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ABSTRACT 

This work presents three papers, those are mainly focused on the numerical simulations in 

order to scrutinize the force characteristics, wake structures and turbulence properties of 

the flow past a torus. The first paper compares the performance of URANS, LES, and 

IDDES turbulence models for simulating the flow around a torus with an aspect ratio of 3, 

at the Reynolds number of 9000, in terms of accuracy and cost-effectiveness. URANS fails 

to capture the turbulent nature of the flow, albeit it reliably predicts the mean flow. IDDES 

is found to be the optimal approach for this problem. It is less computationally expensive 

compared with LES, while the results provided are in accordance with those for LES and 

the documented experiments in the literature. In the second paper, an LES approach is 

carried out to study the effects of torus aspect ratio (AR) on the flow characteristics at the 

Reynolds number of 9000. Three aspect ratios of 2, 3 and 5 are investigated. For AR=2 and 

3, the wake structure shows an asymmetric helical shedding pattern. For AR=5, a regular 

patterns of quasi-axisymmetric rings are observed downstream of the torus shedding 

alternately in the streamwise direction. It is followed by a paper examining the Reynolds 

number effects on the vortical structure and the shedding pattern of the flow behind a torus 

with an aspect ratio of 3, utilizing IDDES, a hybrid RANS-LES method. Three Reynolds 

numbers of 150, 1500 and 15000 are studied and compared. For Re=150, the wake is 

laminar and exhibits a large-scale hairpin structure shedding alternately from the opposite 

side of the centerline axis. For Re=1500 and 15000, the wake stands in the turbulent 

regime. The vortical structure has a helical shedding pattern that disperses chaotically 

around the centerline axis. The striking difference between the Re=1500 and 15000 is the 

onset of the vortex roll-up, that occurs closer to the torus leeward surface for the Re=15000.  
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CHAPTER 1 

INTRODUCTION 

1-1- What is a Torus? 

Torus is a surface of revolution generated by revolving a circle in three-dimensional space 

about an axis coplanar with the circle. If the axis of revolution does not touch the circle, 

the surface has a ring shape and is called a torus of revolution [1]. Doughnuts, lifebuoys, 

O-rings, inner tubes, smoke rings, and buoyant vortex rings are all the real-world examples 

of toroidal objects. Figure 1-1 shows the schematic representation of a torus. 

 

Figure 1- 1- Schematic representation of a torus 

 

A torus can be defined parametrically by the following expressions: 

𝑥(𝜃, 𝜑) = (𝑅 + 𝑟𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜑          (1 − 1) 

𝑦(𝜃, 𝜑) = (𝑅 + 𝑟𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜑          (1 − 2) 

𝑧(𝜃, 𝜑) = 𝑟𝑠𝑖𝑛𝜑          (1 − 3) 

Where 𝜃 and 𝜑 are angles which make a full circle and they both are between 0 and 2𝜋. 𝑅 

and 𝑟, are main and core radius, respectively. The implicit equation for a torus in Cartesian 

coordinates is also defined as follows: 

[𝑅 − √𝑥2 + 𝑦2] + 𝑧2 = 𝑟2          (1 − 4) 
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Or 

[𝑥2 + 𝑦2 + 𝑧2 + 𝑅2 − 𝑟2] = 4𝑅2(𝑥2 + 𝑦2)         (1 − 5) 

1-2- Background and Motivation 

The flow around bluff bodies has received considerable attention during the past decades, 

both from fundamental and engineering point of view. Flow behind the cylinder, sphere, 

and disks, in particular, have been extensively studied with a wide range of analytical, 

experimental and numerical methods. Despite being prevalent in many engineering and 

biological aspects, the flow around the toroidal body, has been afforded limited attention 

in the literature. 

The dissimilarity between the wake structure of the cylinder [2] and that of the sphere [3, 

4], inspired researchers to investigate the geometric effect on the flow over the torus with 

different aspect ratio. Studying the flow over a torus can provide us with a profound 

understanding of flow challenges with micelles [5], bio-fluid mechanics for DNA polymers 

[6], drag and heat transfer of helical heating tubes [7], motion of natural micro-swimmers 

such as helical flagella [8], and most recently, flow behind a toroidal construction [9]. 

In general, there are two primary factors involved in the variation of the torus wake 

structure. The first one is Reynolds number and the second one is aspect ratio (AR). AR 

can be defined as the ratio of the main diameter to the core diameter (cross-sectional 

diameter) of the torus [10]: 

𝐴𝑅 =
𝐷

𝑑
          (1 − 6) 

With increasing aspect ratio, the axisymmetric body varies from a sphere at 𝐴𝑅 = 0 to a 

circular cylinder as AR approaches infinity. 

1-3- Literature Review 

One of the earliest investigations was conducted by Roshko [11]. He showed 

experimentally that the vortex shedding of a torus with an aspect ratio of 10 is almost the 

same as a circular cylinder. He also found a decrease in frequency between the flow past 

rings and the flow past a circular cylinder. This seminal study stimulated many researchers 
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to investigate the flow past a torus. Bearman and Takomoto [12] performed a wind tunnel 

test to investigate the wake structure of disks and non-circular rings. They proposed that a 

distinct change in the wake flow of the rings occurs when the outer diameter is about 50% 

larger than the inner diameter. This marks a division between a flow mode with strong, 

periodic and approximately axisymmetric vortex rings, as well as a shedding of weaker 

vortex structures which generate out of phase velocity fluctuations across the wake. 

 Monson [13] studied the drag and vortex shedding behind rings of various diameters 

falling through a fluid, that makes Strouhal number measuring difficult. A variety of 

shedding patterns were observed and, as the aspect ratio increases, the force coefficients 

and shedding patterns approach those for the circular cylinder. This geometrical 

characteristic of the ring motivated Leweke and Provansal [14], who investigated the wake 

of the bluff rings both experimentally and by application of the phenomenological 

Ginzburg-Landau model. They used rings with large aspect ratios to approximate the wake 

behind a circular cylinder without end effects. The study of the periodic vortex shedding 

regime shows the existence of discrete shedding modes, in which the wake takes the form 

of parallel vortex rings or oblique helical vortices, depending on initial conditions. Inoue 

et al [15] used an Ultrasonic Doppler Velocity Profiling (UVP) monitor to study the vortex 

shedding of the torus for aspect ratios of 3 and 5 at a Reynolds number of 1500. They 

observed quite a distinct wake structure for these two aspect ratios. The critical aspect ratio 

at which the flow past a ring switches from a circular-cylinder-type vortex shedding to 

sphere-type hairpin wake was suggested by Monson [13] to occur at 𝐴𝑅 ≈ 4.5. The recent 

well-resolved numerical study of Sheard et al [16] predicts this switch to occur at an aspect 

ratio of 𝐴𝑅 ≈ 3.9. 

A study of non-axisymmetric instability modes of the wakes of rings by application of a 

linear stability analysis scheme was made by Sheard et al [16, 10]. The lengthscale for their 

Reynolds number calculations was the core diameter (d) of the ring. The analysis predicted 

modes of vortex shedding analogous to both the Mode A and Mode B transition modes 

identified in the flow past the circular cylinder experimentally [17], and by numerical 

stability analysis [18, 19]. The critical Reynolds numbers for the Mode A and Mode B 

transitions in the wakes of rings varied over the ranges 188 ≤ 𝑅𝑒 ≤ 200 and 258 ≤ 𝑅𝑒 ≤
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300 , respectively. The azimuthal wavelengths for the modes were found to be 

approximately 3.9𝑑 for the Mode A instability and 0.8𝑑 for the Mode B instability in good 

agreement with numerical stability analysis of the flow past a circular cylinder [18]. 

Evidence of a third non-axisymmetric instability was also found by Sheard et al [16, 10]. 

A real subharmonic transition mode was predicted to be unstable for azimuthal 

wavelengths 1.6𝑑 < 𝜆 < 1.7𝑑 . These previous studies employed a power method for 

determining the Floquet mode. Sheard et al [10, 20, 21] then performed a detailed study by 

utilizing the linear Floquet stability analysis. The flow and transition characteristics over 

the whole aspect ratio range 0 ≤ 𝐴𝑅 ≤ ∞  were summarized. The development of a 

subharmonic three-dimensional instability in a vortex street downstream of a torus was 

studied both experimentally and numerically by Sheard et al [22]. They confirmed that the 

subharmonic instability does not initiate a period doubling cascade in the wake by 

performing simulations at higher Reynolds numbers. Sheard et al [23] also provided 

detailed data on variations in the drag coefficient for the low Reynolds number flow past 

tori. 

 Yu et al [24] examine the detailed wake structure behind the tori with the aspect ratios less 

than 5 at the Reynolds numbers less than 200. The present results indicate the existence of 

different types of wake structure. They proposed that at very low Reynolds numbers, the 

flow fully attaches to the torus. At higher Reynolds numbers, depending on the aspect ratio 

and the value of the Reynolds number, the detached recirculating zone on the axis, the 

attached recirculating zone, and the detached recirculating zone behind the torus tube may 

appear separately or concurrently. Six flow scenarios with different wake behaviors are 

identified, namely the no-recirculating-zone regime, the single-detached-recirculating-

zone regime, the single-attached-recirculating zone regime, the two –recirculating zone 

regime I, the two-recirculating zone regime II, and the three-recirculating zone regime. 

They also found the value of minimum threshold levels of maximum vorticity for the onset 

of the first recirculating zone.  

A most recent study was completed by Yu et al [25], who performed a direct numerical 

simulation (DNS) of the steady flow around an inclined and straight torus over a range of 
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aspect ratios between 2 and 3 at the Reynolds number less than 50. They examined the drag 

and lift coefficients and related their trends to the physical structure of recirculation zone. 

The primary and most relevant results for the flow behind a torus (at 𝑅𝑒 ≤ 300) from the 

literature have been summarized in the table below: 

Table 1- 1- Summary of the primary findings in the literature about the flow behind the toroidal 

bodies 

Aspect Ratio Reynolds Number Strouhal Number Flow Pattern 

𝐴𝑅 < 3.9 

 

𝑅𝑒 < 80 

 
- Steady flow 

80 < 𝑅𝑒 < 300 

 

Smaller than that of a 

circular cylinder 

Analogous to a 

sphere or disk wake 

structure (Oblique 

vortex loops) 

𝐴𝑅 > 3.9 

 

𝑅𝑒 < 50 

 
- Steady flow 

50 > 𝑅𝑒 > 300 

 

Strouhal number is the 

function of vortex 

shedding angle with 

respect to the torus 

centerline 

Similar to a circular 

cylinder 

(Axisymmetric 

vortex shedding) 

 

1-4- Thesis Objectives 

Previous studies have been mostly based on experimental methods and often carried out at 

low Reynolds numbers. When Reynolds number exceeds roughly 1000, the wake flow 

behind the torus changes from laminar to turbulence regime. Only a few numerical studies 

have been performed on turbulent wake flow; nonetheless, the detailed information on 

force characteristics, turbulent structures and shedding frequency at the higher Reynolds 

numbers, and the geometrical effects (i.e. aspect ratio) on the aforementioned parameters 

for the turbulent wake regime are not available in the literature. Additionally, the literature 

lacks a useful study on the assessment of the CFD methods to simulate the wake structure 
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behind a torus, particularly at the Reynolds numbers more than 1000. Therefore, the thesis 

is aimed to scrutinize the following items: 

1- Assessment of the turbulence models: URANS, LES and IDDES for simulating the 

flow past a torus by studying the force characteristics, turbulent structures and 

computational costs at relatively high Reynolds number (9000). Results were then 

compared with experimental data. 

2- Geometric impact, particularly the effect of increasing the aspect ratio from 2 to 5, 

on the variation of the force characteristics, shedding frequencies and wake 

structure of the torus at a constant Reynolds number of 9000 by LES. 

3- Reynolds number effect on the flow around a torus with a constant aspect ratio 

using IDDES. The primary focus was come into the force characteristics and 

vortical structures at three Reynolds numbers of 150, 1500 and 15000. 
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CHAPTER 2 

ASSESSMENT OF THE TURBULENCE MODELS: URANS 

VS LES AND IDDES 

2-1- Introduction 

The geometry of a torus can be described by the aspect ratio (𝐴𝑅), defined as the ratio of 

the mean diameter 𝐷 to the core diameter 𝑑 of the torus (Figure 2-1). With increasing 

aspect ratio, the axisymmetric body varies from a sphere at 𝐴𝑅 = 0 to a circular cylinder 

as AR approaches infinity [1]. The exquisite variation in wake structures from sphere to 

cylinder [2] has captivated many interesting studies. On its own, it stands as an essential 

fundamental fluid mechanic problem. Practically, flow across a torus spans into 

applications such as micelles [3], drag and heat transfer of helical heating tubes [4], and 

the underwater compressed air energy systems (UWCAES) and flow behind a laminar 

buoyant vortex ring [5, 6]. 

Roshko [7] pioneered the study of the flow past a torus, he found that the vortex shedding 

of a torus with AR=10 is almost the same as those shed from a circular cylinder. He also 

noted that the shedding frequency decreases behind a torus to that downstream of a circular 

cylinder. This study inspired many researchers to investigate flow past a torus. Bearman 

and Takomoto [8] investigated the wake structure of discs and bluff rings experimentally 

in a wind tunnel. They proposed that a distinct change in the wake flow of the rings occurs 

when the outer diameter is about 50% larger than the inner diameter. This marks a division 

between a flow mode with strong, periodic and approximately axisymmetric vortex rings 

and a shedding of weaker vortex structures which generate out of phase velocity 

fluctuations across the wake. Inoue et al. [9] used an Ultrasonic Doppler Velocity Profiling 

(UVP) monitor to study the vortex shedding of the torus with AR=3 and 5 at a Reynolds 

number of 1500. They monitored the different wake structure for these two aspect ratios. 

Wang et al. [10] simulated flow past a torus with AR=0.5 and 2 by comparing the results 

with sphere wake structure and found them to be very similar. The wake structure of a torus 

at Reynolds number less than 300 have been investigated extensively. It was found that the 

wake structure for 0 < 𝐴𝑅 ≤ 3.9, is analogous to a sphere or disk wake structure; and for 
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3.9 < 𝐴𝑅 < ∞, the wake structure becomes axisymmetric vortex sheets similar to the 

circular cylinder without end effects [1, 7, 8, 11, 12, 13, 14].  

The study of the wake for aspect ratio less than 3.9 is fairly challenging, as the flow pattern 

is asymmetric. Thus a few attempts [14, 15] have been confined to low Reynolds number. 

The experiments of Manson involved observing a ring falling through a liquid, making 

Strouhal-number measurement difficult [12]. Leweke and Provansal [13] investigated the 

wake of the bluff rings both experimentally and by application of the phenomenological 

Ginzburg-Landau model. The study of the periodic vortex shedding regime shows the 

existence of discrete shedding modes, in which the wake takes the form of parallel vortex 

rings or oblique helical vortices, depending on initial conditions. A most recent study was 

completed by Yu et al [16]. They performed direct numerical simulation of the steady flow 

around an inclined torus over a range of aspect ratios between 2 and 3 and Reynolds 

numbers less than 50. They examined the drag and lift coefficient of the torus and related 

their trends to the physical structure of recirculation zones. 

It is clear that torus is of both fundamental and practical importance. Thus, this study aims 

at further the understanding of a torus with an aspect ratio of 3 at a relatively high Reynolds 

number of 9000. The numerical approach is invoked to provide flow details for explaining 

force characteristics, turbulence properties and vortical structure of the flow around a torus. 

Evaluating the fidelity versus cost-effectiveness of the turbulence models is the secondary 

objective, as such URANS SST k−𝜔, LES and IDDES in the commercial software ANSYS 

FLUENT 18.0 are utilized and compared.  

 

Figure 2- 1- Schematic representation of a torus 



 

12 
 

2-2- Numerical Analysis 

2-2-1- Turbulence Models Formulations 

The Navier-Stokes equations can be solved directly by direct numerical simulation (DNS) 

method. However, DNS is computationally hugely expensive since it resolves all the 

turbulence scales without any modelling. Thus, Reynolds-averaged Navier-Stokes 

equations (RANS) and large eddy simulation (LES) are two commonly used approaches 

for simulation of turbulent flow [17]. Three turbulence models are considered in this papers 

namely, 𝑘 − 𝜔 𝑆𝑆𝑇 (The URANS model), 𝐿𝐸𝑆 and 𝐼𝐷𝐷𝐸𝑆.  

2-2-1-1 Shear Stress Transport (SST) 𝒌 −𝝎  

Shear stress transport (SST) 𝑘 − 𝜔 , is one of the most accurate unsteady Reynolds-

averaged Navier-Stokes (URANS) equations, that is suitable for aerodynamic flows 

applications [18]. The SST formulation combines two turbulence models: 1) Wilcox 𝑘 −

𝜔 model in the near-wall region 2) 𝑘 − 휀 model in the fully-turbulent region far from the 

wall. The model comprises two equations, one for the specific turbulent kinetic energy (𝑘) 

and one for specific turbulent frequency (𝜔): 

𝜕
𝜕𝑡⁄ (𝜌𝑘) + 𝜕 𝜕𝑥𝑗

⁄ (𝜌𝑘𝑢𝑖) =
𝜕
𝜕𝑥𝑗
⁄ (𝜇𝑘

𝜕
𝜕𝑥𝑗
⁄ 𝑘) + 𝑃�̃� − 𝛽

∗𝜌𝑘𝜔          (2 − 1) 

 

𝜕
𝜕𝑡⁄ (𝜌𝜔) + 𝜕 𝜕𝑥𝑗

⁄ (𝜌𝜔𝑢𝑖) =
𝜕
𝜕𝑥𝑗
⁄ (𝜇𝜔

𝜕
𝜕𝑥𝑗
⁄ 𝜔) + 𝑃𝜔 − 𝛽𝜌𝜔

2 + 2𝜌(1 −

𝐹1)
1
𝜔⁄
1
𝜎𝜔,2⁄ 𝜕

𝜕𝑥𝑗
⁄ 𝑘 𝜕 0𝜕𝑥𝑗

⁄ 𝜔         (2 − 2)            

The two terms on the left side of equations 2 and 3 are related to the rate of change of 𝑘 or 

𝜔 and the transport of 𝑘 and 𝜔 by convection, respectively. The three terms in common on 

the right side of the equations represent the turbulent diffusion, production rate and 

dissipation rate of 𝑘 or 𝜔, in this order. Additional details on the model can be found in the 

references [18, 19, 20] 

2-2-1-2- Large Eddy Simulation (LES) 

The costs associated with DNS is substantially high and LES has shown great promise of 

accurately modelling the turbulent flow. LES approach solved the spatially-filtered Navier-
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Stokes equations in which the large eddies are resolved and the eddies smaller than the grid 

spacing are removed from unsteady Navier-Stokes equations and modelled by sub-grid 

scale (SGS) [21]. The computational cost of LES, although significant, is manageable when 

using the sub-grid wall models [22]. The filtered Navier-Stokes equations are as follows: 

𝜕𝑢�̅�
𝜕𝑥�̅�

= 0          (2 − 3) 

𝜕𝑢�̅�
𝜕𝑥�̅�

+ 𝑢�̅�
𝜕𝑢�̅�
𝜕𝑥�̅�

= −
1

𝜌

𝜕�̅�

𝜕𝑥�̅�
+

𝜕

𝜕𝑥𝑖
(2𝜐𝑆𝑖𝑗 − 𝜏𝑖𝑗)        (2 − 4) 

The SGS stress tensor 𝜏𝑖𝑗 = 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ − �̅�𝑖�̅�𝑗  is modelled using Smagorinsky SGS model: 

𝜏𝑖𝑗 = −2𝜗𝑡𝑆�̅�𝑗 +
1
3⁄ 𝜏𝑘𝑘𝛿𝑖𝑗          (2 − 5)           

and 

𝜗𝑡 = (𝐶𝑠∆)
2√2𝑆𝑖𝑗𝑆𝑖𝑗̅̅ ̅̅ ̅̅ ̅          (2 − 6)           

In which, ∆= √∆𝑥∆𝑦∆𝑧
3  is the filter width, 𝑆�̅�𝑗 =

1
2⁄ [
𝜕�̅�𝑖

𝜕𝑥𝑗
⁄ −

𝜕�̅�𝑗
𝜕𝑥𝑖
⁄ ] is the resolved 

strain-rate tensor, 𝜗𝑡 is SGS turbulent viscosity and 𝐶𝑠 is the Smagorinsky parameter that 

can be kept constant at 0.1 or dynamically computed during the simulation using the 

information provided by the smaller scales of the resolved fields. 

2-2-1-3- Improved Delayed Detached Eddy Simulation (IDDES) 

RANS modelling performs very well in the attached boundary layers [23], however, it does 

not capture the unsteady motion for the detached large eddies, even if the spatial and 

temporal resolution permits. On the other side, LES becomes prohibitively expensive in 

the boundary layers with increasing Reynolds number as the energy-bearing eddies, need 

to be resolved, decreases; but, for the massively-separated flow, LES is Reynolds-

independent and the expense is manageable. Detached eddy simulation (DES) is a hybrid 

model that combines the benefits of RANS and LES, while minimizing their disadvantages. 

Thus, the original intent of DES is to be run in RANS mode for the attached boundary 

layers and to switch to LES mode in detached flow regions [24]. 
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A significant challenge associated with the classical DES is activation of LES inside the 

boundary layers where the grid spacing is considerably less than the boundary layer 

thickness (∆≪ 𝛿). It may cause undesirable side effects such as grid-induced separation 

(GIS), where the flow separation occurs too far upstream of the actual separation point 

[25]. Delayed detached eddy simulation (DDES), and the most recent method, Improved 

delayed detached eddy simulation (IDDES) obviates this issue by providing an improved 

shielding function with the aid of redefining the length scale. 

The IDDES model is based on 𝑆𝑆𝑇 𝑘 − 𝜔, that is adopted as a RANS model and modifies 

the dissipation-rate term of turbulent kinetic energy (TKE) transport equation. Therefore, 

the TKE equation for the IDDES model can be written as: 

𝜕(𝜌𝑘)
𝜕𝑡
⁄ +

𝜕(𝜌𝑢𝑗𝑘)
𝜕𝑥𝑗
⁄ = 𝜕 𝜕𝑡⁄ [(𝜇 +

𝜇𝑡
𝜎𝑘⁄ ) 𝜕𝑘 𝜕𝑥𝑗

⁄ ] + 𝜏𝑖𝑗𝑆𝑖𝑗 −

𝜌𝑘
3
2⁄

𝐿𝐼𝐷𝐷𝐸𝑆
⁄           (2 − 7)           

Where 𝑡, 𝑘, 𝜌, 𝑢𝑗 , 𝜇, 𝜇𝑡, 𝜏𝑖𝑗  and 𝑆𝑖𝑗  are time, turbulent kinetic energy, density, velocity, 

molecular viscosity, turbulent viscosity, stress tensor and mean shear stress, respectively. 

The IDDES length scale is defined as: 

𝐿𝐼𝐷𝐷𝐸𝑆 = 𝑓�̃�(1 + 𝑓𝑒)𝐿𝑅𝐴𝑁𝑆 + (1 − 𝑓�̃�)𝐿𝐿𝐸𝑆         (2 − 8)           

In which: 

𝐿𝐿𝐸𝑆 = 𝐶𝐷𝐸𝑆∆          𝑎𝑛𝑑          𝐿𝑅𝐴𝑁𝑆 =
𝑘
1
2⁄

𝛽∗𝜔
⁄           (2 − 9)                

𝛽∗ is a constant equal to 0.9.∆= min{max[𝐶𝑤∆𝑚𝑎𝑥,  𝐶𝑤𝑑,  ∆𝑚𝑎𝑥] ,  ∆𝑚𝑎𝑥} is the grid scale, 

𝐶𝑤 is an empirical constant, 𝑑 is the distance to the closest wall, ∆𝑚𝑖𝑛= min(∆𝑥,  ∆𝑦,  ∆𝑧) 

and ∆𝑚𝑎𝑥= max (∆𝑥,  ∆𝑦,  ∆𝑧). For detailed formulations, please refer to Shur et al., 2008 

and Gritskevich et al., 2012 [26, 27]. 

2-2-2- Computational Details and Boundary Conditions 

Sheard [14] proposed that for the torus with aspect ratio more than 1.6, the Reynolds 

number can be defined based on the core diameter. This was intimated from the decrease 

in transition Reynolds numbers for unsteady, asymmetric flow and flow separation [14]. In 
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order to make the comparison of the results possible with the wind tunnel tests done by 

Yan et al [28], here in this study, the aspect ratio was chosen 3. Thus, the characteristic 

length used to calculate the Reynolds number is the core- 𝑑: 

𝑅𝑒 =
𝑢0𝑑

𝜐
          (2 − 10) 

Where 𝑢0  is free stream velocity, and 𝜐 is kinematic viscosity. The dimensions of the 

computational domain are given in Figure 2-2. This study maintains the blockage ratio less 

than 1% for all the simulations. The blockage ratio (BR); defined as the ratio of cross-

sectional area of the torus to the computational domain. The cross-sectional diameter of 

the domain is 𝐿𝑦𝑧 = 10𝑑. The upstream distance 𝐿𝑢 and the downstream distance 𝐿𝑑 were 

selected to be (𝐿𝑢, 𝐿𝑑) = (10𝑑, 40𝑑). (See the section 2-2-4-3) 

The origin of the coordinate system (0,0,0) used in this study is located at the center of the 

torus. The boundary conditions that are employed in the current simulation are also 

depicted in Figure 2-2. A velocity-inlet condition with a velocity of 0.5 𝑚/𝑠 in the 𝑥-

direction is set at the inlet boundary to retain a Reynolds number of 9000. A pressure-outlet 

condition with set to atmospheric pressure is prescribed at the outlet boundary. The slip-

wall and no-slip conditions are also applied to the domain boundary and torus surface, 

respectively. 

 

Figure 2- 2- Schematic of the computational domain 
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2-2-3- Mesh Generation and Numerical Solution 

The three-dimensional grid is generated by the pre-processor ANSYS ICEM CFD 18.0 

around the torus (Figure 2-3). The law-of-the-wall is implemented in the immediate 

vicinity of the torus. Accordingly the mesh spacing on the order of 𝑦+ ≈ 1 is used to 

properly cover the viscous sub-layer adjacent to the torus surface. Fine cells are also 

adopted in the wake region, downstream of the torus. The cell size in this region is less 

than approximately 10% of the integral length scale. Integral length scale, defines as Λ =

𝑘3/2
휀⁄ , can be computed by performing a RANS simulation, beforehand. 

A commercial solver ANSYS FLUENT 18.0 was utilized in the present study. For the 

URANS simulation the spatial discretization schemes is second order for pressure equation 

and second order upwind for momentum equation. For the scale-resolving simulations 

(LES and IDDES), the bounded central difference scheme and the Least Square Method 

(LSM) is used for the momentum equation and gradients, respectively. Although the 

bounded central difference scheme is slightly dissipative, it is considerably more robust 

compared with the classical central difference scheme; so it is considered as the optimal 

choice for our simulations [29]. The bounded second order implicit Euler scheme is utilized 

for LES and IDDES. The pressure-based solver and pressure-implicit with splitting of 

operators (PISO) algorithm was chosen for pressure-velocity coupling equation.  

 

  

(a) (b) 

Figure 2- 3- Generated mesh around the torus 
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2-2-4- Validation of Turbulence Models 

2-2-4-1- Mesh Independency 

Mesh quality is the determining factor that contributes to the accuracy of the results. Thus, 

the mesh independency study was done by monitoring the effect of mesh density on the 

mean drag coefficient of the torus. The results for seven sets of grids can be observed in 

the Figure 2-4. For the grid number more than 1.62 × 106, 4.28 × 106 and 3.77 × 106, 

there is no striking change in the value of the mean drag coefficient for URANS, LES and 

IDDES, respectively. 

2-2-4-2- Time Independency 

Discretization time-step is an important factor for the transient simulations. Small time-

steps are more likely to accurately describe the flow behavior, however, they would 

increase the computational costs [30]. The Courrant-Fredrich-Lewy (CFL) number is used 

to keep a balance of the temporal and spatial discretization when 𝐶𝐹𝐿 ≤ 1. Large values 

for CFL can be tolerable for DES with implicit solver [31]. The CFL cannot be controlled 

manually with the selected solver and algorithm, so the time-step size ∆𝑡 = 𝐶𝐹𝐿 × ∆𝑥 𝑢0⁄  

is used to evaluate CFL. The effect of time-step size on the variation of the mean drag 

coefficient and CFL number can be seen in the Table 2-1. The time-step sizes for URANS, 

LES and IDDES have been chosen to be 0.0025𝑠, 0.0005𝑠 and 0.001𝑠, respectively. 

Table 2- 1- Time-step size effect on CFL and mean drag coefficient 

Model 
Minimum Cell Size at Wake 

Region (m) 

Time-step 

size (s) 
CFL 𝐶𝐷̅̅̅̅  

URANS  

(SST k-𝜔) 

0.002 0.0025 0.625 0.888 

0.002 0.001 0.25 0.888 

LES 
0.001 0.0005 0.25 0.852 

0.001 0.0002 0.1 0.852 

IDDES 
0.0015 0.001 0.333 0.851 

0.0015 0.00075 0.25 0.851 

 

The proper choice of sampling time not only minimizes the errors of the time-averaged 

results, but it would also save the computational time. Figure 2-5. shows the effects of 
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sampling time on the mean value of the drag coefficient for the LES simulation. A 

normalized sampling time of 300 is the most economical choice for the sampling time, 

which approximately equals to the 50 shedding cycles or 7 flow-through times. To ensure 

that the sampling time is not affected by the initial numerical instabilities, 5 different 

segments including 300 time units (normalized time domains of [0-300], [20-320], [40-

340], [60-360], [80-380]) were chosen. It is found that from the time units of 40 thereafter, 

the mean drag value does not change significantly (less than 0.4%). Thus, the first 40 time 

units were discarded and the normalized time units from 40 to 340 were selected as our 

sampling time. 

  

Figure 2- 4- Mesh independency analysis 

 

Figure 2- 5- Sampling time independence 

analysis 

 

2-2-4-3- Domain Sensitivity and Background Turbulence Independency 

The initial flow perturbation might affect the subsequent results. It is also an influential 

parameter for properly choosing the domain size. Figure 2-6, demonstrates the dependency 

of the mean drag coefficient on the initial turbulence level of flow at 3 sets of upstream 

distances 𝐿𝑢 = 5𝑑, 10𝑑 and 15𝑑, albeit the dependency of the results on this parameters is 

stronger at low Reynolds numbers. 𝐿𝑢 is the distance from the inlet boundary to center of 

the torus. For LES and IDDES cases, it is clear that with increasing the upstream distance 

the background turbulence effects gradually decline. For the larger upstream distance of 

15𝑑, this dependency completely wears off. For 𝐿𝑢 = 10𝑑 as long as the turbulence level 

is less than 1%, the results are independent on the initial condition. From then, mean drag 
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coefficients undergo a slight change by increasing the initial turbulence intensity. Anyway, 

in this study, to bring down the computational costs, the background turbulence is retained 

less than 1% and the upstream distance is chosen to be 10𝑑. It is interesting that 𝑆𝑆𝑇 𝑘 −

𝜔 simulation shows the least dependency on the inlet turbulence intensity, as in the worst 

case scenario when 𝐿𝑢 = 5𝑑  and 𝑇𝑢 = 5% , the mean drag coefficient is only 0.07% 

different than the ideal condition. This might be due to the dissipative nature of URANS 

approaches [29]. 

(a) 

 

(b) 

 

(c) 

 

Figure 2- 6- Background turbulence and domain sensitivity analysis a) URANS b) LES c) 

IDDES 
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2-3- Results and Discussions 

2-3-1- Force Characteristics (Lift and Drag) 

The force coefficients are calculated by the following equation: 

𝐶 = 𝐹 0.5 × 𝜌𝐴𝑓𝑟𝑜𝑛𝑡𝑎𝑙𝑢02
⁄           (2 − 11) 

In which, the frontal area of the torus is 𝐴𝑓𝑟𝑜𝑛𝑡𝑎𝑙 = 𝜋𝐷𝑑 . Lift and Drag forces are 

calculated by two different methods. The first one is the classical method, in which the 

force is equal to summation of shear stress integral and pressure integral with respect to 

the area. Another method is based on the momentum loss in a control volume surrounding 

the torus. For LES and IDDES models, the results obtained from the latter approach is not 

different from the classical approach. For URANS, however, the calculated drag 

coefficient of the momentum-loss method is found to be 2.95% smaller when compared 

with the method based on the shear stress integral and it is closer to the results predicted 

by LES and IDDES (See Appendix A). 

Figures 2-7, 2-8 and 2-9 illustrate the temporal variation of lift and drag coefficient, 

respectively. The figure indicates that URANS predicts the force coefficient steadily with 

the minor fluctuations. For a detailed observation, the graphs have been magnified between 

the normalized times of 50 to 100. It can be clearly seen that URANS fails to capture the 

turbulent nature of the flow. One of the most significant characteristics of turbulence is the 

randomness and irregularity [32]; while the results provided by URANS are periodic and 

well-organized. Unlike URANS, both LES and IDDES quantify the oscillations better in 

details and the results exhibit broadband turbulence characteristics. For all turbulence 

models, both lift and drag indicate that the transient results have converged, as they show 

statistically stationary behavior. 

The mean value of the lift coefficients for all three cases found to be zero. That is due to 

the symmetrical shape of the torus. The mean values of drag coefficients are compared 

with the literature on Table 2-2. Although slightly overestimated compared to results 

provided by LES and IDDES, the mean drag coefficient obtained by URANS is in a good 

agreement with the presented results by the experiment. The mean drag values for LES and 

IDDES, also agree well with each other and remarkably close to the experimental data. 
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There are some factors involved in discrepancy of the results between URANS and SRS 

models. Firstly, the mesh generated for LES and IDDES are different from the URANS 

model. Secondly, the RANS equations are based on time-averaged Navier-Stokes 

equations, while scale-resolving models solve the spatially-filtered Navier-Stokes 

equations with very small time-steps. The third one is the dissimilarity between the stress 

tensors of URANS and SRS models [33]. 

(a) 

 

(b) 

 

Figure 2- 7- Time history of the force coefficients for the URANS method a) Lift b) Drag 
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(a) 

 

(b) 

 

Figure 2- 8- Time history of the force coefficients for LES method a) Lift b) Drag 
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(a) 

 

(b) 

 

Figure 2- 9- Time history of the force coefficients for IDDES method a) Lift b) Drag 
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 Table 2- 2- Comparison of the mean drag coefficient of the present study with the literature 

Author Bluff Body Type Re 𝐶𝐷̅̅̅̅  

Present (URANS) Torus (AR=3) 9000 0.888 

Present (LES) Torus (AR=3) 9000 0.852 

Present (IDDES) Torus (AR=3) 9000 0.851 

Yan [28] Torus (AR=3) 9000 0.860 (±0.098) 

Sheard [34] Torus (AR=3) 200 0.942 

Tian [35] Circular Disk 150000 1.124 

Shao [17] Cylinder 5800 1.03 

Dong [36] Cylinder 10000 1.143 

Rodriguez [37] Sphere 10000 0.402 

 

2-3-2- Vortical Structure 

Visualization of the wake structures is the effective method to investigate the flow 

dynamics. In this study for the identification of vortical structure, the Q-criterion proposed 

by Hunt et al [38] is used. The superiority of the Q-criterion over the other criteria has been 

checked by Dubief and Delcayre [39]. Letting 𝑆  and Ω  denote the symmetric and 

antisymmetric parts of the velocity gradient tensor ∇𝑢, respectively; Q can be defined as 

the second invariant of ∇𝑢 by: 

𝑄 = 1
2⁄ (||Ω||

2
− ||𝑆||

2
)         (2 − 12) 

Physically, 𝑆  and Ω represent the strain-rate and vorticity rate tensors, respectively. 

Therefore, in a pure irrotational straining motion ∇𝑢 = 𝑆, and in the solid body rotational 

flow ∇𝑢 = Ω. The ‖Ω‖ term is the absolute value of the vorticity rate tensor Ω which is 

defined as [𝑇𝑟(ΩΩ𝑇)] 0.5, where Ω𝑇  is transpose of Ω and 𝑇𝑟 or the trace is sum of the 

elements lying along the main diagonal. The term ‖𝑆‖ is defined similarly. Accordingly, 

if the strain rate is much higher than the vorticity rate (‖𝑆‖ ≫ ‖Ω‖) shear flow is dominant. 
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On the contrary, if the rotation strength is much greater than the shear strength (‖Ω‖ ≫

‖S‖), the flow will be highly rotational. 

Figure 2-11 illustrates the instantaneous iso-surfaces of the Q-criterion associated with 

𝑄 = 20 𝑠−1 for URANS, LES and IDDES. It can be vividly observed that URANS is 

incapable of exhibiting all the turbulence scales and only large-scale vortex rings are 

visualized. This is probably as a result of severe dampening of the unsteady motion of the 

flow in RANS models [29]. Unlike the URANS model, LES and IDDES show significantly 

more details turbulence scales and vortices such hairpin and worm-like vortices. As flow 

past the torus, an attached recirculation region formed all around the torus. The inner and 

outer shear layers shed from the torus. As a result of the small-scale interactions inside the 

recirculation bubble, Kelvin-Helmholtz instability occurs, then the vortex sheet rolls up 

and starts forming vortex rings from the outer edge of the torus. This happens at the 

downstream distances of 2.5d to 3d. The vortex rings then break up and turn into the hairpin 

vortices with their leg moored to the centerline axis of the torus. Worm-like vortices can 

also be seen in the inner wake region, stretched along the streamwise direction. The vortex-

stretching phenomenon then dissipates these worm-like vortices and makes them to be 

dissolved. This is consistent with the study done by Tian et al [35] for the circular disk at 

Reynolds number of 150000. Inside the inner surface, the roll-up does not take place as a 

result of the torus hole’s nozzle effect. Therefore, a cylindrical-shaped inner shear layer 

emerges through the torus hole (Figure 2-10). This phenomenon was observed by Inoue et 

al [9] for the torus with an aspect ratio of three and almost similar to the pumping of the 

recirculation bubble in the disk wake reported by Berger et al [40]. 

To better visualize the dynamics of the vortices, the time evolution of the vorticity contours 

at plane 𝑧 = 0 , are illustrated at five time-series snapshots of 𝑡0, 𝑡0 + 0.25𝜏, 𝑡0 +

0.5𝜏, 𝑡0 + 0.75𝜏 and 𝑡0 + 𝜏. 𝜏 is the shedding period in Figure 2-12. As flow passes the 

torus, a pair of attached counter-rotating vorticity with a great magnitude surrounds the 

circumference of the torus. Right behind the leeward surface of the torus, small-scales 

interact and cause the vortices to be separated at the end of the recirculation zone. As a 

consequence, anti-phase large-scale vortices are detached, move towards the streamwise 

direction and diverge from the centerline axis. The large-scales then break up into the 
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smaller scales farther downstream and disperse chaotically around the wake region. The 

increase of the z-vorticity in some random points in the wake can be attributed to the 

vortex-stretching phenomenon. Due to volume conservation of the fluid elements, 

lengthening contributes to the thinning of the vortices, and as a results, amplifies the 

vorticity. Eventually, the small-scales dissipate into heat with the aid of molecular 

viscosity. The dissipation of the eddy can be seen in the far wake region, i.e. the magnitude 

of the vorticity is generally smaller at this region.  

 

 

 

Figure 2- 10- Cylindrical-shaped inner shear layer 
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(a) 

 

(b) 

 

(c) 

 

Figure 2- 11- Instantaneous Q-criterion iso-surfaces Q=20. a) URANS b) LES c) IDDES 
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𝐭𝟎 

 

𝐭𝟎 + 𝟎. 𝟐𝟓𝐓 

 

𝐭𝟎 + 𝟎. 𝟓𝐓 

 

𝐭𝟎 + 𝟎. 𝟕𝟓𝐓 

 

𝐭𝟎 + 𝐓 

 

 

Figure 2- 12- Instantaneous normalized vorticity contour in plane z=0  at one shedding cycle 
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2-3-3- Velocity and Turbulence Intensity 

Time-averaged streamwise velocity and turbulence intensity are two parameters that 

provide a proper understanding about the dynamics of the wake flow. Figure 2-13 shows 

the time-averaged normalized streamwise velocity profile 𝑢 𝑢0⁄ . Panel a, b and c 

correspond to the normalized streamwise distance of 𝑥 𝑑⁄ = 2.5, 5 and 10. All the results 

for LES and IDDES are compared to the experiments done by Yan et al [28]. At 𝑥 = 5𝑑, 

the graphs show a local maximum at the centerline of the torus 𝑦 = 0, that is due to the 

nozzle effect of the torus hole. Two absolute minimums are apparent almost at the cross-

stream distances of 𝑦 = ±𝑅 . By going across the radial direction, the flow recovers 

gradually to the free-stream velocity. By going farther downstream (𝑥 = 10𝑑, 15𝑑), the 

recirculation effects are mitigated, the velocity gradients in 𝑦 −direction becomes more 

gentle, and the local maximum and minimums disappear. Moreover, the wake recovery is 

delayed in cross-stream direction and the free-stream velocity is reached in a farther 

distance from the torus solid portion. 

Turbulence intensity depicts the level of the flow turbulence and it is defined as the 

normalized fluctuating component of the velocity. Figure 2-14 illustrates the turbulence 

intensity profile 𝑇𝑢 at different streamwise distance ratio. The solid portion of the torus 

acts like an obstacle that increases the flow perturbation. That is why at 𝑥 = 5𝑑, turbulence 

intensity is maximum around the radius (𝑦 = ±𝑅). These perturbations are smaller close 

to the torus hole; as a result, the graph exhibits a local minimum at the torus centerline. 

Farther downstream, due to the mixing, the distribution of the turbulence intensity becomes 

more unified, particularly between 𝑦 = 0 and 𝑦 = ±2𝑑, and the local extremums vanish. 

The dissipation of the turbulence is also observable, as the magnitude of turbulence 

intensity gradually decreases with streamwise direction. 

The LES and IDDES results for both velocity and intensity profile, agree very well with 

the experimental results.  
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Figure 2- 13- Normalized time-averaged streamwise velocity profile in plane z=0. From left to 

right: x=5d, x=10d and x=15d 

 

 

   

Figure 2- 14- Time-averaged turbulence intensity in plane z=0. From left to right: x=5d, x=10d 

and x=15d 

 

2-3-4- Energy Spectrum and Turbulence Length Scales 

To gain a profound insight into the turbulence nature of the flow, the range of eddy sizes 

and the energy spectrum have been studied in this section. A turbulent flow contains a wide 

range of eddies, that play a major role in transferring the energy, heat, and momentum to 

the flow. The interaction among the eddies of the various scales passes energy sequentially 

from the larger eddies gradually to the smaller ones. This process is known as turbulent 

energy cascade. Because of the URANS failure in capturing the turbulence nature of the 

flow, this section is limited to a comparison of the results for LES and IDDES.  

The energy spectrum of the cross-stream velocity 𝑣 at point [10𝑑, 2.5𝑑, 0], for LES and 

IDDES models are shown in Figure 2-15. The results were obtained from the Welch 

method, a technique based on DFT (See Appendix B). The low-frequencies or large-scales 

are peaked at 𝑆𝑡𝑣𝑠 = 0.194; it indicates that the large-scale vortices shed at the frequency 
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of 0.194
𝑢0

𝑑⁄ . At point [10𝑑, 2.5𝑑, 0], turbulence develops as the energy spectra captures 

the −5 3⁄  slope of the Kolmogorov law in the inertial sub-range. Small, dissipative high-

frequency eddies also are captured until the cut-off frequency (approximately 20
𝑢0

𝑑⁄ ) 

where the spatial resolution permits. It is seen that the energy contained in the flow 

frequencies for LES is slightly higher compared with IDDES. 

In the near wake region (𝑥 = 2𝑑), within the inner surface of the torus (points 𝑦 = 0 and 

𝑦 = 1.2𝑑), an initial peak at 𝑆𝑡𝑖𝑝 = 0.074 is observable that fades away at the higher radial 

distance (Figure 2-16). This very low frequency is appeared as a result of the pulsation of 

inner shear layer of the torus due to the hole nozzle effect. This phenomenon has been 

reported by several researchers for torus and disk wake flow [9, 35, 40, 41]. Furthermore, 

at the points 𝑦 = 1.2𝑑 and 𝑦 = 1.8𝑑, the spectra show a broadband peak centered at a high 

frequency of 𝑆𝑡𝐾𝐻 = 1.70 , that is more intense at 𝑦 = 1.2𝑑 . This frequency is as a 

consequence of the small-scale interactions and Kelvin-Helmholtz instability inside the 

recirculation bubble. The two latter frequencies can be only found at the proximity of the 

torus leeward surface. At the farther downstream location, i.e. point (10𝑑, 2.5𝑑), there is 

neither footprint of the Kelvin-Helmholtz instability, nor the pulsation of cylindrical-

shaped inner shear layer. The obtained results for IDDES and LES are compared with the 

literature in Table 2-3. 

 

Figure 2- 15- Energy specturm of the cross-stream velocity at point [10d, 2.5d, 0] 

 



 

32 
 

(a) 

 

(b) 

 
Figure 2- 16- Energy spectrum of the cross-stream velocity at x=2d.a) LES b) IDDES 
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Table 2- 3- Comparison of the Strouhal numbers between the present study with the literature 

Author Bluff Body Type Re 𝑆𝑡𝑖𝑝 𝑆𝑡𝑣𝑠 𝑆𝑡𝐾𝐻 

Present (LES) Torus (AR=3) 9000 0.074 0.194 1.70 

Present (IDDES) Torus (AR=3) 9000 0.074 0.194 1.70 

Inoue [9] Torus (AR=3) 1500 - 0.2 - 

Sheard [14] Torus (AR=3) 200 - 0.157 - 

Zhong [41] Circular Disk  22000 0.035 0.123 1.3-1.7 

Yang [42] Circular Disk  270 0.035 0.136 - 

Alijure [43] Cylinder  5000 - 0.21 1.65 

Dong [36] Cylinder 10000 - 0.203 - 

Rodriguez [37] Sphere 10000 - 0.195 1.77 

 

To better visualize the range of eddy sizes, two common scales; integral length scale and 

Taylor microscale have been scrutinized. 

Taylor microscale represents the small eddies in turbulent flow and is considered as the 

dissipative length [44]. Taylor time scale can be expressed as: 

𝜏𝜆 = √
2𝑢′2̅̅ ̅̅

(
𝑑𝑢′
𝑑𝑡
)2
          (2 − 13) 

In the case of discrete data, it is: 

𝜏𝜆 = √

1
𝑁
∑ 2𝑢′𝑖

2𝑁
𝑖=1

1
𝑁 − 1

∑ (
𝑢′𝑖+1 − 𝑢′𝑖

Δ𝑡 )2𝑁−1
𝑖=1

          (2 − 14) 
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Based on Taylor’s frozen hypothesis [45], if the velocity fluctuations are small compared 

to the flow velocity which carries the eddies, the spatial rates could be approximated from 

the measured temporal rates as follows: 

𝜕
𝜕𝑡⁄ = −𝑢𝑐

𝜕
𝜕𝑥⁄           (2 − 15) 

Where 𝑢𝑐 is the convective velocity. The Taylor microscale can be obtained from: 

𝜆 = �̅�. 𝜏𝜆          (2 − 16) 

Integral length scale represents the large, energy containing eddies. Integral time scale can 

be estimated using autocorrelation function [46]: 

𝜌(𝜏) =
𝑢′(𝑡)𝑢′(𝑡 + 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑢′2(𝑡)̅̅ ̅̅ ̅̅ ̅̅
          (2 − 17) 

Where 𝜏 is the time lag (𝜏 = 𝑡 − 𝑡′). The autocorrelation function is essentially a measure 

of the memory of the flow. If the signal is highly-correlated, the flow can remember the 

previous condition; and if the autocorrelation is small, the signal forgets the status at the 

prior time unit. For discrete samples it is: 

𝜌(𝑚Δ𝑡) =

1
𝑁 −𝑚

∑ (𝑢′𝑖𝑢′𝑖+𝑚)
𝑁−𝑚
𝑖=1

1
𝑁
∑ 𝑢′𝑖

2𝑁
𝑖=1

          (2 − 18) 

Where m is varied from 0 to N-1. The integral time scale is defined as the formula below, 

that is the area under the autocorrelation function: 

𝜏Λ = ∫ 𝜌(𝜏)𝑑𝜏

∞

0

          (2 − 19) 

Integration should be truncated when the autocorrelation first crossed zero. Beyond which, 

the values of integral time scale are not physically reliable [47, 48]. For discrete samples, 

it is: 

𝜏Λ = ∑ 𝜌(𝑖Δ𝑡)Δ𝑡

𝑁𝑘−1

𝑖=1

          (2 − 20) 
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Where 𝑁𝑘 is the point where the autocorrelation factor first crosses zero value. A sample 

autocorrelation function for a specific point can be seen in Figure 2-17. Similar to the 

Taylor microscale, the integral scale can be obtained from: 

Λ = �̅�. 𝜏𝜆          (2 − 21) 

For the downstream distances of 𝑥 = 5𝑑, 10𝑑 and 15𝑑 the normalized Taylor microscale 

𝜆∗ = 𝜆
𝑑⁄  have been compared in Figure 2-18. The higher the turbulence level is, the higher 

the energy dissipation will be. As a consequence, the points with the higher turbulence 

intensity have the smaller Taylor microscales. This can be noted in the Figure 2-18 left-

hand side panel, that the graph has two symmetric local minimums along the torus, where 

the turbulence intensity was found to be high. The graph also shows that at the torus 

centerline, the dissipative eddies have the larger size. Transition of the wake structure 

brings about changes in Taylor microscale distributions in downstream distances of 10𝑑 

and 15𝑑, in which the mixing leads to generate turbulence in the torus centerline and also 

at 𝑦 = ±𝑅 the Taylor microscale increases in value. IDDES predicted the larger Taylor 

micro-scale in the core wake region. That is probably as a result of the coarser grids, and 

consequently, a higher cut-off frequency (wavenumber) predicted by IDDES method. 

The distribution of the normalized integral length scale Λ∗ = Λ
𝑑⁄   at different distance 

ratios demonstrated in Figure 2-19. Moving from centerline to the radial direction, two 

local peaks are observed. The one that is closer to the centerline gets much closer as the 

flow travels in the streamwise direction. The peak which is far from the centerline appears 

to be associated with the large-scale toroidal ring downstream of the torus. The deformation 

and break-up of the vortex rings removes these peaks from the integral length scale 

distribution. The general increasing trend of the integral length scale marks the turbulence 

decay in the streamwise direction. 
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Figure 2- 17- Autocorrelation factor at point [x=10d, y=0, z=0] 

 

 

   

Figure 2- 18- Vertical distribution of the Taylor microscale. From left to right: x=5d, x=10d 

and x=15d 

 

   

Figure 2- 19- Vertical distribution of the Integral length scale. From left to right: x=5d, x=10d 

and x=15d 
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2-3-5- Computational Costs 

Finally, in this section, the computational cost of each approach is compared for this study. 

This information can be of interest to CFD users for both industrial and academic problems. 

The computational cost in terms of the number of grids, time-step size, averaged number 

of sub-iterations to convergence and wall clock time is summarized in Table 2-4. The 

presented values correspond to 16 parallel CPU, operated on a device with two Intel (R) 

Xeon (R) CPUs (E5630 v3 at 2.53 GHz – 2.80 GHz), 128 GB RAM and 2TB hard disk 

space. The sampling time for all the simulations is 10s. The computational cost for 𝑆𝑆𝑇 𝑘 −

𝜔 URANS model is the lowest and it is a sensible approach to predict the mean flow. 

However, as previously stated, the model missed capturing the unsteady motion of the 

flow, even if the spatial and temporal resolution permits. A comparison between LES and 

IDDES indicates that the saving time in using IDDES is 47% lower than LES, although the 

averaged number of sub-iterations per time steps are virtually the same. Additionally, the 

number of cells in IDDES is 12% less than LES. Thus, with a less computational cost, the 

results obtained by IDDES agree well with those for LES and experimental (See the 

previous sections). 

Table 2- 4- Computational costs of turbulence models considered in this study 

Model 

Grid 

Numbers 

(Million) 

Time-Step 

Size (s) 

Sampling 

Time 

 (s) 

Averaged 

Number of Sub-

Iterations to 

Convergence 

Total Wall 

Clock 

Time  

(h) 

𝑆𝑆𝑇 

 𝑘 − 𝜔 
1.62 0.0025 10 10 86 

𝐼𝐷𝐷𝐸𝑆 3.77 0.001 10 17 278 

𝐿𝐸𝑆 4.28 0.0005 10 18 522 

 

2-4- Conclusions 

The performances of the turbulence models: URANS SST k-𝜔, LES and IDDES were 

tested for simulation of the flow past a torus with an aspect ratio of 3 at the Reynolds 

number of 9000. The summary of the findings are as follows: 



 

38 
 

 Investigation of the temporal variation of the force coefficients, as well as the 

turbulent structure visualized by Q-criterion imply that URANS is incapable of 

capturing the unsteady motion and turbulence nature of the flow properly, albeit its 

prediction about the mean values is in a reasonable agreement with the results 

presented by the experiments and SRS models. 

 Both LES and IDDES discovered three shedding frequencies at the studied 

Reynolds number, that are the Kelvin-Helmhlotz frequency due to the small-scale 

instabilities 𝑆𝑡𝐾𝐻 , large-scale vortex shedding frequency 𝑆𝑡𝑣𝑠 , and a very-low 

frequency as a result of pulsation of the inner shear layer that is observable close to 

the torus hole (𝑆𝑡𝑖𝑝). To gain a further insight into the range of eddy size, two 

common length scales: Taylor microscale and Integral length scale were studied. 

The size range of large, energy-containing eddies is in the order of the characteristic 

length (d) and vary from 0.5 to 1.5 times of the core diameter of the torus. The 

small-dissipative eddies are as small as 5 to 15 percent of the core diameter. 

 Investigation of the computational cost required for each turbulence model and the 

obtained results from the previous sections authenticate that IDDES is the optimal 

turbulence model for this specific problem. It requires fewer grid numbers and less 

wall-clock time; while the results provided are in great accordance with those for 

LES and experimental studies. 
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CHAPTER 3 

ASPECT RATIO EFFECT ON TORUS WAKE STRUCTURE 

 

3-1- Introduction 

The flow over a torus has a complicated three-dimensional structure. It behaves like the 

sphere at small aspect ratios and locally like the circular cylinder when the aspect ratio 

approaches infinity. It is worth mentioning that one of the critical parameters in the 

geometry of a torus is aspect ratio (AR), defined as a ratio of the main diameter to the cross-

sectional diameter of the torus [1] (Figure 3-1).  

𝐴𝑅 =
𝐷

𝑑
          (3 − 1) 

The dissimilarity in wake structures between the sphere [2] and the cylinder [3] [4], 

encourages researchers to study the geometric effect on the flow over the bluff bodies. The 

investigation of flow past a torus, for instance, can provide us with a more profound 

understanding of flow challenges with micelles [5], drag and heat transfer of helical heating 

tubes [6], and the underwater compressed air energy systems (UWCAES) [7] and flow 

behind a buoyant vortex ring [8]. So far, few studies have examined the flow around the 

torus. 

 

Figure 3- 1- Schematic representation of the torus 
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One of the earliest investigations was conducted by Roshko [9], who investigated the flow 

over a torus and found that the vortex shedding of a torus with AR=10 is almost the same 

as those shed from a circular cylinder. He also found that a decrease in the shedding 

frequency between a bluff ring and that from a circular cylinder. This seminal study 

stimulated many researchers to investigate flow past a torus. Bearman and Takomoto [10] 

investigated the wake structure of discs and bluff rings experimentally in a wind tunnel. 

They proposed that a distinct change in the wake flow of the rings occurs when the outer 

diameter is about 50% larger than the inner diameter. This marks a division between a flow 

mode with strong, periodic and approximately axisymmetric vortex rings and a shedding 

of weaker vortex structures which generate out of phase velocity fluctuations across the 

wake. Inoue et al. [11] used an Ultrasonic Doppler Velocity Profiling (UVP) monitor to 

study the vortex shedding of the torus (AR=3 and 5) at a Reynolds number of 1500. They 

monitored the distinct wake structure for these two tori. Wang et al [12] simulated flow 

past a torus with AR=0.5 and 2 by comparing the results with sphere wake structure and 

found them to be very similar. The wake structure of a torus at Reynolds number less than 

300 have been investigated extensively [1, 9, 13, 14] . It was found that the wake structure 

for 0 < 𝐴𝑅 ≤ 3.9, is analogous to a sphere or disk wake structure [1, 5, 10]; and for 3.9 <

𝐴𝑅 < ∞, the wake structure becomes axisymmetric vortex sheets similar to the circular 

cylinder without end effects [10, 15, 16].  

Study of the torus has shed light on the very different wake behavior of the sphere from 

that of the straight circular cylinder. Partly because the flow pattern downstream of a torus 

with AR less than 3.9 is asymmetric, accurate simulation of the shedding frequency can be 

quite challenging. Thus a few attempts [1, 17] have been confined to low Reynolds number. 

The experiments of Manson involved observing a ring falling through a liquid, making 

Strouhal-number measurement difficult. [15]. Leweke and Provansal [16] investigated the 

wake of the bluff rings both experimentally and by application of the phenomenological 

Ginzburg-Landau model. The study of the periodic vortex shedding regime shows the 

existence of discrete shedding modes, in which the wake takes the form of parallel vortex 

rings or oblique helical vortices, depending on initial conditions. A most recent study was 

completed by Yu et al [18]. They performed direct numerical simulation of the steady flow 

around an inclined torus over a range of aspect ratios between 2 and 3 and Reynolds 



 

46 
 

numbers less than 50. They examined the drag and lift coefficient of the torus and related 

their trends to the physical structure of recirculation zones.  

There is a gap in our understanding of the wake structure, particularly concerning the 

turbulence properties and shedding frequency of a torus at Reynolds number larger than 

1500. Further, there has been little useful comparison of these descriptive characteristics 

for different aspect ratios. There are two key factors involved in the variation of the wake 

structure of a torus. One is the Reynolds number, and the other is aspect ratio. In this 

project, we study and compare the structure of the flow behind a solid torus which is 

perpendicular to the main flow, by investigating force coefficients, turbulent properties and 

flow structure for three distinct aspect ratios (2, 3 and 5) and at a constant Reynolds number 

of 9000. This computational investigation utilizes FLUENT. Results are compared with 

documented experiments in the literature. 

3-2- Numerical Analysis 

3-2-1- Computational Details and Boundary Conditions 

Here the characteristic length used to calculate the Reynolds number is 𝑑 , the cross-

sectional diameter of the torus. Thus the Reynolds number is defined as: 

𝑅𝑒 =
𝑢0𝑑

𝜐
          (3 − 2) 

Where 𝑢0  is free stream velocity, and 𝜐 is kinematic viscosity. The dimensions of the 

computational domain are given in Figure 3-2. 𝐿𝑢 and 𝐿𝑑 are upstream and downstream 

distances, respectively. The most influential parameter in choosing the height and width of 

the domain is blockage ratio (BR); defined as the ratio of cross-sectional area of the torus 

to the computational domain. Although BR does not have a noticeable impact on the 

interaction between flow and the bluff body for Reynolds number larger than 100 [19], this 

study maintains the blockage ratio less than 1% for all the simulations. The height and 

width of the domain can be seen in Table 3-1.  

Since intense gradients are experienced in all three directions, a solid torus requires three-

dimensional modeling. The origin of the coordinate system (0,0,0) used in this study is 

located at the center of the torus. The boundary conditions that are employed in the current 
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simulation are also depicted in Figure 3-2. A velocity-inlet condition with a velocity of 

0.5 𝑚/𝑠 in the 𝑥-direction is set at the inlet boundary to retain a Reynolds number of 9000. 

A pressure-outlet condition with a set to atmospheric pressure is prescribed at the outlet 

boundary. The slip-wall and no-slip conditions are also applied to all around the domain 

boundary and torus surface, respectively. 

 

 
Figure 3- 2- Schematic of the computational domain and boundary conditions 

 

 

Table 3- 1- Cross-sectional dimensions  of the computational domain based on blockage ratio of 

1% 

Aspect Ratio 

Domain Cross-Sectional 

Dimensions  

(𝐿𝑦 = 𝐿𝑧) 

Blockage Ratio (B.R) 

2 22𝑑 0.826% 

3 32𝑑 0.879% 

5 52𝑑 0.925% 
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3-2-2- LES Model 

The computational cost for direct numerical simulation (DNS) is high, and LES has shown 

promise in providing comprehensive turbulence statistics at a relatively low computational 

cost [20]. LES governs dynamics of the large eddies by removing eddies with the scales 

smaller than the grid spacing from unsteady Navier-Stokes equations [21]. The filtered 

Navier-Stokes equations are as follows: 

𝜕𝑢�̅�
𝜕𝑥�̅�

= 0          (3 − 3) 

𝜕𝑢�̅�
𝜕𝑥�̅�

+ 𝑢�̅�
𝜕𝑢�̅�
𝜕𝑥�̅�

= −
1

𝜌

𝜕�̅�

𝜕𝑥�̅�
+

𝜕

𝜕𝑥𝑖
(2𝜐𝑆𝑖𝑗 − 𝜏𝑖𝑗)        (3 − 4) 

As can be observed, an additional unknown term of 𝜏𝑖𝑗 , subgrid scale (SGS) stresses, 

appeared on the equation which needs to be calculated by an sub-grid scale (SGS) model. 

The SGS models employ the Boussinesq hypothesis [22] as in the RANS models, 

computing SGS turbulent stresses from: 

𝜏𝑖𝑗 −
1

3
𝜏𝑘𝑘𝛿𝑖𝑗 = −2𝜇𝑡𝑆𝑖𝑗̅̅̅̅           (3 − 5) 

Where 𝑆𝑖𝑗̅̅̅̅  is the rate-of-strain tensor for the resolved scale defined by: 

𝑆𝑖𝑗̅̅̅̅ =
1

2
[
𝜕𝑢�̅�
𝜕𝑥𝑗

−
𝜕𝑢�̅�

𝜕𝑥𝑖
]          (3 − 6) 

In the present paper, the model proposed by Smagorinsky [23] was applied to determine 

𝜇𝑡, the eddy viscosity. In the Smagorinsky SGS model, the eddy viscosity is defined as: 

𝜇𝑡 = 𝜌𝐿𝑆
2|𝑆̅|         (3 − 7) 

In which |𝑆̅| is computed via |𝑆̅| = √2𝑆𝑖𝑗𝑆𝑖𝑗̅̅ ̅̅ ̅̅ ̅ and the mixing length 𝐿𝑠 is defined as: 

𝐿𝑠 = min (𝜅𝑑𝑤𝐶𝑠∀
1
3)         (3 − 8) 

Where 𝜅, 𝑑𝑤, 𝐶𝑠 and ∀ are von Karman constant, distance to the closest wall, Smagorinsky 

constant and volume of the computational grids utilized. The Smagorinsky parameter 𝐶𝑠 

can be kept constant (0.1 is recommended) [21] or dynamically computed during the 
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simulation using the information provided by the smaller scales of the resolved fields [24, 

25]. Mylonas and Sayer [26] found that the dynamic model gave a better prediction of the 

drag coefficient when compared with their experiments. Thus the dynamic Smagorinsky 

model was adopted in this study. 

3-2-3-  Numerical Solution 

First, all nonlinear governing equations are linearized to a scalar system of equation 

through an implicit method. The Gauss-Siedel solver along with a segregated algebraic 

(AMG) method is applied to solve this system of equations. The pressure implicit with split 

operator (PISO) algorithm is used for the pressure-velocity coupling. For the problems that 

use the LES turbulence model, which usually requires small time steps, using PISO may 

result in increased computational expense compared to other algorithms i.e. SIMPLE and 

SIMPLEC. However, it can substantially decrease the number of iterations to convergence. 

In the LES turbulence model, physical diffusion can be affected by numerical diffusion. In 

an attempt to ameliorate this, we choose central differencing schemes to conduct the spatial 

discretization. However, in the central differencing schemes there is no commercial 

damping, thus the numerical fluctuations can still affect the physical ones [21]. FLUENT 

addresses this issue through the application of a strategic condition. It changes the spatial 

discretization scheme from central differencing to an upward scheme for any oscillation 

with a wavelength less than twice the local grid spacing.  Furthermore, several researchers 

have already verified the accuracy of the FLUENT LES model in simulating flow over 

bluff bodies [27, 28, 29]. The initial condition for our simulations was obtained from the 

RANS 𝑆𝑆𝑇 𝑘 − 𝜔 simulation after 1000 iterations. 

To improve the computational efficiency, 16 parallel CPU cores were selected to solve the 

equations. All the simulations are operated on a device with two Intel (R) Xeon (R) CPUs 

(E5630 v3 at 2.53 GHz – 2.80 GHz), 128 GB RAM and 2TB hard disk space. 

3-2-4- Grid Generation 

The preprocessor ANSYS ICEM CFD 18.0 is used to generate three-dimensional grids for 

the solid torus. The computational domain is discretized using tetrahedron method with 

patch conforming algorithm. In the LES model of the FLUENT code, the law-of-the-wall 
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approach is implemented in the immediate vicinity of the wall boundaries. Accordingly, 

there is a logarithmic relation between 𝑢+ = 𝑢 𝑢𝜏⁄  and 𝑦+ = 𝑦 ×
𝑢𝜏

𝜐⁄  where 𝑢𝜏 = √𝜏𝑤 𝜌⁄  

is the shear velocity in which 𝜏𝑤 and 𝜌 are the wall shear stress and density of the fluid 

respectively. Therefore there are no computational restrictions on the near wall mesh 

density, however, it is strongly recommended to use mesh spacing on the order of 𝑦+ ≈ 1 

to cover the viscous sub-layer adjacent to the torus surface [30]. Furthermore, finer cells 

are adopted in the wake region behind the torus, based on the integral length scale criterion 

(Figure 3-3). According to this criterion, the ratio of integral length scale to the grid spacing 

should be more than 10 (
Λ0

Δ⁄ > 10). The integral length scale, defined as Λ0 =
𝑘
3
2⁄

휀⁄ , 

can be computed by performing RANS simulation, beforehand. 

 



 

51 
 

  

Figure 3- 3- Generated mesh around the torus 

3-2-5- Validation of the Model 

3-2-5-1- Mesh Dependency Study 

To analyze the grid qualities, mesh-independence analysis was carried out by monitoring 

effects of the mesh density on the values of time-averaged drag coefficients. Drag 

coefficients of the tori are plotted against a total number of cells in Figure 3-4. Generally, 

it is seen that for all three aspect ratios the drag coefficients are subject to fluctuation with 

increasing cell number. They then maintain their level once the number of cells reaches 

3.98 × 106, 4.10 × 106 and 4.28 × 106 for aspect ratios of 2,3 and 5, respectively. The 

inconsistency observed in the variations can generally be attributed to force distribution on 

the tori surfaces and the numerical diffusion generated by the discretization schemes [21].  

3-2-5-2- Time Dependency Study 

The time step is determined according to the criterion of the Courant-Fredrich-Lewy (CFL) 

number. CFL= 𝑢∆𝑡 ∆𝑥⁄  should be less than 1 to avoid numerical instability. The CFL 

cannot be controlled manually with the selected solver and algorithm. The most economical 

value of time-step size found to be 0.0004s, so the CFL number was between 0.3 to 0.95, 

based on the grid size. The proper choice of sampling time reduces errors of the data 

processing. It can also save the computational time. Figure 3-5 shows the effect of sampling 

time on the time-averaged drag coefficients for an aspect ratio of 3. A normalized sampling 

time of 300 is an acceptable compromise between the accuracy and computing time, which 
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approximately equals to 90 shedding cycles (𝜏𝑠ℎ𝑒𝑑𝑑𝑖𝑛𝑔) or 7 flow-through times (
𝐿𝑥

𝑢0⁄ ). 

𝐿𝑥 is the streamwise length of the flow domain. 

 

  

Figure 3- 4- Variation of mean drag 

coefficient with respect to the number of grids 

(Mesh dependency study) [Square AR2, circle 

AR3 and triangle AR5] 

Figure 3- 5- Variation of mean drag 

coefficient at different sampling times for 

AR3 (Time dependency study) 

3-2-5-3- Domain Sensitivity and Background Turbulence Independency 

The initial flow perturbation might affect the subsequent results. It is also an influential 

parameter for properly choosing the domain size. Figure 3-6, demonstrates the 

dependency of the mean drag coefficient on the initial turbulence level of flow at 3 sets of 

upstream distances 𝐿𝑢 = 5𝑑, 10𝑑 and 15𝑑, albeit the dependency of the results on this 

parameters is stronger at low Reynolds numbers. 𝐿𝑢 is the distance from the inlet 

boundary to the center of the torus. It is observed that with increasing the upstream 

distance, the background turbulence effects gradually decline. For the larger upstream 

distance of 15𝑑, this dependency completely wears off. For 𝐿𝑢 = 10𝑑 as long as the 

turbulence level is less than 1%, the results are quite independent on the initial condition. 

From then, mean drag coefficients undergo a slight change by increasing the initial 

turbulence intensity. In this study, to bring down the computational costs, the background 

turbulence is retained less than 1% and the upstream distance is chosen to be 10𝑑. For all 

three aspect ratios. 
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(a) 

 

(b) 

 

(c) 

 

 
Figure 3- 6- Background turbulence and domain sensitivity a) AR2 b) AR3 c) AR5 
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3-3- Results and Discussions 

In this section, the force characteristics, turbulence properties, and the structure of the flow 

are discussed. 

3-3-1- Force Characteristics  

Figures 3-7 and 3-8 show the time history of the drag and lift coefficient for aspect ratios 

of 2, 3 and 5, respectively. The horizontal axis is the non-dimensional time that is 
𝑡𝑢0

𝑑⁄ . 

As is seen, the fluctuations in the flow over the tori and the resulting oscillations in the 

force coefficients show statistically stationary behavior; confirming that the transient 

results have converged. Same as the single cylinder and the single sphere, the lift 

coefficients of the tori are all zero. That is because of the symmetrical geometry of the tori. 

The mean values of drag coefficient for all the aspect ratios are between the drag coefficient 

of sphere, and that of a cylinder at the studied Reynolds number, they are 0.578, 0.852 and 

1.10 for AR2, AR3 and AR5, respectively. This indicates that the mean drag increases with 

increasing the aspect ratio; which is in agreement with the investigation of Peng Yu [13]. 

Table 3-2 compares the present results for mean drag coefficients to different results from 

the literature. The time-averaged drag coefficient for aspect ratio of 3 is in a good 

agreement with the results obtained by the wind tunnel experiments done by Yan et al 

[31]. 
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(a) 

 

(b) 

 

(c) 

 
Figure 3- 7- Drag coefficient time history a) AR2 b) AR3 c) AR5 
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(a) 

 

(b) 

 

(c) 

 
Figure 3- 8- Lift coefficient time history a) AR2 b) AR3 c) AR5 
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Table 3- 2- Variation of the mean drag coefficient by torus aspect ratio 

Author Bluff Body Type 
Reynolds 

Number 
𝐶𝐷̅̅̅̅  

Present Study Torus – AR=2 9000 0.578 

Present Study Torus – AR=3 9000 0.852 

Present Study Torus – AR=5 9000 1.10 

Yan et al [31] Torus – AR=3 9000 
0.860 

(±0.098) 

Sheard et al [32] Torus – AR=2 200 0.750 

Sheard et al [32] Torus – AR=3 200 0.942 

Sheard et al [32] Torus – AR=5 200 1.25 

Tian et al [33] Circular Disk 150000 1.124 

Dong et al [34] Cylinder 10000 1.143 

Gopalkrishnan [35] Cylinder 10000 1.186 

Constantinescu et al [36] Sphere 10000 0.393 

Rodriguez [37] Sphere 10000 0.402 

 

3-3-2- Velocity Profile 

The normalized velocity profiles of three different aspect ratios along the 𝑦-axis at three 

streamwise distance ratios of 𝑥 = 2.5𝑅, 5𝑅 and 10𝑅 are investigated in Figure 3-9. For 

𝑥
𝑅⁄ = 2.5, the velocity is maximum in the center of the tori’s hole, then shows a downward 
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trend by increasing the radial distance, then reaches to its minimum value right behind the 

surface of the solid portion, beyond this, the velocity recovers gradually to the free stream 

value. However, the velocity gradient is steeper in AR2 and AR3, compared to the one for 

AR5. The velocity distribution for 𝑥 𝑅⁄ = 5, has a similar trend to 𝑥 𝑅⁄ = 2.5, but with a 

lesser velocity deficit and a more gradual recovery for AR2 and AR3, albeit the velocity 

gradient is higher for AR2 in comparison to AR3. For AR5, however, no striking difference 

between the distances of 2.5𝑅 and 5𝑅 can be observed, except some minor changes in the 

values of minimum and maximum velocities. Farther downstream (𝑥 𝑅⁄ = 10), the velocity 

profile becomes different from that of the adjacent locations (𝑥 𝑅⁄ = 2.5 and 5) for both 

AR2 and AR3. The maximum value behind the center of the tori disappeared, and the 

velocity profiles only have a minimum value at the center of the tori. That does not happen 

for AR5, as two minimum and one maximum points in the velocity distribution are still 

observable.  

This is owing to the gradual deformation of the wake structure which combines with the 

inlet flow through the hole of the tori. Since AR5 has a greater hole compared to AR2 and 

AR3, the flow structure blends quickly. Therefore, we can claim that the torus has a 

blocking effect on the flow; and the influence of the torus on the flow decreases as the 

downstream distance increases, for AR2 and AR3. This blockage is less effective for AR5 

since the general trend in the velocity distribution remains constant. Comparing the results 

with the experiments done by Yan et al [31] for AR3 and Inoue et al [11] for AR3 and AR5 

would verify the numerical model of the present study (Figure 3-10 and 3-11). The 

interesting fact is that Inoue et al [11] carried out their experiments in the Reynolds number 

of 1500. Nonetheless, the velocity profiles of their experimental results and our numerical 

model for Re=9000 are strikingly similar at least for AR3; which indicates that increasing 

Re from 1500 to 9000, does not significantly change the trend of the velocity profile. For 

AR5, however, the velocity profiles obtained by Inoue et al exhibits higher gradients 

compared to the results in the present study. That might be due to the lower Reynolds 

number in the experiments conducted by Inoue et al. 
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Figure 3- 9- Normalized time-averaged streamwise velocity profile a) x=2.5R b) x=5R  c) 

x=10R 

 

 

 

 

Figure 3- 10- Model verification of the velocity profile for AR3 a) x=2.5R b) x=10R. Solid line 

for the current study, square for Yan et al at Re=9000 [31]  and circle for Inoue et al at 

Re=1500 [11] 
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Figure 3- 11- Model verification of the velocity profile for AR5 a) x=2.5R b) x=10R. Solid line 

for current study and circle for Inoue et al at Re=1500 [11] 

3-3-3- Turbulent Structure 

To investigate the vortical cores along the leeward surface of the tori, isosurfaces of the 

second invariant of the velocity gradient, namely the Q-criterion proposed by Hunt et al. 

[38] are used. The Q-criterion is defined as: 

𝑄 = 1
2⁄ (𝑢𝑖,𝑖

2 − 𝑢𝑖,𝑗𝑢𝑖,𝑗) =
1
2⁄ (‖Ω‖2 − ‖𝑆‖2)         (3 − 9) 

Where tensors Ω and 𝑆 are the anti-symmetric and symmetric parts of the velocity gradient 

tensor ∇𝑢 respectively. Physically, Ω denotes vorticity rate and 𝑆 represents the strain rate 

tensors. Therefore, in a pure irrotational straining motion ∇𝑢 = 𝑆, and in the solid body 

rotational flow ∇𝑢 = Ω. The ‖Ω‖ term is the absolute value of the vorticity rate tensor Ω 

which is defined as [𝑇𝑟(ΩΩ𝑇)] 0.5, where Ω𝑇 is transpose of Ω and 𝑇𝑟 or the trace is sum 

of the elements lying along the main diagonal. The term ‖𝑆‖  is defined similarly. 

Accordingly, if the strain rate is much higher than the vorticity rate (‖𝑆‖ ≫ ‖Ω‖) shear 

flow is dominant. In contrast, if the rotation strength is much greater than the shear strength 

(‖Ω‖ ≫ ‖S‖), the flow will be highly rotational.  

In order to compare the vortical structures in different aspect ratios, the instantaneous 

isosurfaces of the Q-criterion are illustrated in Figure 3-12 for 𝑄 = 100. For AR2 and 

AR3, the inner and the outer shear layers shed from the torus. As a result of the small-scale 

interactions inside the recirculation bubble, Kelvin-Helmholtz instability occurs, then the 

vortex sheet rolls up and start forming vortex rings from the outer edge of the torus. This 
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happens at the downstream distances of 4d to 6d and 2.5d to 3d for AR2 and AR3, 

respectively. The vortex rings then break up and turn into the hairpin vortices that are 

mostly moored to the centerline axis of the torus. Worm-like vortices can also be seen in 

the inner wake region. The wake structure exhibits a helical anti-phase pattern, in general. 

This is consistent with the study done by Tian et al [33] for the circular disk at Reynolds 

number of 150000. Inside the inner shear layer, the roll-up does not take place and a 

cylindrical-shaped inner shear layer emerges through the torus hole (Figure 3-13). This 

phenomena was observed by Inoue et al [11] for the torus with aspect ratio of three and 

almost similar to the pumping of the recirculation bubble in the disk wake reported by 

Berger et al [39].  

In the case of AR5, both inner and outer shear layers are separated from the torus surface, 

immediately roll up and create more regular quasi-axisymmetric vortex rings shed 

downstream alternately. Thus, here we say that the wake structure of the flow becomes 

more rotational with increasing the aspect ratio, at least for the studied Reynolds number. 

When the torus hole size (or the aspect ratio) is small, the shear boundary layers of the 

torus inner surface interact with each other. This causes the circulation strength and 

vorticity magnitude to get smaller. Therefore, the interaction of the outer shear layers plays 

a major role in the flow patterns of AR2 and AR3, unlike AR5 in which the flow structures 

are governed by both inner and outer shear layers. This results are also demonstrated in 

Figure 3-14 with the aid of the instantaneous vorticity contours. For the smaller aspect 

ratios, the detachment of the vortices takes place farther downstream and flow has an anti-

phase structure behind the torus. Whereas, the contour shows the pairing of the counter-

rotating shed vortices with almost a mirror symmetry with respect to the centerline axis 

downstream of the torus with AR5 and the divergence of the vortices from the centerline 

axis. Figure 3-14 also dictates that the vorticity of the flow gradually dissipates along the 

steamwise direction, i.e. the magnitude of vorticity decreases. 
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(a) 

 

(b) 

 

(c) 

 

Figure 3- 12- Instantaneous Q-criterion iso-surfaces Q=40. a) AR2 b) AR3 c) AR5 
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(a) (b) 

Figure 3- 13- Cylindrical-shaped inner shear layer a) AR2 b) AR3 

 

 

Table 3- 3- Averaged non-dimensional recirculation length 

Aspect Ratio Averaged Non-dimensional Recirculation length 
𝐿𝑟𝑒𝑐

𝑑⁄  

2 4.75 

3 2.85 

5 1.2 

 

 

Table 3- 4- Normalized convection velocity of the wake flow in streamwise direction 

Author Torus Aspect Ratio Reynolds Number 𝑢𝑐̅̅ ̅
𝑢0⁄   

Present 2 9000 0.79 

Present 3 9000 0.85 

Present 5 9000 0.92 

Inoue et al [11] 5 1500 0.80 
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(a) 

 

(b) 

 

(c) 

 

 

Figure 3- 14- Instantaneous normalized vorticity contour a) AR2 b) AR3 c) AR5 
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3-3-4- Spatiotemporal Velocity Field 

Figure 3-15 shows the variation of the instantaneous streamwise velocity in the x-direction 

along the line 𝑦 = 𝑅. For each aspect ratio, five time-series snapshots (𝑡0, 𝑡0 +
1
4⁄ 𝜏,

𝑡0 +
1
2⁄ 𝜏, 𝑡0 +

3
4⁄ 𝜏, 𝑡0 + 𝜏) in one shedding period are presented. The recirculation 

length 𝐿𝑟𝑒𝑐 denotes the time-averaged streamwise distance from the center of the torus to 

the point where the instantaneous streamwise velocity changes its sign from negative to 

positive. It is seen that this recirculation becomes longer with decreasing aspect ratio. The 

approximated time averaged recirculation length for all three aspect ratios are reported in 

the Table 3-3. For AR5, the fluctuation in velocity is much smaller compared with AR2 

and AR3; especially at 𝑥 ≥ 10𝑑. On the other hand, the regularity of the flow for AR2 and 

AR3 is much weaker than AR5, as suggested by Inoue et al [11]. 

The variation of the instantaneous streamwise velocity along the torus centerline is also 

illustrated in Figure 3-16. For AR2 and AR3, the instantaneous velocity reaches its 

maximum value at 𝑥 ≤ 5𝑑, due to the nozzle effect of the torus base bleed (hole) on the 

flow. For AR2, the flow recovers from some wild fluctuations at 𝑥 ≥ 18𝑑. This recovery 

for AR3 happens sooner compared with AR2. On the contrary, for AR5, after some small 

local fluctuations in the vicinity of the torus leeward surface, flow structure recovers 

quickly. As a result, at 𝑥 ≥ 10𝑑, almost the same structural shape is observed for the flow. 

This is because of the larger hole in AR5 which does not allow the centerline flow to be 

influenced by the inner shear layer interaction. This results are in a great accordance with 

the previous sections as well as Inoue et al [11] findings at Reynolds number of 1500. 

It is worth mentioning that the convection velocity of the wake structure can be calculated 

by dividing the displacement of the curve in the streamwise direction by the elapsed time 

(here it is 0.25𝜏 ). To see the blocking effects of each aspect ratio, the approximated 

convection velocity of the wake is summarized in the Table 3-4. The convection velocity 

of the wake flow reported by Inoue et al [11] for aspect ratio of 5 and at the Reynolds 

number of 1500, was 80% of the freestream velocity, whereas the present study finds the 

wake convectional velocity 92% of the freestream velocity. The discrepancy between the 

results is probably due to the difference in the studied Reynolds numbers. The present study 
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conducted at a Reynolds number that is six time greater compared with the experiments 

done by Inoue et al. 

 

(a) 

 

(b) 
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(c) 

 
Figure 3- 15- Spatiotemporal variation of the streamwise velocity along y=R a) AR2 b) AR3 c) 

AR5 

 

 

 

(a) 
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(b) 

 

(c) 

 
Figure 3- 16- Spatiotemporal variation of the streamwise velocity along the torus centerline 

(y=0) a) AR2 b) AR3 c) AR5 

3-3-6- Energy Spectrum  

To garner further insight into the turbulence structures of the torus wake flow, the energy 

spectrum of the cross-streamwise velocity fluctuations is calculated to catch the dominant 

frequencies of the flow. For this purpose, a fast Fourier transform (FFT) is applied to the 

turbulent velocity fluctuation time signals by using Welch function, a method based on 

DFT. These have been sampled at two different streamwise locations: one in the near wake 

region inside the recirculation bubble and another one in a point outside of the recirculation 

bubble where the turbulence develops.  
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Figures 3-17 and 3-18 demonstrate the energy spectrum of the cross-strreamwise velocity 

fluctuations at four points located within the recirculation distance. For aspect ratios of 2 

and 3, at 𝑦 ≤ 𝑅, spectrum shows an initial peak at low Strouhal number (0.052 and 0.074 

for AR2 and AR3, respectively). This is as a result of pulsation of cylindrical-shaped inner 

shear layer of the torus, discussed previously (See Figure 3-13). The mentioned frequency 

cannot be observed for AR5. 

By moving towards the cross-stream direction and around the solid portion of the torus, 

the graphs exhibit a broadband peak centered at 𝑆𝑡𝐾𝐻 = 1.72, 1.7, 1.62 for aspect reatios 

of 2,3 and 5, respectively. These broadband peaks have emerged as a result of the small-

scale interactions due to the Kelvin-Helmholtz instability inside the recirculation bubble 

that randomly transport energy to the wake flow. 

 As we move along the streamwise direction (𝑥 = 10𝑑), the turbulence develops and the 

general shape of the energy spectrum is formed; that is a large, energy-containing eddies 

at the lower frequencies, the inertial subrange section (−5/3  power law) and small, 

dissipative scales at the high frequencies. This corresponds to the energy cascade from the 

larger eddies of the spectrum to the smaller ones. At this point, the spectrum peaks at 

𝑆𝑡𝑣𝑠 = 0.176, 0.194, 0.202 for the aspect ratios of 2, 3 and 5, respectively. That is due to 

the large-scale vortex shedding process. 

 As can be seen in the figures, both the low dominant frequency and broadband peak (the 

high dominant frequency) fades away and there is no sign of Kelvin-Helmholtz shear layer 

instability at the point 𝑥 = 10𝑑 for all three aspect ratios. In fact, the large scale eddies 

virtually retain their size over the x-direction. On the contrary the high frequency (small-

scale) eddies can be mostly found in the proximity of the leeward surface of the torus. 

All the mentioned frequencies have been measured by the several researchers for disk, 

cylinder and sphere wake flow. Table 3-5 compares the present results with the literature. 
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(a) 

 

(b) 

 

(c) 

 
Figure 3- 17 - Energy spectrum of cross-stream velocity in near-wake region: a) AR2 at x=4.5d 

b) AR3 at x=2.5d c) AR5 at x=d 
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(a) 

 

(b) 

 

(c) 

 
Figure 3- 18- Energy spectrum of cross-stream velocity at x=10d: a) AR2 b) AR3 c) AR5 
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Table 3- 5- Comparison of the Strouhal numbers between the present study and literature 

Author 
Bluff Body 

Type 
𝑅𝑒 𝑆𝑡𝑖𝑝 𝑆𝑡𝑣𝑠 𝑆𝑡𝐾𝐻 

𝑆𝑡𝐾𝐻
𝑆𝑡𝑣𝑠
⁄  

Present Torus – AR2 9000 0.052 0.176 1.72 9.77 

Present Torus – AR3 9000 0.074 0.194 1.70 8.76 

Present Torus – AR5 9000 N/A 0.202 1.62 8.02 

Inoue [11] Torus – AR3 1500 - 0.2 - - 

Inoue [11] Torus – AR5 1500 - 0.2 - - 

Shear [1] Torus – AR3 200 - 0.157 - - 

Sheard [1] Torus – AR5 200 - 0.187 - - 

Zhong [40] Circular Disk 22000 0.035 0.123 
1.3-

1.7 

10.57-

13.82 

Yang [41] Circular Disk 3000 - 0.14 - - 

 Tian [33] Circular Disk 150000 0.01 0.148 
0.8-

1.35 
5.41-9.12 

Sarvghad-

Mohhadam [42] 

Side-by-Side 

Cylinder – 

GR3 

10000 - 0.22 - - 

Sarvghad-

Moghadam [42] 

Side-by-Side 

Cylinder – 

GR4 

10000 - 0.25 - - 

Dong [34] Cylinder 10000 - 0.203 - - 

Alijure [43] Cylinder 5000 - 0.21 1.65 7.86 
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Constantinescu [36] Sphere 10000 - 0.195 - - 

Rodriguez [37] Sphere 10000 - 0.195 1.77 9.08 

3-4- Conclusion 

Flow past the torus-shaped body in aspect ratios of 2, 3 and 5 and at the Reynolds number 

of 9000 were numerically investigated using an LES-Dynamic Smagorinsky turbulence 

model. Force characteristics, turbulence properties and wake flow structure were disclosed 

and compared. The following conclusions are made: 

 The mean value of the drag coefficient of a torus stands between that of a cylinder 

and sphere, and it increases with increasing the aspect ratio. Similar to the cylinder and 

sphere, the lift coefficient of a torus is found to be zero by virtue of its mirror symmetrical 

shape. 

 According to the center hole size, the torus has a blockage effect on the flow. For 

higher aspect ratios, this blockage is less influential since the gradual trend of the velocity 

profile remains almost constant in the streamwise direction. This is owing to the gradual 

deformation of the wake structure which combines with the inlet flow through the hole of 

the tori. Since the higher aspect ratios have a greater hole, the flow structure blends more 

quickly. 

 Three shedding frequencies are detected at the Reynolds number studied for all 

three cases. The highest frequency is attributed to the small-scale instability of the 

separating shear as a result of Kelvin-Helmholtz instability. It is only apparent in close 

proximity to the torus leeward surface and fades away gradually along the streamwise 

direction. The medium frequency is the vortex shedding frequency, which is an indication 

of large-scale instability and almost remains constant over the streamwise direction. The 

vortex shedding frequency and corresponding Strouhal number gets larger with increasing 

aspect ratio. The lowest dominant frequency is observed as a consequence of pulsation of 

cylindrical-shaped inner shear layer or, as Berger [39] proposed, pumping the recirculation 

bubble. This phenomenon happens by virtue of the nozzle effect of the torus hole and can 

be observed only for small aspect ratios, i.e. AR2 and AR3. The pulsation of the inner shear 
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layers (or the nozzle effect) for AR2 and AR3 result in a long recirculation bubble. 

 Investigation of the vortical cores downstream of the tori identified by Q-criterion, 

as well as the vorticity contours, specifies that the wake flow of the tori with higher aspect 

ratios are more rotational and affected by both inner and outer shear layers. Thus, a regular 

pattern of high-vorticity rings can be observed downstream of the leeward surface. For the 

small aspect ratios, the circulation strength gets smaller as a result of the inner shear layer 

interaction, thus the flow pattern is mainly governed by the outer shear layer interaction.  
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CHAPTER 4 

REYNOLDS NUMBER EFFECT ON TORUS WAKE 

STRUCTURE 

4-1- Introduction 

Flow around bluff bodies has been one of the interesting subjects for many decades. In 

particular, aerodynamics of the circular cylinder and sphere have been extensively studied 

by both experimental and numerical approaches in the literature. Nonetheless, flow around 

a torus which geometrically stands between a cylinder and sphere has been afforded limited 

attention, despite having a wide range of application from biological and engineering 

viewpoints, such as flow challenges with micelles [1], flow around helical heat exchangers 

[2] and the motion of natural micro-swimmers such as helical flagella [3]. 

The variation of the flow structure behind a torus strongly depends on two main factors. 

The first one is aspect ratio, which is the ratio of the main diameter (𝐷) to the core diameter 

(𝑑) of the torus (see Figure 4-1); and the second one is Reynolds number. Previous studies 

on flow over the torus have been mostly carried out at the low Reynold numbers. There is 

limited research at higher Reynolds numbers, however, they were all done experimentally. 

Roshko, Sheard and Yu [4, 5, 6, 7] made the extensive studies on the flow around tori at 

the Reynolds numbers less than 300. It was found that for the aspect ratio less than 3.9, the 

wake structure is analogous to a sphere or disk wake structure. For the aspect ratio larger 

than 3.9 the wake structure becomes axisymmetric vortex sheets similar to the one for a 

circular cylinder. These conclusions were confirmed by Leweke and Provansal [8] , 

Bearman and Takamoto [9] and Manson [10], as well. Sheard [11] and Yu [12] also 

provided detailed data on variations of drag coefficient at the Reynold numbers lower than 

300. At a larger Reynolds number of 1500, Inoue et al [13] conducted an experimental 

study using Ultrasonic Doppler Velocity (UVP) monitor to observe the vortex shedding 

behind the tori with aspect ratios of 3 and 5. 

The present paper is aimed to numerically investigate the effects of Reynolds number on 

the variation of force characteristics and vortical structure of a torus with an aspect ratio of 
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three with the aid of the commercial software ANSYS FLUENT 18.0. Three Reynolds 

number of 150, 1500 and 15000 were examined. The accuracy assessment of the Improved 

Delayed Detached Eddy Simulation (IDDES) approach is the other objective. 

 

Figure 4- 1 - Schematic representation of a torus 

 

4-2- Improved Delayed Detached Eddy Simulation (IDDES) 

IDDES method tackles the problems of the classical detached eddy simulation (DES) 

method, such as grid-induced separation (GIS) [14], by providing a strong shielding 

function with the aid of redefining the length scale. The IDDES model is based on 𝑆𝑆𝑇 𝑘 −

𝜔, that is adopted as a RANS model and modifies the dissipation-rate term of turbulent 

kinetic energy (TKE) transport equation. Therefore, the TKE equation for the IDDES 

model can be written as: 

𝜕(𝜌𝑘)
𝜕𝑡
⁄ +

𝜕(𝜌𝑢𝑗𝑘)
𝜕𝑥𝑗
⁄ = 𝜕 𝜕𝑡⁄ [(𝜇 +

𝜇𝑡
𝜎𝑘⁄ )𝜕𝑘 𝜕𝑥𝑗

⁄ ] + 𝜏𝑖𝑗𝑆𝑖𝑗 −
𝜌𝑘

3
2⁄

𝐿𝐼𝐷𝐷𝐸𝑆
⁄           (4 − 1)           

Where 𝑡, 𝑘, 𝜌, 𝑢𝑗 , 𝜇, 𝜇𝑡, 𝜏𝑖𝑗  and 𝑆𝑖𝑗  are time, turbulent kinetic energy, density, velocity, 

molecular viscosity, turbulent viscosity, stress tensor and mean shear stress, respectively. 

The IDDES length scale is defined as: 

𝐿𝐼𝐷𝐷𝐸𝑆 = 𝑓�̃�(1 + 𝑓𝑒)𝐿𝑅𝐴𝑁𝑆 + (1 − 𝑓�̃�)𝐿𝐿𝐸𝑆         (4 − 2)           

In which: 
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𝐿𝐿𝐸𝑆 = 𝐶𝐷𝐸𝑆∆          𝑎𝑛𝑑          𝐿𝑅𝐴𝑁𝑆 =
𝑘
1
2⁄

𝛽∗𝜔
⁄           (4 − 3)                

𝛽∗ is a constant equal to 0.9.∆= min{max[𝐶𝑤∆𝑚𝑎𝑥,  𝐶𝑤𝑑,  ∆𝑚𝑎𝑥] ,  ∆𝑚𝑎𝑥} is the grid scale, 

𝐶𝑤 is an empirical constant, 𝑑 is the distance to the closest wall, ∆𝑚𝑖𝑛= min(∆𝑥,  ∆𝑦,  ∆𝑧) 

and ∆𝑚𝑎𝑥= max (∆𝑥,  ∆𝑦,  ∆𝑧). For detailed formulations, please refer to Shur et al., 2008 

and Gritskevich et al., 2012 [15, 16]. 

4-3- Numerical Details 

In order to make a comparison of the results possible with the experimental data, here in 

this study, the aspect ratio was chosen to be 3. Sheard [5] proposed that for the torus with 

aspect ratio more than 1.6, the core diameter (d) can be used to calculate the Reynolds 

number. Therefore: 

𝑅𝑒 =
𝑢0𝑑

𝜐
          (4 − 4) 

Where 𝑢0 is free stream velocity, and 𝜐 is kinematic viscosity.  

The dimensions of the computational domain are given in Figure 4-2. This study maintains 

the blockage ratio less than 1% for all the simulations. Accordingly, 𝐿𝑦𝑧 = 15𝑑 , and 

upstream distance and downstream distances are (𝐿𝑢, 𝐿𝑑) = (10𝑑, 40𝑑). The origin of the 

coordinate system (0,0,0) in this study is located at the center of the torus. The boundary 

conditions that are employed in the current simulation are also depicted in Figure 4-2. A 

velocity-inlet condition in the 𝑥-direction is set at the inlet boundary to retain a Reynolds 

number of 150, 1500 and 15000, respectively. A pressure-outlet condition with set to 

atmospheric pressure is prescribed at the outlet boundary. The slip-wall and no-slip 

conditions are also applied to the domain boundary and torus surface, respectively. 
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Figure 4- 2- Schematic of the computational domain and boundary conditions 

 

The pre-processor ANSYS ICEM CFD 18.0 was used to discretize the three-dimensional 

domain (Figure 4-3). In order to accurately predict the drag and separation point, the law-

of-the-wall was imposed in the proximity to the torus surface. Accordingly the mesh with 

the order of 𝑦+ ≈ 1 is used to properly cover the viscous sub-layer adjacent to the torus 

surface. In the wake region, the cell sizes are kept less than 10% of the integral length. The 

integral length scale can be approximated by performing a RANS simulation, beforehand. 

A commercial solver ANSYS FLUENT 18.0 was utilized in the present study. The 

bounded central difference scheme and the Least Square Method (LSM) is used for the 

momentum equation and gradients, respectively. Although the bounded central difference 

scheme is slightly dissipative, it is considerably more robust compared with the classical 

central difference scheme; so it is considered as the optimal choice for our simulations [17]. 

The pressure-implicit with the splitting of operators (PISO) algorithm was chosen for 

pressure-velocity coupling equation. To improve the computational efficiency, 16 parallel 

CPU cores were selected to solve the equations. All the simulations are operated on a 

device with two Intel (R) Xeon (R) CPUs (E5630 v3 at 2.53 GHz – 2.80 GHz), 128 GB 

RAM and 2TB hard disk space. 
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(a) (b) 

Figure 4- 3- Generated mesh around the torus. a) Close observation of the cross-sectional plane 

b) Boundary layer cells 

4-4- Model Validation 

4-4-1- Grid Sensitivity 

The accuracy of the results is inextricably tied to the mesh quality. Thus the grid 

independence study was done by monitoring the effect of mesh density on the mean drag 

coefficient. The results for six sets of grids were compared in Figure 4-4. There is no 

striking change in the mean drag value, when the grid numbers are more than 1.65 million, 

2.42 million and 3.80 million, for the Reynolds numbers of 150, 1500 and 15000, 

respectively. 

4-4-2- Time Sensitivity 

The role that time-step discretization plays in the transient simulations is undeniable. 

Accurate description of the flow behavior is likely to be provided for the small time-steps, 

however, it would result in the increase computational costs [18]. To keep an optimal 

balance of the temporal and spatial discretization, the Courant-Fredrich-Lewy (CFL) 

number is used when 𝐶𝐹𝐿 ≤ 1. The CFL cannot be controlled manually with the selected 

solver and algorithm, hence the time-step size  ∆𝑡 = 𝐶𝐹𝐿 × ∆𝑥 𝑢0⁄  is used to evaluate CFL. 

The variation of the mean drag coefficient and CFL number with the time-step size can be 
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seen in the Table 4-1. The time-step sizes for Reynolds numbers of 150, 1500 and 15000 

have been selected 0.4s, 0.02s and 0.001s, respectively. 

Table 4- 1- Time-step size effect on CFL and mean drag coefficient 

Reynolds 

Number 

Minimum Cell Size at 

Wake Region (m) 

Time-

step size 

(s) 

CFL 𝐶𝐷̅̅̅̅  

150 
0.005 0.4 0.708 0.904 

0.005 0.2 0.354 0.904 

1500 
0.0025 0.02 0.708 0.842 

0.0025 0.01 0.354 0.842 

15000 
0.00125 0.001 0.708 0.880 

0.00125 0.0005 0.354 0.880 

The proper choice of sampling time minimizes the error of the time-averaged results. 

Additionally, it can save computational time. The variation of the mean drag coefficient 

with sampling time is shown in Figure 4-5. A normalized sampling time of 300 is a 

reasonable choice. 

  

Figure 4- 4- Grid independency study Figure 4- 5- Sampling time independency 

study 
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4-4-3- Background Turbulence Sensitivity 

The initial flow perturbation might affect the subsequent results. Thus, the effect of 

background turbulence intensity on the mean drag coefficient has been studied. Figure 4-6 

demonstrates the value of the mean drag coefficient for 5 sets of initial turbulence intensity. 

It is observed that for the turbulence intensity of 1% and less, the result is quite 

independent. Thus, in this study, the background turbulence intensity is retained less than 

1% for the upstream distance 𝐿𝑢 of 10𝑑 for all three studied Reynolds numbers. 

4-4-4- Energy Spectrum 

Figure 4-7 shows the energy spectrum of the cross-stream velocity signal at a point outside 

of the recirculation bubble (𝑥 = 10𝑑), obtained by Welch periodogram, a method based 

on DFT [19]. All the three Reynold numbers cases evolve towards a general shaped energy 

spectrum; that is the large, energy-containing eddies at the low frequency, a -5/3 decay law, 

and the small, dissipative eddies at the high frequency. The energy spectrum is well 

resolved up to the cut-off frequency for all the studied Reynolds numbers, that is the cell 

limit of each grid. They all ascertain that the time and domain have been discretized 

properly. As Reynolds number increases from 150 to 15000, the range of eddy sizes 

become broader. This is in a total agreement with the basic of the fluid dynamics and 

turbulent flow. It is worth noting that the spectra are peaked at 𝑆𝑡 = 0.154, 0.202 and 

0.198 for Reynolds numbers of 150, 1500 and 15000, respectively. It implies that the 

large-scale vortices shed at the mentioned non-dimensional frequencies. Table 4-2 

compares the obtained values of the Strouhal numbers with the data in the literature. 
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Figure 4- 6- Background turbulence sensitivity 

 

Figure 4- 7- Energy spectrum of cross-stream 

velocity at x=10d 

 

 

 

 

Table 4- 2- Comparison of the Strouhal number between the present results and literature 

Author Bluff Body Type 
Reynolds 

Number 
St 

Present Torus (AR=3) 150 0.154 

Present Torus (AR=3) 1500 0.202 

Present Torus (AR=3) 15000 0.198 

Sheard [5] Torus (AR=3) 150 0.148 

Inoue [13] Torus (AR=3) 1500 0.200 

Constantinescu [20] Sphere 10000 0.195 

Dong [21] Circular Cylinder 10000 0.203 

Sarvghad-Moghadam 

[22] 

Side-by-Side Cylinder 

(GR=3) 
10000 0.220 

Zhong [23] Circular Disk 22000 0.123 
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4-5- Results and Discussions 

4-5-1- Force Characteristics 

Force coefficient 𝐹/0.5(𝜌𝐴𝑐𝑢0
2) are calculated using the frontal area of the torus 𝐴𝑐 =

𝜋𝑑𝐷. Time history of the lift and drag coefficient of the torus is illustrated in Figure 4-8 

and 4-9, respectively. The figure indicates that at Reynold number of 150, the wake is in 

the laminar regime, since the variation of the force coefficients are almost steady. To enable 

a closer observation, they are simply presented between the time units of 240 to 300. It is 

seen that the force coefficients are subject to an extremely minor oscillation around the 

mean value. The amplitude of the fluctuation is in the order of 10−5. At Reynolds numbers 

of 1500 and 15000, the wake seems to be at the turbulent region, since the force coefficients 

time histories are not steady any longer. The oscillation implies a random, unsteady motion 

in the flow dynamics; particularly for Reynolds number of 15000, this randomness along 

with the turbulent nature of the flow are exhibited better in detail. The mean drag values 

for Reynolds numbers of 150, 1500 and 15000 are 0.904, 0.842 and 0.880, respectively. 

The results for Reynolds numbers of 150 and 15000 are in a good accordance with the data 

in the literature. For Reynolds number of 1500, there is no information regarding the drag 

coefficient of the torus in the literature, thus the mean drag has been compared to the ones 

for a circular cylinder and a sphere. (Table 4-3) 

Table 4- 3- Comparison of the mean drag coefficient between the presented results and literature 

Author Bluff Body Type Reynolds Number 𝐶𝐷 

Present Torus (AR=3) 150 0.904 

Present Torus (AR=3) 1500 0.842 

Present Torus (AR=3) 15000 0.880 

Sheard [24] Torus (AR=3) 150 0.900 

Yan [25] Torus (AR=3) 15000 
0.890 

(±0.101) 

Mittal [26] Cylinder 1500 1.50 

Munson [27] Sphere 1500 0.400 
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(a) 

 

(b) 
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(c) 

 

Figure 4- 8- Time history of the lift coefficient a) Re=150 b) Re=1500 c) Re=15000 

 

a) 
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(b) 

 

(c) 

 

Figure 4- 9- Time history of the drag coefficient. a) Re=150 b) Re=1500 c) Re=15000 
 

4-5-2- Turbulent Structure 

Visualization of the wake structure is an effective method to study the vortical structure 

and wake patterns along the leeward surface of the torus. Isosurfaces of the second 

invariant of the velocity gradient, namely Q-criterion are applied for this reason. Figure 4-

10 illustrates the instantaneous iso-surfaces of Q-criterion for Reynolds numbers of 150, 

1500 and 15000. The vortical structure and wake pattern for Reynolds number of 150 is 

completely different from the ones for Reynolds numbers of 1500 and 1500.  
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At the Reynolds number of 150, the recirculation zone is plainly visible just downstream 

of the ring tube and flow field is steady. As flow travels in the streamwise direction, the 

large-scale hairpin structures are formed as the oblique vortex loops shedding alternately 

from almost opposite sides of the centerline axis. As proposed by Shear et al, the mode 2 

of azimuthal symmetry is observable in the wake. The flow characteristics can be also seen 

in Figure 4-11 with the aid of normalized vorticity (𝜔𝑑/𝑢0) contour. The shedding vortices 

exhibit an anti-phase synchronized pattern at the Reynolds number of 150. 

For both Reynolds numbers of 1500 and 15000, as flow past the torus, a recirculation zone 

is formed downstream of the torus tube as a result of the laminar shear-layer separation. 

Then the recirculation zone becomes unstable as a result of Kelvin-Helmholtz instabilities 

inside the recirculation bubble, vortex sheet rolls up from the outer edge of the recirculation 

zone, and causes the flow becomes three-dimensional and turbulent. The transition to 

turbulence, however, is different for the Reynolds numbers of 1500 and 15000. In case of 

Reynolds number of 1500, the small-scale instabilities in the separated shear layer are 

observable at the random azimuthal locations. For this reason, the onset of roll-up takes 

place locally at the position where the vortices are shed. At the 𝑅𝑒 = 15000, this transition 

happens earlier at a point closer to the torus, thus, the recirculation zone is shorter than for 

𝑅𝑒 = 1500. At this Reynolds number also the small-scale instabilities occur at random 

azimuthal locations. Nonetheless, they gradually develop into corrugated structures along 

the azimuthal directions, downstream of the recirculation zone, which are formed by the 

interaction of small-scales inside the recirculation bubble. As flow travels along 

downstream, the vortex rings are shaped as a result of the separation of the small-scales 

from the vortex sheets. Then, these vortex rings break up and turn into the hairpin vortices 

with the leg moored to the centerline axis. In both cases of 𝑅𝑒 = 1500 and 15000, the 

wake structure exhibits a helical vortex shedding pattern. It is worth noting that the 

turbulent structures become finer as the Reynolds number increases.  
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(a) 

 

(b) 

 

(c) 

 

Figure 4- 10- Instantaneous Q-criterion isosurfaces 
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(a) 

 

(b) 

 

(c) 

 

 
 

Figure 4- 11- Normalized instantaneous vorticity contour in plane z=0. a) Re=150 b) Re=1500 c) 

Re=15000 

 

4-5-3- Mean Velocity Profile 

To gain more understanding about the wake flow dynamics, the velocity field was studied. 

Figure 4-12 shows the streamwise mean velocity distributions in the radial direction, 

normalized by the free-stream velocity 𝑢0 . Three streamwise distances of 5𝑑, 10𝑑 and 

15𝑑 were studied for all three Reynolds numbers and the results for the Reynolds numbers 

of 1500 and 15000 are compared to the experimental studies done by Inoue [13] and Yan 



 

95 
 

[25], respectively. In the near wake region (i.e. 𝑥 = 5𝑑), all the Reynolds numbers show a 

local maximum at the torus centerline that is due to the nozzle effect of torus base bleed. 

There are also two radially symmetric minimums behind the torus tube at 𝑦 = ±𝑅. As the 

radial distance increases, the flow recovers gradually to the free-stream velocity. Farther 

downstream (𝑥 = 10𝑑, 15𝑑), the profile reflects the same trend for 𝑅𝑒 = 150 and the local 

maximum at the centerline axis as well as the two symmetric low-velocity regions are still 

observable, although the gradient in the radial direction becomes slighter. On the contrary 

for the Reynolds numbers of 1500 and 15000, the local extremums at 𝑥 = 10𝑑 and 15𝑑 

are not apparent any longer, and only a single broad minimum can be observed around the 

centerline. These results suggest that the wake recovery for the higher Reynolds numbers 

happens earlier than the lower Reynolds numbers. Comparison between the centerline 

velocity for 𝑅𝑒 = 1500  and 15000  cases also confirms this result, as the centerline 

velocity for 𝑅𝑒 = 1500 is between 50% and 60% and the one for 𝑅𝑒 = 15000 is around 

75% of the free-stream velocity. 

𝑹𝒆 = 𝟏𝟓𝟎 

   

𝑹𝒆 = 𝟏𝟓𝟎𝟎 

   

𝑹𝒆 = 𝟏𝟓𝟎𝟎𝟎 
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(a) (b) (c) 

Figure 4- 12- Normalized time-averaged streamwise velocity profile in plane z=0. a) x=5d b) 

x=10d c) x=15d [Experimental results for Re=1500 and 15000 were done by Inoue et al [13] 

and Yan [25], respectively] 

 

4-5-4- Spatiotemporal Velocity Field 

The variation of the normalized instantaneous streamwise velocity in the 𝑥-direction are 

depicted in Figures 4-13, 4-14 and 4-15 by two-dimensional contour on the plane 𝑧 = 0 

(𝑥𝑦-plane). For each Reynolds number, five time-series snapshots (𝑡0, 𝑡0 + 0.25𝜏, 𝑡0 +

0.5𝜏, 𝑡0 + 0.75𝜏, 𝑡0 + 𝜏) in one shedding period are presented. The contours imply that the 

irregularity and randomness of the flow intensify with increasing Reynolds number. To 

conduct an in-depth analysis of the flow dynamics, the instantaneous velocity along the 

centerline (𝑦 = 0) and the radius of the torus (𝑦 = 𝑅) are demonstrated in Figure 4-16 and 

4-17, respectively for all three Reynolds numbers. As Reynolds number increases the 

regularity of the velocity becomes weaker and the space-time correlation gets less stronger 

along the flow direction. As previously discussed, the recirculation bubble becomes shorter 

with increasing the Reynolds numbers. The recirculation length is the streamwise distance 

from the torus center to the location where the streamwise velocity changes its sign from 

negative to positive (See Figure 4-17). The approximate recirculation length for the 

Reynolds numbers of 150, 1500 and 15000 are 4.45d, 4.05d and 3.66d, respectively. The 

variation of the instantaneous velocity along the centerline, shown in Figure 4-16, exhibits 

an initial peak in the near wake region. That is due to the nozzle effect of the torus base 

bleed (hole). After some random fluctuation, the flow recovers and reaches its statistically 

stationary state farther downstream. By increasing Reynolds number, since the mixing is 

much stronger at the near-wake region, the wake recovery takes place more quickly. Thus, 
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the “nozzle effect length” and “length of recovery” for 𝑅𝑒 = 15000 case is shorter than 

𝑅𝑒 = 1500 case, and for 𝑅𝑒 = 1500 is shorter than the one for 𝑅𝑒 = 150. To study the 

torus blockage effect, finding the wake convection velocity can be helpful. There is no 

surprise that the convection velocity of the wake flow for the Reynolds number of 15000 

is the highest in the present study. This result confirms the earlier wake recovery for the 

higher Reynolds numbers. The wake convection velocity for 𝑅𝑒 = 150, 1500 and 15000, 

are roughly 65%, 80% and 85% of the free-stream velocity, respectively.   

 

𝒕𝟎 

 

𝒕𝟎 + 𝟎. 𝟐𝟓𝝉 

 

𝒕𝟎 + 𝟎. 𝟓𝝉 

 

𝒕𝟎 + 𝟎. 𝟕𝟓𝝉 
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𝒕𝟎 + 𝝉 

 

 

Figure 4- 13- Instantaneous normalized velocity contour for Re=150 at plane z=0 in one 

shedding period 
 

 

𝒕𝟎 

 

𝒕𝟎 + 𝟎. 𝟐𝟓𝝉 

 

𝒕𝟎 + 𝟎. 𝟓𝝉 

 

𝒕𝟎 + 𝟎. 𝟕𝟓𝝉 
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𝒕𝟎 + 𝝉 

 

 

Figure 4- 14- Instantaneous normalized velocity contour for Re=1500 at plane z=0 in one 

shedding period 
 

 

𝒕𝟎 

 

𝒕𝟎 + 𝟎. 𝟐𝟓𝝉 

 

𝒕𝟎 + 𝟎. 𝟓𝝉 

 

𝒕𝟎 + 𝟎. 𝟕𝟓𝝉 
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𝒕𝟎 + 𝝉 

 

 

Figure 4- 15- Instantaneous normalized velocity contour for Re=15000 at plane z=0 in one 

shedding period 

 

(a) 

 

(b) 
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(c) 

 

Figure 4- 16- Spatiotemporal variation of the normalized streamwise velocity along the torus 

centerline (y=0) a) Re=150 b) Re=1500 c) Re=15000 
 

 

(a) 

 

(b) 
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(c) 

 

Figure 4- 17- Spatiotemporal variation of the normalized streamwise velocity along y=R a) 

Re=150 b) Re=1500 c) Re=15000 
 

4-6- Conclusion 

The effect of free-stream Reynolds numbers on the wake flow and force characteristics of 

a torus with an aspect ratio of 3 has been studied by IDDES approach. The primary findings 

are as follows: 

 The study of the force coefficients and flow field time-history indicated that at 

𝑅𝑒 = 150, the wake flow is laminar. Thus, almost steady temporal variation was 

predicted for the instantaneous quantities. For 𝑅𝑒 = 1500  and 15000 , these 

variations imply the random, unsteady motion, which is a representation of a 

turbulent wake flow. 

 Visualization of the vortical core regions by Q-criterion and the contours of the 

instantaneous vorticity demonstrate that at 𝑅𝑒 = 150, the wake exhibit a large-

scale hairpin structure which is in the form of oblique vortex loops shedding 

alternately with an anti-phase synchronized pattern from the opposite side of the 

torus centerline. For both cases of 𝑅𝑒 = 1500 and 15000, however, the vortical 

structure has a helical shedding pattern due to the Kelvin-Helmholtz instabilities in 

the shear layer, that happens in the random azimuthal locations. The striking 

difference between these two Reynolds numbers is the onset of the vortex roll-up, 

that occurs closer to the separation point for the 𝑅𝑒 = 15000 , and as a 
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consequence, the recirculation bubble is shortened. Turbulence structures become 

finer with increasing the Reynolds number, as expected. 

 As Reynolds number increases, the wake recovers quickly as the mixing is much 

stronger at the near-wake region. That is why for the 𝑅𝑒 = 150 the statistically 

stationary state is reached farther downstream compared to the higher Reynolds 

number cases. This conclusion is drawn by the results obtained from the velocity 

profile and spatiotemporal velocity field. 

 The CFD set-up was validated with the aid of grid, time and background turbulence 

sensitivity. Additionally, the general shape of the energy spectrum of the cross-

stream velocity, at a point where turbulence developed, was achieved and the -5/3 

of the energy cascade was resolved. The results obtained from the present IDDES 

approach are in accordance with the data in the literature. It authenticates the 

accuracy and reliability of this hybrid method. 
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CHAPTER 5 

CONCLUSIONS 

5-1- Summary and Concluding Remarks 

Unlike cylinder and sphere which have been extensively studied both numerically and 

experimentally, there are a few research papers in the literature concerning flow past a 

torus, which is geometrically between a cylinder and a sphere. There are two primary 

factors involved in the variation of the torus wake structure and shedding pattern. The first 

is Reynolds number (Re) and the second is aspect ratio (AR), that is the ratio of the main 

diameter to the core diameter of the torus. With increasing aspect ratio, the axisymmetric 

body varies from a sphere at AR=0 to a cylinder as AR approaches infinity. It is clear that 

torus is of both fundamental and practical importance. Studying the flow over a torus can 

yield a profound insight of flow challenges with micelles, bio-fluid mechanics for DNA 

polymers, drag and heat transfer of the helical tubes, motion of natural micro-swimmers 

such as helical flagella, and flow around a modern toroidal construction. There has been a 

gap in understanding of the flow behind a torus, mainly concerning the detailed information 

on shedding pattern and frequency, wake structure, turbulence properties and force 

characteristics of a torus at Reynolds numbers larger than 1000, along with the aspect ratio 

impact on the above-mentioned parameters. Furthermore, the literature lacks a useful study 

on the assessment of the CFD methods for simulating the flow structure behind a torus at 

Reynolds numbers more than 1000. Thus, the current thesis numerically investigates the 

flow over a torus and examines the effects of the aspect ratio and Reynolds number on the 

wake structure and turbulence properties.  

In chapter 2, the performance of the turbulence models: URANS SST 𝑘 − 𝜔, LES and 

IDDES were compared for simulating the flow around a torus with aspect ratio of 3, placed 

normal to the flow direction and at a constant Reynolds number of 9000. Visualization of 

the vortical structure, as well as the temporal variation of the force coefficients indicate 

that URANS fails to capture perfectly the unsteady motion and turbulence nature of the 

flow, albeit it is a reliable predictor for mean values. Both LES and IDDES approaches 

discovered three shedding frequencies at the studied Reynolds number. The highest one is 
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attributed to the small-scale interaction inside the recirculation bubble that is due to the 

Kelvin-Helmholtz frequency. This broadband peak is only apparent in the close proximity 

of the torus leeward surface and fades away gradually along the streamwise direction. The 

medium frequency is the vortex shedding frequency, which is an indication of the large-

scale shedding vortices and almost remains constant over the streamwise direction. The 

lowest dominant frequency is observed as a consequence of pulsation of the cylindrical-

shaped inner shear layer (pumping the recirculation bubble through the torus hole). This 

phenomenon happens owing to the nozzle effect of the torus base bleed. To have an 

estimation on the range of eddy sizes, two common turbulence length scales: Taylor 

microscale and integral length scale were studied. The range of large, energy-containing 

eddies size are in the order of the core diameter (d) and varies from 0.5d to 1.5d. The small-

dissipative eddies are also between 0.05d to 0.15d, although the proper estimation of the 

Taylor scale strongly depends on the grid sizes. Examining the computational cost required 

for each approach along with the obtained results authenticate that IDDES is the optimal 

turbulence model for this problem. It requires less grids and time, while the provided results 

are in a great accordance with those for LES and experimental results. 

In chapter 3, flow past a torus in aspect ratios of 2, 3 and 5 were numerically studied using 

LES – Dynamic Smagorinsky turbulence model, at a constant Re=9000. The mean drag 

coefficient of a torus stands between that of a cylinder and sphere, and it increases with 

increasing aspect ratio. Torus has a blockage effect on the flow, that is dependent on the 

center hole size. For the higher aspect ratio, as the hole is greater, the velocity profile does 

not change considerably in the streamwise direction and flow recovers quickly. For AR=2 

and AR=3, the circulation strength gets smaller as a result of the interaction of the inner 

shear layer, thus the flow pattern is mainly governed by the outer shear layer interactions. 

The wake structure of AR=2 and AR=3 shows an asymmetric helical shedding pattern. On 

the contrary for AR=5, the wake flow is affected by both inner and outer shear layer and 

the vortex roll-up happens from both inner and outer edge of the torus. That is why a regular 

pattern of quasi-axisymmetric high-vorticity rings are observed downstream of the torus 

leeward surface. At the Reynolds number studied, for the AR=2 and AR=3, the three 

dominant frequencies of small-scale instabilities, large-scale vortex shedding frequency 

and the very-small frequency attributed to the pumping of the recirculation bubble are 
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discovered. The small frequency is not observable for AR=5, as the nozzle effect for this 

aspect ratio is not discernible. 

Chapter 4 is aimed to examine the Reynolds number effect on the wake flow field, vortex 

shedding pattern and force characteristics of the torus with an aspect ratio of 3. The 

numerical approach is IDDES and three Reynolds numbers of 150, 1500 and 15000 are 

studied. For Re=150, the wake is laminar with almost steady variation of the instantaneous 

quantities. The wake at this Reynolds number exhibits a large-scale hairpin structure in the 

form of oblique vortex loops shedding alternately with an anti-phase synchronized pattern 

from the opposite side of the centerline. For both Re=1500 and 15000, the wake stands in 

the turbulent regime. The vortical structure has a helical shedding pattern due to the Kelvin-

Helmholtz instability inside the recirculation zone, that happens at the random azimuthal 

positions. The striking difference between the flow characteristics of these two Reynolds 

numbers is the onset of the vortex roll-up, which occurs closer to the separation point for 

the Re=15000. As a result, the recirculation bubble is shorter for Re=15000, compared with 

Re=1500 case. As the Reynolds number increase, the wake recovers quickly as the mixing 

is much stronger at the near-wake region. It is worth noting that the turbulence scales are 

finer at the higher Reynolds numbers, as expected. 

5-2- Recommendations 

All the CFD simulations in this work were conducted based on the assumption that the tori 

are perpendicular to the main flow. To the author’s knowledge, wake structure of the flow 

behind an inclined torus has received very little attention in the literature, particularly at 

the 𝑅𝑒 > 1500. The numerical study of inclination angle effects on torus wake structure 

and shedding frequencies at relatively high Reynold numbers can be an interesting field of 

research. 

Besides, the thesis was focused on the solid toroidal body flow field. Vortex ring is also a 

torus-shaped body with a gas-phase core. One of the serious issue with the underwater 

compressed air energy storage (UWCAES), is the balloon rupture underwater as a result of 

internal overpressure or collision with a sharp object. As a result, the large-scale buoyant 

vortex rings are generated underwater, and expanded as elevated. The hydrodynamics of 

this buoyant vortex ring is analogous to the flow past a vortex ring. It would be exciting to 
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simulate this phenomenon numerically and compare the results with the solid torus case, 

although there are lots of controversies among researchers over the relation between the 

results for solid torus and the ones for the vortex rings. 
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APPENDICES  

APPENDIX A: DRAG FORCE CALCULATION USING 

MOMENTUM LOSS [1] 

A-1- Introduction of the method 

One of the reliable method for calculation of the drag of a body is calculating the 

momentum loss in the wake profile. It has a potential application in aerodynamics and 

hydrodynamics. 

When a fluid flow passes an obstacle, it sticks to the body surface due to the presence of 

the fluid viscosity. This phenomenon is called “no-slip condition”. No-slip condition 

assumes that the relative velocity between the solid surface and the adjacent fluid particles 

is zero. This creates a large velocity gradients normal to the body surface. Newton’s law 

of viscosity states that the shear stress between adjacent fluid layers is directly proportional 

to the fluid rate of deformation, that is the velocity gradient. Thus the shear stress can be 

found by the following formula: 

𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
          (𝐴 − 1) 

Skin friction drag is calculated by integrating viscous shear stress exerting on the body 

surface. The total drag force is a combination of both skin friction and pressure drags: 

𝐹𝐷,𝑓 = ∫𝜏𝑤𝑑𝐴          (𝐴 − 2) 

𝐹𝐷,𝑝 = (∫𝑝𝑑𝐴)𝑆𝑡𝑟𝑒𝑎𝑚𝑤𝑖𝑠𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡          (𝐴 − 3) 

𝐹𝐷 = 𝐹𝐷,𝑓 + 𝐹𝐷,𝑝          (𝐴 − 4) 

From the Newton’s 3rd Law, the body then exerts a force of equal magnitude but in opposite 

direction on the fluid, reducing its momentum. Hence, when a fluid flow moves past a 

body, the momentum of the flow directly downstream of the body is significantly reduced. 
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The mixed-out average technique is a good approach to calculate the drag force. In our 

CFD setup the domain has constant cross-sectional area, hence, the method is used under 

the assumption of constant area mixing. Since, the flow is incompressible, the drag force 

is calculated by this formula: 

𝐹𝐷 = (𝑝𝑖𝑛 + 𝜌𝑢𝑖𝑛
2)𝐴𝑖𝑛 − (𝑝𝑚𝑖𝑥𝑒𝑑−𝑜𝑢𝑡 + 𝜌𝑢𝑚𝑖𝑥𝑒𝑑−𝑜𝑢𝑡

2)𝐴𝑜𝑢𝑡          (𝐴 − 5) 

As the cross-sectional area of the domain is constant 𝐴𝑖𝑛 = 𝐴𝑜𝑢𝑡 = 𝐴 , the mass 

conservation indicates that the average velocity of the inlet and the one for outlet are the 

same 𝑢𝑖𝑛 = 𝑢𝑚𝑖𝑥𝑒𝑑−𝑜𝑢𝑡. Thus, the drag force is going to be: 

𝐹𝐷 = (𝑝𝑖𝑛 − 𝑝𝑚𝑖𝑥𝑒𝑑−𝑜𝑢𝑡)𝐴         (𝐴 − 6) 

It is worth noting that, this method is valid as long as the domain walls are inviscid. In 

other word, the free-slip condition should be imposed on the domain side walls. 

To compute the mixed-out pressure, it is needed to define a control volume that has its inlet 

condition the velocity and pressure profiles from some location downstream of the torus 

and assume the other end of the control volume is where the flow is fully mixed out, with 

𝑢𝑚𝑖𝑥𝑒𝑑−𝑜𝑢𝑡 = 𝑢𝑖𝑛 and 𝑝 = 𝑝𝑚𝑖𝑥𝑒𝑑−𝑜𝑢𝑡. The net force on the control volume is zero. From 

the conservation of momentum  𝑝𝑚𝑖𝑥𝑒𝑑−𝑜𝑢𝑡 can be found numerically. 

 

Figure A- 1- Momentum conservation law for the control volume 
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A-2- Method Validation 

Table A-1 compares the mean drag coefficients for the classical and current methods. It is 

seen than the provided results by this method is for the URANS approach, is closer to those 

for LES and IDDES. For the scale-resolving methods (LES and IDDES), there is no change 

observed for the different drag computation methods. 

 

Table A- 1- Comparison of the mean drag value for different drag calculation methods 

Approach 
Drag Computation 

Method 

Mean Drag Coefficient 

(𝑪𝑫̅̅ ̅̅ ) 

URANS 

(SST 𝑘 − 𝜔) 

Shear Stress Integration 0.915 

Momentum Loss 0.888 

LES 
Shear Stress Integration 0.852 

Momentum Loss 0.852 

IDDES 
Shear Stress Integration 0.851 

Momentum Loss 0.851 

Experimental N/A 0.860 (±0.098) 
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APPENDIX B: WELCH METHOD: ESTIMATION OF POWER 

SPECTRA USING FAST FOURIER TRANSFORM [1] 

B-1- Introduction 

This section outlines the Welch method for the application of the fast Fourier transform 

algorithm to the estimation of power spectra. In many instances, this method involves fewer 

computations than other methods. Moreover, it involves the transformation of sequences 

which are shorter than the whole record which is an advantage when computations are to 

be performed on a machine with limited core storage. 

B-2- Theory 

Let 𝑥(𝑗), 𝑗 = 0, 1, … ,𝑁 − 1,  be a sample from stationary, second-order stochastic 

sequences. Assume for simplicity that 𝐸(𝑥) = 0 . Let 𝑋(𝑗)  have spectral density 

𝑃𝑆𝐷(𝑓), |𝑓| ≤ 1/2. We take segments, possibly overlapping, of length L with the starting 

points of these segments D units apart. Let 𝑥1(𝑗), 𝑗 = 0, 1, … , 𝐿 − 1  be the first such 

segment. Then: 

𝑥1(𝑗) = 𝑥(𝑗),          𝑗 = 0, 1, … , 𝐿 − 1          (𝐵 − 1) 

Similarly, 

𝑥2(𝑗) = 𝑥(𝑗 + 𝐷),         𝑗 = 0, 1, … , 𝐿 − 1          (𝐵 − 2) 

And finally, 

𝑥𝐾(𝑗) = 𝑥(𝑗 + (𝐾 − 1)𝐷),          𝑗 = 0, 1, … , 𝐿 − 1          (𝐵 − 3) 
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Figure B- 1- Illustration of record segmentations 
 

 

We suppose we have K such segments; 𝑥1(𝑗),… , 𝑥𝐾(𝑗), and that they cover the entire 

record, i.e., that (𝐾 − 1)𝐷 + 𝐿 = 𝑁. This segmenting is illustrated in Figure B-1. The 

method of estimation is as follows. For each segment of length L, we calculate a modified 

periodogram. That is, we select a data window 𝑤(𝑗), 𝑗 = 0, 1, … , 𝐿 − 1 , and form the 

sequences 𝑥1(𝑗)𝑤(𝑗), 𝑥2(𝑗)𝑤(𝑗), … , 𝑥𝐾(𝑗)𝑤(𝑗) . We then take the finite Fourier 

transforms 𝐴1(𝑛), 𝐴2(𝑛),… , 𝐴𝐾(𝑛) of these sequences. Here: 

𝐴𝐾(𝑛) =
1

𝐿
∑𝑋𝐾(𝑗)𝑤(𝑗)𝑒

−2𝑘𝑖𝑗/𝐿

𝐿−1

𝑗=0

          (𝐵 − 4) 

and 𝑖 = √−1. Finally, we obtain the K modified periodograms. 

𝐼𝑘(𝑓𝑛) =
𝐿

𝑈
|𝐴𝑘(𝑛)|

2,          𝑘 = 1, 2, … , 𝐾          (𝐵 − 5) 

Where 

𝑓𝑛 =
𝑛

𝐿
,          𝑛 = 0,… ,

𝐿

2
         (𝐵 − 5) 

And 
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𝑈 =
1

𝐿
∑𝑊2(𝑗)

𝐿−1

𝑗=0

          (𝐵 − 6) 

The spectral estimate is the average of these periodograms, i.e., 

�̂�(𝑓𝑛) =
1

𝐾
∑𝐼𝑘(𝑓𝑛)

𝐾

𝑘=1

          (𝐵 − 7) 

Now one can show that: 

𝐸{�̂�(𝑓𝑛)} = ∫ ℎ(𝑓)𝑃(𝑓 − 𝑓𝑛)𝑑𝑓
1/2

−1/2

          (𝐵 − 8) 

Where 

ℎ(𝑓) =
1

𝐿𝑈
|∑𝑊(𝑗)𝑒2𝜋𝑖𝑓𝑗
𝐿−1

𝑗=0

|2          (𝐵 − 9) 

and 

∫ ℎ(𝑓)𝑑𝑓 = 1
1/2

−1/2
          (𝐵 −10) 

Hence, we have a spectral estimator �̂�(𝑓) with a resultant spectral window whose area is 

unity and whose width is of the order of 1/L. 

B-3- Choice of data windows 

We suggest two reasonable choices for the data window 𝑊(𝑗); one of them has the shape 

1 − 𝑡2 : − 1 ≤ 𝑡 ≤ 1 and gives a spectral window which, when the two are normalized to 

have the same half-power width, is very close in shape to the hanning or cosine arch 

spectral window; the other data window has the shape 1 − |𝑡|, −1 ≤ 𝑡 ≤ 1 and gives the 

Parzen spectral window. The actual functions for a particular segment length L are: 

𝑊1(𝑗) = 1 − [
𝑗 − (

𝐿 − 1
2 )

(
𝐿 + 1
2 )

]

2

          (𝐵 − 11) 
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𝑊2(𝑗) = 1 − |
𝑗 − (

𝐿 − 1
2 )

(
𝐿 + 1
2 )

|

2

          (𝐵 − 12) 

Where 𝑗 = 0, 1, … , 𝐿 − 1. 

The resultant spectral windows corresponding to these data windows are given 

approximately by: 

ℎ1(𝑓) ≈
1

𝐿𝑈
{

2

𝜋2(𝐿 + 1)𝑓2
[
sin{(𝐿 + 1)𝜋𝑓}

(𝐿 + 1)𝜋𝑓
− cos{(𝐿 + 1)𝜋𝑓}]}

2

         (𝐵 − 13) 

ℎ2(𝑓) ≈
1

𝐿𝑈

[
 
 
 
(𝐿 + 1)

2

𝑠𝑖𝑛2 {
(𝐿 + 1)𝜋𝑓

2 }

{
(𝐿 + 1)𝜋𝑓

2 }
2

]
 
 
 
2

         (𝐵 − 14) 

In the preceding approximations, L is a scale parameter. In changing L we change the shape 

of ℎ1(𝑓) and ℎ2(𝑓) only in stretching or shrinking the horizontal dimension. For ℎ1(𝑓) the 

half-power width is: 

∆1𝑓 ≈
1.16

𝐿 + 1
          (𝐵 − 15) 

For ℎ2(𝑓) the half-power width is: 

∆2𝑓≈
1.28

𝐿 + 1
          (𝐵 − 16) 

B-4- Details in the application of the fast Fourier transform algorithm 

Our estimator �̂�(𝑓𝑛) is given by: 

�̂�(𝑓𝑛) =
1

𝐾
∑𝐼𝑘(𝑓𝑛)

𝐾

𝑘=1

=
𝐿

𝑈𝐾
∑|𝐴𝑘(𝑛)|

2

𝐾

𝑘=1

          (𝐵 − 17) 

Where L is the length of the segments, and K is the number of segments into which the 

record is broken, and 
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𝑈 =
1

𝐿
∑𝑊2(𝑗)

𝐿−1

𝑗=0

          (𝐵 − 18) 

We will first discuss how the complex algorithm can be used to obtain the summation 

∑ |𝐴𝑘(𝑛)|
2𝐾

𝑘=1  two terms at a time with K/2 (or (K+1)/2, if K is odd) rather than K 

transforms. Suppose K is even and let: 

{
 
 

 
 
𝑌1(𝑗) = 𝑋1(𝑗)𝑊(𝑗) + 𝑖𝑋1(𝑗)𝑊(𝑗)

.

.

.
𝑌𝐾
2

(𝑗) = 𝑋𝐾−1(𝑗)𝑊(𝑗) + 𝑖𝑋𝐾𝑊(𝑗)}
 
 

 
 

,          𝑗 = 0, 1, … , 𝐿 − 1          (𝐵 − 19) 

Let 𝐵𝑘(𝑛) be the transform of 𝑌𝑘(𝑗). Then, by the linearity property of the finite Fourier 

transform: 

𝐵𝑘(𝑛) = 𝐴2𝑘−1(𝑛) + 𝑖𝐴2𝑘(𝑛)         (𝐵 − 20) 

Further, 

𝐵𝑘(𝑁 − 𝑛) = 𝐴2𝑘−1(𝑁 − 𝑛) + 𝑖𝐴2𝑘(𝑁 − 𝑛) = 𝐴2𝑘−1(𝑛)̃ + 𝑖𝐴2𝑘(𝑛)         (𝐵 − 21) 

Now, 

|𝐵𝑘(𝑛)|
2 = (𝐴2𝑘−1(𝑛) + 𝑖𝐴2𝑘(𝑛)) (𝐴2𝑘−1(𝑛)̃ − 𝑖𝐴2𝑘(𝑛))         (𝐵 − 22) 

|𝐵𝑘(𝑁 − 𝑛)|
2 = (𝐴2𝑘−1(𝑛) − 𝑖𝐴2𝑘(𝑛)) (𝐴2𝑘−1(𝑛)̃ +𝐴2𝑘(𝑛))         (𝐵 − 23) 

These equation yields, with some algebra, 

|𝐵𝑘(𝑛)|
2 + |𝐵𝑘(𝑁 − 𝑛)|

2 = 2(|𝐴2𝑘−1(𝑛)|
2 + |𝐴𝑘(𝑛)|

2)         (𝐵 − 24) 

Hence, finally, 

�̂�(𝑓𝑛) =
𝐿

2𝑈𝐾
∑(|𝐵𝑘(𝑛)|

2 + |𝐵𝑘(𝑁 − 𝑛)|
2)

𝐾/2

𝑘=1

          (𝐵 − 25) 



 

119 
 

If k is odd, this procedure can be extended in an obvious fashion by defining 𝑌(𝐾+1)/2(𝑗) =

𝑋𝐾(𝑗) and summing from 1 to (k+1)/2. 

A second observation of the actual application of the algorithm concerns the bit-inverting. 

If the algorithm is applied as described here, and one is especially concerned with 

computation time, then the bit-inverting could be postponed until after the summation. 

Thus, instead of bit-inverting K/2 times, one would only have to bit-invert once. 
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