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ABSTRACT 

Advanced spark ignition (SI) engines can operate under lean conditions in order to improve 

the efficiency and reduce the emissions. Under extensive lean conditions, the ignition and 

complete combustion of the charge mixture is a challenge, because of the reduced cylinder 

charge reactivity. The enhancement of the in-cylinder global motion and local turbulence 

is an effective way to increase the flame velocity, and consequently shorten the combustion 

duration. The role of air motion in improving air-fuel mixing and combustion has been 

researched extensively. However, during the ignition process, the excessive charge motion 

can hinder the spark discharge, the resulting flame kernel formation and propagation. 

Therefore, a combined empirical and simulation study is undertaken to elucidate the flow 

field around the spark gap, and its effect on the spark discharge. The flow field generated 

by a steady flow of air across the spark gap of a conventional J-type spark plug is studied 

under ambient conditions. Optical particle image velocimetry (PIV) measurements and 

computational fluid dynamics (CFD) simulations are performed alongside the high-speed 

direct imaging. Voltage and current waveforms of the spark channel have been measured, 

in order to correlate the spark behavior to the local flow velocity. The flow field near the 

spark gap in an SI engine under motoring conditions is simulated. The results are compared 

to the empirical current and voltage measurements taken during engine operation. The 

results show that the turbulence is generated in the wake of the spark plug and flow velocity 

in the spark gap is higher than the free stream velocity. The optical and electrical 

measurements show the spark stretching and restrikes increase, and the discharge duration 

decreases with an increase in flow velocity. Similar behavior is observed during engine 

operation as well.  
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 INTRODUCTION 

Gasoline fueled, spark ignition (SI) internal combustion engines constitute a major portion 

of powertrains for the light duty passenger and goods transport vehicles. Even with battery 

powered vehicles receiving significant attention in recent years, gasoline powered non-

hybrid SI vehicles accounted for 97% of total light duty vehicle sales in the year 2016 in 

United States [1,2]. Thus, improving the fuel economy while meeting strict emission 

standards is the focus of SI engine research. In this chapter, the research motivation, 

background and associated challenges pertaining to the author’s research are described. 

Thereafter, an outline of the thesis structure is presented. 

1.1 Research Motivation 

Since the early 1970’s, government agencies like the United States’ Environment 

Protection Agency (US-EPA) and California Air Resources Board (CARB) have set the 

limits on air pollutants from automotive vehicles following the amendments to Clean Air 

Act (CAA) of 1970. In the past few decades, the emission legislations are becoming 

increasingly stringent. Nitrogen oxides (NOx) and carbon monoxide (CO) are the two most 

regulated constituents of the SI engine exhaust. Cumulative reductions of ~94% in NOx 

and ~70% in CO emissions have been mandated by the US-EPA [3]. Regulations for green-

house gas (GHG) and particulate matter (PM) emissions have also been tightened recently.  

In addition to the stringent emission standards, vehicle manufacturers are also mandated to 

meet the corporate average fuel economy (CAFE) standards set to keep fuel economy and 

CO2 emissions in check [4,5]. Consequently, the fuel economy of passenger and light duty 

vehicles has been steadily improving in the past few decades, and this trend is expected to 
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continue in the future (Figure 1-1). The US federal government recently proposed freezing 

the fuel economy standards after 2020 citing the cost effectiveness and consumer safety as 

the main reasons [6]. However, the final verdict on the proposed CAFE standards or any 

amendments to the same have not yet been given by the US-EPA. 

 

Figure 1-1. CAFE trends and projections for passenger and light-duty vehicles 

Hence, continuous improvement in SI engine design and operation can have significant 

economic and environmental impacts. The main driving factors for future SI engine 

development are emission reduction and fuel efficiency improvement.  

1.2 Lean or Diluted Combustion 

Different in-cylinder and exhaust after-treatment strategies have been studied to improve 

the SI engine efficiency and environmental sustainability [7-19]. The lean or diluted 

combustion is one of the in-cylinder strategies, which has been proven to be an effective 

method for improving the efficiency of gasoline SI engines [13-15,19]. The lean and/or 

diluted combustion can be realized by either increasing the amount of fresh intake air e.g. 
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by increasing the throttle opening at partial load or by using exhaust gas recirculation 

(EGR) to dilute the incoming fresh air with a portion of the exhaust gas. The lean or diluted 

combustion helps reduce the pumping losses associated with the partial load flow 

restrictions of the throttle body. Excess air increases the burning efficiency and allows a 

higher compression ratio. Therefore, theoretically lean burn engines should have higher 

thermal efficiency. In practice; however, lean combustion beyond a certain excess air ratio 

might lead to incomplete combustion of the in-cylinder charge which results in an increase 

in unburnt HC and lower fuel efficiency. This limiting condition is called the “lean limit” 

of the charge mixture. The effect of excess air on combustion performance is illustrated in 

Figure 1-2. 

 
Figure 1-2. Effect of excess air on engine performance (adopted from John [19]) 

Some possible reasons of the deteriorating performance beyond the lean limit can be the 

suppression of the charge reactivity and slower burning velocity of excessively lean 

mixtures [13,20]. Suppressed charge reactivity can reduce the ignitability of the charge, 
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leading to increased ignition delay. Slower burning velocity in lean mixtures increases the 

combustion duration [20]. As a result, the combustion might be incomplete by the time the 

exhaust valve opens. This leads to a fuel consumption penalty and increased hydrocarbon 

emissions. Further diluting the mixture beyond the lean limit can lead to misfire conditions 

where the charge is unable to ignite. 

1.3 In-Cylinder Charge Motion 

One possible strategy to counteract the slower flame speed due to charge dilution is the 

enhancement of in-cylinder charge motion. In addition to local turbulence, the global flow 

field can be described by two types of rotational motions, swirl and tumble. The swirl 

motion is the air/charge rotation around the cylinder axis whereas the tumble is the 

rotational motion around the axis perpendicular to the cylinder axis. Both swirl and tumble 

motions increase the turbulence as a result of viscous shear forces between fluid layers. 

The enhancement of in-cylinder charge motion is an effective way to speed up the flame 

propagation in SI engines and to extend the lean limit [21]. Typically, the charge motion 

inside an engine cylinder is controlled by the number of intake ports, port geometry and 

position, and piston bowl profile [22,23].  

Turbulence produced by the charge motion can enhance the flame speed because of the 

flame front wrinkling effect, which increases the area of contact between burnt and unburnt 

gases [24]. This phenomenon is illustrated in Figure 1-3 using homogeneous burning of a 

lean (λ=1.6) methane-air mixture in laminar and turbulence conditions. Both the image 

frames are taken 25 ms after the ignition event. The turbulent flame propagation is 

significantly faster than the laminar flame and the wrinkled flame front can be clearly 

observed.  
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Figure 1-3. Laminar and turbulent methane-air flame front propagation [26] 

Although the charge motion helps increase the flame speed and decrease the combustion 

duration, it can have a significant impact on the spark arcing and early flame kernel 

formation processes. Once a self-sustaining flame kernel is formed, the flame propagation 

in SI engines can be enhanced by certain combinations of flow velocity and turbulence in 

the vicinity of the spark plug [26,33]. However, intense turbulence or very high flow 

velocity in the early stages of flame kernel formation can lead to misfire. 

It has been reported that spark geometry can have a major influence on the local flow 

velocity and turbulence intensity [26]. Eddies and vortices are often generated in the wake 

of the spark plug extensions, including the spark electrodes [26,41]. The turbulence near 

the spark electrodes can influence the flame kernel development and early flame 

propagation. 

1.4 Ignition in SI Engines 

The ignition process in SI engines is initiated by the ignition system. The transistor coil 

ignition (TCI) system is the most widely used ignition system in SI engines owing to its 

design simplicity, robust performance and cost effectiveness. It mainly consists of a power 

Wrinkled 
Flame Front
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supply, an inductive coil pack, a transistor switch or driver and a spark plug (Figure 1-4). 

The ignition process is initiated by a spark plasma that heats up the combustible mixture 

across the spark gap. During the initial spark discharging process, a potential difference is 

applied across the spark plug electrodes resulting in the buildup of an electric field across 

the spark gap. This electric field accelerates the electrons and ions between the gap which 

eventually leads to the establishment of a conductive plasma channel connecting the gap. 

This stage is called the breakdown phase. This phase is followed by the arc phase during 

which the energy stored in coil, and structure capacitance starts to release. Finally, the 

discharge process transitions into the glow phase, releasing most of the stored electrical 

energy. The glow phase is the longest stage of the spark discharge process and thus, it is 

most liable to the impact of the flow field [22]. The TCI system, and the discharge current 

and voltage waveforms of a typical spark event is shown in Figure 1-4. 

 

Figure 1-4. TCI spark current and voltage waveforms 

Studies have shown that under the flow field effect, the plasma channel during the glow 

phase tends to deflect or stretch out of the spark gap in the flow direction [27-29]. This 

elongates the spark as illustrated in Figure 1-5 and provides additional spark length for the 
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flame kernel formation. The stretching of the spark plasma also increases the gap resistance 

of the spark channel. Therefore, while this extra spark length can provide additional surface 

area for flame kernel to develop, the energy density of the spark channel is reduced largely 

depending on the flow velocity. Consequently, the energy might not be enough to generate 

a self-sustaining flame. Thereby, the charge mixture can either fail to ignite completely, or 

a flame kernel can develop and later be extinguished due it its inability to sustain the 

combustion [30].  

 

Figure 1-5. Spark channel behavior in flow condition 

The stretching beyond a certain length may lead to the breaking of the plasma channel. The 

gap voltage rises so that the re-establishment of a shorter channel may occur to continue 

the energy release process across the gap.  This event is termed as “restrike”. As illustrated 

earlier in Figure 1-4, TCI systems have a typical declining discharge current profile. As the 

current level decays during the discharge process, the frequency of restrikes tends to 

increase, and thereby the spark channel stretch becomes shorter. The spark stretch may aid 

the ignition process by partially preventing the heat loss to the relatively cold spark 

electrodes and extending the plasma channel into unburnt charge mixture. Restrikes cause 

the plasma to snap back to the spark gap.  
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Previous research [31,32] indicates that, below a certain current level, the spark plasma 

remains very close to the spark gap, which inhibits the access to the fresh charge mixture 

and increases the thermal losses incurred by the flame kernel to the spark electrodes. The 

spark channel interruptions because of the restrike events can also prevent the formation 

of a self-sustained flame kernel, forming a “weaker” flame kernel instead. If several of 

these “weak” spark kernels are formed and later extinguished, the overall ignition process 

would subsequently fail.  

In addition to the spark channel, flow velocity also effects the formed flame kernel. It has 

been reported that in order for a flame kernel to be self-sustaining, the conductive and 

radiative losses due to the flow must be compensated by the volumetric burn rate [33]. 

With longer flame stretch and wrinkling at higher flow velocity, the enlarged surface area 

increases these losses. It is possible to overcome the effect of flow velocity and turbulence 

by increasing the initial ignition energy [33]. For a given ignition energy, there may exist 

a turbulence and velocity threshold beyond which the flame kernel cannot be sustained, 

early flame propagation may be slowed down or even be extinguished. 

1.5 Research Objectives 

It is clear from the discussion that the flow velocity has a significant influence on the 

ignition process and the subsequent flame propagation. The effects of flow velocity can be 

perceived in two aspects, the turbulence and the spark plasma behaviors. The flow 

turbulence influences the background conditions for the flame kernel formation, and flame 

propagation. Whereas, the spark plasma supplies the required energy for the formation of 

the flame kernel. The turbulence patterns generated or affected by the spark plug geometry 

can influence the flame propagation and hence, the ignition process. However, the flow 
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velocity by itself and the spark channel restrikes can have a detrimental effect on the self-

sustaining flame kernel formation. Therefore, to obtain a better understanding of the 

ignition process, the study of flow field near the spark gap and the spark plasma behavior 

in the flow, is important. In this research, the author attempts to elucidate the aspects of the 

flow field on the spark ignition process. 

The primary objectives of this research include the study of the near-spark-plug flow field 

and the spark discharge characteristics, especially the steady flow across the spark gap. The 

flow field in the vicinity of the spark gap under ambient as well as engine motoring 

conditions is investigated to study the background flow conditions. The spark discharge 

characteristics of the spark event under steady flow across the spark gap are studied in 

order to determine the spark plasma response to the flow field. The primary objectives of 

the research are summarized in Figure 1-6. 

 

Figure 1-6. Primary research objectives 

The secondary objective is to explore the feasibility of using the spark plasma channel 

response towards the flow field, namely restrike frequency and discharge duration, as a 
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method of predicting the local flow velocity trends during the spark event in SI engine 

operation without any optical access into the engine.   

The objectives are realized by using a combination of empirical and numerical 

computational fluid dynamics (CFD) simulation techniques. The flow field around the 

spark gap is calculated and visualized using particle image velocimetry (PIV) technique on 

a flow bench to study the effect of spark plug geometry on the steady flow across the spark 

gap. The flow fields resulting from relatively low cross-flow velocities (2.5 m/s and 5 m/s) 

are studied by means of PIV measurement. CFD simulations are performed for steady 

cross-flow under ambient conditions to analyze the flow field at high cross-flow velocity 

conditions. The spark plasma channel response towards the cross-flow velocity is studied 

using high-speed direct imaging, and attempts are made to correlate the flow with the 

discharge voltage and current waveforms. The in-cylinder near-spark-plug flow field is 

estimated using CFD simulations of engine motoring cycles at different intake mass air 

flow rates. The discharge voltage and current measurements are conducted on a research 

engine platform during motoring cycles. The spark channel response is compared to the 

flow field parameters from the simulation data. The overall research methodology is 

illustrated in Figure 1-7. 
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Figure 1-7. Research methodology 

1.6 PIV Measurement Technique 

Particle image velocimetry (PIV) is a non-intrusive, optical method used to visualize and 

calculate the instantaneous velocity components of a flow field [36]. This technique uses a 

laser light sheet as the light source to illuminate the particles in the area or volume of 

interest, often in a seeded flow. Single or multiple cameras synchronized with the laser 

pulses and linked to the data acquisition software are used to capture the image data at a 

relatively high frame rate. The recorded imaging data is then processed using cross/auto-

correlation algorithms [36] to obtain the instantaneous flow velocity in the illuminated area 

or volume. 

The non-intrusive nature of PIV measurement helps in analyzing the flow fields without 

introducing noticeable disturbance to the flow, which is not the case when using physical 

probe-based methods like hot wire anemometry or differential pressure-based 

measurement techniques. For instance, PIV is capable of simultaneous measurement of the 

velocity of the whole flow field across the laser sheet with a resolution as low as 1 mm2. 
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The time averaged, as well as the instantaneous, measurements of flow velocity can be 

obtained [36,37]. 

The basic principle of PIV measurement is based on the tracking the displacement of small 

particles in the flow (in the order of a few microns in size) across the image frame sequence 

to calculate the flow velocity components. The velocity (�̅�) can be written in terms of 

particle displacement (∆�̅�) and time interval between successive laser light pulses (∆𝑡) as 

follows [38], 

�̅� =
∆�̅�

∆𝑡
                                                                     1.1 

The particles in the flow are required to be small enough to follow the flow field without 

altering the flow behavior, and large enough to scatter sufficient light from the laser sheet. 

Each image of the light sheet is further divided into sub sections called “interrogation 

windows (IW)” [36]. A minimum particle density of 8-10 particles per interrogation 

window is required to ensure a strong correlation between image pairs [36]. Corresponding 

interrogation windows of the image pairs are partially overlapped, and cross-correlated 

with each other, pixel by pixel. The correlation results in a signal peak where maximum 

number of particles between both frames match, which detects the average particle 

displacement (∆�̅�) of all the particles in the interrogation window. Sub-pixel interpolation 

is then used to calculate the overall displacement and velocity vector for the whole 

interrogation window. This process is repeated for each interrogation window of the image 

pair to get the velocity vector map [35]. The cross correlation for PIV is summarized in 

Figure 1-8 [39]. 
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Figure 1-8. PIV cross correlation process (adopted from LaVision [39]) 

The spatial resolution and measurement range is decided by the interrogation window size 

and the time between successive laser light pulses (∆𝑡). Interrogation window edge length 

(dIW) is adjusted to avoid large velocity gradients within a single window. 

𝑆′
𝑆 . |𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛|𝐼𝑊. ∆𝑡

𝑑𝐼𝑊
< 5%                                               1.2 

Where, 
𝑆′

𝑆
 is the camera magnification, 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛 are maximum and minimum particle 

velocities in a single interrogation window respectively [38].  

The maximum measurable flow velocity is constrained by the displacement of particles 

during the time ∆𝑡. The displacement of particles beyond the length dIW results in the loss 

of correlation between two image frames and hence loss of velocity data. Therefore, the 

time interval ∆𝑡 must be small enough to ensure the particle displacement is less than dIW. 

Typically, taking camera magnification into account, ∆𝑡 can be estimated using the 

following equation [38], 

t

t+Δt

Cross-correlation and 

Sub-pixel interpolation

v(t)

Velocity Vector
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𝑆′
𝑆 . 𝑣. ∆𝑡

𝑑𝐼𝑊
< 25%                                                            1.3 

The technique of PIV typically employs a double-pulsed laser module (Nd-YAG) for 

illuminating the particles in nanosecond interval pulses. Laser pulses are synchronized with 

the camera to capture each laser pulse. This “frame straddling” allows for the decoupling 

of measurement velocity and camera exposure, since the maximum illumination time 

depends on the laser pulse rather than the camera exposure time [40]. For a non-pulsed, 

continuous laser module, ∆𝑡 depends on the exposure time of the imaging camera used for 

data acquisition. Therefore, imaging optics limit the maximum measurable velocity by the 

PIV system. The difference in particle illumination time interval using pulsed and 

continuous laser module is shown in Figure 1-9. 

 

Figure 1-9. Frame straddling using pulsed laser 
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1.7 Structure of the Thesis 

The thesis consists of six chapters. It is divided into four sections. First section, consisting 

of Chapter 1 and Chapter 2, provides the research motivation, background, associated 

challenges, and a review of past literature relevant to the author’s research. The main 

objectives of this research are outlined in chapter 1. The PIV measurement technique is 

also introduced in this chapter. Chapter 2 provides a detailed literature review previous 

researches on the spark plasma behavior under flow conditions.  

Details of different tools and methodologies used in this research are discussed in the 

second section, which consists of Chapter 3. The schematics and specifics of the high-

speed direct imaging setup, the discharge voltage and current measurement circuit, the 

steady flow PIV measurement system, the engine test platform and the CFD simulation 

parameters are provided. 

The third section consists of Chapter 4 and Chapter 5. The findings from the numerical 

simulations and the empirical data are discussed in this section. The results from the steady 

cross-flow investigation are presented in Chapter 4. The effect of spark plug geometry on 

steady cross flow is examined using numerical simulations and PIV measurements. The 

spark channel response to a steady cross-flow is studied using high-speed direct imaging 

and discharge voltage and current measurements. Engine testing results are discussed in 

Chapter 5. Efforts are made to correlate the near-spark-plug flow velocity from numerical 

simulation and spark restrikes from discharge voltage measurements. 

The fourth section provides the summary of the research outcomes, conclusions and 

recommendations of future work in Chapter 6. Further information regarding references, 

appendices and a list of publications is provided at the end. 
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 LITERATURE REVIEW 

A detailed review of literatures relevant to author’s work is presented in this chapter. A 

study of previously published work on the effect of local flow field on the spark discharge 

characteristics and the use of this electrical discharge to estimate the variations in the in-

cylinder flow velocity, also known as spark anemometry, is presented in this review.  

2.1 Effect of Spark Plug Geometry on Local Flow Field 

The in-cylinder charge motion is an effective way to increase the combustion efficiency 

and shorten the combustion duration of lean mixtures in SI engines [21-23].  Large scale 

eddies created during the charge induction often break up into small scale turbulence during 

the compression stroke. The flow field near the spark gap can be influenced by the bluff 

body effect of the spark electrodes [26,41]. Therefore, the background conditions for the 

flame kernel formation can be determined by the overall in-cylinder flow field including 

the local disturbances caused by the spark plug. 

Halldin studied the effect of spark electrodes on the flow velocity and turbulence using 

laser doppler velocimetry (LDV) measurements near the spark gap under steady flow at 

ambient pressure and temperature [26]. He also investigated the effect of spark electrode 

orientation with respect to mean flow at three different turbulence levels. His findings 

demonstrated that the spark plug geometry had a substantial effect on the local flow field. 

The flow velocity in the spark gap remained higher than the mean flow velocity for all 

turbulence levels. The turbulent intensity shows an opposite trend with the lowest value 

across the spark gap as compared to the surroundings. The position of the ground electrode 

relative to the mean flow direction was of great significance for the velocity field near the 
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spark gap. Velocity gradients near the two electrodes were very small, indicating a very 

thin boundary layer on the electrode surface. 

It has been reported in the literature that the turbulent flow near the spark gap can aid in 

ignition by enhancing the flame kernel propagation speed and providing the fresh charge 

to the spark channel [32,42-44]. 

2.2 Effect of Flow Field on Spark Ignition 

The local flow field can have a significant effect on the spark discharge process. 

Introductions to the spark breakdown and the flow effect on the glow phase have been 

provided in section 1.4. There has been a considerable amount of research done on the 

effect of flow on the spark ignition and subsequent combustion on various engines as well 

as on various constant volume combustion vessel platforms [27-30,45-50]. An overview 

of the effect of flow on different aspects of spark discharge and flame initiation is presented 

in this section. 

Sayama et al. investigated the spark discharge and early flame kernel propagation at lean-

burn conditions with air-fuel ratios of 20:1 – 30:1 under a relatively high flow velocity of 

65 m/s in an optically accessible constant volume combustion chamber designed to impart 

rotational motion to the air-fuel mixture to simulate the engine-like conditions [29,30]. The 

authors found that the spark channel, under the effect of flow field, stretched to follow the 

flow. Frequent short circuits and restrikes were observed. These short circuits and restrikes 

were dependent on flow velocity and ignition energy supplied to the spark. Additionally, 

the time before the first restrike after the spark breakdown was longer for the high ignition 

energy case as compared to the lower ignition energy. Similar trend was observed for the 
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spark stretch length. Their findings also demonstrated that the degree of dilution had a 

significant effect on subsequent flame development after the initial spark event. 

Arcoumanis and Bae used shadowgraph imaging to study the effect of orientation of spark 

plug with respect to the mean flow direction in a cylindrical combustion chamber [45]. 

They concluded that the actual flow field in the spark gap was influenced by the protruding 

electrodes. The flame kernel development and propagation were more dependent on the 

orientation of the ground electrode at higher flow velocity and turbulence intensity. For the 

orientation with the ground electrode positioned upstream of the spark gap, the flame 

development was relatively slower because of the reduced local flow velocity within the 

spark gap as a result of the shrouding effect of the ground electrode. 

Dulger et al. investigated the effect of different parameters including spark current, 

orientation, electrode gap, and flow velocity on the lean misfire limit of spark ignition of 

butane-air mixtures under flow conditions [46,47]. The results revealed that under 

moderate gap flow velocities (7-9 m/s), the cross-flow orientation was found to be the most 

effective in extending the lean limit. At lower flow rates, the upstream ground electrode 

placement was marginally better than the downstream ground electrode. 

Ballal and Lefebvre studied the different spark discharge variables in flowing propane-air 

mixture under different velocities (up to 100 m/s), pressures and flow turbulence (1% to 

15%), in a small wind tunnel [48]. The variables included the breakdown voltage, the spark 

duration and energy. Their results showed that the minimum ignition energy of the mixture 

increased with the cross-flow velocity but was relatively unaffected by the small scale 

turbulence. If all other conditions are kept constant, this implies that the energy utilized for 
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ignition during spark discharge increased slightly with increase in velocity. Spark 

discharge response to cross-flow velocity is very consistent and reproducible. 

Experiments were performed by Clean Combustion Engine Lab (CCEL) research group at 

University of Windsor on spark discharge under cross-flow conditions, in constant volume 

chamber. The results indicated that the spark gap resistance and discharge voltage 

increased with higher flow velocities [27,28]. The restrike behavior similar to the one seen 

by Sayama et al. [29,30] was observed. Using the TCI system, the discharge energy 

increased by 10-20% and the overall spark duration reduced by 50-60%. The discharge 

energy increased linearly with higher flow velocity up to 25 m/s, beyond which the energy 

level tends to remain the same. The boosting of the discharge current level helped in 

maintaining the discharge plasma stretch for a longer duration under flow conditions.  

Johansson examined the effect of several important parameters including the local flow 

field, mixture composition, and temperatures on the cyclic variability of early combustion 

processes [49]. He concluded that cyclic variations in flow field turbulence and local 

mixture composition had a significant impact on the fluctuations in spark ignition and early 

flame growth. 

Schild investigated the effects of flow velocity (30m/s to 140m/s) on spark ignition in a 

pulsed detonation engine at different ignition energy levels (250mJ to 4J) using high speed 

schlieren imaging [33]. He found that at lower ignition energy, the flow velocity initially 

promoted the flame propagation. However, as the flame stretch increased, the flame with 

high flow velocity was partially extinguished and was unable to sustain the flame 

propagation. The flame speed after the initial flame kernel formation was similar for the 
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two highest flow velocities tested (90 m/s and 140 m/s). It was possible to overcome the 

high velocity and resulting turbulence effects by increasing the ignition energy. 

2.3 Spark Anemometry 

The use of the spark discharge response as an estimator for flow velocity was first reported 

in 1932 by Lindvall [51].  Since then various researches have tried to further develop this 

technique as an indicator of cyclic variations in velocity during the engine operation, which 

offers a relatively simple way of obtaining approximate velocity measurement [41,51-55]. 

Some of the literature published on the use of spark anemometry (use of electrical 

discharge to estimate flow velocity) has been discussed in this section. 

Kim et al. used spark anemometry to estimate the in-cylinder flow velocity near the spark 

plug in three different production engines, under low load operation (2.6 bar BMEP at 1500 

rpm) [41]. The authors used hot wire anemometer to measure the flow velocity near the 

spark gap under ambient conditions and recorded the voltage waveforms corresponding to 

different flow velocities. A data driven model developed from the measurement data was 

used to predict the bulk flow velocity near the spark plug in the engine using the discharge 

voltage profiles. The predicted flow velocity produced tangible correlations with the 

measurements from fiber optics equipped spark plug. 

Gardiner et al. studied the use of spark anemometry based on the data from steady flow 

tests at ambient conditions. They used a data driven model with approximate corrections 

for the pressure change during engine operation, to estimate the gap flow velocity inside a 

firing engine [55]. The authors used constant discharge current profile instead of the typical 

TCI decaying current. Due to lack of optical access or other means to verify the estimated 

velocity, only qualitative comparison about the velocity trends could be made.  
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 RESEARCH TOOLS 

The research tools and methodologies used in this study are described in this chapter. 

Details including, schematic diagrams, measurement devices and circuit diagrams, where 

applicable, are provided for various research platforms. The empirical research tools 

include the steady flow PIV setup, spark channel imaging, discharge voltage and current 

measurements, and the engine research platform. Additionally, the CFD simulation 

parameters for steady cross-flow and engine motoring cases are discussed.  

3.1 Steady flow Particle Image Velocimetry (PIV) 

The flow field visualization and velocity measurement tests are conducted on an in-house 

designed flow bench using PIV optical technique. The steady flow bench was previously 

designed and fabricated in the author’s lab to measure the swirl generated by the intake 

port of engine cylinder head [21]. For this research, the cylinder head section of the flow 

bench is replaced with a rectangular flow channel containing an M14 conventional J-type 

spark plug. The schematic drawing of the flow bench including the flow channel with spark 

plug is shown in Figure 3-1. The air flow through the flow channel is generated by the “air 

box” containing four independently controlled commercially available blower motors 

(Ametek Lamb 115923). Selective air flow rates can be generated by activating the 

corresponding number of motors. Finer adjustments to the flow rate can be made by 

controlling the electrical throttle body opening upstream of the air box in addition to a 

bleeding valve mounted downstream of the air box. The flow rate of the air is measured by 

a sharp-edge orifice flow meter, which is manufactured according to ISO 5167-1:2003 

standards [56]. Geometric dimensions of the orifice meter are outlined in Table 3-1. 



 

 

22 

 

 

Air Box

Throttle 

Valve

Air 

Bleed 

Valve

Differential Pressure 

Sensor (ΔP)

Orifice Plate

Aerosol From 

Particle 

Generator

Optical 

Window

Spark 

Plug

To 

Vacuum

Air Box

Throttle 

Valve

Air 

Bleed 

Valve

Upstream Pressure 

Sensor (P1)

Orifice Plate

Aerosol From 

Particle Generator

Optical 

Window

Spark 

Plug

To 

Vacuum

Rectangular 

Flow 

Channel
Spark 

Plug

Figure 3-1. Flow bench setup 



 

 

23 

 

Table 3-1. Sharp edge orifice meter dimensions 

Dimension Value 

Orifice diameter 33 mm 

Pipe internal diameter 55.8 mm 

Pipe upstream length 781.2 mm 

Pipe downstream length 390.6 mm 

Pressure tapping – distance upstream from orifice 55.8 mm 

Pressure tapping – distance downstream from orifice 27.9 mm 

The pressure difference across the orifice flow meter is measured using an NXP USA 

MXPV7025 digital differential pressure sensor [21] and the pressure upstream of the 

orifice meter is measured using an Ametek SPT0100X140 (0-100 psi) pressure transducer 

[21]. The upstream pressure and the pressure difference across the orifice plate are used to 

calculate the mass flow rate of the incoming air. The measured flow rate is then used to 

help calculate the flow velocity upstream of the spark plug. The calculated flow velocity is 

used as reference during the experiment. The conventional J-type spark plug used for the 

study has a central electrode of diameter 2.6 mm and the spark gap is 0.9 mm. 

The air flow downstream of the orifice flow meter is seeded with the tracking particles 

before it enters into the rectangular flow channel. In this research, olive oil aerosol is used 

as tracer for the flow visualization and velocity measurements. The aerosol particles are 

generated using an in-house fabricated variation of laskin nozzle atomizer. This is a twin-

fluid atomizer where pressurized air is used as the atomizing media [57-59]. The laskin 

nozzle design is presented in Figure 3-2. High speed air jets are created in the atomizer 

fluid (olive oil) by small holes in the nozzle tube. The nozzle tube consists of a 10 mm 
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inner diameter aluminum tube with four holes, each with 1.5 mm diameter, drilled at 0º, 

90º, 180º and 270º, approximately 25 mm from the base of the tube (Figure 3-2). The tube 

base is then plugged by welding to a small aluminum cap at the end. 

 

Figure 3-2. Seeding particle generator schematic 

The droplet size distribution depends mainly on the liquid used and is only slightly 

dependent on the feed air pressure [60]. Oils tend to generate smaller size droplet than 

water. Additionally, water has lower boiling point compared to oils, which can lead to 

water droplets evaporating on the laser light sheet. This results in relatively uneven particle 

density as compared to oil droplets.  

The number of particles can be controlled by changing the feed air pressure, higher pressure 

leads to a higher particle density in the resulting aerosol. Alternatively, additional nozzles 

can be added to the same atomizing air supply to increase the number of particles. The 

particle density can also be reduced and homogenized by supplying the dilution air. A 

desired output concentration can be achieved by adjusting the dilution and feed air 

pressure/number of active nozzles.  
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For the present study, 3 bar atomizing air pressure through a single nozzle, with no dilution 

air is used to generate the olive oil aerosol. Particles are introduced into the main flow, 

upstream of the rectangular flow channel to facilitate proper mixing for generating a 

uniform flow seeding pattern for PIV. 

The light sheet generated by a 2W, 450 nm (blue) continuous laser module is used to 

illuminate the particles in the flow. The sheet generation optics include a plano-concave 

cylindrical lens followed by a plano-convex cylindrical lens. The plano-concave cylindrical 

lens with 12.5 mm focal length is used to convert the incoming laser beam into a light sheet 

and the thickness of the sheet is controlled by the plano-convex lens with a longer, 50 mm 

focal length. The flow channel with the optical setup is presented in Figure 3.3. 

 

Figure 3-3. Optical Setup for PIV 

The image data is captured in greyscale using a Phantom Vision Research v7.3 high speed 

complementary metal-oxide semiconductor (CMOS) camera. The camera has a full-scale 

resolution of 800600 pixels. It is capable of sampling the image data at 6,688 frames per 

second (fps) at full resolution and up to 190,000 fps at 3232 pixels resolution at a user 

defined exposure time. The sampling rate of 10,000 fps at 512256 pixels resolution with 
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an exposure duration of 90 μs is used to capture the image data for this PIV analysis. The 

spark plug and the internal surface of the flow channel is painted black to minimize the 

reflections from the laser sheet.  

Since a continuous laser module is used as light source instead of pulsed laser module, the 

illumination time of the tracer particles on an image frame is controlled exclusively by the 

exposure time of the camera. At the upper end, exposure time is restricted by the sampling 

rate of the camera. The maximum exposure limit corresponds to the time between two 

successive image frames. At the lower end, the exposure time is limited by the amount of 

light (scattered by the particles in the flow) detected by the camera sensor. The smallest 

exposure time that can capture the scattered light from all the particles illuminated by the 

laser light sheet is the minimum exposure limit. Reducing the exposure time beyond the 

minimum exposure limit results in data loss i.e. a reduction in number of detected particles. 

This can lead to weaker correlation between image pairs, which increases the measurement 

uncertainty.  

The minimum exposure limit confines the flow velocity to be measured by PIV, for this 

experimental setup, in a narrow range. With the increase in the flow velocity, the 

continuously illuminated particles appear as ‘streaks’ (lines) instead of single particles. 

This behavior is evident from Figure 3-4, which shows the raw image frames at two 

different flow velocities. Particles with the flow velocity 6.8 m/s (Figure 3-4 (b)) already 

appear to be transitioning into streaks. To keep the measurement uncertainty in check, the 

maximum cross-flow velocity is limited to 5 m/s. 

The image data acquired from PIV measurement tests is post-processed using an open 

source MATLAB code called PIVLab. The code solves the cross correlation and makes 



 

 

27 

 

the sub pixel estimations between image pairs, according to user input values of 

interrogation window size, to generates the velocity vector map of the flow field [61].  

 

Figure 3-4. Raw PIV image frames at different flow velocities: (a) 3 m/s and (b) 6.8 m/s 

The PIV image data is processed using a MATLAB code PIVLab in three steps. First, the 

image is pre-processed to increase the contrast in order to make particle identification 

easier. Then, the image pair cross correlation is solved using a relatively large interrogation 

window size of 64×64 pixels (px) and a step size of 32 px. Finally, the window size is 

decreased to 32×32 px and the corresponding step size is reduced to 16px to increase the 

measurement resolution. The chosen step size resulted in a 50% overlap. Fast fourier 

transformation (FFT) window deformation algorithm is used for solving the correlation in 

order to decrease the total solution time [61]. A median filter is applied to remove the 

spurious vectors that have locally large standard deviations. An image mask is drawn onto 

the raw images to exclude the areas with no laser illumination from the correlation process. 

(a)

(b)

Flow Velocity = 3 m/s        Exposure = 90 μs

Flow Velocity = 6.8 m/s        Exposure = 90 μs
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Figure 3.5 shows the image mask and the size of the interrogation window used for the 

analysis. The areas in red color are excluded from the final analysis. 

 

Figure 3-5. PIV Image analysis in PIVLab 

3.2 Spark Discharge Characteristics Measurement 

A combination of high-speed direct imaging of spark channel, and electrical parameters 

(voltage and current profile) measurements are used to record the spark discharge 

characteristics under quiescent as well as steady cross-flow at ambient pressure and 

temperature. Conventional Transistor Coil Ignition (TCI) system is used for the discharge 

characteristics study. Details of the measurement system are presented in Figure 3-6.  

 
Figure 3-6. Spark discharge characteristics measurement system 
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The steady flow across the spark gap is generated with a Dantec Dynamics 90H02 

Streamline Flow Unit. The flow unit is capable of generating steady flow over a wide 

velocity range of 0.2 m/s to 300 m/s. Tests are conducted under the cross-flow velocities 

between 5 m/s and 50 m/s. The charging process of the ignition coil is controlled by an 

insulated gate bipolar transistor (IGBT, V3040p). A National Instruments real time (RT) 

controller with a field programmable gate array (FPGA) module is programmed to generate 

the control signal to the IGBT for an ignition coil charging duration of 2 ms. The discharge 

voltage is measured by a Tektronix P6015 high voltage probe. The P6015 is a ground-

referenced 100 MΩ, 3 pF high voltage probe with 1000X attenuation. A Pearson 411 toroid 

shaped current probe is used for the discharge current measurement. The measurement data 

is recorded by a high-precision digital oscilloscope (PicoScope 4824). The circuit of 

ignition system with the locations of measurement probes is shown in Figure 3-7.  

 

Figure 3-7. TCI system circuit diagram with probe locations 
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Direct images of spark plasma channel are taken using a Phantom V7.3 high speed camera. 

An exposure duration of 14 μs at a resolution of 256×128 pixels is used for recording the 

direct imaging data at a sampling rate of 65,400 fps. 

3.3 Engine Test Platform 

The test engine platform used in this research is a Yanmar NFD-170, a two-valve, four 

stroke, single cylinder diesel engine. The engine is extensively modified for the spark 

ignition research. The modifications include reducing the compression ratio to 9.2:1 by 

modifying the piston geometry, replacing the diesel injector with a spark ignition system, 

and installing a port-fuel injection system. The piston bowl shape is altered to match that 

of a typical spark ignition engine. Major geometrical specifications of the engine are 

summarized in Table 3-2.  

Table 3-2. Test engine specifications 

Engine type Yanmar NFD-170, 4-stroke, 2-valve SI 

Bore 102 mm 

Stroke 105 mm 

Connecting rod length 165 mm 

Displacement  857 cm3 

Compression ratio 9.2:1 

Speed 1300 rpm 

The engine is connected to a 40 horsepower General Electric® 26G215 direct current (DC) 

dynamometer for speed control and torque measurements, which is operated through a 

Dyne Systems Dyn-Loc IV digital dynamometer controller. The intake pressure is 
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controlled through an electronic pressure regulator. The intake air flow rate is measured 

using a ROOTS volumetric flow meter (5M175) mounted before the intake surge tank. All 

motoring tests are performed at the naturally aspirated conditions. A helical insert is 

installed upstream of the intake port to increase the port generated swirl into the engine 

[21]. The spark plug used for ignition and spark anemometry is a conventional J-type 

resistive spark plug with 14mm metric thread. The discharge voltage and current are 

measured by a Tektronix P6015 high voltage probe and a Pearson 411 current probe 

respectively and the measurement data is recorded using a Picoscope 4425 oscilloscope. 

The in-cylinder pressure is recorded using a Kistler piezo-electric pressure transducer 

(model 6043A60), coupled with a Kistler 5010B charge amplifier. The pressure data is 

synchronized with the crank position using a crankshaft rotary encoder (Gurley Precision 

Instruments) and a camshaft sensor. The manifold pressure is measured using a Kistler 

piezo-resistive type absolute pressure transducer (model 4075A10). The National 

Instruments - data acquisition (NI-DAQ) card along with the LabVIEW 2010 software 

package is used to record the pressure data at a 0.1 crank angle degree (° CA) resolution. 

A liquid cooling system (FEV Coolant Conditioning Unit) is used to maintain the engine 

coolant temperature at 80 °C. This engine research platform is instrumented for a detailed 

emission measurement. The schematic diagram of the engine test platform showing 

relevant details is presented in Figure 3-8. The spark discharge voltage and current profiles 

are recorded during the ignition window of 305° to 355° CA with a 10° CA increment 

during engine motoring at 1300 rpm. The mass flow rates of 3.53, 4.85 and 5.56 g/s are 

used for the engine tests.
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3.4 Numerical Simulation 

The three-dimensional CFD simulations are performed to estimate the flow field around a 

conventional J-type spark plug. Two types of flow fields are simulated, a steady cross-flow 

under ambient conditions, and the flow field near the spark gap during the ignition window 

under engine motoring conditions. As described earlier, the PIV flow field study is 

restricted to a relatively low cross-flow velocity of 5 m/s due to the limitations of the 

experimental setup. A numerical simulation study is undertaken to supplement the 

experimental results and analyze the flow field at higher velocity conditions. The PIV 

measurements are used to validate the steady cross-flow numerical model results. The flow 

turbulence is analyzed in terms of turbulent velocity and vorticity magnitudes. For the 

engine simulations, the flow field in the vicinity of the spark plug is simulated at different 

intake mass air flows. The results are then compared to the spark plasma response using 

discharge parameters measurements. Due to the non-availability of an optical access into 

the engine, there is no direct validation of the simulated flow results. The gas exchange 

process is validated using the in-cylinder pressure measurements. Simulation parameters 

for both cases are described in following sub-sections along with geometrical and 

numerical models. 

3.4.1 Steady Cross-Flow  

The numerical simulations are performed using ConvergeTM CFD simulation suit version 

2.3. The software uses an automatic grid generation algorithm with user defined grid 

embedding as well as adaptive mesh refinement (AMR) to enhance the accuracy and 

resolution of the simulation results. The numerical results are post-processed using ANSYS 

Ensight 10.1 software. 
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The geometry of the spark plug with key dimensions is presented in Figure 3-9. The 

diameter of central electrode of the spark plug is 2.6 mm and the distance between the 

central and the ground electrode, termed as spark gap, is 0.9 mm. 

 

Figure 3-9. Geometrical model of conventional J-type spark plug 

The final model of the computational domain is shown in Figure 3-10. The model includes 

the spark plug enclosed in the flow channel, with the dimensions similar to the 

experimental setup. The enclosure and the spark plug surfaces are modelled as “law of 

wall” wall boundaries to enable the boundary layer generation and to resolve the viscous 

sub-layer in turbulent flows by reducing the velocity next to fluid-solid contact surface to 

zero [62]. A steady cross-flow is maintained through a constant inlet velocity boundary 

condition. The inlet velocity is varied form 2.5 m/s to 100 m/s. Lower flow velocity cases 

(2.5 m/s and 5.0 m/s) are used for model validation using the PIV flow field results. A 

steady pressure-based solver is used for all velocities below 100 m/s, thereafter for the 100 

m/s inflow velocity case, density-based steady solver is used since this solver is 

recommended for flow simulations that experience Mach numbers greater than 0.3 [62]. 

For the flow with Mach number less than 0.3, the pressure-based solver is more efficient 

Cross-Flow 

Direction

Spark Plug

Spark Gap

0.9 mm

Ceramic

Central 

ElectrodeGround 

Electrode

Metal Shell 

with M14 

Thread



 

 

35 

 

than the density-based solver [62]. The wall temperature and initial pressure are set to 300 

K and 1 bar respectively. 

 

Figure 3-10. Computational model for steady flow simulation 

The grid size refers to the edge length of the cube shaped mesh cells. The base grid size for 

the simulation is 4 mm to decrease the total computational load. After 2500 seconds of 

simulation time, a fourth level refinement is used in a cylindrical section in the vicinity of 

the spark gap, reducing the local grid size to 0.25 mm to increase the resolution of velocity 

and other flow parameters. The position and profile of grid refinement are shown in Figure 

3-11. The total solution time of 5500 seconds is required for the flow to reach a steady 

state, which is evident by the convergence of flow parameters. 

Outflow 

Flow Channel 

Walls

Spark Plug 

Walls

Inflow



 

 

36 

 

 
Figure 3-11. Grid refinement for the simulation: (a) No grid refinement before 2500 s, (b) 

Cylindrical grid refinement region in the vicinity of the spark gap 

The standard k- model is used to simulate turbulence parameters. This model is a two-

equation model that solves for the turbulent kinetic energy k and the turbulent dissipation 

 [62]. Major simulation parameters for the steady cross-flow case are summarized in Table 

3-3.  

Table 3-3. Converge simulation parameters for steady cross-flow 

Parameter Value 

Intake velocity 2.5/5/10/20/30/40/50/100 m/s 

Intake temperature and pressure 300 K, 1 bar 

Grid size (edge length) 4 mm (max) / 0.25 mm (min) 

Turbulence model Standard k- model 

(a)

(b)

20 mm

1
0
 m

m

14 mm
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3.4.2 In-Cylinder Near-Spark-Plug Flow Field 

The engine geometry is carefully modeled to match the research engine platform used for 

engine tests. The insert used in the intake manifold and the helical port are incorporated 

into the geometry input. Since the overall in-cylinder is influenced significantly by the 

intake port design, laser scan of a flexible foam mold of the helical intake port is used to 

create the surface file, which is used in overall engine geometrical model [21]. The 

computational domain with major boundaries is presented in Figure 3-12. The intake mass 

air flow rates of 3.53, 4.85 and 5.56 g/s are simulated. The simulation study is mainly 

focused on the spark event and early flame development period. Thus, to save the 

computational time, a part of a single motoring cycle, which includes the intake, 

compression and expansion strokes are simulated. The intake manifold pressure data, 

recorded at a 0.1° CA resolution during the engine motoring tests, is used as inflow 

boundary condition for the intake port upstream of the insert. The intake and exhaust valve 

profiles were measured in author’s lab using the dial indicator [21]. 

A base grid size of 4 mm with a time varying grid refinement is used. During the charge 

induction process, when intake valve is open, the grid size near the valve is set to 1 mm. 

The grid size in the cylinder region is refined to 1 mm during the intake and expansion 

strokes. It is further refined to 0.5 mm during the spark event and in the ignition window 

of 290° to 370° CA. During this period, the grid size near the spark gap is reduced to 0.25 

mm to increase the resolution of the flow field. The grid size distribution near the spark 

gap during the spark event window is shown in Figure 3-13. This final grid size is selected 

based on the incremental refinements until the computational power required to achieve a 

significant improvement becomes unfavorable. 
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Figure 3-12. Computational model for engine motoring simulations 

 

Figure 3-13. Grid refinement during engine motoring simulations at 310° CA 
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Turbulence is resolved using the renormalized group (RNG) k-ε turbulence model. The 

RNG k-ε model is a variation of the standard k-ε turbulence model. It includes additional 

terms which improves the accuracy for the rapidly strained and swirling flows [62]. Major 

simulation parameters for the in-cylinder flow simulation are summarized in Table 3-4. 

Table 3-4. In-cylinder flow simulation parameters 

Parameter Value 

Intake temperature 300 K 

Intake pressure profile Manifold pressure from empirical data 

Intake mass flow rates 3.56/4.85/5.56 g/s 

Cylinder wall temperature 353 K 

Grid size (edge length) 4 mm (max) / 0.25 mm (min) 

Turbulence model Standard k- model 

Engine Geometry Yanmar NFD-170 

Bore 102 mm 

Stroke 105 mm 

Engine Speed 1300 rpm 

Compression Ratio 9.2:1 

Intake valve opening (IVO) -10° CA 

Intake valve closing (IVC)  225° CA 

Exhaust valve opening (EVO) 495° CA 

Exhaust valve closing (EVC) 14° CA 
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 SPARK DISCHARGE IN STEADY FLOW 

The flow field around the spark gap has a profound effect on the spark discharge process 

as well as the flame kernel formation and flame propagation. In this chapter, the effect of 

steady flow velocity (henceforth called “mean flow” velocity) on the turbulence generated 

due to spark electrodes, and the spark discharge characteristics under flow conditions are 

investigated. All the empirical tests and the numerical simulations are performed at ambient 

pressure and temperature conditions. The flow field in the vicinity of the spark gap under 

steady cross-flow conditions is studied using a combination of PIV measurement and CFD 

simulation. The turbulence generated downstream of the spark plug is analyzed using two 

parameters, turbulent velocity and vorticity magnitude. The spark discharge characteristics 

under the effect of flow field are studied using discharge voltage and current profiles, and 

direct imaging of spark plasma channel. The discharge duration and frequency of restrikes 

are calculated and correlated with the flow velocity.  

4.1 PIV Flow Field Measurement 

The PIV image data processing method using PIVLab is discussed in Chapter 3.  The 

ensemble averaged velocity vectors and flow streamlines for mean flow velocity of 2.5 m/s 

are presented in Figure 4.1. The presented velocity data is the average of 500 consecutive 

image frames, which corresponds to 50 ms of flow time interval. The large-scale flow 

structures generated in the wake of spark plug geometry can be observed clearly from the 

velocity vectors. The vortex formed as a result of the turbulence generated by the spark 

threads is marked as “1” in Figure 4-1. The effect of the gap between the ceramic insulation 

and the metal shell on flow field can be seen from the downward flow velocity immediately 
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downstream of the ceramic (indicated by “2” in Figure 4-1). This flow is of importance as 

it influences the heat transfer between the spark plug and the surrounding charge mixture. 

 

Figure 4-1. Ensemble averaged velocity vectors and streamlines for 2.5 m/s mean flow 

Although, the majority of reflections can be removed by painting the spark plug black, the 

layer of paint itself can reflect a portion of light, which impacts the correlation calculation 

within the spark gap. As a consequence, the PIV correlation results in an erroneous velocity 

magnitude. While it is possible to manually calculate the overall flow speed and direction 

by tracking a particle across the image pairs, local flow field and small turbulent scales 

cannot be resolved. The mean of the manual velocity calculations across 10 image pairs 

results in a velocity of 3.07 m/s, which is slightly higher than the mean flow velocity. The 

slightly higher value is expected because of sudden contraction to the flow provided by the 

spark electrodes [63]. 
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The velocity magnitude and small-scale vortex locations are shown in Figure 4-2. As 

expected, there is presence of velocity gradient downstream of the spark plug. Moving 

from point A to B (Figure 4-2) parallel to plug axis, velocity magnitude decreases 

progressively as the obstruction due to spark plug becomes larger. The spark gap offers 

minimum impediment to the flow whereas the spark thread, being the largest bluff body, 

provides maximum reduction in the velocity. Downstream of the spark plug, the velocity 

magnitude increases in the flow direction as the effect of bluff body (spark plug in this 

case) diminishes gradually. The flow downstream of the spark plug is highly distorted as a 

result of the presence of scattered turbulent structures, with most of the small-scale vortices 

being concentrated in the areas immediately before or after the presence of an obstacle. 

  

Figure 4-2. Velocity magnitude and small-scale vortex locations for 2.5 m/s mean flow 

Velocity [m/s]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

B

A

No Laser Sheet 

Illumination



 

 

43 

 

The instantaneous velocity vectors from three randomly chosen, consecutive image pairs 

are presented in Figure 4-3. While the ensemble averaged velocity can give an overall view 

of the vortex structures, instantaneous velocity shows the transient changes. 

 

Figure 4-3. Instantaneous velocity vectors for 2.5 m/s mean flow 
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It is evident from the instantaneous vectors that although the overall flow field remains 

almost identical, with the presence of turbulent vortices and velocity gradient downstream 

of the spark plug, the vortex structures after the plug are subject to continuous formation 

and shedding. 

A similar overall flow structure is observed at higher velocities, but the resolution of PIV 

measurement decreases because of the lower particle density at higher flow rates. Ensemble 

averaged velocity vectors, streamlines, velocity magnitude and small-scale vortex 

locations are shown in Figure 4-4 for a mean flow velocity of 5 m/s. 

 
Figure 4-4. Ensemble averaged flow parameters for 5 m/s mean flow: (a) velocity 

vectors, (b) streamlines, (c) velocity magnitude, (d) small-scale vortex locations 

The raw PIV images at a mean flow velocity of 6.8 m/s are presented in Figure 4-5. The 

spark channel ignites the olive oil particles in the flow. A “void” in the flow downstream 

of the spark channel can be observed because of the absence of the seeding particles. There 

seems to be a perceptible difference between the rate of spark stretch and the speed of the 
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“void” generated by the plasma channel. The separation between the spark and the void 

increases until it dissolves in the surrounding flow. The increasing separation between the 

spark channel and the void may suggest that the rate of the spark stretch is lower than the 

flow velocity across the spark gap. 

 

Figure 4-5. Raw PIV images with enhanced contrast under 6.5 m/s mean flow 

4.2 Steady Flow Numerical Simulation 

The data from the numerical simulations is post processed in ANSYS Ensight version 10.1. 

The mean flow velocity is varied from 2.5 m/s to 100 m/s. The lower flow velocity (2.5 

m/s) case is used to validate the numerical model with PIV measurement data. The main 

flow parameters analyzed from the simulation data are the flow velocity, the turbulent 

velocity, and the vorticity near the spark gap. Average values of flow velocity and turbulent 

velocity are calculated in the spark gap over a cylindrical volume. The cylinder is 0.9 mm 

in diameter and 0.6 mm in height, with a volume of approximately 0.4 mm3. 
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The turbulent velocity (u’) is defined as the root mean square of the fluctuating velocity 

components. It is calculated from the turbulent kinetic energy (k) expression using equation 

4.1 [62]. 

𝑢′ = √
2

3
𝑘                                                                  4.1 

The vorticity is mathematically defined as the curl of velocity vector. Physically, vorticity 

vector represents the number of rotations of an eddy per unit time. In the tensor form, 

vorticity is calculated using equation 4.2 [62]. 

 

𝜔 = ∇ × �̅� = (
𝜕𝑢𝑘

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑘
) 𝑖̂ − (

𝜕𝑢𝑘

𝜕𝑥𝑖
−

𝜕𝑢𝑖

𝜕𝑥𝑘
) 𝑗̂ − (

𝜕𝑢𝑗

𝜕𝑥𝑖
−

𝜕𝑢𝑖

𝜕𝑥𝑗
) �̂�              4.2 

Where, 𝑢𝑖, 𝑢𝑗  and 𝑢𝑘 are the x, y and z components of velocity respectively. 

Since the spark gap experiences a highly turbulent flow inside the engine, Reynolds 

number (Re) is calculated for the chosen velocity values to ensure that the flow in the 

rectangular channel, upstream of the spark plug, remains in the turbulent regime during the 

steady cross-flow tests or the simulation. The Reynolds number is a non-dimensional 

parameter, defined as the ratio of the inertial forces to the viscous forces. It is used as a 

measure to predict if the flow is laminar or turbulent and is calculated from the fluid density 

(𝜌) and dynamic viscosity (𝜇), mean flow velocity (�̅�) and characteristic hydraulic 

diameter (𝑑) using equation 4.3 [64]. 

𝑅𝑒 =
𝜌. �̅�. 𝑑

𝜇
                                                                4.3 

As illustrated in Figure 4-6, the Reynolds number for all the chosen flow velocities is higher 

than 4000, which indicates that a fully developed turbulent flow exists upstream of the 
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spark plug. A comparison between the velocity distribution from the numerical simulation 

and the PIV measurement for a mean flow velocity of 2.5 m/s is presented in Figure 4-7. 

 

Figure 4-6. Reynolds number of the flow upstream of spark plug 

 
Figure 4-7. (a) Numerical and (b) empirical velocity contours for 2.5 m/s mean flow 
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The velocity profiles from the numerical simulation and the PIV measurements show a 

good agreement. The comparison of the simulated and empirical flow velocity on a 10 mm 

linear section, taken 5 mm downstream of the spark gap (indicated by the white line in 

Figure 4-7) is presented in Figure 4-8. The maximum difference between the empirical and 

simulated velocity magnitude is 12% (0.38 m/s), with numerical simulation 

underpredicting the velocity magnitude. However, the overall trend in both cases is similar. 

Major difference can be observed within and near the spark gap. As discussed earlier, the 

reflections during the PIV measurements impedes a reliable measurement of velocity in 

the gap. Therefore, the velocity distribution (Figure 4-7(b)) shows a very low velocity 

across the spark gap. However, the manually calculated velocity magnitude of 3.07 m/s in 

the gap (for 2.5 m/s mean flow velocity) is similar to the simulated value. Therefore, the 

model is considered acceptable for the study of flow field at higher cross-flow velocities.  

 
Figure 4-8. Simulated and empirical velocity at 5 mm downstream of spark gap 
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inlet velocities of 10, 20, 50 and 100 m/s are shown in Figure 4-9. The flow field in between 

the ceramic insulator and the outer metal shell is also simulated. This flow influences the 

heat exchange between the spark plug and the in-cylinder charge. The velocity distribution 

downstream of the spark plug shows a similar trend for all the simulated flow fields. The 

overall flow velocity throughout the domain increases with the increase in the inlet flow 

speed. Within the spark gap, the flow velocity is higher than the mean streamwise velocity 

for all cases. This can potentially be attributed to the flow acceleration because of the 

contraction provided by the spark electrodes. A comparison between the gap velocity and 

the mean flow velocity is presented in Figure 4-10.  The difference between the two 

velocities increase as the mean flow velocity increases. The difference is 0.64 m/s at the 

mean flow velocity of 2.5 m/s, which increases to 27.72 m/s at the 50 m/s mean flow 

velocity. This difference further supports the influence of the contraction, as according to 

flow continuity and Bernoulli’s principles, the difference in velocity due to sudden 

contraction is proportional to the incoming flow velocity [64]. These results agree with the 

previous investigation of the flow velocity across the spark gap performed by Halldin using 

laser doppler velocimetry (LDV) [26]. 
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Figure 4-9. Velocity distribution at 10, 20, 50 and 100 m/s mean flow velocities 
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Figure 4-10. Mean flow velocity and gap velocity comparison 

While the flow velocity across the spark gap has significant effect on the spark event, 

turbulence influences the initial flame kernel formation and flame propagation. The 

turbulent velocity and vorticity magnitude are the two parameters used to study the flow 

turbulence. Downstream of the spark gap, the flow is highly turbulent, and the turbulence 

increases with the mean flow velocity. The turbulence dissipates progressively as the flow 

moves away from the plug. This is evident from the turbulent velocity and vorticity 

contours illustrated in Figure 4-11. The turbulent velocity and the vorticity magnitude 

increases with the mean flow velocity.  
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Figure 4-11. Turbulent velocity and vorticity contours for 10, 20, 50 and 100 m/s mean 

flow velocities 
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The turbulent velocity and vorticity magnitude, within and downstream of the spark gap, 

at different inlet flow speeds is illustrated in Figure 4-12 and Figure 4-13 respectively. 

 
Figure 4-12. Average and maximum turbulent velocity within and after the spark gap 

 
Figure 4-13. Vorticity magnitude within and after the spark gap 
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flow velocity is lower, and the turbulence is relatively higher. Similar results have been 

obtained by Kim et al. in their investigations of the flow velocity and turbulence near the 

spark gap under a steady cross-flow using the hot wire anemometry technique [41]. 

It has been reported by the researchers that the combustion initiation and the initial flame 

propagation can be enhanced by a relatively low velocity and high turbulence conditions 

[26,42-44]. Hence, the charge mixture conditions immediately downstream of the spark 

plug can potentially offer a better background for the combustion initiation and flame 

propagation as compared to the conditions within the spark gap. 

4.3 Spark Discharge under Steady Cross-Flow 

As discussed earlier in the literature review, in addition to enhancing the flame propagation, 

the in-cylinder flow has a significant effect on the spark discharge process. To decouple 

the flow effect from other influencing parameters, the spark discharge under cross-flow is 

studied outside the engine, in the ambient conditions. The electrical circuit and the direct 

imaging system are discussed in Chapter 3. The spark area is calculated by converting the 

raw greyscale images of the spark channel into binary images using a MATLAB code. In 

the binary images, the spark area is represented as the white pixels (1) and background is 

converted into black pixels (0). The threshold for the binary conversion is carefully 

determined by comparing the processed binary and raw images to ensure that the spark 

channel is completely included in the white section. The area of each pixel is determined 

through calibration. The spark area is finally calculated by multiplying the total number of 

white pixels to the area of a single pixel. 

Under quiescent (no flow) conditions, a steady arc between the spark electrodes is 

maintained after the breakdown phase. The discharge characteristics under quiescent 
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conditions, along with the plasma channel images are illustrated in Figure 4-14. The 

voltage remains almost constant at approximately 470V during the glow phase. The 

discharge current gradually decays, and the total discharge duration is 2.4 ms. The spark 

plasma is confined within the spark electrodes throughout the duration of discharge and its 

intensity diminishes as the current level decreases. 

 

Figure 4-14. Spark Plasma under quiescent conditions 

Under the effect of flow, the spark plasma is stretched in the flow direction. Eventually, 

the stretched plasma breaks and spark restrikes are. As opposed to the quiescent conditions, 

the discharge voltage is no longer constant, but increases gradually and then suddenly drops 

in response to the spark restrike. This behavior becomes increasingly frequent as the 

discharge current diminishes near the end of the spark discharge. The discharge 

characteristics under low mean flow velocities of 5 and 10 m/s are presented in Figure 4-

15 and the effect of higher flow velocities (20 and 40 m/s) is demonstrated in Figure 4-16. 
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Figure 4-15. Spark plasma under 5 m/s and 10 m/s mean flow velocities 
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Figure 4-16. Spark plasma under 20 m/s and 40 m/s mean flow velocities 
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The flow across the spark gap has a negligible effect on the breakdown phase, owing to the 

very small duration (in the order of hundreds of nanoseconds) of the breakdown phase. 

Hence, as illustrated in Figure 4-17, the breakdown voltage and the peak current stays the 

same across the whole flow velocity range tested. The peak current in the figure refers to 

the maximum current at the start of the glow phase. The presented data is an average of 30 

test points at each velocity and the error bars represent the standard deviation in the results. 

 
Figure 4-17. Breakdown voltage and glow phase peak current at different mean flow 

velocities 

For all the tested conditions, the breakdown voltage remains around 8 kV and the glow 

phase peak current is approximately 30 mA immediately after the breakdown. The spark 

lengths at flow velocities of 5, 10, 20 and 40 m/s are shown in Figure 4-18. With an increase 

in the mean flow velocity, spark stretch as well as the rate of spark stretch increases. This 

behavior can additionally be observed from the spark channel images as well as the spark 

area traces presented in Figure 4-15 and Figure 4-16. The rate of spark stretch is represented 

by the slope of the spark length vs time plot. A sudden drop in spark length is an indicator 

of the spark plasma restrike. As observed from the raw PIV images in Figure 4-5, even 
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though the rate of spark stretch increase with the increase in flow velocity, it still remains 

lower than the flow velocity.  The spark stretch rate calculated from the plasma length 

before the first restrike agrees with the observation from the PIV images. At the mean flow 

velocity of 5 m/s, initial spark stretch rate is calculated to be 1.2 m/s, which increases to 

2.4 m/s at 10 m/s, 9.4 m/s at 20 m/s and further 33.8 m/s at 40 m/s flow velocity. 

 

Figure 4-18. Spark length at 5, 10, 20 and 40 m/s mean flow velocities 

The discharge duration reduces with the increase in the flow velocity. At quiescent 

conditions, the total discharge duration is 2.4 ms, which is reduced to 1.5ms at 10 m/s flow 

velocity. A further reduction to 1.2 ms is seen at 40 m/s flow velocity. This reduction can 

be attributed to a higher energy dissipation because of the restrike events. As the restrike 

frequency increases, the energy dissipation also increases. Consequently, the discharge 

duration decreases as the flow velocity increases. However, the reduction is not linear. The 

duration decreases sharply at lower flow velocities and at higher flow velocities, the 

reduction is minimal. The discharge duration at different flow velocities is presented in 

Figure 4-19.  
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Figure 4-19. Discharge duration at different flow velocities 

At the lowest tested velocity of 5 m/s, the spark stretch length increases gradually and 

eventually a restrike is evident 1.8 ms after the spark breakdown when the voltage across 

the electrodes cannot sustain the increased channel resistance. Only one restrike is seen at 

5 m/s. The number of restrikes increases to 6 for 10 m/s, 12 at 20 m/s and further to 25 at 

40 m/s flow velocity.  Hence, the restrike frequency increases with an increase in flow 

velocity. The number of restrikes during a single spark event as well as the restrike 

frequency is illustrated in Figure 4-20. Moreover, with an increase in flow velocity, the 

first restrike happens closer to the spark breakdown and at a higher discharge current level. 

A higher discharge current level is required to sustain the spark channel longer at higher 

flow velocities. This behavior is evident from the time and the discharge current level at 

first restrike event for different flow velocities shown in Figure 4-21. 
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Figure 4-20. Number of restrikes and restrike frequency at different flow velocities 

 

Figure 4-21. Time and current at first restrike for different flow velocities 
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It has been reported that boosting the discharge current levels, either an overall higher 

discharge current or a “constant” current profile, can help in reducing the frequency of 

restrike events [28,32]. The overall higher discharge current profile can sustain the initial 

stretch for a longer duration whereas the constant current profile improves the discharge 

characteristics in flow field throughout the spark event, especially near the end of the spark 

discharge.  

From the flow field and the spark response results in steady cross flow, it is clear that flow 

velocity influences both turbulence in the wake of the spark gap and the spark plasma 

channel. While the flow across the spark gap helps in stretching the spark channel into the 

potentially favorable high turbulence and low velocity zone, this stretch may not be 

maintained long enough for a self-sustaining flame kernel to develop, especially at higher 

flow velocities or low discharge current levels. Once a flame kernel is successfully 

developed, a higher turbulence can enhance the further flame propagation. Therefore, there 

may exist an optimal flow velocity for a given discharge current level, where both the 

effects are balanced, and a better ignition behavior may be observed. 

The spark channel response to the flow field remains very consistent for similar flow 

velocity conditions. The researchers have investigated the use of this response to estimate 

the velocity changes during the engine conditions [41,51-55]. Next chapter discusses the 

use of the spark anemometry as a diagnostic technique for the velocity estimation during 

the engine operation. 
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 SPARK ANEMOMETRY 

Based on the spark plasma behavior under a steady cross-flow, it can be observed that a 

correlation exists between the spark discharge characteristics and the flow velocity. It is 

possible to estimate the changes to the flow velocity across the spark gap during the engine 

operation from certain discharge parameters, namely the discharge duration and the restrike 

frequency. In this chapter, the use of spark anemometry as a diagnostic tool to study the 

variations in the flow velocity within the spark gap during engine operation is investigated. 

Due to the lack of an optical access into the engine cylinder, the flow velocity near the 

spark plug is estimated using the CFD simulations. The numerical simulation and the spark 

discharge characteristics measurements are performed at the engine motoring (i.e. no 

combustion) conditions to decouple the effects of fuel, residual gas fraction, and the 

thermal background because of combustion. The discharge current and voltage profiles are 

recorded during the ignition timing window (305° to 355° CA) at different air mass flow 

rates. Thereafter, the discharge duration and restrike frequency are used to estimate the gap 

velocity changes. The results are compared to the simulated velocity magnitude. 

5.1 Flow Velocity in the Spark Gap 

The parameters and the engine geometry used for the numerical simulation setup are 

discussed in Chapter 3. The simulation data is post-processed in ANSYS Ensight 10.1. 

Owing to the lack of an optical access into the engine, or a stable probe-based measurement 

system, direct velocity measurement during the engine operation is not possible. The CFD 

simulations of engine motoring at different mass flow rates is used to calculate the flow 

velocity in the spark gap during the ignition timing window. The gas exchange process for 
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the CFD simulation is validated using the empirical and simulated in-cylinder pressure 

traces. The comparisons of the simulated and measured pressure traces at intake mass air 

flow (MAF) rates of 3.53, 4.85 and 5.56 g/s are shown in Figure 5-1. 

 
Figure 5-1. Comparison of empirical and simulated in-cylinder pressure traces 

A maximum deviation of 0.5 bar is observed in the maximum in-cylinder pressure values 

near the top dead center (TDC). The compression and expansion stroke pressures show a 

good agreement. The deviation near the TDC can potentially be attributed to a combination 

of the crevice volume and the blow-by effects. During the engine simulation, the effects of 

the crevice volume (i.e. the volume between the cylinder wall and the piston, above the 

piston rings and below the piston crown) and blow by (i.e. the escaping of expanding gas 

mixture past the piston into the crankcase) are neglected, whereas during the empirical 

tests, they may influence the in-cylinder pressure. 

The flow velocity in the spark gap is calculated as the average of velocity magnitude values 

over a cylindrical volume with same diameter as the spark electrode within the spark gap. 

Flow velocity is calculated in 10° CA increments during the ignition timing window of 
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305° to 355° CA. These crank angles correspond to the spark breakdown timings for the 

empirical measurements of the discharge characteristics during the engine operation. The 

in-cylinder flow field is analyzed in two viewing planes. The overall in-cylinder flow field 

is presented in the “center plane”, which passes through the center of engine cylinder along 

the cylinder axis. The flow in the spark vicinity is discussed in the “gap plane”, which 

passes through the spark gap, parallel to the spark plug axis. Both the viewing planes are 

shown in Figure 5-2.  

 

Figure 5-2. Viewing planes for in-cylinder flow field 

The velocity magnitude in the spark gap at different mass flow rates is presented in Figure 

5-3. The overall trend of the velocity magnitude within the spark gap remains similar for 
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all the simulated air mass flow rates. Increasing the mass flow rate results in a marginal 

increase in the flow velocity across the spark gap. 

 
Figure 5-3. Simulated flow velocity in the spark gap during engine motoring 

The velocity magnitude initially increases slightly and then gradually decreases as the 

compression stroke progresses. This behavior can be explained by the overall in-cylinder 

and spark vicinity flow field for 5.56 g/s intake MAF, illustrated in Figure 5-4 and Figure 

5-5. At 315° CA, a low velocity vortical region, marked by red circle in the velocity 

contours, is developed near the center of cylinder as a result of the global swirl and tumble 

motion. This vortex moves towards the cylinder head as the compression stroke progresses. 

The effect of this low velocity vortex on the flow within the spark gap becomes more 

pronounced as the piston approaches TDC and the available volume for the air motion is 

reduced (Figure 5-5).  The in-cylinder flow profile remains similar for other simulated 

MAF conditions as well. 
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Figure 5-4. Overall in-cylinder and spark vicinity flow field at 5.56 g/s intake MAF 
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Figure 5-5. Overall in-cylinder and spark vicinity flow field at 5.56 g/s intake MAF 
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5.2 Spark Discharge Characteristics During Engine Motoring 

The engine test platform and measurement equipment have previously been detailed in 

Chapter 3. A charging duration of 4 ms is used for the ignition coils of the TCI system. The 

breakdown voltage, the discharge duration, and the restrike frequency is calculated from 

the measured voltage and current profiles. The absolute value of the breakdown voltage 

may be higher than the value measured using the voltage probe. The time scale of the 

breakdown event is smaller than the sampling interval of the probe used. However, the 

measured values can be used for the comparison of the breakdown event at different spark 

timings. The discharge energy is calculated to be ~80 mJ for the spark events.  

The breakdown voltage along with the in-cylinder pressure trace for different MAF 

conditions during the ignition window is presented in Figure 5-6. The breakdown voltage 

increases with the increase in the in-cylinder pressure as the piston moves towards TDC. 

However, there is no significant difference observed in the breakdown voltage values when 

the intake MAF is increased. This is expected as the pressure differences between the tested 

mass flow rates are not significant enough to alter the breakdown characteristics to a 

noticeable extent. Additionally, as demonstrated by the steady flow results, the flow 

velocity has a negligible effect on the breakdown process. 
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Figure 5-6. Breakdown voltage and in-cylinder pressure at different intake MAF 

The glow phase of the discharge process is much more sensitive towards the effects of the 

flow velocity. As illustrated in Figure 5-7, the discharge duration initially decreases as the 

flow velocity increases. Further, the discharge duration then gradually increases as the flow 

velocity decreases near the TDC. The restrike frequency of the spark events is presented in 

Figure 5-8. The restrike frequency increases as the velocity increases and then gradually 

decreases. 
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Figure 5-7. Discharge duration during of spark events at different intake MAF 

 
Figure 5-8. Restrike frequency of spark events at different intake MAF 

Although the overall trend in the discharge duration and restrike frequency matches the 

variation in the velocity, the magnitude of the variation cannot be estimated from either the 

discharge duration or the restrike frequency. Only a qualitative correlation can be 

established. A possible reason for the discrepancy is the changes to the background 
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pressure has not been considered. A “pressure correction” to the discharge characteristics 

may result in a better prediction of the flow velocity changes. After the pressure correction, 

it is a reasonable assumption that the correlation will hold true for the engine operation 

with combustion as well [55]. 

The results demonstrate that a similar correlation exists between flow velocity and the 

spark discharge characteristics under ambient as well as engine operating conditions. Thus, 

the spark anemometry can provide an economical and simple way of estimating the 

velocity variations near the spark gap, especially across different engine cycles (i.e. Cyclic 

variations) [41]. However, the velocity measurements can only be obtained during the 

spark event, therefore transient measurements are not possible using the conventional TCI 

system. Additionally, spark anemometry can only estimate the magnitude of the flow 

velocity. The information about the flow direction and turbulence cannot be obtained. 

Moreover, the flow within the engine cylinder is subject to constant variations and may not 

always resemble the cross-flow configuration, thereby further increasing the measurement 

uncertainty. The measurement interval may be prolonged by combining the spark 

anemometry with advanced ignition technologies that provide longer overall discharge 

duration e.g. dual-coil offset discharge [65].  
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 CONCLUSIONS AND FUTURE WORK 

An investigation on the effect of flow velocity on the flow field in the vicinity of the spark 

gap, and the spark discharge characteristics, was conducted using various research 

platforms and numerical simulations. The turbulence generated due to the spark plug 

geometry, and the spark discharge characteristics, were analyzed under steady cross flow 

tests. The use of spark anemometry to measure the variations in the flow velocity within 

the spark gap during engine operation was examined. In this chapter, the summary of the 

research performed is presented, along with the major conclusions. Thereafter, the 

recommendations for the future research are made. 

6.1 Spark Discharge Under Steady Flow Conditions 

The flow field around the spark plug, subjected to a steady flow across the spark gap was 

investigated using a combination of optical PIV measurements and numerical simulations. 

The turbulence generated by the spark geometry was studied. The discharge characteristics 

of the spark under various cross-flow velocities were investigated empirically in order to 

study the spark plasma response towards the flow field. The main conclusions of the 

research are as follows:  

• The particle image velocimetry (PIV) system devised using a continuous laser can 

capture the overall flow field in the wake of the spark plug under relatively low 

mean flow velocities (up to 5 m/s). Larger flow structures are observed 

corresponding to the spark plug protrusions. However, reflections from the spark 

electrodes impede the flow field measurements within the spark gap. 



 

 

74 

 

• The spark plug geometry acts as bluff body, by which turbulence is generated in its 

wake. The turbulence is maximum downstream of the spark gap region. As the flow 

moves away downstream of the spark gap, the turbulence gradually dissipates. 

• The flow velocity within the spark gap is higher than the mean stream velocity 

because of the contraction provided by the spark electrodes. A velocity gradient 

exists downstream of the spark gap. The flow velocity is lower in the regions 

following the obstruction provided by the spark plug geometry. 

• Turbulence is lower within the spark gap as compared to the region after the spark 

electrodes.  

• The flow velocity within the spark gap increases sharply with increase in mean flow 

velocity. The turbulent velocity and vorticity magnitudes show an almost linear 

rising trends with increases in mean flow velocity. 

• Relatively low flow velocity and high turbulence downstream of the spark 

electrodes may provide better ignition and flame propagation conditions as 

compared to the gap region. 

• The glow phase of spark discharge is more sensitive to the flow velocity variations 

than the spark breakdown phase. The breakdown voltage and peak current at the 

start of the glow phase remain constant over a testing range of velocities variations. 

• During the glow phase, the spark plasma is stretched out of the spark gap and is 

subject to frequent restrikes under the effect of flow. At the same discharge current 

levels, the plasma stretched length and the restrike frequency increase with the 

increases in mean flow velocity. The restrikes may interrupt the formation of a self-
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sustaining flame kernel, and present challenges to the ignition process at higher 

flow velocities. 

• The total discharge duration decreases with an increase in mean flow velocity 

because of the additional energy dissipation during the restrike events. 

• As the mean flow velocity increases, the onset of restrike events (first restrike) 

occurs closer to the breakdown phase, at a higher current level.  

6.2 Spark Anemometry 

A preliminary investigation on the use of spark anemometry to measure the variations in 

the local flow velocity during engine operation was conducted with the help of numerical 

simulations. Efforts have been made to correlate the simulation with the discharge voltage 

and current measurements on engine test platform. The in-cylinder flow field was analyzed 

using numerical simulations. The discharge characteristics namely breakdown voltage, 

discharge duration and restrike frequency were used to estimate the in-cylinder flow 

velocity changes in the spark gap. The main conclusions of the study are as follows:  

• The overall in-cylinder tumble or swirl motion has a significant effect on the local 

flow field near the spark plug. The flow velocity in the spark gap decreases as the 

piston approaches the TDC because of the transformation of the tumble motion in 

part, as a result of the squish effect. 

• The discharge duration and restrike frequency trends show a responsive agreement 

to the flow velocity variations in the spark gap. The spark anemometry is useful to 

give a qualitative estimate of the velocity variations. However, the magnitude of 

variations may not be obtained from the electrical measurements alone. 
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6.3 Recommendations for future work 

The following are recommendations for the continuation of the future work related to the 

presented research: 

• Optical measurements of the flow field due to spark plug geometry at higher mean 

flow velocity and background pressure should be performed in order to have a 

better relevance to the in-cylinder conditions. 

• Spark discharge characteristics should be investigated under higher background 

pressure and different gas compositions to simulate the in-cylinder conditions 

during engine operation. 

• Combustion tests under flow conditions must be performed to better understand the 

effects of generated turbulence and spark behavior on the flame kernel development 

and propagation. 

• The simulated in-cylinder flow field has been validated only using the gas exchange 

process. Further validation of numerical results should be performed using velocity 

measurement methods to check the fidelity of the numerical model. Optical studies 

may help yield more information. 
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