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Abstract 

This thesis uses numerical investigations to examine details of the turbulent flow past 

bluff bodies, in particular around various inclined flat plate configurations. The study 

consists of three phases: (1) flow past an infinitely long inclined flat plate, (2) flow past a 

finite length inclined flat plate near a wall and (3) flow past a stand-alone solar panel with 

support structure. 

In Phase 1, the development of three-dimensional fluid structures around an infinitely 

long inclined flat plate at Reynolds number of 1.57×10
5
 is reported. The Detached Eddy 

Simulation (DES) is validated against well-established experimental data. The flow 

analysis in two-dimensional planes provides fundamental information about the spanwise 

and streamwise vortices that develop near the body and in its wake, but offers limited 

information on the formation and evolution of these vortices. Using the λ2-criterion to 

visualize the three-dimensional fluid structures, the interaction between the spanwise and 

streamwise vortical structures and the shear layers is discussed. It is found that the 

spanwise wavelength of the streamwise vortical structures lie in the range corresponding 

to the mode B instability reported in previous studies of wake transition.  

The effect of a wall on the flow structures around a finite length inclined flat plate at two 

proximities from the wall is investigated in Phase 2. In the mean analysis, it is found that 

the small clearance produces a wall-jet like flow in the gap which elongates the wake 

region, whereas a strong upwash is captured for the larger gap, reducing the length of the 

wake. Transient three-dimensional flow structures are captured using the λ2-criterion. The 

early stage development of the flow around the plate shows inverted hairpin-like vortices 
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that generate a counter-rotating sheared vortex and a pair of vertical vortex tubes 

extending from the wall. This pair of vortex tubes is considered as the source of the 

meandering structures reported in the literature. At the later flow development stage, an 

asymmetric distorted flow for the smaller gap is observed, whereas there is a nearly 

symmetric wake pattern for the larger gap. 

Numerical investigation of flow past a stand-alone solar panel with a supporting post is 

conducted using DES in Phase 3. Two elevations of the solar panel are examined. Mean 

velocity profiles and two-dimensional mean vorticity contours do not illustrate significant 

changes in the flow patterns, except for relatively weak vortices that develop along the 

post. The transient three-dimensional analysis using the λ2-criterion captures four unique 

fluid structures around the body for the small gap case. On the other hand, the large gap 

case shows minimum influence from the post except for ligaments of vortex tubes that 

extend from the post. The same vortex structures also develop in the small gap case but 

are merged into the large scale vortices in the wake.  
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Chapter 1. Introduction 

Flow past bluff bodies is of interest in many disciplines of engineering ranging from 

aerospace to civil engineering. The characteristics of flow past bluff bodies have been 

studied extensively for the last few decades, primarily considering the drag, lift and 

vortex shedding phenomena. Recently, there has been a renewed interest in this area due 

to the proliferation in the use of solar panels. 

Canada is one of the top ten countries in the world in terms of solar panel installations 

and Ontario is one of the largest contributors among the provinces/territories [1]. The 

industry continues to grow as evident in the ongoing project by Samsung Renewable 

Energy Inc., which is developing the solar farm at the Windsor International Airport. 

Solar panels are not only installed in large solar farms (Figure 1.1, left) but also on 

rooftops and as stand-alone structures (Figure 1.1, right). Solar panels are typically 

installed in an open terrain for maximum exposure to sunlight where, unfortunately, they 

will also be subjected to wind forces [2, 3]. 

 

Figure 1.1: Examples of solar panels installed in a solar farm (adapted from The Globe and Mail) and 

in a rural area 
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A number of studies have been conducted to evaluate the wind load on solar panels from 

the perspective of assessing conditions which could cause damage to the devices. In 

studies of a ground mounted solar array in a single row [4, 5], the first panel of the array 

facing towards the approaching flow direction was found to experience the largest wind 

load. A sheltering effect, identified by a reduction in force on the second and subsequent 

panels of the array, was noted. A similar observation was reported in experiments of wind 

loads on ground mounted multiple row solar panels tested in a boundary layer wind 

tunnel facility [6]. These studies also showed that the outer array panels were subjected to 

higher load compared to the inner panels. The above observations and the mean velocity 

and pressure contour plots presented in the works of Shademan et al. [4] and Jubayer and 

Hangan [5] indicate that in the case of a ground mounted solar array, the approaching 

flow has its greatest impact on the front panels of the array, whereas the panels in the 

downstream region behind the front row have lower wind loads. Research has also been 

conducted to investigate the wind loads on flat rooftop panels located in an array [7]. It 

was reported that a larger space between the array outer rows and the raised perimeter of 

the building could reduce the wind load on the array. Meanwhile, in the case of a flat 

rooftop solar array, Pratt and Kopp [8] suggested that the force acting on the panel was 

the result of either the suction due to the large separation bubble that formed above the 

array or the local flow reattachment around the array. Additionally, the wind loads on the 

flat rooftop solar array depended on the flow that developed around the building. 

It is important to understand the nature of the forces generated due to the fluid-structure 

interaction and further investigation of the flow features will provide more insight into 

the physical mechanisms of the flow development. In order to study the flow 
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development around a bluff body, the single stand-alone solar panel geometry becomes 

an obvious first choice. Most previous studies mainly considered the time-averaged flow 

and discussed only the mean flow quantities [9, 10]. More recently, Shademan et al. [11] 

has numerically investigated the transient characteristics of the fluid structures generated 

by the flow and bluff body interaction. Especially, the study showed the significance of 

the wall proximity on the flow that developed around the bluff body and identified unique 

fluid structures that formed around the body using three-dimensional flow visualization 

techniques. Joint examination of one-dimensional quantitative analysis, and two- and 

three-dimensional qualitative flow analysis was found useful to understand the 

development of the flow around a bluff body. 

The present study, which extends the work of Shademan et al. [11], is divided into three 

phases: 

1) Flow past an inclined infinitely long flat plate 

2) Flow past an inclined finite length (three-dimensional) flat plate 

3) Flow past a ground mounted solar panel 

In Phase 1, the flow past an inclined infinitely long flat plate is examined. Although this 

flow has been investigated experimentally and numerically for the last 100 years, the 

purpose of this phase is to explore the detailed fluid structures in the wake and to enhance 

our understanding of the mechanisms that generate these structures. This study is 

conducted using three-dimensional computational fluid dynamics (CFD) simulations. The 

validation of the numerical setup, including boundary conditions and turbulence model, is 

performed for a well-known classical flow over an inclined infinitely long plate in a 
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freestream (Fage and Johansen [12]). Chapter 3 of this thesis deals with Phase 1 of the 

study. 

In Phase 2, a finite length inclined three-dimensional bluff body is set near a wall. This 

phase focuses on the effect of the gap (H = 0.5 and 2.5 m) between the wall and the bluff 

body. The flow field is analyzed in two stages: (1) early development stage and (2) steady 

state condition in the mean. Phase 2 of the research is discussed in Chapter 4 of the thesis. 

Phase 3 deals with the numerical simulation of the flow around a realistic ground 

mounted solar panel. Building on the knowledge acquired from Phase 2, a vertical 

circular cylinder supporting the solar panel is incorporated in the geometry. Again, two 

different heights of the plate from the ground are examined under the same conditions as 

in Phase 2. New structures that form due to the interactions of the bed, the support and 

the panel are identified and discussed. This phase is addressed in Chapter 5. 

The conclusions of the thesis are summarized in Chapter 6. Since each chapter contains a 

separate review of the literature relevant to the problem being addressed, a detailed 

discussion of the literature is not included here. 
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Chapter 2. Numerical modeling 

The unsteady incompressible Navier-Stokes equations are solved using a finite volume 

formulation in all three phases of this study. The same turbulence model and flow 

visualization method have been used for all problems considered. In this chapter, detailed 

definitions related to the selected turbulence model and visualization method are 

reviewed. Specific details of the numerics are also presented in each chapter. Throughout 

this dissertation, ANSYS Fluent 15.0 is used to conduct the computational fluid dynamics 

simulations. 

2.1. Turbulence model 

An important objective of this study is to capture the flow developing around the bluff 

body. To accurately predict the nature of turbulence, the selection of a turbulence model 

is critical. Reynolds-Averaged Navier-Stokes (RANS) two-equation turbulence models, 

such as the family of k-ε and k-ω models, are especially popular in industry for their 

lower computational cost [13]. These models are governed by ensemble-averaged 

continuity and momentum equations while the turbulence kinetic energy and dissipation 

rate are modeled assuming the turbulence is isotropic. Large Eddy Simulation (LES), on 

the other hand, solves the full Navier-Stokes equations in the domain where large eddies 

are present, whereas a model is applied in the regions of the computational domain where 

small eddies are dominant [14]. Like RANS models, LES still requires careful meshing in 

the wall region but further grid refinement in all directions is necessary for filtering in 

LES; thus, LES is computationally expensive. Taking advantage of both RANS and LES 

turbulence models, a hybrid turbulence model was proposed by Spalart [15]. Detached 
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Eddy Simulation (DES) is a hybrid of LES and RANS, where the near wall flow is 

modeled using RANS which is well-suited to model the isotropic turbulence of small 

scale eddies. Although various RANS turbulence models are available as an option for 

DES in commercial CFD software, the SST k-ω model [16] is selected in the current 

study. The SST k-ω model is preferred since the turbulence model is tuned such that the 

thin boundary layer, which develops along the bluff body, can be well predicted [17]. The 

activation of the RANS mode in DES is determined when the DES length scale    is equal 

to the wall distance (d) from the local cells. The LES mode is turned on if the length scale 

reaches the value of CdesΔmax where Cdes is a calibration constant and Δmax is the 

maximum grid spacing in each coordinate system. In order to maintain the RANS mode 

active within the thicker boundary layer region relative to the small Δmax detected in the 

region, an alternative definition of the DES length scale is needed. A delayed DES 

(DDES), one of options for DES, calculates the DES length scale as 

                          
(1)  

                
   (2)  

 
   

    

          
   

 
(3)  

where νt is the kinematic eddy viscosity, Ui,j are the velocity gradients and κ is the von 

Kármán constant specified as 0.41 [18]. 

The instantaneous continuity and momentum equations, presented below, are solved in 

the LES region: 
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where δij is the Kronecker delta. On the other hand, for unsteady RANS the ensemble-

averaged Navier-Stokes equations are solved, written in the form, 
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where overbar indicates the mean velocity. The Reynolds stresses,     
   

      , are required to 

be modeled to close the momentum equations. 

Transport equations of the SST k-ω model, without source terms, are given as [19] 
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where G and Y with subscripts of k and ω are the production and dissipation terms of 

turbulence kinetic energy (k) and specific dissipation rate (ω), respectively. The turbulent 

viscosity, μt, is defined as 



8 

 

 
   

  

 

 

    
 
   

   
   

 
 (10)  

and the turbulent Prandtl numbers of k and ω are given by 
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In these equations, S is the strain rate magnitude and other constants are specified as a1 = 

0.31, σk,1 = 1.176, σk,2 = 1.0, σω,1 = 2.0, and σω,2 = 1.168. The coefficient of low Reynolds 

number correction to damp the turbulent viscosity is given by 
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where Rk = 6.0, α∞
*
 = 1.0 and the rest of parameters can be obtained from 
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The blending functions, F1 and F2, are defined as 
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where y is the distance to the nearest boundary. The terms representing production of k 

and ω are calculated using 
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where constants are α0 = 1/9, Rω = 2.95α
*
, βi,1 = 0.075, βi,2 = 0.0828, β∞

*
 = 0.09, and 

again κ = 0.41. 

Similarly, the terms representing dissipation of k and ω are obtained by 

              (28)  

        
  (29)  

where β
*
 and βi is computed from 



10 

 

      
              

(30)  

   
       

 
  

  
   
 

 
 

      
  

   
(31)  

                       
(32)  

F(Mt) is the compressibility function, defined as: 
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For DES the dissipation of k, Yk, is modified from the original SST k-ω model with an 

added FDES term to the equation, where 

 
         

  

        

            
(34)  

and the turbulent length scale, Lt, can be found from 

 
   

  

   
 

(35)  

where Cdes = 0.61 which is a calibration constant, Δmax is the maximum local grid spacing 

along the coordinate direction, and FSST is the blending function of the SST model which 

can be either zero, F1 or F2. 

2.2. Visualization methods 

To analyze the flow structures as the flow develops around a bluff body, a two-

dimensional sectional plane is usually generated in the field of interest. However, the 

three-dimensional fluid structures that develop around the bluff body are cut by the 2-D 



11 

 

plane, making it difficult to picture the overall shape of the structures. Several options are 

available to capture the three-dimensional fluid structures using the iso-surface of fluid 

characteristics: pressure, vorticity magnitude, etc. [20]. It is common practice to identify 

the fluid structures using the vortex core identification methods such as Q-criterion, Δ-

criterion and λ2-criterion. The Q-criterion, developed by Hunt et al. [21], identifies a 

vortex as a region where the second invariant of the velocity gradient tensor, Q, is 

positive. The second invariant of      is defined as: 

 
  

 

 
      

 
      

 
  

(36)  

where 
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(38)  

The positive second invariant indicates the region of excess rotation rate (||Ωij||) over the 

strain rate (||Sij||). 

The Δ-criterion, defined by Chong et al. [22], determines a vortex as a region where the 

velocity gradient tensor,    , has complex eigenvalues. This criterion considers the 

complex eigenvalues to show the region where the streamlines are closed or form a spiral 

pattern. The eigenvalues of     in the local flow field are found from the equation: 

               (39)  

where P, Q and R are invariants of     (first, second and third invariants, respectively) 

which are defined as: 
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and where the second invariant, Q, is shown in equation (36). The condition to have 

complex eigenvalues for incompressible flow, where P = 0, is given by: 

 
   

 

 
  

 

  
 

 
  

 

    
(42)  

The λ2-criterion, defined by Jeong and Hussain [23], takes the two negative eigenvalues 

of the pressure Hessian to identify the vortex core. The eigenvalues of the pressure 

Hessian were derived by first taking the gradient of the Navier-Stokes equations. 

     

  
                        

 

 
     

(43)  

The unsteady irrotational straining and the viscous effects, the first and second terms in 

equation (43), are dropped for simplification, giving 

 
               

 

 
     

(44)  

The second eigenvalue of equation (44), λ2, where λ1 ≥ λ2 ≥ λ3, should be negative in the 

core of the vortex. 

Q-criterion and Δ-criterion consider the excess rotational motion over shear strain as 

determination of a vortex, while the pressure minima are not involved in identification of 

the vortex. Since the λ2-criterion takes pressure minima due to the vortical motion, it is 

considered preferable for vortex core identification [20, 23]. Therefore, the λ2-criterion 

was chosen to illustrate the three-dimensional vortical structures around the bluff bodies 

in this work. 
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Chapter 3. Turbulent flow past an infinitely long inclined flat 

plate 

3.1. Introduction 

The flow past an infinitely long inclined flat plate, a classic problem in bluff body 

aerodynamics, is typically considered as a two-dimensional problem. The applications of 

such a study can be extended to flow past an airfoil, a large solar panel, and many other 

mechanical systems. The von Kármán vortex street is a major flow structure expected in 

the wake of the bluff body. In the study of flow past an infinitely long circular cylinder, 

Roshko [24] identified three regimes based on the stable and irregular velocity 

fluctuations, and transition between stable and irregular fluctuations. Further 

experimental and numerical investigations in the transition regime by Williamson [25] 

indicated the occurrence of three-dimensional flow features. The critical Reynolds 

number of the wake transition was determined to be around Re = 180 by Williamson [26] 

in the study of flow past a circular cylinder. The flow was categorised into two modes; 

mode A and mode B. The mechanism of the mode A instability was due to the vortex 

dislocation of the primary vortex core. The primary vortex core deforms in the spanwise 

direction, stretches towards the bluff body and influences the next vortex core. The mode 

B instability was a result of streamwise vortex pairs (streamwise vortices in Figure 3.1) 

formed from the primary shedding vortex (primary vortex A in Figure 3.1) and residing 

close to a developing braid (braid shear layer B in Figure 3.1) which gets perturbed by 

the pairs. The mode A instability has large spanwise wavelength (≈ 4D) due to a primary 

vortex core instability, whereas the instability of mode B has small spanwise wavelength 
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(≈ 1D) along the braid. Zhang et al. [27] defined a new three-dimensional instability, 

namely mode C, with a spanwise wavelength of about 1.8D and wider spacing of the von 

Kármán vortices in the streamwise direction compared to modes A and B were observed.  

A three-dimensional fluid structures analysis using Direct Numerical Simulation (DNS) 

was presented by Mittal and Balachandar [28]. Their work considered the flow at Re = 

525 based on the diameter of the cylinder. The flow structures visualized using the λ2-

criterion showed the generation of streamwise vortical structures (ribs) around spanwise 

vortical structures (rollers) due to either a braid instability or a core instability. Spanwise 

distortion of the rollers (bulges and valleys) was observed close to the bluff body. Near 

the wake region, crescent shape structures were attached on the roller shedding from the 

body, developed into a horseshoe-like vortex and eventually became a hairpin-like vortex 

in the next sequence. Since this study used only one cylinder diameter for the spanwise 

width of the computational domain, it restricted any possible identification of the wake 

transition mode. 

 

Figure 3.1: Schematic of streamwise vortex formation along a shear layer braid in mode B instability 

with sectional view in section AA (adopted from Williamson [26]) 
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The above three-dimensional flow instability modes were also captured in the flow past 

an infinitely long square cylinder (Robichaux et al. [29]). In comparison with the flow 

past a circular cylinder, the spanwise wavelengths for mode A and B in the case of flow 

past a square cylinder were found to be shifted to 5.2D and 1.2D, respectively, in the 

range of 150 < Re < 175 for mode A and 175 < Re < 205 for mode B. Robichaux et al. 

[29] performed Floquet stability analysis and also found an intermediate three-

dimensional instability called mode S. The spanwise wavelength of streamwise vortex 

structures was found to be 2.8D with Reynolds numbers in the range 175 < Re < 205. 

Mode S showed a non-symmetric pattern in the space-time streamwise vorticity plots, 

whereas mode A and B presented odd and even reflection-transition (RT) symmetry 

about the wake centre line. Later, the mode was realized as a quasi-periodic mode (or 

mode QP) by Blackburn and Lopez [30]. 

The effect of the inclination of an infinitely long square cylinder suspended horizontally 

was examined numerically by Sheard et al. [31]. The range of inclination angles tested in 

the study was 0 ≤ Φ ≤ 45 degree, and the characteristic length for Reynolds number and 

Strouhal number was the projected height of the inclined bluff body. The study 

demonstrated that the occurrence of the three-dimensional mode A instability first 

appeared for 0 to 12 degrees and then again above 26 degrees incidence angle, whereas 

for incidence angles between 12 and 26 degrees, mode C was observed. Once the 

Reynolds number of the flow was increased beyond the critical Reynolds number at any 

incidence angles, mode B instability occurred at around Re = 200. The spanwise 

wavelength was found to vary with incidence angles. The wavelength for the mode A 
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ranged from 4.8D to 5.8D while the mode C ranged from 2.0D to 2.4D, whereas the 

mode B had no significant change in wavelength (≈ 1.0D). 

The role of aspect ratio of an infinitely long rectangular object on three-dimensional 

instability was also observed by Choi and Yang [32]. The aspect ratio was defined as 

depth over height of the object. The study proposed new modes of instability for the flow 

past a normal thin flat plate (aspect ratio close to zero): modes A2 and QP2. Mode A2 

had the spanwise wavelength of 2.0D and that of mode QP2 was found to be 5.0D for a 

thin flat plate, whereas the spanwise wavelength reduced to 1.0D for mode A2 while the 

wavelength of mode QP2 varied in the range of 4.8D to 5.8D when the aspect ratio was 

increased toward unity (square shape). 

When the flow approaches the infinitely long thin flat plate at various incident angles, 

multiple spanwise wavelengths of streamwise vortical structures were observed 

simultaneously. Yang et al. [33] examined the three-dimensional wake transition behind 

an infinitely long inclined flat plate at 25 degrees incident angle, for Reynolds numbers 

varying from 275 to 800. From the instantaneous flow visualization using λ2-criterion at 

Re = 325, two wavelengths of 0.5D and 0.8D were observed between the periodic 

structures in the spanwise direction. Using the probability density function (PDF) of the 

spanwise wavelength, three different spanwise wavelengths, 0.88D, 1.77D and 2.75D, 

were detected in the case of Re = 400, with 0.88D was the dominant wavelength. Once 

the Reynolds number was increased, the PDF showed that the two larger wavelengths 

(1.77D and 2.75D) were diminished and the major spanwise wavelength was around 

1.0D. Further analysis was conducted for the inclination angles of 20, 25 and 30 degrees. 

As seen in the work of Sheard et al. [31], mode B was observed in this range of 
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inclination angles with the small spanwise wavelength (around 1.0D) as a first occurrence 

instability at critical Reynolds number above Re = 200. The mode QP coexisted at higher 

Reynolds number with the spanwise wavelength ranging from 2.0D to 3.5D for angles of 

20 and 25 degrees, whereas the wavelength shifted to the range of 1.5D to 2.0D for the 

case of 30 degrees incident angle. 

Table 3.1: Summary of spanwise instability modes in wake transition 

Mode 
    

A 
Re < 260 

4.0D 

150 < Re < 175 

5.2D 

Re < 200 

0° < α < 12°, α > 26° 

4.8 – 5.8D 

- 

B 
Re > 260 

1.0D 

175 < Re < 205 

1.2D 

Re ≥ 200 

1.0D 

275 < Re < 800 

20° < α < 30° 

0.5 – 2.8D 

C 
170 < Re < 205 

1.8D 
- 

Re < 200 

12° < α < 26° 

2.0 – 2.4D 

- 

QP (S) - 
175 < Re < 205 

2.8D 
- 

20° < α < 25° 

2.0 – 3.5D 

α = 30° 

1.5 – 2.0D 

 

The above-mentioned studies were focused on the wake transition where the Reynolds 

numbers ranged from roughly 150 < Re < 800. In this range, the shapes and orientations 

of bluff bodies influence the flow instabilities. However, the majority of engineering 

applications are operated in the turbulent flow regime; therefore, the mode B instability 

should be expected in the three-dimensional instability where the expected spanwise 

wavelength is around 1.0D. Numerical studies of flow past bluff bodies at high Reynolds 

number were conducted by Lloyd and James [34], Lysenko et al. [35], Narasimhamurthy 

and Andersson [36], Rajani et al. [37] and Tian et al. [38] using Large-Eddy Simulation 

(LES) and DNS. These studies visualized the fluid structures developed around the bluff 

body using the Q-criterion and λ2-criterion; however, there was no further discussion 
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about the characteristics of the streamwise vortical structures of the flow at higher 

Reynolds numbers. 

Even though the turbulence of the flow at high Reynolds number is complex, some 

similarities are observed in the three-dimensional fluid structures developed in the wake 

transition regime. The small scale streamwise vortical structures, which develop around 

the large scale fluid structures, do not have a major impact on forces acting on the bodies 

but can contribute to some engineering problems such as noise and vibration, dust 

emission and snow drift around objects, etc. [39-41]. To have a better control of the flow 

in such applications, further studies on flow structures developing around bluff bodies are 

required. In order to determine the mechanisms that produce three-dimensional fluid 

structures at high Reynolds number, three-dimensional numerical simulation of the flow 

past a bluff body is conducted in the current study. A body, with fixed separation points 

is chosen to minimize any possible Reynolds number effects. Based on the work of Fage 

and Johansen [12], flow past an infinitely long inclined plate at 49.85 degrees was used. 

Validation of the numerical setup is first performed by comparing the pressure 

distribution along the plate and the shedding frequency of eddies with the experimental 

data. The flow visualizations in two- and three-dimensions are then processed to observe 

the von Kármán vortex street (two-dimensional flow structures) and the three-

dimensional flow structures behind the bluff body. 

3.2. Methodology: Geometry and numerical setup 

The computational domain and numerical setup for the flow past an infinitely long 

inclined flat plate are presented in this section. As discussed in the previous section, 

three-dimensional flow structures are expected to develop around the bluff body; 
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therefore, an unsteady three-dimensional numerical calculation is performed in the 

current study. The dimensions of the inclined flat plate are acquired from the 

experimental work of Fage and Johansen [12]. The width of the inclined plate is b = 0.15 

m, with a thickness of 3% of its width (4.53 mm) and inclination angle set at Φ = 49.85 

degrees. The distances from the centre of the inclined plate to the inlet and outlet 

boundaries are set to 5b and 10b, respectively. To meet the requirement for the area based 

blockage ratio to be less than 3%, as recommended by Franke et al. [42], the overall 

vertical height of 26b and the spanwise length of 10b is set for the computational domain. 

These dimensions and the plate orientation are illustrated in Figure 3.2. 

 

Figure 3.2: Schematic of computational domain 

A freestream flow approaches the bluff body at the speed of 15.24 m/s, yielding a 

Reynolds number based on ‘b’ of 1.57×10
5
. This uniform velocity is applied at the inlet 

boundary with 5% turbulence intensity and a pressure outlet condition (atmospheric 

pressure) is considered at the outlet boundary. To avoid any development of boundary 
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layers at the top, bottom and side surfaces of the computational domain that might 

influence the flow around the bluff body, these boundaries are treated as slip walls. The 

windward and leeward surfaces and two edges are modelled as no-slip wall boundaries. 

The numerical study is conducted using the commercial computational fluid dynamics 

(CFD) software, ANSYS Fluent 15.0. The entire computational domain is discretized in 

space using hexahedral cells. The hexahedral cells near the inclined bluff body are 

aligned with the body. Grid clustering is applied around the bluff body to capture the high 

shear stresses. The smallest grid size is chosen to achieve dimensionless distance normal 

to the plate wall (y
+
) to be less than unity, where y

+
 is defined as             and the 

frictional velocity, uτ, is given by         . The total number of cells in the calculation 

domain is approximately five million. 

The governing equations are discretized using the finite volume method and the 

convective terms are discretized in space using a second-order upwinding scheme [13]. A 

second-order implicit time marching scheme is applied for time discretization with the 

time-step size of 0.1 ms to ensure that the Courant-Friedrichs-Lewy (CFL) number is 

close to unity (CFL ≤ 3.0). The semi-implicit method for pressure linked equations 

(SIMPLE) algorithm is selected for pressure and velocity coupling to solve the Navier-

Stokes equations. 

The turbulence model used in the current study is Detached Eddy Simulation (DES) [17], 

a hybrid of a Reynolds-Averaged Navier-Stokes (RANS) turbulence model and Large 

Eddy Simulation (LES). In DES, a two-equation RANS model, the SST k-ω turbulence 

model [16], is applied near the wall boundaries. In previous numerical studies, it has been 
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shown that DES is well-suited to capture the fluid structures around a bluff body [11, 43, 

44]. DES activates the RANS mode within the distance of the DES length scale (  ) 

normal to wall boundaries whereas the LES mode is turned on only outside of this range. 

The DES length scale    is determined using a delayed DES (DDES): 

                          
(45)  

 
               

   
(46)  

 
   

    

          
   

 (47)  

where d is wall normal distance, Cdes is a calibration constant, Δmax is the maximum grid 

spacing in each coordinate direction, νt is turbulent eddy viscosity, Ui,j is the velocity 

gradient and κ is the von Kármán constant which is set to 0.41 [45]. DDES maintains the 

RANS mode active in a thick boundary layer when the maximum grid space, Δmax, is 

relatively smaller than the boundary layer thickness. The governing equations for DES 

are summarized in Chapter 2 and are given in detail by ANSYS [19]. 

3.3. Validation: Pressure distribution along the inclined plate 

and shedding frequency 

To ensure that the numerical setup discussed in the previous section is appropriate, the 

simulation is validated using the experimental results provided in the work of Fage and 

Johansen [12]. The mean pressure coefficient (  
   ) distributions along the windward and 

leeward of the inclined plate are compared with the experimental data, where   
    is 

defined by: 
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  (48)  

The reference pressure,      , is the pressure in the undisturbed air, taken in the simulation 

at the middle distance between the centre of the flat plate and the top face of the 

computational domain. The pressure data are sampled for 3 seconds (30,000 sampled 

data) after the flow around the bluff body has achieved a steady state condition in the 

mean. Figure 3.3 presents the simulated mean pressure coefficient along the leading 

(Xalt/b = 0.0) and trailing edges (Xalt/b = 1.0) of the inclined plate compared with the 

experimental result, where Xalt is the axis along the plate. The simulation shows excellent 

agreement with the experimental result along the windward and leeward surfaces. 

 

Figure 3.3: The distribution of pressure coefficient along the inclined plate 

Additionally, the shedding frequency of the vortices detaching from the trailing edge is 

validated with the experiment. A Fast Fourier Transform of the pressure signal at the 

point X/b = 5.0 and Y/b = 1.5, the same measurement point as in the experiments, with 

sampling frequency of 10 kHz over the three-second sampling time is performed. The 

Strouhal number (St) associated with the peak power spectrum of the sampled signal is 
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found to be 0.204, equivalent to the shedding frequency of 21.36 Hz (or the shedding 

period of T = 46.8 ms), which is close to the experimental value of St = 0.196 [12]. 

From the above validations, it can be concluded that the simulation is properly set up to 

accurately capture the forces acting on the body as well as the shedding vortices. Detailed 

analysis of the flow development around the bluff body was then performed to elucidate 

the mechanisms of vortex formation and breakdown in the wake region. 

3.4. Analysis and discussion: Flow visualizations 

In this section, the fluid structures developed around the infinitely long inclined flat plate 

are visualized using various approaches. Throughout this section, the transient flow 

development within a shedding period (T = 46.8 ms) out of 64 shedding events over the 

three-second sampling will be considered. First, planar fields-of-view in the streamwise 

and spanwise directions are constructed to analyze the flow in two dimensions, which is 

the common scenario in experiments. Following the two-dimensional analysis, three-

dimensional flow visualization is exploited to further analyze the three-dimensional fluid 

structures. 

3.4.1. Two-dimensional flow visualization 

To identify the von Kármán vortex street, an XY plane is cut through the midspan of the 

plate. Figure 3.4 shows plots of the instantaneous velocity vectors around the bluff body, 

superimposed on the contours of the Z-component (spanwise) of vorticity over a 

complete shedding period. The flow is from left to right in this figure and all the linear 

dimensions are normalized by the width (b) of the plate. These figures clearly show that 

two vortices (red and blue patches near the body) shed from the leading and trailing 
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edges of the inclined plate. The spanwise vorticity contours capture patches of vortices 

(rollers) which shed periodically and travel downstream. These vortices lose strength at 

downstream locations in the wake. This is an indication of large energy dissipation of the 

flow due to the high turbulence in the wake region. Braids of shedding vortices are not 

captured clearly. 

As mentioned in the work of Williamson [26], the streamwise vortex structures (ribs) 

develop along the braids, which can be observed by taking transverse cut sections in the 

downstream of the bluff body and plotting the streamwise vorticity contours. 

 

Figure 3.4: Instantaneous velocity vectors superimposed on the spanwise vorticity contours during a 

complete shedding period (T) 

Figure 3.5 shows the instantaneous velocity vectors superimposed on the streamwise 

vorticity contours on the transverse cross-section (YZ-plane) at X/b = 1.0 downstream 

from the centre of the inclined plate. The lines of spanwise vorticity at the levels of ±10 s
-
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1
 are also presented as a solid line (+10 s

-1
) and dashed line (-10 s

-1
) in the figure to 

identify the rollers and shear layers as they are observed in Figure 3.4. Several 

streamwise vortices with both clockwise and counter-clockwise sense of rotation are 

captured behind the plate and between the solid and dashed lines, which implies that 

these vortices are within the wake region. These vortex patches seem to be quite 

uniformly distributed between the solid and dashed lines in Figure 3.5a. With time, as 

indicated in Figure 3.5b-e, it is observed that the patches of streamwise vorticity oscillate 

within the wake region. Comparing with Figure 3.4, the streamwise vortices shift 

downward as the roller sheds from the leading edge in the second and third time frames 

of the period (Figure 3.5b,c) at this location (X/b = 1.0), whereas the patches translate 

upward as the roller sheds from the trailing edge in the 5T/6 and 6T/6 time frames 

(Figure 3.5e,f). At this location, it is difficult to use two-dimensional analysis to identify 

which streamwise vortices are paired together since the flow in the wake is highly 

complex. The spanwise wavelength of 1.0b in the mode B instability was reported by 

Williamson [26], while Yang et al. [33] reported values in the range from 0.5b to 1.0b. 

However, using only two-dimensional analysis, it is not easy to determine the spanwise 

wavelength by observing the patches of streamwise vortices or the wavy shapes of the 

spanwise vorticity contour lines (solid and dashed lines). 
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Figure 3.5: Instantaneous velocity vectors superimposed on streamwise vorticity contours on the 

transverse cross-section at X/b = 1.0 downstream from the centre of the inclined plate over a full 

shedding period (T). The contour lines of spanwise vorticity of ±10 s
-1

 are shown as a solid line for 

counter-clockwise and as a dashed line for clockwise rotation. 

Figure 3.6 shows instantaneous velocity vectors further downstream, on the transverse 

cross-section X/b = 3.0, superimposed on the streamwise vorticity contours. On this plane, 

the patches of streamwise vortices are translated even further upwards and downwards 

compared to those captured at X/b = 1.0. Similarly, vorticity patches are identified at the 

lower extreme in the first and last time frames (Figure 3.6a,f) and at the upper portion of 

the field-of-view in the third and fourth time frames (Figure 3.6c,d) as the braids of 

previously shed vortices pass this downstream plane (X/b = 3.0). The lines of spanwise 

vorticity at the levels of ±10 s
-1

 are also scattered, suggesting that the rollers are distorted 

at this distance from the bluff body where the spanwise vortices cannot be identified by 

the velocity vectors in Figure 3.4. 
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Figure 3.6: Instantaneous velocity vectors superimposed on streamwise vorticity contours on the 

transverse cross-section at X/b = 3.0 downstream from the centre of the inclined plate over a full 

shedding period (T). The contour lines of spanwise vorticity of ±10 s
-1

 are shown as a solid line for 

counter-clockwise and as a dashed line for clockwise rotation. 

From the above analysis of two-dimensional velocity vector fields and vorticity contour 

plots, the streamwise vortex structures are clearly identifiable within the wake region. 

Even though these structures follow the motion of the braids of previously shed spanwise 

vortices captured in the streamwise cross-section (XY plane), the structures appear 

scattered in the transverse cross-sections. It is difficult to connect the streamwise 

structures identified in the near wake at X/b = 1.0 to those seen further downstream at 

X/b = 3.0. To fully understand the development of the streamwise vortex structures, a 

three-dimensional visualization is necessary. 
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3.4.2. Three-dimensional flow visualization 

From the two-dimensional flow visualization, the three-dimensional nature of the flow 

and the relationship between the streamwise and spanwise vorticies are observed while 

the streamwise structures transit up and down as the spanwise vortices are generated in 

the wake. However, due to the complex flow pattern in transverse cross-sections in the 

wake, it is difficult to determine the wavelength of spanwise vortices and thereby confirm 

that the flow instability is in mode B. 

Figure 3.7 presents the fluid structures developed around the bluff body at one time 

instance (T/6) from various perspectives (Figure 3.7a-d) using the iso-surface of λ2/λ2min 

= 0.01 coloured with the spanwise vorticity contours where λ2min is the global minimum 

of λ2 in the computational domain at each instance. The value of λ2/λ2min is selected to 

make the size of the iso-surface large enough to identify the major vortical structures. At 

this instance, a shear layer (labelled as Structure 1) is captured stretching from the 

leading edge and curling into the wake to form a roller (CCR1) which rotates counter-

clockwise about the Z-axis. The von Kármán vortex street is captured by the rollers 

coloured with red (counter-clockwise rotation, CCR) and blue (clockwise rotation, CR), 

whereas a majority of the streamwise vortices (ribs, labelled as Structure 2) are identified 

in green colour. At turbulent flow conditions, two of the rollers (CR2 and CCR3) that 

were shed ahead of the instant shown in Figure 3.7 (located farther downstream) still 

maintain the shape of tubes but are somewhat distorted. Those rollers are captured with 

the spanwise vorticity contours in Figure 3.4a where the velocity vectors did not clearly 

present any eddies. 
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Figure 3.7: Instantaneous three-dimensional flow structures using the iso-surface of λ2/λ2min = 0.01 

coloured with the spanwise vorticity contours viewed from a) isometric, b) top, c) side and d) bottom, 

at time T/6. The arrow indicates direction of approaching flow: (1) shear layer, (2) streamwise vortices 

(ribs), (CR) clockwise rotating spanwise vortex, (CCR) counter-clockwise rotating spanwise vortex. 

Even though pairs of streamwise vortices could not be identified in Figure 3.5, these 

structures are easily visualized in Figure 3.7b,d. To illustrate pairs of ribs, the iso-surface 

in Figure 3.7 is coloured by the streamwise vorticity contours in Figure 3.8. The spanwise 

wavelength of the streamwise vortices is determined by the distance between the 

streamwise vortex structures in counter-clockwise rotation about the X-axis. The 

spanwise wavelength has been reported to range from 0.5b to 2.8b in the work of Yang et 

al. [33] and 1.0b in Williamson [26]. The wavelengths in the current study at two 

instances which are one shedding period apart are found to vary from 0.68b to 1.83b in 

this turbulent flow (Re = 1.57×10
5
), which falls close to the range that has been 

previously reported. Even though the wavelengths vary at every period, they remain in 

the range between 0.5b and 2.8b.  



30 

 

 

Figure 3.8: Instantaneous flow structures using the iso-surface of λ2/λ2min = 0.01 coloured with the 

streamwise vorticity contours, viewed from the top at time a) 3T/6 and b) 9T/6. 

Figure 3.9 shows the flow structures around the bluff body at the time when a spanwise 

vortex is about to shed from a) the trailing edge and b) the leading edge. The roller 

developing from the trailing edge exhibits a wavy shape in the spanwise direction, 

whereas the shear layer stretching from the leading edge is much smoother until it starts 

to roll up. Close examination of the colour contours (streamwise vorticity) on the iso-

surface shows small patches in the shear layer along the trailing edge. However, there are 

no patches observed in the shear layer at the leading edge. As Williamson [26] defined, 

the current case is in mode B (braid) instability since the flow is highly turbulent. The 

spanwise instability that is observed off the trailing edge is the result of the streamwise 

vortices (ribs) developed from the previously shed rollers, which are captured by red and 

blue colours in Figure 3.9. The reason for the difference between the shapes coming off 

the leading and trailing edges may be the flow asymmetry due to the inclination of the 

bluff body, but there is no clear evidence to describe the mechanism in Figure 3.9. 
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Figure 3.9: Instantaneous flow structures using the iso-surface of λ2/λ2min = 0.01 coloured with the 

streamwise vorticity contours, in the isometric view of a)  the trailing edge at time 4T/6, and b) the 

leading edge at time T/6. 

Figure 3.10 shows the iso-surface of λ2/λ2min = 0.01 in a time sequence, coloured with the 

streamwise vorticity contours, clipped at Z/b = -2.3, viewed from the side. Gray solid 

lines represent the spanwise vorticity at ±250 s
-1

 on the clipping plane and white dashed 

lines are drawn to highlight one of the streamwise vortices developing in the wake region. 

The streamwise vortices (ribs) are labelled as R1, R2, etc., in the order of their 

appearance. Similarly, the spanwise vortices (rollers) are labelled as CCR (counter-

clockwise rotation) and CR (clockwise rotation). As discussed in the two-dimensional 

flow analysis, the ribs develop along the braids of previously shed spanwise vortices. The 

ribs are already developed within the wake immediately behind the bluff body. Focusing 

on the rib R3 in the wake region, which is highlighted by a white dashed line, the rib is 
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stretched towards the roller CR1 at the upper end and towards the roller CCR2 at the 

lower end. The rib rotates clockwise about the X-axis (blue) whereas the lower end of the 

rib rotates in counter-clockwise direction about the X-axis (red) as it is trapped by and 

bends toward the roller CCR2 (Figure 3.10a,b). This rib is trapped by both rollers and 

eventually breaks up into two ribs, R3 and R4 at time 8T/8 (Figure 3.10c). The new rib 

R3 is stretched along the shear layer braid of CR1 and CCR2 similar to the rib R1, and 

rib R4 develops along the braid of CCR2 and the newly developed roller CR2 at the 

trailing edge. We see that rib R3 develops in the wake, right next to the trailing edge, and 

does not extend to the space behind the leading edge. The spanwise vortex CR2 which 

starts to roll up at the trailing edge (Figure 3.10c) shows high streamwise vorticity (red) 

on its iso-surface, where rib R3 is rotating clockwise (blue) in the streamwise direction. 

This suggests that the ribs in the wake influence the instability of the rollers shedding 

from the trailing edge as well as the shear layer at the trailing edge. In contrast, due to the 

limited space and the strong shear flow at the leading edge, no rib extends into the space 

behind the leading edge. As a result, there is no wobbling in the shear layer at the leading 

edge until it starts to roll up while the roller attracts the ribs. 
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Figure 3.10: Vortical structure development in sequence in the near wake region using the iso-surface 

of λ2/λ2min = 0.01 coloured with streamwise vorticity contours, viewed from the side at times 6T/8, 

7T/8 and 8T/8. The iso-surface is clipped at Z/b = -2.3 from the midspan of the plate to produce a 

clear view of the flow structures. 
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The instantaneous velocity vectors superposed on the streamwise vorticity contours in 

transverse cross-sections at the leading edge, centre and trailing edge of the inclined plate 

are illustrated in Figure 3.11. Again, the transverse vorticity lines at values of ±100 s
-1

 are 

presented in the figure to represent the shear layers and rollers. Above the plate (Y/b > -

0.382 at the leading edge in Figure 3.11a, Y/b > 0.0 at the centre in Figure 3.11b and Y/b 

> 0.382 at the trailing edge of the plate in Figure 3.11c), the upward flow is obviously 

due to the flow along the inclined plate. Two dashed lines near the trailing edge represent 

the shear layer stretching from the edge (Figure 3.11c). Well-organized streamwise 

vorticity patches are observed within the shear layer. Even though no counter-rotating 

vorticity patches representing the ribs which are captured in Figure 3.10 are captured 

right next to the patches within the shear layer in the contour plot (Figure 3.11c), 

observation of velocity vectors in the spanwise direction near the trailing edge indicate a 

connection to the ribs developed parallel to the shear layer. This leads to the conclusion 

that the shear layer (which evolves into a braid) is perturbed by the wake behind the body. 

This observation also matches with the flow structure development illustrated in Figure 

3.10 and with mode B reported by Williamson [26] (Figure 3.1). In comparison, such 

strong streamwise vortices are not captured in the transverse cross-sections at the leading 

edge and centre of the inclined plate since there is a little space for the wake to develop a 

strong lateral flow component. The solid lines in Figure 3.11 also present the evidence of 

a smooth shear layer at X/b = -0.322 and 0.0 (Figure 3.11a,b) whereas the small 

disturbance is shown at X/b = 0.322 (Figure 3.11c) as the roller traps the ribs while it 

develops. 
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Figure 3.11: Instantaneous velocity vectors superimposed on streamwise vorticity contours on the 

transverse cross-section at the a) leading edge (X/b = -0.322), b) centre of the plate (X/b = 0.0) and c) 

trailing edge (X/b = 0.322) at T/6 of a shedding period. The contour lines of transverse vorticity are at 

levels ±100 s
-1

, where a solid line corresponds to the positive (counter-clockwise) value and a dashed 

line represents the negative (clockwise) value. 

As observed in Figure 3.10, the streamwise vortices develop in the wake immediately 

after the plate; however, there is no sign of these vortices in Figure 3.11 other than the 

ones which developed within the shear layer at the trailing edge since the vortices 

develop parallel to the leeward of the inclined flat plate. To further understand the flow 

development adjacent to the inclined plate, cut planes normal to the body are generated 

(Figure 3.12). A new coordinate system is obtained by rotating the Cartesian X- and Y-

axes through 49.85 degrees about the centre of the inclined plate (X/b = 0.0). The axes 

parallel and normal to the plate are denoted as Xalt and Yalt respectively. All variables are 

accordingly projected to this new coordinate system. 
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Figure 3.12: New coordinate system with axes parallel (Xalt) and normal (Yalt) to the inclined plate, 

and locations of planes normal to the plate used in Figure 3.13 and 3.14. 

Figure 3.13 displays the instantaneous velocity vector field superimposed on the contours 

of the vorticity parallel to the plate (Xalt-vorticity) on the cross-section normal to the plate 

at 0.05b from the leading edge (Xalt/b = -0.45 in Figure 3.12). Note that the Xalt-axis 

points into the plane in Figure 3.13; therefore, the positive contours of the Xalt-vorticity 

represent clockwise rotation, whereas negative vorticity indicates anti-clockwise rotation. 

It is also noted that windward of the inclined plate is in the positive Yalt direction. The 

size of the wake region in this plane is found to be about 0.5b from the leeward of the 

plate, using identification of vorticity contours and small magnitude velocity vectors. The 

strength of the vortices captured on this plane is small (±10 s
-1

), the patches of vortices 

are more organized since the flow is not significantly distorted near the leading edge 

region due to the small size of the wake region, as discussed in connection with Figure 

3.10 and 3.11. 



37 

 

 

Figure 3.13: Instantaneous velocity vectors superimposed on Xalt-vorticity contours on the cross-

section normal to the plate near the leading edge (Xalt/b = -0.45) over the shedding period (T). Solid 

lines near Yalt/b = 0.0 represent the cut section of the inclined plate. 

Figure 3.14 shows the same instantaneous velocity vectors superimposed on the Xalt-

vorticity contour plots on the plane normal to the inclined plate close to the trailing edge 

(Xalt/b = 0.45 in Figure 3.12). Note that the range of Xalt-vorticity at this location is set to 

±50 s
-1

 for clarity of vortex identification. As observed in the previous discussion, the 

flow in the wake region is very complicated for this highly turbulent flow; thus, there is 

no clear periodic flow pattern observed in this cross-section. The velocity vectors 

adjacent to the leeward surface point towards the plate as the spanwise vortex develops 

around the trailing edge. Since the vortices captured near the trailing edge are stronger 

than those observed near the leading edge (Figure 3.13), the shear layer and roller 

developed from the trailing edge exhibits wobbling as observed in Figure 3.9. Also note 

that spanwise instability of the flow along the windward surface of the plate is considered 
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to contribute to the instability of the shear layer and rollers at the trailing edge. However, 

the vorticity contours in the windward side do not show significant strength compared to 

those in the wake region. Therefore, it can be concluded that the development of 

streamwise structures in the wake dominates the instability of the shear layer and rollers. 

The inclination of the flat plate induces the asymmetry of flow where the shear flow is 

dominant near the leading edge whereas the wake has significant influence near the 

trailing edge. Yet, spanwise vortices are the largest fluid structure in the wake, but the 

streamwise structures distort the spanwise vortices in the downstream region as observed 

in Figure 3.7. 

 

Figure 3.14: Instantaneous velocity vectors superimposed on Xalt-vorticity contours on the cross-

section normal to the plate near the trailing edge (Xalt/b = 0.45) over the shedding period (T). Solid 

lines near Yalt/b = 0.0 represent the cut section of the inclined plate. 
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3.5. Conclusions 

The classical flow past the infinitely long inclined plate is simulated, visualized in two- 

and three-dimensions, and the three-dimensional fluid structures that develop around the 

bluff body are analyzed. In the two-dimensional flow analysis, the streamwise (XY) 

plane in the midspan of the inclined plate captures the spanwise vortices that are 

periodically shed from the leading and trailing edges of the body. However, these 

vortices do not maintain their shapes farther downstream from the body. The streamwise 

vortical structures are examined in the transverse (YZ) section planes at X/b = 1.0 and 3.0. 

Near the bluff body (X/b = 1.0), these structures are found to develop within the wake 

which is identified by the region between the shear layers at the leading and trailing 

edges. The fluid structures follow the upward and downward motions as they are trapped 

by the previously shed spanwise vortices. Even though there is obviously a relationship 

between the spanwise and streamwise vortex structures, it is difficult to stitch together the 

patches of each vorticity contour at different cross-section planes to visualize the fluid 

structures around the body. Therefore, three-dimensional flow visualization is necessary. 

The three-dimensional fluid structures are visualized using the λ2-criterion. This approach 

is able to visualize the spanwise vortices (rollers) shed from the edges of the body as well 

as the streamwise vortex structures (ribs) that develop along the braids of the spanwise 

vortices. It successfully captures the distortion of the spanwise vortices at downstream 

locations as seen in the streamwise two-dimensional cross-section planes. The 

streamwise structures can be easily identified by colouring the iso-surface with 

streamwise vorticity contours. The wavelength of these structures is found to range from 

0.68b to 1.83b. The wobbling (spanwise instability) of the shear layer and roller at the 
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trailing edge is also captured by the iso-surfaces, whereas a smooth shear layer is 

observed at the leading edge. By taking a cut view to illustrate the flow structures inside 

the wake, it is shown that these streamwise vortex structures develop in the wake region 

and are trapped by the shed vortices. Since there is little available space near the leading 

edge, the shear layer at the leading edge experiences little disturbance, whereas the one at 

the trailing edge is significantly influenced by the wake. The differences between the 

flow near the leading and trailing edges are also identified by viewing the velocity 

vectors and vorticity contours on the transverse cross-sections near the edges and cross-

sections normal to the inclined plate. The cross-sections normal to the plate illustrated 

weak and organized vortices along the plate near the leading edge whereas captured 

strong and scattered vortices near the trailing edge. The observations demonstrate the 

influence of streamwise vortices develop next to the plate on the shear layer at the trailing 

edge. 

 



41 

 

Chapter 4. Analysis of flow structures around an inclined plate 

near a wall 

4.1. Introduction 

Flow past bluff objects in close proximity to the ground are of interest to engineers. A 

typical example is a ground mounted solar panel. Since solar panels require open space to 

avoid obstructive shadows, they are usually located in open terrain where they may be 

subjected to strong wind loads which could damage the panels. 

A number of studies have been conducted to establish the characteristics of flow past 

near-wall mounted bluff bodies. Bosch et al. [46] experimentally studied the flow past a 

square cylinder suspended horizontally at various gap heights (H). Vortex shedding was 

observed for normalized gap heights (H/D) greater than 0.5, where D is the cylinder 

height, while there was suppression of shedding at lower values. They also noticed an 

asymmetric flow behaviour due to the effect of the ground at the normalized gap height 

of 0.75 or smaller. Plots of the phase-averaged velocity vector fields and vorticity 

contours illustrated that the vortex shedding from the lower side of the cylinder first 

travelled streamwise then started to shift away from the wall at around three 

characteristic lengths (3D) downstream of the body. The strength of the vortices shed 

from upper and lower sides of the cylinder was found to be the same near the body, but 

the lower one decayed rapidly compared to the upper. It was observed that the lower 

vortex trapped a clockwise vortex at the wall as Bosch and Rodi [47] had reported in their 

numerical study. Additionally, the decrease of shedding frequency and the expansion of a 
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recirculation zone as the gap to characteristic length ratio decreases were reported by 

Straatman and Martinuzzi [48] and Shi et al. [49], respectively. 

Lee et al. [50] also carried out a two-dimensional simulation of flow behind a rectangular 

cylinder near the ground. The study was primarily focused on the effects of the aspect 

ratio of the cylinder and the gap height from the ground. A modified Shear-Stress 

Transport (SST) k-ω turbulence model was employed for prediction of the separated flow 

region. The unsteady simulation was conducted with the cylinder aspect ratio ranging 

from 0.5 to 1.0 and the normalized gap height ranging from 0.3 to 2.0. Lift coefficient 

plots illustrated vortex shedding when the normalized gap height was greater than 0.6, 

while the shedding was suppressed for values less than 0.5 gap height. Two dominant 

shedding frequencies were found for normalized gap heights of 0.6 and 0.7, of which the 

lower frequency was caused by the additional flow separations on the ground.  

Numerical investigations of the flow around a two-dimensional inclined plate near a wall 

were reported by Li et al. [39] and Lan et al. [51] at two different Reynolds numbers of 

300 and 20000, respectively. These studies considered the flow approaching from 180° 

azimuthal angle, with the lower surface of the plate facing towards the upstream direction, 

with various inclination angles and gap to chord length ratios of 0.3 to 2.0. Using the SST 

k-ω turbulence model, they found that a higher pressure coefficient was observed as the 

gap ratio increased, which was later confirmed by the results of Shademan et al. [11] 

using Detached Eddy Simulation. 

Compared to the flow separation from two-dimensional bluff bodies, the single bluff 

body with finite length also experiences separations at its side edges and the flow around 
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the plate becomes highly three-dimensional. The early stage three-dimensional wake 

formation behind polygonal plates was studied by Higuchi et al. [52] in a low-speed 

water channel. Triangular, square, hexagonal and octagonal plates were examined by 

visualization of illuminated dye released from the side edges of the plates. Each shape 

produced a longitudinally non-uniform vortex which rolled up from each edge and 

formed a bow shape. Secondary hairpin vortices rotating opposite to the primary vortices 

formed at the corners of the triangular plate. On the other hand, a continuous but non-

planar vortex loop was formed behind the square plate, deforming inward from the four 

corners and eventually taking a diamond-like shape. Similarly, the arched vortices 

stretching from each edge formed a vortex ring behind hexagonal and octagonal plates 

with the observation of apex shifting. The presence of more corners on the plate as the 

number of edges increased resulted in a shape of the vortex ring appearing closer to that 

of a round disk. It was also found that the time to lose its original structure that developed 

along the edges and to form a complete three-dimensional wake took longer as the 

number of sides increased. 

Some studies have recently been conducted to understand the characteristics of flow past 

ground mounted bluff bodies that are representative of solar panels. Shademan and 

Hangan [2], Shademan and Hangan [53] analyzed the wind loading on inclined panels in 

terms of wind directions and inclination angles using steady Reynolds-Averaged Navier-

Stokes (RANS) simulations for mean flow analysis. Their results show that the maximum 

loading occurs when the wind approaches the panel normally on to the front or back of 

the panel. Jubayer et al. [10] and Jubayer and Hangan [9] carried out further experimental 

and numerical studies on a single inclined plate near a wall. The experiments were 
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conducted in a boundary-layer wind tunnel facility with the model scale of 1:10 whereas 

the numerical study was set for full-scale in the atmospheric boundary layer environment 

using the SST k-ω turbulence model for the unsteady RANS simulations. The wind load 

results of the experiments and the simulation matched with that of Abiola-Ogedengbe et 

al. [54] and showed the flow attachment on the windward surface and flow separation on 

the leeward side. However, they found that the SST k-ω turbulence model was not able to 

capture the vortex shedding from the panel and recommended the use of Large Eddy 

Simulation (LES) or Detached Eddy Simulation (DES) instead. 

Shademan et al. [11, 55] studied the wind loading on a single inclined plate due to the 

effects of ground clearance using RANS simulations and DES. DES was able to 

successfully capture the vortex shedding from the panel. It also indicated that the wind 

load on the inclined plate near the wall was reduced when the ground clearance was 

minimized. Moreover, the amplitude of the fluctuating force was found to increase as the 

gap increased, which could lead to damage. The mean flow streamlines depicted 

stretching of the recirculation bubble in the downstream direction and captured a 

separation bubble at the trailing edge for the small gap case. Using λ2-criterion, they 

showed the formation of hairpin-like vortices in the wake. These vortices retain their 

shapes in the larger ground clearance case, whereas the vortices were distorted with 

patches of high shear stress on the ground in the small clearance case. At the same time, 

meandering structures were observed in the downstream region for the small gap. 

It is clear from the literature that the structure of the flow around plates and bluff bodies 

has been discussed mainly from the point of view of the wind directions and plate tilt 

angles. It is also noted that the majority of studies have focused on mean flow 
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characteristics with little discussion on the effect of the ground on the formulation and 

development of fluid structures. As observed in the studies of flow around a bluff body 

near a wall, the small gap between the body and the wall has significant impact in the 

wake region. Once the finite bluff body is set near a wall, the flow from the sides of the 

body interacts with the flow from the top and bottom of the body and generates unique 

flow structures in the downstream. However, the interaction of the flow around the body 

and the formation of the flow structures in the wake region is not clearly understood. In 

order to identify the process of flow development around the body, a transient simulation 

study will be required to investigate the development of the flow. In an effort to further 

understand the flow features, the present computational fluid dynamics (CFD) simulation 

is considered in two stages: (1) at the start of the flow (early stage) and (2) when the flow 

reaches a fully turbulent and steady state condition (in the mean) of pressure along the 

flat plate. The computational domain is initialized with zero velocity at t = 0.0 sec so that 

there is no flow disturbance around the bluff body at the start of the flow. This allows 

tracking the fluid structures that develop in the early stage and relate them to the flow 

observed in the stage of steady state condition in mean. Mean and instantaneous flow 

analyses at two gaps are undertaken, with one clearance below the previously reported 

critical condition and one above it. Several methods of analysis are used to study the 

effects of the wall. The fluid structures are also studied using the 2-criterion for three-

dimensional flow visualization. 
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4.2. Methodology 

4.2.1. Geometry setup 

The cases analyzed in this study are similar to the work of Shademan et al. [11]. The 

dimensions of the inclined plate are presented in Figure 4.1. A 4.2 m long (L), 3.2 m wide 

(b) and 0.05 m thick plate is set to an angle of ϕ = 135° from the horizontal plane with 

respect to the upwind direction (Figure 4.1a). The gap (H) between the plate and wall is 

maintained at 0.5 m and 2.5 m for the two simulation cases. The projected height of the 

inclined plate onto the vertical plane, Δ = b·sin(π − ϕ), is used to normalize all 

dimensions. Based on the results of Shademan and Hangan [2], Shademan and Hangan 

[53], this study uses a wind approaching the plate with zero yaw angle to represent the 

case of highest wind loading on the plate. As recommended by Franke et al. [42], all the 

dimensions of the computational domain are determined by ensuring that the area 

blockage ratio of the plate is less than 3% (Figure 4.1b). The design wind velocity at 10 

m above the ground is selected as 25 m/s based on the 1-in-30-year hourly wind speeds at 

Windsor, Ontario, defined in the National Building Code [56], yielding a Reynolds 

number based on the projected height of the inclined flat plate, Δ, of 3.65×10
6
. 
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Figure 4.1: Dimensions of calculation domain, a) side view and b) view from the inlet 

The approaching flow velocity profile at the inlet boundary is modelled using a power-

law equation: 

     

  
  

 

  
 

 

 
(49)  

Here Ug is the geostrophic wind velocity, Y is the distance from the ground, yg is the 

atmospheric boundary layer height in an open terrain and the exponent α is dependent on 

the type of terrain. In the current simulations, an open terrain is considered to represent 

the environment where the inclined plate is installed, hence the values of yg = 300 m and 

α = 0.16 are used [57]. The calculated power-law inlet velocity and turbulence intensity 

profiles have been verified with the experimental data in ESDU 82026 [58] and ESDU 

83045 [59] (Figure 4.2). The velocity and turbulence intensity profiles at the inlet 

boundary and the incident location (the location of the leading edge without the body) are 

plotted to confirm that the upstream flow is preserved while it approaches the bluff body. 



48 

 

The top and side walls of the calculation domain are set to be impermeable slip 

boundaries whereas the bottom and plate surfaces are treated as no-slip smooth wall 

boundaries. The downstream boundary is specified as an outlet flow where the velocity 

gradient normal to the boundary is zero. 

 

Figure 4.2: Velocity (───) and turbulence intensity (- - - -) profiles at the inlet boundary 

The CFD software ANSYS Fluent 15.0 is used to carry out the simulations. The regions 

adjacent to the plate and bottom wall are meshed with hexahedral cells which are 

clustered toward the physical boundaries to capture the high shear stresses in these 

regions. The grid size of the clustered regions is set to achieve a value of y
+
 < 1, where y

+
 

is defined as             and         . In these expressions uτ is the friction 

velocity, y is the normal distance from the boundaries, ν is the kinematic viscosity, τw is 

the wall shear stress and ρ is the air density. Following the mesh setup requirements 

described above, the mesh is refined by 10% increments of the number of grid points in 

each direction until grid independence is determined by observing no significant change 

in drag and lift forces. Based on the grid independence study, 3.97 million cells are used 
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for the small ground clearance case and 4.69 million cells are used for the larger ground 

clearance. 

4.2.2. Governing equations 

To compute the transient flow around the inclined plate, the three-dimensional unsteady 

turbulent Navier-Stokes equations are solved [13]. The finite volume method is used to 

discretize the governing equations and a second-order upwind scheme is used for spatial 

discretization of the convective terms. Second-order implicit time marching is applied 

with a time-step size of 0.1 ms which ensures that the Courant number is close to unity 

(CFL ≤ 1.0). Pressure and velocity are coupled using the SIMPLE algorithm. 

The primary objective of this research is to capture the flow structure details which were 

not observable in previous studies. Based on existing literature, DES has been shown to 

be an appropriate choice for the turbulence modeling for this type of flow [43, 44]. DES 

is a hybrid of LES and RANS, where one model compensates for the weakness of the 

other to yield good predictions in high Reynolds number boundary layer flow and flows 

with large separation [17]. Details of the governing equations are available in Chapter 2. 

Shademan et al. [11] validated the above-mentioned models and numerical formulations 

with data from wind tunnel experiments on flow past an infinitely long flat plate 

conducted by Fage and Johansen [12]. For the validation case, the predicted mean 

pressure coefficient distribution at the centre of the front and back of the plate showed 

good agreement with the experimental results. The power spectra were also calculated 

based on the Fast Fourier Transformation (FFT) of the pressure over the sampling period. 

A Strouhal number of 0.140 was obtained, which is close to that of 0.147 reported by 
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Fage and Johansen [12]. This result confirms that the numerical modeling was properly 

set to capture the unsteady flow features around the bluff body. Further details on the 

model validation have been discussed by Shademan et al. [11] and avoided here for 

brevity. 

4.3. Mean flow analysis 

In this section, a quantitative evaluation of the flow is carried out by analysing the mean 

streamwise, depthwise and spanwise velocity profiles at multiple stations downstream of 

the plate. Time-average values are obtained by sampling for three seconds after the flow 

has achieved a fully developed condition. Sectional streamlines based on mean velocities 

on the central plane and on different planes parallel and normal to the plate are plotted, 

and colour contoured with vorticity normal to each plane. Three-dimensional analysis 

using the λ2-criterion is performed to identify and investigate the fluid structures around 

the bluff body. The three-dimensional analysis is divided into two subsections: early 

stage development of flow and fully developed flow. From this point onwards, the two 

cases in this study are identified by the ratio of the gap height (H) to the characteristic 

length (Δ: projected height of the inclined plate), which takes values H/Δ = 0.22 and 1.11 

for gap heights H = 0.5 m and 2.5 m, respectively. 

The mean field for the fully developed flow is first presented to provide an overview of 

the flow characteristics. Figure 4.3 show the mean streamwise velocity,   , depthwise 

velocity,   , and spanwise velocity,   , normalized by the velocity of the approaching 

flow at the height of the leading edge, U0, measured on the central plane at various 

downstream locations from the leading edge (X/Δ = 0) of the inclined plate, at X/Δ = 0.5, 

1.5, 2.5 and 3.5. To facilitate comparisons between the small and large ground clearance 
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cases, the Y-direction is divided into two regions and each is normalized separately: the 

gap region (0 ≤ Y ≤ H) is normalized by the gap height, H, whereas the upper region (Y ≥ 

H) is normalized by the projected height of the solar panel, Δ. The new normalized Y-

axis is labelled as Y
*
. The leading and trailing edge of the plate are matched at Y

*
 = 1.0 

and 2.0, respectively. 
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Figure 4.3: Velocity profiles at locations X/Δ = 0.5, 1.5, 2.5 and 3.5. a) streamwise; b) depthwise; c) 

spanwise velocity 

As shown in Figure 4.3a, the location of the peak streamwise velocity in the gap region is 

dependent on the gap height. The peak streamwise velocity in the small gap case (H/Δ = 

0.22) is identified close to the wall, whereas the peak in the larger gap case (H/Δ = 1.11) 
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is found close to the plate. For instance, at X/Δ = 0.5, the peak occurs at Y
*
 = 0.13 for 

H/Δ = 0.22 and at Y
*
 = 0.62 for H/Δ = 1.11. A similar trend in maximum streamwise 

velocity location was also observed in studies of the flow past a rectangular cylinder near 

a wall by Kim et al. [60], Kim et al. [61] and Lee et al. [50]. They identified the 

maximum velocity in the space between the obstacle and the wall at Y/H ≈ 0.3 for H/Δ = 

0.3 and Y/H ≈ 0.6 for H/Δ = 1.0. Figure 4.3a also illustrates that the maximum 

streamwise velocity in the small gap case continuously drops with increasing downstream 

distance and the peak shifts upwards to Y
*
 ≈ 0.57 at X/Δ = 3.5. On the other hand, the 

peak of the velocity profiles shifts towards the wall with increasing streamwise distance 

in the larger gap case, while there is a slight increase in magnitude at X/Δ = 1.5 then a 

decrease further downstream. This slight increase in magnitude is due to the wake region 

stretching downwards because of initial strong downwash observed in depthwise velocity 

profiles (Figure 4.3b). 

In the upper region (Y
*
 ≥ 1.0), the velocity profiles show a similar pattern for both gaps 

and at each downstream station. The profiles in the wake region immediately behind the 

plate also show a gradual decrease in velocity with increasing vertical and horizontal 

distances. The streamwise velocities are negative through most of the wake region behind 

the inclined plate. As expected, above the trailing edge, the velocity once again becomes 

positive. For the case H/Δ = 1.11, at X/Δ = 3.5 the streamwise velocity is positive 

throughout the section indicating that these measurements are outside of the wake region. 

It is clear that the size of the wake region in the small gap case is elongated in the 

downstream direction compared with the larger clearance case. 
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The depthwise component in Figure 4.3b clearly show that the larger gap case has a 

strong downwash (negative      ) beneath the inclined plate (at X/Δ = 0.5) compare to 

the small gap case, which experiences only a slight downwash. Further downstream the 

flow transitions to an upwash with increasing X/Δ up to X/Δ = 2.5 beyond which it 

decreases for the large gap. These transitions match with the slight increasing streamwise 

velocity at X/Δ =1.5 and decreasing of the velocity further downstream. For the small gap 

case there is little change in depthwise velocity in the gap region with a minor increase in 

upwash with increasing X/Δ. Similar to the streamwise velocity profiles, gradual 

transitions along the vertical axis are identified in the depthwise velocity profiles, which 

correspond to locations being within or outside the wake region. The difference in the 

size of the separated wake regions is also noted from the difference in the depthwise 

velocity profiles at X/Δ = 2.5 and 3.5, which is also captured in the mean streamtraces 

(Figure 4.4). 

The spanwise velocity profiles at the four stations are presented in Figure 4.3c. The 

maximum spanwise velocity is about one-fifth to one-tenth of the other components of 

velocities;            ≈ 0.15 for H/Δ = 0.22 whereas            ≈ 0.08 for H/Δ = 1.11 

at X/Δ = 1.5. In general, the mean spanwise velocity on the central plane is expected to 

be near zero [62] as observed near the wall and above the plate (Y
*
 > 1.5) at X/Δ = 0.5. In 

the gap region, it is observed that the variation starts near the leading edge of the plate for 

the larger gap case, for example Y
*
 ≈ 0.75 at X/Δ = 0.5, whereas changes in the spanwise 

velocity begin to occur near the wall for the small gap case (Y
*
 ≈ 0.4 at X/Δ = 0.5). The 

changes in the spanwise velocity profiles along the vertical axis are due to the sections 

cutting through the wake region. The near-zero spanwise velocity is recorded throughout 
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the section at X/Δ = 3.5 for H/Δ = 1.11 as the station is outside of the wake region. It is 

interesting to realize that the trend in the velocity profiles for H/Δ = 1.11 observed at a 

particular station seems to occur at the subsequent station for H/Δ = 0.22. For instance, 

the profile for H/Δ = 1.11 at X/Δ = 1.5 gradually shifts to positive near the leading edge 

of the plate, switches over to negative and reaches a peak around Y
*
 = 1.2, then shifts 

back to positive again at Y
*
 ≈ 1.6, and eventually gets weaker as it moves away from the 

wall. Even though the magnitude is different, the trend matches with the profile for H/Δ = 

0.22 at X/Δ = 2.5. One should recall that the wake region is extended for H/Δ = 0.22 as 

seen in streamwise velocity profiles, which may result in the pattern in the spanwise 

velocity profiles to appear at a later section. It should be also noted that the velocity in the 

approaching flow at the height of the plate leading edge for the small gap case is lower as 

it is in the lower part of the boundary layer. Further details are provided in the 

forthcoming sections. 

Some important observations can be drawn from the mean velocity profiles: (1) the large 

peaks tend to appear near the leading and trailing edges of the inclined plate, (2) more 

changes in the profiles tend to occur in the developed wake region (X/Δ = 1.5 and 2.5), 

(3) the spanwise velocity gradually decays above the trailing edge. Major variations in 

the spanwise velocity profiles are noticed behind the plate in both gap cases since these 

locations are in the wake region. The flow in the gap region is influenced by the wall 

especially in the smaller gap case. 

In the small gap case, the presence of a strong streamwise velocity but small depthwise 

velocity provides for a wall-jet like flow in the gap region. In contrast, there is a strong 

upwash/downwash behind the inclined plate in the larger gap case which indicates that 
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the wake region is expanded depthwise. Thus, the flow underneath the inclined plate is 

strongly influenced by the wall for H/Δ = 0.22. The numerical work of Lee et al. [50] 

suggested that there is a wall-jet like flow for H/Δ = 0.5 but the flow with H/Δ = 0.6 is 

different. A similar state seems to occur in the present flow field for the inclined plate 

where a wall-jet like flow is formed beneath the plate for the smaller gap and a strong 

upwash is observed for the larger gap. 

Sectional streamlines based on mean velocities, superimposed with mean pressure 

contours, are shown in Figure 4.4. In this figure, X- and Y-direction are normalized by 

the projected height, Δ. These plots show the presence of two large recirculation regions 

at the top and bottom edges of the inclined plate, having different sizes for each gap case. 

The lower recirculation region has a length of about 3.6Δ in the X-direction for H/Δ = 

0.22 compared to 2.8Δ for H/Δ = 1.11. The elongation of the region is due to the wall-jet 

like flow in the gap region for the small gap case as observed in Figure 4.3. However, it 

can be noted that the core of the top and bottom vortices are located around X/Δ = 1.8. 

Moreover, there is also the formation of a separation region on the ground at X/Δ = 3.8 

for H/Δ = 0.22, which is a unique feature only observed for the small gap case. The 

pressure difference between the front and back of the plate is found to be greater for H/Δ 

= 1.11 than H/Δ = 0.22, indicating that the bluff body is subjected to a larger wind load if 

it is positioned further from the wall. It is worth noting that the plate with H/Δ = 1.11 gap 

is also subjected to a higher incident velocity than the plate with H/Δ = 0.22 gap due to 

the atmospheric boundary layer. 
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Figure 4.4: Mean velocity flow streamtraces on the central plane, superimposed with mean pressure 

(Pa) contours (H/Δ=0.22 and H/Δ=1.11) 

The streamtraces on YZ planes, superimposed with X-vorticity contours, are presented in 

Figure 4.5. The left column represents the flow with the smaller gap while the right 

column is for the larger gap. It should be noted that the positive X-axis is directed into the 

graphs; therefore, the positive X-vorticity (red) is in the clockwise direction whereas the 

negative vorticity (blue) is in the counter-clockwise direction. The flow pattern and 

vorticity patches under the bluff body at X/Δ = 0.5 (Figure 4.5a,e) are similar in both 

cases since the air above the inclined plate is pushed upward along the windward surface 

of the plate while the flow in the gap region is directed downwards due to flow separation. 

The streamtrace pattern extending from the side edges of the plate (Z/Δ ≈ 0.0 and 2.0) 

appear parallel to the wall for the small gap case (Figure 4.5a), whereas it curls towards 

the wall for the larger gap case (Figure 4.5e). As seen in streamwise flow traces (Figure 

4.4), larger space in the gap region produces strong downwash which draws surrounding 

fluid downwards, whereas the small gap region has limited space and tends to develop 
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into a wall-jet like flow in the streamwise direction. In Figure 4.5b,f, the vorticity patterns 

at X/Δ = 1.5 are similar near the top edges of the plate in both cases. However, the wall 

has a significant influence on the flow beneath the bottom edge of the inclined plate in 

the lower gap case. The flow in the near-wall region behind the plate is chaotic, similar to 

that observed in the spanwise velocity profile (Figure 4.3c), depicted by different sizes of 

vortices. Note that the range of the vorticity contours used in this figure is ±5.0 s
-1

 which 

is one tenth compared to the vorticity magnitude contours on the XY planes [11]. The 

vortex directly behind the panel (white dashed-circle in Figure 4.5b,f) causes much of the 

variations observed earlier in Figure 4.3c. The locations of the peaks in the spanwise 

velocity profiles can be matched at the valleys of the vorticity contour patches. In Figure 

4.5c,d,g,h, a pair of vortices is captured above the trailing edge of the plate for the larger 

gap and is symmetrically located about the central plane. This pair comes from the corner 

vortices and are traces of the legs of a hairpin-like vortex which was found in the earlier 

study [11]. On the other hand, this pair of vortices is not clearly visible in the small gap 

case. 
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Figure 4.5: Streamtraces superimposed with X-vorticity contours on YZ planes at X/Δ=0.5, 1.5, 2.5 

and 3.5 for H/Δ=0.22 (left) and H/Δ=1.11 (right) 
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In order to further investigate the flow field and evaluate the effect of the wall on the 

flow structures, the mean streamtraces and vorticity patterns are analyzed on various 

planes parallel (X-alternate or XAlt) and perpendicular (Y-alternate or YAlt) to the inclined 

plate. These planes with the bluff body, shown in dashed line, are presented in Figure 4.6. 

 

Figure 4.6: Definitions of axes and section planes parallel and normal to the inclined plate 

Figure 4.7 and 4.8 present the results of projected streamtraces and vorticities onto the 

parallel and normal planes to the inclined plate. As defined in Figure 4.6, the leading 

edge of the plate is positioned at zero in the XAlt/Δ and YAlt/Δ reference frame. It is noted 

that the colour contours of vorticity about the XAlt-axis on the plane normal to the bluff 

body (Figure 4.8) is viewed from the negative XAlt; therefore, the positive vorticity (red) 

is in the clockwise direction and the negative vorticity (blue) is in the counter-clockwise 

direction. The contours on the parallel planes, however, are observed from the positive 

YAlt-axis and thus the vorticity is positive (red) if the flow is in the counter-clockwise 

direction and negative (blue) for the clockwise direction. 

The flow patterns in the planes parallel and normal to the inclined plate show almost 

symmetry about the centre of the plate compared to that in the YZ planes. In Figure 



61 

 

4.7a,d, in which the parallel plane cutting through the bluff body, the streamtraces show 

similar flow patterns in both cases and the patches of vorticity contours are inflated 

towards the bottom corners on this sectional plane. In Figure 4.7b,e, the trends of the 

streamtraces and direction of flow near the top and bottom edges are an indication of the 

borders of the wake region behind the plate. For H/Δ = 0.22 (Figure 4.7b), the 

streamtraces show downward flow along the back of the inclined plate on this plane 

cutting through the wake region. The streamtraces continue to move outward from the 

bluff body near the bottom edge of the plate and merge with the shear flow at the sides. 

Similarly, the downward flow along the leeward of the plate is observed for H/Δ = 1.11 

(Figure 4.7e) but the streamtraces curl inwards near the bottom edge. This difference of 

inward and outward flow near the bottom edge seems to be connected with the 

observations in Figure 4.5a,e, in which the streamtraces from the side edges are parallel 

to the wall for H/Δ = 0.22, whereas the streamtraces are curled downwards for H/Δ = 

1.11. The bottom tips of vorticity contours at the side extend towards the centre line of 

the panel (Z/Δ ≈ 1.0) as the streamtraces are curled inwards near the bottom edge for H/Δ 

= 1.11, whereas a large area of weak vorticity is detected along the bottom edge for H/Δ 

= 0.22 indicative of the wall-jet like flow in the gap. In Figure 4.7c,f, two vortices near 

the top corners are identified for both cases. These may be considered as part of the 

corner vortices or part of the pair of vortices captured in Figure 4.5d,h. 
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Figure 4.7: Streamtraces and vorticity contours on planes parallel to inclined plate for H/Δ=0.22 (left) 

and H/Δ=1.11 (right) 

The streamtraces in the normal plane at the leading edge do not show any flow 

disturbance since it does not cut through the wake region (Figure 4.8a,d). The stagnation 

point on the windward surface and the separations of the flow at the side edges are clearly 

identified in the plots on the normal planes (Figure 4.8b,c,e,f). There is no significant 
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difference detected in lateral size of the wake region, unlike the elongation observed in 

the downstream due to the wall-jet like flow in the gap region for H/Δ = 0.22. However, 

the size of the vorticity patches extending from the side edges is found to be larger for 

H/Δ = 1.11. Small vorticity patches are spotted behind the plate for H/Δ = 0.22 (Figure 

4.8c) whereas the two large patches are attached to the back of the bluff body for H/Δ = 

1.11 (Figure 4.8f). The small scattered vortices may be the result of the flow disturbances 

due to the wall. 
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Figure 4.8: Streamtraces and vorticity contours on planes normal to inclined plate for H/Δ=0.22 (left) 

and H/Δ=1.11 (right) 
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4.4. Transient flow structure analysis 

4.4.1. Transient flow analysis on the central plane 

The mean flow characteristics illustrate the influence of the wall for the small gap case. 

The flow develops into a wall-jet like flow in the gap region, stretching the wake region 

in the downstream direction and showing the presence of a weak upwash. 

In this section, the instantaneous flow development during early stages of the flow is first 

discussed. For simplicity, the flow field in the central plane is analyzed using the velocity 

vector plot superimposed with Z-vorticity. Selected instances of flow in the early 

development stage are shown in Figure 4.9a–c for H/Δ = 0.22 and Figure 4.9d–f for H/Δ 

= 1.11. The insets in these figures illustrate the flow field in the near-wall region. 

There are two vortices shed from the leading and trailing edges of the inclined plate. For 

the smaller gap case, Figure 4.9a (t = 0.1 s) shows that the vortex departing from the 

leading edge touches the wall and generates a counter-rotating flow as indicated by the 

negative Z-vorticity patch. In the two later time steps (t = 0.13 s and 0.16 s, insets in 

Figure 4.9a), the patch (blue) is ejected into the back of the bluff body. The counter-

rotating sheared vortex on the wall was also reported by Bosch et al. [46]. Similar events 

occur repeatedly as the vortices shed from the leading edge travel farther downstream. 

After the bottom shed vortices reach a certain distance in the downstream direction, the 

counter-rotating vortices (blue) no longer rise upward but are pushed downstream along 

the wall (Figure 4.9b). These patches are very similar to the traces of meandering vortices 

captured by Shademan et al. [11]. The shed vortex from the bottom edge continues 

stretching downstream up to X/Δ ≈ 3.0 (Figure 4.9c) where the upwash flow near the wall 
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is observed in the mean normal velocity profile (Figure 4.3b). For t > 2.0 s, the weak 

bottom vortices are shed periodically and the associated counter-rotating vortex patches 

are also pushed downstream, and the flow is considered to have reached a fully 

developed state around the body. 

For the larger gap, the vortex at the leading edge shifts downwards but does not interact 

directly with the wall (Figure 4.9d–f). Unlike the smaller gap case, this vortex gets 

trapped and is not shed into the downstream flow. A strong upwash is observed after the 

recirculation region (1.5 < X/Δ < 2.0) in the larger gap case (Figure 4.9e), whereas a 

weak backward flow is captured in the small gap case (Figure 4.9b). Due to the lack of a 

strong upward flow, the bottom shear layer is almost parallel to the wall at t = 2.26 s for 

H/Δ = 0.22 (Figure 4.9c) but has a downward bow shape at a similar time for H/Δ = 1.11 

(Figure 4.9f). The vortices shed from the trailing edge are pushed higher for H/Δ = 1.11 

due to this strong upward flow (Figure 4.9e,f), whereas the trailing edge vortices do not 

rise much for H/Δ = 0.22 (Figure 4.9b,c). These observations are concomitant with the 

results for the mean flow characteristics. 
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Figure 4.9: Instantaneous velocity vector field superimposed with Z-vorticity at early flow 

development stage: (a-c) H/Δ = 0.22, and (d-f) H/Δ = 1.11 
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4.4.2. Three-dimensional transient flow analysis 

In this section, we focus on the development of the flow structures and explore the 

differences in three-dimensional structures between the two gap cases. To understand the 

difference in development of the flows, the flow field is analyzed from the start of the 

motion and the evolution of vortices is tracked around the bluff body. The analysis 

presented up to this point clearly indicates that the flow behind the inclined plate is 

highly complex with formation of vortices of different sizes around the plate. To illustrate 

these vortices, iso-surfaces of λ2 are generated with the λ2/λ2min value of 0.01. The iso-

surfaces are coloured by the Y-vorticity contour. 

4.4.2.1. Early stage flow development 

Figure 4.10 illustrates the fluid structures around the inclined plate for H/Δ = 0.22 from 

four different views, where the elapsed time is 0.16 s after the start of the flow. This time 

instance was arbitrarily chosen in order to provide a representative description of the 

structures generated. There are four main structures identified in these figures and 

labelled as Structures 1 through 4. Structure 1 is a hairpin-like vortex, which was also 

observed by Shademan et al. [11]. There is a similar inverted hairpin like vortex formed 

at the bottom of the plate, which is labelled as Structure 2. This structure detaches from 

the leading edge and is convected downstream. A pair of vortex tubes (labelled as 

Structure 3) extends vertically upwards from the wall and bends around Structure 2. This 

is a unique feature only observed in the small gap case, which will be discussed in more 

detail later in this section. Lastly, there are vortex tubes which are corner vortices, 

stretching from the top corners of the inclined plate and wrapping around the hairpin-like 
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vortices (Structure 4). In the previous study, Structures 2, 3 and 4 were not clearly 

identified in the fully developed stage. 

 

Figure 4.10: Identification of flow structures around the inclined plate with H/Δ = 0.22 gap after 0.16 

s: (1) hairpin-like vortex, (2) inverted hairpin-like vortex developed at the leading edge, (3) a pair of 

vortices extending from the wall, and (4) corner vortices 

Figure 4.11 shows the history of the flow development for each gap (left: H/Δ = 0.22, 

right: H/Δ = 1.11). At t = 0.05 s (Figure 4.11a), both cases show the formation of vortex 

tubes at all four edges of the inclined plate, similar to that observed in the study by 

Higuchi et al. [52]. Downstream, these vortices further grow and deform into a bow 

shape. One may recall that the counter-rotating vortex (see blue patch in Figure 4.9a) 

which develops on the wall (labelled as 3′ in Figure 4.11a) interacts with the vortex shed 

from the leading edge (Structure 2 in Figure 4.11a). Structure 3′ along the wall shows red 

and blue colours at both ends, indicate flow rotating inwards to the wake region. As 

Structure 2 approaches the wall, it interacts with the wall vortex and lifts the vortex 
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upwards. Simultaneously, the flow separating from the side edges of the inclined plate 

further interacts with Structure 3′. As the fluid structures interact with each other, 

Structure 3′ is split into three pieces: two end pieces (indicated as 3″ in the inset at t = 

0.09 s) and a middle section. The end pieces eventually become a pair of vortex tubes 

identified as Structure 3 in Figure 4.10 and also observed at t = 0.15 s in Figure 4.11b for 

the smaller gap case. The central portion of Structure 3ʹ, on the other hand, gets bent as it 

is trapped by the bottom vortex and the central portion of Structure 3ʹ is finally ejected 

into the wake region as observed in Figure 4.9a. It is also noticed that the hairpin-like 

vortex at the trailing edge merges with the corner vortices from the sides and forms a top-

half vortex ring, whereas the inverted hairpin-like vortex does not become a part of the 

ring. At t = 0.55 and 1.55 s, the hairpin-like vortices and bottom vortex tubes are clearly 

observed and are shed periodically in the larger gap case (Structures 1.1 through 1.4 and 

2.1 through 2.2). On the other hand, distorted vortices that form behind the plate are 

captured in the small gap case. The ligaments of vortices stretching on the wall in the 

streamwise direction at t = 1.55 s are captured only in the small gap case. These 

ligaments have near zero vorticity about the Y-axis (mostly shown as green patches), 

which indicates that the ligaments are captured due to the rotation either about the X- or 

Z-axis. To determine the orientation of the ligaments of vortices, the iso-surfaces of λ2 

coloured by X-vorticity component are presented in Figure 4.12. As expected, the 

ligaments are displayed in red and blue colours which imply that the dominant flow 

orientation of these ligaments is about the X-axis. From this figure, it can also be noted 

that the orientation of the ligaments is opposite to the legs of the hairpin-like vortex. For 

instance, the left (in positive Z-axis) leg of the hairpin-like vortex is coloured in red, 
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meaning the leg is rotating counter-clockwise about the X-axis, whereas the ligament 

below the left leg is coloured in blue, indicating clockwise rotation about the X-axis. As a 

result, it can be said that the ligaments and legs of the hairpin-like vortex are a pair. One 

of the reasons that the ligaments of vortices form on the wall is because the hairpin-like 

vortices do not stretch upward in the small gap case. This is due to the wall-jet like flow 

in the gap region that weakens the upwash and the legs of the hairpin-like vortices extend 

almost parallel to the wall. Thus the ligaments are developed on the wall as the legs of the 

hairpin-like vortex get close to the wall. In the larger gap case, in contrast, the hairpin-

like vortices stretch upward as a result of a strong upwash. 
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Figure 4.11: Early stage flow structures development around the inclined plate for H/Δ = 0.22 (left) 

and H/Δ = 1.11 (right) 
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Figure 4.12: Iso-surfaces of λ2 at t = 1.55 s for H/Δ = 0.22, with the contours of X-vorticity on the 

surfaces 

Shademan et al. [11] plotted the vorticity magnitude contours on the horizontal plane at 

Y/Δ = 0.05 to illustrate patches of shear flow and the presence of meandering structures. 

To further explore the role of these structures, the image from the bottom view is filtered 

to remove the structures above the gap by setting a gray colour plane at Y/Δ = 0.22 (the 

height of the leading edge for H/Δ = 0.22) so that only the structures within the gap 

region will be visible (Figure 4.13, right column). It is noted that the positive Y-axis 

extends into the paper in these figures. Thus, the positive Y-vorticity is in the clockwise 

direction. At t = 2.0 s, the ligaments identified in the early stage (t = 0.55 s and 1.55 s in 

Figure 4.11), shown to the right of the dashed line in Figure 4.13a, are symmetric and the 

small vortex tubes, similar to the vertical vortex tubes labelled as Structure 3 in Figure 

4.13, are captured behind the inclined plate (L1, R1, etc. in Figure 4.13). These pairs of 

vortices start to lose their symmetrical feature farther downstream at t = 2.4 s (Figure 

4.13b). Therefore, the source of the meandering footprints observed by Shademan et al. 

[11] is likely the result of the same mechanism as the pair of vertical vortex tubes shed 

from the body. Eventually, by examining the meandering vortices at t = 2.6 s, it appears 

that the flow has reached a fully developed and periodic stage (Figure 4.13c). 
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Figure 4.13: Iso-view of the iso-surfaces of λ2 with the contours of Y-vorticity on the left, and a 

bottom view of the same structures with the filtering plane set at Y/Δ = 0.22 on the right (H/Δ = 0.22) 

4.4.2.2. Steady state condition in the mean 

After confirming the flow has achieved a stage of steady state condition in the mean, the 

iso-surfaces of λ2 at t = 5.6 s are presented in Figure 4.14. As observed in the developing 

stage, the flow structures in the larger gap case continue to maintain symmetry about the 

central plane, whereas the structures in the small gap case are completely distorted. The 

tip vortices that were captured by Jubayer and Hangan [9] using the spanwise vorticity 
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iso-surface are not identified by the transient flow development using the λ2-criterion, 

which may be due to the difference in inclination angle of the plate. The same bottom 

view of the λ2 iso-surface illustrated in Figure 4.13 is presented in Figure 4.15a at t = 5.6 

s, and the Y-vorticity contours are illustrated on the plane at Y/Δ = 0.05 for the same 

instance (Figure 4.15b). In Figure 4.15b, it is clearly seen that the meandering nature is 

captured. However, some of the structures farther downstream are not captured by the λ2-

criterion with λ2/λ2min of 0.01, as highlighted by the dashed circle in Figure 4.15a. 

Nevertheless, they are still identifiable in the Y-vorticity contour plot in Figure 4.15b. 

These structures can be made visible using lower λ2/λ2min value (e.g. λ2/λ2min = 0.005) but 

lowering the value of λ2/λ2min introduces excessive structures around the bluff body and 

disturbs the visibility of the main structures. 

 

Figure 4.14: Iso-surfaces of λ2 at t = 5.60 s with the contours of Y-vorticity on these surfaces for 

H/Δ=0.22 (left) and H/Δ=1.11 (right) 

 

Figure 4.15: Bottom view of iso-surfaces of λ2 with Y-vorticity contours on its surfaces (left) and the 

same view of Y-vorticity contours on XZ plane at Y/Δ = 0.05 (right) after t = 5.60 s in the H/Δ=0.22 

gap case 
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4.5. Conclusions 

The effect of the gap between an inclined plate and a wall is investigated numerically. 

DES is used to simulate the unsteady flow passing over the bluff body set at two different 

gaps. The simulation domain is initialized with a zero velocity flow field so that flow 

development at the early stage can be captured. The flow field in different planes were 

analysed to visualize the structures formed around the plate. 

Mean streamwise velocity profiles show a wall-jet like flow underneath the plate at a 

small gap clearance of H/Δ = 0.22 with a weak upwash in the downstream due to the wall 

effect. Two-dimensional streamtrace plots indicate that the wake region is extended in the 

streamwise direction. On the other hand, the flow past the plate at H/Δ = 1.11 shows the 

presence of a strong upwash behind the bluff body. As a result, the wake is smaller. The 

effect of upwash is also seen in the three-dimensional flow visualization. 

Transient flow structure development is investigated using velocity vectors and vorticity 

contours on the central plane. These flow parameters show the interaction of the vortex 

shed from the leading edge of the inclined plate near the wall. During the flow 

developing stage the counter-rotating vortex generated by the shedding vortex is 

observed at the wall and is trapped into the wake region by the shedding vortex as it 

develops. Once the flow reaches the steady state condition in the mean the counter-

rotating vortex eventually stays on the wall as the shedding vortex stretches into the 

downstream. The shear layer at the leading edge appears parallel to the wall for H/Δ = 

0.22 due to the wall-jet like flow in the gap region, whereas the layer arches downward 

due to strong downwash and upwash for H/Δ = 1.11. 
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The iso-surfaces of λ2 are capable of elucidating the hairpin-like vortex in the 

downstream region at the early stage of flow development in both cases; however, the 

legs of the hairpin-like vortex for H/Δ = 0.22 are almost parallel to the wall whereas 

those for H/Δ = 1.11 are stretched upwards. This provides further evidence of the low lift 

force on the inclined plate in the smaller gap case which was discussed by Shademan et al. 

[11]. 

There are three other flow structures in addition to the hairpin-like vortex formed at the 

early stage of flow development: an inverse hairpin-like vortex tube developed at the 

bottom leading edge, a pair of vortices extending vertically up from the wall, and corner 

vortices. The pair of vortices are a unique structure which can only be detected in the H/Δ 

= 0.22 case. This pair of vortices is generated by the combination of the vortex shed from 

the bottom leading edge and flow separating from the side edges of the plate. Over the 

period of flow development, these vortices travel downstream in parallel but start to be 

misaligned from each other, eventually creating a meandering pattern. 

At the steady state condition in the mean, the three-dimensional flow structures captured 

by the iso-surface of λ2 show clear distortion of the flow for the small clearance case 

whereas the symmetry of the structures is maintained for the large gap. In the far 

downstream, the meandering patterns are not identified by the iso-surface of λ2. 

Nevertheless, the Y-vorticity contours on the plane near the wall are able to picture the 

footprints. The λ2-criterion is capable of capturing the flow structures at a certain level 

but it may lose track of weak vortices. However, selecting a higher λ2 value (closer to 

zero since λ2 is negative) may introduce superfluous flow structure in the domain of the 

interest. 
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Chapter 5. Analysis of flow structures around a stand-alone solar 

panel 

5.1. Introduction 

The study of flow past a finite inclined flat plate near a wall often focuses on the effect of 

the gap between the bluff body and wall. The formation of a wall-jet like flow in the gap 

promotes expansion of the wake in the downstream, which reduces the wind load on the 

body. The wall-jet like flow also generates meandering vortical structures along the wall. 

The mechanism that drives the meandering structures along the wall is the interaction of 

the wall with the inverted hairpin-like vortices shed from the leading edge and the flow 

separating from the side edges of the body. In real-life application of stand-alone solar 

panels and/or an experimental setup, a supporting structure is present underneath the 

bluff body; thus the overall flow field is expected to get distorted by the support. 

One of the stand-alone solar panels studied by Shademan and Hangan [2], Shademan and 

Hangan [53] has an adjustable rack system supporting the solar panel. The supporting 

frame was extended from the side edges of the solar panel, which was included in the 

simulations. These studies focused on the wind loading for different inclination angles of 

the panel and different wind directions using steady Reynolds-Averaged Navier-Stokes 

(RANS) simulations. However, the influence of the frame structure on the flow around 

the body was not considered in their work. 

Abiola-Ogedengbe et al. [54] conducted experiments to measure the pressure distribution 

along a large stand-alone solar panel which was supported by three legs positioned at the 
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centre and near the edges. An experimental and numerical study of flow past the same 

geometry was also conducted by Jubayer et al. [10] and Jubayer and Hangan [9]. The 

fields-of-view for particle image velocimetry (PIV) measurements was set between two 

legs and shifted along the windward and leeward of the solar panel for four different 

approaching flow directions. The flow around the supports and their contribution (if any) 

to the pressure distribution was not analyzed in these studies. 

Aly and Bitsuamlak [63] studied the scale effects on wind loads along a stand-alone solar 

panel with fixed trapezoidal supports. The mean velocity contours were presented, but 

there was no discussion about the influence of the supporting structures. 

The majority of studies on flow past a stand-alone solar panel have focused on forces 

acting on the body and discussions on supporting structures have been largely avoided, at 

least partially due to the limitations of experimental facilities. In numerical studies, the 

supporting structures have been simplified or removed due to the complexity of modeling 

the actual geometry. The field-of-view of interest in the subsequent flow analysis was 

taken far enough away from the supporting structures to justify neglecting the flow 

disturbance due to the supports. As seen in the work of Shademan et al. [11], the 

characteristics of the flow field behind the panel have a major impact on the wind load 

acting on the inclined flat plate. Therefore, it is reasonable to expect that the supporting 

structure would also influence the forces on the body if it creates any changes in the flow 

behind the panel. To further investigate the influence of the supporting structure and its 

interaction with the gap flow between the solar panel and wall, numerical simulations of 

a finite inclined flat plate with a circular cylinder post is studied in this chapter. Similar to 

the previous chapters, mean flow characteristics are analyzed and compared with the case 
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without a supporting structure. Then, the early stage development of the transient three-

dimensional fluid structures are studied by identifying the vortical structures using the λ2-

criterion. 

5.2. Methodology 

5.2.1. Geometry setup 

The geometry tested in this chapter includes a cylindrical support for the finite inclined 

flat panel near a wall that was analyzed in Chapter 4. The dimensions of the inclined flat 

plate are the same as that of Shademan et al. [11]. Figure 5.1 shows the dimensions of the 

flat plate: 4.2 m long (L), 3.2 m wide (b) and 0.05 m thick plate set to an angle of ϕ = 

135° from the horizontal plane with respect to the upwind direction (Figure 5.1a). The 

circular cylinder support for this study has a 0.15 m diameter (D), which is the size 

typically used in a general top of pole mount for the above size stand-alone solar panel 

[64]. The gap heights (H) are the same as in Chapter 4, i.e., 0.5 m and 2.5 m. In this study, 

all the dimensions are normalized by the projected height of the inclined plate, Δ = 

b·sin(π − ϕ), and as a result the normalized gap heights are identified as H/Δ = 0.22 and 

1.11 for gap heights H = 0.5 m and 2.5 m, respectively. The computational domain is 

chosen to match the recommendation of Franke et al. [42], which requires that the area 

blockage ratio of the plate should be less than 3% (Figure 5.1b).  
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Figure 5.1: Dimensions of calculation domain, a) side view and b) view from the inlet 

As in Chapter 4, the approaching flow velocity profile at the inlet boundary is fit to a 

power-law equation: 

     

  
  

 

  
 

 

  
(50)  

where Ug is the geostrophic wind velocity, Y is the distance from the ground, yg is the 

atmospheric boundary layer height in an open terrain (yg = 300 m) and the exponent α is 

dependent on the type of terrain (α = 0.16) [57]. The design wind velocity at 10 m above 

the ground is set to 25 m/s based on the 1-in-30-year hourly wind speeds at Windsor, 

Ontario, defined in the National Building Code [56]. The reader is referred to Section 

4.2.1 in Chapter 4 for verification of the inlet velocity profile. In addition to the boundary 

conditions listed in Chapter 4, the cylindrical post is a no-slip wall. The commercial CFD 

software ANSYS Fluent 15.0 is used to conduct the numerical studies of the current 

problem. 
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The mesh employed in Chapter 4 is further refined in the regions surrounding the flat 

plate and post using hexahedral cells. The mesh is clustered towards the plate, post and 

bottom wall to capture the high shear stresses in these boundary layer regions. The first 

grid size next to the boundaries is set to ensure that y
+
 < 1, where y

+
 is the non-

dimensional normal wall distance defined as             with friction velocity, uτ, as 

        . In these expressions, y is the normal distance from the nearest boundary, ν 

is the kinematic viscosity, τw is the wall shear stress and ρ is the air density. This grid 

clustering produces 5.92 million cells for the small gap case and 6.79 million cells for the 

larger ground clearance. 

5.2.2. Governing equations 

The system of governing equations used in the current chapter is the same as in Chapter 3 

and 4. Transient Navier-Stokes equations are solved using the finite volume method and a 

second-order upwind scheme is used for discretization of the convective derivatives [13]. 

Time discretization is second-order implicit time marching. The time-step size is set to 

0.1 ms so that the Courant number remains close to unity (CFL < 1.0). The SIMPLE 

algorithm is used for pressure and velocity coupling. Detached Eddy Simulation (DES) is 

also used for the turbulence model in this study [17, 43, 44]. Further details of the 

governing equations are discussed in Chapter 2. 

5.3. Mean flow analysis 

In this section, the mean flow properties are compared for the inclined flat plates with and 

without a supporting structure. Time-averaged flow variables are quantified by taking 

three-second sampling after the flow achieves a steady state condition in the mean of 

pressure on the flat plate. The three components of mean flow velocity are plotted at 
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multiple stations in the downstream: X/Δ = 0.5, 1.5, 2.5 and 3.5, where X/Δ = 0.0 is the 

leading edge of the plate and X/Δ = 1.0 is the trailing edge. An XY plane at the midspan 

of the plate is used to present the mean pressure field superimposed with the streamtraces 

of the mean flow field. Transverse cross-sections are also generated to show the space 

evolution of the streamwise vortical structures using streamwise vorticity contours and 

streamtraces on the sections. 

Figure 5.2, 5.3 and 5.4 show the mean streamwise velocity,   , depthwise velocity,   , and 

spanwise velocity,   , normalized by the velocity of the approaching flow at the height of 

the leading edge, U0. Since the gap heights are different for each case, it is difficult to 

compare the flow in the gap region if the lengths are normalized by a single characteristic 

length, such as Δ. Therefore, the wall normal (Y) direction is split into two regions based 

on the characteristic length: namely the gap and upper regions. The gap region (0.0 ≤ Y ≤ 

H) is normalized by the gap height, H, whereas the upper region (Y ≥ H) is normalized 

by the projected height of the solar panel, Δ. For convenience, the newly defined wall 

normal coordinate is labelled as Y
*
. In this new coordinate, the leading and trailing edge 

of the plate are identified at Y
*
 = 1.0 and 2.0, respectively. In the figures, the small gap 

cases (H/Δ = 0.22) are labelled with a circle (○) without the post and with a diamond (◊) 

with the post. The large gap cases (H/Δ = 1.11) are identified with a cross (×) for no post 

and with a square (□) with the post. Note that the post is located at X/Δ = 0.5 in the 

current study; thus, there is no data available from the wall up to the windward surface 

(0.0 < Y
*
 < 1.5) of the plate for the case with post. 

For H/Δ = 0.22, as observed in the previous chapter, a wall-jet like flow formed in the 

gap region as the peak of streamwise velocity is identified near the wall (Figure 4.3a) 
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while weak depthwise velocity is captured in Figure 5.2b. There is a small upward shift 

in the streamwise velocity profile above the trailing edge (Y
*
 > 2.0) from X/Δ = 1.5 

through 3.5 compared to the case without the post. Meanwhile, a slight reduction in the 

streamwise velocity is observed in the gap region at the same stations (Figure 5.2a,ii-iv). 

Even though the differences are small, the flow at the central plane is blocked by the 

post; therefore, the flow loses momentum in the gap region which results in a slightly 

weaker wall-jet like flow. Recall that, without the post, the wake was stretched 

downstream due to the strong wall-jet like flow as discussed in the previous chapter. 

With the post, the weaker wall-jet has less influence to the wake, producing a wider wake 

in the depthwise direction. The variations of spanwise velocity at multiple stations appear 

differently as they cut through the wake. Specifically, there is a small spanwise flow 

observed in the gap region (0.0 < Y
*
 < 1.0) for the case with post which can be the result 

of flow distortion due to the post. Larger variations are captured in the wake region (1.0 < 

Y
*
 < 2.0); however, the prediction of spanwise velocity profiles in the wake is difficult 

since the flow is highly chaotic in the region. 

In the streamwise velocity plots for H/Δ = 1.11 (Figure 5.3a), similar trends observed in 

the small gap cases are again captured in this large gap case. Larger deviation in 

depthwise velocity is observed around Y
*
 = 2.0 at X/Δ = 2.5 and 3.5 (Figure 5.3b,iii,iv). 

The downward shear flow from the leading edge (Figure 5.3b,i) is blocked by the post at 

the central section and the wake does not get pulled downward as in the case without the 

post. In the spanwise velocity plots (Figure 5.3c), there is no difference observed in the 

gap region for both large gap cases with and without the post, whereas small variations 

are captured in the wake region past the post. The magnitudes of spanwise velocity 
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variations along the wall normal direction are rather small compared to that of the small 

gap case. It should be highlighted that the spanwise velocity profile for the large gap case 

without post at the downstream location X/Δ = 3.5 shows almost zero velocity along the 

Y-axis, which indicates that the station is well outside of the wake. However, the large 

gap case with post shows small variation of       at Y
*
 = 1.5 where the difference in 

depthwise velocity is observed. This result suggests that this location is still influenced by 

the wake for the case of the large gap with post. 
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Figure 5.2: Velocity profiles at locations X/Δ = 0.5, 1.5, 2.5 and 3.5, a) streamwise; b) depthwise; c) 

spanwise velocity, for H/Δ = 0.22 
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Figure 5.3: Velocity profiles at locations X/Δ = 0.5, 1.5, 2.5 and 3.5, a) streamwise; b) depthwise; c) 

spanwise velocity, for H/Δ = 1.11 

Further investigation of the flow near the post is presented in Figure 5.4. In these plots, 

the small gap case (H/Δ = 0.22) is shown with a diamond (◊) and the large gap case (H/Δ 

= 1.11) with a square (□). The locations for these profiles are (i) the leading edge (X/Δ = 
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0.0), (ii) 1.5D upstream of the post (X/Δ = 0.4D), (iii) 1.5D downstream of the post (X/Δ 

= 0.6D) and (iv) the trailing edge (X/Δ = 1.0). As the flow approaches the post, the flow 

first separates from the leading edge and accelerates into the gap region (Figure 5.4a,i and 

b,i). The peak of the streamwise velocity profile is shifted towards the wall in the gap 

region, as was observed in Figure 5.2a, while the wall-jet like flow develops and a nearly 

zero depthwise velocity is captured upstream of the post (Figure 5.4a,ii and b,ii). On the 

other hand, downward flow is observed for the large gap case since the shear layer 

stretches towards the wall. Obviously, the spanwise velocity for both cases is zero in the 

upstream of the post (Figure 5.4c,i,ii). Behind the post, the streamwise velocity near the 

wall becomes zero while the peak shifts towards the leading edge since it is close to the 

recirculation bubble (Figure 5.4a,iii). In Figure 5.4b,iii the negative depthwise velocity is 

shown in the gap region for the small gap case since the recirculation bubble protrudes 

close to the wall, while the small variation is captured near the leading edge for the large 

gap case because the recirculation bubble cannot extend to the gap region. Therefore, the 

large variation is captured in the spanwise velocity profile for the small gap case (Figure 

5.4c,iii). Further downstream, the flow recovers its characteristics that were observed in 

Figure 5.2 and 5.3. 
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Figure 5.4: Velocity profiles at locations X/Δ = 0.0, 0.4D, 0.6D and 1.0, a) streamwise; b) depthwise; 

c) spanwise velocity, for H/Δ = 0.22 and 1.11 

Figure 5.5 shows the streamtraces based on the mean velocities superimposed on the 

mean pressure contours on an XY plane at the midspan of the inclined flat plate. The 

mean pressure contours for the small gap case show that there is a shift at the lower 
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region (0.2 < Y/Δ < 0.5) of the low mean pressure band (-200 < Pmean < -150 Pa), where 

the band is observed in the range from X/Δ = 1.0 to 2.0 at around Y/Δ = 0.5 for no post 

case (Figure 5.5b), whereas the band has shifted downstream by 0.5Δ for the case with 

post (Figure 5.5a). Similarly, there is a small expansion in the downstream for H/Δ = 1.11 

with the post case (Figure 5.5c) compared to the case without post (Figure 5.5d). The 

slight shift in velocity profiles observed in Figure 5.2 and 5.3 can be identified by the 

streamtraces near the trailing edge. A small separation region near the wall at X/Δ = 3.8 

seen in Figure 5.5b is also captured in Figure 5.5a, although the separation region is 

shifted upstream by 0.3Δ. No other significant difference is observed on this plane since 

the presence of the post does not have much effect on the streamwise and depthwise 

velocities. 

 

Figure 5.5: Mean velocity flow streamtraces on the central plane, superimposed with mean pressure 

(Pa) contours for a) H/Δ = 0.22 with post, b) H/Δ = 0.22 without post, c) H/Δ = 1.11 with post and d) 

H/Δ = 1.11 without post 

The streamtraces on YZ planes are presented in Figure 5.6, superimposed with mean 

streamwise (X) vorticity contours, at multiple downstream stations for the small gap H/Δ 

= 0.22. The left column is the case with post and the right column is the case without post. 
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Note that the positive X-axis is directed into the plots; thus, the clockwise rotation is 

presented as positive X-vorticity (red) and the counter-clockwise rotation corresponds to 

negative vorticity (blue). A cross-section at X/Δ = 0.5, where the plane cuts through the 

post, is illustrated in Figure 5.6a and the same section for the case without post is shown 

in Figure 5.6e. Clearly, the supporting structure generates streamwise vortices around it. 

The size of these vortices adjacent to the post is about the size of the wake in the vertical 

direction. At X/Δ = 1.5 the flow pattern is complex as indicated by the small vortex 

patches observed in the wake (Figure 5.6b,f). A large peak in spanwise velocity that was 

observed at Y
*
 ≈ 1.0 (equivalent to Y/Δ ≈ 0.22) for the small gap case without post in 

Figure 5.2c,ii is found at the valley of two vortices around Z/Δ = 1.0 (Figure 5.6f), 

whereas the peak does not appear in the case with post due to the absence of the paired 

vortices (Figure 5.6b). Even though the vortex observed at the centre of the wake in the 

case without post (Figure 5.6f) is not captured in the case with post (Figure 5.6b), the 

vortices that develop from the top and side edges of the flat plate and the two patches 

near the wall are still present. In both cases the pair of vortices is captured in Figure 

5.6c,d,g,h above the trailing edge (Y/Δ ≈ 1.22), which was found to be the traces of the 

legs of hairpin-like vortex in Chapter 4. The flow at this location still remains complex as 

it is in the wake. In Figure 5.6c, two vortices are captured by the streamtraces in the 

midspan of the wake at X/Δ = 2.5 for the case with post, whereas no such structure is 

found in the case without post. Similar to Figure 5.2c,ii, peaks are identified in Figure 

5.2c,iii,iv as the midspan stations cut through the valleys of streamwise vortices in Figure 

5.6c,d,g,h. 
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Figure 5.6: Streamtraces superimposed with X-vorticity contours on YZ planes at X/Δ = 0.5, 1.5, 2.5 

and 3.5 for H/Δ = 0.22 with post (left) and H/Δ = 0.22 without post (right) 
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Similarly, the streamtraces on YZ planes for H/Δ = 1.11, superimposed with mean 

streamwise (X) vorticity contours, at the same downstream locations, are presented in 

Figure 5.7. Large streamwise vorticity patches are found in the wake adjacent to the post, 

whereas the small scale contour patches are seen along the post at the lower side. In 

Figure 5.7b, there are two weak (red) patches observed in the gap region (Y/Δ ≈ 0.0 and 

1.0) at X/Δ = 1.5, which are structures extended from the large patches observed in the 

wake and the small upstream vortices along the wall. Overall, the streamtraces show 

symmetric patterns about the midspan of the plate as a result of the small variations 

observed in the spanwise velocity profiles (Figure 5.3c). Therefore, the supporting 

structure has minimal influence in the downstream for the large gap case since a wall-jet 

like flow does not develop in the gap region for this case. 
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Figure 5.7: Streamtraces superimposed with X-vorticity contours on YZ planes at X/Δ = 0.5, 1.5, 2.5 

and 3.5 for H/Δ = 1.11 with post (left) and H/Δ = 1.11 without post (right) 
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5.4. Three-dimensional transient flow analysis 

As observed in the two-dimensional analysis, the selected post size has shown only a 

small influence on the wake in the mean flow field. However, there are traces of small 

vortical structures that develop along the post and are stretched into the downstream, as 

observed in the transverse sections in the downstream. To further understand the 

interaction of the flow and the supporting structure, a transient three-dimensional CFD 

analysis is used to capture the flow structures using the iso-surfaces of λ2 obtained from 

the λ2-criterion, developed by Jeong and Hussain [23]. The derivation of the method is 

available in Chapter 2. Similar to the previous chapter, early stage flow development is 

first analyzed to capture the formation of unique structures around the bluff bodies with 

the post. The development of these fluid structures is compared to the case without post 

and the role of the post in their evolution over time is discussed. Especially in the small 

gap case, close investigations near the wall are conducted to visualize the interaction of 

the flow in the gap with the post. In this section, the iso-surfaces of λ2/λ2min value of 

0.001 are selected to visualize the fluid structures. This value is one tenth of that selected 

in the previous chapter since the minimum λ2 is found to be much larger in the current 

study; therefore, the value is adjusted so that the same iso-surface of λ2 value is presented 

in this section. The iso-surfaces are coloured by the Y-vorticity. 

5.4.1. Early stage flow development 

Recall the fluid structures identified in Figure 4.10 in Chapter 4, four unique fluid 

structures are formed around the inclined flat plate for H/Δ = 0.22 at a time of 0.16 s after 

the start of the flow: (1) a hairpin-like vortex, (2) an inverted hairpin-like vortex, (3) a 

pair of vortex tubes extended vertically and (4) corner vortices. The structure (3), a pair 
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of vortex tubes, was only captured in the small gap case since it developed while the flow 

interacted with wall. 

In Figure 5.8, the history of the flow development for the small gap cases with post (left) 

and without post (right) are presented for comparison. At t = 0.05 s, three out of the 

above four structures, excluding Structure 4, are still captured in the case with post. The 

inverted hairpin-like vortex (Structure 2 in Figure 5.8a) bends towards the leading edge 

as the flow is blocked by the post. Meanwhile, the counter-rotating vortex on the wall 

(Structure 3′ in Figure 5.8a) also appears as the invert hairpin-like vortex reaches to the 

wall. It merges with the structure that develops along the post and together they are lifted 

upward as they get trapped by Structure 2 (Structure 3′′ in inset at t = 0.09 s). At t = 0.15 

s (Figure 5.8b), a pair of vortex tubes (Structure 3) develop vertically upward, bend 

around Structure 2 and stretch towards the leeward of the plate. There is no significant 

difference in the formation of these structures up to this instant. The hairpin-like vortex is 

clearly observed at t = 0.55 s while the structures in the wake and near the wall are rather 

small and chaotic for the case with post (Figure 5.8c). There is a pair of vortices that 

stretch vertically and bend into the hairpin-like vortex (Structure 5). This pair of vortices 

is not the same as Structure 3 since the pair develops around the hairpin-like vortex and is 

trapped within the vortex. Later in the development, the ligaments which are captured 

along the wall in the case without post become discrete and scattered (Structure 6). 
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Figure 5.8: Early stage development of flow structures around the inclined plate for H/Δ = 0.22 with 

post (left) and without post (right) 
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Similarly, the history of fluid structures developed around the inclined flat plate with a 

large gap near the wall is presented in Figure 5.9. As observed in Chapter 4, three vortical 

structures, excluding the pair of vortices, are formed in the large gap case (Figure 5.9b). 

Since the inverted hairpin-like vortex bends toward the leeward of the plate while it 

develops along the leading edge (Figure 5.9a), the penetration of the vortex tube is 

shorter compared to the case without the post at t = 0.15 s (Figure 5.9b). The inverted 

hairpin-like vortex is not clearly captured at t = 0.55 s where the overall fluid structures 

are complicated in the case with post compared to without post. At the bottom of the post, 

the approaching flow interacts with the post and wall, where it develops ligament of a 

vortex tube (Structure 7) in the streamwise direction as observed in Figure 5.7a. The 

ligament of the vortex tube further stretches into the downstream where the colour of the 

structure is shown in green, indicating that the structure rotates about the streamwise (X) 

direction. Meanwhile, there are small scale streamwise vortical structures formed along 

the post, as illustrated in Figure 5.9c and d. These structures are not identified in the 

small gap case since the wake is close to the wall. To further understand the fluid 

structure development near the wall, the three-dimensional fluid structures are viewed 

from a different orientation. 
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Figure 5.9: Early stage development of flow structures around the inclined plate for H/Δ = 1.11 with 

post (left) and without post (right) 
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In order to check the flow development near the wall, the iso-surface of λ2 is viewed from 

the bottom (negative Y) with a non-transparent (gray) horizontal plane set at the height of 

the leading edge (Y/Δ = 0.22) to screen out the structures above the leading edge (Figure 

5.10). The left hand column shows the structures developed near the wall for the small 

gap case with post and on the right hand side shows the case without post. At t = 2.0 s 

(Figure 5.10a), the symmetric distribution of flow structures observed in the downstream 

for the case without post is replaced by an asymmetry pattern for the case with post. The 

meandering vortex structures found in the downstream in Chapter 4 are identified with 

labels L and R in Figure 5.10 for the case with post. There are also structures (coloured in 

red and blue) which extend from the post similar to those observed in the large gap case 

with post (Figure 5.9c,d). However, unlike the large gap case, the contour patches 

extending from the post merge with the meandering vortices L2 and R2 (Figure 5.10b,c). 

Nevertheless, since the scale of the vortices developed from the post is small, these 

vortices do not seem to have a large influence on the meandering structures. 
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Figure 5.10: Bottom view of the same structures with the filtering plane set at Y/Δ = 0.22 for H/Δ = 

0.22 with post (left) and without post (right) 

5.4.2. Steady state condition in the mean 

A closer examination of the structures formed around the post after the flow has achieved 

a steady state condition in the mean is presented in Figure 5.11, showing the iso-surfaces 

of λ2 at t = 5.6 s with a gray non-transparent horizontal plate placed at the height of the 

leading edge. The top figure (Figure 5.11a) shows the case without the post for the small 

gap, the middle figure (Figure 5.11b) captures the structures for the case with post for the 
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small gap, and the bottom figure (Figure 5.11c) presents the case with post for the large 

gap. As observed in Figure 5.10b,c, the structures extending from the post are captured 

within the white dashed circle in Figure 5.11b. Compared to the structures extending 

from the post for the large gap case, these structures are shorter for the small gap as they 

merge with larger scale vortices developed by the interaction of the wall and the flow that 

separates from the leading and side edges (e.g. Structure 3 in Figure 5.8). Downstream of 

the dashed region, the small scale vortices extending from the post spread wider as they 

are trapped by the large scale vortices developed from the side edges of the plate. 
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Figure 5.11: Iso-surfaces of λ2 at t = 5.60 s with colour contours of Y-vorticity on these surfaces for 

H/Δ=0.22 (left) and H/Δ=1.11 (right) 
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5.5. Conclusions 

The numerical investigation of flow past a stand-alone solar panel set near a wall at two 

different elevations (H/Δ = 0.22 and 1.11) is presented in this chapter. A cylindrical 

supporting structure is added to the geometry modelled in Chapter 4. Mean flow 

characteristics are analyzed and the three-dimensional fluid structures, visualized by the 

iso-surface of λ2 calculated from the λ2-criterion, are investigated and compared with the 

case without post. 

The mean velocity profiles show the development of a wall-jet like flow in the gap region 

for the small gap case (H/Δ = 0.22), while the strong downwash separation is identified 

for the large gap case (H/Δ = 1.11). There is no significant difference observed in the 

profiles between the cases with and without the post. It can be concluded that the post 

used for these simulations (0.15 m diameter) does not generate much disturbance in the 

downstream. The velocity profiles adjacent to the post show that the approaching flow is 

not affected by the presence of the post, whereas the flow downstream of the cylinder is 

largely influenced by the recirculation bubble that forms behind the plate. These 

observations are also captured in the two-dimensional streamtraces superimposed on the 

mean pressure contours plotted on the vertical plane at the midspan of the inclined flat 

plate. A slight difference in the size of the wake is seen in this plot. The transverse 

sectional planes are also presented with the streamtraces superimposed on the mean 

streamwise vorticity. Streamwise vorticity patches along the post in the wake and near 

the wall are found in the cross-section plane at X/Δ = 0.5. Small patches at the same 

locations are observed in the plane at X/Δ = 1.5, which represent streamwise vortical 
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structures stretching from the post. However, there is no significant difference in the two-

dimensional mean flow field for the cases with and without post. 

The early stage transient three-dimensional flow development shows four unique fluid 

structures in the small gap case with post. There is a small disturbance in these fluid 

structures at the beginning of their development, while the fluid structures become 

complex at a later stage for both cases. Streamwise vortical tubes first form at the 

junction of the post and the wall, then theses tubes also develop along the post. These 

streamwise vortical structures stretch into the downstream but do not interact with the 

wake and other fluid structures such as hairpin-like vortices or inverted hairpin-like 

vortices. The bottom view with a filter placed at the height of leading edge captures the 

fluid structures forming along the wall in an asymmetric pattern for the case with post, 

whereas a symmetric flow pattern is observed in the case without post. Close examination 

of the fluid structures around the post shows that the streamwise vortical structures 

extending from the post merge with the large scale vortices formed by the wake for the 

small gap case. 

From the above observations it can be concluded that the selected post does not have a 

large impact on the main fluid structures that develop around the bluff body, but it 

promotes the generation of small scale vortical structures around it. As a result, the wind 

load acting on the stand-alone solar panel will not change significantly. From an optimal 

design perspective, further investigations with different sizes of post are recommended to 

determine the point at which the flow interacts with the three objects, the inclined flat 

plate, post and wall, in such a way to minimizing the wind load on the inclined flat plate. 
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Chapter 6. Conclusions and recommendations 

The overall objective of this study was to analyze the unsteady flow development around 

bluff bodies. The CFD simulations were conducted using the DES turbulence model. The 

study consisted of three phases: (1) flow past an infinitely long inclined flat plate, (2) 

flow past a finite inclined plate near a wall, and (3) flow past a stand-alone solar panel 

supported by a cylindrical post.  

6.1. Conclusions 

The DES simulations of the classical flow past an infinitely long inclined flat plate at 

high Reynolds number captured the regular von Kármán vortices shed from the body. 

The vortex shedding frequency based on velocity measurement in the downstream and 

the mean pressure distribution on the plate were successfully validated with experimental 

results. It was shown that the shed vortices quickly dissipated in the downstream. As 

expected from wake transition studies, streamwise vortices were identified in the 

transverse cross-section planes in the downstream beyond the wake region. Streamwise 

vortices in the transverse section near the body were also captured within the wake and 

exhibited oscillatory behaviour, being trapped by the spanwise vortices shed periodically 

from the body. Although the above 2-D sectional planes showed the interaction of 

spanwise and streamwise vortices, they did not fully illustrate the development and 

interactions of these structures. Thus, three-dimensional flow visualization using λ2-

criterion was introduced to further process the data. 

The iso-surface of λ2 showed that the distortion of the spanwise vortices in the far 

downstream was the mechanism that produced the rapid dissipation of the vortices that 
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were observed in the midspan cross-section. The streamwise vortices were formed along 

the braids of previously shed spanwise vortices. The spanwise wavelength of streamwise 

vortices was found to range from 0.7 to 1.8 times of the flat plate width, which matched 

with the mode B instability reported by other researchers. Wobbling as a result of the 

spanwise instability was also observed in the shear layer and spanwise vortices at the 

trailing edge, whereas the shear layer at the leading edge was smooth. Examining the 

details inside the wake region illustrated the development of streamwise vortices right 

behind the inclined flat plate which had a large influence to the shear layer and spanwise 

vortices as they formed. Meanwhile, since there was little available space near the 

leading edge to develop the streamwise vortices, the shear flow from the leading edge 

was dominant and promoted the development of a smooth shear layer. 

These observations demonstrate that a typical two-dimensional flow model (for an 

infinitely long body) fails to predict the three-dimensionality in the wake. What appears 

to be dissipation of vortices in the two-dimensional analysis is the effect of the small 

scale streamwise vortices on the large scale spanwise vortices as they distort in the 

downstream. 

Flow past a finite inclined flat plate near a wall was also investigated for two different 

gap heights between the wall and the plate. For the small gap case, a wall-jet like flow in 

the gap region with a weak upward flow was captured in the mean streamwise and 

depthwise velocity profiles. A strong downwash was observed in the large gap case as the 

flow separated from the leading edge, but this was immediately followed by an upwash. 

The results using streamtraces and pressure contours illustrated an expansion of the wake 

for the small gap case and a reduction in wake size for the large gap case. The same 
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observations were presented in the streamtraces superimposed on the mean pressure 

contour in the midspan cross-section. Since the wake was expanded, the low pressure 

field was shifted downstream so that the wind load on the plate was reduced. 

The transient flow development was illustrated by the instantaneous velocity vectors and 

spanwise vorticity contours on the midspan cross-section. For small gap case, the vortex 

shed from the leading edge interacted with the wall and generated a counter-rotating 

vortex. The counter-rotating vortex was trapped into the wake by the shed vortex while it 

developed. When the flow achieved the steady state condition in the mean, the counter-

rotating vortex travelled along the wall. As the wall-like jet formed at the gap, the shear 

layer at the leading edge appeared parallel to the wall for the small gap case, whereas the 

shear-layer took an arc shape for the large gap case. 

At the early stage of flow development, the iso-surface of λ2 was able to capture four 

unique fluid structures around the bluff body for the small gap case: (1) a hairpin-like 

vortex, (2) an inverted hairpin-like vortex, (3) a vortex pair extended vertically from the 

wall and (4) corner vortices. The vortex pair developed due to the interaction of an 

inverted hair-pin vortex with the wall. The vortex pair was found to be part of the 

counter-rotating vortex that was seen in the transient velocity vector plots and spanwise 

vorticity contours on the midspan cross-section. Later, the pair was identified as the 

source of meandering structures along the wall in the downstream. As the wake stretched 

due to the wall-jet like flow, the legs of the hairpin-like vortex were found to be almost 

parallel to the wall for the small gap case. The same structure was identified for the large 

gap case, but it curled upwards because of the strong upwash. Since the flow with large 

gap did not interact with the wall, the vortex pair was not captured in this case. 
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Once the flow was steady in the mean, distorted flow structures were identified for the 

small gap case, whereas the symmetric flow structures were maintained for the large gap 

case. In summary, two-dimensional cross-sectional analysis and three-dimensional flow 

visualization using the iso-surface of λ2 was able to present the mechanisms of fluid 

structure development around the inclined plate near the wall. 

Building on the fundamental studies discussed above, flow past a realistic geometry for a 

top mounted stand-alone solar panel was simulated to determine the role of the 

supporting structure (post) with the wall effect. Similar to the case without the post, the 

mean velocity profiles showed the presence of a wall-like jet in the gap region for the 

small gap case, whereas the strong downwash and upwash were captured for the large 

gap case. In the downstream, there was no significant difference observed compared to 

the case without post. The mean velocity profiles adjacent to the post showed that the 

flow past the post was influenced by the recirculation bubble that developed behind the 

plate. These observations were confirmed by examining the streamtrace plots 

superimposed on the mean pressure contours in the midspan cross-section. In the 

transverse cross-sections at the post, additional streamwise vortices were found along the 

post. Large vortices were identified in the wake and small vortices were captured at the 

corner of the post and the wall. Similar vorticity contour patches were observed in the 

downstream transverse cross-section, indicating development of streamwise structures 

along the post. 

The transient three-dimensional visualization using λ2-criterion was able to capture the 

four unique structures which were identified in the case without post. At the early stage 

development, the supporting structure generated only small disturbances on the fluid 
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structures. However, the structures became more complex as the flow reached the steady 

state condition in the mean for both cases. In the case of large gap case, the streamwise 

vortices were initially identified at the corner junction of the post and the wall. Later, 

these vortices appeared along the post but did not interact with the wake. The same 

structure at the corner junction was captured in the small gap case. The streamwise 

structures were found to merge into large vortical structures in the wake. The meandering 

structures were again observed in the small gap case. It was found that the influence of 

post (for the size selected in this study) on the flow developed around the bluff body was 

rather small, and as a result, the presence of the supporting structure did not change the 

wind load acting on the plate. 

6.2. Recommendations 

This study has shown that DES is able to capture the transient three-dimensional fluid 

structures that develop around the inclined flat plate. The λ2-criterion is a valuable tool to 

identify both small to large vortical structures in the wake. However, the iso-surface of a 

single λ2 value could miss weaker vortices around the body and in the downstream. It is 

not known how these weaker vortices might interact with the main body or with objects 

located in the downstream region. It could be informative to explore different kinds of 

vortex core identification criteria to further identify the unique fluid structures in the flow. 

Further studies are also needed to optimize the gap spacing and investigate the effects of 

other parameters such as yaw angle and plate aspect ratio on the wind load. Analysis of 

theflow development is further explored by conducting the phase-averaging and 

quantifying the characteristics of the flow past the inclined bluff bodies. Additionally, the 

flow past an infinitely long inclined flat plate (studied in Chapter 3) set near a wall can be 
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simulated to analyze the effect of the wall without the flow separation from the side 

edges of the plate. Alternatively, the finite length inclined flat plate can be subjected to 

the freestream to show the flow development from the side edges. The effect of aspect 

ratio on the unique fluid structures observed in Chapter 4 is also of interest. 
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