ni. 
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(a) 

 

 
(b) 

Figure 7-3 (a) optical and (b) SEM micrographs showing microstructure of the optimized 

alloy obtained from the confirmation experiment. 
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7.5 Conclusions 

In developing novel aluminum alloys, the Taguchi method with multiple performance 

characteristics has been demonstrated for optimizing the addition levels of one metalloid 

element (Si), two transient elements (Cu and Ni), and one alkaline earth element (Sr) based 

on defined objectives, i.e., tensile properties for the development of novel aluminum alloys. 

The addition content of Si, Cu, Sr and Ni were chosen as factors and three levels for each 

factor were considered in the design of experiment. The conclusions of the experiments 

may be stated as follows: 

1. The multiple performance mechanical properties such as ultimate strength, elongation 

at failure and yield strength can be simultaneously considered and improved through 

this optimization technique.  

2. The maximum multi-response S/N ratio (38.21) was achieved by the confirmation 

experiment with optimum level of A2B3C3D1(9% Si, 7% Cu, 0.03% Sr and 0.5% Ni). 

This confirms that Taguchi method is reliable to design high strength aluminum alloy.  

3. The alloy with the optimal composition had an average UTS of 267.00 MPa, an 

elongation at failure of 1.13% and a yield strength of 210.37 MPa under the as-cast 

condition for a squeeze casting with a section thickness of 25 mm.  

4. For different engineering applications which could employ the developed alloys, the 

sequence of the four factors affecting the tensile properties varied. For applications 

aiming at improving the strengths of the alloys, Si and Ni content had the major 

contribution on the tensile properties. As ductility became a priority, Sr and Cu played 

an important role than Si and Ni. 
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5. All the considered four elements in this study exhibited an effective contribution on the 

tensile properties of the proposed alloys with a lowest contribution in both the designed 

cases of over 16 %. 
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CHAPTER 8 

Effect of Ni and Sr on Microstructure and Tensile Properties of Squeeze 

Cast Al-Si-Cu Alloy at Elevated Temperatures 

8.1 Introduction 

Recently, with the increasingly stringent government regulations and growing market 

demand, engine downsizing has become an urgent and essential task for the automotive 

industry. To maintain the performance while downsizing the engine, the most common 

approach is through turbocharging and/or supercharging the engine. Both techniques 

compress the air entering the engine, allowing fuel to be burnt more efficiently, thus, more 

power to be generated [1-3]. However, to maintain the engineering performance and 

reliability and, to reduce the weight of downsized engines, high strength lightweight 

materials must be employed. Aluminum alloy as a lightweight material is the best substitute 

for traditional cast iron. Most of commercially available aluminum alloys could meet the 

engineering specification of cast irons used for downsized engines when proper heat 

treatments are applied. However, the application of heat treatments adds extra costs to 

castings, particularly high for large castings and makes them less competitive despite of 

mechanical property enhancement. As such, development of castable high strength 

aluminum alloys without heat treatments is urgently required. Beside the development of 

a novel alloy, modification of commercially available conventional alloys by introducing 

additional elements is a time-saving and economic solution.  

In the past decades, great research efforts have been made to develop Ni-containing Al-Si 

alloys for engine applications. From the previous studies, transition alloying element nickel 

(Ni) is found to be an effective element for improvement of mechanical properties of Al–
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Si alloy at elevated temperature especially on hardness and strength [4-10]. Studies on the 

modification with nickel on the morphologies on aluminum alloys conclude that the 

presence of additional transition alloying elements in the aluminum alloy system allows 

many complex intermetallic phases to form including Al2Cu, Al3Ni, Al7Cu4Ni, Al9FeNi 

and Al5Cu2Mg8Si6. Among those intermetallics, ε-Al3Ni, δ-Al3CuNi, ϒ-Al7Cu4Ni are 

found to be more effective to the enhancement of mechanical properties at elevated 

temperatures [11-13].  

As a hypoeutectic aluminum–silicon alloy, aluminum alloy A380 contains a relatively high 

level of Si as 8.5%, which facilitate the formation of large eutectic Si phases with needle 

and flake-like shapes. They are usually considered detrimental to mechanical properties, 

being assumed to act as crack initiator or stress concentration point. Thus, to enhance the 

strength of A380 alloy, the needle shaped eutectic silicon must be modified [14-18]. The 

alkaline earth element, Sr has been found capable to effectively modify the morphology of 

eutectic silicon from acicular (plate or needle-like) to fibrous form despite that Sr addition 

might coarsened the primary silicon in hypoeutectic Al-Si alloys. The results of mechanical 

properties showed that Sr modification enhanced tensile properties of both hypereutectic 

and hypoeutectic properties significantly [19-28]. However, an excessive amount of 

strontium seems to result in a certain degree of gas and shrinkage porosity, and deteriorate 

the mechanical properties of the alloy as a result of the Al2Si2Sr particle formation. [28, 29] 

To minimize the side effect of Sr addition, proper selection of casting processes becomes 

essential and critical, in which the advantages of alloying elements in Al-Si alloys could 

be maximized. Squeeze casting, also known as liquid metal forging, extrusion casting and 

pressure crystallization, has become an emerging technology for manufacturing light 
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weight components alloy with aluminum and magnesium alloys [30-45]. This is because 

the process involves the solidification of a molten metal in a closed die under an imposed 

high pressure which keeps entrapped gases in solution and squeeze molten metal from hot 

spots to incipient shrinkage pores. As a result, the porosity in a squeeze-cast component is 

almost eliminated. Furthermore, due to the elimination of the air gap at the liquid-mould 

interface by the applied high pressure, the heat transfer across die surfaces is enhanced, 

which increases solidification and cooling rates [46-48]. Thus, superior mechanical 

properties of the casting resulting from the pore-free fine microstructure are achieved in 

squeeze-casting processes. 

In this study, the Ni-alloyed and Sr-modified Al-Si-Cu alloy (A380) were squeeze cast. 

The influence of transition alloying element nickel and alkaline earth element strontium on 

the performance and characteristics of the as-cast conventional Al-Si-Cu alloy was 

investigated through aspects of microstructure characterization, identification of phase 

change and transformation, and evaluation of tensile properties at elevated temperatures. 

The informative results were compared with those of the squeeze cast conventional A380 

as a base alloy.  

8.2 Experimental Procedure 

8.2.1 Alloy Preparation and Squeeze Casting  

The base material selected for this study is the conventional aluminum alloy A380 with its 

chemical composition listed in Table 8-1. To prepare the alloy containing Ni and Sr of 

which chemical composition is given in Table 8-1, a predetermined amount of A380 alloy 

and Al-20 wt.% Ni was melt and mixed in an electric resistance furnace to achieve the 
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desired compositions which were verified by an Inductively-Coupled Plasma Atomic 

Emission Spectrometer based on ASTM E1479-99. The melt was modified by introducing 

Al-10 wt.% Sr for modification of Si eutectic phase, and was kept at 730±10 oC for 30 

minutes for the completion of homogenization and modification, and then the melt 

temperature was decreased to 650 oC for squeeze casting. Cylindrical coupons having a 

diameter of 100 mm and a section thickness of 30 mm were squeeze cast with the prepared 

melt. The squeeze casting experiments started with the transfer of a metered quantity of the 

prepared melt (650 °C) into the bottom half of the preheated (300 °C) die set mounted in a 

hydraulic press. The top and bottom dies were closed. An applied pressure of 90 MPa was 

exerted on the molten metal and maintained until the entire casting solidified.  

Table 8-1 Chemical composition of A380 (in wt.%) 

Materials Si Cu Fe Mn Mg Zn Ni Sr Other 

A380 8.5 3.5 1.3 0.5 0.1 3.0 0.5 N/A 0.5 

A380+2wt. % Ni 8.5 3.5 1.3 0.5 0.1 3.0 2.5 N/A 0.5 

A380+2wt. % Ni+ 

0.02wt. % Sr 
8.5 3.5 1.3 0.5 0.1 3.0 2.5 0. 02 0.5 

 

8.2.2 Microstructural Analysis 

Specimens were sectioned, mounted, and polished from the center of the squeeze disk and 

prepared following the standard metallographic procedures. A Buehler (Lake Bluff, IL) 

optical image analyzer 2002 system was used to observe primary characteristics of the 

specimens. The detailed features of the microstructure were also characterized at high 

magnifications by a scanning electron microscope (SEM), Hitachi Tabletop Microscope 
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TM3000, with a maximum resolution of 30 nm in a backscattered mode/1 µminx-ray 

diffraction mapping mode, and useful magnification of 10 to 30,000. To maximize 

composition reading of the energy dispersive spectroscopy (EDS) data, an etchant of 0.1 % 

NaOH solution was applied to polished specimens for microscopic examination. Fractured 

surfaces of tensile specimens were analyzed by the SEM to ascertain the nature of fracture 

mechanisms. Samples for TEM (JOEL 2010F) analyses were prepared by focus ion beam 

(FIB) (Zeiss NVision 40) using STEM modulus for investigation. To prevent the fall-off 

of the tiny nanoparticle, a tungsten coating was applied to the cross-section surface of the 

MHNC foil prepared by the FIB before the TEM observation. The X-ray diffraction (XRD) 

machine used in this study for phase identification was a Rigaku Ultima IV X-Ray 

Diffraction Spectrometer with a D/teX Ultra high speed solid state detector.  X-radiation 

was produced by a copper (Cu) X-ray tube running at 40kV and 44mA. Diffraction data 

for a bulk sample were collected over a range of angles from 10° to 70°, at a step size of 

0.04° and typically a scan rate of 1.2° per minute 

8.2.3 Tensile Testing 

The mechanical properties of both the squeeze cast conventional and Ni and Sr-containing 

A380 alloys were evaluated by tensile testing, which was performed at elevated 

temperature which is controlled by a closed band heater. The tensile test machine used in 

this study is a MTS criterion Tensile Test Machine (Model 43) equipped with a data 

acquisition system. Following ASTM B557, flat tensile specimens (25 mm in gage length, 

6 mm in width, and 4 mm in thickness) were machined from the squeeze cast disks. The 
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tensile properties, including 0.2% yield strength (YS), ultimate tensile strength (UTS), and 

elongation to failure (Ef), were obtained based on the average of three tests. 

8.2.4 Thermal Analysis 

Heat curve measurements of samples were performed on a Differential Scanning 

Calorimetry-Thermogravimetric Analyzer (DSC-TGA Q600) manufactured by TA 

instrument (New Castel, DE, USA) for the identification of phase change and 

transformation. An argon flow rate of 100 mL/min was utilized to prevent samples 

contaminated and oxidized during and after DSC runs. The measurements were carried out 

with a heating and cooling rate of 10ºC/min over the temperature range of 30 to 700ºC. 

8.3 Results and discussion 

8.3.1 Microstructure 

The microstructure of the etched squeeze cast A380 alloys and Ni/Sr containing A380 

revealed by optical microscopy and SEM are shown in Figure 8-1. Figure 8-1 (a) shows 

the microstructure of the squeeze cast conventional A380 alloys with a 30mm section 

thickness. Its microstructure mainly consists of the primary α-Al and eutectic phases 

surrounding their boundaries. The SEM results (Figure 8-1(b)) display the eutectic phases 

(bright contrast), which are present in a matrix (dark contrast) of the primary α-Al solid 

solution and tends to form a network surrounding the primary phase. Three different types 

of the eutectic phases were identified by the EDS analysis as Al5FeSi phase, Al2Cu 

intermetallic and needle shaped Si phases. In comparison of Figure 8-1 (a)(b) and (c)(d), 

the addition of 2%Ni element enhanced the size and quantity of intermetallic phases 
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(Al7Cu4Ni and Al9FeNi). Figure 8-1 (e) and (f) presents the optical and SEM micrograph 

of A380+2 wt.% Ni+0.02 wt.% Sr. Similar to Figure 8-1 (c) (d), the intermetallic phases 

in A380+2 wt.% Ni+0.02 wt.% Sr spicimen was enhanced due to the addiiton of 2wt.% Ni. 

More importantly, the addition of 0.02wt. % Sr addtion successfully changed the 

morphology of eutectic silicon phase from acicular (plate or needle-like) to fibrous shape. 

However, micro-porosity was also observed with the Sr addition as shown in Figure 8-2. 

The formation of porosity due to the addition of Sr was reported by other research. With 

the application of squeeze casting, the amount of porosity was  effectively minimized, and 

the sizes of pores  was controlled in a micron scale.  
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(e) 

 

(f) 

Figure 8-1 Optical and SEM micrographs showing as-cast microstrucrtue in squeeze cast 

A380 (a, b), A380+2wt.%Ni (c, d) and A380+2wt.%Ni+0.02wt.% Sr (e, f) 

Al7Cu4Ni 

Al9FeNi 

α-Al 

Si 
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Figure 8-2 SEM micrograph showing the presence of micron-sized pores in the squeeze 

cast alloy, A380+2wt.%Ni+0.02wt.% Sr. 

8.3.2 Tensile Properties 

Tensile tests were conducted to measure the mechanical properties of conventional A380 

with different alloying elements and testing temperature, and the results are shown in 

Figure 8-3. The ultimate tensile strength, yield tensile strength and elongation at failure of 

the conventional A380 as cast condition are 200.3 MPa, 92.0 MPa and 2.9%, respectively 

at room temperature. With the addition of Ni with or without Sr, both the ultimate tensile 

and yield strength increased effectively. By 2 wt.% of Ni addition, the UTS and YS 

increased to 225.4 MPa and 128.0 MPa which were 12.5% and 39% improvements. With 

the modifier of Sr added, the strengths of alloy at room temperature further increased to 

247.4 MPa and 170.3 MPa for UTS and YS respectively. However, the addition of 

transition element Ni tended to decrease the ductility of alloy regardless the variation of 

Porosity 



 

175 
 

temperature. This could be related to the formation of hard and brittle Ni-containing 

intermetallic presented in Figure 8-1. Moreover, the tensile properties at high temperatures 

showed that the same tendency of improvements with Ni and Sr addition in comparison 

with the conventional A380 alloy. At the elevated temperatures of 100, 200, 300oC, the 

UTS and YS of A380 were 177.1, 148.3, 70.6, 84.0, 92.4 and 69.6MPa respectively. With 

2 wt.% Ni additions, the UTS became 196.0 MPa, 171.1MPa and 89.9 MPa while the YS 

were tested to be 90.8 MPa, 101.7 MPa and 77.7 MPa at the high testing temperatures of 

100, 200 and 300 oC, respectively. With 2 wt.% Ni and 0.02 wt.% Sr additions, the UTS 

were tested to be 204.9 MPa, 168.6 MPa and 90.2 MPa while the YS were tested to be 90.4 

MPa, 103.1 MPa and 78.2 MPa at the high testing temperatures of 100, 200 and 300 oC, 

respectively. Table 8-2 summarizes the tensile properties of A380, A380 +2% Ni and A380 

+2%Ni +0.02% Sr at both room temperature and elevated temperatures. The improvements 

of the strengths by the addition of Ni and Sr over those of the conventional A380 alloy 

were quantified into percentage changes which are presented in Figure 8-4. The 

observation on the trend of the clustered column indicated that, at room temperature, the 

as-cast strengths of A380 alloy was dramatically improved (23.5% for UTS and 85.2% for 

YS) because of both the Ni and Sr addition. However, as temperature increased, the 

influence of Sr addition appeared to be less significant.  This was because, at 300 oC, the 

improvements on UTS and YS by both the 2 wt.% Ni+2 wt.% Sr addition were calculated 

to be 27.8% and 12.4%, while A380+2 wt. % Ni showed also 27.4% and 11.7% 

improvements. This observation indicated that, the improvements of the strengths of Al-

Si-Cu alloy at high temperatures should be mainly result from the presence of the Ni-

containing intermetallics.  
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(c) 

Figure 8-3 Tensile test results of A380, A380+2% Ni and A380+2% Ni+0.02% Sr as 

function of the testing temperature, (a) UTS, (b) YS, and (c) strain (elongation). 
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Table 8-2 Tensile Properties of A380, A380 +2% Ni and A380 +2%Ni +0.02% Sr at 

both room temperature and elevated temperatures. 

 

Alloys 
Tensile 

Properties 

Temperature 

25 

( oC) 
100 

( oC) 
200 

( oC) 
300 

( oC) 

A380 
 

UTS 

(MPa) 
200.3±3.4 177.1±8.3 148.3±2.3 70.6±6.7 

YS 

(MPa) 
92.0±4.3 84.0±3.8 92.4±6.7 69.6±9.8 

Ef 

(%) 
2.9±0.1 3.3±0.3 4.8±0.7 5.7±0.4 

A380 +2% Ni 
 

UTS 

(MPa) 
225.4±1.7 196.0±6.4 171.1±4.0 89.9±3.9 

YS 

(MPa) 
128.0±4.6 90.8±9.4 101.7±10.4 77.7±1.9 

Ef 

(%) 
2.1±0.1 2.9±0.5 3.1±0.5 3.7±0.3 

A380 +2%Ni 
+0.02% Sr 

UTS 

(MPa) 
247.4±9.1 204.9±8.6 168.6±7.6 90.2±4.2 

YS 

(MPa) 
170.3±8.5 90.4±3.3 103.1±9.6 78.2±1.7 

Ef 

(%) 
1.9±0.4 3.0±0.3 3.1±0.2 4.5±0.1 
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Figure 8-4 Percentage changes in terms of strength improvements for A380+2% Ni and 

A380+2% Ni+0.02% Sr at elevated temperatures in comparison with the base A380 

alloy. 

8.3.3 Thermal Analysis 

It was clearly indicated by the tensile testing results that the addition of transition element 

Ni should be primarily responsible for the strength improvement at high temperatures. The 

effect of Ni addition on the phase change and transformation of alloy A380 was studied by 

the thermal analysis of differential scanning calorimetry (DSC). Figure 8-5 illustrates the 

DSC heating trace curves for two performed runs for the conventional A380 and 2%Ni 

enhanced alloys. As suggested by the previous research, on a DSC curve, every peak 

corresponds to one or more exothermic reactions of phase change or transformation. A 

trough appears while a reaction resulting from phase change or transformation becomes 

endothermic (Ed) [49]. As shown evidently in Figure 8-5, was one major trough in each 
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heating curve appeared with two or more additional weak troughs. Totally, four troughs 

were presented in the A380 heating DSC curve, while only three troughs were observed in 

the A380+2%Ni curve. Troughs in each curve were labelled as Ed1, Ed2, Ed3 and Ed4 

from low to high temperatures which are listed in Table 8-3. The corresponding reaction 

of each endothermic trough for A380 alloy was well studied by the previous research. The 

endothermic transition Ed1 taking place at 512.66°C represented the melting of eutectic 

Al2Cu (θ). The Ed2 at 527.01°C represented the melting of eutectic Si (β). The trough at 

573.94°C was owing to the melting of Al5FeSi (β). The endothermic transition with the 

highest temperature of 588.22°C was induced by the melting of primary α-Al phase [50]. 

With the addition of transition element Ni, only three obvious troughs were detected. With 

the addition of 2% Ni, Ed1 and Ed3 troughs were observed to be right shifted, which 

implied the increase of temperature for the endothermic reactions. Meanwhile, the addition 

of Ni content lowered the temperature of the endothermic reaction Ed2. Such variation of 

the heating DSC curve should be related to the change of microstructure regarding the Ni 

enhancement of the alloy. With the addition of Ni element into A380 alloy, complex Ni-

containing intermetallic phases such Al-Fe-Ni and Al-Cu-Ni were formed [11-13]. Such 

Ni-containing intermetallic phases were temperature-sensitive to variation of Ni content. It 

was indicated by Gogebakan [51] and Liu [52] that the liquidus temperature of Al-Cu-Ni 

showed an increasing trend with the increase of Ni content. For Al-Fe-Ni, the increase of 

Ni element decreased the liquidus point of alloy [52, 53].  
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Figure 8-5 Typical DSC curves at a heating rate of 10 °C/min for the as-cast A380 and 

A380+2%Ni alloy 

 

Table 8-3 Temperatures of phase transformation and change in DSC heating curves of 

A380 and A380 +2% Ni alloys 

SAMPLE TROUGHS TEMPERATURE (°C) 

A380 Ed1: 512.66, Ed2: 527.01, Ed3 573.94, Ed4:588.22 

A380+2%NI Ed1: 548.13,  Ed2: 572.93,  Ed3:590.23 
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Figure 8-6 XRD patterns of the examined A380+ 2 wt. % Ni alloy. 

Figure 8-6 shows the XRD pattern taken from the A380+2 wt. % Ni alloy. As can be seen, 

beside the existing intermetallic Al2Cu which was also present in A380, a new Ni-

containing intermetallic phase Al7Cu4Ni was detected in the examined A380+2 wt. % Ni 

alloy. A close observation on the Ni-containing intermetallic was made through TEM 

analysis as shown in Figure 8-7. Since A380 alloy contained relatively high amount of Cu 

element as 3.5 wt. %, the Ni addition promoted the formation of the Ni-containing 

intermetallic of Al7Cu4Ni identified by TEM as shown in Figure 8-7 (a). However, nano-

sized Al2Cu intermetallic was found inside the Al7Cu4Ni phase. This TEM observation on 

the presence of the nano-sized Al2Cu phase suggested that the amount of the added Ni 

might be insufficient to deplete all the Cu content during the formation of Al7Cu4Ni phase. 

The amount of undepleted Cu was kept in the phase of Al2Cu with Al. Based on the 

formation temperatures detected by DSC, the Al2Cu phase formed at the temperature of 
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512.66oC in A380 alloy, which should be the first stage of the melting or the last stage of 

the solidification process. After the formation of Al7Cu4Ni intermetallic at 572.93oC, the 

undepleted Cu element precipitated into the form of nano-sized Al2Cu. 
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(b) 

 

(c) 

Figure 8-7 Transmission electron micrographs of (a) Ni-containing intermetallic, (b) 

schematic EDS diagrams of Al7Cu4Ni and Al2Cu phases and (c) diffraction pattern of 

Al7Cu4Ni phase 
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8.4 Conclusions 

The influence of transition alloying element nickel and alkaline earth element strontium on 

the microstructure, solidification and tensile properties at elevated temperature of squeeze 

cast Al-Si-Cu alloy was investigated and compared with conventional Al-Si-Cu alloy 

(A380). The observation on microstructure indicated that, the Ni addition promoted the 

formation of Ni-containing ternary phases which were absent in the base A380 alloy. With 

the addition of Sr, the eutectic Si phase in A380 alloy was modified to a fine fibrous 

structure from a flake-like shape. The results of tensile testing at the elevated temperature 

of 300 oC indicated that the A380 +2% Ni  alloy exhibited a significantly improvement on 

tensile properties, specifically the ultimate tensile strength of 89.9 MPa and yield strength 

of 77.7 MPa compared with those (UTS： 70.6 MPa and YS: 69.6 MPa) of the A380. The 

influence of Sr addition on the strengths became insignificant with the increasing 

temperatures. The TEM and XRD analysis indicated that the improvements of the high 

temperature strengths resulted from the presence of the relatively high temperature phase 

of micron-sized Al7Cu4Ni in a large quantity with the embedded nano-sized Al2Cu phase, 

while there was only the micron-sized Al2Cu in the A380 alloy. The results of the DSC 

manifested that the presence of Ni-containing intermetallic notably shifted the phase 

change to the high temperatures.  
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CHAPTER 9 

Conclusions 

The aim of this study is to develop new casting aluminum alloys and processing 

technologies for production of lightweight powertrain components with as cast high 

strengths. The development of the new casting aluminum alloys is based on the existing 

widely used aluminum alloy A380. Squeeze casting as an advanced casting technique is 

applied in this study. The effect on transition element Ni addition on the mechanical 

properties, phase morphology, solidification of A380 alloy were studied. Alkaline earth 

element Sr was considered as the modifier for Al-Si-Cu alloy. The effect of Sr addition on 

the modification and influence on mechanical properties were investigated. Design of 

experiment (DOE) technique, the Taguchi method, was used to develop as-cast high 

strength aluminum alloys with element additions of Si, Cu, Ni and Sr. The main 

conclusions from this work could be drawn as following: 

1. In comparison with conventional die casting, squeeze casting is effective to eliminate 

the formation of porosity in aluminum alloy A380 and consequently increase the 

mechanical properties of aluminum alloy A380. The microstructure analyses showed 

that the squeeze cast A380 has a porosity level of 0.41% which is much lower than the 

die cast counterpart (2.32%). The significant improvements in UTS (24%) and 

elongation (440%) of the squeeze cast A380 over the die cast alloy have been achieved.  

2. Despite that both the squeeze and die cast specimens contain the primary α-Al, Al2Cu, 

Al5FeSi phase, and the eutectic Si phase, the Al2Cu phase present in the squeeze cast 

alloy is relatively large in size and quantity which is also responsible for the 

improvement of mechanical properties of squeeze casting A380.  
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3. The A380 cast by squeeze casting has resilience and tensile toughness higher than the 

die cast one. This implies that the squeeze cast A380 is a good material candidate to 

absorb energy during static loading condition and resist energy loads in engineering 

application during service. Moreover, the analysis of fracture surfaces shows that the 

squeeze cast A380 displays the characteristics of ductile fracture, whereas the die cast 

one exhibits brittle fracture modes. 

4. The transition element Ni is found to be effective for improvement of squeeze cast 

hypoeutectic Al–Si–Cu (A380) alloy on the tensile properties. The results of tensile 

testing indicate that the UTS, YS and elastic modulus increase with an increase in Ni 

content. With the introduction of the 2.0 wt.% Ni addition, the UTS, YS, E and Ur of 

the 2.0Ni/A380 alloy to an increase by 13, 39, 38 and 13% over those of the base A380 

alloy, respectively.  

5. The observation of the microstructure suggests that the introduction of the transition 

element Ni, results in the formation of Ni-containing intermetallic phases in the alloy. 

The presence of the large amount of intermetallic is responsible for the change of 

mechanical properties of the tested alloys.  

6. The observation of the high eutectic temperatures of intermetallic on the cooling curve 

of the A380+2%Ni alloy implies the formation of Ni-containing ternary phase slows 

down the solidification process of the A380+2%Ni alloy. The detection of the Ni-

containing ternary phase in large quantity present in the microstructure of the 

A380+2%Ni alloy supports the results of the thermal analyses.   
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7. The alkaline earth element Sr was confirmed to be an effective modifier for eutectic Si 

phase in A380 alloy. With the addition of Sr, the morphology of eutectic Si phase in 

A380 alloy is modified to a fine fibrous structure from a flakelike shape.  

8. The UTS and YS of squeeze cast components with Ni and Sr addition shows a 12% 

and 86% improvement in comparison of squeeze cast A380 alloy.  

9. The higher strain-hardening rates of the Ni- and Sr-containing A380 alloy indicate that 

the alloy is able spontaneously to strengthen itself increasingly to a large extent, in 

response to certain plastic deformation prior to fracture.  

10. Taguchi method has been successfully applied in development of novel aluminum 

alloys for optimizing the addition levels of one metalloid element (Si), two transient 

elements (Cu and Ni), and one alkaline earth element (Sr). The multiple performance 

mechanical properties such as ultimate strength, elongation at failure and yield strength 

were simultaneously considered and improved through this optimization technique.  

11. The maximum multi-response S/N ratio (38.21) was achieved by confirm experiment 

with optimum level of A2B3C3D1(9% Si, 7% Cu, 0.03% Sr and 0.5% Ni). This 

confirms that Taguchi method is reliable to design high strength aluminum alloy. The 

alloy with the optimal composition had an average UTS of 267.00 MPa, an elongation 

at failure of 1.13% and a yield strength of 210.37 MPa under the as-cast condition for 

a squeeze casting with a section thickness of 25 mm.  

12. For different engineering applications which could employ the developed alloys, the 

sequence of the four factors (Si, Cu, Su and Ni) affecting the tensile properties varied. 

For applications aiming at improving the strengths of the alloys, Si and Ni content had 

the major contribution on the tensile properties (Si:31.3% and Ni:31.1%).  
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13. The results of tensile testing at the elevated temperatures indicated that the Ni addition 

to the A380 significantly improved its tensile properties.  In particular, at 300 oC, the 

A380 +2% Ni alloy had the ultimate tensile strength of 89.9 MPa and yield strength of 

77.7 MPa, which showed the improvement of 27.8% and 12.4% over those (UTS： 

70.6 MPa and YS: 69.6 MPa) of the A380. The influence of Sr addition on the strengths 

became insignificant with the increasing temperatures. 

14. The XRD and TEM analyses revealed that the addition of 2 wt.% Ni to the A380 

promoted the formation of micron-sized Al7Cu4Ni intemetallics and reduced the size 

of Al2Cu phase to a nano scale. The presence of micron-sized Al7Cu4Ni intemetallics 

and nano Al2Cu particles enhanced the UTS and YS at both the room and elevated 

temperatures. 
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CHAPTER 10 

Future Work 

This study carried out in this thesis provides the groundwork to pursue further 

investigations in the future. The following aspects are worth exploring. 

 To investigate the castability of the developed novel aluminum in aspects such as 

fluidity and hot tearing tendency. 

 To further explore the limitation of the mechanical properties of the developed 

aluminum, the effect of heat treatment needs to be investigated. 

 To optimize squeeze casting process parameters including applied pressure levels, die 

temperature, liquid metal pouring temperatures and pressure holding times.  

 To investigate the relations between the mechanical properties and the interfacial heat 

transfer coefficients and cooling behaviour of the developed Ni and/or Sr-containing 

hypoeutectic aluminum alloy 
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